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Abstract
Objective To investigate whether varied or repeated b-values provide better diffusion MRI data for discriminating cortical 
areas with a data-driven approach.
Methods Data were acquired from three volunteers at 1.5T with b-values of 800, 1400, 2000 s/mm2 along 64 diffusion-
encoding directions. The diffusion signal was sampled from gray matter in seven regions of interest (ROIs). Rotational 
invariants of the local diffusion profile were extracted as features that characterize local tissue properties. Random forest 
classification experiments assessed whether classification accuracy improved when data with multiple b-values were used 
over repeated acquisition of the same (1400 s/mm2) b-value to compare all possible pairs of the seven ROIs. Three data sets 
from the Human Connectome Project were subjected to similar processing and analysis pipelines in eight ROIs.
Results Three different b-values showed an average improvement in correct classification rates of 5.6% and 4.6%, respec-
tively, in the local and HCP data over repeated measurements of the same b-value. The improvement in correct classification 
rate reached as high as 16% for individual binary classification experiments between two ROIs. Often using only two of the 
available three b-values were adequate to make such an improvement in classification rates.
Conclusion Acquisitions with varying b-values are more suitable for discriminating cortical areas.
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Introduction

In-vivo cortical parcellation aims to non-invasively differen-
tiate the cortical areas that have been shown to contain dis-
tinctly specialized layering of gray matter (GM) tissue [1–5]. 
Although a one-to-one correspondence cannot be expected 
between structure and function [6, 7], tissue differentiation 
in GM has been related in both animals [4] and humans [8] 
to different functional roles and is, by now, widely accepted 
[9–11]. Because functional mapping of the entire cortex 
requires a prohibitively large number of task-based fMRI 
experiments to be daily practice [12], the possibility of rely-
ing on structural MR images of a single scanning session for 
the in-vivo parcellation of the cortex is particularly attractive 
[13, 14].

The diffusion constant [15], T1- and T2 relaxation times 
[16, 17], magnetization transfer [18], etc. are each thought to 
be sensitive to some aspects of the underlying tissue micro-
structure [19, 20]. Importantly, quantitative MRI data, may 
be used in two related albeit vastly different approaches. On 
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the one hand, one may wish to parcellate the cortex based on 
histologically relevant variables (e.g. myelination, iron con-
tent or cell size) that are obtained from invertible biophysi-
cal models [13, 14]. On the other hand, a fingerprint that is 
obtained directly from the quantitative measurements can be 
used to classify tissue without constructing such a model. 
Importantly, we chose the latter, data-driven, approach and 
employed high angular resolution diffusion imaging (HARDI) 
[21, 22] because, unlike other contrast mechanisms, which 
provide a single degree of freedom, a HARDI acquisition 
probes the same tissue multiple times in varying spatial direc-
tions to provide a rich data set. Such data have been shown 
to provide ample information to characterize GM tissue and 
thus identify different cortical areas [23] or layers [24–26].

The ultimate aim of such parcellation methods is a non-
invasive, reproducible and anatomically reliable parcellation 
of the in-vivo human cortex. In our previous effort toward 
this aim, we put forth a model-free approach [27]. While the 
reliability of this proof of principle we validated with a test/
re-test approach, several avenues for improvement were also 
outlined in that early work. Subsequently, we tested various 
feature sets that are extractable from HARDI data [28], and 
obtained preliminary evidence that indicated a preference for 
including multiple b-values in the HARDI data for classifica-
tion of GM tissue [28, 29]. Although the latter supposition is 
reasonable, a systematic controlled experiment has not con-
firmed it. Accordingly, the aim of the present study was to 
systematically and empirically ascertain that multiple different 
b-values improve discrimination between cortical areas [27].

Methods

All analyses aimed at comparing the useful information con-
tent in data that contained two or three acquisitions of the 
same b-value against data that also included two or three 
acquisitions, but with different b-values. Although, repeated 
acquisitions of the same b-value is an often-used technique 
to improve SNR [30–36], the main motivation here was to 
avoid confounds that would otherwise result from comparing 
cases with variable data sizes. In all comparisons between 
the repeated or mixed b-values the amount of data were 
identical (i.e. the three acquisitions of the same b-value were 
never averaged).

