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Abstract

Given a module X over a ring A its stability class consists of all modules X’
such that X @ A® = X’ @ Ab for some positive integers a, b. If the ring A is
weakly finite then the stability class of a finitely generated A-module has the
structure of a tree. We show that if, in addition, X is a generalized torsion
module its stability class has the same shape as that of the zero module. In
consequence we construct examples of non-projective modules whose stability
classes have arbitrarily large amounts of branching.
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Let A be aring and let N be a A-module; the cancellation problem for IV asks whether,
for arbitrary A-modules M, M’, the existence of an isomorphism M'@&N = M&N
implies that M’ = M. In practice, we restrict attention to modules which are
finitely generated. In this degree of generality, there is a considerable literature to
show that one expects the answer to be ‘no’ even over rings A which in other respects
are comparatively well behaved (cf [11], [18]). Given this general failure, the particular
case when N = A nevertheless remains of considerable interest; thus we ask:

(t) If M"® A =2 M @& A what further conditions on M imply that M’ = M ?

More generally we consider the stable class [M] of M which consists of all modules
M’ such that M’ @ A® = M @ A® for some positive integers a, b. If M is finitely
generated then, as we shall recall in §1, under a mild restriction, weak finiteness (cf
[4], [5]), on the ring A, [M] has the structure of a directed tree. A more general
problem than (}) is

(t1) If M is a finitely generated A-module, describe the tree structure on [M].

In the case of modules over the integral group rings of finite groups there is an
extensive literature on the tree structures of quite general modules (cf. [6], [9], [10],
[15], [17]). By contrast, far less is known about the stable classes of modules over
infinite groups. Moreover, such results as are known are confined almost exclusively



to projective modules (although see [7] for the special case of the augmentation ideal).
In this paper we are concerned with modules which are far from being projective.

The starting point in any such study is to describe the tree structure on [0], the
stable class of the zero module, the elements of which are the isomorphism classes of
(finitely generated) stably free A-modules.This example is in some sense universal as
there is a mapping of trees v : [0] — [M] defined by v(S) = M @& S. We say that
M is a generalized torsion module when Homy (M, A) = 0; we shall prove:

(I) If M is a finitely generated generalized torsion module then v : [0] — [M]
is an isomorphism of trees.

In particular, when v is a tree isomorphism it necessarily preserves height; M is then
the unique module at the minimal level of its stable class and one gets a definite
solution to (f) as follows:

(IT)  If M is a generalized torsion module and M’ @A = M @ A then M’ = M.

In §1 we give a brief account of stable modules over weakly finite rings. (I) and (II)
are proved in §2. In §3 we give examples to which these statements then apply. In
particular, we construct examples of generalized torsion modules whose trees have
arbitrary amounts of branching at level 1. Our construction relies on the existence
of nontrivial stably free modules known from other sources. We wish to thank the
referee for a number of helpful and clarifying suggestions.

81 : Stable modules and tree structures :

We say the ring A has the weak finiteness property (cf [5]) when, for any integer
a>1;

(WF) Ifp:A* — A% is a surjective A-homomorphism then ¢ is bijective.
We note that :

(1.1) If Ris a commutative integral domain of characteristic zero then, for any group
G, the group ring R[G] is weakly finite.

According to Cohn [4], (1.1) was first stated by Kaplansky although it seems he
never published a proof. However a proof was eventually published in a paper of
Montgomery [12] although there the term ’stably finite’ is used instead of ‘weakly
finite’.

For the rest of this paper we will assume, without further mention, that A is a
weakly finite ring. We note a number of properties that finitely generated A-modules
thereby possess, the details of which can be found in Chapter 1 of [8]. Firstly, we
denote by ‘~’ the stability relation on A modules; that is

MINM2<:>M1@AG§M2@AI)



for some integers a,b > 0 ; the relation * ~ ’ is an equivalence on isomorphism classes
of A-modules. For any A-module M, we denote by [M] the corresponding stable
module; that is, the set of isomorphism classes of modules N such that N ~ M. If M
is a finitely generated A-module there is a well defined function ¢ : [M] x [M] — Z,
the ‘gap function’ given as follows

9N, Np) = g = N @A™ =2 N, @A
where both a and a + g are positive integers. We say that a module My € [M] is a

root module for [M] when 0 < g(My, N) for all N € [M]. We note the following ([8]
p.6) :

(1.2) If M is a finitely generated A-module then [M] contains a root module.

If My is a root module for [M] we may define a height function h : [M] — N by
h(N) = g(Mo, N).

Evidently root modules are precisely those of minimal height; that is:

(1.3) If M’ € [M] then M’ is a root module precisely when h(M’) = 0.

