
J. Chem. Phys. 154, 124127 (2021); https://doi.org/10.1063/5.0043720 154, 124127

© 2021 Author(s).

Improved algorithm for the direct dynamics
variational multi-configurational Gaussian
method
Cite as: J. Chem. Phys. 154, 124127 (2021); https://doi.org/10.1063/5.0043720
Submitted: 11 January 2021 • Accepted: 05 March 2021 • Published Online: 30 March 2021

 Georgia Christopoulou,  Antonia Freibert and  Graham A. Worth

COLLECTIONS

Paper published as part of the special topic on Quantum Dynamics with ab Initio Potentials

ARTICLES YOU MAY BE INTERESTED IN

Multi-layer Gaussian-based multi-configuration time-dependent Hartree (ML-GMCTDH)
simulations of ultrafast charge separation in a donor–acceptor complex
The Journal of Chemical Physics 154, 144106 (2021); https://doi.org/10.1063/5.0046933

Modeling nonadiabatic dynamics with degenerate electronic states, intersystem crossing,
and spin separation: A key goal for chemical physics
The Journal of Chemical Physics 154, 110901 (2021); https://doi.org/10.1063/5.0039371

-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES
to CCSD(T) level of theory
The Journal of Chemical Physics 154, 051102 (2021); https://doi.org/10.1063/5.0038301

https://images.scitation.org/redirect.spark?MID=176720&plid=1735782&setID=378408&channelID=0&CID=634322&banID=520641639&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=c467814ad1e5f49acc6a9f43cc9f44a15094d667&location=
https://doi.org/10.1063/5.0043720
https://doi.org/10.1063/5.0043720
http://orcid.org/0000-0002-7384-2319
https://aip.scitation.org/author/Christopoulou%2C+Georgia
http://orcid.org/0000-0002-6197-2597
https://aip.scitation.org/author/Freibert%2C+Antonia
http://orcid.org/0000-0002-2044-4499
https://aip.scitation.org/author/Worth%2C+Graham+A
/topic/special-collections/qdab2020?SeriesKey=jcp
https://doi.org/10.1063/5.0043720
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0043720
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0043720&domain=aip.scitation.org&date_stamp=2021-03-30
https://aip.scitation.org/doi/10.1063/5.0046933
https://aip.scitation.org/doi/10.1063/5.0046933
https://doi.org/10.1063/5.0046933
https://aip.scitation.org/doi/10.1063/5.0039371
https://aip.scitation.org/doi/10.1063/5.0039371
https://doi.org/10.1063/5.0039371
https://aip.scitation.org/doi/10.1063/5.0038301
https://aip.scitation.org/doi/10.1063/5.0038301
https://doi.org/10.1063/5.0038301


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Improved algorithm for the direct
dynamics variational multi-configurational
Gaussian method

Cite as: J. Chem. Phys. 154, 124127 (2021); doi: 10.1063/5.0043720
Submitted: 11 January 2021 • Accepted: 5 March 2021 •
Published Online: 30 March 2021

Georgia Christopoulou, Antonia Freibert, and Graham A. Wortha)

AFFILIATIONS
Department of Chemistry, University College London, LondonWC1H 0AJ, United Kingdom

Note: This paper is part of the JCP Special Topic on Quantum Dynamics with Ab Initio Potentials.
a)Author to whom correspondence should be addressed: g.a.worth@ucl.ac.uk

ABSTRACT
The Direct Dynamics variational Multi-Configurational Gaussian (DD-vMCG) method provides a fully quantum mechanical solution to the
time-dependent Schrödinger equation for the time evolution of nuclei with potential surfaces calculated on-the-fly using a quantum chemistry
program. Initial studies have shown its potential for flexible and accurate simulations of non-adiabatic excited-state molecular dynamics. In
this paper, we present developments to the DD-vMCG algorithm that improve both its accuracy and efficiency. First, a new, efficient parallel
algorithm to control the DD-vMCG database of quantum chemistry points is presented along with improvements to the Shepard interpolation
scheme. Second, the use of symmetry in describing the potential surfaces is introduced along with a new phase convention in the propagation
diabatization. Benchmark calculations on the allene radical cation including all degrees of freedom then show that the new scheme is able
to produce a consistent non-adiabatic coupling vector field. This new DD-vMCG version thus opens the route for effectively and accurately
treating complex chemical systems using quantum dynamics simulations.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0043720., s

I. INTRODUCTION

Quantum molecular dynamics simulations are essential to
understand a number of different phenomena, especially those
occurring on the ultra-fast, femtosecond time scale, where simu-
lations are necessary to interpret experimental data. This includes
fundamental dynamical processes in chemistry, such as photodis-
sociation1–4 or proton transfer.5–8 These simulations involve solv-
ing the time-dependent Schrödinger equation (TDSE) to obtain the
molecular time evolution.

As solving the Schrödinger equation for complex systems is
computationally difficult, the Born–Oppenheimer approximation9

is employed to simplify the problem. The Born–Oppenheimer
approximation separates the electronic and nuclear motions, and
the nuclei move on potential energy surfaces (PESs) provided by the
electrons.10–14 In this way, an electronic Schrödinger equation15 is
solved for a set of fixed nuclear arrangements, yielding the poten-
tial energy surfaces for the nuclear motion in a specific electronic

state and obtaining the solution of the molecular problem within the
so-called adiabatic approximation. In general, for an N atom molec-
ular system, the potential energy surfaces are a function of the 3N
nuclear Cartesian coordinates, which is completely described by
3N-6 linearly independent internal coordinates (3N-5 for a linear
molecule), as the Hamiltonian is invariant to rotation and transla-
tion of the entire system.

A wide range of methods have been developed to solve the
TDSE. However, in standard propagation approaches, where the
initially formed nuclear wavepacket and the Hamiltonian are rep-
resented by a time-independent product grid basis, the calcula-
tions become a computationally heavy process and impossible with
more than a few (typically 3–4) degrees of freedom. To over-
come this obstacle, the Multiconfiguration Time-Dependent Hartree
(MCTDH) method16,17 was introduced, where the wavefunction is
represented by employing a basis set of time-dependent single par-
ticle functions, which can either be one dimensional or multidi-
mensional. Figure 1(a) shows a schematic representation of this
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FIG. 1. Schematic representation of (a)
grid-based and (b) DD-vMCG methods
for excited-state dynamics.

concept. Multi-dimensional, non-adiabatic systems, where the sur-
faces are strongly coupled, can be treated using this method.18–22

MCTDH is a very powerful method; however, like other grid-based
methods, the computation and fitting of the potential energy sur-
faces is required prior to any calculation being performed. Hence,
treating larger chemical systems is feasible only by introducing
new approximations that remove the restrictions of the grid-based
methods.

