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Analytic hypoellipticity of Keldysh operators

Jeffrey Galkowski and Maciej Zworski

Abstract

We consider Keldysh-type operators, P = x1D
2
x1 + a(x)Dx1 + Q(x,Dx′), x = (x1, x

′) with ana-
lytic coefficients, and with Q(x,Dx′) second order, principally real and elliptic in Dx′ for x near
zero. We show that if Pu = f , u ∈ C∞, and f is analytic in a neighbourhood of 0, then u is
analytic in a neighbourhood of 0. This is a consequence of a microlocal result valid for operators
of any order with Lagrangian radial sets. Our result proves a generalized version of a conjecture
made in (Lebeau and Zworski, Proc. Amer. Math. Soc. 147 (2019) 145–152; Zworski, Bull. Math.
Sci. 7 (2017) 1–85) and has applications to scattering theory.

1. Introduction

We consider analytic regularity for generalizations of the Keldysh operator [24],

P := x1D
2
x1

+ D2
x2
. (1.1)

The operator P has the feature of changing from an elliptic to a hyperbolic operator at x1 = 0.
It appears in various places including the study of transsonic flows, see, for instance, Čanić–
Keyfitz [8] or population biology — see Epstein–Mazzeo [12]. Our interest in such operators
comes from the work of Vasy [31] where the transition at x1 = 0 corresponds to the boundary
at infinity for asymptotically hyperbolic manifolds (see [34]), crossing the event horizons of
Schwartzschild black holes (see [11, § 5.7]) or the cosmological horizon for de Sitter spaces.
The Vasy operator in the asymptotically hyperbolic setting is given by

P (λ) = 4(x1D
2
x1

− (λ + i)Dx1) − Δh(x1) + iγ(x)
(
2x1Dx1 − λ− in−1

2

)
, (1.2)

where h(x1) is a smooth family of Riemannian metrics in x′, x = (x1, x
′) ∈ Rn and γ ∈

C∞(Rn). The resonant states at resonant frequencies λ (see [11, Chapter 5]) are the smooth
solutions of P (λ)u = 0.

For various reasons reviewed in § 1.3, it is interesting to ask if in the case of analytic
coefficients the resonant states are real analytic across x1 = 0. That lead to [35, Conjecture 2]
which asked if P (λ)u = f with u smooth and f analytic near x1 = 0 implies that u is analytic
near x1 = 0. For γ(x) ≡ 0 and h independent of x1, this was shown by Lebeau–Zworski [25]
under the assumption that λ /∈ −iN∗.

The general case was proved by Zuily [32] under the same restriction on λ. His proof was
an elegant adaptation of the work of Baouendi–Goulaouic [1], Bolley–Camus [3] and Bolley–
Camus–Hanouzet [4].

In this paper, we prove this result for generalized Keldysh operators with analytic coefficients
(1.3). In particular, we do not make any assumptions on lower order terms:
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Figure 1. A comparison of the Keldysh operator (1.1) and the Tricomi operator (1.5). The figures
show the cylinder Rx1 × S1

θ where (ξ1, ξ2) = |ξ|(cos θ, sin θ) (this is the boundary of the fibre

compactified cotangent bundle T
∗
Rn — see [11, § E.1.3] — with the x2 variable omitted). The

characteristic varieties, x1 cos2 θ + sin2 θ = 0 and cos2 θ + x1 sin2 θ = 0, respectively, are shown
with the direction of the Hamiltonian flow indicated. In the Keldysh case, the two radial
Lagrangians, Λ±, correspond to θ = π and θ = 0, respectively.

Theorem 1. Suppose that U ⊂ Rn is a neighbourhood of 0,

P := x1D
2
x1

+ a(x)Dx1 + Q(x,Dx′), x = (x1, x
′) ∈ U, (1.3)

has analytic coefficients, Q(x,Dx′) is a second-order elliptic operator in Dx′ with a real valued
principal symbol. Then there exists a neighbourhood of 0, U ′ ⊂ U , such that

Pu ∈ Cω(U), u ∈ C∞(U) =⇒ u ∈ Cω(U ′). (1.4)

We will show in § 1.1 that this result follows from a more general microlocal result valid for
operators of all orders satisfying a natural geometric condition.

Remarks. (1) In the statement of the theorem 0 can be replaced by any point at which
x1 � 0 and U ′ can be replaced by U provided we include a bicharacteristic convexity condition.
That follows from propagation of analytic singularities — see [26, Theorem 4.3.7] or [22,
Theorem 2.9.1]: since there are no singularities near x1 = 0, there will be no singularities on
trajectories hitting x1 = 0 — see Figure 1.

(2) The result is false for the Tricomi operator

P := D2
x1

+ x1D
2
x2
. (1.5)

This can be seen using results about propagation of analytic singularities (unlike (1.3) this
operator can be microlocally conjugated to Dy1 — see Figure 1) but is also easily demonstrated
by the following example:

u(x) :=
∫ ∞

0

Ai(τ4/3x1)eiτ
2x2e−τdτ, Pu = 0, u ∈ C∞(R2). (1.6)

Here, Ai is the Airy function which satisfies

Ai′′(t) + tAi(t) = 0, |∂�
tAi(t)| � C�〈t〉 �

2− 1
4 , t ∈ R, � ∈ N, Ai(0) > 0.

We then have

Dk
x2
u(0) = Ai(0)

∫ ∞

0

τ2ke−τdτ = Ai(0)(2k)!

and u is not analytic at 0.
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(3) Results similar to (1.4) have been obtained in the setting of other operators. In addition
to the works [3, 4] cited above, we mention the work of Baouendi–Sjöstrand [2] who considered
a class of Fuchsian operators generalizing

P = |x|2Δ + μ〈x,Dx〉 + λ (1.7)

In the case of (1.7), (1.4) holds for any λ, μ ∈ C and [2] established (1.4) for more general
operators satisfying appropriate conditions.

(4) The operators (1.3), (1.5) and (1.7) are not C∞ hypoelliptic, that is, Pu ∈ C∞ �⇒ u ∈
C∞. The study of operators which are C∞ hypoelliptic but not analytic hypoelliptic has a long
tradition with a simple example [23, § 8.6, Example 2] given by

P = D2
x1

+ x2
1D

2
x2

+ D3
x3
.

For more complicated cases, references, and connections to several complex variables, see Christ
[9] and for some recent progress and additional references, Bove–Mughetti [7].

1.1. A microlocal result

We make the following general assumptions. Let P be a differential operator of order m with
analytic coefficients:

P :=
∑

|α|�m

aα(x)Dα
x , aα ∈ Cω(U), p(x, ξ) :=

∑
|α|=m

aα(x)ξα, (1.8)

where U is an open neighbourhood of x0 ∈ Rn. We make the following assumptions valid in a
conic neighbourhood of (x0, ξ0) ∈ T ∗Rn \ 0: p is real valued and there exists a conic Lagrangian
submanifold Λ, such that

(x0, ξ0) ∈ Λ ⊂ p−1(0), dp|Λ �= 0, Hp|Λ ‖ ξ · ∂ξ|Λ. (1.9)

Here ‖ means that the two vector fields are positively proportional, that is the Lagrangian is
radial (the positivity assumptions can be achieved by multiplying P by ±1). Except for the
analyticity assumption in (1.8), these are the assumptions made in Haber [19] and Haber–Vasy
[20].

Theorem 1 follows from the following microlocal result. We denote by WF the C∞-wave front
set and by WFa the analytic wave front set — see [23, § 8.1] and [23, § 8.5,9.3], respectively.