Imaging data

Local 1.5T data

Data were collected from three healthy adult male volunteers 
on a 1.5T Siemens Avanto scanner and a 32-channel head 
coil (Siemens Healthcare, Erlangen Germany) with approval 
from the National Hospital for Neurology and Neurosurgery 

and Institute of Neurology Joint Research Ethics Committee 
and signed written informed consent from each participant. 
Three b-values were sampled in ten HARDI data sets with four 
reference images (bo = 0 s/mm2) and 64 diffusion-weighted 
images (DWIs), multiband factor of 2, spatial resolution of 
1.7 × 1.7 × 1.7  mm3. Each HARDI data set took 6.8 min. The 
acquisition order was b = 1400, 800, 1400, 2000, 1400 s/
mm2 with TE/TR = 86/5647, 94/5980, 101/6224 ms for the 
increasing b-values and each collected with both blip-up/
down phase encoding. All ten HARDI data sets were simul-
taneously fed through topup and Eddy [37] in FSL release 
5.0.9 to align them and curtail susceptibility- and eddy-
current-induced distortions. The diffusion directions were 
not varied among the repeated acquisition of the data with 
b = 1400 s/mm2. T1-weighted (T1w) MPRAGE images were 
also acquired in 2.8 min with 1.0 × 1.0 × 2.0  mm3 voxels, TE/
TI/TR = 4/1000/1370 ms and twofold mSENSE phase encod-
ing acceleration.

HCP 3T data

The HARDI data of three subjects from the Human Con-
nectome Project (HCP) 500-subject data release [38–40] 
were from a 3T Siemens Skyra system with a 100 mT/m 
gradient coil, across three interleaved b-shells (b = 1000, 
2000, 3000  s/mm2) at an isotropic spatial resolution of 
1.25 × 1.25 × 1.25  mm3 and TE/TR of 89.5/5520 ms. The 
b-values were modulated by varying Gmax with 18 bo images 
and contained 90 diffusion directions in each b-shell [41]. 
Because the HCP data did not contain repeated acquisitions of 
any of the b-values (and in particular not the middle b-value of 
2000 s/mm2) a different approach was set up that enabled the 
subsequent analysis steps to be identical for the 3T and 1.5T 
data. In this approach, the DWIs from each b-shell were split 
via an electrostatic repulsion algorithm [42] into three sub-
sets. Each of the subsets contained 30 evenly spaced diffusion 
directions. This step provided data that could be considered 
three repeats of the same b-value for all three b-value shells. 
To synthesize data with repeated b-value of 2000 s/mm2, each 
subset with 30 diffusion direction was processed separately to 
extract 9 features (described below in detail) and the features 
concatenated. To synthesize data with different b-values, one 
of the three subsets with 30 diffusion-encoding directions was 
chosen from each of the three b-value shells. The T1w images 
with isotropic spatial resolution of 0.7 × 0.7 × 0.7  mm3 were 
also saved.

Surface‑based image processing pipeline

Sampling to the cortical surface

To extract feature vectors [27, 28], the T1w image was used 
to generate a boundary surface between the GM and white 
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matter (WM) for each subject using FreeSurfer 5.3 [43] 
recon-all. The bo image (or mean of the 18 bo images in HCP 
data) was registered to the T1w volume using manual blink 
comparison and affine transformation (tkregister in csurf) 
and the registration matrix was applied to the DWIs. For 
each vertex of the surface tessellation, the voxel that con-
tained the 50% point of the local cortical thickness estimate 
(FreeSurfer 5.3 mris_thickness) outward from the GM/WM 
surface along the local surface normal was sampled from 
each diffusion direction data set (paint in csurf).

Feature representation

A 6th order spherical harmonic series was fit to the extracted 
cortical HARDI data in each b-shell [27] from which a 
smaller set of nine features were generated as in Ganepola 
et al. [28]. Four of these features are fully rotationally invari-
ant, while the remaining five are invariant relative to the 
local normal vector to the GM/WM boundary surface. When 
combining data sets these feature vectors were concatenated, 
resulting in either a 1 × 18 or a 1 × 27 feature vector at each 
vertex [44] for the comparisons with two or three repeats 
respectively of the same vs. different b-values.

