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Insight into the role of phosphatidylserine in complement-mediated 
synapse loss in Alzheimer’s disease
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Abstract

The innate immune system plays an integral role in the brain. Synaptic pruning, a fundamental process in developmental circuit 
refinement, is partially mediated by neuroimmune signalling at the synapse. In particular, microglia, the major tissue-resident 
macrophages of the brain, and the classical complement cascade, an innate immune pathway that aids in the clearance of 
unwanted material, have been implicated in mediating synapse elimination. Emerging data suggest that improper signalling of 
the innate immune pathway at the synapse leads to pathological synapse loss in age-related neurodegenerative diseases, including 
Alzheimer’s disease. Now the key questions are whether synapses are targeted by complement and, if so, which synapses are 
vulnerable to elimination. Here, we review recent work implicating C1q, the initiator of the classical complement cascade, and 
surrounding glia as mediators of synapse loss. We examine how synapses could undergo apoptosis-like pathways in the Alzheimer 
brain, which may lead to the externalisation of phosphatidylserine on synapses. Finally, we discuss potential roles for microglia 
and astrocytes in this ‘synaptic apoptosis’. Critical insight into neuroimmune regulatory pathways on synapses will be key to 
developing effective targets against pathological synapse loss in dementia.
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Introduction
Genetic studies in Alzheimer’s disease (AD) implicate microglia,  
the major resident immune cells of the brain, as modulators  
for the risk of dementia1–5. Studies in animal models of  
AD suggest that microglia may contribute to the risk by  
acting as cellular mediators of synapse loss6–11. One proposed 
mechanism for the microglia-mediated synapse loss involves 
a region-specific reactivation of an innate immune pathway 
called the classical complement cascade, which has been shown 
to play a critical role in developmental synaptic pruning12,13.  
However, what triggers this reactivation of the complement-
mediated synapse pruning pathway is unclear. In particular, 
how synapses may be lost in AD is a critical question that needs 
to be elucidated. Literature in AD models suggests an interest-
ing concept of ‘synaptosis’, whereby focal apoptotic cascades  
at dendritic spines can occur in the absence of neuronal  
death14–16. This raises the intriguing questions of whether  
complement-mediated synapse loss by microglia in AD requires  
synaptosis and, if so, how. Here, we summarise emerging data 
from developing and diseased brains which suggest a role for 
phosphatidylserine (PtdSer), a canonical ‘eat me’ signal on 
apoptotic cells, in synapse loss. We then discuss potential links 
between externalised phosphatidylserine (ePtdSer), complement  
(C1q and C3) and receptors on microglia and astrocytes that 
could be involved in the recognition of ePtdSer. Furthermore, 
we speculate on whether and how ePtdSer may act as a sig-
nal for synaptosis in the AD brain. Synapse loss is a significant 
correlate of cognitive impairment in AD17–22. Therefore, critical 
insight into mechanisms mediating synapse loss has the poten-
tial to identify effective therapeutic targets against cognitive  
decline and alter AD prognosis.

Complement-mediated synapse loss
A universal hallmark of neurologic diseases is the region-specific  
vulnerability of neurons and neuronal networks to dysfunc-
tion and loss23. Hence, a long-standing question in neurobiology  
has been what contributes to the region-specific loss of  
synapses and neurons. In AD, synapse loss strongly correlates 
with cognitive impairment17–22 and appears to be present before 
overt neuronal loss24,25. Data from multiple laboratories col-
lectively suggest that synaptic failure and loss in AD are likely 
initiated by pre-fibrillar oligomers of amyloid-beta (Aβ) and  
tau at synapses6,26–33. However, precise mechanisms of how 
these oligomers initiate synapse loss and dysfunction need  
further investigation.