Theorem 2. Suppose that P and (x0, ξ0) ∈ T ∗Rn \ 0 satisfy the assumptions (1.8) and
(1.9). Then for u ∈ D ′(Rn),

(x0, ξ0) /∈ WF(u), (x0, ξ0) /∈ WFa(Pu) =⇒ (x0, ξ0) /∈ WFa(u). (1.10)

The proof is based on the theory of microlocal symbolic weights developed by Galkowski–
Zworski [14] and based on the work of Sjöstrand — see [29, § 2] (and also [21] and [26, § 3.5]).
With this theory in place we can use escape functions, G, HpG � 0, which are logarithmically
bounded in ξ (hence the C∞ wave front set assumption on u allows the use of such weights)
and which tend to 〈ξ〉 in a neighbourhood of (x0, ξ0). The normal form for p constructed
in [19] (following much earlier work of Guillemin–Schaeffer [18] which was based in turn on
Sternberg’s linearization theorem [30]) was helpful in the construction of the specific weights
needed here. We indicate the method of the proof in § 1.2.

Proof of Theorem 1. Under the assumptions of Theorem 1, the characteristic set of P over
x1 = 0 is given by (in T ∗Rn \ 0)

p−1(0) ∩ {x1 = 0} = {(0, x2, ξ1, 0) : ξ1 ∈ R \ 0;x2 ∈ neighRn−1(0)} = Λ+ � Λ−,
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where ±ξ1 > 0 on Λ±. These two components are Lagrangian and conic and Hp|Λ± =
−ξ2

1∂ξ1 |Λ± is radial. Since Pu ∈ Cω(U), we have WFa(Pu) ∩ {x ∈ U : x1 = 0} = ∅ and
hence Theorem 2 shows that WFa(u) ∩ Λ± = ∅. On the other hand, [23, Theorem 8.6.1],
WFa(u) ∩ {x1 = 0} ⊂ p−1(0) ∩ {x1 = 0} = Λ+ � Λ−. Hence WFa(u) ∩ {x1 = 0} = ∅ and, since
singsuppa u = πWFa(u), u is analytic near x1 = 0. �

1.2. A proof in a special case

To indicate the ideas behind the proof, we consider P given by

P = x1D
2
x1

+ D2
x2

+ aDx1 , a ∈ C,

and a very special u:

u = eiτx2v(x1), v ∈ S (R), Pu = eiτx2f(x1), e|ξ1|f̂ ∈ L2(R). (1.11)

This assumption is a stronger version of the assumption that f is analytic. We consider a family
of smooth functions Gε(ξ1) satisfying

0 � Gε(ξ1) � min(1
ε log(1 + |ξ1|), |ξ1|) (1.12)

In view of (1.11),

‖vε‖L2(R) � Cε, ‖fε‖L2(R) � C0 vε := eGε(Dx)v, fε := eGε(Dx)f.

where C0 is independent of ε. We then consider

Pε := eGε(Dx)(x1D
2
x1

+ aDx1 + τ2)e−Gε(Dx) = x1D
2
x1

+ iG′
ε(Dx1)D

2
x1

+ aDx1 + τ2.

We have Pεvε = fε, and

Im〈Pεvε, vε〉L2(R) = 〈G′
ε(Dx1)D

2
x1
vε, vε〉L2(R) + 〈(Im a + 1)Dx1vε, vε〉L2(R)

= 〈(ξ2
1G

′
ε(ξ1) + (Im a + 1)ξ1)v̂ε, v̂ε〉L2(Rξ1 ),

where we took dξ1/(2π) as the measure on L2(Rξ1). Let χ ∈ C∞(R; [0, 1]) satisfy χ|t�1 = 1,
χ|t�2 = 0 and χ′ � 0. We define

Gε(ξ1) = (1 − χ(ξ1))
∫ ξ1

0

(χ(εt) + (1 − χ(εt))(εt)−1)dt,

which satisfies (1.12) and G′
ε � 0. Moreover, for ξ1 � M � 2 and ε < 1/M ,

ξ2
1G

′
ε(ξ1) � ξ2

1χ(εξ1) + ε−1ξ1(1 − χ(εξ1)) � Mξ1.

Hence, by taking M = max(− Im a + 1, 2), and ε < 1/M ,

‖fε‖‖v̂ε‖ � Im〈Pεvε, vε〉 = 〈(ξ2
1G

′
ε(ξ1) + (Im a + 1)ξ1)v̂ε, v̂ε〉

� ‖v̂ε‖2 − ‖(1 + |ξ1|(| Im a| + 1))v̂ε|ξ1�M‖‖v̂ε‖ � ‖v̂ε‖2 − C1‖v̂ε‖,
where C1 := (| Im a| + 1)eM‖v‖H1 is independent of ε. This implies

‖v̂ε‖ � ‖fε‖ + C1 � C0 + C1.

Letting ε → 0 gives ‖eξ1 v̂|ξ1�0‖ � C. A similar argument applies to ξ1 � 0 which shows that

e|ξ1|v̂ ∈ L2,

and consequently that u(x) = eix2τv(x1) is analytic.
In the actual proof, the Fourier transform is replaced by the FBI transform (2.1) and its

deformation (2.5) defined using a suitably chosen Gε satisfying (1.12) (see Lemma 3.1 which
is the heart of the argument). One difficulty not present in the simple one-dimensional case
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is the localization in other variables. It is here that the C∞ normal forms of [18, 19, 30] are
particularly useful. It is essential that no analyticity is needed in the construction of Gε.

1.3. Applications to scattering theory

As already indicated in [32] analyticity of smooth solution to the Vasy operator (1.2) implies
analyticity of resonant states and of their radiation patterns. We review this here and, in
Theorem 3, present a slightly stronger result.

For a detailed presentation of scattering on asymptotically hyperbolic manifolds, we refer
to [11, Chapter 5]. To state Theorem 3, let M be a compact n + 1 dimensional manifold with
boundary ∂M �= ∅ and let M := M \ ∂M . We assume that M is a real analytic manifold near
∂M . A metric g on M is called asymptotically hyperbolic and analytic near infinity if there
exist functions y′ ∈ C∞(M ; ∂M) and y1 ∈ C∞(M ; (0, 2)), y1|∂M = 0, dy1|∂M �= 0, such that

M ⊃ y−1
1 ([0, 1)) � m �→ (y1(m), y′(m)) ∈ [0, 1) × ∂M (1.13)

is a real analytic diffeomorphism, and near ∂M the metric has the form,

g|y1�ε =
dy2

1 + h(y1)
y2
1

, (1.14)

where [0, 1) � t �→ h(t), is an analytic family of real analytic Riemannian metrics on ∂M .
Let

Rg(λ) = (−Δg − λ2 − (n/2)2)−1 : L2(M,d volg) → H2(M,d volg), Imλ > 0.

Mazzeo–Melrose [27] and Guillarmou [17] proved that

Rg(λ) : C∞
c (M) → C∞(M), (1.15)

continues to a meromorphic family of operators for λ ∈ C \ i(− 1
2 − N). In addition, Guillarmou

[17] showed that if the metric is even, that is,

g|y1�ε =
dy2

1 + h(y2
1)

y2
1

, (1.16)

(see [11, Theorem 5.6] for an invariant formulation), then Rg(λ) is meromorphic in C. In
particular, for λ �= 0 we have the following Laurent expansion

Rg(ζ) =
J(λ)∑
j=1

(−Δg − λ2 − (n/2)2)j−1Π(λ)
(ζ2 − λ2)j

+ A(ζ, λ), Π(λ) :=
1

2πi

∮
λ

Rg(ζ)2ζdζ,

where ζ �→ A(ζ, λ) is holomorphic near λ. For λ = 0, we have a Laurent expansions in powers
of ζ−j .

The operator Π(λ) has finite rank and its range consists of generalized resonant states. We
then have

Theorem 3. Suppose that (M, g) is an even asymptotically hyperbolic manifold (in the
sense of (1.16)) analytic near conformal infinity ∂M . Then for λ ∈ C \ 0,

u ∈ Π(λ)C∞
c (M) =⇒ u = y

−iλ+n
2

1 F, F |∂M ∈ Cω(∂M). (1.17)

Moreover, in coordinates of (1.16), F (y) = f(y2
1 , y

′), y′ ∈ ∂M where f ∈ Cω((−δ, δ) × ∂M).