To this end, the variational Multi-Configurational Gaussian
(vMCG)23–25 method and its DD-vMCG version24–27 were devel-
oped. This is referred to as a Gaussian wavepacket method as
the time-dependent basis functions of MCTDH are replaced by
parameterized Gaussian functions.23,24,28–31 Direct dynamics is the
branch of molecular dynamics simulations that solves the time-
dependent Schrödinger equation by allowing for the calculation
of potential energy surfaces on-the-fly.27 This enables the analysis
of the influence of the quantum effects on reactivity without the
time-consuming need to pre-compute potential energy surfaces.

One of the major advantages of this method is the straightfor-
ward extension to larger systems that undergo long-range dynam-
ics, and now, the only limitation is the need to calculate potential
energies with a quantum chemistry (QC) method of choice. Direct
dynamics simulations of photo-excited molecules are becoming the
method of choice, and a number of methods and codes have been
developed for this, as described in detail in a recent review of Crespo-
Otero and Barbatti.32 These include surface hopping,33,34 ab initio
multiple spawning (AIMS),35,36 and multi-configurational Ehren-
fest (MCE).37 DD-vMCG has the potential advantage over all these
methods that it converges faster due to its variational basis set and
includes all terms and couplings in the Hamiltonian.

In a recent paper, DD-vMCG calculations were reported on the
dynamics of formamide including eight electronic states.38 This not
only highlighted the potential of the method but also showed its lim-
itations. Some limitations such as kinks in the potentials are due to
the electronic structure calculations. Other limitations such as lack
of the correct symmetry in the potentials were due to the implemen-
tation. Other problems, not detailed in this paper but discussed at the
accompanying Faraday Discussion meeting, were the poor energy
conservation and high computational cost: the simulations of the
six-atom system required a number of months of CPU time. In this
paper, we address these issues and present algorithmic advances in

two of the main algorithms used in DD-vMCG simulations, which
save time and improve both stability and accuracy. We also show for
the first time that the method provides a continuous and coherent
description of the non-adiabatic coupling vector field.

The first advance is a novel algorithm that drastically reduces
the time required for a simulation. To save the effort of many
expensive quantum chemistry calculations during a DD-vMCG
propagation, the calculated energies are stored in a database at
selected configurations along the trajectories followed by the Gaus-
sian wavepackets (GWPs). This is known as the quantum chemistry
(QC) database. At each time step, the potential surfaces surrounding
each GWP are then provided by a modified Shepard interpolation
using the stored data points.39

Figure 1(b) illustrates schematically the concept employed by
DD-vMCG during excited-state dynamics where the green dots rep-
resent the center of the GWP, the red ones represent the database
points, and the black lines represent the fit to the database points.
A key challenge of this approach is the time needed to continually
reread, sort, and analyze the database, which makes the calculation
of a large system very expensive. The gray circle around the GWP
of the ground state shows that, at each time, only a small number
of closest points are needed and not the whole database, which con-
stitutes the underlying concept of the development work presented
here to minimize the effort. The implementation of the Shepard
interpolation used is also investigated and improved.

The second key ingredient in the study of non-adiabatic photo-
chemical systems using the DD-vMCG method is the requirement of
a diabatization scheme, which allows for the on-the-fly diabatization
of multiple electronic states. For this propagation, the diabatization
scheme previously introduced has the right properties.38,40 Here, we
improve its usage by using point group symmetry when setting up
the QC database. We also use analysis of a simple model of non-
adiabatic coupled surfaces to choose a new phase convention in the
adiabatic–diabatic transformation matrices and then go on to show
that this diabatization scheme is indeed able to provide a consis-
tent, global vector field for the non-adiabatic coupling vector. This
means that this scheme can, indeed, provide truly (pseudo-)diabatic
potentials.

In Sec. I, the theory of the DD-vMCG method will be pre-
sented along with a detailed description of the QC database and
interpolation approaches and also the diabatization scheme used.
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Subsequently, an efficient parallel algorithm for dealing with large
QC databases will be introduced accompanied with further devel-
opments in the interpolation. An improvement of the diabatization
scheme based on an analytical treatment of the properties of the
non-adiabatic coupling vectors and of the behavior of the adiabatic-
to-diabatic transformation matrix that leads to a more accurate and
efficient program for treating various chemical systems will also be
described. Methodological updates to the DD-vMCG implemen-
tation are outlined along with an application to the allene cation
(C3H+

4 ) in the Jahn–Teller split X̃ manifold in each case. Benchmark
calculations are also presented to show the performance of the paral-
lel algorithm. Finally, a discussion along with the main conclusions
and some future work will be provided.

All the methods described here are included in the power-
ful and flexible Quantics package.41,42 Together, this new imple-
mentation makes a huge step forward in making DD-vMCG a
practical, competitive, and accurate approach for the simulation of
non-adiabatic molecular dynamics.

II. THEORY AND METHODS
A. Variational multi-configuration Gaussian (vMCG)
method

A brief overview of the key concepts of the vMCG method will
be presented here. A detailed description of the method, including
fundamental theories and approaches governing vMCG dynamics,
can be found in various scientific publications.23,24,40 As described
in the Introduction, the DD-vMCG method aims to solve the
time-dependent Schrödinger equation for a wavefunction Ψ, which
depends on both nuclear coordinates, x, and time, t,

i̵h
∂Ψ(x, t)

∂t
= ĤΨ(x, t), (1)

where Ĥ is the Hamiltonian operator, which can be written in the
usual way as

Ĥ = T̂N + Ĥel, (2)
where T̂N is the nuclear kinetic energy operator and Ĥel is the
clamped nucleus electronic Hamiltonian of quantum chemistry,
which is a function of the nuclear coordinates.

DD-vMCG uses what is known as the single-set vMCG ansatz.
This means that a single set of Gaussian wavepackets is used to
describe the wavefunction on all states. This is more efficient than
using separate sets of functions for each state as the quantum chem-
istry calculations need to be performed at each GWP center, so
reducing the number of centers is more important than reducing
the overall number of configurations. Thus, the following ansatz is
employed:

Ψ(x, t) =
Ns

∑

s=1

N

∑

j=1
Ajs(t)gj(x, t)∣s⟩, (3)

where Ns is the number of states and N is the number of time-
dependent Gaussian wavepackets in which the nuclear wavefunction
is expanded. The vectors |s⟩ denote the electronic states.

Each GWP employed in the above ansatz is a multi-
dimensional parameterized function, with x being the set of coor-
dinates, and has the following form:

gj(x, t) = exp(xT
⋅ Ϛj ⋅ x + ξj ⋅ x + ηj), (4)

where xT is the transpose vector of the coordinates and the time-
dependent, complex parameters inside the Gaussian function are
described by a square matrix, Ϛ, a vector, ξ, and a scalar η.

