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Abstract— In this paper, we propose a method to use semantic
information to improve the use of map priors in a sparse,
feature-based MonoSLAM system. To incorporate the priors,
the features in the prior and SLAM maps must be associated
with one another. Most existing systems build a map using
SLAM and then align it with the prior map. However, this
approach assumes that the local map is accurate, and the
majority of the features within it can be constrained by the
prior. We use the intuition that many prior maps are created
to provide semantic information. Therefore, valid associations
only exist if the features in the SLAM map arise from the same
kind of semantic object as the prior map. Using this intuition,
we extend ORB-SLAM2 using an open source pre-trained
semantic segmentation network (DeepLabV3+) to incorporate
prior information from Open Street Map building footprint
data. We show that the amount of drift, before loop closing,
is significantly smaller than that for original ORB-SLAM2.
Furthermore, we show that when ORB-SLAM2 is used as a
prior-aided visual odometry system, the tracking accuracy is
equal to or better than the full ORB-SLAM2 system without
the need for global mapping or loop closure.

I. INTRODUCTION

Simultaneous Localization And Mapping (SLAM) is
an extremely important capability for most autonomous
platforms. It gives these systems the freedom to operate
in natural, unstructured environments. SLAM is widely
implemented on autonomous guided vehicles, self-driving
cars, collaborative robots, and mixed reality systems which
run on custom headsets and mobile phones. As a result,
SLAM directly impacts the lives of billions of people.

However, almost all SLAM systems exhibit drift.
Odometry sensors such as Inertial Measurement Units
(IMUs) and wheel encoders measure the relative change
in a platform’s pose. Perception sensors such as cameras
and LiDAR measure the relative transformation from a
platform-fixed frame to a landmark. As a result, incremental
errors are integrated into the map and cause drift. The most
common way to reduce this is through loop closure: when the
platform returns to a visited part of the map, the constraint
that the platform has completed a loop can be imposed. This
can greatly reduce the errors associated with drift. However,
there are two issues with loop closure. First, most loop
closure algorithms carry out some kind of search over the
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Fig. 1: Demonstration of our method. Left: (top) a keyframe and
(bottom) its semantic label. Red points mark keypoints on buildings,
which can be reliably associated with available prior information.
Right: localization and mapping result of our system without loop
closing. The red circle shows the SLAM system as it revisits an
earlier part of the map. Because of the prior, almost no drift occurs.

entire map to detect loop closure candidates [1]. The greater
the drift, the larger this search area needs to be, increasing
both the computational cost and the risk of falsely identifying
a loop closure event. The second is that the improvement
afforded by loop closure declines the further a map feature
is from the loop closure point. Therefore, even with loop
closure, substantial localization errors can still occur.

Another way to reduce drift is to use prior maps
(P-MAPs) from other sources such as building plans or
aerial photographs. If the features in the P-MAP are
probabilistically related to those in the SLAM map (S-MAP),
they can provide information wherever associations between
the P-MAP and S-MAP can be established, and not just at
S-MAP loop closure points. The priors can be used in three
ways: to seed an S-MAP directly [2, 3], to constrain the
platform location [4]–[7], and to constrain the S-MAP feature
locations [8, 9]. In the last two cases, a major challenge is
to associate the features in the P-MAP with those in the
S-MAP. Current techniques include scan matching [4] and
Iterative Closest Point (ICP) [5]. These two methods are
most reliable when the geometry of the S-MAP is accurate,
and the majority of the features are constrained by those
in the P-MAP. In our use case — MonoSLAM in urban
environments — we find that neither condition holds true.

In this paper, we explore how semantic segmentation can
improve the association between the features in the S- and
P-MAPs. We use the following intuition: P-MAPs are often
created to convey semantic information, so many of the
features in a P-MAP have well-defined semantic labels. If
a feature in an S-MAP is associated with a feature in the
P-MAP, both features must have the same semantic label.

We focus on the problem of monocular SLAM because it
is both technically challenging and widely used for low cost
SLAM systems such as those on phones and drones.



