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ABSTRACT 

 

Introduction: This study aims to define the phenotypic and molecular spectrum of the two clinical forms 
of β-galactosidase (b-GAL) deficiency, GM1-gangliosidosis and Mucopolysaccharidosis IVB (Morquio 
disease type B, MPSIVB).  
Methods: Clinical and genetic data of 52 probands, 47 GM1-gangliosidosis and 5 MPSIVB patients, were 
analyzed.  
Results: The clinical presentations in GM1-gangliosidosis patients are consistent with a phenotypic 
continuum ranging from a severe antenatal form with hydrops fetalis to an adult form with an 
extrapyramidal syndrome. Molecular studies evidenced 47 variants located throughout the sequence of 
the GLB1 gene, in all exons except 7, 11 and 12. Eighteen novel variants (15 substitutions and 3 deletions) 
were identified. Several variants were linked specifically to early-onset GM1-gangliosidosis, late-onset 
GM1-gangliosidosis or MPSIVB phenotypes. This integrative molecular and clinical stratification suggests 
a variant-driven patient assignment to a given clinical and severity group.  
Conclusion: This study reports one of the largest series of b-GAL deficiency with an integrative patient 
stratification combining molecular and clinical features. This work contributes to expand the community 
knowledge regarding the molecular and clinical landscapes of b-GAL deficiency for a better patient 
management. 
 

 

Keywords: Beta-galactosidase deficiency; GLB1; GM1 gangliosidosis; Mucopolysaccharidosis IVB; MPS; 

Morquio B disease; Genetics 
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INTRODUCTION 

The acid β-galactosidase enzyme (b-GAL, EC 3.2.1.23) hydrolyzes the terminal β-galactosyl residues from 

GM1-gangliosides and β-galactosyl-containing molecules within the lysosome. β-galactosidase 

deficiency is a rare autosomal recessive disorder characterized by the accumulation of GM1-gangliosides 

and the mucopolysaccharide keratan sulfate (KS). [1]  

β-galactosidase deficiency pathophysiology and its subsequent phenotypic expressions are 

multifactorial and highly complex. This complexity may be partly related to (i) the alteration of both 

GLB1 gene products, b-GAL and elastin-binding protein (EBP), (ii) the pivotal roles of non-degraded 

products. Gangliosides are constituents of plasma membranes and have functional roles in signaling and 

cellular processes [2] while KS is linked to extracellular matrix proteins to form proteoglycans.  

b-GAL deficiency includes two phenotypically distinct lysosomal disorders. [3] Mucopolysaccharidosis 

type IVB (MPSIVB, Morquio disease type B, OMIM#253010) is characterized by marked skeletal 

abnormalities, increased urinary excretion of KS with no signs of storage in neuronal tissues. [3] GM1-

gangliosidosis (OMIM: #203500, #203600, #203650) clinical settings involve a progressive 

neurodegeneration due to the massive storage of GM1-gangliosides within the central nervous 

system.[4] Initially, GM1-gangliosidosis has been divided clinically into three groups of increasing 

severity.[1] However, the clinical course must be regarded as a continuum, ranging from the most severe 

antenatal cases to the adult form.  

The present work aims to report the molecular and clinical landscapes of one of the largest b-GAL 

deficiency series described to date spanning a broad range of clinical severity and forms with an 

integrative patients’ stratification combining molecular and clinical features.  
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PATIENTS AND METHODS 

Patients 

Fifty-two patients with b-GAL deficiency have been included in this descriptive study. Molecular analyses 

were performed in Rouen university hospital, France from 2006 to 2020. All patients included in this 

study were seen at the outpatient clinic by a pediatrician, a metabolician or a clinical geneticist. A 

questionnaire, requesting information about pregnancy, past medical history, cognitive/behavioral, 

sensorial and motor milestones, and first clinical, biochemical and radiological features and EEG 

analyses, was filled out by caregivers. For the clinical description, the terms of the Human Phenotype 

Ontology (HPO https://hpo.jax.org/app/) have been used. 

 

Biochemical diagnosis  

Clinical diagnosis was confirmed by the assessment of residual β-galactosidase activity in (i) cultured 

amniocytes or leukocytes using the artificial substrate, 4-methylumbelliferyl b-galactopyranoside mainly 

in 4 laboratories in France (Rouen, Toulouse, Lyon and Grenoble University Hospitals) (ii) or on dried 

blood spot using a mass spectrometry method (Rouen University Hopital). The assessment of 

neuraminidase activity was carried out for all the patients and allowed to confirm the isolated β-

galactosidase deficiency.  