When M is a finitely generated A-module, the stable module [M] has the structure
of a graph in which the vertices are the isomorphism classes of modules N € [M] and
where we draw an edge N7 — Ny when Ny = Ny & A.

(1.4) TIf M is a finitely generated A-module then [M] is an infinite (directed) tree.

The existence of the height function & : [M] — N implies that [M] may be represented
as a infinite tree whose roots do not extend infinitely downwards. Determining the
precise shape of the tree [M] is equivalent to finding all modules (7) which solve the
equation

(1.5) (DA = MDA

for some integers a, b. In particular, the shape of the stable class [0] of the zero
module is of fundamental importance. Recall that a A-module S is said to be stably
free when S @ A® = Ab; so solving (1.5) in the case M = 0; that is, the stably free
modules constitute the stable class [0].

It is instructive to give some examples. The diagram below illustrates the notion,
with (A) showing proper branching and (B) representing the trivial case where there
is no branching at all:

(A) (B)



In fact both trees actually arise from stable modules; according to the calculations
of Swan [17], (A) represents the stable class [0] of the zero module over the integral
group ring Z[Q(24)] of the quaternionic group of order 24 whereas, in the light of the
Quillen-Suslin solution [13], [14] to the Serre conjecture, (B) represents the stable
class [0] of the zero module over the integral group ring Z[C%] of the free abelian
group of rank n; see also [16].

Stable modules with the shape of (B) are said to be straight; formally, the stable
module [M] is straight when up to isomorphism there is a unique module M at height
0 and such that, if N € [M] then N = My @ A™ for some integer n > 0. We say that
A has stably free cancellation (= SFC') when the stable class [0] is straight.

82 : The stable class of a generalized torsion module:
In this section A will denote a weakly finite ring. Let M7, My, N1, No be modules
over A and suppose that ® : M;® My — N;y® N5 is a A-isomorphism. We may describe

® as a 2 x 2 matrix of A-homomorphisms ® = (¢;;)1<ij<2 Where ¢;; : M; — N;.
We note:

(2.1) If ® is an isomorphism and p9; = 0 then y; is injective and 9y is surjective.
A module M is a generalized torsion module when Homy(M,A) = 0; equivalently

when Homy (M, P) = 0 for any projective A-module P.

Theorem 2.2 : Let M, M’ be A modules such that M &S = M’ &S where S,
S’ are stably free A-modules of ranks m, m’ respectively. If M is a generalized torsion
module then

i) m' <m and

ii) M'" =2 M®T where T is a stably free A-module of rank m —m/.

Proof : Suppose that ® : M &S — M’ & S’ is an isomorphism and represent ® as a
matrix
P — (plllM—)M, @12:5—)M,
o (pgliM—>S/ QDQQZS—>S/

As M is generalized torsion then p9; = 0. Hence, by (2.1), @99 : S — 5 is surjective.
As A is weakly finite it follows that m’ < m. Moreover, also by (2.1), @11 : M — M’
is injective. Put N = Im(py1) C M'. As s = 0 then @ induces an isomorphism

d,: (M®S)/M = (M@ S")/N.

However (M @ S)/M = S and,as N C M’ then (M'® S")/N = (M'/N) @ 5';
hence

(M'/N)@ §' = §.



Put T = M'/N. Then T is stably free and, as A is weakly finite, its rank is well
defined, namely m — m’. We now have an exact sequence 0 - N — M’ — T — 0
which splits as T is projective. Thus M’ = N & T from which ii) follows as o3
maps M isomorphically onto N. O

From (2.2) it follows directly that:

Corollary 2.3 : If M is a generalized torsion module then, up to isomorphism, M
is the unique representative at the minimal level of the stability class [M].

Observe that (2.3) implies statement (II) of the Introduction. A slight variation on
the proof of (2.2) shows that:

Proposition 2.4 : Let M be a generalized torsion module and let S, S’ be stably
free A-modules of the same rank n; then M S’ = M &S if and only if S* = S.

Proof: Proceed as in the proof of (2.2) but with M’ = M. Then (M/N)®S" = S
so that M/N is a stably free module of rank rk(S) — rkS’ = 0. Hence M/N = 0 and

S’ =~ S. The converse is trivial. O

The stability class [0] consists of all finitely generated stably free A-modules. For any
finitely generated A-module M there is a mapping of directed trees v : [0] — [M]
given by

v(S) =M@aS.

From (2.2), (2.3) and (2.4) we now deduce statement (I) of the Introduction, namely:

Corollary 2.5 : If M is a finitely generated generalized torsion module then
v : [0] = [M] is an isomorphism of directed trees.