Fig. 2: Schematic illustration of semantically-aided MonoSLAM. Top Left: Semantic segmentation applied to keyframes. Top Middle:
These are used to extract building feature points from the drift-corrupted S-MAP. Bottom Left: P-MAP identified. Bottom Middle: Features
extracted from P-MAP. Top Right: S-MAP and P-MAP overlaid for data association. Bottom Right: Data association and constraint
application between S-MAP and P-MAP.

To implement this approach, we develop a new robust
data association technique which relates the S- and P-MAPs
together. Our approach, illustrated in Fig. 1, uses semantic
segmentation to identify potentially compatible S-MAP and
P-MAP features, and multiRANSAC to extract the building
geometry. We also develop a novel method for constraining
landmark locations rather than platform poses. This method
is robust to errors in the P-MAP. We shown the performance
of the approach on an extended version of ORB-SLAM2 [1]
using the challenging case of a single camera.

The structure of this paper is as follows. The problem
statement is introduced in Section II. Section III describes
the graphical formulation of SLAM. Previous methods for
utilising priors are reviewed in Section IV. Our system
is described in Section V, evaluated in Section VI, and
summarized and concluded in Section VII.

II. PROBLEM STATEMENT

We are studying the case of a mobile platform operating
in an urban environment. The goal is to estimate the full six
Degree of Freedom (DoF) pose of the platform. The platform
is equipped with a monocular sensor and uses SLAM.

The system is provided with a P-MAP. The information is
available from Open Street Map [10]. It consists of a series
of polygonal building footprints. This P-MAP P consists of
m features, P = {p1, . . . ,pm}. Each feature is a 2D line
segment which is specified by a pair of start and end points
in a world-fixed coordinate frame, pj = {ps,pe}j .

The goal is to develop a SLAM algorithm which uses
the 2D prior information to constrain the 3D position of the
landmarks and, in turn, constrain the 3D pose of the platform.

We begin by describing the SLAM framework used.

III. GRAPH-BASED SLAM

We use the conventional formulation of a SLAM system
with a keyframe-based backend. Using notation from [11]
and [12], the state of the set of keyframes is given by the set
X0:k = {x0, . . . ,xk}. The S-MAP S consists of n features,

S = {s1, · · · , sn}. The sequence of observations is Z1:k =
{z1, · · · , zk}. Given this system, the SLAM problem is to
compute

p (X0:k,S|Z1:k) . (1)

Using the standard Markov assumptions, this joint
probability can be factorized as

p (X0:k,S|Z1:k) = p (x0)
∏

(i,j)∈G

p (zij |xi, sj). (2)

G is the set of pairs of indices which link feature observations
to platform poses, p (x0) is the prior on the initial pose, and
p (zij |xi, sj) is the likelihood of the observation of landmark
j at timestep i. Taking negative log likelihoods and assuming
Gaussian distributions, the Maximum A Posteriori estimate
is given by [12],

X∗0:k,S
∗ = arg min

X0:k,S
eT0 Ω0e0 +

∑
〈i,j〉∈G

eTijΩijeij . (3)

IV. USING PRIOR INFORMATION IN SLAM

As explained above, the sensors used in SLAM algorithms
only compute relative transformations, hence drift can arise.
One way to overcome this is to combine information from
the P-MAP into the SLAM process, changing Eq. (1) to

p (X1:k,S|Z1:k,P) . (4)

This prior information is used in two main ways: to constrain
the platform pose, and to constrain the feature locations.

