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Abstract

Background

We performed metabolomic profiling to identify metabolites that correlate with disease pro-

gression and death.

Methods

We performed a study of adults hospitalized with Influenza A(H1N1)pdm09. Cases (n = 32)

were defined by a composite outcome of death or transfer to the intensive care unit during

the 60-day follow-up period. Controls (n = 64) were survivors who did not require transfer to

the ICU. Four hundred and eight metabolites from eight families were measured on plasma

sample at enrollment using a mass spectrometry based Biocrates platform. Conditional

logistic regression was used to summarize the association of the individual metabolites and

families with the composite outcome and its major two components.

Results

The ten metabolites with the strongest association with disease progression belonged to

five different metabolite families with sphingolipids being the most common. The acylcarni-

tines, glycerides, sphingolipids and biogenic metabolite families had the largest odds ratios

based on the composite endpoint. The tryptophan odds ratio for the composite is largely

associated with death (OR 17.33: 95% CI, 1.60–187.76).
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Conclusions

Individuals that develop disease progression when infected with Influenza H1N1 have a

metabolite signature that differs from survivors. Low levels of tryptophan had a strong asso-

ciation with death.

Registry

ClinicalTrials.gov Identifier: NCT01056185

Introduction

The INSIGHT Influenza Hospitalization study (FLU 003) is an international observational

cohort study that was launched in 2009 to characterize A(H1N1)pdm09 infection. Previous

studies from this cohort identified baseline elevations of biomarkers associated with inflamma-

tion, coagulation and/or immune function as predictors for disease progression [1]. In addi-

tion, for the same cases and controls considered in this investigation, we previously carried out

a targeted analysis for 2 specific metabolites, tryptophan (T) and kynurenine (K) and found

significantly elevated KT ratio among cases, consistent with tryptophan catabolism, and found

an elevated KT ratio was associated with worse clinical outcomes following hospitalization [2].

Tryptophan catabolism is also reported in influenza associated encephalopathy where meta-

bolic profiling identified additional metabolite biomarkers [3]. These findings motivated an

investigation of a larger number of metabolites using our same case:control design.

Metabolomics is the systematic identification, quantification and characterization of metab-

olites, the products of metabolism, within an organism or biological sample. Metabolomics has

emerged as a useful tool to identify biomarkers of disease and identify putative pathways of

disease [4]. Influenza infection is a systemic infection with broad physiological ramifications.

These ramifications include the metabolome, which is perturbed in both animal and cellular

models of influenza infection [5, 6]. Recent studies, including our own, have demonstrated

perturbations in the metabolome in influenza infection in humans [2, 7]. In addition to trypto-

phan catabolism, broad perturbations that include metabolite families such as purines, pyrimi-

dines, acylcarnitines, fatty acids, amino acids, glucocorticoids, sphingolipids, and

phospholipids are found in animal models of influenza pneumonia [8]. Using nuclear mag-

netic resonance technology, human studies have identified alterations in amino acids, sugars

and other small molecules in influenza associated with lung injury and pneumonia [9, 10].

NMR has the advantage of using a targeted approach; however, it has limitations in metabolite

profiling [4]. In this study, we used a targeted, quantitative mass spectrometry-based approach

to measure 408 metabolites across several metabolome families and identify metabolites asso-

ciated with poor clinical outcomes, death or transfer to intensive care in patients hospitalized

for influenza A(H1N1)pdm09 infection.

Methods

Study design and objectives

FLU 003 is an ongoing, international observational study of adults hospitalized with influenza

that began in 2009 following the pandemic infection with the influenza A(H1N1)pdm09 virus

(ClinicalTrials.gov Identifier: NCT01056185). This was a matched nested case-control study

whose results were previously reported [2]. Cases (n = 32) were FLU 003 patients with PCR-
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confirmed influenza A(H1N1)pdm09 virus with a poor outcome following hospitalization

defined as a composite outcome of death or transfer from the general ward to the intensive

care unit (ICU) during the 60-day follow-up period after enrollment. Controls (n = 64) had

PCR-confirmed influenza A(H1N1)pdm09 virus, survived the 60-day follow-up period, were

not transferred to the ICU, and were matched on age (+/- 4 years) and gender. The objective

of this exploratory study was to determine whether metabolic profiling would identify metabo-

lomic families and/or specific metabolites that differed between those with a poor outcome

(cases) compared to controls.