Insight into the role of the innate immune pathway in synapse 
loss stemmed from post-natal circuit refinement in the devel-
oping mouse brain. Synaptic pruning in the developing brain 
is a normal and highly regulated process, where supernumer-
ary synapses are removed to obtain the appropriate number of  
synapses34. Multiple mechanisms have been shown to medi-
ate synaptic refinement in the developing brain, depending on 
brain regions and timepoints35,36. These include immune path-
ways such as fractalkine signalling37,38 and triggering receptor 
expressed on myeloid cells 2 (TREM2)39 in the hippocampus, 

complement (C1q/C3)12,13, MERTK-MEGF1040 and IL-3341 in the  
visual thalamus, MHC class I-PirB42–45 in the visual cortex, 
and fractalkine signalling and ADAM1046 in the barrel cortex. 
Among these, the classical complement cascade (C1q and C3) 
has been shown to be reactivated in multiple models of neuro-
logic diseases6,8–10,47–51. Complement proteins are innate immune 
molecules that act as ‘eat me’ signals to promote rapid clear-
ance of invading pathogens or cellular debris52–55. One way the 
complement-bound materials are eliminated from the blood 
is via circulating macrophages53,56. At the peak synaptic prun-
ing period in the developing visual thalamus, microglia engulf  
synapses in a complement (C3-CR3)- and neuronal  
activity-dependent manner13. When the critical pruning window is 
largely over, complement (C1q and C3) activation appears to be  
down-regulated12,13,57. Disruption of complement pruning path-
way results in sustained defects on synaptic connectivity12,13,58,59, 
suggesting a fundamental role for the classical complement cas-
cade in brain wiring. Interestingly, a recent study suggested a 
possible role for complement and microglia in the healthy adult 
mouse brain involving engram-related memory processes60,  
raising the intriguing question of whether immune pathways 
critical for synaptic pruning in developing brains contribute 
to normal synaptic plasticity in the steady-state healthy adult 
brain. With normal aging, there is a region-specific vulner-
ability of synapses to loss and dysfunction61, and C1q and C3 
have been shown to differentially affect age-dependent synaptic  
vulnerability57,62. Together, these studies suggest that the clas-
sical complement cascade contributes to synaptic develop-
ment, maintenance and function throughout the lifespan of an  
animal.

In AD, complement activation was initially regarded as a  
secondary event related to peri-plaque neuropathology63, as C1q, 
C3 and C4 are often found up-regulated and localised to neuritic  
plaques64. Moreover, Aβ plaques have been shown to bind 
and regulate the expression and localisation of complement65.  
However, genetic data suggest that complement may be more 
than bystanders of AD: among the risk variants for AD are 
CLU, also known as complement lysis inhibitor or APOJ, 
and CR1, which encodes for the complement component C3b  
receptor66. Indeed, emerging data in both amyloid- and  
tau-induced mouse models of AD suggest that the classical  
complement cascade mediates synapse loss and dysfunction and  
cognitive impairment6,8–10,67. At pre-plaque ages of mouse  
models of AD (the J20 hAPP and APP/PS1 transgenic), C1q 
and C3 are reactivated in a brain region–specific manner and 
appear punctate and localised to synaptic proteins in vulnerable  
brain regions6. In addition, microglia were found to engulf syn-
aptic proteins in a CR3-dependent manner6. Importantly, genetic 
or antibody means of blocking C1q, C3 or CR3 protect syn-
apses from Aβ-induced loss and dysfunction and downstream 
cognitive impairment6,8,10. These findings corroborate those of 
an earlier study where C1qa-deficient mice crossed with the  
Tg2576 hAPP mouse model resulted in less plaque-related  
neuronal damage, synapse loss and gliosis compared with  
C1qa-sufficient mice67. Similarly, in the Tau-P301S model,  
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unbiased proteomics of hippocampal post-synaptic densi-
ties (PSDs) revealed C1q as the most highly up-regulated pro-
tein relative to wild-type mice9. Injecting anti-C1q functional 
blocking antibody into the hippocampus of these mice attenu-
ated the loss and microglial engulfment of synaptic proteins9. 
In addition, levels of C1q also positively correlated with levels 
of phospho-tau in PSDs from the temporal cortex of AD human  
brains9. Genetic deletion of C3 also rescued neurodegenera-
tion in the Tau-P301S model10. Together, these data suggest 
that the classical complement cascade is reactivated in AD-like 
brains and mediates synapse loss and dysfunction. Interestingly,  
inhibiting68 or deleting69 C3 in one APP mouse model (the J20) 
resulted in increased plaque-related neurodegeneration whereas 
C3 deletion in other mouse models (APP/PS18 and PS2APP10)  
resulted in an amelioration of plaque-related neurodegen-
eration. In a tau-based model, C3 deletion was protective for 
neuron loss and brain atrophy10. This apparent discrepancy 
could have stemmed from major differences in the mouse  
models themselves8. However, it is important to note that, 
despite increased levels of plaques, synapses were still protected 
from loss and memory was intact in the aged APP/PS1 mice8. 
These studies together suggest that complement is activated in 
the brain in various contexts to clear what is deemed as ‘debris’ 
(for example, synapses as well as plaques). Therefore, under-
standing what on synapses reactivates complement for micro-
glial elimination will be a critical question for the AD field to  
assess1.