Proof. The metric (1.14) (in the coordinates valid near the boundary) gives the following
Laplace operator:
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−Δg = (y1Dy1)
2 + i(n + y1γ0(y2

1 , y
′))y1Dy1 − y2

1Δh(y1),

γ0(t, y′) := − 1
2∂th̄(t)/h̄(t), h̄(t) := deth(t), D := 1

i ∂.
(1.18)

Following Vasy [31], we change the variables to x1 = y2
1 , x′ = y′ so that

y
iλ−n

2
1 (−Δg − λ2 − (n2 )2)y−iλ+n

2
1 = x1P (λ), (1.19)

where, near ∂M , P (λ) is given by (1.2). This operator is considered on X := ((−δ, 0]x1 × ∂M) �
M . The key fact is that P (λ) is a Fredholm family operators on suitable spaces, P (λ)−1 is
meromorphic and its poles can be studied using microlocal methods — see [31], [11, Chapter 5]
and also [34, § 2] for a short self-contained presentation.

From meromorphy of P (λ)−1, we obtain meromorphy of (1.15) using (1.19):

Rg(λ)f := y
n
2 −iλ
1

(
P (λ)−1y

iλ−n+2
2

1 f
)∣∣

M
∈ C∞(M). (1.20)

Here we make y
iλ−n+2

2
1 f into an element of C∞

c (X) by extending it by zero outside of M . Near
any λ, P (ζ)−1 =

∑K(λ)
k=1 Qj(λ)(ζ − λ)−j + Q0(ζ, λ), with Qj(λ) operators of finite rank and

ζ �→ Q0(ζ, λ) is analytic near λ. We then have

Π(λ) = 1
2λy

n
2 −iλ
1 Q1(λ)yiλ−

n+2
2

1 .

Hence, the claim about the range of Π(λ) follows from analyticity of functions in the range of
Q1(λ). This follows from Theorem 1. In fact, P (ζ) = P (λ) + (ζ − λ)V , V := −4Dx1 + iγ(x),
and hence

P (λ)Qk(λ) = −V Qk+1(λ), QK+1(λ) := 0.

Since we already know that the ranges of the operators Qk are in C∞ (see [11, (5.6.10)]), we
inductively conclude that their ranges are in Cω. �

Remark. Vasy’s adaptation of Melrose’s radial estimates [28] shows that to conclude that
u ∈ C∞ when P (λ)u ∈ C∞ (see (1.2)), we only need to assume that u ∈ Hs+1 near m0, where
s + 1

2 > − Imλ, see [34, § 4, Remark 3].

2. Preliminaries on FBI transforms and their deformations

We will use the FBI transform defined in [14] in its Rn (rather than Tn) version. Since the
weights we use will be compactly supported in x, the same theory applies. The constructions
there are inspired by the works of Boutet de Monvel–Sjöstrand [6], Boutet de Monvel–Guillemin
[5], Helffer–Sjöstrand [21] and Sjöstrand [29]. An alternative approach to using the classes
of weights we need here was developed independently and in greater generality by Guedes
Bonthonneau–Jézéquel [16].

2.1. Deformed FBI transforms

We define

Tu(x, ξ) := h− 3n
4

∫
Rn

e
i
h (〈x−y,ξ〉+ i

2 〈ξ〉(x−y)2)〈ξ〉n
4 u(y)dy, u ∈ C∞

c (Rn), (2.1)

recalling that the left inverse of T is given by

Sv(y) =
2

n
2 h− 3n

4

(2π)
3n
2

∫
R2n

e−
i
h (〈x−y,ξ〉− i

2 〈ξ〉(x−y)2)〈ξ〉n
4 (1 + i

2 〈x− y, ξ/〈ξ〉〉)v(x, ξ)dxdξ, (2.2)

see [14, Proposition 2.2].
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The first fact we need is the characterization of Sobolev spaces and of the C∞ wave front
set using the FBI transform (2.1). To formulate it we use semiclassical Sobolev spaces Hs

h (see,
for instance, [33, § 7.1] or [11, Definition E.18]) but we should in general think of h as being
fixed.

Proposition 2.1. There exists a constant C such that for u ∈ S ′(Rn),

‖u‖Hs
h
� C‖〈ξ〉sTu‖L2(T∗Rn) � C2‖u‖Hs

h
. (2.3)

Moreover,

(x0, ξ0) /∈ WF(u) ⇔
{∃χ ∈ S0(T ∗Rn), χ ≡ 1 in a conic neighbourhood of (x0, ξ0),
∀N ∃CN ‖〈ξ〉NχTu‖L2(T∗Rn) � CN .

Proof. This follows from the characterization of the Hs based wave front sets in Gérard [15]
as stated in [10, Theorem 1.2]. Since the arguments are similar to the more involved analytic
case presented in Proposition 2.3, we omit the details. �

As in [29, § 2] and [14, § 3], we introduce a geometric deformation of R2n, Λ = ΛG:

Λ := {(x− iGξ(x, ξ), ξ + iGx(x, ξ)) | (x, ξ) ∈ R2n} ⊂ C2n,
suppG ⊂ K × Rn, K � Rn,

sup|α|+|β|�2〈ξ〉−1+|β||∂α
x ∂

β
ξ G(x, ξ)| � ε0, |∂α

x ∂
β
ξ G(x, ξ)| � Cαβ〈ξ〉1−|β|,

(2.4)

where ε0 is small and fixed (so that the constructions below remain valid as in [14]).
For convenience, we change here the convention from [14]: it amounts to replacing G by
−G everywhere.

This provides us with the following new objects: the deformed FBI transform (see [14, § 4]),

TΛu(x, ξ) := Tu(x− iGξ(x, ξ), ξ + iGx(x, ξ)), u ∈ Bδ,

Bδ := {u ∈ S (Rn) :
∫

Rn |Û(ξ)|2e4δ|ξ|dξ < ∞}, (2.5)

the spaces Hs
Λ, defined as in [14, § 4],

Hs
Λ := Bδ0

‖•‖Hs
Λ , ‖u‖2

Hs
Λ

:=
∫

Λ

〈Reαξ〉2s|TΛu(α)|2e−2H(α)/hdα, (2.6)

and the orthogonal projector

ΠΛ : LΛ := L2(Λ, e−2H(α)/hdα) → TΛHΛ, HΛ := H0
Λ,

described asymptotically (as h → 0 and as ξ → ∞) in [14, § 5]. The weight H appears naturally
in this subject and is given by [14, (3.3),(3.4)], that is, H(x, ξ) = ξ ·Gξ(x, ξ) −G(x, ξ). The
deformed FBI transform TΛ has an exact left inverse SΛ obtained by deforming S in (2.2).

We now prove a slightly modified version of [14, Proposition 6.2]:

Proposition 2.2. Suppose that P =
∑

|α|�m aαD
α is a differential operator with aα ∈

C∞
c (Rn) satisfying,

aα ∈ Cω(U), K � U,

for an open set U and K as in (2.4). Then

ΠΛTΛh
mPSΛ = ΠΛbPΠΛ + O(h∞)H−N

Λ →HN
Λ
,
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where

bP (x, ξ) ∼
∞∑
j=0

hjbj(x, ξ), bj ∈ Sm−j(R2n),

b0 = p|Λ := p(x− iGξ(x, ξ), ξ + iGx(x, ξ)).
(2.7)

We remark that the expansion remains valid when h is fixed. We can use smallness of h to
dominate the lower order terms and then keep it fixed.

Proof. The result follows from the analogue of [14, Lemma 6.1] where the operator
TΛh

mPSΛ is described in the case where the coefficients of P are globally analytic. Here
we point out that the analyticity of the coefficients is only needed in the neighbourhood U of
K � Rn such that in (2.4) suppG ⊂ K × Rn and ε0 is small enough depending on the size of
the complex neighbourhood to which the coefficients extend holomorphically.