Data analysis

Correlation maps

Correlation coefficients between the feature vectors of each 
HARDI data set [29] served as a simple test of our hypoth-
esis in that high/low correlation was expected between vec-
tors from identical/different b -values, respectively. The cor-
relation coefficient between data sets with the same b-value 

also served as a surrogate marker of data quality, because 
high correlation indicates repeatable experiments.

Regions of interest

Most regions of interests (ROIs) used in this study were 
related to Brodmann areas [1, 3]. For the 1.5T data, seven 
ROIs were defined. Areas 3b (primary somatosensory), 4p 
(primary motor), and 45 (Broca’s area) were delineated with 
FreeSurfer Brodmann Atlas, while the middle temporal area 
(MT), ventral intraparietal (VIP) [45], a section of the angu-
lar gyrus (AnG) within the default mode network and Insular 
(a small region in the auditory core in the lateral sulcus) 
were defined in a previous study using multimodal data [27].

HCP ROIs were defined using the HCP Multi-Modal Par-
cellation (HCP-MMP) [46]. Eight labels were selected and 
registered from the fsaverage surface to the subject-specific 
surface tessellations using surface based registration [47]. 
Some of the ROIs were equivalent to those above (3b, 4, 
MT and A1). The remaining regions were V1, V2, FST, and 
Lbelt, corresponding to the primary and secondary visual 
areas, the fundus of superior temporal sulcus and the lateral 
auditory belt region, respectively.

The two different sets of ROIs (Fig. 1) were selected 
to encompass a wide range of cortical tissue types within 
each dataset and even wider range when the results of both 
datasets are combined, which help ensure robustness of the 
processing steps and classification results.

Classification experiments

All 21/28 binary combinations of these seven/eight ROIs for 
the 1.5T and 3T data were tested in separate binary classifi-
cation experiments for each subject and both the mixed and 

Fig. 1  Pictorial depiction of the ROIs used for the binary classification experiments for both the local (left) and the HCP (right) data. See text for 
further details
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repeated b-value combinations. The random forest classifi-
cation [48] used sklearn with n_estimators = 15 and default 
values on the other hyperparameters. Test/train data sets 
were generated using leave-one-out cross validation, simi-
lar to that in Ganepola et al. [28], in which the classifier is 
trained on the feature vectors from all but one of cortical ver-
tex points in the two ROIs, tested on the feature vector from 
the unseen vertex and repeating the process until all vertices 
in the two ROIs were tested. Because the resolution of the 
MPRAGE data was higher, multiple vertices could sample 
the same HARDI voxel. To avoid duplication between the 
test and training data, the number of vertices for each ROI 
were reduced to a set that provided a one-to-one mapping 
using only the vertex closest to the average location of ver-
tices that sampled the same voxel (tksurfer in csurf).

In addition to comparing the performance with three dif-
ferent b-values against the data collected three times with 
identical b-value, further comparisons were made on partial 
data sets that contained only two acquisitions: either dif-
ferent or repeated b-values. Namely, binary classification 
experiments were performed on features extracted from the 
(a) lowest and middle b-values, (b) two middle b-values, 
(c) middle and highest b-values and (d) lowest and highest 
b-values. These double b-value data sets were tested using 
the same classification experiments as described in the pre-
vious paragraph.

Classification performance metrics

Two performance metrics were used to assess the quality and 
accuracy for the binary classification experiments. First, the 
proportion of correctly classified vertices was taken to indi-
cate overall classification accuracy. When averaged across 
the three subjects it provides an indicator of how well the 
data with repeated or mixed b-values could discriminate 
tissue in the two ROIs. A one-sided Wilcoxon Rank Sum 
test across the 21 or 28 binary classification results in the 
local and HCP data, respectively, tested the hypothesis that 
classification based on mixed b-values outperforms that of 
the repeated b-value. Secondly, an aggregated F1-score, that 
provides the harmonic mean between precision and recall, 
was used as a measure of classification accuracy for each 
ROI. The proportion of true positives in relation to both 
false positives and false negatives, gives a value between 
0–1, with 1 being 100% correct classification, i.e. matching 
the ground truth labeling [49]. The F1-score was averaged 
for each ROI across all binary classification tests in which 
that region was used.

