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Analytic hypoellipticity of Keldysh operators

Jeffrey Galkowski and Maciej Zworski

ABSTRACT

We consider Keldysh-type operators, P = xngl + a(z)Dyy + Q(z,Dy), x = (z1,2") with ana-
lytic coefficients, and with Q(z, D,/) second order, principally real and elliptic in D, for x near
zero. We show that if Pu= f, u € C*, and f is analytic in a neighbourhood of 0, then u is
analytic in a neighbourhood of 0. This is a consequence of a microlocal result valid for operators
of any order with Lagrangian radial sets. Our result proves a generalized version of a conjecture
made in (Lebeau and Zworski, Proc. Amer. Math. Soc. 147 (2019) 145-152; Zworski, Bull. Math.
Sci. 7 (2017) 1-85) and has applications to scattering theory.

1. Introduction
We consider analytic regularity for generalizations of the Keldysh operator [24],
P:=xz,D2 + D2, (1.1)

The operator P has the feature of changing from an elliptic to a hyperbolic operator at 1 = 0.
It appears in various places including the study of transsonic flows, see, for instance, Canié¢—
Keyfitz [8] or population biology — see Epstein-Mazzeo [12]. Our interest in such operators
comes from the work of Vasy [31] where the transition at 21 = 0 corresponds to the boundary
at infinity for asymptotically hyperbolic manifolds (see [34]), crossing the event horizons of
Schwartzschild black holes (see [11, § 5.7]) or the cosmological horizon for de Sitter spaces.
The Vasy operator in the asymptotically hyperbolic setting is given by

P(\) = 4(z1D2, — (A +14)Dy,) — Apay) +iv(2) (221D — A —i251), (1.2)

where h(z1) is a smooth family of Riemannian metrics in z/, z = (z1,2’) € R" and v €
C*>°(R™). The resonant states at resonant frequencies A (see [11, Chapter 5]) are the smooth
solutions of P(A)u = 0.

For various reasons reviewed in § 1.3, it is interesting to ask if in the case of analytic
coefficients the resonant states are real analytic across 1 = 0. That lead to [35, Conjecture 2]
which asked if P(A\)u = f with u smooth and f analytic near x; = 0 implies that u is analytic
near 1 = 0. For v(z) =0 and h independent of x;, this was shown by Lebeau—Zworski [25]
under the assumption that A ¢ —iN*.

The general case was proved by Zuily [32] under the same restriction on A. His proof was
an elegant adaptation of the work of Baouendi-Goulaouic [1], Bolley—Camus [3] and Bolley—
Camus-Hanouzet [4].

In this paper, we prove this result for generalized Keldysh operators with analytic coefficients
(1.3). In particular, we do not make any assumptions on lower order terms:
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Keldysh Tricomi

FIGURE 1. A comparison of the Keldysh operator (1.1) and
show the cylinder R,, x S§ where (&1,&2) = |€|(cos 0, sin 0)
compactified cotangent bundle T'R"™ — see [11, § E.1.3] — with the zo variable omitted). The
characteristic varieties, 1 cos®> 6+ sin? = 0 and cos? 6 + z1 sin® @ = 0, respectively, are shown
with the direction of the Hamiltonian flow indicated. In the Weldysh case, the two radial
Lagrangians, A+, correspond to § = w and 6 = 0, respectively.

e Tricomi operator (1.5). The figures
(this is the boundary of the fibre

THEOREM 1. Suppose that U C R™ is a neighbourhood of 0,
P:=xz,D; +a(z)D;, + Q(x,Dy), z=(z1,2)¢€ (1.3)

has analytic coefficients, Q(x, D,) is a second-order elliptic operator in Dy, with a real valued
principal symbol. Then there exists a neighbourhood of 0, U’ C U, such th

PueC¥U), ueC®U) = ueC’U). (1.4)

We will show in § 1.1 that this result follows from a more general microlocal result valid for

operators of all orders satisfying a natural geometric condition.

Remarks. (1) In the statement of the theorem 0 can be replaced by any point at\which
x1 > 0 and U’ can be replaced by U provided we include a bicharacteristic convexity condition.
That follows from propagation of analytic singularities — see [26, Theorem 4.3.7] or
Theorem 2.9.1]: since there are no singularities near z; = 0, there will be no singularities o
trajectories hitting 1 = 0 — see Figure 1.