In fact, arguing as in the proof of [14, Proposition 6.2] all we need is that for a ∈ C∞
c (Rn)

and a ∈ Cω(U), the Schwartz kernel of TΛMaSΛ, Maf(x) := a(x)f(x), is given by

Ka(α, β) = c0h
−ne

i
hΨ(α,β)A(α, β) + r(α, β), α, β ∈ Λ = ΛG,

r(α, β) is the kernel of an operator R = O(h∞) : H−N
Λ → HN

Λ .
(2.8)

The phase in (2.8) is given by

Ψ(α, β) =
i

2
(αξ − βξ)2

〈αξ〉 + 〈βξ〉 +
i

2
〈βξ〉〈αξ〉(αx − βx)2

〈αξ〉 + 〈βξ〉 +
〈βξ〉αξ + 〈αξ〉βξ

〈αξ〉 + 〈βξ〉 · (αx − βx), (2.9)

and the amplitude satisfies

A ∼
∞∑
j=0

hj〈αξ〉−jAj , A0(α, α) = a|Λ(α),

and Aj are supported in a small conic neighbourhood of the diagonal in Λ × Λ. We note that if ε0
is small enough, a extends to some neighbourhood of K in Cn and hence a|Λ = a(x− iGξ(x, ξ))
is well defined.

To see (2.8), we use the definitions of TΛ and SΛ to write

Ka(α, β) = cn〈βξ〉n
4 〈αξ〉n

4 h− 3n
2

∫
e

i
h (ϕG(α,y)+ϕ∗

G(β,y))a(y)(1 + 〈βx − y, βξ/〈βξ〉)dy, (2.10)

where

ϕG(α, y) = Φ(z, ζ, y)|z=αx,ζ=αξ
, ϕ∗

G(α, y) = −Φ̄(z, ζ, y)|z=αx,ζ=αξ
,

αx = x− iGξ(x, ξ), αξ = ξ + iGx(x, ξ),

Φ(z, ζ, y) = 〈z − y, ζ〉 + i
2 〈ζ〉(z − y)2, Φ̄(z, ζ, y) := Φ(z̄, ζ̄, y).

(2.11)

Let V, V1 be open such that K ⊂ V1 � V � U . We start by showing that the contribution to
Ka away from the diagonal is negligible. For that let χ ∈ C∞

c (R) with χ ≡ 1 near 0. Then for
all δ > 0 small enough, the operator R1 with kernel

R1(α, β) = Ka(α, β)χ̃δ(α, β),

χ̃δ(α, β) := (1 − χ(δ−1|αx − βx|))
(

1 − χ

( |αξ − βξ|
δ〈|αξ − βξ|〉

))
satisfies R1 = OH−N

Λ →HN
Λ

(h∞). This amounts to showing that the operator with kernel

R1(α, β)e
1
h (H(β)−H(α))〈αξ〉N 〈βξ〉N is bounded on L2(R2n) with O(h∞) norm.
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To see this, we first integrate by parts K times in y, using that

|∂yΨ| = |βξ − αξ + i(〈αξ〉(y − αx) + 〈βξ〉(y − βx))| � c(1 + |αξ| + |βξ|)
on supp χ̃δ. This reduces the analysis to the case of (2.10) with a replaced by b(·, α, β) ∈
Cω(U) ∩ C∞

c (Rn) with |b| � hK(〈|αξ|〉 + 〈|βξ|〉)−K .
Next, we choose ψ ∈ C∞

c (Rn; [0, 1]) with ψ ≡ 1 on V and suppψ ⊂ U , and ψ1 ∈
C∞

c (Rn; [0, 1]) with ψ1 ≡ 1 on V1 and suppψ1 ⊂ V . We then deform the contour

y �→ y + iεψ(y)
βξ − αξ

〈|βξ − αξ|〉 .

This contour deformation is justified since a ∈ Cω(U). The phase in the integrand of (2.10)
becomes

Ψ =〈αx − y, αξ〉 + 〈y − βx, βξ〉 +
i〈αξ〉

2
(αx − y)2 +

i〈βξ〉
2

(βx − y)2

+ iεψ(y)
|βξ − αξ|2
〈|βξ − αξ|〉 +

i〈αξ〉
2

[
2εψ(y)

〈
αx − y,

αξ − βξ

〈|βξ − αξ|〉
〉
− ε2ψ2(y)

|βξ − αξ|2
〈|βξ − αξ|〉2

]
i〈βξ〉

2

[
2εψ(y)

〈
βx − y,

αξ − βξ

〈|βξ − αξ|〉
〉
− ε2ψ2(y)

|βξ − αξ|2
〈|βξ − αξ|〉2

]
.

In particular, for y ∈ V , and (α, β) ∈ supp χ̃δ, the integrand is bounded by

e−c(〈αξ〉+〈βξ〉)〈αx−βx〉/h

which is negligible (even after multiplication by e
1
h (H(β)−H(α))〈αξ〉N 〈βξ〉N ).

For the integral over y /∈ V , we consider three cases. First, if both Reαx ∈ K and Reβx ∈ K,
then it is easy to see that the integrand is bounded by

e−c(〈αξ〉+〈βξ〉)(〈αx−βx〉+|y|)/h

and hence produces a negligible contribution. Next, if Reαx /∈ K and Reβx /∈ K, then H(α) =
H(β) = 0, α, β are real, and integration by parts in y shows that the contribution is negligible.

Finally, we consider the case Reαx ∈ K, Reβx /∈ K, (the case Reβx ∈ K and Reαx /∈ K
being similar). In this case, we have H(β) = 0 and β real. Since y /∈ V , we have that the
integrand is bounded by e−c〈αξ〉〈αx−y〉/hhK〈βξ〉−K and hence this term is also negligible.

Since R is negligible, we may assume from now on that

|αx − βx| � 1 and |αξ − βξ| � 〈|αξ|〉 + 〈|βξ|〉.
In particular, there are three cases: Reαx ∈ K and Reβx ∈ V1, Reβx ∈ K and Reαx ∈ V1, or
Reαx /∈ K and Reβx /∈ K.

The first two cases are similar, so we consider only one of them. Since Reαx ∈ K and
Reβx ∈ V1, the contribution from y /∈ V is negligible. Therefore, we may deform the contour
to

y �→ y + ψ(y)yc(α, β), yc(α, β) =
i(βξ − αξ) + 〈αξ〉αx + 〈βξ〉βx

〈αξ〉 + 〈βξ〉 .

The proof in this case then follows from the method of complex stationary phase.
When both Reαx /∈ K and Reβx /∈ K, α = Reα, β = Reβ, and H(α) = H(β) = 0. In

order to handle this situation, we will Taylor expand a(y) around y = αx. For that we first
consider (2.10) with a = O(|y − αx|2N ). In that case, we consider the integral

KN (α, β) := h− 3n
2

∫
e

i
h (〈αx−y,αξ〉+ i

2 (〈αξ〉(αx−y)2+〈βξ〉(βx−y)2))

O(|y − αx|2N )〈αξ〉n
4 〈βξ〉n

4 (1 − χ̃δ(α, β))dy.

(2.12)
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Changing variables y �→ y + αx,

|KN (α, β)| �
∫
〈αξ〉n

4 〈βξ〉n
4
hN− 3n

2

〈αξ〉N e−
〈βξ〉
2h (βx−αx−y)2(1 − χ̃δ)dy

� C
hN−n

(〈αξ〉 + 〈βξ〉)N e−c
〈αξ〉+〈βξ〉

h (αx−βx)2(1 − χ̃δ(α, β)).

Therefore, using the Schur test for boundedness, the operator KN with kernel KN (α, β)
satisfies

KN = O(hN−n
2 ) : H−N+n

4 +0

Λ → H
N−n

4 −0

Λ

Now, observe that for any N > 0,

a(y) = aN (y) + O(|y − αx|2N ),

where aN (y) is a polynomial of order 2N − 1 in (y − αx). In particular,

Ka(α, β) = KaN
(α, β) + KN (α, β).