Understanding the molecular determinants of 
synaptic vulnerability in Alzheimer’s disease
Apoptosis-like events on synapses in Alzheimer’s disease
Apoptosis, a process of programmed cell death involving  
caspase-3 activation, has an essential role in triggering the  
removal of damaged or dying cells by the immune system55. Inter-
estingly, Aβ-induced synaptic impairment was ameliorated in  
caspase-3–deficient rodent models, suggesting that caspase-3  
activation is important for Aβ-induced synaptic dysfunction70.  
Caspase-3 activation within hippocampal neurons has been 
shown to be essential for regulation of spine density and den-
drite morphology71. Synaptotoxic Aβ species appear to activate 
local apoptotic cascades, including the cleavage of caspase-3,  
in synaptosomes and dendrites14. Cleaved caspase-3 levels are 
increased in post-synaptic densities from post-mortem AD 
human brains72 and in hippocampal synaptosomes of pre-plaque 
Tg2576 hAPP mice at the onset of memory decline and spine  
loss15. These findings collectively suggest that caspase-3 activ-
ity contributes to the loss and dysfunction of dendritic spines in 
AD models and support the notion of focal apoptotic cascades 
at synapses (that is, ‘synaptosis’)73,74. Furthermore, cleaved  
caspase-3 immunoreactivity was found in spines but not in  
neuronal soma or pre-synaptic terminals of the Tg2576 hAPP  
mice15, suggesting a potential selective vulnerability of spines 
in this synaptosis paradigm. Some intriguing questions are 
whether apoptotic synapses are specifically removed by the  
immune system and, if so, what mediates this.

A role for externalised phosphatidylserine at the synapse
A fundamental mechanism employed by the immune system  
to eliminate damaged or dying cells is the recognition by  
macrophages of ‘eat me’ and ‘don’t eat me’ signals expressed 
on the cell surface55. PtdSer is a membrane phospholipid that  
acts as an ‘eat me’ signal on apoptotic cell surfaces55. PtdSer  
is normally asymmetrically localised to the inner leaflet of 
the plasma membrane, but as cells undergo apoptosis, PtdSer  
is externalised to the outer leaflet. Cleavage of caspase-3  
activates flippases such as ATP11A and ATP11C and inacti-
vates scramblases such as Xkr8, which promote the externalisa-
tion and internalisation of PtdSer, respectively75–77. ePtdSer on 
the surface of apoptotic cells then is recognised as an ‘eat me’  
signal by macrophages for phagocytosis55. Interestingly, ePtdSer  
has also been proposed to act as a ligand for C1q on apop-
totic cells and this binding of C1q to apoptotic cells is inhib-
ited with annexin V, a known PtdSer-binding protein78. Recent 
studies in the developing brain suggest that ePtdSer levels are 
increased on pre-synaptic compartments during critical periods 
of circuit refinement79,80. Furthermore, ePtdSer-positive neuro-
nal terminals were found within lysosomal compartments of  
microglia and this localisation was ameliorated in C1qa knock-
out mice79. These data suggest a potential role for ePtdSer on 
synapses as a molecular target of C1q deposition and subse-
quent microglial engulfment. In the Tg2576 hAPP mouse model  
of AD, there was an increase of ePtdSer on hippocampal  
synaptosomes at the onset of hippocampal-dependent memory 
impairment, synaptic alterations and spine loss15. However, 
whether ePtdSer contributes to synapse loss in AD has yet to  
be shown.