Ethics statement

The FLU 003 protocol and information statement and consent form were approved by both

the local institutional ethics committees/review boards of the participant sites and the ethics

committee of the Sponsor of this study, the University of Minnesota. All participants or their

representatives (when participants were unable to consent for themselves, and where the ethics

permission allowed consent by a third party) provided written informed consent prior to their

enrollment.

Mass Spectrometry (MS) analysis

At study enrollment, blood was drawn into EDTA tubes and plasma was processed within 4

hours as previously described [2]. All plasma samples used in this analysis had undergone two

freeze-thaw cycles. For metabolite identification, 10μl of plasma was manually loaded onto a

Biocrates Life Sciences Absolute IDQ p400 HR (Biocrates Life Sciences catalog number 21018)

following the manufacturer’s instructions. Analysis was performed on a Thermo Scientific, Q

Exactive TM, Hybrid Quadrupole-Orbitrap TM, mass spectrometer equipped with a Thermo

Scientific Ultimate 3000 UHPLC equipped with an autosampler. Sample metabolite quantifica-

tion was performed with the integrated MetIDQ Biocrates software [11]. The Biocrates plat-

form contains standards for eight families of metabolites for a total of 408 individual

metabolites. Internal controls are incorporated for normalization between plates. The limit of

detection (LOD) for each metabolite is provided by the Biocrates manufacturer and is calcu-

lated by Met/DQTM and is defined as three times the background noise level. Families (num-

ber of metabolites) measured included: acylcarnitines (55), amino acids (21), biogenic amines

(21), monosaccharide (1), di- and tri- glycerides (60), phospholipids (lysophosphatidylcholines

and phosphatidylcholines) (196), sphingolipids (ceramides and sphingomyelins) (40) and cho-

lesteryl esters (14) (S1 Table in S1 Appendix).

Statistical methods

This study used the same cases and controls from our previous study [2]. Descriptive statistics

were used to summarize the baseline characteristics of cases and controls. Metabolites with val-

ues below LOD in both the case and control groups that were present in 10% or more subjects

were removed from consideration prior to analysis (S1 Table in S1 Appendix). Values that fell

below the LOD for the remaining 188 metabolites were imputed with half of their correspond-

ing LOD. One metabolite was further removed from analysis due to lack of variability that pre-

cluded the creation of tertiles. Conditional logistic regression that accounted for the matching

by age and gender was used to summarize the association of the metabolite families and 187

individual metabolites with the composite outcome, death and transfer to the ICU. All models

were adjusted for duration of symptoms at enrollment, which was significantly associated with

the composite outcome in univariate analyses of potential confounding factors.
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For analyses by metabolite family, a new covariate was created by summing the standard-

ized values of metabolites, which had mean 0 and standard deviation 1 across all subjects, from

the same family. If individual metabolites in a family were associated with the composite out-

come in a similar manner, we reasoned that such an analysis would provide improved power

compared to a study of the individual metabolite. The analyses by family also provide a means

of controlling for type 1 error.

As a first step, we investigated kynurenine and tryptophan concentrations that were previ-

ously reported but with different laboratory methods [2]. Next we studied metabolite families

and individual metabolites and focused our discussion on associations with p<0.01 to provide

some control of type 1 error. P-values cited are based on models that use continuous variables

for the metabolite or family covariates. Odds ratios cited compare the upper and lower tertiles

and 95% confidence intervals (CIs) are given.