Since aN is analytic and the integrand is exponentially decaying in y, we may deform the
contour with y �→ y + yc(α, β) in the integral forming the kernel of KaN

and apply complex
stationary phase as in the case where Reαx ∈ K or Reβx ∈ K. This finishes the proof of the
proposition after taking N large enough. �

2.2. Analytic wave front set

We now relate weighted estimates to analyticity.

Proposition 2.3. Let T be the FBI transform defined in (2.1) for some fixed h, and let
ψ ∈ S1(T ∗Rn) satisfy

ψ(x, ξ) � |ξ|/C, (x, ξ) ∈ U × Γ, (2.13)

where U ⊂ Rn and Γ ⊂ Rn \ 0 is an open cone. Then, for u ∈ H−N (Rn),

eψ〈ξ〉−NTu ∈ L2(T ∗Rn) =⇒ WFa(u) ∩ (U × Γ) = ∅. (2.14)

Conversely, suppose u ∈ H−N (Rn), Γ0 ⊂ Rn is a conic open set such that Γ0 ∩ Sn−1 � Γ ∩
Sn−1, U0 � U . Then for any ψ ∈ S1(Rn × Rn) with suppψ ⊂ U0 × V0,

WFa(u) ∩ (U × Γ) = ∅ =⇒ ∃ θ > 0 〈ξ〉−NeθψTu ∈ L2(T ∗Rn). (2.15)

Remark. Here we do not consider uniformity in h in the L2 bounds. If we demanded that,
then we would only need ψ ∈ C∞

c (T ∗Rn), ψ > 0 on U × (Γ ∩ Sn−1).

The proof is based on the following

Lemma 2.4. Let T and S be given by (2.1) and (2.2), respectively, with h fixed. Suppose
that χ, χ̃ ∈ S0(Rn × Rn) and suppχ, suppχ1 ⊂ K × Rn, K � Rn. Then for any a > 0, there
exists b > 0 such that

χeb〈ξ〉TSχ1e
−a〈ξ〉 = ON (1) : L2(R2n) → HN (R2n), (2.16)

for any N .
If in addition χ1 ≡ 1 on a conic neighbourhood of the support of χ, then there exists b > 0

such that

χeb〈ξ〉TS(1 − χ1)〈ξ〉M = ON,M (1) : L2(R2n) → HN (R2n), (2.17)

for any N .
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Proof. We analyse the Schwartz kernel of the operator in (2.16), K(x, ξ, y, η). As in the
proofs of [14, Lemma 2.1, Proposition 4.5] (the phase of resulting operator can be computed
by completion of squares and is given by [14, (4.10)] with Λ = T ∗Rn), we see that

|(hD)αx,ξK(x, ξ, y, η)| � Cαe
b〈ξ〉−a〈η〉−ψ(x,ξ,y,η),

ψ := c(〈ξ〉 + 〈η〉)−1
(|ξ − η|2 + 〈ξ〉〈η〉|x− y|2). (2.18)

We have

b < 1
8 min(a, c) ⇒ b〈ξ〉 − a〈η〉 − c(〈ξ〉 + 〈η〉)−1|ξ − η|2 � − 1

2 (b〈ξ〉 + a〈η〉),
if b is sufficiently small. (By taking b < a/8, we can assume that |η| � |ξ|/2. But then |ξ − η| �
1
2 |ξ| and 〈ξ〉 + 〈η〉 � 2〈η〉.) This proves (2.16) as we can use the Schur criterion.

To see (2.17), we note that we can now assume that |ξ/〈ξ〉 − η/〈η〉| > δ or |x− y| > δ. But
then if the kernel of the operator in (2.17) is given by KM (x, ξ, y, η) where

|(hDx,ξ)αKN (x, ξ, y, η)| � Cα,Neb〈ξ〉−M log〈η〉−ψ(x,ξ,y,η).

Now, fix 0 < δ < 1 small. Then, when |ξ/〈ξ〉 − η/〈η〉| > δ or |x− y| > δ,

|ξ − η|2 + 〈ξ〉〈η〉|x− y|2 � δ2

16
(〈ξ〉 + 〈η〉)2. (2.19)

To see this, observe that on ∣∣∣∣ 〈ξ〉 − 〈η〉
〈ξ〉 + 〈η〉

∣∣∣∣ � δ

4
,

we have
δ

4
�

∣∣∣∣ 〈ξ〉2 − 〈η〉2
(〈ξ〉 + 〈η〉)2

∣∣∣∣ � |ξ − η|
〈ξ〉 + 〈η〉 .

On the other hand, when ∣∣∣∣ 〈ξ〉 − 〈η〉
〈ξ〉 + 〈η〉

∣∣∣∣ � δ

4
,

we have

2〈ξ〉〈η〉
〈ξ〉 + 〈η〉 =

〈ξ〉 + 〈η〉
2

(
1 −

[ 〈η〉 − 〈ξ〉
〈ξ〉 + 〈η〉

]2
)

� 1
4
(〈ξ〉 + 〈η〉)

Therefore, if |x− y| � δ, (2.19) follows. If instead, |ξ/〈ξ〉 − η/〈η〉| � δ, then

|ξ − η|
〈ξ〉 + 〈η〉 � 1

2

[∣∣∣∣ ξ

〈ξ〉 −
η

〈η〉
∣∣∣∣− ( |ξ|

〈ξ〉 +
|η|
〈η〉

)∣∣∣∣ 〈ξ〉 − 〈η〉
〈ξ〉 + 〈η〉

∣∣∣∣] � δ

4

and (2.19) follows.
From (2.19), we have that there is CM,δ > 0 such that if |ξ/〈ξ〉 − η/〈η〉| > δ or |x− y| > δ,

b〈ξ〉−c(〈ξ〉 + 〈η〉)−1
(|ξ − η|2 + 〈ξ〉〈η〉|x− y|2) + M log〈η〉

� b〈ξ〉 − 1
64cδ

2(〈ξ〉 + 〈η〉) − 1
2c(〈ξ〉 + 〈η〉)−1

(|ξ − η|2 + 〈ξ〉〈η〉|x− y|2) + CM,δ,

and the Schur criterion and gives (2.17) for b � cδ2

64 . �

Proof of Proposition 2.3. We start by recalling the characterization of the analytic wave
front set using the standard FBI/Bargmann–Segal transform:

T u(x, ξ;h) := cnh
− 3n

4

∫
Rn

e
i
h (〈x−y,ξ〉+ i

2 (x−y)2)u(y)dy, u ∈ S ′(Rn).
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Then

(x0, ξ0) /∈ WFa(u) ⇐⇒
{∃ δ, U = neigh((x0, ξ0))

|T u(x, ξ, h)| � Ce−δ/h, (x, ξ) ∈ U, 0 < h < h0.
(2.20)

see [23, Theorem 9.6.3] for a textbook presentation; note the somewhat different convention:
T u(x, ξ;h) = e−

1
2h ξ2

T1/hu(x− iξ).
We first prove (2.14). Hence suppose (x0, ξ0) ∈ U × Γ. Let χ ∈ S0 be supported in a small

conic neighbourhood, U0 × Γ0, of (x0, ξ0) and choose χ1 ∈ S0 which is supported in U × Γ and
is equal to 1 on a conic neighbourhood of the support of χ and χ2 ∈ S0 supported in U × Γ
and equal to 1 on a conic neighbourhood of the support of χ1. Our assumptions then show
that ea〈ξ〉/hχ2Tu ∈ L2(R2n) for some a > 0. We now write

χeb〈ξ〉Tu = χeb〈ξ〉TS
(
χ1e

−a〈ξ〉ea〈ξ〉χ2Tu + (1 − χ1)〈ξ〉N 〈ξ〉−NTu
)
.