Potential links between mitochondrial dysfunction and 
synaptosis
The activation of caspase-3 on dendritic spines of Tg2576 
hAPP mice appears to be dependent on apoptosomes15, which 
are apoptosis-mediating protein complexes formed follow-
ing the release of cytochrome c from mitochondria81. Further-
more, mitochondrial ATP synthase activity, which modulates 
levels of neuronal PtdSer externalisation82, has been shown to be  
impaired in AD mouse and human brains83–85, particularly in 
synaptic mitochondria85. These data suggest a possible link 
between synaptic mitochondria and synaptosis. In AD human 
brains, synaptosomes isolated from the temporal cortex have 
decreased levels of mitochondrial electron transport chain  
(ETC) complexes I, IV and V, along with an increased level 
of complement proteins in the same synaptosomes, relative to 
healthy control subjects86. Accordingly, proteomic analysis of  
the APP/PS1 transgenic mice showed altered levels of mito-
chondrial ETC proteins in C1q-associated synaptosomes87. It 
is unclear whether these findings are due to decreased protein  
expression, decreased localisation of mitochondria within syn-
apses or due to preferential loss of mitochondria-rich synapses. 
However, reduction in the expression of mitochondrial oxi-
dative phosphorylation genes in AD human brains has been 
shown at the mRNA level88. Furthermore, the activity of PtdSer  
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flippases and scramblases can be modulated by ATP89–92, reac-
tive oxygen species (ROS)93 and intracellular Ca2+ levels92–95.  
Mitochondria are critical for supplying ATP and ROS96,97 as well 
as buffering Ca2+ following synaptic activity97–99. The expres-
sion of mitochondrial Ca2+ efflux and influx genes is altered 
in post-mortem AD human brains100; and in hippocampal and 
cortical neurons from hAPP transgenic mice, the ability of  
mitochondria to buffer Ca2+ is impaired101,102. Furthermore, the 
levels of ROS are increased in synaptic mitochondria103 and  
synaptosomes104 of pre-plaque hAPP mice relative to wild-
type mice. These studies together raise the question of whether  
mitochondrial dysfunction leads to synapse loss and, if so, how. 
Further studies are needed to strengthen the role of synaptic 
mitochondria in synaptosis as well as potential links between  
synaptic Ca2+, ATP and ROS levels with ePtdSer.

How apoptotic synapses may be recognised for 
elimination
Tissue-resident macrophages recognise ‘eat me’ signals, such 
as ePtdSer, on apoptotic cells to mediate engulfment and 
clearance using a plethora of receptors55. Binding of ePtdSer  
by these receptors can be direct (for example, T-cell immu-
noglobulin and mucin domain containing 4, or TIM4) or  
indirect (for example, TYRO, AXL and MER [TAM] recep-
tor tyrosine kinases and α3β5 and α5β5 integrins), the latter  
of which require ligands to bridge the interaction between 
receptor and ePtdSer such as GAS6, PROS1 and milk fat  
globule-EGF factor 8 protein (MFG-E8)55,105.