(2) The result is false for the Tricomi operator

P:=D: +x,D2,. (1.5)

This can be seen using results about propagation of analytic singularities (unlike (1.3) this
operator can be microlocally conjugated to D,, — see Figure 1) but is also easily demonstrated
by the following example:

u(x) ::/ Ai(7'4/3x1)e”29”26_7d7, Pu=0, ueC®R?). (1.6)
0
Here, Ai is the Airy function which satisfies

A (t) +tAi(t) =0, |0LAi(t)] < Cot)2™3, teR, LN, Ai(0) > 0.
We then have

D u(0) = Ai(0) / T e — 4 (0)(2K)!
0

and wu is not analytic at 0.
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(3) Results similar to (1.4) have been obtained in the setting of other operators. In addition
to the works [3, 4] cited above, we mention the work of Baouendi-Sj6strand [2] who considered
a class of Fuchsian operators generalizing

P = |z|?A + plx,D,) + A (1.7)

In the case of (1.7), (1.4) holds for any A, u € C and [2] established (1.4) for more general
operators satisfying appropriate conditions.

(4) The operators (1.3), (1.5) and (1.7) are not C*° hypoelliptic, that is, Pu € C* # u €
C°. The study of operators which are C* hypoelliptic but not analytic hypoelliptic has a long
tradition with a simple example [23, § 8.6, Example 2] given by

_ 2 22 3
P=D2 +aiD? + D2

For more complicated cases, references, and connections to several complex variables, see Christ
[9] and for some recent progress and additional references, Bove-Mughetti [7].

1.1. A microlocal result

We make the following general assumptions. Let P be a differential operator of order m with
analytic coefficients:

P:= Y ao(@)Dg, a, € CU), p(x,&):= Y aa(2)E, (1.8)

laj<m la]=m

where U is an open neighbourhood of zy € R™. We make the following assumptions valid in a
conic neighbourhood of (z¢,&y) € T*R"™ \ 0: p is real valued and there exists a conic Lagrangian
submanifold A, such that

(0,60) € ACp~1(0), dpla #0, Hyla || & Ola- (1.9)

Here || means that the two vector fields are positively proportional, that is the Lagrangian is
radial (the positivity assumptions can be achieved by multiplying P by +1). Except for the
analyticity assumption in (1.8), these are the assumptions made in Haber [19] and Haber—Vasy
[20].

Theorem 1 follows from the following microlocal result. We denote by WF the C'*°-wave front
set and by WF, the analytic wave front set — see [23, § 8.1] and [23, § 8.5,9.3], respectively.

THEOREM 2. Suppose that P and (xo,&) € T*R" \ 0 satisfy the assumptions (1.8) and
(1.9). Then for u € 2'(R™),

(w0,&0) € WE(u), (20,&0) ¢ WFa(Pu) = (z0,&) € WFa(u). (1.10)

The proof is based on the theory of microlocal symbolic weights developed by Galkowski—
Zworski [14] and based on the work of Sjostrand — see [29, § 2] (and also [21] and [26, § 3.5]).
With this theory in place we can use escape functions, G, H,G > 0, which are logarithmically
bounded in & (hence the C*° wave front set assumption on u allows the use of such weights)
and which tend to (£) in a neighbourhood of (z,&p). The normal form for p constructed
n [19] (following much earlier work of Guillemin—Schaeffer [18] which was based in turn on
Sternberg’s linearization theorem [30]) was helpful in the construction of the specific weights
needed here. We indicate the method of the proof in § 1.2.

