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ABSTRACT

Object detection in medical images using deep learning is a challenging task, due to the imbalance often present
in the data. Deep learning algorithms require large amount of balanced data to achieve optimal performance,
as well as close monitoring and fine-tuning of hyper parameters. For most applications, such performance
monitoring is done by simply feeding unseen data trough the network, and then using the loss function for
evaluation. In the case of small or sparse objects, the loss function might not able to describe the features
needed, but such features can be hard to capture in a loss function. In this paper we introduce a lesion-wise
whole volume validation tool, which allows more a more accurate performance monitoring of segmentation of small
and sparse objects. We showcase the efficacy of our tool by applying it to the task of microbleed segmentation,
and compare the behaviour of lesionwise-whole volume validation compared to well known segmentation loss
functions. Microbleeds are visible as small (less than 10 mm), ovoid hypo-intensities on T2*-weighted and
susceptibility weighted magnetic resonance images. Detection of microbleeds is clinically relevant, as microbleeds
can indicate the risk of recurrent stroke, and are used as imaging biomarker for various neurodegenerative diseases.
Manual detection or segmentation is time consuming and error prone, and suffers from high inter- and intra-
observer variability. Due to the sparsity and small size of the lesions, the data is severely imbalanced.
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1. INTRODUCTION

Deep learning is a powerful tool to analyse medical images, but adequate performance is often dependent on the
quality and amount of training data, as well hyper parameters chosen. Performance monitoring in deep learning
applications is essential to fine-tune applications to reach optimal performance. Loss functions are used both
for training and evaluation, and a network’s performance is heavily dependent on how well the loss function
describes the features of the ground truth. Depending on the task at hand, different functions can be used.

In the case of tasks in which the elements of interest are very sparse (subject-wise imbalance) and/or very
small (voxel-wise imbalance), deep learning frameworks are often strongly challenged and specific solutions must
be designed to enable the learning process despite those challenges. In particular, the Dice loss, based on the
Dice measure of overlap,1 which is often successfully used for medical image segmentation tasks fails to cope with
very imbalanced challenges.2 For instance, when training a network to segment objects of different sizes with
the Dice loss, small objects, that do not contribute much to the overall amount of overlap voxel-wise, tend to be
overlooked and are often ignored. As a result and due to the severe data imbalance associated with the task of
segmenting small and sparse lesions, common approaches are rendered ineffective, where it is more loss effective
for a network to always return empty segmentation rather than miss-segmenting lesions. Most loss functions
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will not properly reflect this behaviour, as the prediction for the majority of the image, the background, is still
correct. We introduce a lesion-wise evaluation during training, which enables to monitor the true performance
of the network, and make informed decisions regarding over-fitting, early stopping or convergence as well as for
hyper-parameters tuning. This evaluation relies on measures that are otherwise only reported after training, as
final measures of performance. These measures include for example the true positive rate, or the average amount
of false positive lesions predicted. We argue that such measures are more informative of network performance for
small objects segmentation than the loss function on its own. Additionally, we used a whole volume evaluation
approach, which is also more informative than a patch-based evaluation even when only patches of the whole
image are used at a time for training. We apply our framework to the task of microbleed segmentation.

From a technical standpoint, the main challenge of microbleed segmentation lies in the data imbalance due
to the combination of subject- and voxel-wise imbalance. Not only the microbleeds are very small, but they also
occur quite rarely; only 6% of individuals in a healthy ageing population will have microbleeds and this number
only raises to 20% in subjects with Alzheimer’s disease for instance. Furthermore microbleeds vary greatly within
their limited size range, as can be seen in Figure 2. This double source of data imbalance results in the failure
of classical segmentation approaches. Cerebral microbleeds (CMB)are small deposits of hemosiderin that are
commonly observed as areas of hypo-intensity on T2*-weighted and susceptibility weighted imaging (SWI) MRI
scans,3 as shown in Figure 1, Ovoid in shape, CMBs are less than 10mm of diameter .4

The clinical need for microbleed segmentation is based on their value as an imaging biomarker for a variety
of pathologies. The number of microbleeds and their localisation are strongly related to the underlying etiology.
Today, in both clinical and research settings, CMB are typically manually counted and/or segmented. Such tasks
are very time-consuming and error-prone and require a high level of expertise due to the large number of mimics
potentially present in images. Manual counting and segmentation thus suffer from high inter- and intra-observer
variability.5

Figure 1: A microbleed (outlined in
red) as seen in a T2* scan.