Potential role for microglial TREM2 in synapse elimination
Of particular interest is TREM2, which has been shown to  
mediate the clearance of apoptotic cells by macrophages in the  
brain106–109. Genome-wide association studies identified muta-
tions in TREM2, such as the R47H loss-of-function variant110,  
as significantly altering the risk for developing AD111,112.  
One mechanism proposed for TREM2 is to act as an immune 
sensor to detect damage109,113. Lipids that accumulate after 
tissue damage or become externalised on apoptotic cells,  
such as ePtdSer on neuronal membranes, have been shown to 
activate TREM2 signalling108,114,115. In line with this, multiple 
studies in AD mouse models suggest that microglia with dys-
functional TREM2 are unable to sense Aβ plaques and thus 
fail to form a putative protective barrier around plaques114–120. 
TREM2 has also been suggested to be a critical determinant 
of lipid metabolism in macrophages as well as microglial cell  
survival115,121. In particular, functional knockouts of Trem2 lead 
to the inability of microglia to adopt reactive phenotypes (the 
disease-associated microglia, or DAM)120–124. Hence, proper  
TREM2 signalling may become even more crucial for brain 
health and homeostasis with aging. An intriguing idea is whether 
with aging, when the need to clear complement (C1q)-associated  
synapses increases57, aged microglia with decreased lipid 
metabolic and phagocytic capacity125 are unable to efficiently  
sense or clear what the brain regards as debris.

Loss-of-function mutations in TREM2 or DAP12, an adaptor  
protein for TREM2 signalling, underlie the Nasu–Hakola disease, 
in which patients display progressive presenile dementia126,127.  
These findings suggest that TREM2 may have an important 
role in the maturation and maintenance of synaptic function and  
connectivity. Indeed, genetic deletion of Trem2 leads to increased 
synaptic density and enhanced excitatory neurotransmission 
in the developing mouse hippocampus39, and mice expressing 
mutations in DAP12 display impaired synaptic maturation128.  
Emerging data further suggest a role for TREM2 in  
microglia-mediated synapse elimination. Culturing neurons with 
microglia from Trem2-deficient mice prevented synapse loss  
compared with microglia from wild-type mice79. Introducing the  
humanised R47H variant of TREM2 into the TauP301S AD 
mouse model ameliorated C1q deposition on synapses and syn-
aptic localisation within microglia compared with TauP301S 
mice with the TREM2 common variant11. A similar decrease 
of synaptic markers within microglial phagolysosomes was  
displayed in AD post-mortem human brains harbouring the 
R47H and R62H variants of TREM2 versus common variants11.  
This apparent neuroprotective role of the R47H or R62H vari-
ants, at first glance, does not concur with human genetics111,112.  
However, it may be in line with previous studies suggest-
ing TREM2 as a critical immune sensor for damage and the 
R47H variant impairing this ability to sense113. Akin to what 
has been shown for the role of classical complement cascade  
in Aβ-induced synaptic loss versus plaque deposition6,8, 
whether TREM2 is beneficial versus detrimental may depend 
on the local milieu and the precise insult (that is, the identified  
‘damage’ to be cleared)129. Future studies, including behaviour  
and long-term effects on cognitive function, are needed to  
elucidate the roles of TREM2 in synaptic and cognitive health. 
Furthermore, whether ePtdSer or other damage-associated  
lipids contribute to TREM2-mediated synapse elimination in 
AD and whether this involves the complement reactivation in  
microglia are unclear.

Astrocytic MFG-E8 as a potential phosphatidylserine 
interactor
Astrocytes are intimately associated with synapses,  
physically130–133 and functionally134, where they maintain synap-
tic homeostasis135. They have been shown to mediate synapse 
formation and maturation136–139 as well as elimination40,41,140–142.  
Recent data in the developing visual thalamus suggest that 
astrocytes can mediate synapse loss by direct engulfment of 
synapses via MERTK and MEGF1040,142 and by modulating  
microglial engulfment of synapses via secretion of IL-3341. 
Interestingly, astrocytes in a given region are highly special-
ised to meet the demands of the neurons and synapses132. This 
raises the questions of whether and how astrocytes contribute to  
region-specific synapse vulnerability in disease.

