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Abstract

Background: Detecting subtle-to-moderate biomarker changes such as those in amyloid PET imaging becomes
increasingly relevant in the context of primary and secondary prevention of Alzheimer’s disease (AD). This work
aimed to determine if and when distribution volume ratio (DVR; derived from dynamic imaging) and regional
quantitative values could improve statistical power in AD prevention trials.

Methods: Baseline and annualized % change in [11C]PIB SUVR and DVR were computed for a global (cortical) and
regional (early) composite from scans of 237 cognitively unimpaired subjects from the OASIS-3 database (www.
oasis-brains.org). Bland-Altman and correlation analyses were used to assess the relationship between SUVR and
DVR. General linear models and linear mixed effects models were used to determine effects of age, sex, and APOE-
ε4 carriership on baseline and longitudinal amyloid burden. Finally, differences in statistical power of SUVR and DVR
(cortical or early composite) were assessed considering three anti-amyloid trial scenarios: secondary prevention trials
including subjects with (1) intermediate-to-high (Centiloid > 20.1), or (2) intermediate (20.1 < Centiloid ≤ 49.4)
amyloid burden, and (3) a primary prevention trial focusing on subjects with low amyloid burden (Centiloid ≤ 20.1).
Trial scenarios were set to detect 20% reduction in accumulation rates across the whole population and in APOE-ε4
carriers only.
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Results: Although highly correlated to DVR (ρ = .96), cortical SUVR overestimated DVR cross-sectionally and in
annual % change. In secondary prevention trials, DVR required 143 subjects per arm, compared with 176 for SUVR.
Both restricting inclusion to individuals with intermediate amyloid burden levels or to APOE-ε4 carriers alone further
reduced sample sizes. For primary prevention, SUVR required less subjects per arm (n = 855) compared with DVR
(n = 1508) and the early composite also provided considerable sample size reductions (n = 855 to n = 509 for SUVR,
n = 1508 to n = 734 for DVR).

Conclusion: Sample sizes in AD secondary prevention trials can be reduced by the acquisition of dynamic PET
scans and/or by restricting inclusion to subjects with intermediate amyloid burden or to APOE-ε4 carriers only.
Using a targeted early composite only leads to reductions of sample size requirements in primary prevention trials.
These findings support strategies to enable smaller Proof-of-Concept Phase II clinical trials to better streamline drug
development.
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Background
With the recently established biological definition of
Alzheimer’s disease (AD) [1] and the increased availabil-
ity of (imaging) biomarkers, the research community is
now well-equipped to study this disease from its earliest
pathological changes to later-stage clinical presentations
of cognitive impairment [2]. Especially in the context of
much needed treatment and prevention strategies, this
research framework can be extremely valuable in accur-
ately identifying individuals in the AD continuum, who
might benefit from disease-modifying therapies.
With varying degrees of pathological confirmation, re-

cent years have seen many disease-modifying therapies
that failed to meet primary endpoints and impact cogni-
tive functioning [3]. In fact, despite promising signals
observed in a number of anti-amyloid clinical trials [4–
8], the lack of downstream effects on cognition posed
important questions on the validity of the widely ac-
cepted amyloid cascade hypothesis and highlighted our
(still) limited understanding of the mechanisms involved
in this disease. Nonetheless, recent results such as those
from the aducanumab [7, 9, 10] or BAN2410 [11] trials
have shown promising signals for anti-amyloid therapies
and in fact have encouraged the development of earlier
preventive Phase 3 trials focusing on subjects with pre-
clinical AD such as the AHEAD 3-45 Study [12]. As a
result, this shift to prevention in earlier stages of the dis-
ease and the (possible) future need for pathological con-
firmation pre-treatment may increase the use of
biomarkers such as amyloid positron emission tomog-
raphy (PET) imaging for both screening and measure-
ment of treatment effects. However, a marked
discrepancy in duration between most short-term stud-
ies and the long-term pathological processes such as Aβ
plaque accumulation [13, 14] may result in the need to
detect subtle-to-moderate biomarker changes [15].
When focusing on the early stages of AD with amyloid