Results

Correlation maps

Figure 2 displays the correlation maps between feature vec-
tors for both the local 1.5T and 3T HCP data. Both data sets 
showed a similar trend, where the correlation drops as the 
b-value difference increases. These correlation maps sug-
gest that varying information is captured by the different 
b-values and hence using multiple b-values should provide 
a richer feature vector for classification between cortical tis-
sue domains.

The feature vectors from two b = 2000 s/mm2 subsets 
were highly correlated through most of the cortical surface, 
providing confidence that the electrostatic repulsion method 
that was used to subsample the gradient directions in the 
HCP data worked adequately.

Classification with triple b‑values

Figure 3 (top) has the performance of the binary classifica-
tion experiments in data that contained either three different 
or three times the same b-value(s). The height of the bars 
corresponds to the percent of correctly classified vertices 
within the two compared regions and averaged across the 
volunteers. For both the local and the HCP data the feature 
set obtained from the mixed b-values outperformed that of 
the repeated b-value in all of the tests. This supports the 
hypothesis that measuring diffusion MRI data with multiple 
b-values provides more information to differentiate between 
cortical areas. On average the improvement in classifica-
tion accuracy was 5.6% ± 2.6% or 4.6% ± 4.2% across the 21 
or 28 binary tests for the local and HCP data, respectively 
(p < 0.001).

Figure 4a shows the classification results between areas 
3b (S1 region) and 4/4p (M1 region) for a single subject 
from both the local and HCP data. These regions have 
widely differing cytoarchitecture [23, 50] but their loca-
tions within the central sulcus exhibit low inter-subject 
variability and hence are likely to be a reliable test-bed. The 
mixed b-values outperformed the repeated b-value in both 
data sets with an average improvement across subjects of 
11.6% ± 3.6% and 4.0% ± 1.1%, respectively (Fig. 3). Quali-
tative assessment (Fig. 4a) revealed that data with mixed 
b-values produced more spatially contiguous results, bear-
ing closer resemblance to the training labels. The summary 
aggregated F1-score corroborates all above classification 
results (Fig. 4b).
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Classification with paired b‑values

The classification accuracy of the feature sets of paired 
b-value combinations are displayed in Fig. 3 (bottom). For 
the HCP data, a mix of two different b-values outperformed 
two repeated b-values (b = 2000 s/mm2) in the majority 
of binary classification tests. The repeated b-value data 
produced higher percent of correct classification than the 
combination of b = 1000/2000 s/mm2 only when differ-
entiating area 3b from A1. On average, the combination 
of b = 1000/2000  s/mm2 shells performed 3.2% ± 3.1% 
(p < 0.001) better than the repeated b-value. The combi-
nation of b = 2000/3000 s/mm2 shells also outperformed 
the repeated case for the majority of tests (excluding MT 
vs. FST, V1 vs. A1, V1 vs. Lbelt, V2 vs. Lbelt, and 3b vs. 
Lbelt) with a mean improvement of 3.4% ± 4.2% (p < 0.001). 
Combining the lowest and highest b-value produced a mean 
classification improvement of 4.6% ± 3.9%, (p < 0.001) over 
repeated b-value feature set.

The three possible combinations of two different b-val-
ues were also compared against each other for the HCP 
data, yielding mean improvements of 1.2% ± 1.6% and 
1.4% ± 1.8% (p < 0.001) when comparing classification 

accuracy for the data with b = 1000/3000 s/mm2 against that 
for b = 2000/3000 s/mm2 and b = 1000/2000 s/mm2, respec-
tively (Table 1).

The results from combining all three different b-values 
from the top of Fig. 3 were replicated in the bottom to rein-
force that they provide the highest classification accuracy 
with a mean improvement of 5.6% ± 4.6% over the repeated 
pair and 1.0–2.4% over the other paired combinations 
(p < 0.001 for all comparisons; Table 1). Combining three 
b-values relies on more data and hence the statistical com-
parisons are not valid. We provide the three b-value case 
only to ascertain that additional data does indeed lead to an 
improvement in classification accuracy.