Proof of Theorem 1. Under the assumptions of Theorem 1, the characteristic set of P over
x1 = 0 is given by (in T*R"™ \ 0)

p H0) N {z; =0} = {(0,22,&,0) : & € R\ 0;25 € neighgn-1(0)} = A, UA_,
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where ££ >0 on Ay. These two components are Lagrangian and conic and Hpla, =
—&30¢,|a, is radial. Since Pu€ C¥(U), we have WF,(Pu)N{z €U :xz; =0} =0 and
hence Theorem 2 shows that WF,(u) N Ay = 0. On the other hand, [23, Theorem 8.6.1],
WF,(u) N {z; =0} Cp~1(0)N{x; =0} = A, UA_. Hence WF,(u) N {x; = 0} = () and, since
singsupp, v = m WF, (), v is analytic near z; = 0. |
1.2. A proof in a special case
To indicate the ideas behind the proof, we consider P given by
P=ux,D2 + D2 +aD,,, a€C,

and a very special u:

u=e""u(zy), ve.SR), Pu=cTf(x), elfeL?(R). (1.11)

This assumption is a stronger version of the assumption that f is analytic. We consider a family
of smooth functions G.(&;) satisfying

0 < Ge(&r) < min(g log(1 + [&1), &) (1.12)
In view of (1.11),
vl 2y < Ce, N fellLo@) < Co ve 1= €%« Plu, - foi= eGelP) f,
where Cj is independent of e. We then consider
P.:=¢%P)(21D2 +aD,, +7%)e % P) = 5,D? +iG.(D,,)D2 +aD,, +1°.
We have P.v. = f., and
Im(Pove,ve) 2Ry = <G’€(Dx1)Dg251v€,vE>Lz(R) +{((Ima 4 1) Dy, ve, ve) 12 (R)

= ((E1GL(&) + (Ima + 1)&1)0c, Ue) 2 (R, )

where we took d¢;/(27) as the measure on L?(R¢,). Let y € C*°(R;[0,1]) satisfy x|i<1 =1,
Xli>2 = 0 and x’ < 0. We define

Ge(&1) = (1= x(&) /051 (x(et) + (1 = x(et))(et) ),
which satisfies (1.12) and G. > 0. Moreover, for & > M > 2 and € < 1/M,
§GU&) 2 Ex(er) + a1 - x(e€)) > Mer.
Hence, by taking M = max(—Ima + 1,2), and € < 1/M,
I ellloell > Im(Peve, ve) = ((E1GL(€1) + (Ima + 1)&1)Te, Be)

2 [Ocll* = (1 + [& (1 Tm al + 1)0ele, <ar 1T = [19]|* = Culloe]],
where C; := (|Imal| + 1)eM||v|| ;1 is independent of e. This implies
[0l < NI fell + C1 < Co + Cy.
Letting € — 0 gives [|e510]¢, 0] < C. A similar argument applies to £&; < 0 which shows that
ealy e r?,
and consequently that u(z) = e*27v(x;) is analytic.
In the actual proof, the Fourier transform is replaced by the FBI transform (2.1) and its

deformation (2.5) defined using a suitably chosen G, satisfying (1.12) (see Lemma 3.1 which
is the heart of the argument). One difficulty not present in the simple one-dimensional case
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is the localization in other variables. It is here that the C* normal forms of [18, 19, 30] are
particularly useful. It is essential that no analyticity is needed in the construction of Ge.

1.3. Applications to scattering theory

As already indicated in [32] analyticity of smooth solution to the Vasy operator (1.2) implies
analyticity of resonant states and of their radiation patterns. We review this here and, in
Theorem 3, present a slightly stronger result.

For a detailed presentation of scattering on asymptotically hyperbolic manifolds, we refer
to [11, Chapter 5]. To state Theorem 3, let M be a compact n + 1 dimensional manifold with
boundary M # () and let M := M \ M. We assume that M is a real analytic manifold near
OM. A metric g on M is called asymptotically hyperbolic and analytic near infinity if there
exist functions y' € C°°(M;0M) and y; € C*(M;(0,2)), y1|orr = 0, dy1|anr # 0, such that

M 2y '([0,1) 3 m e (y1(m),y'(m)) € 0,1) x M (1.13)
is a real analytic diffeomorphism, and near M the metric has the form,

dy? + h(y1)

, 1.14
T (1.14)

g|y1<€ =

where [0,1) 5 ¢t — h(t), is an analytic family of real analytic Riemannian metrics on OM.
Let

R,(\) = (A, — X — (n/2)*)' : L*(M,dvol,) — H*(M,dvol,), Tm\ > 0.
Mazzeo—Melrose [27] and Guillarmou [17] proved that
Ry(\) : C*(M) — C>* (M), (1.15)

continues to a meromorphic family of operators for A € C\ z(—% — N). In addition, Guillarmou
[17] showed that if the metric is even, that is,
dyi + h(yi)
Gly<e = 5, (1.16)
Y1
(see [11, Theorem 5.6] for an invariant formulation), then R4(A) is meromorphic in C. In
particular, for A # 0 we have the following Laurent expansion

J(N\)

CA 2 — (n/2)2)i—1
Ry(0) = Y SRR T Ao, ) = o f Ry

Jj=1

where ¢ — A((, A) is holomorphic near A. For A = 0, we have a Laurent expansions in powers
of (7.