Applying the Dirac–Frenkel variational principle to Eq. (3),

⟨δΨ∣H − i̵h
∂

∂t
∣Ψ⟩ = 0, (5)

outputs two sets of equations of motion (EOMs), one for the set
of parameters of GWPs and one for the wavefunction expansion
coefficients. The nuclear dynamics using an appropriate representa-
tion of the potential energy surfaces (PESs) can then be followed by
solving these EOMs employing standard numerical integrators and
appropriate initial conditions.

The single-set vMCG equations of motion for the expansion
coefficients can be written as follows:

iȦjs = ∑
t
∑

kl
S−1

jk (Hks,lt − iτkl)Alt , (6)

where indices j, k, l follow the GWPs and s, t represent the electronic
states. The Hamiltonian operator matrix, H, is given by

His,jt = ⟨sgi∣Ĥ∣tgj⟩ (7)

= ⟨gi∣T̂N + H(st)el ∣gj⟩, (8)

where H(st)el is the electronic Hamiltonian matrix for states s, t, i.e.,
the potentials and non-adiabatic couplings, which are calculated by
quantum chemistry and, then, using the procedure described below,
are provided in a diabatic representation. The overlap matrix, S, is
expressed in the Gaussian function basis set as follows:

Sij = ⟨gi∣gj⟩, (9)

and the differential overlap matrix, τ, is given by

τij = ⟨gi∣
∂

∂t
gj ⟩. (10)

For reasons of stability and efficiency, the GWP width matrix
Ϛ is kept fixed and only the GWP parameter vector ξ is propagated
variationally, i.e., “frozen” Gaussians are used. The scalar parameter
is then constructed to make the GWPs phaseless, and the phase is
carried by the expansion coefficients. The equations of motion for
the GWP parameters can then be written in a vector notation as

iξ̇ = C−1Y . (11)

Employing the usual nomenclature,24 C and Y have the following
forms:

Ciα,jβ = ρij(S(αβ)ij − [S(α0)S−1S(0β)]
ij
), (12)

Yiα = ∑
j
ρij(H(α0)

ij − [S(α0)S−1H]
ij
), (13)

with
ρij = ∑

s
A∗isAjs (14)

being the density matrix, and the superscripts α, β in the matrix ele-
ments indicate the derivatives of the Gaussian functions regarding
the parameters of the Gaussian form [Eq. (4)].
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The C matrix and Y vector look quite complicated, involving
the Gaussian function overlaps and Hamiltonian matrix elements
in the Gaussian basis set, respectively. It can, however, be shown
that the centers of the GWPs follow trajectories that are variation-
ally coupled and not just classical. More information and definitions
regarding the EOM employed in the vMCG method can be found in
Refs. 23 and 24.

B. DD-vMCG: The QC database
As described in the Introduction, the DD-vMCG method is one

of the most promising applications of Gaussian wavepacket dynam-
ics in terms of accuracy and flexibility. In order to solve the EOMs,
the matrix elements of the Hamiltonian must be evaluated. As out-
lined in Eq. (8), the Hamiltonian contains the kinetic and potential
energy terms. Assuming that the dynamics run in rectilinear coordi-
nates (e.g., Cartesian or normal modes), the matrix elements of the
kinetic energy operator have a fairly simple analytic form.23

Using a Taylor series to second-order around the geometry at
the center of a GWP, x0, a potential energy surface can be expanded
as follows:

V(x) = V(x0) + g(x0)
T .(x− x0) +

1
2
(x− x0)

T .H(x0).(x− x0), (15)

where V(x0) denotes the energy, g(x0) denotes the gradient, and
H(x0) denotes the Hessian of the potential energy surface with
respect to changes in geometry. This expansion of the PES is called
the local harmonic approximation (LHA), and it is also used to
calculate the matrix elements in the equations of motion [Eqs. (6)
and (11)].

In rectilinear coordinates, using the LHA, all the integrals can
be obtained analytically using information from standard quantum
chemistry (QC) calculations. However, it is not desirable to run an
expensive QC calculation at each step in the propagation. Thus, QC
calculations are only run when the center of a GWP has moved
significantly away from a previous point. For the integration steps
between the QC calculations, Shepard interpolation is used to pro-
vide the LHA based on the set of prior QC calculations. The data
from the previous calculations must therefore be saved in a database,
the QC database. It is important to note that at each point in con-
figuration space and for all the electronic states involved in the
dynamics, information regarding the electronic structure must be
known.

The distance criteria for a significant geometric change can be
defined in many ways. For example, it can be the Euclidean norm
between the new structure and any database point in Cartesian coor-
dinates. However, in practice, it is found that the maximum displace-
ment of an atom in the new structure compared to the DB points is a
more useful criterion as it distinguishes structures that are locally
mobile. The distance that must be exceeded is referred to as the
dbmin parameter.

vMCG calculations have to be run in the diabatic picture as the
discontinuities in adiabatic potential surfaces cause problems for the
LHA. Thus, the quantum chemistry results need to be transformed
to a diabatic basis. How this is done is explained in Sec. II C, but
it means that the derivative coupling must also be calculated and
stored in the QC database in addition to the energy, gradient, and
Hessian. To save the effort of calculating the Hessians at each point,
Hessian updating is used,23 which means that Hessians must only be

calculated at the first point to be added. The updating is done in the
diabatic picture.

Thus, each time a new point is calculated, the geometry and
all the related information, both adiabatic raw data and data in the
diabatic picture, are added to the QC database. DD-vMCG can be
run without using a QC database, like other direct dynamics meth-
ods, but it has various advantages. One of the obvious advantages
when using a QC database is the smaller number of QC calcu-
lations needed, which is important when an expensive method is
employed to calculate the electronic structure quantities. Even if a
cheap method is used, the QC database offers the advantage that
it can be reused after the completion of the propagation or if the
calculation terminates unexpectedly, one does not have to recalcu-
late the points previously computed. However, at each propagation
step, for every GWP at each integration step, the program needs
to reread, sort, and analyze this database. Thus, as the dynamics
progress and especially in the case of large and complex chem-
ical systems where higher numbers of GWPs need to be used,
running direct dynamics in this way can become a computation-
ally quite heavy process even when QC calculations are not being
performed.

It should be noted that the QC database is not reliant on the
use of an LHA and provides data that can be used in more general
potential fitting.

C. Diabatization
Within the DD-vMCG method, a general on-the-fly diabati-

zation scheme is provided by the so-called propagation diabatiza-
tion.40,43 This method is based on the propagation of the adiabatic-
to-diabatic transformation matrix along the paths followed by the
GWPs and is, in principle, able to handle an arbitrary number of
states with an unknown number of surface crossings.