 

Genetic analysis 

Genomic DNA of the 52 patients and their non-affected parents was extracted from peripheral blood 

using QIAamp DNA Blood Mini Kit® Qiagen or the QuickGene-610L platform (Kurabo Biomedical, 

FujiFilm). GLB1 gene was sequenced using Sanger or Next Generation Sequencing (NGS) methods.  

For Sanger sequencing, PCR reaction was carried out in 1X Thermo Scientific Buffer IV: 75mM Tris-HCL 

pH 8,8, 20mM (NH4)2SO4, 0,01% Tween 20, 1,5mM MgCl2, 100µM each of dNTPs, 1,25U/µl Taq 

polymerase, 0,6 µM of each primer (primer sequences are available upon request). Touchdown PCR 
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consisted of one cycle of 95°C for 5 min for the initial denaturation step followed by 12 cycles of 

denaturation at 95°C for 25 s, varying annealing (60-48°) for 25 s, and extension at 72°C. Then, 35 cycles 

were performed as follows: denaturation at 95° for 25s, annealing at 48° for 25 s and extension at 72°C 

for 25 s. PCR was terminated after a final cycle at 72°C for 5 min. Direct DNA fragments sequencing was 

performed with an ABI prism big dye Terminator cycle Sequencing Ready Reaction Kit (PE Applied 

Biosystem and ABI model 3130xl Genetic Analyzer, CA, USA). Patient genomic sequence comparison 

with the reference sequence was done using the Variant Reporter software (Applied Biosystem).  

Since 2016, a targeted capture sequencing panel including 52 lysosomal has been implemented on an 

Illumina® platform (San Diego, CA, USA). The panel was designed using the Agilent SureDesign Software 

(Agilent Technologies Inc., Santa Clara, CA, USA). For all genes, the coding region and ± 50 bp within the 

flanking intronic sequences (296 kb, 506 regions) were targeted. Library construction was performed 

using SureSelect QXT (Agilent Technologies Inc., Santa Clara, CA, USA) and sequencing was performed 

on MiSeq or NextSeq instruments (Illumina®, CA, USA) using 2×150 bp paired-end sequencing. The panel 

design and the sequencing protocol are available upon request. Data analysis has been previously 

described [5]. Briefly, bioinformatics pipeline including CASAVA suite v1.8 (Illumina®, CA, USA) and BWA-

GATK 2.2.5. (Genome Analysis ToolKit, Broad Institute, Cambridge, MA, USA) has been used for mapping 

and variant calling, Alamut Batch (Interactive BioSoftware, Rouen, France) for variant annotation, and 

CanDiD database for prioritizing and filtering variants of interest. The CANOES algorithm (CNVs with an 

Arbitrary Number Of Exome Samples) allowed the detection of copy number variants (CNVs) such as 

deletions or duplications. Alamut software (Interactive Biosoftware Rouen, France) was used to mine 

the identified variations. The described variations were named according to the current nomenclature 

recommendations (http://www.hgvs.org/mutnomen) using the NM_000404.3 sequence.  

Allele frequency analysis  

The frequency in human population of the novel variants was evaluated using Genome Aggregation 

Database browser (gnomAD, http://gnomad.broadinstitute.org/; accessed in April 2020). 
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Computational analysis of the functional impact of missense variants 

As described previously [5], the pathogenicity of missense variants was evaluated using in silico methods 

including Align GVGD, SIFT, PolyPhen2, MutationTaster and M-CAP (Mendelian Clinically Applicable 

Pathogenicity). M-CAP combines the pathogenicity scores of several algorithms including SIFT, 

Polyphen-2 and CADD to classify typical exome/genome rare (<1%) missense variant. 

Bioinformatics predictions of splicing variants  

The impact of variants on splicing was evaluated using in silico tool MaxEntScan interrogated by Alamut® 

(Interactive Biosoftware) and the SPiP (Splicing Prediction Pipeline) tool.  

Variant classification 

The novel variants were graded using the American College of Medical Genetics and Genomics and the 

Association for Molecular Pathology (ACMG/AMP) classification system (https://www.amp.org/clinical-

practice/practice-guidelines/). 

Ethics Statement 

The study was performed according French ethical law (NOR: AFSP1313547A) regarding genetic 

investigations for diagnosis purposes. Written informed consents were obtained from the parents when 

the patient is under 18 or from the adult patient in order to perform any investigation related to their 

pathology. 