The results for the local 1.5T data exhibit similar trends 
albeit more variable across classification experiments 
(Table 1). Also, noteworthy is the finding that the average 
classification rate with the repeated b-value (b = 1400 s/
mm2) was higher in the local 1.5T data than that for the 
HCP data (b = 2000 s/mm2). Nevertheless, although the 
repeated b-value combination outperformed one or more 
of the mixed b-value pairs for thirteen of the twenty-one 
experiments, combining all three b-values still always pro-
vided the best classification performance (Table 1). The 

Fig. 2  Maps of voxel-wise correlation coefficients between pairs of feature vectors that were obtained from different HARDI data acquisitions 
for both the local (top) and HCP (bottom) data sets. Note how the correlation drops as the difference in b-value for the two acquisitions increases
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Fig. 3  Results of the binary 
classification experiments for 
all possible combinations of the 
ROIs in Fig. 1 for both the local 
(a, c) and the HCP (b, d) data. 
Combining feature vectors that 
were obtained from HARDI 
data sets with three different 
b-values improved the percent 
of correct classifications as 
compared to combining feature 
vectors that were obtained 
from three repeats of the same 
b-value (a, b). In general, simi-
lar results were obtained when 
combining features vectors 
from only two data sets in that 
combining different b-values 
provides better classification 
accuracy than repeated acquisi-
tion at the same b-value (c, d)
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improvement brought on by using all three b-values rather 
than twice middle b-value was similar (5.7% ± 2.6%) to the 
HCP data but larger when comparing against any two dif-
ferent b-values (4.7% ± 2.4%, 4.6% ± 2.0% and 3.3% ± 2.2% 
over the b = 800, 400 s/mm2, b = 1400, 2000 s/mm2 and 
b = 800, 2000 s/mm2, respectively).

Discussion

We demonstrated that collecting data with multiple dif-
ferent b-values is a better strategy for classification of 
cortical GM areas than repeating the acquisition with a 
single b-value. This is likely due to the benefit of different 
b-values probing different microstructural properties (i.e. 
differences in diffusion time or varying lengths of diffusion 
gradients) and/or because the single most discriminative 
b-value may vary voxel-to-voxel.

In the absence of ground truth microanatomical data, 
we ran analogous analyses on two different datasets to 
ensure their results supported each other. Another marker 
for the robustness of results and methods is the fact that 
both the subsampled HCP HARDI data and the repeated 
acquisitions of the same b-value data at different time 
points in the local 1.5T protocol provided highly corre-
lated results (Fig. 2 left column).

The HCP data were collected in a single acquisition 
with all b value shells having the same TE. On the one 
hand, this is somewhat wasteful of signal-to-noise ratio 
(SNR), compared to the local 1.5T data, where each 
b-value shell was acquired with the shortest possible TE. 
On the other hand, if the TEs are not identical for the dif-
ferent b-value shells, only mono-exponentials can be fit 
to the data. To ensure identical treatment of the two data 
sets we proceeded with mono-exponential fits for both the 
local and the HCP data.

Fig. 4  a Pictorial representation of a binary classification experiment between the primary motor and sensory cortices for both the local (top) 
and HCP (bottom) data. b Summarized F1 scores for each ROI in Fig. 1 for both the local (top) and the HCP (bottom) data
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Although not a formal hypothesis, it is interesting to note 
that in some cases (e.g. see classification results for area 3b 
and 4 in Fig. 3) lower correct classification rates were found 
with the 3T HCP data, despite their arguably better quality. 
This is likely due to the differences in the protocols (and 
the subsequently necessary slight deviations in the process-
ing steps). For example, because the HCP protocol acquired 
a single repeat of each b-value shell, we subsampled the 
90 diffusion directions into smaller equivalent sets of 30 
directions, which likely reduces the specificity of the feature 
vectors to the local tissue microstructure. Also, while the 
Connectom scanner is expected to provide higher SNR (i.e. 
higher main magnetic field and the short TE that is achiev-
able by the strong gradients) [38–40], this SNR was partly 
traded off for the higher resolution and higher b-values 
(the 3T data has about 59% of the voxel volume and about 
1.5 times higher b-values compared to the 1.5T data). The 
improved resolution at the cost of SNR may not provide a 
universal benefit for all cortical areas.