The basic idea of the propagation diabatization method is to use
the relationship44

∇S = −FS (16)

between the transformation matrix, S, and the derivative coupling
matrix, F, to evaluate S at each point. Integration of Eq. (16) along
a path between two molecular geometries x and x + Δx describes
the propagation of the adiabatic-to-diabatic transformation matrix
over some short step Δx with starting point x. The formal solution is
given by

S(x + Δx) = exp
⎛

⎜

⎝

−

x+Δx

∫

x

F(x′)dx′
⎞

⎟

⎠

S(x) (17)

and defines the diabatization scheme in essence. As a straightfor-
ward numerical integration generally does not guarantee to yield a
unitary matrix, Eq. (17) can be rearranged as

exp(
1
2 ∫

F(x′)dx′)S(x + Δx) = exp(−
1
2 ∫

F(x′)dx′)S(x) (18)

according to the method of Esry and Sadeghpour.45 Then, the expo-
nentials are calculated using a Taylor expansion, and by inversion
of the resultant expression for the matrix exp( 1

2 ∫F(x
′
)dx′) on the

left-hand side, the final transformation matrix, S(x + Δx), may be
obtained.
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Equation (16) is exact if a complete (infinite) set of electronic
states is considered.44 However, it is obviously impossible to handle
an infinite number of states in practical calculations, and the elec-
tronic basis must be truncated. If the electronic states included in
the calculations form a sub-basis where the extended curl, diver-
gence, and quantization conditions hold, as extensively discussed in
Ref. 46, the couplings to the excluded states can be safely ignored and
Eq. (16) is approximately fulfilled. If these conditions are not met,
then integrating Eq. (16) is path dependent and the transformation
matrix S may not be consistently defined.

To correctly obtain the diabatic states, it is also important to
get consistent global phases for the coupling elements. For this, it
is instructive to consider the topography of the potential surfaces
around a conical intersection. For this, a two-state diabatic potential
matrix, W, may be expanded around the intersection as

W = (
κ1x λy

λy κ2x
) + (

ωx

2
x2 +

ωy

2
y2
)1, (19)

where 1 is the unit matrix, x and y are the mass–frequency scaled
normal mode coordinates with vibrational frequencies ωx and ωy,
respectively, and κ1 and κ2 and λ are the gradients and non-adiabatic
coupling defined in the diabatic electronic basis by

κi = ⟨ψi∣∇Ĥel∣ψi⟩∣0
for i = 1, 2, (20)

λ = ⟨ψ1∣∇Ĥel∣ψ2⟩∣0
, (21)

where ψi are the diabatic electronic wavefunctions at the intersection
point. For later use, the expression of the diabatic potential matrix
can be rewritten as

W = Σ1 + (
−δx λy

λy δx
), (22)

where Σ = 1
2(ωxx2 + ωyy2 + κ1x + κ2x) and δ = 1

2(κ2 − κ1).
By definition, the general form of the derivative coupling

matrix is given by

F = (
0 F12

−F12 0
), (23)

and it contains only one non-vanishing coupling vector F12. Noting
that the transformation matrix, S, is unitary and can be defined by a
rotation angle, θ,

S = (
cos θ sin θ
− sin θ cos θ

), (24)

and using the rotation angle that diagonalizes the diabatic potential
matrix [Eq. (22)], it directly follows from Eq. (16) that the derivative
coupling vector is given by

F12 =
1

2((δx)2 + (λy)2
)

1
2

(

λy

−δx
). (25)

Hence, the derivative coupling vectors form a vector field where
the vectors circulate around the conical intersection. This analytical
model of the derivative coupling vectors satisfies the curl condition,
which for the two-dimensional case may be simplified to

∂

∂y
F(x)12 −

∂

∂x
F(y)12 = 0. (26)

Moreover, substitution of the derivative coupling matrix F and
the adiabatic-to-diabatic transformation matrix S into Eq. (16) yields
the following differential equation for the transformation angle:

∇θ = −F12. (27)

If the transformation angle is set to 0 at the starting point R0, the
solution of Eq. (27) is given by

θ = −
R

∫

R0

F12dR, (28)

where the integral has to be taken along a given path. If the path is
closed, the integral mentioned above has to be an integer multiple of
π, leading to the following quantization condition:

− ∮ F12dR = nπ, (29)

where n is an integer if the loop encloses a conical intersection and 0
otherwise.

From an examination of this model, the following procedure is
followed to obtain the diabatic states for any number of states using
propagation diabatization. For the first point in the QC database,
the adiabatic and diabatic surfaces are taken to be equivalent. This
sets the global gauge and effectively defines the diabatic states. For
subsequent points, integration of the transformation matrix to the
new point is made from an old point, taken as the closest point in the
QC database. Using the diabatic surfaces at the old point, predicted
diabatic surfaces at the new point are also obtained, which give a
predicted new transformation matrix and predicted adiabatic data.
This allows the following procedure to be run:

1. The order of states in the predicted diabatic model and the dia-
batic model at the old point is compared. If they have swapped
the order, the conical intersection seam is crossed while taking
the step and integration of the transformation matrix cannot
account for this. The predicted transformation matrix is thus
used to rotate the adiabatic data at the new point to the diabatic
representation at the new point.

2. The overlap between the predicted and calculated derivative
coupling is found, and if the absolute value of the overlap is
small, taken as less than 1/

√

2, the vector field is not contin-
uous, probably due to an intruder state. Again, the predicted
transformation matrix is used with the calculated adiabatic
energies to provide the diabatic surfaces at the new point. This
effectively makes one diabatic surface change character in a
controlled way. If the overlap is good, but negative, the sign on
the calculated derivative coupling is corrected and the transfor-
mation matrix propagated from the old point to the new using
the altered vector.

3. The energy gap of the adiabatic states at the new point is
checked. If it is less than a threshold apart (0.05 eV), this is
classed as a region of degeneracy where the quantum chem-
istry is not to be trusted. The predicted diabatic surfaces are
stored in the QC database, along with the adiabatic raw data.

4. If the QC calculation has failed (e.g., CAS has failed to con-
verge), the predicted diabatic surfaces are stored along with the
predicted adiabatic surfaces.

5. If none of these conditions are met, the points are in a continu-
ous part of the diabatic space and the propagation diabatization
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is used to propagate the transformation matrix from the old
to new point, to obtain the new diabatic potentials from the
adiabatic data.

In all cases, before the final adiabatic-to-diabatic transformation
is made, the phase of the eigenvectors that forms the transfor-
mation is changed to ensure that the diagonal elements are pos-
itive, and the transformation matrix represents a proper rotation.
As a result, the rotation angle in a two-state case will be between
π
2 and − π2 .

D. The use of symmetry
If a molecule has symmetry, the potential energy surfaces are

also symmetric with respect to the various symmetry operations of
the relevant point group. To ensure this symmetry, when adding a
point to the QC database, all the unique symmetry replicas of the
structure, i.e., those generated by the operations of the point group,
should also be added to the database. In DD-vMCG, this has been
introduced as follows.