Results

Thirty-two participants met our case definition, of whom 22 died and 10 required transfer to

the ICU during the follow-up period. Two controls were available for all cases that were

matched for sex and did not differ significantly for race, smoking status or presence of under-

lying lung disease. In addition to matching factors, since influenza is a respiratory illness, we

considered two potential confounders for disease progression: days since onset of influenza

symptoms and history of lung disease (COPD and/or asthma) at the time of enrollment. Cases

had been symptomatic for a median of eight days, whereas controls had been symptomatic for

a median of six days (p = 0.04 for the difference) (Table 1). Furthermore, 19% and 22% of

cases and controls reported lung disease at time of enrollment, respectively (p = 0.70 for the

difference) (Table 1). Duration of symptoms was also significantly associated with the compos-

ite outcome and therefore included in subsequent conditional logistic regression analyses.

In a previous publication we reported tryptophan and kynurenine concentrations using dif-

ferent methods, specifically single reaction monitoring with MS/MS [2]. For this analysis using

the Biocrates platform with metabolite standards we performed adjusted conditional logistic

regressions for kynurenine, tryptophan, and the KT ratio, the latter as a surrogate for trypto-

phan catabolism, to validate our previous findings (Table 2). This analysis was then repeated

after dividing the data into fatal and nonfatal cases, along with their matched controls, to

determine if there were any associations with the mortality component of the composite out-

come (Table 2). For comparison purposes, we display the inverse odds ratio for tryptophan,

Table 1. Clinical characteristics.

Case (n = 32) Control (n = 64)

No. (%) or Median (25th,75th

%)

No. (%) or Median (25th,75th

%)

p-valueb

Femalea 13 (41) 26 (41) -

Agea 52 (41, 60) 53 (40, 60) -

Non-white race 7 (22) 13 (20) 0.84

Smoker 10 (36) 22 (34) 0.86

Days since onset of influenza

symptoms

8 (6, 10) 6 (4, 7) 0.04

Lung Disease 6 (19) 14 (22) 0.70

aMatching factor
bUnivariate conditional logistic

https://doi.org/10.1371/journal.pone.0247493.t001
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i.e., those comparing the lower tertile to the upper tertile. The odds ratios (cases vs. controls)

for kynurenine, tryptophan, and the KT ratio are, respectively, 2.96 (95% CI, 0.91–9.60), 3.34

(95% CI, 0.91–12.23), and 2.61 (95% CI, 0.81–8.39).

When restricted to either fatal or nonfatal cases, the odds ratios for kynurenine and the KT

ratio were similar to the odds ratios for the composite endpoint. In contrast, the tryptophan

odds ratio for the composite endpoint appears to be largely determined by the death compo-

nent. New for this analysis, we found among fatal and nonfatal cases the tryptophan odds

ratios were 17.33 (95% CI, 1.60–187.76) and 0.21 (95% CI, 0.02–2.70), respectively. A graphical

depiction of the relationships between mortality and the kynurenine and tryptophan tertiles

can be seen in S1 Fig in S1 Appendix. Although these results are relatively imprecise due to the

limited sample size, there is a strong negative association between mortality and the trypto-

phan tertiles consistent with our previous findings.

The Biocrates platform contains metabolites from eight major metabolite families. Table 3

displays the results for the adjusted conditional logistic regression by metabolite family for the

composite endpoint and the restricted fatal and nonfatal datasets. The acylcarnitines, glycer-

ides, sphingolipids, and biogenic amines had the strongest odds ratios in the analysis based on

the composite endpoint. For the acylcarnitines and glycerides, the odds ratios for disease pro-

gression were 3.99 (95% CI, 1.03–15.42) and 3.69 (95% CI, 1.08–12.61), respectively. Because

these odds ratios did not change substantially when restricted to either fatal or nonfatal cases,

the simplification of the composite endpoint did not appear to have much influence on the

odds ratios for these two families.

Acylcarnitines are also known to be associated with both insulin resistance and sepsis. We

therefore evaluated the association of diabetes and sepsis with the composite outcome and

acylcarnitine levels. The presence of diabetes was found to be associated with the composite

Table 2. Conditional logistic regression results for kynurenine, tryptophan, and the KT ratio.