 

RESULTS 

Clinical findings 

Fifty-two patients with b-GAL deficiency were included in this study (figure 1A, Supplementary tables 

S1 and S2). Forty-seven patients presented with GM1-gangliosidosis, the male/female ratio was at 

19/28. Five female patients exhibited a phenotype consistent with MPSIVB (figure 1A, Supplementary 
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tables S1 and S2). Comprehensive clinical data were obtained for 43 out of 52 patients (Supplementary 

tables S1 and S2). Consanguinity was noted in 27 probands out of 52. 

Among the GM1-gangliosidosis patients, the phenotypic continuum was as follows: 36 patients with an 

early-onset phenotype (age of first symptoms: before age of 2 years), 11 late-onset cases (age of first 

symptoms: 2 – 25 years) (Supplementary tables S1 and S2). 

As illustrated in figures 1C and 1D, a broad range of clinical features is identified in GM1 patients with a 

decreasing order of frequency as follows: neurological signs, musculoskeletal abnormalities, 

gastrointestinal, visual impairment, dysmorphic features, respiratory and cardiac signs (Supplementary 

table S3). Ten index cases had an antenatal presentation with a hydrops fetalis (Supplementary tables 

S1 and S2). 

The female patient with the adult form (P10, Supplementary table S1) consulted at the age of 25 years 

for gait disturbances and muscle cramps. On examination, she presented with a left side extrapyramidal 

syndrome with dystonic movements. Of note, the patient’s history was marked by bone dysplasia 

complicated by osteonecrosis of the femoral heads since childhood. 

MPSIVB patients presented mainly with musculoskeletal abnormalities and facial dysmorphism with an 

age of diagnosis between 4 and 18 years (figure 1C and 1D, Supplementary table S1 and S2). 

 

Molecular findings 

From 2006 to 2020, a total of 52 patients with b-GAL deficiency have been investigated. b-GAL deficiency 

diagnosis was demonstrated by the reduction or the absence of β-galactosidase enzyme activity in 

fibroblasts, DBS and/or leukocytes in all included patients; 42 out of 52 b-GAL activities are reported in 

Supplementary table S1.  

Two mutated alleles were identified in all patients (Supplementary tables S1, S4 and S5) and the 

unaffected parents were heterozygous for one allele. Twenty-seven patients were born to 

consanguineous parents and presented with homozygous variants (Supplementary tables S1, S4 and 
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S5). Forty-seven variations were identified in GLB1 gene sequence (NM_000404.3). Twenty-nine 

variants have been previously published[6-19] and 18 are novel (Supplementary tables S4 and S5). The 

novel variants include 15 missense variants and 3 deletions, their frequencies were evaluated using 

gnomAD. The pathogenicity of missense variants was evaluated using in silico methods (Supplementary 

table S5). 

The variants identified in this study include 40 substitutions (37 missense, 2 nonsense and 1 splicing 

variants), 4 deletions, 2 duplications and 1 deletion/insertion. The variant c.245+1G>A is the most 

prevalent, accounting for 11 % of mutant alleles (11/104). Forty-three variants have been associated to 

GM1-gangliosidosis phenotype, among them 40 have been identified only in GM1-gangliosidosis 

patients, while 3 variants (c.442C>T, c.622C>T, c.902C>T) are present in both GM1-gangliosidosis and 

MPSIVB patients (figure 2, (Supplementary table S5).  

Thirty-one variants have been identified in patients with early-onset GM1-gangliosidosis. Twenty-five 

variants are present only in early-onset GM1-gangliosidosis including severe variants resulting in a loss 

of function such as nonsense or frameshift variants (Supplementary tables S4 and S5). Twelve variants 

have been identified only in late-onset GM1-gangliosidosis (figure 2). 

Seven variants have been linked to MPSIVB and 4 were found only in MPSIVB patients (2T>C, c.323T>C, 

c.817_818delinsCT, c.1454A>C) (figure 2). 
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DISCUSSION  
 
b-GAL deficiency is characterized by the heterogeneity of the associated clinical phenotypes ranging 

from neurodegeneration in GM1-gangliosidosis to predominant bone involvement in MPSIVB.  

The alteration of both GLB1 gene products, b-GAL and EBP through the modifications of their production 

kinetics and homeostasis may contribute to such phenotypic diversity.  