PET, observed changes in Aβ burden are mostly focal

[16–18], and it may be difficult to detect these changes
with sufficient statistical power, challenging standard
analytical approaches, and the traditional use of a global
measure of amyloid burden [19, 20]. Recent work sug-
gests that regional amyloid PET assessments can im-
prove early detection of pathology [16, 21, 22] and
achieve increased power in clinical trials [23]. In
addition, several PET studies have investigated potential
methodological improvements to increase statistical
power in longitudinal settings and better discriminate
sub-populations cross-sectionally [24]. These studies
generally focused on improving technical factors affect-
ing image quality such as partial volume effects [25] or
on modeling and pre-processing choices impacting
measurement stability, such as the choice of reference
region [26–28]. However, since the vast majority of PET
studies performs static acquisitions, these improvements
remain mostly limited to the use of the standard uptake
value ratio (SUVR) metric. Although easily available
from short static scans, SUVR is a semi-quantitative and
biased proxy of the specific amyloid burden as measured
by binding potential (BPND) or distribution volume ratio
(DVR) [29, 30], which are available only from dynamic
scans. Specifically, SUVR is known to suffer from tech-
nical and physiological sources of bias such as inconsist-
ent scanning window and changes in cerebral blood flow
[30, 31]. However, traditional dynamic acquisitions can
significantly increase the duration and cost of studies;
therefore, compromises have been proposed, such as the
collection of early frames in addition to the standard
late-uptake image acquisition [32]. In fact, this early
frame collection not only allows for the determination of
DVR, but provides an additional parameter (R1) that can
serve as a proxy for cerebral blood flow, another import-
ant marker of disease in AD [33, 34].
Considering current and future research needs, this

study aims to determine if and when dynamic imaging
and targeted regional quantification could improve
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statistical power in primary and secondary prevention
trials using longitudinal amyloid PET imaging. For that
purpose, we estimated the number of participants per
arm needed in three hypothetical trial scenarios aiming
to reduce amyloid accumulation rates by at least 20%:
(1) one in subjects with low amyloid burden for primary
prevention, and two for secondary prevention, either (2)
including all subjects with abnormal amyloid levels
(intermediate-to-high) or (3) focusing on those at the
earliest stages of pathology (intermediate levels). We
compared the sample sizes required when using SUVR
and DVR as amyloid load metric in both the whole
population as well in trial scenarios only recruiting
APOE-ε4 carriers.

Methods
Data sets
This work included two separate datasets: the first was
used for main analyses, and the second for calculating
test-retest variability for [11C]PIB SUVR and DVR.
For the first dataset, tabulated PET data were obtained

from the Open Access Series of Imaging Studies
(OASIS-3) dataset, which is a longitudinal neuroimaging,
clinical, cognitive, and biomarker dataset for normal
aging and Alzheimer’s disease (www.oasis-brains.org).
This dataset is a retrospective compilation of data col-
lected across several ongoing projects through the
Washington University of Saint Louis Knight Alzhei-
mer’s Disease Research Center (ADRC) over the course
of 30 years [35]. A total of 237 subjects were selected
based on (1) being classified as cognitively unimpaired
and (2) having at least two dynamic [11C]PIB PET scans
with a minimum of 1 year between sessions available.
For the second dataset, eleven subjects (4 cognitively

unimpaired, 1 mild cognitive impaired, and 6 with AD
dementia) were selected from a previously reported test-
retest (TRT) study at the Amsterdam University Medical
Center location VUmc [36]. Test and retest scans were
performed within a one week interval.

Image acquisition and processing
A brief description of data collection and standard im-
aging processing pipelines for each dataset can be found
below.
OASIS-3 60 min dynamic [11C]PIB PET images were

acquired starting at the intravenous administration of
approximately 12 mCi of radiotracer. Data was col-
lected in 3D mode on a Siemens/CTI EXACT HR+
scanner or a Biograph 40 PET/CT scanner. Accom-
panying anatomical T1-weighted MPRAGE MR scans
were acquired using either a Siemens 1.5 of 3T scan-
ner. Image processing was performed with a local
processing pipeline (PUP; https://github.com/ysu001/
PUP), described in detail previously [37]. In short, the

standard FreeSurfer (v5.3; Martinos Center for Bio-
medical Imaging, Charlestown, Massachusetts, USA;
https://surfer.nmr.mgh.harvard.edu/fswiki) based PUP
processing includes a scanner resolution
harmonization filter [38], inter-frame motion correc-
tion, PET-MR registration, and regional time-activity
curves extraction for all regions from the Desikan-
Killiany atlas (DK) [39]. Using the cerebellar cortex as
the reference region, reference Logan graphical ana-
lysis (RLogan) [40] was used to determine DVR with
t* set to 30 min post-injection (p.i.). In parallel, SUVR
was extracted for the same time-window of 30–60
min p.i.
For the TRT study, 90 min dynamic [11C]PIB PET