Composite Endpoint Mortality Endpoint ICU Transfer Endpoint

OR 95% CI P-value3 OR 95% CI P-value3 OR 95% CI P-value3

KYN1 2.96 0.91–9.60 0.005 3.11 0.73–13.37 0.008 3.17 0.35–28.45 0.513

TRP2 3.34 0.91–12.23 0.032 17.33 1.60–187.76 0.013 0.21 0.02–2.70 0.356

KT Ratio1 2.61 0.81–8.39 0.010 3.11 0.73–13.37 0.014 1.86 0.25–13.85 0.580

1Tertile 3 vs. Tertile 1 Odds Ratio
2Tertile 1 vs. Tertile 3 Odds Ratio
3P-values obtained from models with continuous covariates

https://doi.org/10.1371/journal.pone.0247493.t002

Table 3. Conditional logistic regression results by metabolite family after adjusting for duration of symptoms.

Composite Endpoint Mortality Endpoint ICU Transfer Endpoint

OR 95% CI P-value3 OR 95% CI P-value3 OR 95% CI P-value3

Acylcarnitines 3.99 1.03–15.42 0.009 4.99 0.77–32.25 0.010 3.08 0.28–34.34 0.546

Amino Acids 1.08 0.35–3.34 0.016 0.49 0.11–2.10 0.053 5.38 0.63–46.24 0.104

Biogenic Amines 2.21 0.73–6.68 0.007 1.94 0.49–7.70 0.009 3.60 0.43–30.35 0.603

Phospholipids 0.77 0.25–2.40 0.076 0.98 0.23–4.30 0.126 0.56 0.08–3.65 0.465

Sphingolipids 0.27 0.07–1.13 0.016 0.07 0.01–0.83 0.021 1.10 0.13–9.26 0.551

Cholesterol Esters 0.51 0.14–1.86 0.054 0.25 0.04–1.66 0.073 1.02 0.10–10.20 0.606

Glycerides 3.69 1.08–12.61 0.020 3.84 0.80–18.47 0.039 4.00 0.48–33.03 0.497

1 P-values obtained from models with continuous covariates

https://doi.org/10.1371/journal.pone.0247493.t003
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outcome (OR, 5.58; 95% CI, 1.16–36.10; p = 0.014) whereas this was not observed with sepsis

(OR, 2.09; 95% CI, 0.26–16.54; p = 0.397). A Wilcoxon rank sum test found no significant dif-

ferences in acylcarnitine levels based on diabetes (median difference, -0.285; 95% CI, -5.48–

4.97; p = 0.95).

The odds ratios varied for the sphingolipids and biogenic amine metabolite families. While

the odds ratio for the composite endpoint for the biogenic amines was 2.21 (95% CI, 0.73–

6.68), this value decreased to 1.94 (95% CI, 0.49–7.70) for fatal cases and notably increased to

3.60 (95% CI, 0.43–30.35) for nonfatal cases. Similarly, while the odds ratio for the composite

endpoint for the sphingolipids was 0.27 (95% CI, 0.07–1.13; inverse OR, 3.70), this value

decreased among fatal cases (OR, 0.07; 95% CI, 0.01–0.83; inverse OR, 14.29) and increased

among nonfatal cases (OR, 1.10; 95% CI, 0.13–9.26; inverse OR, 0.98). As TNF-α can stimulate

sphingolipid levels [12, 13], we performed a Wilcoxon rank sum test for our case:control study

and found no significant differences in TNF-α levels based on the composite endpoint

(median difference, 1.940; 95% CI, -0.300–4.270; p = 0.078); however, there was an association

when restricted to mortality (median difference, 3.810; 95% CI, 0.860–7.860; p = 0.011). TNF-

α levels were also found to be associated with sphingolipids with a Pearson’s correlation coeffi-

cient of -0.205 (95% CI, -0.390- -0.005; p = 0.045).