Since u ∈ H−N , 〈ξ〉−NTu ∈ L2(R2n) and (2.16), (2.17), now show that eb〈ξ〉χTu ∈ HK for
some b > 0 and any K. By taking K > n and applying [23, Corollary 7.9.4], we obtain a
uniform bound

|Tu(x, ξ)| � Ce−b〈ξ〉, (x, ξ) ∈ U0 × Γ0.

Let h1 be the fixed h in the definition of T . Then,

T (x, ξ/〈ξ〉;h1/〈ξ〉) = Tu(x, ξ) = O(e−b〈ξ〉), (x, ξ) ∈ U0 × Γ0. (2.21)

Putting ω0 := ξ0/〈ξ0〉, it follows that T (x, ω, h) = O(e−δ/h) for (x, ω) in a small neighbourhood
of (x0, ω0). But then (2.20) shows that (x0, ω0) /∈ WFa(u). Since WFa(u) is a closed conic set,
we conclude that (x0, ξ0) /∈ WFa(u).

Now suppose WFa(u) ∩ (U × Γ) = ∅. Then for (x, ω) near U0 × (Γ0 ∩ Sn−1) (with U0 and
Γ0, as in the statement of the theorem), T (x, ω, h) = O(e−δ/h). Reversing the argument in
(2.21), we see that

|Tu(x, ξ)| � Ce−b〈ξ〉, (x, ξ) ∈ U0 × Γ0.

Now, since u ∈ H−N (Rn), 〈ξ〉−NTu ∈ L2(R2n). In particular, since |ψ| � C〈ξ〉 and the support
of ψ is contained in U0 × Γ0, (2.15) follows. �

The next proposition relates weighted estimates to deformed FBI transform:

Proposition 2.5. Suppose that HΛ, Λ = ΛG, is defined in [14, (4.7)] with G satisfying
(2.4) with ε0 chosen as in the definition of HΛ.

Then there exists ψ ∈ S1(T ∗Rn) such that T : Bδ → L2(T ∗Rn, eδ〈ξ〉/Chdxdξ) extends to

T = O(1) : HΛ → L2(T ∗Rn, e2ψ(x,ξ)/hdxdξ), (2.22)

and S : L2(T ∗Rn, e−Cδ〈ξ〉/hdxdξ) → Bδ, extends to

S = O(1) : L2(T ∗Rn, e2ψ(x,ξ)/hdxdξ) → HΛ. (2.23)

In addition,

ψ(x, ξ) = G(x, ξ) + O(ε20)S1(T∗Rn). (2.24)

For a simpler version of this result in the case of compactly supported weights, see [13, § 8].

Proof. The statement (2.22) is equivalent to

TSΛ = O(1) : L2(Λ, e−2H(α)/hdα) → L2(T ∗Rn, e2ψ(β)dβ)
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and hence we analyse the kernel of the operator TSΛ which is given by

K(α, β) = cnh
− 3n

2

∫
Rn

e
i
h (ϕ0(α,y)+ϕ∗

G(β,y))〈βξ〉n
4 〈αx〉n

4 (1 + i
2 〈αx − y〉)dy,

where the notation (and also notation for Φ below) comes from (2.11). The integral in y
converges and can be evaluated by a completion of squares as in [14, Proposition 4.4]. That
gives the phase (2.9) with α ∈ T ∗Rn and β ∈ Λ. The critical point in y is given by

yc(α, β) =
1

〈αξ〉 + 〈βξ〉 (〈αξ〉αx + 〈βξ〉βx + i(βξ − αξ)). (2.25)

We then have (2.22) with

ψ(α) := max
β∈Λ

(− Im Ψ(α, β) + H(β)). (2.26)

We have (see [14, (3.3),(3.4)])

dβ(− Im Ψ(α, β) + H(β)) = Im(−∂z,ζΨ(α, (z, ζ)) − ζdz|Λ)|(z,ζ)=β∈Λ.

Now, if yc(α, (z, ζ)) is the critical point in y, then

∂z,ζΨ(α, z) = ∂z,ζ(Φ(α, yc(α, (z, ζ))) − Φ̄((z, ζ), yc(α, (z, ζ)))) = −∂z,ζΦ̄
∣∣
y=yc(z,ζ)

(z, ζ)

= −ζ · dz + (yc − z) · dζ + i〈ζ〉(z − yc) · dz + i
2 (z − yc)2ζ · dζ/〈ζ〉.

For G = 0, the critical point (see (2.25)) is given by α = β. Hence

βc = βc(α) = (αx + O(ε0)S0 , αξ + O(ε0)S1), (2.27)

with ε0 as in (2.4).
Hence we obtain ψ by inserting the critical point βc into the right-hand side of (2.26)

ψ(α) = − Im Ψ(α, βc(α)) + H(βc(α)) ∈ S1(T ∗Rn). (2.28)

(We note that for G = 0 the maximum in (2.26) is non-degenerate and unique and it remains
such under small symbolic perturbations.) From (2.9), we see that

ImΨ(α, βc(α)) = Im Ψ(α, α + O(ε0)S0×S1) = αξ ·Gξ(α) + O(ε20)S1 .

Inserting this into (2.28) and recalling that H = ξGξ −G, we obtain (2.24).
To obtain (2.23), we apply the same analysis to TΛS and we need to show that two weights

coincide. That is done as in [13, § 8]. �

3. Proof of Theorem 2

As already indicated in § 1.2, to prove the theorem we construct a family of weights Gε ∈ S1,
uniformly bounded in S1, supported in a conic neighbourhood of Γ = {(0, 0, ξ1, 0) : ξ1 > M},
M � 1, and satisfying 0 � Gε � Cε log〈ξ〉. In addition,

HpGε � 0, Gε → ξ1 on Γ (in S1+), (3.1)

with HpGε � ξm−1
1 in a suitable sense (see (3.4)) for ε � 1.

We will then put Λε := ΛGε
so that the assumption u ∈ C∞ will give u ∈ HΛε

. On the
other hand, the assumption that Γ ∩ WFa(Pu) shows that ‖Pu‖HΛε

� C with the constant C
independent of ε. But then [14, Proposition 6.2] and the properties of Gε show that ‖u‖HΛε

is
bounded independently of ε. Propositions 2.3 and 2.5 then show that WFa(u) ∩ Γ0 = ∅.
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3.1. Construction of the weight

We now construct a family of weights, Gε, satisfying (3.1). In fact, we need more precise
conditions on Gε given in the following

Lemma 3.1. Suppose that p satisfies (1.9) at ρ0 = (x0, ξ0) ∈ T ∗Rn \ 0 and Γ is an open
conic neighbourhood of ρ0. Then, there exists Gε ∈ S1(T ∗Rn), suppGε ⊂ Γ, such that

|∂α
x ∂

β
ξ Gε| � Cαβ〈ξ〉1−|β|, 0 � Gε � Cε−1 log〈ξ〉,

Gε(x, ξ)|1�|ξ|�1/ε = Φ(x, ξ)|ξ|, Φ ∈ S0
phg(T

∗Rn), Φ(x0, tξ0) = 1, t � 1,
(3.2)

HpGε(x, ξ) � c0
(〈ξ〉m|∂ξGε(x, ξ)|2 + 〈ξ〉m−2|∂xGε(x, ξ)|2

)
, (3.3)

∀M1, γ � 0 ∃M2, K, ε0 ∀ 0 < ε < ε0, HpGεe
γGε + M2〈ξ〉K � M1〈ξ〉m−1eγGε . (3.4)

We stress that the constants Cαβ and c0 are independent of ε and M1.

Proof. We use the normal form for p constructed in [19, § 3]. That means that we take x0 = 0
and ξ0 = e1 := (1, 0, . . . , 0) and can assume that p(x, ξ) = −ξm1 x1 in a conic neighbourhood of
ρ = (0, e1). For simplicity, we can assume that m = 1 as the argument is the same otherwise.