In the peripheral immune system, MFG-E8 has been identi-
fied as a bifunctional molecular linker of apoptotic cells to  
phagocytes143; that is, MFG-E8 binds simultaneously to ePtdSer  
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and α5β3 or α5β5 receptors via a C2 domain and RGD motif, 
respectively144,145. In vitro, treating with annexin V or cycli-
cal arginine-glycine-aspartic acid (cRGD) integrin-binding 
motif (which inhibit ePtdSer–MFG-E8 and MFG-E8–receptor  
interactions, respectively) prevents Aβ-induced engulfment of 
neurons by microglia146,147. In vivo, genetic deletion of Mfge8 
reduces lipopolysaccharide-induced neuronal loss in the  
striatum148. Furthermore, tau-laden neurons cultured from  
P301S-tau mice externalise PtdSer and subsequently are 
engulfed by microglia and this can be prevented by cRGD149. 
Although these studies have focused on microglial MFG-E8,  
MFG-E8 appears to be enriched in astrocytes in the brain150–153,  
unlike in the periphery, where MFG-E8 is expressed by  
tissue-resident macrophages55,154,155. In Drosophila models,  
MFG-E8  is   involved  in  the  engulfment  of  dendrites,  which  
display  ePtdSer  during  developmental  pruning  or upon  laser 
injury156.  These    data   together  raise  the possibility  of   whether  
astrocytic    MFG-E8   mediates   cross-talk   with   microglia  to  
facilitate synaptic engulfment.

Potential cross-talk between microglia and astrocytes in 
mediating synaptosis
Both microglia and astrocytes may be required for  
complement-mediated synapse loss. In the brain, microglia are 
a major  cellular source of C1q6,157 and astrocytes are of C3158. 
Microglia  have been suggested to be responsible for the ‘con-
version’ of astrocytes to a reactive ‘A1’ phenotype, where C3 is 
a key marker, through a few factors, including C1q159. Further-
more, blocking this conversion appears neuroprotective in two 
models of neurodegenerative diseases: Parkinson’s160 and amyo-
trophic lateral sclerosis161. However, whether astrocytic C3 is  
required for synapse loss in AD models needs to be further  
elucidated. Furthermore, microglia and astrocytes both are 
equipped with clearance machineries, raising the question of 
whether these two glia cell types have complementary or redun-
dant roles in mediating synapse loss. For example, PtdSer recep-
tors such as TAM receptor tyrosine kinases TYRO3, AXL and 
MER are expressed by both microglia and astrocytes40,55,150,158.  
Microglial TAM has been shown to mediate the clearance of 
apoptotic cells in the subgranular zone of the dentate gyrus 
and the subventricular zone, which are neurogenic regions in 
the adult central nervous system162. Time-lapse in vivo imag-
ing showed microglia and astrocytes having distinct functions in 
the removal of single neurons that were dying upon two-photon  
ablation163, such that microglia appeared to engulf large cell  
bodies while astrocytes engulf small diffuse debris. In vivo 
spinal cord imaging revealed an intimate physical interac-
tion of astrocytes and microglia upon injury, and this interac-
tion appears to require complement (C3) signalling164. Microglia 
were also suggested to instruct synaptic pruning by astrocytes in  
synaptic refinement, potentially via TREM2165. Together, these 
data suggest that cross-talk between microglia and astrocytes 
have important functional consequences on synaptic health and  
neuronal function166.

In aged and AD brains, the transcriptional profiles of micro-
glia and astrocytes are significantly altered120,153,158,167–171. In par-
ticular, microglia up-regulate PtdSer receptors such as Trem2  
and Axl120,167–170, and astrocytic expression of PtdSer-bridging  
molecules such as Pros1 and Mfge8 and receptors such as 
Megf10 becomes dysregulated149,153,158,172. Some intriguing  
questions are whether the changes of expression of these  
molecules involved in PtdSer recognition impair the ability of 
microglia or astrocytes to effectively respond to damaged syn-
apses and neurons and whether they trigger the aberrant removal  
of otherwise healthy synapses.