The operator II(\) has finite rank and its range consists of generalized resonant states. We
then have

THEOREM 3. Suppose that (M,g) is an even asymptotically hyperbolic manifold (in the
sense of (1.16)) analytic near conformal infinity OM. Then for A € C\ 0,

weINC=(M) = u=y, “"*F, Floy € C*(OM). (1.17)

Moreover, in coordinates of (1.16), F(y) = f(y?,y'), v’ € OM where f € C¥((—6,3) x OM).

Proof. The metric (1.14) (in the coordinates valid near the boundary) gives the following
Laplace operator:
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—Ay = (11Dy,)? +i(n +y17 Wi y¥)) Dy, — ¥ Aniy),

Yo(t,y') == —30,h(t)/R(t), h(t) :=deth(t), D:=10.
Following Vasy [31], we change the variables to x; = y?, 2’ = 3/ so that
ix—% 7 —iAtG
(A = X = (5 T = a PO, (1.19)

where, near OM, P(\) is given by (1.2). This operator is considered on X := ((—9,0],, x OM) U
M. The key fact is that P()\) is a Fredholm family operators on suitable spaces, P(\)~! is
meromorphic and its poles can be studied using microlocal methods — see [31], [11, Chapter 5]
and also [34, § 2] for a short self contained presentation.

From meromorphy of P(A)~!, we obtain meromorphy of (1.15) using (1.19):

Ry =y (PO )], € e, (1.20)

(1.18)

i\—nt2
Here we make y? 2 f into an element of C2°(X) by extending it by zero outside of M. Near

any A\, P(¢)7! ZK(A) QiN)(C— A7 4+ Qo(¢,N), with Q;(\) operators of finite rank and
¢ Q0(§ A) is analytic near A. We then have

) = Aui QM)
Hence, the claim about the range of TI(A) follows from analyticity of functions in the range of

Q1(X). This follows from Theorem 1. In fact, P({) = P(\) + (( =NV, V := —4D,, + iy(x),
and hence

)\,7

PA)Qr(N) = —VQiri1(A), Qxri1(N):=0.

Since we already know that the ranges of the operators Q) are in C*° (see [11, (5.6.10)]), we
inductively conclude that their ranges are in C*. (]

REMARK. Vasy’s adaptation of Melrose’s radial estimates [28] shows that to conclude that
u € O when P(\)u € C* (see (1.2)), we only need to assume that v € H**! near mg, where
s+ % > —Im ), see [34, § 4, Remark 3].

2. Preliminaries on FBI transforms and their deformations

We will use the FBI transform defined in [14] in its R" (rather than T") version. Since the
weights we use will be compactly supported in x, the same theory applies. The constructions
there are inspired by the works of Boutet de Monvel-Sjéstrand [6], Boutet de Monvel-Guillemin
[5], Helffer-Sjostrand [21] and Sjostrand [29]. An alternative approach to using the classes
of weights we need here was developed independently and in greater generality by Guedes
Bonthonneau—-Jézéquel [16].

2.1. Deformed FBI transforms

We define
Tu(,§) = h™ / eH Ot TOC () Fuly)dy, uwe CFRY), (2.1)
recalling that the left inverse of T is given by
25 i : n X
Su(y) = 7/ P S G A 2<€>(mfy)2)<§>z(1+ %(m—y,ﬁ/(@))u(x,é)dxd& (2.2)
(271') 2 R2n

see [14, Proposition 2.2].
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The first fact we need is the characterization of Sobolev spaces and of the C*° wave front
set using the FBI transform (2.1). To formulate it we use semiclassical Sobolev spaces Hj, (see,
for instance, [33, § 7.1] or [11, Definition E.18]) but we should in general think of h as being
fixed.