First, using a template structure with the correct symmetry,
a mapping is set up so that after each symmetry operation, the
atoms are returned to their original position. This permutation
mapping ensures that the symmetry replicas relevant to the region
of configuration space being explored are provided. This template
structure is often the molecular geometry at the center of the ini-
tial wavepacket for a simulation as the ground-state equilibrium
structure (the Franck–Condon point) is usually the highest possible
symmetry.

Once the mapping is known, each time a point is to be added,
the replicas generated by the symmetry operation and permutation
are checked for uniqueness. If the structures are closer to the orig-
inal structure than the database distance criteria (dbmin), they are
averaged to provide a new structure and a new set of replicas via
operation and permutation are produced. Any replicas now closer
to the original structure than dbmin are ignored as they should be
identical.

The quantum chemistry calculation is then performed on the
original (or averaged) structure to obtain the energy, gradient, and
derivative coupling. The energy is taken as identical for each unique
replica, and the gradient and derivative coupling vectors are pro-
vided by appropriate symmetry operations. The diabatization pro-
cedure is then performed for each unique structure, along with the
Hessian updating, to provide the symmetrized diabatic potentials.

E. Modified Shepard interpolation
In cases where there is no need for a new point to be calculated,

a modified Shepard interpolation39 can be employed to obtain the
energies, gradients, and Hessian matrices. The first step is to calcu-
late the Euclidean norm of the difference vector of all atomic coor-
dinates between the new point and each point in the QC database.
The potential energy can then be calculated by employing a weighted
average of the Taylor series over the Nd data points,

V(x) =
Nd

∑

i=1
wi(x)Ti(x), (30)

where Ti is the Taylor expansion and wi is the weight function that
weights the contribution of the Taylor expansion at point i and has

the following form:

wi(x) =
vi(x)

∑
Nd
j=1 vj(x)

. (31)

In its simplest form, data points that are not close to x are assigned
smaller weights compared to the ones that are very close by employ-
ing the primitive weight function vi,

vi(x) =
1

∣x − xi∣
2p , (32)

with

2p > 3N − 3, (33)

where N denotes the number of atoms and i denotes the location
inside the database. If the exponent p is sufficiently large, then, in
the limit Nd→∞ , Eq. (30) converges to the exact potential.

To make this procedure more efficient, a maximum weight
can be used as a criterion to exclude from the PES calculation the
data points a large distance away from the new geometry. Together
with this selection procedure, the aforementioned method allows
for a remarkably accurate calculation of the PES for small chemical
systems (N < 4).

In a series of papers,39,47–50 the different forms of the weight
function have been investigated. Thompson et al. concluded that a
better performance is obtained using the following expression for
the weight function:51

vi(x) = {[
∥x − xi∥

radi
]

2q

+ [
∥x − xi∥

radi
]

2p

}

−1

, (34)

with
2q ≥ 2 and 2p ≥ 3N − 3, (35)

where p and q are positive integers and p ≫ q ensures that the
first term of this equation is sum-dominant when ∥x − xi∥ < radi,
whereas the second term is sum-dominant when ∥x − xi∥ > radi.

The values of q = 2 and p = 12 were found to be reasonable
values. The radi distance is a type of confidence radius supplied by a
close point in the database, j,

radi = ∥xj − xi∥, (36)

and the selection of the point j depends on the number of nearest
points to be included and the molecule under investigation.

F. Allene radical cation
The test system to be used to demonstrate the new implementa-

tions in the DD-vMCG code is the X̃ state of the allene radical cation.
This is a molecule that has been previously studied using a vibronic
model Hamiltonian,52 and the nature of the coupling between the
components of the degenerate state is known, making it an ideal tar-
get for the present study as a comparison of the results can support
the accuracy of the method. It is also of a sufficient size to be a chal-
lenge for direct dynamics simulations and has the added difficulty
of having a conical intersection directly at the Frank–Condon point,
which can cause problems for simulations by introducing a strong
non-adiabatic coupling from the start.
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The equilibrium structure of neutral allene, shown in Fig. 2,
belongs to the point group D2d. It has 15 normal vibrational modes,
which are classified by their irreducible representations,

Γ = 3A1 + B1 + 3B2 + 4E. (37)

The electronic ground and first excited states of the allene
cation, denoted by X̃2E, are doubly degenerate at the Franck–
Condon point. The allene cation provides a representative example
of the E ⊗ β Jahn–Teller effect, where the symmetry of the state
is lowered by coupling to pairs of modes with B1 and B2 symme-
try. Cederbaum et al.53 showed in their theoretical treatment of
the Jahn–Teller effect in the allene cation that the only modes that
strongly couple the ionic doubly degenerate ground state are the
ν5(B1) torsional and ν11(B2) antisymmetric C − C stretching modes.
The conical intersection formed along these two modes takes place
exactly at the Franck–Condon point. In the area around that point,
the next energetically higher electronic states are well separated.
Thus, the investigation of the potential surfaces of the allene cation
can focus on a system involving only two modes and two states.
This can be related to the analytic model discussed above with the
ν5(B1) and ν11(B2) vibrations of the ionic allene system the x and y
coordinates of the diabatic potential matrix.

G. DD-vMCG simulations
DD-vMCG nuclear dynamics were performed on the ground

and first excited states of the ionic allene molecule including all
degrees of freedom as mass–frequency scaled normal modes. The
electronic structure calculations on the allene cation were performed
using MOLPRO 2015.154 at the CASSCF(3,4)/6-31G∗ level of the-
ory. The normal modes were obtained from a CASSCF(4,4)/6-31G∗

calculation at the neutral ground-state geometry.
The GWPs used for the basis functions have a width 1/

√

2
along all normal coordinates. In the mass–frequency scaled coor-
dinate system used, this is the width of the neutral ground-state
vibrational eigenfunction in the harmonic approximation. To form
the desired initial wavepacket, one of these functions is placed at
the Franck–Condon point with a momentum of 0 and a coeffi-
cient of 1.0 for the configuration including the second state. All
other GWPs are then displaced in phase space and given coeffi-
cients of 0.0, i.e., the initial wavepacket is an exact representation of
the neutral ground-state eigenfunction placed vertically into the ion
manifold,

Ψ(x, t = 0) = 1.0 × gj(x = 0, 0)∣2⟩. (38)

FIG. 2. The equilibrium ground-state structure of allene.

One of the key features of the vMCG method compared to other
trajectory-based methods is that results are insensitive to the initial
placing of initially undefined GWPs. Poor choices result in the inte-
grator having to work harder at the start and may result in instability,
but the variational nature of the trajectories means that the GWPs
will always provide the optimal basis set that spans the same space.
For DD-vMCG, it has been found that the best choice is to have all
GWPs start at the same coordinate and to be displaced in momen-
tum space, chosen by randomly stepping along the normal modes.
This ensures that a single quantum chemistry calculation provides
the surfaces for all functions in the first few femtoseconds.