Let χ ∈ C∞
c (R; [0, 1]) satisfy

suppχ ⊂ [−2, 2], χ|t|�1 = 1, tχ′(t) � 0. (3.5)

and put ϕ(t) := χ(t/δ). Here δ will be fixed depending on Γ. Using this function we define
Φ = Φ(x, ξ) := ϕ1ϕ2ϕ3ψ where

ϕ1 := ϕ(x1), ϕ2 := ϕ(|ξ′|/ξ1) ϕ3 = ϕ(|x′|), ψ := (1 − ϕ((ξ1)+)). (3.6)

We choose δ small enough so that supp Φ ⊂ Γ.
We define Gε as follows

Gε(x, ξ) = Φ(x, ξ)qε(ξ1), qε(t) :=
∫ t

0

(
χ(εs) + (1 − χ(εs))(sε)−1

)
ds. (3.7)

We check that
ξ1∂ξ1qε � min(ξ1, ε−1),

ξ11ξ1�1/ε + ε−1(1 + log(εξ1))1ξ�1/ε � qε � ξ11ξ1�1/ε + ε−1(2 + log(εξ1))1ξ�1/ε.
(3.8)

Uniform boundedness of Gε in S1 means that qε in (3.7) satisfies |∂k
ξ1
qε| � Ckξ

1−k
1 with

functions Ck independent of ε. But this is immediate from the definition. We also easily see
that Gε converges to G := Φ(x, ξ)ξ1 in S1+ as ε → 0. This proves (3.2).

To see (3.3), we first note that, since Φ � 0, Φ ∈ S0, the standard estimate f(z) � 0 =⇒
|df(z)|2 � Cf(z) gives

Φ(x, ξ) � c1
(
ξ2
1 |∂ξΦ(x, ξ)|2 + |∂xΦ(x, ξ)|2). (3.9)

Note also that we have Hp = ξ1∂ξ1 − x1∂x1 and therefore

HpΦ = −x1ϕ
′(x1)ϕ2ϕ3ψ − (|ξ′|/ξ1)ϕ′(|ξ′|/ξ1)ϕ1ϕ3ψ − ϕ1ϕ2ϕ3ξ1ϕ

′((ξ1)+) � 0. (3.10)

Since qε ∈ S1, ξ1∂ξ1qε(ξ1) � c2ξ1(∂ξ1qε(ξ1))
2. We also claim that

ξ1∂ξ1qε(ξ1) � c2ξ
−1
1 qε(ξ1)2. (3.11)

In fact, using (3.8) we see that to prove (3.11) it is enough to have

min(t, ε−1) � c2t
−1

(
t1t�1/ε(t) + ε−1(2 + log(tε))1t�1/ε(t)

)2
.
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This clearly holds (with c2 = 1) for t � 1/ε and for t � ε is equivalent to c2(2 + log s)2 � s,
s = tε � 1, which holds with c2 = 1

4 . It follows that

ξ1∂ξ1qε(ξ1) � c2
(
ξ−1
1 qε(ξ1)2 + ξ1(∂ξ1qε(ξ1))

2
)
,

which combined with (3.9) and (3.10) gives

HpGε = Φ(ξ1∂ξ1qε) + (HpΦ)qε

� Φ(ξ1∂ξ1qε) � c2ξ1Φ(∂ξ1qε)
2 + c3

(
ξ2
1 |∂ξΦ|2 + |∂xΦ|2)ξ−1

1 q2
ε

� c0
(
ξ1|∂ξGε|2 + ξ−1

1 |∂xGε|2
)
.

Since 〈ξ〉 ∼ ξ1 on the support of Gε, we obtain (3.3).
Finally we prove (3.4). Since by (3.10) we have HpGε � ΦHpqε, we see that (3.4) follows

from proving that for any M1 we can find K, M2 and ε0 such that for ξ1 � 1,

ΦHpqεe
γΦqε + M2ξ

K
1 � M1e

γΦqε . (3.12)

Using (3.8), we see that for ξ1 � 1/ε we need Gεe
γGε + M2ξ

K
1 � M1e

γGε . This holds for

K = 0, M2 = 2γ−1eγM1−1

since for γ > 0 and a � 0, aeγa −M1e
γa � −2γ−1eγM1−1.

For ξ1 � 1/ε, we need to find K and M2 for which

ε−1ΦeγΦqε + M2ξ
K
1 � M1e

γΦqε . (3.13)

Using aeab + M1e
M1b � M1e

ab with a := ε−1Φ and

b := γεqε � γ(2 + log(εξ1)) � γ(2 + log ξ1),

we obtain (3.13) with M2 = M1e
2γM1 and K = γM1. Hence we obtain (3.12) proving (3.4). �

3.2. Microlocal analytic hypoelliticity

We will have bounds which are uniform in ε but not in h. We start with the following

Lemma 3.2. Suppose that P is of the form (1.8) with real valued principal symbol p and
suppose that Γ ⊂ U × Rn\ is an open cone, Γ ∩ Sn−1 � U × Sn−1 and

G ∈ S1(Γ; R), |G| � C log〈ξ〉,
HpG(x, ξ) � c0

(〈ξ〉m|∂ξG(x, ξ)|2 + 〈ξ〉m−2|∂xG(x, ξ)|2). (3.14)

Then for TΛ, HΛ, Λ = ΛθG defined in (2.4) and (2.6), h and θ sufficiently small, and u ∈
H−N+m

Λ ,

Im〈hmPu, u〉H−N
Λ

� 1
2θ〈HpG 〈ξ〉−NTΛu, 〈ξ〉−NTΛu〉L2

Λ
−Mh‖u‖2

H
m−1

2 −N

Λ

, (3.15)

where M depends only on P and the semi-norms of G in S1.

Proof. We use Proposition 2.2 and [14, Proposition 6.3] to see that for any K > 0,

Im〈hmPu, u〉H−N
Λ

= Im〈〈ξ〉−2NTΛh
mPSΛTΛu, TΛu〉L2

Λ

= Im〈ΠΛ〈ξ〉−2NΠΛh
mPSΛΠΛTΛu, TΛu〉L2

Λ

= 〈(Im bP,N )TΛu, TΛu〉L2
Λ

+ O(h∞)‖u‖H−K
Λ

� 〈(Im p|Λ) 〈ξ〉−NTΛu, 〈ξ〉−NTΛu〉L2
Λ
−Mh‖u‖

H
m−1

2 −N

Λ

.

(3.16)
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From (2.7) and (3.14), we obtain

Im p|Λ = Im p(x− iθ∂ξG(x, ξ), ξ + iθ∂xG(x, ξ))

= θHpG(x, ξ) + θ2O(〈ξ〉m|∂ξG(x, ξ)|2 + 〈ξ〉m−2|∂xG(x, ξ)|2)
� 1

2θHpG(x, ξ),

if θ is small enough. �

The next lemma allows us to use smoothness of u to obtain weaker weighted estimates:

Lemma 3.3. Suppose U ⊂ Rn is an open set,

G ∈ S1(T ∗Rn), G � 0, suppG ⊂ K × Rn, K � U,

and TΛ, HΛ, Λ = ΛθG are defined in (2.4) and (2.6). Then, there exists a > 0 such that for
every χ, χ̃ ∈ S0 with χ̃ ≡ 1 in a conic neighbourhood of suppχ and every K,N > 0, there exists
c, C > 0 such that for all u ∈ H−N (Rn),

‖〈ξ〉Ke−aG/hχTΛu‖L2
Λ
� C(‖〈ξ〉K χ̃Tu‖L2(T∗Rn) + e−c/h‖〈ξ〉−NTu‖L2(T∗Rn)). (3.17)

In particular, if χ ≡ 1 on suppG, then

‖〈ξ〉Ke−aG/hχ‖L2
Λ

+ ‖〈ξ〉−N (1 − χ)TΛu‖L2
Λ

� C(‖〈ξ〉K χ̃Tu‖L2(T∗Rn) + ‖〈ξ〉−N
Tu‖L2(T∗Rn)).