PROPOSITION 2.1. There exists a constant C such that for v € %' (R"),
lullzz; < CIE Tullp2(r-rry < C2lul ;. (2.3)
Moreover,
Ix € S°(T*R™), x =1 in a conic neighbourhood of (xq, &)
To, WF(u) & 7 TR
( 0 50) ¢ ( ) {VN E'CN ||<£>NXTUHL2(T*R") < CN~

Proof. This follows from the characterization of the H® based wave front sets in Gérard [15]
as stated in [10, Theorem 1.2]. Since the arguments are similar to the more involved analytic
case presented in Proposition 2.3, we omit the details. O

As in [29, § 2] and [14, § 3], we introduce a geometric deformation of R*", A = Ag:

A= {(x —iGe(x,£),€ +iGy(2,8)) | (z,€) € R*™"} c C*",
suppG C K xR", K €R", (2.4)
SUP|o 1 51<2(€) T 0207 G (2, €)] < eo, |0207G(x,€)] < Cap(&) 17,

where €y is small and fixed (so that the constructions below remain valid as in [14]).
For convenience, we change here the convention from [14]: it amounts to replacing G by
—G everywhere.

This provides us with the following new objects: the deformed FBI transform (see [14, § 4]),

Tau(z,§) == Tu(x —iGe(x,§),§ + G (x,€)), u € Bs,

= N 2.5
Bs ={ue SR"): fR" |U(§)\264"|‘5|d§ < oo}, (2:5)

the spaces Hy, defined as in [14, § 4],
H =5, 5, lullys = /A (Re )2 [Thu(a)|2e~2H @)/ kg, (2.6)

and the orthogonal projector
Iy : Ly := L2(A, e 2@/ o) — TyHA, Hy = HY,

described asymptotically (as h — 0 and as £ — o0) in [14, § 5]. The weight H appears naturally

in this subject and is given by [14, (3.3),(3.4)], that is, H(z,&) =& - Ge(x, &) — G(x,&). The

deformed FBI transform T has an exact left inverse Sp obtained by deforming S in (2.2).
We now prove a slightly modified version of [14, Proposition 6.2]:

PROPOSITION 2.2. Suppose that P = E\a|<m ao,D% is a differential operator with a, €
C*(R") satistying,

a, € C¥(U), KeU,
for an open set U and K as in (2.4). Then

HATAhmPSA = 1_[AbPl_[A + O(h’oo)H;NﬁH/]\V’
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where

bp(x,f) ~ jgo hjb]‘(.'lj,g), bj € Sm—j(R27"), (27)

bo = pla 1= pla — iGe(x,€),€ +iCy(x,£)).

We remark that the expansion remains valid when A is fixed. We can use smallness of A to
dominate the lower order terms and then keep it fixed.

Proof. The result follows from the analogue of [14, Lemma 6.1] where the operator
TAh™PS) is described in the case where the coefficients of P are globally analytic. Here
we point out that the analyticity of the coefficients is only needed in the neighbourhood U of
K & R" such that in (2.4) suppG C K x R™ and ¢ is small enough depending on the size of
the complex neighbourhood to which the coefficients extend holomorphically.

In fact, arguing as in the proof of [14, Proposition 6.2] all we need is that for a € C°(R™)
and a € C¥(U), the Schwartz kernel of Ty M, Sy, M, f(x) := a(z) f(x), is given by

K,(a,p) = coh_"e%‘l’(o"ﬁ)A(mﬁ) +r(e,8), a,feA=Ag,

N (2.8)
r(a, B) is the kernel of an operator R = O(h™) : Hy " — HY.
The phase in (2.8) is given by

i(ag = Be)? | i (Bedlae)(aw = Bo)? | (Be)ae + (ae) Be
2(ag) +(Be) 2 (ag) + (Be) () + (Be)

and the amplitude satisfies

V(e B) =

! (Oém - ﬁ,’]))a (29)

A~ S Wiag) 74y, Aoa,a) = ala(a),

Jj=0

and A; are supported in a small conic neighbourhood of the diagonal in A x A. We note that if ¢y
is small enough, a extends to some neighbourhood of K in C™ and hence a|s = a(x — iG¢(z,§))
is well defined.