Simulations with up to 20 GWPs were performed for 100 fs.
These are not fully converged calculations as the aim here is to dis-
cuss the efficiency and reliability of the new code rather than provide
accurate results on the allene cation dynamics. A measure of the
quality of a calculation is given by the Gross Gaussian Populations
(GGPs),55

GGPi = Re∑
s
∑

j
A∗isSijAjs, (39)

which divide the density of the wavepacket between the GWPs. In
all simulations using 20 GWPs, there are at least two GWPS with
a GGP of around 0.01, i.e., they carry only 1% of the wavepacket,
and adding more functions will not make a major difference to the
overall wavefunction shape and quantities such as state populations
will be at least qualitatively correct. The state populations from the
simulations with 20 GWPs and a simulation with 25 GWPs indeed
show the same behavior, with similar differences seen by chang-
ing the parameters controlling the potential description to adding
functions.

To circumvent numerical problems coming from excitation
into a point of degeneracy, the initial reference geometry for the
database was defined by a displacement of 0.4 units along the anti-
symmetric C–C stretching mode, where the states are close to the
conical intersection but not degenerate. At this point, which is not
at the center of the initial wavepacket, Hessians need to be calcu-
lated for both states. All other Hessians are provided by the Hessian
updating procedure.

Following the concept of the modified Shepard interpolation
presented above, in the DD-vMCG implementation, two different
parameters are employed for this step, which are both user defined.
The first one, ndb, is the number of closest points in the QC database,
which is to be included for the interpolation in a local database for
each GWP. Furthermore, the confidence radius is defined by the
nconf closest point. The nconf has to be less than or equal to ndb, and
both numbers are based on the distribution of the data points in the
QC database. This development accompanied with the implemen-
tation of the modified Shepard interpolation scheme yields a more
efficient way with respect to the computational time and also leads
to more stable propagation with respect to the energy and norm
conservation of the system.

III. RESULTS AND DISCUSSION
A. Use of local databases

The first part of this study was to improve the efficiency of a
DD-vMCG simulation by optimizing the use of the QC database
used to obtain the potential surfaces by Shepard interpolation. The
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simple implementation of DD-vMCG within the Quantics code
used to date involves reading, sorting, and analyzing the whole QC
database at each propagation step. This approach results in a signif-
icant fraction of the total calculation time being spent on this pro-
cedure, which for direct dynamics simulations of large molecules, or
when a QC database contains many points, presents a limitation for
successfully treating complex chemical systems.

Here, we address this challenge by initially determining local
databases containing the ndb closest points in the QC database for
each GWP, selected by calculating the distances between the cen-
ter of a GWP and all the reference points in the QC database. For
efficiency, this procedure is selected to only be repeated at tlarge time
intervals for all the GWPs. It is important that the local databases are
updated often enough to ensure that there are enough points close
to the center of the moving GWP at all times, allowing an efficient
interpolation that does not lead to integration errors or instabilities.
The time tlarge is thus chosen to represent when the displacement of
a GWP center is significant.

The local databases are represented by employing a single-
linked list array whose size matches the number of GWPs and con-
sists of a series of individual node elements pointing to the location
of each of the ndb closest points in the database. A linked list is a lin-
ear data structure where its elements are linked using pointers and
are not stored at a contiguous location. Computationally, with this
approach, the upper limit on the number of elements is not fixed
and does not need to be predefined, which offers a great flexibil-
ity. In addition, it is cheaper to use linked lists instead of arrays
when possible as inserting a new element in an array of elements
requires a space that is created for this new element by shifting
the existing ones. In terms of the Quantics code, the advantage of
this approach is twofold. During the integration steps, the com-
putational effort is remarkably reduced, and thus, the DD-vMCG
method can be used for more complex processes, and a larger num-
ber of GWPs can be used to describe the wavefunction. Furthermore,
the local databases are independent, so the code can be efficiently
parallelized.

Following this approach, the part of the code dealing with the
calculations of the energy, gradients, and Hessian matrices was par-
allelized. For this to be efficient, load balancing is critical. Thus, the
efficient task distribution is based on the number of GWPs. The
developed version using the local DB approach is designed to speed
up both the serial and the parallel calculations, and a demonstration
of its efficiency and capabilities is presented in this section.

To explore the speedup and the performance of the new code in
comparison with the full QC database, a series of calculations have
been conducted. The speedup is defined as the ratio of the serial
runtime of the full QC database to the serial runtime of the local
DB to perform the same direct dynamics calculation. Our aim was
to create databases with an increasing number of total data points
so that the comparison offers a clear picture of the speed improve-
ment. Initially, a set of calculations with a decreasing dbmin value
was conducted where the code performed only QC calculations at
each step and results were stored in the database. Since the dbmin
parameter, the distance criterion for adding new structures to the
QC database, controls how often a QC calculation is performed,
decreasing its value leads to databases with a higher number of data
points. For each of these databases created from the aforementioned
step, serial calculations employing both the full QC database and

local databases implementations were performed. In these calcula-
tions, the code only reads the database, calculates the PES from the
database, and does not perform further QC calculations. During all
these serial calculations, most of the variables such as the number
of GWPs (10), the total propagation time (200 fs), and the interpola-
tion confidence radius nconf(6) have been kept constant. The number
of points in the local databases, the ndb parameter, is also affected by
dbmin, and when dbmin is reduced, more points are needed to cover
the space required for the interpolation compared to a larger value of
dbmin. Hence, the various dbmin values together with the suitable
ndb parameter for each case are listed in Table I.

In Table I, the total elapsed time needed for all calculations is
listed, along with the speedup defined as the ratio of the elapsed time
with the full QC database to the elapsed time with the local databases.
It can be seen that the time required for a calculation is greater when
the number of points in the QC database increases. Moreover, using
local DB is always faster compared to using the full QC database, and
in the last case, with 5094 points, using the local database is 27 times
faster. This confirms the idea that larger systems can be successfully
treated with DD-vMVG. Another interesting result is that the total
time needed for the local databases when the number of data points
is similar, e.g., 215, 317 and 665 points, is almost constant in con-
trast with the full QC database, breaking the negative dependence
between the total propagation time and the number of points in the
database occurring during a full QC database calculation.