More than 200 variants have been reported in GLB1 gene in the Public Human Gene Mutation DataBase, 

(HGMD http://www.hgmd.cf.ac.uk/ac/index.php. Accessed June 2020). GM1-gangliosidosis presents an 

extensive molecular heterogeneity.[1] The most severe form with an early onset before the age of 1 

year, is characterized by progressive central nervous system degeneration leading to spasticity, 

deafness, blindness, and death by 1 and 2 years of age. Storage features are usually present such as 

dysmorphism, hepatosplenomegaly and skeletal dysplasia. Macular cherry-red spots are less frequently 

observed. [1 3] A milder clinical phenotype, with a slower progression, is characterized by psychomotor 

delay, pyramidal and extrapyramidal syndromes, cognitive impairment or regression, and epilepsy. The 

adult form is rare and the onset may occur as late as the 2nd to 3rd decades with mainly extrapyramidal 

signs and progressive evolution.[20-22] 

In this study, integrative clinical and molecular analyses of 47 GM1-gangliosidosis and 5 MPSIVB patients 

have been conducted to disentangle the above-mentioned complexity. Forty-seven different variants 

were identified throughout the sequence of the GLB1 gene, in all exons except exons 7, 11 and 12 (figure 

3, Supplementary table S5). Thirty-seven were missense or inframe variants and ten were truncating 

variants (figure 2). The variants are individually infrequent, there is no founder effect or hot spot 

variants. The most prevalent variant (c.245+1G>A) accounts only for 11% of the mutant alleles (figure 

3, Supplementary tables S4 and S5). The genotype-phenotype correlation is variable, but some variants 

are nevertheless associated to specific clinical phenotype subgroups namely early-onset GM1-

gangliosidosis, late-onset GM1-gangliosidosis and MPSIVB (figure 4). Thus, 43 variants out of 47 are 

associated to GM1-gangliosidosis phenotype, 7 are identified in MPSIVB patients and only 3 variants are 
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common to both phenotypes (figure 3). In GM1-gangliosidosis group, 31 variants out of 43 have been 

found in patients with an early-onset, among them 25 were identified only in this subgroup. Only 4 

variants are present in both early and late-onset GM1-gangliosidosis (figure 2). Some variants such as 

c.602G>A – p.Arg201His have been described as protective from the severe phenotype and associated 

with late-onset phenotype GM1-gangliosidosis and MPSIVB[23]. Indeed, this variant has been identified 

in 5 late-onset GM1-gangliosidosis patients (P3, P21, P31, P34 and P44) at a heterozygous status. In 

these patients, the second mutated alleles have been previously reported to be associated with a 

moderate phenotype (patients P3 (c.716C>T – p.(Thr239Met)[7]), P21 (c.75+2dup – p.(?)[9], P34 

(c.1038G>C – p.(Lys346Asn)[19] and P44 (c.442C>T – p.(Arg148Cys)[16] respectively. Moreover, in 

MPSIVB patients, at least one allele carries a moderate effect variant associated only with the MPSIVB 

phenotype (Supplementary table S1).  

This study reports 47 variants including 29 known and 18 novel variants. We explored the literature 

regarding the 29 known variants in order to extract the associated phenotypes. Then, we focused only 

on phenotypes associated with homozygous state in both literature and our findings to be able to 

perform a consistent genotype-phenotype correlation. Six variants fulfilled these criteria. Five variants 

(c.176G>A, c.245+1G>A, c.569G>A, c. 1577dup and c.1733A>G) have been described in early-onset form 

in both literature and our study. One variant, c.1313G>A, has been associated with late-onset phenotype 

in our series and it has been reported either in late-onset or MPSIVB in the literature. These consistent 

findings reinforce the genotype-phenotype correlation in b-GAL deficiency (figure 5, Supplementary 

table S6). On these bases, it may be inferred that patient assignment to a clinical and severity subgroup 

may benefit from molecular stratification using a variant-driven approach.  

This study reports the characterization of 18 novel variants (13 missense or inframe and 5 truncating 

variants, figure 2). For the missense variants, 12 were assumed to be deleterious (class V - pathogenic 

or class IV - probably pathogenic) based on the prediction of at least two of the following in silico 

algorithms, Align GVGD, SIFT, PolyPhen2 or MutationTaster and M-CAP (Supplemental table S5). Hence, 
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one missense variant, c.1577G>A - p.(Gly526Asp) was classified as benign (class I) and was predicted 

non-pathogenic by all four algorithms (Supplemental table S5). This variant was identified in the 

homozygous state in two index cases (P7 and P8), who presented with hydrops fetalis. No other genetic 

alterations were found. The β-galactosidase activity was assessed in cultured amniotic cells and was 

nearly absent. No splicing effect has been predicted using in silico tools. Further studies such as 

functional minigene-based assays are required to confirm the pathogenic effect of this variant. Besides, 

the presence of another alteration in the deep intronic sequences is not excluded. 