Figure 2: Distribution of microbleed radii in voxels, 1 mm3 isotropic.

Due to the small size of the CMBs, detection can be hindered by decreased contrast caused by partial
volume effect occurring when multiple tissue types contribute simultaneously to the intensity of a given voxel.
While CMBs are visible on both T2*-weighted and SWI as aforementioned, SWI are usually more sensitive to
microbleeds and thus, when available, often the sequence of choice to detect them. It has been shown that
the phase information from SWI could facilitate the distinction between microbleeds and possible mimics.6 In
addition, some known mimics such as calcifications have a different intensity signature on SWI where they appear
bright, whereas on T2* they appear dark, similar to microbleeds.

Other sources of mimics are commonly due to interference with the skull or patient motion.7 For these
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reasons, most CMB segmentation approaches use SWI as input. T2*-weighted images are however more readily
available as acquired as part of standard clinical protocols. A working tool for microbleed segmentation from
T2*-weighted image could thus have a great impact.

2. RELATED WORK

Imbalanced tasks can be overcome in various ways, most commonly using over- & under-sampling, task specific
loss functions and data augmentation. Object counting and object detection are similar tasks, but systems
developed for dense object counting to not expand well to sparse data.8,9 Oversampling of the minority class
is often used to overcome data imbalance, but this can lead to over-fitting or a high amount of false positive
predictions at test time.10

In the field of deep learning, there are many networks that are able to detect various objects, and R-CNN is
a well known two-phase approach.11 R-CNN has been applied to medical imaging to the task of extremely small
object counting. In this paper, Sudre et al. use the two-phase approach to detect small and sparse objects, whilst
taking rater uncertainty into account.12 Long nodule detection aims to to detect small objects, with varying
frequency and size. As the imbalance present in the data impedes training, long nodule detection algorithms
employ a two-phase approach, in which the first phase is used for candidate selection and the second phase for
refinement.13,14

Similarly, most deep learning microbleed segmentation approaches take a 2-phase approach, in which the first
phase serves as candidate detection, and the second phase as candidate refinement. Dou et al. introduced a deep
learning based two-phase approach (detection and classification) for microbleed segmentation from SWI.15 This
work was later used by Chen et al.16 They achieve a sensitivity of 92.31%, and a false positive rate of 2.90 per
image.

3. METHODS

In order to demonstrate the advantages of lesion-wise evaluation, we trained multiple models using different
losses. During validation iterations, performance was evaluated using the whole volume lesion wise approach, as
well as standard validation approach.

3.1 Lesion-wise whole volume evaluation approach

To evaluate the performance of the network, we used an approach specifically tailored for our application where
the loss function used for training provides little insight about the network performance. Due to the sparsity and
small size of the microbleeds, patch-based training is employed. Patches are generated to contain a microbleed
at a uniformly distributed location within the patch. The presence of microbleeds within the patch is required to
ensure the network can learn despite the very imbalanced data. During training, every 1000 iterations validation
iterations are performed. Both standard validation and lesions-wise whole volume validation are performed. In a
standard validation iteration, a patch is sampled from the validation set in the same manner as from the training
set, meaning that microbleed will be present within the patch. This patch is fed through the network, and the
outcome is evaluated using the loss function. During lesion-wise whole volume validation, the patches are sampled
using a sliding window approach, allowing the entire image to be fed trough the network in patches. After being
processed by the network, the image is reconstructed into its original shape. A visual representation can be seen in
figure 3. Now, the lesion-wise evaluation will be performed. In our case of microbleed segmentation, connected
component analysis is done on both the ground truth and the proposed segmentation. Predicted lesions are
classified as ground truth if there is an overlap of at least 10% between the ground truth and segmentation. If
less, the lesion is classified as a false negative. If a predicted lesion covers two microbleeds in the ground truth,
the lesion with the most overlap will be counted as correct and the other as a false negative. Whilst the network
has correctly localised the lesion, the total count of lesions is incorrect. Each time an evaluation is done, we run
a forward pass of the current version of the model on all available data used for training and validation.
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Figure 3: A visual representation of how lesion-wise whole volume evaluation compares to a standard validation
approach, regarding network throughput and evaluation of results.