At the same time, the choice of the parameter ndb is potentially
crucial as, in addition to the time and efficiency, it will also affect
the dynamics and, hence, the accuracy of the calculation. To further
understand the impact of ndb on the dynamics, the second exam-
ple of the DD-vMCG calculation from Table I (dbmin = 0.2, 317
points) was employed as a starting point. Serial calculations where
no new points are added in the database but only reading the exist-
ing ones were then performed using local databases with different
values of ndb. Additionally, a similar calculation of only reading the
current database was conducted employing the full DC database
version. As shown in Fig. 3, changing the number of points does
not significantly change the population over time. Identical results
with those of employing the full database [Fig. 3(a)] can be achieved
with local databases containing ten points, as depicted in Fig. 3(d).
As explained above, the number of points inside the local database
affects the interpolation and, thus, the integration of the DD calcu-
lation, which explains the behavior in Figs. 3(b) and 3(c), where the

TABLE I. The total elapsed time for serial DD-vMCG calculations with 10 GWPs using
the full QC database and local databases, varying the number of points in the QC
database by using different distance criteria (dbmin values). For all the calculations,
the nconf parameter was always equal to 6.

Distance criterion 0.25 0.20 0.15 0.10 0.05
ndb 10 10 20 20 40

Number of data points
215 317 665 1292 5094

Full QC DB (s) 3033 3226 4613 18833 125374
Local DBs (s) 2766 2771 2756 3196 4723
Speedup 1.1 1.2 1.7 5.9 26.5
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FIG. 3. The population of S0 (blue line)
and S1 (orange line) states for the
same DD-vMCG calculation of the allene
cation employing (a) the QC database
with 317 points and local databases with
(b) 4 points, (c) 6 points, and (d) 10
points.

population is somewhat different compared to the full QC database
calculation. Since for the allene cation a quite small ndb can be used,
as shown in Fig. 3, altering the nconf parameter did not have any
impact on the results. Potentially, for molecules that require more
points in the local databases and thus a larger ndb value, changing
nconf will possibly also affect the dynamics.

The local database approach was parallelized using OpenMP.
The most accurate way to evaluate parallel performance is by run-
ning the same problem on 1 central processing unit (CPU) and on
n CPUs and comparing the total elapsed time for the iteration in all
cases. The aim is to explore the scalability of the parallel algorithm as
a measure of its capacity to effectively utilize an increasing number
of cores. Thus, the parallel speedup and efficiency of the new code
are examined. The definition of Amdahl’s law56 was employed for
the speedup ratio, which is determined as the ratio of the serial run-
time of the best sequential algorithm for solving a problem to the
time taken by the parallel algorithm to solve the same problem on p
cores.

Test calculations were carried out using the newly developed
algorithm for the allene system. Initially, two different databases
were created by running serial calculations employing 10 and 20
GWPs. Then, parallel calculations employing different numbers of
cores where the code was only reading points from the database
without performing any new quantum chemistry calculation were
conducted for both examples. The total propagation time, (200 fs),
the interpolation confidence radius nconf(6), and the total number
of points in the local databases, ndb = 40, were kept constant. In
Table II, the computational cost for the local database approach
employing different numbers of cores is summarized.

Since the main coding development was focused on the
database, separate time data accompanied with the parallel speedup
and efficiency are presented for both the part of the code that deals
only with the database and the total calculation. Thus, the com-
parison only with the parallel code that deals with the database
depicts that in both examples, the speedup increases with the

number of cores, showing that the new local database approach
has a great impact on the efficiency of the method. For the sec-
ond example (20 GWPs), a parallel job on 20 cores was ten times
faster, which reveals a very good parallel performance even though
for this example the advantage of a parallel calculation is quite
small. The parallel speedup seems to follow similar pattern for both
cases, and a linear scaling is achieved, which is in accordance with
Amdahl’s law.

TABLE II. The total wall-clock time for a parallel implementation of DD-vMCG using
local databases, with different numbers of cores.a

Number of cores

1 5 10 15 20
5094 DB points—10 GWPs
Total calculation
Total time (s) 4723 2050 1511 1599 1623
Parallel speedup 1.0 2.3 3.2 3.0 2.9
Database code
Total time (s) 3724 1033 587 598 604
Parallel speedup 1.0 3.6 6.3 6.2 6.2
Efficiency 1.0 0.7 0.6 0.4 0.3
9797 DB points—20 GWPs
Total calculation
Total time (s) 18 016 8903 5459 5004 4504
Parallel speedup 1.0 2.0 3.3 3.6 4.0
Database code
Total time (s) 11 120 2926 1544 1463 1112
Parallel speedup 1.0 3.8 7.1 7.6 10.0
Efficiency 1.0 0.8 0.7 0.5 0.5

aPerformed on a single node with 2 × 10 core Xeon 2.3 GHz CPUs.

J. Chem. Phys. 154, 124127 (2021); doi: 10.1063/5.0043720 154, 124127-9

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The parallel efficiency is defined as the ratio of speedup to
the number of cores. In this way, a good estimation of the frac-
tion of time for which a processor is usefully utilized can be deter-
mined. A program that scales linearly has a parallel efficiency close
to 1. Usually, a task-parallel program is more efficient than a data-
parallel program. Parallel codes can more rarely achieve superlinear
behavior as a result of an efficient cache usage per worker. The
overall efficiency of the parallel program goes down as the num-
ber of the cores is increased for the same problem. This is the case
for all parallel programs. The efficiency will increase when mov-
ing to more complex calculations as shown in Table II where the
second test with more GWPs and more data points has a better
performance.

Moving to the comparison of the total calculation, Table II
shows that the speedup for the two parallel calculations of allene
follows Amdahl’s law, achieving the maximum speedup in the case
where the number of nodes matches the number of GWPs. For the
first example (10 GWPs) for both the part of the code that deals with
the database and the total calculation, the efficiency drops signifi-
cantly when the number of cores exceeds the number of GWPs. This
might seem odd, but it is, in fact, an expected behavior as the part
of the code dealing with the database is parallelized based on the

number of GWPs. The communication of the extra cores is causing
more delays, so it is better to keep the number of cores always less or
equal to the number of GWPs.

As the total wall-clock time depicts, the largest sizes of memory
and disk are required for dealing with the database when the number
of data points is large, as in this example. The improvement of the
parallelization in the case of the total calculation will be reduced by
the performance of the communication subsystem of the hardware
and the overhead of the parallel process itself, which explains why
the total improvement from serial to parallel is not massive. Addi-
tionally, it must be also noted that only some bits of the total code
are parallelized. In general, a code with its parallelizable component
comprising 90% of total computation time can at best achieve a ten-
fold speedup with lots of workers.57 A code that is 50% parallelizable
speeds up twofold with lots of workers. The results thus indicate
that the speedup for the parallel calculations of allene with the local
databases is useful, but other parts of the code (e.g., calculation of
integrals) need to be improved.