A. Using Priors to Constrain Platform Pose

By reducing errors in the platform pose, the errors in
the underlying map will be reduced as well. One of the
earliest examples was the work by Kümmerle et. al. [4]. Line
features were extracted from an aerial map to create building
boundaries. The robot, equipped with a laser scanner, used
scan matching and Monte Carlo localization to estimate
the absolute platform pose over time. However, it is not
always the case that a single scan is sufficient for a



match. The works by Vysotska et al. [5] and Floros et
al. [13], for example, attempted to overcome this limitation
by using observations collected over several timesteps to
build local S-MAPs. These maps were aligned with the
prior information (derived from Open Street Map) using
ICP. However, both of these approaches use sensing systems
which provide measurements of depth (either using depth
sensors or stereo cameras) to produce dense, geometrically
accurate local maps which mostly contain features derived
from the prior map. Real-time monocular SLAM systems,
however, typically only produce sparse features points. The
only work we are aware of which uses localization with
a single camera is the work by Caselitz et al. [7]. They
used MonoSLAM to build an accurate local map of the
environment and matched it with a dense LiDAR scan of
the environment, which they created themselves. However,
they did not compare their method with Open Street Map or
other open sources of priors.

B. Using Priors to Constrain the Positions of Map Features

Priors can be used to constrain the map feature spatial
distribution. One way to achieve this is to simply use a
map created from an earlier SLAM run as the P-MAP for
a subsequent run. It is widely used in distributed SLAM
systems such as CCM-SLAM [3]. However, this can only
be used in the special case that the P-MAP and S-MAP
use identical features. Therefore, a second approach is to
transform the P-MAP features into S-MAP ones. Georgiou
et al., for example, convert a floor plan into an occupancy
grid [2]. Once features have been converted into an S-MAP,
the regular SLAM data association mechanisms can be used.

In general, the features in the P-MAP and S-MAP are
sufficiently different from one another that there is no
one-to-one mapping. Rather, the P-MAP features act as a
constraint on the S-MAP features. Parsley et al. [9] developed
a framework to address this. They argued that the real
world contains latent structures, such as physical objects.
These latent structures induce different features in different
mapping systems. Features are associated between two maps
when the features in each map arise from the same latent
structure. The framework has two main elements to it: a data
association technique to identify the relationship between
features in the S- and P-MAPs, and a constraint mechanism.

We use this approach to design a SLAM system.

V. SEMANTICALLY-ASSISTED MONOSLAM

Our proposed scheme is illustrated in Fig. 2. We developed
our approach using ORB-SLAM2 [1], with the KITTI
dataset [14]. Because it is free and publicly available, we
used Open Street Map as the source of prior information. For
semantic segmentation, we used DeepLabV3 [15], an open
source model and trained it on the CityScapes dataset [16].
We note that although we have designed our algorithm
specifically for the MonoSLAM case, it can be readily
applied in systems with depth sensors or stereo.
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Fig. 3: The pipeline of modified ORB-SLAM2 system. Red
blocks show modified steps and blue blocks are original steps in
ORB-SLAM2

The pipeline of our modified variant of ORB-SLAM2 is
shown in Fig. 3. We discuss the blocks which differ from
the original implementation of ORB-SLAM2 below.

A. Initial Map Alignment

The first step is to align the P-MAP and S-MAP at
the start of the run. For this initial development, we use
GPS information. To achieve this, we take the first 15
GPS measurements, identify which keyframes these are
associated with (using log time), and apply edges to the graph
which constrain the 2D position assuming identity covariance
matrix. Used Huber kernel.

B. Semantic Information Extraction

Since the P-MAP only contains building footprint
information, it only provides information which can
constrain S-MAP features on the exterior of a building.
Using our intuition of semantic compatibility, we applied
DeepLabv3+ [15] to label each keyframe. For the ith feature
mi we extract the local corresponding semantic label si.
We form a set of semantically labelled features S =
{s1, ..., sm}. Of DeepLab’s 20 classes, only features labelled
as building in the construction subclass are used for finding
prior constraints in the P-MAP. An example of a keyframe
with semantically labelled features is shown in Fig. 4(a).

Fig. 4(b) and 4(c) shows how semantic labels are
used to significantly reduce the number of inapplicable
(non-building) points which need to be considered with
geometric data association.

However, the figure illustrates several challenges. Firstly,
the local geometry is distorted. Secondly, the segmentation
can be noisy due wall-like structures present in the world but
not in the P-MAP (such as gate posts) and misclassifications.
Although DeepLabv3+ has extremely good benchmark
performance (82.1% IoU class performance, 92.0% IoU
category [17]), misclassifications still occur relatively
frequently. For example, in Fig. 4(c) several points on
the road are classified as walls, and several points on
buildings are classified as non-building. Therefore, while



(a) Semantically labelled features in a keyframe: red (building),
green (other).