scans were performed on a Siemens ECAT EXACT HR+
scanner and a structural T1-weighted MR scan on a 1.5
T Siemens Sonata scanner. First, structural T1-weighted
MR images were co-registered to the PET scan using
Vinci software (Max Planck Institute for Neurological
Research, Cologne, Germany) and PVE-lab software was
used to extract the cerebellar cortex time-activity curve
based on the Hammers atlas [41, 42]. Next, both DVR
(RLogan) and SUVR were calculated from 30 to 60 min
p.i. in order to compare results with those from the
OASIS-3 dataset and finally normalized to the cerebellar
cortex using PPET software [43]. These parametric im-
ages were then warped into MNI space using SPM12
and the DK atlas was used to extract regional SUVR and
DVR values.
Both global and regional analyses were performed

on the SUVR and DVR data. A global measure of
amyloid burden was determined based on a “cortical
composite” created from grey-matter FreeSurfer-
defined frontal, parietal, temporal, and precuneus re-
gions [37]. In addition, an “early composite” was de-
fined from three grey-matter DK regions, namely the
isthmus cingulate, precuneus, and lateral orbitofron-
tal cortices. These regions were chosen based on lit-
erature for consistently displaying increased amyloid
burden in early disease stages, as well as higher rates
of accumulation compared with cortical composites
[16–19, 44]. Finally, corresponding and previously
validated Centiloid (CL) values were also available
for comparison in the OASIS-3 dataset [26].

Levels of β-amyloid burden
Three different levels of amyloid burden were defined
based on CL cutoffs available from literature and vali-
dated against pathology [45]. Low amyloid burden was
defined as CL values below 20.1, a threshold showing
the highest accuracy in detecting moderate or frequent
plaque density. In contrast, high amyloid burden was de-
fined as CL values above 49.4, the threshold found to
identify intermediate or high likelihood of Alzheimer’s
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disease according to NIA-AA 2012 criteria [46]. Finally,
intermediate levels were those with 20.1 < CL ≤ 49.4.

Amyloid accumulation
In order to account for differences in number of scans
and interval between visits, a linear mixed effects model
(LME) with random intercepts and random slopes was
used to determine annualized rates of Aβ accumulation
for every metric (SUVR and DVR) in the OASIS-3 data-
set. To facilitate interpretability when reporting results,
these were also normalized to baseline Aβ levels and will
be reported as annualized % change.
Next, the TRT variability of each quantitative metric

derived from the TRT dataset was used as a cutoff to de-
termine the proportion of subjects to be considered as
“accumulators,” i.e., those with annualized % change
above TRT variability. Relative TRT variability was cal-
culated for all subjects from the TRT dataset (n = 11)
and for cognitively unimpaired subjects only (n = 4), ac-
cording to Eq. 1, where the estimate of amyloid burden
(DVR or SUVR) of the test scan is denoted as T and for
the retest scan as R.

TRT %ð Þ ¼ j T−R j
0:5∙ j Tþ R j ∙100 ð1Þ

Statistical analysis
All statistical analysis were performed using R Statistical
Software (version 4.0.2; R Foundation for Statistical
Computing, Vienna, Austria). Results are reported as
mean ± standard deviation (μ ± SD) or median (M) and
interquartile range (IQR), as appropriate. In all analyses,
DVR was considered the reference metric.
To assess the relationship between cortical SUVR and

DVR at baseline and longitudinally, Bland-Altman plots,
correlation analyses, and paired t tests (or Wilcoxon
signed-rank test) were used. In addition, paired t tests
(or Wilcoxon signed-rank test) were also used to assess
differences between a cortical composite and an early
composite in the estimation of amyloid burden and ac-
cumulation rates.
To assess the relationship between baseline amyloid

burden and longitudinal amyloid accumulation, a linear,
a quadratic and a natural cubic spline model with 1 knot
were tested, and the optimal model was determined
based on the Akaike information criteria (AIC).
Finally, effects of age, APOE-ε4 carriership (presence

of at least 1 ε4 allele), and sex on baseline amyloid bur-
den were assessed by a general linear model (GLM).
Similarly, a linear mixed effects model (LME) was used
to determine the effect of the same variables on amyloid
accumulation, accounting for baseline amyloid burden.