To see (2.8), we use the definitions of T and Sy to write

&@mZM@%W%%/WMMWWWMW+%ﬂWM@W,@m

where
‘PG(aay) = (p(ZaCay”ZZam,C:aga ‘Pé:(aay) = _é(z7<’y)|zz(¥x;<:(¥§’
ap = —iGe(2,€), o =E+1G,(,§), (2.11)
D(2,¢,y) = (z = 4,0 + 5Oz —v)*,  ®(2,¢y) = 2(%(y).

Let V, V; be open such that K C V; € V € U. We start by showing that the contribution to
K, away from the diagonal is negligible. For that let x € C2°(R) with x = 1 near 0. Then for
all § > 0 small enough, the operator R; with kernel

Rl(aa B) = Ka(av ﬁ))zts(aa 5)7
~ - | — Pel
Xo(a, B) = (1= x (6w — Bs (1—X(
) R A Vi rvexy
satisfles Ry = OHXN_>H11\V (h%). This amounts to showing that the operator with kernel
Ry (e, B)en HA=H @) (q )N (BN is bounded on L?(R") with O(h>) norm.
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To see this, we first integrate by parts K times in y, using that

|0y W] = |Be — ag +i({ae)(y — aw) + (Be)(y — Bz))| = c(1 + |oe] + B¢ ])
on supp Xs- This reduces the analysis to the case of (2.10) with a replaced by b(-,«, ) €
Ce(U) N Cz(R™) with [b] < A" ({Jac) + (| Bel)) .
Next, we choose ¢ € C(R™;[0,1]) with v =1 on V and suppy C U, and ) €
C>(R™;]0,1]) with 11 =1 on V; and suppy; C V. We then deform the contour

=

This contour deformation is justified since a € C¥(U). The phase in the integrand of (2.10)
becomes

i{ag)

\II:<O‘I_yva£>+<y_5mvﬁﬁ>+7(az_y)2+?(ﬂm_y)2
e 1Be — ael* | iag) . o =B \ 20 |Be — e
i) + M5 (2 (xS0 )~ O
i{Be) [, =P N o0 |Be — g
o (v o)~ O

In particular, for y € V, and («, 8) € supp Xs, the integrand is bounded by
e—c(ae)+(Be))(ac—Bz)/h

which is negligible (even after multiplication by en () =H (@) (¢ )N ()N,
For the integral over y ¢ V', we consider three cases. First, if both Rea, € K and Re 8, € K,
then it is easy to see that the integrand is bounded by

e—cUae)+(Be)) (az—Bz)+lyl)/h

and hence produces a negligible contribution. Next, if Rea, ¢ K and Re 8, ¢ K, then H(«a) =

H(B) =0, a, § are real, and integration by parts in y shows that the contribution is negligible.
Finally, we consider the case Rea, € K, Ref, ¢ K, (the case Ref, € K and Rea, ¢ K

being similar). In this case, we have H(8) =0 and § real. Since y ¢ V, we have that the

integrand is bounded by e’c<a5><aw’”>/th<6§)*K and hence this term is also negligible.
Since R is negligible, we may assume from now on that

| = Ba] <1 and [ag — fe| < (|ag]) + (|5¢])-

In particular, there are three cases: Rea, € K and Re 8, € Vi, ReB, € K and Rea, € Vi, or
Rea, ¢ K and Re 5, ¢ K.

The first two cases are similar, so we consider only one of them. Since Rea, € K and
Re 3, € V4, the contribution from y ¢ V is negligible. Therefore, we may deform the contour
to
_ (B — ae) + (ag)aw + (Be)Be

(ae) + (Be) '
The proof in this case then follows from the method of complex stationary phase.