(b) Original features. (c) Semantically labelled features:
red (building), green (other).

Fig. 4: Overlay of S-MAP features on the Open Street Map
polygons (P-MAP).

semantic segmentation greatly reduces the number of points
to consider, it is insufficient on its own.

C. S-MAP / P-MAP Data Association

As shown in Fig. 4(c), features on the building surfaces
(marked in red) resemble the flat geometry of building
facades. To associate S-MAP point features with P-MAP
lines features, we use a multi-step data association procedure:

1) Grouping semantically related points. For each
feature point labelled as building, the closest wall to
it in the P-MAP is found using nearest neighbour
based on the previous localization result; points that
relate to the same building block are grouped together.
However, since the feature points are not of high
geometric accuracy, they cannot be directly associated
with the P-MAP.

2) Line Extraction. Although the feature points suffer
from global geometric distortion due to drift,
their relative geometry is locally accurate. We use
multiRANSAC [18] to extract line features from
each cluster. This process is illustrated in Fig. 5.
MultiRANSAC preserves local topological features
inherent to buildings and urban environments. Those
line segments that are nearly orthogonal to one another
represent building corner structures.

3) Line / Prior Map Association. These line segments
are associated with specific building walls in the
P-MAP. At building corners, the fitted wall segments
are almost orthogonal to one another (Fig. 5), and
help to resolve the association ambiguity regarding
which of the orthogonal walls a point associates
with. A greater challenge lies in the parallel wall
segments, such as the front and rear of a building.
Features wrongly associated to the rear side of a
building can lead to localization failure. We rely on
the expected depth measurement of each wall in the

Fig. 5: Lines fit to the clustered points using multiRANSAC.

P-MAP to the camera to define observable facades of
each building. In our experiments, we have found that
this method is essential during vehicle turning. A small
drift in vehicle heading can lead to large map point
displacement, which in turn can result in significant
misassociations. Our solution greatly reduces the drift
in orientation estimation and improves the robustness
of the system.

Despite these steps, false positives can still arise. There
are three main sources: outdated prior information, poor
initial estimation from SLAM, and wrongly associated
prior information. We investigated a number of different
approaches and found that Dynamic Covariance Scaling [19]
was extremely effective, improving the stability of the system
against bad initialization and outliers. This is particularly
useful when the P-MAP contains substantial errors.

D. Local BA with Prior Constraints

Once the associations between the P-MAP and S-MAP
have been proposed, constraints between the two sets of
features can be applied, and local bundle adjustment can be
carried out. Because the P-MAP is only an approximation
of building footprints, we use soft constraints. Furthermore,
because the prior information is in 2D, we can only provide
2D constraints on the full target motion.

The constraint on each feature minimizes the Euclidean
distance between an S-MAP feature point and a line segment
in the P-MAP. Suppose the S-MAP 3D feature point si =
(mx,my,mz)i is to be constrained by the 2D P-MAP feature
pj = {ps,pe}j . We first define m∗i = (mx,my)i to be the
projection of the feature point on the 2D map plane. We then
find the closest point in pj to m∗i . This is given by

m∗ij = ps
j + r(pe

j − ps
j), (5)

where r is

r = clamp

(
(m∗i − ps

j) · (pe
j − ps

j)

|pe
j − ps

j |2
, 0, 1

)
. (6)

clamp(x, a, b) constrains a≤x≤b. This makes sure that the
nearest point in the P-MAP must lie on the line segment.

Once the closest point is determined we compute the
normal and parallel error with respect to the wall eij =
m∗i −m∗ij . This vector penalizes both the normal distance
from the wall and whether the point falls outside the wall



segment. Empirically, we found a suitable covariance matrix
for this error term to be Σ = diag

(
0.12, 0.32

)
.