The analyses above were performed in order to deter-
mine the generalizability of the OASIS-3 dataset with re-
spect to other cohorts, such that the results of the
sample size calculations can be contextualized
appropriately.

Sample size calculations
Using the LME estimates for annualized accumulation
rates and respective standard deviations, the sampsi-
zepwr function in Matlab (1-β = 80% power and a two-
tailed t test type-I error of α = 0.05) was used to deter-
mine sample sizes required to detect differences in accu-
mulation rates in three hypothetical 12-month placebo-
controlled randomized anti-amyloid clinical trials. The
trial designs assumed participants undergo a PET scan
at baseline and another at the completion of the trial.
These were computed separately for SUVR and DVR,
using the cortical composite and the early composite,
both across the whole population and restricted to
APOE-ε4 carriers only.
The tested trial scenarios were the following:

1) A secondary prevention trial aiming to detect a 20%
reduction in β-amyloid accumulation rates in indi-
viduals with intermediate-to-high amyloid burden
(CL > 20.1) at baseline;

2) An earlier secondary prevention trial aiming to
detect a 20% reduction in β-amyloid accumula-
tion rates focusing in individuals with inter-
mediate amyloid burden (20.1 < CL ≤ 49.4) at
baseline;

3) A primary prevention trial aiming to detect a 20%
reduction in in β-amyloid accumulation rates in in-
dividuals with low amyloid burden (CL ≤ 20.1) at
baseline.

Results
On average, OASIS-3 subjects underwent 2.5 ± 0.6
scans [range 2–5], with an average of 4.8 ± 2.1 years
between the first and the last scan [range 1–9.6]. The
majority of subjects were female (65.0%), 32.9% of
them were APOE-ε4 carriers, and the mean age at the
time of the first PET session was 65.3 ± 9.4 years.
Complete OASIS-3 cohort demographics are shown
in Table 1.
Similarly, the cognitively unimpaired individuals from

the TRT dataset (n = 4) were mainly female (75.0%),
33.3% were APOE-ε4 carriers, and their mean age was
66.8 ± 4.1 years. In contrast, the full dataset (n = 11) had
a higher proportion of APOE-ε4 carriers (62.5%), equiva-
lent proportion of males and females (45.5% females),
and a mean age of 64.0 ± 4.9 years. Of note, APOE geno-
typing was missing for 3/11 subjects.
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Cortical and regional β-amyloid quantification
Baseline cortical SUVR (M = 1.08, IQR = 1.14–1.05) and
DVR (M = 1.05, IQR = 1.10–1.02) were highly correlated
(ρ = .96), and SUVR consistently overestimated DVR
(Fig. 1a). Assuming DVR as the reference standard, this
bias in SUVR was proportional to the underlying level of
amyloid burden, where an increase in one amyloid bur-
den unit translated to a 30% increase in bias (slope in
Fig. 1b). The same pattern was found for annual %
change, where the two metrics were highly correlated
(r = .98, Fig. 1c), but SUVR (μ = 1.06 ± 1.30%) overesti-
mated DVR-based accumulation rates (μ = 0.75 ± 1.11%)
by 15% at every unit increase in underlying accumula-
tion rates (slope in Fig. 1d).
The relationship between baseline and longitudinal

cortical amyloid burden was well described by a
quadratic model for both SUVR (R2 = .21, ΔAIClinear =

− 94.4, ΔAICspline = − 95.3) and DVR (R2 = .26, ΔAIC-
linear = − 78.8, ΔAICspline = − 79.2) (Fig. 2a), where sub-
jects in the intermediate amyloid burden group
displayed the highest accumulation rates on average
(Table 1). Across the whole cohort, baseline SUVR
and DVR and respective annual % change did not dif-
fer between males and females, while higher age was
associated with higher baseline SUVR (β = 0.007, t =
4.60, p < .001) and DVR (β = 0.005, t = 4.17, p < .001),
but did not predict accumulation rates. Similarly,
APOE-ε4 carriership was associated with higher base-
line levels of amyloid burden (SUVR: β = 0.163, t =
5.69, p < 0.001; DVR: β = 0.122, t = 5.53, p < 0.001),
and was only related to higher accumulation
rates when using SUVR (β = 0.014, t = 2.55, p = .011).
As expected, both baseline and accumulation rates

with SUVR and DVR were significantly higher when

Fig. 1 Relationship between SUVR and DVR. On the top panel, a scatterplot between baseline cortical SUVR and DVR across all subjects, with a
solid identity line as reference (a), and a Bland-Altman plot displaying a linear relationship between SUVR bias and underlying amyloid burden
(b). On the bottom panel, a scatterplot between annualized % cortical SUVR and DVR across all subjects, with a solid identity line as reference (c),
and a Bland-Altman plot displaying a linear relationship between bias in annualized % cortical SUVR and underlying accumulation rates, with a
dotted line representing a linear regression through the data points (d)

Lopes Alves et al. Alzheimer's Research & Therapy           (2021) 13:82 Page 6 of 13



using the early composite compared to the cortical com-
posite (Table 1).