3.2 Network set-up

All models were trained for 100k iterations, using a 4 resolution-layer deep 3D U-net17 in PyTorch using an
Ignite Engine.18,19 Apart from the loss functions used for training, identical hyper-parameters were used: the
learning rate was set to 1e-4 with no decay, an L2 regularisation of 0.02 was applied, dropout was set to 30%,
and random flipping of axes was applied with a 50% probability. Patches were generated according to a sampling
strategy ensuring a microbleed would be present at a uniformly distributed location withing the patch.

By using a large patch size of 96 × 96 × 96 voxels and ensuring a positive example in each patch, we are
maintaining a data imbalance similar to the one at validation and test time.

3.3 Losses

The benefits of our proposed lesion-wise evaluation were highlighted by monitoring the performance of models
trained with six different loss functions. The (i) Dice and (ii) cross entropy losses were chosen as they are
commonly used loss functions for medical image segmentation tasks. Imbalance targeted loss functions were also
included. The (iii) generalised Dice loss, which uses the class volume to re-weight the Dice, aims at preventing
the minority class from being overwhelmed.2 The Tversky similarity index at the basis of the (iv) Tversky
loss proposes to cost differently the contribution of false positives and false negatives to the overall error.20 It
was implemented using the recommended values of α = 3 and β = 7. A (v) hybrid loss combining Dice and
cross entropy was introduced by Isensee et al. in,21 showing good performance on medical segmentation tasks.
Extending it to (vi) combine generalised Dice and cross entropy seemed an intuitive adaptation to imbalanced
data problems.

3.4 Data

Data from two different sources have been combined for our experiments, namely the ADNI database and
the ALFA cohort. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a large multicentre study of
elderly people (healthy controls, mild cognitive impairment and Alzheimer’s disease), which includes a series of
cognitive test outputs and MRI scans. Among the first-visit T2*-weighted MRI scans from the ADNI1 database,
microbleeds were visually found in 132 cases. For each subject, they were manually identified and labelled as
possible or definite lesions by a trained operator, according to the Microbleed Anatomical Rating Scale (MARS).22

The ALFA study (Alzheimer’s and Family) is a single centre study, with one dedicated MR scanner, that involves
Alzheimer’s disease patients and descendants of people with Alzheimer’s disease.23 Participants are submitted
to a multitude of tests, including cognitive tests, DNA samples and MRI scans. Scans were annotated by a
trained rater using the Brain Observer Microbleed Scale,5 generating a total of 88 scans. Images from both
input datasets were re-sampled to be 1.0 mm isotropic, and normalised in the 0-1 range. Images were also skull
stripped using FSL-bet.24 Scans with more than 10 microbleeds were excluded, as they are not representative
of the elderly or typical Alzheimer’s disease population. The average volume of all CMBs is 29 mm3.

Figure 2 presents the distribution of microbleed sizes in the dataset. All images used for this study contained
at least one microbleed, which led to an average of 1.6 microbleeds per image. Data from different sources and
labelled using different ratings were merged with the aim of increasing the robustness and generalisability of our
networks.
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4. RESULTS AND DISCUSSION

Figure 4 compiles the monitoring of all trained models. For each loss, the true positive rate (TP), average
number of false positive per image (FP) and function loss value are shown across 500 000 iterations. Note that
while the TP and FP scales are similar across losses, the loss value scales vary in range. In the remainder of this
section, we will focus our analysis on three losses, which we believe are representative of the potential use of the
proposed evaluation strategy.

The generalised Dice loss is bounded between 1.00 - 0.00, an average loss of 0.9 thus indicates a poor
performance of the network. However, it performs relatively well on the training set, where it achieves about 80%
TP rate. On the validation set, the performance drops significantly, to 50%. The difference in the generalised
Dice loss between the training set and the validation set, is only of 0.07. A high false positive rate is a common
problem in microbleed segmentation, but it is notably absent here. The exact segmentation provided by the
network does not match the ground truth on a voxel-to-voxel basis, but for detection purposes the microbleeds
are clearly marked. The voxelwise weighting of the Dice score causes the high loss score, giving a skewed view
of the network’s performance.