Table 4 shows the results for the adjusted conditional logistic regression for the 187 individ-

ual metabolites included in the analysis. The odds ratios comparing those in the upper tertile

to those in the lower tertile are displayed for the ten metabolites found to have the strongest

association with the composite outcome. Inverse odds ratios are provided so that metabolites

with odds ratios above and below one can be effectively compared. For instance, the adjusted

odds ratio comparing those in the upper vs. lower tertile for the triglyceride TG.48.3 and

sphingomyelin SM.38.1 were, respectively, 10.79 (95% CI, 2.11–55.27) and 0.10 (95% CI, 0.02–

0.63). Given the inverse odds ratio for SM.38.1 comparing those in the lower vs. upper tertile is

10.00, we note that TG.48.3 has a slightly stronger association with case-control status than

SM.38.1.

Notably, several of the metabolites in Table 4 are from the same family. Four of these

metabolites, for example, are in the sphingolipid family, which is notable since only 10% of the

analyzed metabolites are from the sphingolipid family (S1 Table in S1 Appendix). Remaining

metabolites include two each from the glyceride and phospholipid families. Fig 1 demonstrates

the log odds ratios of the 187 analyzed metabolites separated by metabolite family. The

Table 4. Ten strongest odds ratios comparing the upper vs. lower tertile after adjusting for duration of symptoms and matching factors.

Metabolite Odds Ratio (OR) 95% CI for OR P-value1 Inverse Odds Ratio Family

TG.48.3. 10.79 2.11–55.27 0.296 0.09 Glycerides

SM.38.1. 0.10 0.02–0.63 0.006 10.00 Sphingolipids

AC.2.0. 9.26 1.96–43.73 0.008 0.11 Acylcarnitines

PC.O.38.6. 0.14 0.04–0.55 0.019 7.14 Phospholipids

SM.33.2. 0.15 0.03–0.70 0.299 6.67 Sphingolipids

TG.54.4. 6.53 1.34–31.90 0.128 0.15 Glycerides

Phe 6.45 1.52–27.44 0.006 0.16 Amino Acids

LPC.O.18.1. 0.16 0.04–0.66 0.003 6.25 Phospholipids

SM.37.1. 0.16 0.04–0.67 0.037 6.25 Sphingolipids

SM.41.1. 0.16 0.04–0.76 0.007 6.25 Sphingolipids

1P-values obtained from models with continuous covariates. TG = triglyceride, SM = sphingomyelin, AC = acylcarnitine, PC = phosphatidylcholine,

Phe = phenylalanine, LPC = lysophosphatidylcholine

https://doi.org/10.1371/journal.pone.0247493.t004
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metabolites listed in Table 4 along with kynurenine and tryptophan are labeled in the plot. Val-

ues below 0 suggest that subjects with lower metabolite values have a greater chance of being a

case. In particular, the vast majority of acylcarnitines, biogenic amines, and glycerides have

positive log odds ratios. This suggests that metabolites from these families have similar associa-

tions with case-control status.

Discussion

Infection with influenza is a major public health concern and currently there is no clear test or

biomarker to identify individuals at risk for disease progression, such as respiratory failure or

death. We have previously identified a strong association between metabolites involved in

tryptophan metabolism and disease progression [2]. We have now extended these studies to

include a broader metabolomic profile with biomarkers and metabolite families that are asso-

ciated with disease progression.

In this study we found a number a metabolomic families including individual metabolites

associated with disease progression in influenza infection. We also noted that several of these

metabolites were from the same family of metabolites. Amongst these families acylcarnitines,

glycerides, sphingolipids, and biogenic amines had the strongest association based on our

composite endpoint of death and/or respiratory failure.

Acylcarnitines belong to a family of metabolites involved in fatty acid transport and certain

plasma carnitines are elevated in insulin resistance [14]. Plasma acylcarnitines are also elevated

in sepsis and have been shown to predict outcome. Specifically, Green and colleagues found

that plasma acylcarnitines at the time of sepsis diagnosis differentiated survivors from non-

survivors [15]. In our study, we found that diabetes was associated with the composite out-

come of death or transfer to the ICU but not with acylcarnitine levels. The occurrence of sepsis

was not associated with the composite outcome or acylcarnitine levels. Therefore, it is

unknown if the acylcarnitine levels are unique to influenza infection and warrants further

study.