TRT and longitudinal amyloid accumulation
In order to assess the proportion of OASIS-3 partici-
pants with accumulation rates beyond TRT variability,
we determined cutoffs for accumulation based on a sep-
arate local TRT dataset.
Focusing on cognitively unimpaired individuals only

(n = 4), SUVR TRT was 1.61% for the cortical composite,
compared to 0.85% for DVR. Similarly, a TRT of 3.46%
was observed for SUVR with an early composite, while
for the same ROI, DVR TRT was only 2.05%. In
addition, when assessing subjects across diagnostic
groups (n = 11), the pattern remains, with DVR TRT

always lower than SUVR (cortical composite: 2.12%
DVR/3.45% SUVR, early composite: 2.14% DVR/4.16%
SUVR).
Using TRT from cognitively unimpaired subjects as

our main cutoff for accumulation (due to cohort
comparability) and a cortical composite for quantifica-
tion, 81 (34.2%) individuals were classified as accumu-
lators using DVR compared with 45 (23.6%) using
SUVR (Fig. 2b). A total of 25 subjects were accumula-
tors with DVR but not SUVR; 17 of them belonging
to the low, 3 to the intermediate, and 5 to the high
amyloid burden group (Table 1). Similarly, using the
early composite for quantification and TRT cutoff,
SUVR analyses classified 8 (3.4%) of subjects as accu-
mulators compared to 39 (16.5%) when using DVR.
In this case, 31 subjects were accumulators with DVR

Fig. 2 Amyloid accumulation with SUVR and DVR. Scatter plot of the relationship between annual % change and baseline amyloid levels using
SUVR (top left) and DVR (bottom left) in APOE-ε4 carriers (orange) and non-carriers (blue), with a dotted line representing the quadratic model fit
(a). Plot of the absolute change in SUVR (top right) and DVR (bottom right) in time, coded for whether subjects were classified as accumulators
based on TRT from cognitively unimpaired individuals (orange) or were considered stable (gray) (b)
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but not with SUVR, 10 of which were from the low,
15 from intermediate, and 6 from the high amyloid
burden group.

Sample sizes in longitudinal studies
Table 2 summarizes the required sample sizes for three
hypothetical trial scenarios, considering different choices
with respect to acquisition protocol (static/SUVR or dy-
namic/DVR), methodological (cortical composite or
early composite), and inclusion criteria (whole popula-
tion or APOE-ε4 carriers only).
For secondary prevention trials aiming to detect a 20%

reduction in β-amyloid accumulation rates, the sample
sizes required are consistently lower when using DVR
compared to SUVR (Table 2), likely because the smaller
standard deviation and better TRT observed with DVR
outweighs its lower average rate of accumulation
(Table 1). In addition, including only APOE-ε4 carriers
provided considerable reduction in the required sample
sizes (whole population: NSUVR = 176, NDVR = 143,
APOE-ε4 carriers only: NSUVR = 116, NDVR = 83), for ei-
ther region of interest chosen for analysis. Further, if this
secondary prevention trial included only individuals at
an earlier stage of the disease (i.e., those with intermedi-
ate amyloid burden and thus more likely to have higher
accumulation rates), a 4-fold reduction in required sam-
ple sizes (NSUVR = 44, NDVR = 39) can be achieved com-
pared to including subjects from the general population
(NSUVR = 176, NDVR = 143). In both secondary prevention
scenarios, the use of an early composite did not reduce
the required sample sizes.
Finally, a primary prevention trial required the largest

sample sizes overall as expected, and the use of an early
composite reduced the number of subjects needed to de-
tect the desired effect by ~ 40–50%, in case of both
SUVR (NCORTICAL = 855, NEARLY = 509) and DVR (NCOR-

TICAL = 1508, NEARLY = 734). Similarly, restricting the
trial to APOE-ε4 carriers provided approximately ~ 20%
reductions in sample size requirements with either ac-
quisition protocol. However, in this scenario, the use of
SUVR provided smaller sample size requirements than

DVR (Fig. 3), which relates to its higher accumulation
rates and similar standard deviation (Table 1).