It should be noted that this only provides constraints on
the projection of 3D feature points to the 2D ground plane.
Although this only constrains a subset of the features and
platform poses, it can still have a significant impact on
performance. For example, by correcting scale drift in the
ground plane, this information directly reduces drift normal
to the ground plane.

We found it necessary to modify the local bundle
adjustment component in the original ORB-SLAM2
implementation to include more feature points and
keyframes. In the original implementation, for a
newly-observed keyframe f , the co-visibility graph
defines a set of keyframes F1 that share observation of
features with f , and another set F2 that share features with
F1 but not f . The set {f∪F1} was then optimized while
F2 was held fixed. However, we found that the performance
improvements from the prior were limited with such a
design. F2 created overly strong constraints on the local
map. Therefore, we included F2 in the local map too, and
defined F3 as a set of keyframes that are connected to
F2 but not included in {f∪F1∪F2}. We carried out local
optimization over {f∪F1∪F2} with F3 as fixed constraints.

VI. EVALUATION

To test the performance of our algorithm, we used the
KITTI dataset because it contains trajectories in urban
environments together with ground truth. Furthermore,
because of the severe drift from MonoSLAM, we needed
a relatively high density of buildings to ensure that
constraints are readily available. As a result, we used
subsets of two KITTI sequences: 00 (timesteps 435–1319)
and 05 without loop closure (timesteps 432–1319) and
with loop closure (timesteps 432–1502). Fig. 7 overlays
the ground truth trajectory, the trajectory computed by the
original ORB-SLAM2 MonoSLAM implementation and our
implementation using semantics and prior information.

For sequence 00, 39% of S-MAP features were labelled
as building. 46% of these building features were successfully
associated with the P-MAP. The additional constraints caused
the bundle adjustment time to rise from 302ms to 416ms.
Similar values were found for the other runs.

We can see that, through the constraints, the prior
information has significantly reduced the scale drift error as
compared with the original monocular ORB-SLAM2. Even
after the loop closure, the system with the prior information
still shows a better consistency as illustrated in Fig. 7(c).

Although the proposed model has achieved a significant
reduction in drift, we found it to suffer from problems in
several scenarios. One such scenario, as noted above, is
that environments with few buildings provided insufficient
features. The other major failure scenario is demonstrated
in Fig. 6. In this case, the vehicle drove along a straight
road, where the building facades form a straight line. As a
result, the prior information is insufficient to constrain drift
along the road. Thus when the vehicle turns the corner, the

TABLE S1: Absolute KeyFrame Trajectory RMSE(m)

Sequence monocular ORB-SLAM2 With semantic prior
tabs t∗abs tabs t∗abs

00† 6.34 15.61 1.67 1.97
05†,a 23.34 47.61 5.92 7.02
05†,b 4.45 6.28 2.38 3.16

† indicates the sequence is cut.
a,b means the sequence with and without loop closure respectively.
∗ denotes the alignment of trajectory is made via the first 20 keyframes.

trajectory is sufficiently far off that the line segments no
longer associate with the prior map.

Fig. 6: Example of failed case. Accumulated drift in previous
long straight road exceeds the range that the prior constraint could
correct and hence wrong association is made leading to low tracking
accuracy.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a method which uses
semantic information to incorporate prior information into
a MonoSLAM system. We have shown that our approach
is capable of enhancing localization and mapping accuracy.
The results are extremely close to the ground truth. Even
when loop closures occur, our method is able to produce
significantly smaller errors.

There are two main areas of further work. First, the method
we implemented is still fragile. It requires a sufficient density
of prior map features to constrain drift. As illustrated in
Fig. 6, if the drift becomes too large, the proposed system
is unable to associate the labelled features with the map. We
are exploring several approaches for improving robustness,
including recent developments in multi-modal hypothesis
representation in SLAM [20]. Second, the method only
exploits semantic labels associated with buildings. However,
other parts of the scene, such as the road surface, are also
commonly labelled in semantic segmentation algorithms and
datasets. We are exploring how these could be used to
provide additional cues for data association, and to provide
more robust operation in dynamic environments.
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