Corollary 2.6 : If M is a finitely generated generalized torsion module the stability
class [M] is straight if and only if A has property SFC.

83 : Virtually trivial modules :

Throughout this section G will denote a group and A will denote the group ring
A = R|G] where R is a commutative integral domain of characteristic zero; more-
over, K will denote a subgroup of G whose meaning is fixed throughout. If M is a
A-module and m € M we denote by (m) the orbit of m under K

(m) = {m-k| ke K}.

We say that M is wvirtually trivial (resp. trivial) with respect to K when for each
m € M the orbit (m) is finite (resp. a singleton).



Proposition 3.1: If K is infinite and M is virtually trivial with respect to K then
M is a generalized torsion module.

Proof : As a module over R[K], A is free of rank |G/K]|. Let (e;)icc/x be an R[K]
basis for A. Then for each o € A there is a matrix (a}) indexed by ¢t € G/K and
k € K with entries in R, only finitely many of which are nonzero, such that

Z Z etaz-k‘ = Zak-k‘

teG/K keK keK

where a, = Z e;al. We define supp(a) = {k € K | ax # 0}. Under the
teG/K

assumption that M is virtually trivial let f: M — A be a A-linear mapping and let

m € M. Put S = supp(f(m)). We claim that

(*) S=0.
Observe that, for all v € K, supp(f(m)-y) = S-v. Now write (m) = {mq,...,m,}
where m = m;y. For each r, choose k. € K such that m, = m -k, and put

S(r) = S-k.. Then & = U S(r) is finite. As K is infinite we may choose

r=1
v€ K suchthat §-v (16 = 0. AsS = S(1) then S-v (& = 0. However
f(m)-v = f(m-v) and as m -~y € (m) then, for some r, m-v = m -k, so that
fm)-v = f(m)-k, and S-v = S(r). Thus S-v C Gand Sy Sy = 0.
Thus S-v = 0 sothat S = ( asclaimed. Hence f(m) = 0. As this is true for
all m then f = 0. O

Suppose 1 — K G5 H — 1is an exact sequence of groups and put A = Z[G].
If M is a module over Z[H] we denote by M = 7*(M) the A-module coinduced
from M; that is, the underlying additive group of M is that of M and the G action
¢’ is given by
mog = m-m(g).

Evidently M is trivial with respect to K so that, if K is infinite then by Theorem I
and (3.1), it follows that v : [0] — [M] is an isomorphism of directed trees. At this
level of generality, however, one loses control over the structure of the stable class [0].
One can re-assert control by restricting the nature of GG as we proceed to show.

Let I', H be nontrivial groups and denote by G the free product G = I'x H.
Let ir : I' — G be the canonical inclusion and 7r : G — I', 7y : G — H the canonical
projections. Put K = Ker(my). Then K is infinite by the Kurosh Theorem. Now
take M to be a finitely generated, but otherwise arbitrary, module over Z[H]; then
M is trivial with respect to K and so, by (2.5) and (3.1), [M | has same amount of
branching as the stable class [0] over Z[G]. As a first example we note:

(i) IfI'is a free group and H = C, then []\/4\] is straight ([2]).



For the sake of definiteness we continue to take H to be the infinite cyclic group
H = C«. To construct examples where [M] has branching we now construct
free products G = T % Cy for which A = Z[G] admits nontrivial stably free
modules. Observe that if S is a stably free module over I' then the induced module
T = (ir)«(S) is a stably free module over A. Moreover, as 7 o ir = Idp then
(mr)«(T) = (7p oir).(S) = S. Consequently, if S is nonfree then T is also nonfree.
Thus by varying I" we may construct groups G in which the stable class of [0], and
thereby also of []T/[\ |, has arbitrarily large amounts of branching. First consider the
quaternionic group Q)(4n) of order 4n:

QUn) = (wyla" = ¢’ yay™ = 27').
(i) When I' = @Q(4n) then, by the calculations of Swan [17], the amount of

—

branching at level 1 in [M] increases as n increases.

—~

(iii) IfI' = Cx x Q(8n) then, by the results of [8] Chap 12, [M] has an infinite
amount of branching at level 1.

(iv) Take I to be the poly{infinite cyclic} group constructed by Berridge and Dun-

woody in [3]. Then the stable class [0], hence also [M], has non-trivial branching. In
this case G has cohomological dimension three and hence is torsion free.

(v) A similar conclusion to (iv) follows if we take I' to be the direct product of a free
abelian group of rank m with the fundamental group of the Klein bottle; it follows by
a result of Artamonov ([1]) that the stable class [0], hence also [M], has non-trivial
branching. In this case G is again torsion free and has cohomological dimension m+2.
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