Discussion
In this work, we observed that the smaller variability of
DVR compared with SUVR results in smaller sample
size requirements for anti-amyloid secondary prevention
trials when using dynamic amyloid PET scans. In
addition, focusing on individuals with intermediate levels
of amyloid burden who are at the peak of accumulation
provides a 4-fold reduction in sample sizes compared to
traditional secondary prevention trials (where inclusion
criteria includes amyloid-positive individuals regardless
of the extent of pathology). As expected, primary pre-
vention trials require larger sample sizes to achieve simi-
lar statistical power, but this can be mitigated by
targeting inclusion criteria to APOE-ε4 carriers and/or
by using an early composite region of interest.
First, the direct comparison between dynamic and

static parameters in this work confirmed that SUVR
largely overestimates DVR and that this bias is strongly
dependent on the underlying levels of amyloid burden
(Fig. 1a, b). In addition, this overestimation relates to the
underlying radiotracer kinetics and can be further influ-
enced by scan time, as well as known confounding ef-
fects such as changes in blood flow and tracer clearance
[29, 30]. Especially in the case of disease-modifying ther-
apies, an intervention could affect cerebral blood flow
and therefore falsely inflate treatment effects when mea-
sured by SUVR [31], challenging the interpretation of
SUVR-based rates of amyloid accumulation. As a conse-
quence, the results of our primary prevention trial sce-
nario should be interpreted with caution, where the
increased accumulation rates observed with SUVR seem
to facilitate the detection of treatment effects compared
to DVR, despite the increased variability (Tables 1 and
2). Especially in these early stages of disease where the
underlying amyloid PET signal is low, the relatively large
contribution of physiological and methodologically
driven fluctuations in the PET signal can lead to

Table 2 Sample size requirements per trial arm, for three hypothetical trial scenarios, comparing differences between using DVR/
SUVR, a cortical/early composite ROI, and restricting the inclusion to APOE-ε4 carriers or not

Whole population APOE- ε4 carriers only

SUVR DVR SUVR DVR

Cortical
ROI

Early
ROI

Cortical
ROI

Early
ROI

Cortical
ROI

Early
ROI

Cortical
ROI

Early
ROI

Secondary prevention to detect 20% reduction in
accumulation (CL > 20.1)

176 167 143 140 116 125 83 97

Early secondary prevention to detect 20% reduction
in accumulation (20.1 < CL ≤ 49.4)

44 51 39 38 52 56 47 43

Primary prevention to detect 20% reduction in
accumulation (CL ≤ 20.1)

855 509 1508 734 724 455 1162 630
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misinterpreted results. This is of particular relevance
when the tested intervention may impact cerebral blood
flow.
In contrast, secondary prevention trials seem to benefit

from the acquisition of dynamic scans, where consistent
reductions in sample sizes are observed (Table 2). There,
the overestimation of SUVR accumulation rates is less
pronounced with respect to its increased variability,
resulting in a direct improvement in statistical power
when using DVR, a metric with overall lower TRT vari-
ability [36]. This finding is in line with a recent publica-
tion on tau tracer [18F] flortaucipir, where the
differences TRT variability between SUVR and BPND

also led to smaller sample size requirements when using
the latter as quantitative metric [47]. Naturally, obtaining
DVR estimates would imply the acquisition of dynamic
scans, which can result in a non-negligible increase in
patient discomfort, use of scanner time, and overall
study cost. To our knowledge, the only available report
on the willingness of participants to undergo a second
dynamic scan indicates that, at least when using a dual
time-window protocol, only 5% of them would consider
dropping the study due to discomfort [48]. Further, con-
sidering average rates of €750 for a static scan and
€1050 for a dynamic scan (available from the AMYPAD
Consortium, data not shown), our results indicate that
performing dynamic scans may not significantly impact
study costs (DVR: N = 143, €150 k, SUVR: N = 176, €132

k). Therefore, while maintaining similar cost, the acqui-
sition of dynamic scans can increase statistical power,
provide additional biomarker information on cerebral
blood flow [33, 34], and expose less participants to radi-
ation, an ethical consideration that should not be disre-
garded [29].
In addition to the increased statistical power of DVR,