Conclusions
Insight into molecular factors mediating region-specific syn-
apse loss will be critical to changing the course of AD. Emerging  
data suggest that immune mechanisms involving classical com-
plement cascade are critical for synaptic homeostasis, raising  
the key question of whether certain synapses are targeted for 
elimination by glia. To this end, recent literature highlights a 
potential role for ePtdSer in determining synaptic vulnerability.  
We postulate several pathways, including caspase-3 activa-
tion and mitochondrial dysfunction, that may lead to the exter-
nalisation of PtdSer on synapses (Figure 1). We then speculate  
how ePtdSer on synapses may be recognised by microglia or 
astrocytes (or both) for elimination (Figure 2). In particular, 
we focus on putative ePtdSer pathways such as TREM2 and  
MFG-E8. Altogether, we propose that synapses with ePtdSer  
may be selectively targeted by complement for deposition and 
subsequent engulfment by glia. However, to the best of our 
knowledge, no definitive link has been established between  
ePtdSer, complement and putative PtdSer receptors on glia. 
Furthermore, whether synaptic mitochondria become dys-
functional and contribute to synapse loss in AD needs further 
elucidation. As the classical complement cascade and micro-
glia have been implicated in multiple models of neurologic  
diseases36, understanding what makes synapses vulnerable to 
complement-mediated engulfment and loss will be crucial to  
resolving neuroimmune interactions critical for brain health.

Importantly, most of these mechanistic insights have been 
explored in rodent models, which can be a powerful tool to 
understanding the basic mechanisms of how our brain works.  
However, it is important to note that striking differences 
between mice and humans, especially in microglia170,173,174, may  
lead to fundamental differences in complex and chronic  
age-related neurodegenerative diseases such as AD. Addi-
tionally, in Aβ-induced models of AD, synapse loss has been 
suggested to precede overt plaque deposition6,175. However, 
in patients with AD, when synapses start becoming vulner-
able and lost is not fully understood. Recent development of  
imaging markers that selectively bind to synaptic elements22 
will be instrumental in better defining the timeline progression  
of synaptic health in AD.
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Figure 1. Potential mechanisms leading to synaptic phosphatidylserine externalisation in Alzheimer’s disease. Schematic 
representation of potential pathways by which oligomeric amyloid-beta and hyperphosphorylated tau may increase the vulnerability 
of synapses to loss in Alzheimer’s disease. Synaptic mitochondrial dysfunction may lead to a build-up of cleaved caspase-3, reactive 
oxygen species (ROS) and Ca2+, accompanied by a decrease in ATP. These events can modulate the activity of flippases and scramblases, 
enzymes which regulate the localisation of phosphatidylserine (PtdSer), such that PtdSer is locally externalised to the outer leaflet of synaptic  
membranes. ePtdSer, externalised phosphatidylserine.

Figure 2. Potential cross-talk between microglia and astrocytes in synapse elimination in Alzheimer’s disease. Schematic 
representation of proposed glial mechanisms that may mediate the clearance of synapses upon potential externalisation of phosphatidylserine 
(PtdSer). C1q and C3 proteins secreted by neighbouring microglia and astrocytes, respectively, may mediate engulfment by microglia 
upon C3b–CR3 interaction. Triggering receptor expressed on myeloid cells 2 (TREM2) may be an important determinant of synapse loss, 
potentially via recognition of externalised phosphatidylserine (ePtdSer). Astrocytic milk fat globule-EGF factor 8 protein (MFG-E8) may 
facilitate the interaction between ePtdSer and α5β3 or α5β5 glial phagocytic receptors. Other putative glial PtdSer signalling pathways,  
such as GAS6/PROS1 and TAM (TYRO, AXL and MER) family of receptors, may also be involved in clearing of synapses with ePtdSer.
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