The cross-entropy loss is able to perform quite well, reaching a TPR of 90% on both the training and
validation sets. The loss is showing a decline that is almost mirorring the the decline in FPs. The cross entropy is
reporting a difference in training and validation performances that does not seem to be reflected in the lesion-wise
analysis, suggesting that it is the voxel-wise comparison that is causing this difference.

The Dice and cross entropy loss performs well, also reaching a TPR of 90%, but a higher average of
predicted false positives per image. The loss however, implies a stark difference in performance between training
and validation sets, implying that the network is over-fitting. By using the lesion-wise analysis we can show that
this is not the case, but that the model is able to generalise well.

As the quantity of correct lesions is the clinically relevant information, a straightforward approach would to
be to design a loss function that takes this into account. Introducing a discrete number as the count into the
loss functions can have adverse effect on training, as this can cause steep cliff in the gradient, impeding training
even more. Regression based counting methods overcome this difficulty by approximating a density map, which
allows for smoother gradients but also allows counting of partial objects. These methods are most effective when
counting large items, and we have found they are unable to deal with the sparsity and small objects present
in microbleed segmentation. Losses that are developed with data imbalance in mind, such as generalised Dice
loss or Tversky loss, are able to increase the performance on data sets that have foreground vs. background
imbalance, but are less powerful in tackling the imbalance of sizes within the classes itself. Both generalise Dice
and Tversky losses are re-weightings of the Dice score, which is a measure of overlap. Smaller lesions contribute
less to the overall overlap and are therefore more likely to be overlooked, but they should have an equal influence
on performance. By using whole volume evaluation it is possible to closely monitor performance of the networks
on a lesion-wise basis, giving a closer insight into the networks true performance than the loss function value
itself.

5. CONCLUSION

Small object segmentation can be a challenging task due to the imbalance present in the data. Standard data
imbalance approaches such as oversampling or specific loss functions alleviate the problem slightly, and can
improve training performance. Measures like these have their own disadvantages, which are not always captured
by the loss function.

We introduce lesion-wise whole volume validation, which allows for better performance monitoring of perfor-
mance. We have highlighted the added value of a lesion-wise whole volume evaluation strategy, a tool that allows
detailed performance measuring of tasks such as microbleed segmentation. It allows for a lesion-wise analysis of
the networks performance on the entire dataset, and not only on a subset. The additional monitoring makes for
better informed decisions regarding performance, convergence and over-fitting – all key information required to
maximise the performance that a model can achieve.
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Figure 4: Evaluation measures monitored while training a network with seven different loss functions. From left
to right, the true positive rate (TP), the average false positive number per image (FP) and the actual loss values
are shown. The presented losses from top to bottom are Dice, generalised Dice, cross-entropy, combined Dice
and cross-entropy, generalised Dice and cross-entropy and Tversky.
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5.1 Limitations

Training a network using a loss function that does not adequately represent the end goal is not ideal, but using
a lesion-wise whole volume evaluation strategy provides a better understanding of the network’s performance.
Unfortunately, whole volume lesion-wise measures cannot be used as a loss function. Using such ordinal measure
will negatively impact the gradient used to optimise the network parameters. Using whole volume evaluation
results in each iteration taking longer, as more data points need to be evaluated by reconstructing the original
volume. Additionally, in the case of microbleed segmentation the lesion-wise evaluation is time consuming and
computationally expensive. The microbleed segmentation network presented in this paper is in an early state of
development, and is not yet at it is peak performance. The FPs rate per image is currently too high to allow its
use in clinical studies or practices.

5.2 Future work

We have shown the effectiveness of whole volume evaluation purely as a monitoring tool, and we are eager to
explore its application in a curriculum learning setting, where early stopping would be applied depending on
performance A two-phase approach is seen in the state-of-the-art for object detection, where the first phase
screens for potential candidates, and the second phase filters these candidates into true positives and false
positives. For such a set up to work efficiently, a high sensitivity is required. Our current set-up yields a high
number of false positives, but does also have a high true positive prediction rate. Therefore this set-up would be
a good candidate for the initial candidate selection phase of such approaches. Using lesion-wise whole volume
evaluation would clearly showcase the performance of both phases.
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