Fig 1. Log odds ratios comparing the upper vs. lower tertile after adjusting for duration of symptoms and

matching factors by metabolite family. Referenced: Ten strongest odd ratios as well as Kynurenine and Tryptophan.

https://doi.org/10.1371/journal.pone.0247493.g001
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Sphingolipids were also altered in our subjects with severe influenza infection. Sphingoli-

pids not only serve as structural components of the plasma membrane lipid bilayer but also

participate in cell signaling. Much of what we know about sphingolipid signaling comes with

the advent of advanced mass spectroscopy techniques that allow the simultaneous analysis and

quantification of multiple sphingolipid species, such as we used in this study. Sphingolipid

metabolites play key roles in immune cell migration and function [16, 17] and have been asso-

ciated with sepsis and poor outcomes [18]. In addition, the pro-inflammatory cytokine TNF-α
stimulates sphingolipid metabolism [12, 13]. In our INSIGHT cohort we reported elevated lev-

els of TNF-α associated with disease progression following H1N1 infection [1] and in this sub-

group we found an association of TNF-α with sphingolipid levels. In a ferret model of H1N1

respiratory tract infection the sphingolipid sphingomyelin correlated with viral titers [5]. Viral

titers were unavailable for this analysis; therefore, we are unable to determine whether sphin-

golipid metabolism correlates with influenza titers. However, our finding of sphingolipid

metabolism appears to primarily associate with progression to critical illness.

We previously reported in this group that tryptophan metabolism is associated with disease

progression as reflected by an increase in the kynurenine/tryptophan ratio [2]. In this current

study our metabolomic profiling confirmed these previous measurements. When we focused

on fatal cases, we found that the odds of death for low tryptophan levels were almost 26-fold

higher. Induction of tryptophan metabolism has been demonstrated in both animal models

and human infection with influenza [7, 19]. Similar to our findings, tryptophan and its main

metabolic pathway have been associated with poor outcomes in inflammatory and infectious

diseases [20–22].

Lastly, we sought to determine if lung disease, such as COPD or asthma, was a confounder

for tryptophan and its metabolite kynurenine. Viral infection, including influenza, is a com-

mon cause of COPD exacerbation and those with COPD have demonstrated worse outcomes

with H1N1 infection [23, 24]. In addition, tryptophan metabolism through the kynurenine

pathway is associated with COPD exacerbations [25, 26]. However, in our small study we did

not find lung disease to be a confounder for either the tryptophan metabolites or disease

progression.

Conclusion

In summary, a strength of this study is the demonstration of a metabolomic signature that

associates with progression to death or respiratory failure in a relatively small case:control

study of adults hospitalized with influenza A(H1N1)pdm09. This signature is enriched for

metabolites with known associations to critical illness and poor outcomes. The results agree

with our previous work [5] insofar as clear associations were found between kynurenine and

the KT ratio and disease progression. In addition, low tryptophan levels are associated with a

very high likelihood of death among those hospitalized for influenza. While this study has

identified several classes of metabolites associated with poor outcome in the setting of A

(H1N1)pdm09 infection, it is limited by the relatively small sample size as reflected by some

large confidence intervals for some metabolites. Future studies could benefit from validating

these findings in larger cohorts, other types/subtypes of influenza infection and include longi-

tudinal testing to determine the durability of these signals.
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bold, Christoph Stephan, Albrecht Stoehr, Klaus Tillmann, Susanne Wiebecke, Timo Wolf.

Spain: Jose Arribas, Javier Carbone, Eduardo Fernández Cruz, David Dalmau, Vincente

Estrada, Patricia Herrero, Hernando Knobel, Paco López, Rocı́o Montejano, José Sans
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