focusing subject selection in secondary prevention trials
to individuals at the peak of amyloid accumulation
(20.1 < CL ≤ 49.4) provided a 4-fold reduction in re-
quired sample sizes (Table 2). In fact, similar results
have been reported by Guo and colleagues, who demon-
strated that prevention trials must account for the differ-
ences in amyloid accumulation phases (Fig. 2a) by
narrowing the range of amyloid burden in inclusion cri-
teria range; otherwise, estimates of treatment effect can
be significantly biased [49]. Importantly, the interval of
amyloid burden used in our work captures the typical
range of amyloid positivity cutoffs derived from visual
assessment [45, 50–52], while the upper values around
49.4 CL mostly correspond to levels found in subjects
with a clinical presentation of AD [45, 53]. In addition,
the range of amyloid burden used in this work for each
of the secondary prevention trials are in line to with
both the A3 (20–40 CL) and the A45 (CL > 40) trials,
both of which target a similar population to the OASIS-
3 dataset [11]. Together, our findings further stress the
advantages of refining the range of amyloid burden in

Fig. 3 Sample size requirements (per arm). Relationship between achieved statistical power and number of participants required in three anti-
amyloid hypothetical trial scenarios for the general population (top row) or focusing on APOE-ε4 carriers only (bottom row). The dotted line
represents the desired power of 1-β = 80%
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entry criteria and support the current and future design
of smaller, Phase-II, Proof-of-Concept prevention trials
in at-risk populations [54]. Of note, these considerations
should be weighed against possible higher screening fail-
ure rates.
Interestingly, the secondary prevention trial designs

tested in this work did not seem to benefit from the use
of an early composite ROI. At this stage, the amyloid ac-
cumulation in a (global) cortical composite has reached
similar rates as those observed in the early regions and
has the advantage of larger volume and better count sta-
tistics (Table 1). This suggests that, already at the inter-
mediate amyloid burden level, accumulation rates of
other regions start to increase and contribute to the glo-
bal signal. In line with our findings, a previous report de-
scribed that at higher levels of amyloid burden, the set
of regions with increased accumulation rates fall outside
of the typical-AD topography [49]. In contrast, primary
prevention trials seem to greatly benefit from the use of
an early composite ROI, where we observed a ~ 40–50%
reduction in expected sample sizes using a ROI com-
posed of precuneus, isthmus cingulate, and lateral orbi-
tofrontal regions (Table 2). These findings are
corroborated by a recent report from Insel and col-
leagues using the Alzheimer’s Disease Neuroimaging Ini-
tiative data-set [23]. There, authors showed a reduction
of ~ 62% in required sample sizes when using an early
ROI composed of precuneus and posterior cingulate.
Both early regions proposed by Insel’s and our work, as
well as the late ones described by Guo and colleagues
are in excellent agreement with recently proposed amyl-
oid burden staging systems [16, 19, 44]. Thus, these
findings indicate that in order to significantly impact
statistical power, the choice of regions for quantification
must be informed by the disease stage of the target
population.
Finally, we demonstrated that screening for risk factors

such as age and APOE-ε4 carriership could further re-
duce sample size requirements. As expected, age was as-
sociated with higher baseline levels of amyloid burden.
However, it was not predictive of accumulation rates,
which reiterates this is a risk factor for amyloid path-
ology but does not directly influence the overall accumu-
lation process, as previously suggested in a meta-analysis
[13]. Similarly, APOE-ε4 carriership was more frequent
in subjects with intermediate-to-high amyloid burden,
and carriers were younger than their non-carrier coun-
terparts (Table 1). In addition, carriership was only mar-
ginally associated with increased accumulation rates,
similar to previous work [55, 56], an effect which only
reached significance for SUVR (likely due to the propor-
tional bias of this metric which increases for higher
levels of amyloid and accumulation rates, see Fig. 1b, d).
Together, this suggests APOE-ε4 mainly impacts the

onset of amyloid pathology rather than the speed of the
subsequent accumulation process [57]. These results are
in line with several previous reports, which indicate that
even in cognitively unimpaired individuals, APOE geno-
type has a substantial effect on the age-related preva-
lence of AD pathology [13, 58]. In our work, we find
that both primary and secondary prevention trials can
still significantly reduce required sample sizes when en-
rolling APOE-ε4 carriers alone, despite their younger
age. Therefore, enrichment strategies in a general popu-
lation could focus on older individuals, while specifically
targeting APOE-ε4 carriers may allow for the inclusion
of younger subjects, as these would already have an in-
creased probability of being in the AD continuum. How-
ever, such a strategy may impact both screen failure and
future labeling of the drug, restricting its prescription
from the general population.
It is important to note that all results in this work re-