(3.18)

Proof. First, observe that by [14, Lemma 4.5], for any δ > 0,

TΛS = Kδ + ON,δ(e−cδ/h)〈ξ〉NL2(T∗Rn)→〈ξ〉−NL2
Λ
,

and Kδ has kernel, Kδ(α, β), given by

h−ne
i
hΨ(α,β)k(α, β)ψ(δ−1|Reαx − βx|))ψ(δ−1 min(〈Reαξ〉, 〈βξ〉)−1|Reαξ − βξ|),

where (α, β) ∈ Λ × T ∗Rn and Ψ is as in (2.9), and ψ ∈ C∞
c (R) is identically 1 near 0. Therefore,

we need to only consider Kδ(α, β).
To do this, let χ̃ ∈ S0 be identically 1 on a conic neighborhood of suppχ. Then, for δ > 0

small enough,

χ(Reα)Kδ(α, β)(1 − χ̃)(β) ≡ 0.

Therefore,

χe−aG/h〈ξ〉KTΛS(1 − χ̃) = ON (e−c/h)〈ξ〉NL2(T∗Rn)→〈ξ〉−NL2
Λ
.

For the mapping properties

χe−aG/hTΛSχ̃ : 〈ξ〉−KL2(T ∗Rn) → 〈ξ〉−KL2
Λ,

we consider the operator

χe−aG/he−H/h〈ξ〉KTΛSχ̃〈ξ〉−K : L2(T ∗Rn) → L2(Λ; dxdξ).

Modulo negligible terms, the kernel of this operator is given by

h−ne
i
h (ϕ((x,ξ),(y,η)))k̃((x, ξ), (y, η))

where k̃ ∈ S0 has

supp k̃ ⊂ {|ξ − η| � Cδ〈ξ〉} ∩ {|x− y| � Cδ}. (3.19)
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and

ϕ = iH(x, ξ) + iaθG(x, ξ) + Ψ((x− iθGξ, ξ + iθGx(x, ξ)), (y, η)),

with H(x, ξ) = θ〈ξ,Gξ(x, ξ)〉 − θG(x, ξ). Using (3.19), we have

Imϕ = aG + θξ ·Gξ − θG +
〈η〉〈ξ〉

2(〈η〉 + 〈ξ〉)
(
(x− y)2 − (θGξ)2

)
+

(ξ − η)2 − (θGξ)2

2(〈η〉 + 〈ξ〉)
+ θξ ·Gξ + O(θ(|x− y||Gx| + 〈ξ〉−1|ξ − η||Gξ|))
+O(θ2(〈ξ〉−1|Gx|2 + 〈ξ〉|Gξ|2))

� (a− θ)G− Cθ2(〈ξ〉−1(Gx)2 + 〈ξ〉|Gξ|2) + c〈ξ〉(x− y)2 + c〈ξ〉−1(ξ − η)2.

In particular, taking a large enough and using that G � 0, G ∈ S1, (see the argument for (3.9)),
we have

Imϕ � a

2
G(x, ξ) + c〈ξ〉(x− y)2 + c〈ξ〉−1(ξ − η)2.

Therefore, applying the Schur test for L2 boundedness completes the proof that

χ〈ξ〉Ke−aG/hTΛS〈ξ〉−K = O(1) : L2(T ∗Rn) → L2
Λ

and the lemma follows. �

With these two lemmas in place we can prove the main result:

Proof of Theorem 2. By multiplying u by a C∞
c -function which is 1 in a neighbourhood of x0,

we can assume that u ∈ H−N+m, for some N , is compactly supported in U and ρ0 := (x0, ξ0) /∈
WF(u). By Proposition 2.1, there exists χ̃ ∈ S0 with χ̃ ≡ 1 in an open conic neighborhood, Γ,
of ρ0 such that for any K > 0,

‖〈ξ〉K χ̃Tu‖L2 � CK . (3.20)

Also, since u ∈ H−N+m,

‖〈ξ〉−N+mTu‖L2 � C. (3.21)

Let Γ1 � Γ be an open conic neighborhood of ρ0 and χ ∈ S1 with χ ≡ 1 on Γ1 and suppχ ⊂ Γ.
We choose θ small enough so that (2.4) and (3.16) hold. We then fix 0 < h � 1 small enough

so that (3.16) holds. From now we neglect the dependence on h which is considered to be a
fixed parameter. We choose for G = Gε constructed in Lemma 3.1 and supported in Γ1. We
recall that the estimates depend only on the S1 seminorms of G and these are uniform in ε.
We now claim that

u ∈ H−N+m
Λε

, Λε := ΛθGε
.

In fact, we can use (3.18) together with (3.20) and (3.21), observing that exp(aGε/h) =
Oε(〈ξ〉Ca/(hε)) and taking K = Ca/(hε) −N + m.

Next, note that Pu ∈ H−N is supported in U and ρ0 /∈ WFa(Pu). Propositions 2.3 and 2.5
(see (2.15) and (2.23), respectively) then show that for Gε satisfying the assumptions of
Lemma 3.2 and θ sufficiently small ‖Pu‖H−N

Λε

� C0, where C0 depends only on Pu and

S1-seminorms of θGε.
We now apply (3.15) to obtain with Λε as above,

1
2‖u‖2

H−N
Λε

+ 2C2
0 � 〈(θHpGε −M〈ξ〉m−1)〈ξ〉−N−mTΛε

u, 〈ξ〉−NTΛε
u〉L2

Λε
, (3.22)
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Let a be given by Lemma 3.3 (so that (3.17) holds). Then by (3.4), there exist M2 and K such
that

θHpGε + M2〈ξ〉2Ke−2aGε/h � (M + 1)〈ξ〉m−1.

From (3.17), we have

‖M2χ〈ξ〉Ke−aGε/h〈ξ〉−NTΛu‖2
L2

Λε

� C(‖〈ξ〉K−N χ̃Tu‖2
L2(T∗Rn) + ‖〈ξ〉−NTu‖2

L2(T∗Rn)) � C2.1

(3.23)

Therefore, adding (3.23) to (3.22), and using that suppGε ⊂ χ ≡ 1, we have
1
2‖u‖2

H−N
Λε

+ C2
1 + 2C2

0

� 〈χ2〈ξ〉m−1〈ξ〉−NTΛε
u, 〈ξ〉−NTΛε

u〉L2
Λε

− 〈M(1 − χ2)〈ξ〉m−1〈ξ〉−NTΛε
u, 〈ξ〉−NTΛε

u〉L2
Λε

� 〈〈ξ〉m−1〈ξ〉−NTΛε
u, 〈ξ〉−NTΛε

u〉L2
Λε

− (M + 1)‖u‖
H−N+ m−1

2
,

(3.24)

where in the last line we use that χ ≡ 1 on suppGε.
Using m � 1 and rearranging, this yields

‖u‖2
H−N

Λε

� 2C2
1 + 4C2

0 + 2(M + 1)‖u‖
H−N+ m−1

2
.

where C1, C0 and M are constants independent of ε.
Since Λε ∩ {|ξ| < 1/ε} = Λ0 ∩ {|ξ| < 1/ε} where G0 := Φ|ξ|, we have that Hε||ξ|<1/ε =

H0||ξ|<1/ε, where Hε = θξ∂ξGε + θG is the corresponding weight. Therefore, the monotone
convergence theorem implies that u ∈ HΛ0 . Since Φ(x0, tξ0) = 1, t � 1, Proposition 2.3 shows
that (x0, ξ0) /∈ WFa(u). �
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un point’, Ark. Mat. 14 (1976) 9–33.
3. P. Bolley and J. Camus, ‘Sur une classe d’opérateurs elliptiques et dégénérés à plusieurs variables’, Mém.
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