The clinical features are illustrated in figure 1C and 1D according to their frequency and the different 

phenotypic groups in which they are encountered. All the symptom groups are involved in early and 

late-onset GM1-gangliosidosis while MPSIVB patients present with only musculoskeletal and 

dysmorphic features (figure 1C and 1D). Regarding the molecular features, at a glance, all the variants 

involved in GM1-gangliosidosis pathology are linked to the whole clinical spectrum regardless their 

exonic position. EBP results from the deletion of exons 3, 4 and 6 and exon 5 has a different reading 

frame. Thus, the EBP and b-GAL sequences are identical to amino acids encoded by exons 1, 2 and 7 to 

16 whereas the amino acids encoded by exons 3, 4, 5 and 6 are present only in b-GAL sequences. EBP 

contains a unique sequence of 32 amino acids corresponding to a specific exon 5 reading frame; this 

sequence is involved in tropoelastin binding. Thus, variants located in common EBP and b-GAL 

sequences and variants located exclusively in b-GAL sparing EBP sequence may have the same clinical 

impact. The function of EBP seems to be altered even when the variant is located in exons not coding 

for EBP.[7] The undegraded KS may link to EBP, prevents its interaction with elastin complex and thus 

alters elastogenesis. This is indicative of the multifactorial and complex nature of the processes in which 

EBP is involved. 

Another complexity layer is illustrated by the spatial configuration of these molecules associating two 

other proteins (protective protein/cathepsin A (PPCA - EC 3.4.16.1) and neuraminidase (EC 3.2.1.18)) 
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with EBP on the cell surface and with β-galactosidase in the lysosome. The stability and function of these 

proteins are conditioned by the integrity of the multiprotein complexes in which they are embedded.  

The coordinated assembly of tropoelastin to constitute elastic fibers can be altered either by impaired 

EBP or the accumulation of glycosaminolycans. Indeed, impaired elastogenesis has been reported in 

patients with either GM1-gangliosidosis or MPSIVB [24] but also in patients with MPSI (heparan sulfate 

and dermatan sulfate accumulation) or Costello syndrome.[25] 

The pathophysiological role of altered EBP in the development of GM1-gangliosidosis features is still 

unclear. Its alteration seems implicated in forms with cardiomyopathy. [24]  

 

CONCLUSION 

Clinical and molecular descriptions of b-GAL deficiency have been reported in other populations but in 

France.[8 14 18 19 23 26-34] In this study, we retrospectively analyzed the clinical presentation and 

related molecular data of 52 patients with GM1-gangliosidosis and MPSIVB. Forty-seven variants have 

been characterized and a relative genotype-phenotype correlation has been established with variants 

contributing specifically to a given phenotypic subgroup.  

This study unveils the highest complexity of b-GAL deficiency pathogenesis and expands the community 

knowledge regarding the molecular and clinical landscape of b-GAL deficiency for a better patient 

management. The putative genotype-phenotype associations observed in this study emphasize the 

urgent need for a more integrative multiomic and multimodal studies for a deeper understanding of the 

biological and functional plasticity of this disease. 
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FIGURE LEGENDS 

Figure 1. Series overview. A) Number of patients in each disease group along with their sex distribution 

between GM1-gangliosidosis (early or late-onset) and mucopolysaccharidosis type IVB. B) Age 

distribution. C) Overview of the clinical relationships between GM1-gangliosidosis (early or late-onset) 

and mucopolysaccharidosis type IVB. The box sizes are proportional to the item frequency. D) Detailed 

clinical presentation for each clinical phenotype. 

Figure 2. Variant landscape across the early and late-onset GM1-gangliosidosis and 

mucopolysaccharidosis type IVB. A Venn diagram showing overlap and disease specific variants are 

highlighted.  

Figure 3. Visualization of the forty-seven described variants. The number of variants is indicated inside 

the circle. C-ter: C-terminal domain; N-ter: N-terminal domain. The circle and variant sizes are 

proportional to the item frequency.  

Figure 4. Integrative visualization summary of clinical and molecular phenotypes. Relationships 

between the clinical features and their underlying molecular alterations including variant, clinical 

phenotype and symptoms.  

Figure 5. Genotype-phenotype association. Pathogenic variants in homozygous states and their 

respective phenotype associations described in both literature and this study.  
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