B. Description of branching space
An accurate solution of the TDSE requires good energy and

norm conservation. In the simulations run here, with either the full

FIG. 4. Cuts through the potential energy surfaces of the allene cation obtained from a DD-vMCG simulation. Two-dimensional cuts through the (a) adiabatic and (b) diabatic
surfaces in the space of the ν5(B1) and ν11(B2) normal modes. The diabatic surfaces along (c) the ν5(B1) and (d) the ν11(B2) normal modes, along with the diabatic coupling
along ν5(B1) (e). All other coordinates have a value of 0.
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FIG. 5. Vector field formed by the derivative coupling vectors along the ν5(B1) and
ν11(B2) normal modes.

QC database or the local databases, the energy (in eV) was conserved
to three decimal places and the norm was conserved to seven decimal
places over the simulations, showing that DD-vMCG propagation of
the allene cation is stable. In addition, it is important that the diabati-
zation procedure used is consistent and provides diabatic potentials
that are consistent with the full solution. To show how the diaba-
tization behaves, a full-dimensional DD-vMCG nuclear dynamics
calculation was performed on allene using 10 GWPs with a dbmin
value of 0.2. A local database of ndb = 10 points and an interpolation
of nconf = 6 were used as mentioned above. The dynamics were run
for 100 fs with data output every 0.5 fs.

In contrast to the preceeding calculations, which focused on
reading of the database, here, the symmetry of the system was used
when adding points to the QC database, as described in Sec. II D.
A QC database of 411 points was created, with only 70 quantum
calculations being performed. Without the use of symmetry 317, cal-
culations were made. The adiabatic and diabatic potential energy
surfaces in the ν5, ν11 branching space of the allene cation gener-
ated from the direct dynamics calculation are shown in Figs. 4(a)
and 4(b), respectively. These are the modes known to be the most
important in forming the conical intersection between the states.

Both the adiabatic and diabatic surfaces are perfectly smooth, and
the adiabatic surfaces feature a well-defined conical intersection at
the Franck–Condon point.

Figures 4(c) and 4(d) show one-dimensional cuts of the diabatic
surfaces along the ν5 and ν11 modes. The diabatic coupling along ν5 is
also shown in Fig. 4(e): along ν11, the coupling is negligible. Thus, the
diabatic potentials have the form of a two-state, two-mode conical
intersection in the diabatic representation of Eq. (19), with ν5 being
the off-diagonal coupling mode and ν11 being the on-diagonal tuning
mode. Note that diabatic coupling along ν5 turns over at ±4.5. This
is due to the interaction with a further excited state, as will be seen
in the analysis below.

The potential surfaces can be analyzed in more detail to show
that in addition to giving smooth surfaces, the procedure used is pro-
viding coherent, global diabatic potentials. In Fig. 5, the vector field
of the derivative coupling vectors in the adiabatic picture obtained
from the diabatic potential surfaces generated during the dynamics
calculations on the allene cation is depicted. Note that the magnitude
of the vectors was scaled up by a factor of 50 for a better visualization.
As shown, the vectors are very well behaved, and the shape of the
vector field clearly indicates that a conical intersection is present at
the Franck–Condon geometry represented by the origin of the nor-
mal modes coordinates. Note that at values of the ν5(B1) coordinate
of ±4.5, the vector field is changing direction. This is due to a higher
lying state becoming degenerate with S1 in this region.

A key quantity defining the coherence of the diabatic states
is the behavior of the adiabatic–diabatic transformation angle, θ,
shown in Fig. 6(a). The angle values are between −π/2 and π/2
and vary smoothly, except for the sharp jump from −π/2 to π/2
at ν5(B1) = 0 for negative values of ν11(B2). This is a direct result
from the quantization condition Eq. (29) for a two-dimensional
system. This diabatization is keeping the phase of the transforma-
tion globally consistent. In addition, the curl condition [Eq. (26)]
should be 0 for the diabatization to be rigorous. The non-trivial
curl component of each derivative coupling vector was calculated at
each point in the space of the ν5(B1) and ν11(B2) coordinates. From
Fig. 6(b), it is shown that the curl of each vector is almost every-
where very close to 0, emphasizing that the diabatization is a good
approximation to truely diabatic states in this region. Significant val-
ues of the curl are found for large values of ν5(B1), which can be

FIG. 6. Value of (a) the adiabatic-to-diabatic transformation angle θ along the ν5(B1) and ν11(B2) normal modes. (b) Non-trivial curl component of each derivative coupling
vector in the ν5(B1) and ν11(B2) space. The crosses are the data points.
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seen in the region where the vector field changes direction due to
the change in state character.

IV. CONCLUSION
From the results mentioned above, it is clear that the DD-

vMCG method is able to provide good quality diabatic surfaces
for multi-dimensional non-adiabatic simulations directly from a set
of quantum chemistry calculations. An efficient parallel algorithm
using local databases for the potential surfaces around each basis
function has been established, which leads to an improved imple-
mentation of the method in the Quantics package. In addition, anal-
ysis of the potential surfaces shows that they have the character of
coherent global diabatic states.

Using the 15 dimensional, two-state allene radical cation as a
test system, the efficiency and accuracy of the new algorithm were
examined by performing test calculations employing local databases
of different sizes and the full quantum chemistry database. Test cal-
culations showed that including only the closest points during the
propagation of each basis function leads to a significant speedup,
solving a major bottleneck encountered by the DD-vMCG method
when treating complex chemical systems. The speedup becomes
even larger when using a parallel version of the algorithm, as well as
more Gaussian wavepackets to describe the molecule under inves-
tigation. Smooth adiabatic and diabatic potential energy surfaces
are produced, as well as smooth couplings between the diabatic
states. Both the total energy and norm conservation are adequate,
demonstrating the stability of the interpolation scheme used.

Since a correct representation of the diabatic potential energy
surfaces is crucial for nuclear dynamics, an analysis of the sur-
faces was made. It has been proven that point group properties
should be used to both further improve the efficiency of the method
and ensure the correct symmetry of the potential energy surfaces.
The diabatization scheme is shown to provide a coherent vector
field for the non-adiabatic coupling around the conical intersec-
tion in the allene system and to cope with the phase shift in the
adiabatic–diabatic transformation rotation angle. Application of the
curl condition to the vector field shows that throughout the low
energy space accessible to the allene radical cation after formation,
a good diabatic representation is made. The curl condition also
picks up that the diabatization is less correct in certain regions of
configuration space where an examination of the vector field and
potential surfaces indicates that a further electronic state becomes
involved.

The novelty of this development work is in making DD-vMCG
a competitive, efficient, and accurate method for nonadiabatic direct
quantum dynamics simulations. Systems that were not computa-
tionally feasible can now be efficiently treated with improved imple-
mentation. Thus, future work will focus on treating larger chemical
systems with the developed DD-vMCG version and on further com-
paring the outcomes and performance with other available quantum
molecular dynamics methods such as trajectory surface hoping.58
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