late to a fixed effect (20%) of reducing the accumulation
rates in amyloid PET scans, which may seem discon-
nected from the level of amyloid removal observed in re-
cent anti-amyloid immunotherapies [7, 59]. Indeed,
most anti-amyloid trials demonstrate such large reduc-
tions in amyloid burden that the effects can be appreci-
ated even visually. Nonetheless, other interventions may
have more subtle effects on amyloid burden, either dir-
ectly or indirectly. Some examples would be BACE1 in-
hibitors [60], drugs with other targets which have
downstream amyloid effects [61], or non-
pharmacological therapies and multi-domain preventive
trials such as those being tested in World-Wide FING
ERS [62, 63]. As such, 20% reduction of amyloid accu-
mulation may be a relevant target to detect, especially in
a short 1-year Proof-of-Concept study. Nonetheless, the
overall sample size impacts of using SUVR/DVR, early/
cortical composites, or restricting inclusion criteria can
also be observed for larger treatment effects (Supple-
mentary Figure 1). Naturally, these differences become
less relevant as the expected reductions become larger.
Methodological issues need to be considered when

interpreting the findings of this study. First, while DVR
is used as the standard of truth in this work, the chosen
imaging window for analysis (30–60 min p.i.) and the
use of RLogan could both have affected the results of
the comparison between SUVR and DVR. Previous stud-
ies have indicated that, prior to the 40–50min interval,
[11C]PIB SUV may still be rapidly changing and equilib-
rium is still not reached. Therefore, this earlier imaging
window does not correspond to secular equilibrium con-
ditions, which could have inflated possible flow effects in
SUVR and affected RLogan estimates [64]. In addition,
RLogan is known to underestimate true binding poten-
tial and suffer from noise-induced bias, while other
methods such as SRTM2 and MRTM2 have been
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proposed as optimal for [11C]PIB and might have pro-
duced higher accumulation rates with DVR [65]. It
should also be noted that TRT values from a small
single-center study may not translate to the data col-
lected in OASIS-3. However, the differences between
SUVR and DVR TRT reported in this work are in line
with previous findings with the same tracer [66], as well
as with other tracers [47]. Moreover, the TRT dataset
analyzed in this work was used as supporting evidence
for the superior statistical properties of dynamic PET
scans, and the use of literature values would have re-
sulted in equivalent results.

Limitations
Limitations include the single-tracer character of the
study and the relatively limited availability of follow-
up data with more than two time points. In addition,
one must consider whether the population of
OASIS-3 is representative of the primary/secondary
prevention trial populations. First, the age range in
this work might be too large, but the vast majority
of subjects (71%) were between 60 and 85 years of
age [11]. Of note, these results may not be compar-
able to other tracers, as the kinetics of [11C]PIB are
markedly faster than what is observed with, e.g., the
commercially available F-18 tracers such as [18F]flu-
temetamol and [18F]florbetaben, which may display
even larger biases between SUVR and DVR and
therefore also larger differences in sample size re-
quirement between the metrics. This remains to be
confirmed and will be explored within the Amyloid
Imaging to Prevent Alzheimer’s Disease (AMYPAD)
Consortium [67]. Finally, future work in a larger
dataset may consider estimating the uncertainty
around sample size estimates to better understand
the generalizability of these results and relate them
to changes in cognitive functioning, which remains
the main outcome measure in most preventive trials
to date.

Conclusion
Strategies to improve statistical power differ between
secondary and primary AD prevention trials. First, the
acquisition of dynamic PET scans can provide reduction
in sample sizes only in secondary prevention trials,
representing a reasonable alternative to static imaging
while reducing the need for exposing healthy partici-
pants to ionizing radiation. In contrast, the use of an
early composite seem to only benefit primary prevention
trials, suggesting that regional analyses must be in-
formed by disease stage in order to provide improved
statistical power to trials. Overall, refining inclusion cri-
teria can result in considerable reductions in sample size
requirements by identifying individuals at the peak of

amyloid accumulation and/or restricting trials to APOE-
ε4 carriers. These results may provide guidance on how
to design smaller Phase II Proof-of-Concept trials with-
out penalizing statistical power to detect treatment-
related changes in amyloid accumulation.
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