Nevertheless, on average using all three different b-values 
provided a similar improvement in classification accuracy 
over using only twice (5.7% ± 2.6% vs. 5.6% ± 4.6% for 
local and HCP data, respectively) or three times the middle 
b-value (5.6% ± 2.6% vs. 4.6% ± 4.2% for the local and HCP 
data, respectively). We conclude that using at least two dif-
ferent b-values is advantageous for both the 3T HCP and the 
1.5T local data sets.

Overall, the correlation maps of Fig.  2 confirmed 
our hypothesis in both data sets that as the difference in 
b-value increased the feature vectors were increasingly 
dissimilar. More detailed observations can be made. For 
example, the local 1.5T data exhibit larger patches of 
lower correlation across the cortex than do the 3T HCP 
data when repeated b-values are used for classification. It 
is also noteworthy that while the difference in b-values is 
identical between 800/1400 and 1400/2000 s/mm2 as well 
as between 1000/2000 and 2000/3000 s/mm2, when the 
average b-value is higher the correlation drops further. 
These observations can be attributed, at least partially, to 

Table 1  Differences in correct 
classification rates Repeated Middle + low Middle + high Low + high All three

HCP data (3 T)

Repeated 3.2 ± 3.1 3.4 ± 4.2 4.6 ± 3.9 5.6 ± 4.6

Middle + low 0.2 ± 2.6 1.4 ± 1.8 2.4 ± 2.4

Middle + high 1.2 ± 1.6 2.2 ± 1.5

Low + high 1.0 ± 1.4

All three

Local data (1.5 T)

Repeated 0.9 ± 2.5 1.1 ± 3.1 2.4 ± 3.6 5.7 ± 2.6

Middle + low 0.1 ± 3.1 1.4 ± 2.6 4.7 ± 2.4

Middle + high 1.3 ± 2.6 4.6 ± 2.0

Low + high 3.3 ± 2.2

All three

The values represent the mean difference ± the standard deviation across all the binary tests in Fig. 3 in 
percent of correct classification rates. In each entry of the table, a positive value represents the column 
performing better than the row. The color coding represents the p-value provided by the Wilcoxon rank 
sum test as α > 0.05 (black), 0.01 < α < 0.05 (red), 0.001 < α < 0.01 (blue), α < 0.001 (green)



Magnetic Resonance Materials in Physics, Biology and Medicine 

1 3

a drop in SNR and voxel size differences, although SNR 
cannot be the sole factor. The feature vectors are more 
similar when obtained from two different acquisitions of 
the same b-value (1400 s/mm2) than when feature vectors 
are compared from acquisitions with a b-value of 800 or 
1400 s/mm2, despite the fact that the latter pair (in particu-
lar the data with b = 800 s/mm2) would have a higher SNR.

The cortex in the primary visual area, V1, is known to 
be thinner than most other cortical areas and is therefore 
likely to suffer more from partial volume effects and errors 
in detecting the GM/WM and the GM/pial boundaries. As 
a consequence, sampling the GM signal from the DWIs 
in these regions will be less reliable. For these reasons, it 
was expected that classification accuracy would be signifi-
cantly lower when one or both of these areas were involved 
(Fig. 3).

Several avenues are available for further refining the 
acquisition protocol and the data-driven parcellation 
method. In future work we plan to systematically and 
separately vary the diffusion-encoding times and diffusion 
gradient strength to identify the optimal b-values (see for 
example [51]) in SNR efficient acquisition [52] with spiral 
[53] rather than echo-planar imaging readouts [54].

Conclusions

We conclude that, when time is available to collect addi-
tional data, varying the b-value for the different HARDI 
data sets is the preferred approach. While acquiring addi-
tional data with identical b-value increases the SNR, vary-
ing the b-value will help further improve classification 
experiments that aim to distinguish cortical GM areas 
based on their architectonic characteristics.
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