When both Rea, ¢ K and Ref, ¢ K, a =Rea, f=Ref3, and H(a) = H(8) =0. In
order to handle this situation, we will Taylor expand a(y) around y = «,. For that we first
consider (2.10) with a = O(Jy — a,|?"). In that case, we consider the integral

y'_>y+w(y>y0(avﬁ)’ yC(avﬁ)

Ko, ) = h—% /e;’%(<az*y~,as>+%(<Oés>(%*y)2+<ﬂs>(ﬁz*y)2))
(2.12)

O(ly — au*){ae) T (Be) (1 — X5 (e, ))dy.
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Changing variables y — y + oy,
n ﬂhN_% _Be) —.—1y)? ~
vl 9 < ffod 50t e O - gy

pN—n (org)+(Be)
<C—r——F+——e ¢
((ag) + (Be))N

Therefore, using the Schur test for boundedness, the operator Ky with kernel Ky («, )
satisfies

(w0 (1 — 5(ax, B)).

N-2_0

n —N+2+0
A — H)

Ky=0h""%2):H
Now, observe that for any N > 0,
a(y) = an(y) + Oy — ax*),
where an(y) is a polynomial of order 2N — 1 in (y — «,). In particular,
Ka(a, B) = Kay (o, B) + Kn(a, ).

Since ay is analytic and the integrand is exponentially decaying in y, we may deform the
contour with y — y + y.(c, 8) in the integral forming the kernel of K,, and apply complex
stationary phase as in the case where Rea, € K or Re 3, € K. This finishes the proof of the
proposition after taking N large enough. (|

2.2. Analytic wave front set

We now relate weighted estimates to analyticity.

PROPOSITION 2.3. Let T be the FBI transform defined in (2.1) for some fixed h, and let
Y € SYT*R™) satisfy

V(&) = €]/C, (x,§) eU xT, (2.13)
where U C R"™ and ' C R™ \ 0 is an open cone. Then, for u € H=™(R"),
e (&) NTu € LA(T*R") = WF,(u)N (U xT) = 0. (2.14)

Conversely, suppose u € H-N(R"), T'y C R™ is a conic open set such that ToNS" ' €I'N
S"=1 Uy € U. Then for any ¢ € SY(R"™ x R™) with suppt C Uy x Vo,

WF. ()N (U XxT)=0 = 36>0 (&) Ve’Tue L2(T*R™). (2.15)

REMARK. Here we do not consider uniformity in h in the L? bounds. If we demanded that,
then we would only need v € C°(T*R™), ¢ >0 on U x (I NS"1).

The proof is based on the following

LEMMA 2.4. Let T and S be given by (2.1) and (2.2), respectively, with h fixed. Suppose
that x,x € S°(R" x R™) and supp x,supp x1 C K x R", K € R". Then for any a > 0, there
exists b > 0 such that

xe" TSy e ) = O (1) : L2(R*™) — HY(R?™), (2.16)

for any N.
If in addition x1 = 1 on a conic neighbourhood of the support of x, then there exists b > 0
such that

xe"OTS(1 = x WEM = On (1) : LA(R?") — HY(R?™), (2.17)

for any N.
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Proof. We analyse the Schwartz kernel of the operator in (2.16), K(x,£,y,n). As in the
proofs of [14, Lemma 2.1, Proposition 4.5] (the phase of resulting operator can be computed
by completion of squares and is given by [14, (4.10)] with A = T*R"), we see that

(hD)2 (K (2,€,y,m)| < Coe€)—alm —v@&ym,

(2.18)
Pi=c((€) + () (1€ — 0 + (&) n)|z —yI?).

We have

b < gmin(a,c) = b(&) — aln) — c((&) + () '€ —nl* < —3(b(&) + aln)),

if b is sufficiently small. (By taking b < a/8, we can assume that || < |£|/2. But then | —n| >
1€l and (€) + (n) < 2(n).) This proves (2.16) as we can use the Schur criterion.

To see (2.17), we note that we can now assume that [£/(¢) —n/(n)| > or |z — y| > §. But
then if the kernel of the operator in (2.17) is given by K/ (x,&,y,n) where

|(hDyg)* K (2, €, y,m)| < Co e © M Ioeln v,
Now, fix 0 < 6 < 1 small. Then, when |£/(¢) —n/{n)| > d or |x — y| > 0,

2
& = nl* + (&) )z —yl* = %((f) +(n). (2.19)
To see this, observe that on
€ —ml_ o
‘<§>+<n> =
we have
J_ &) —m? € =1
<G Torl <G
On the other hand, when
€ —ml_o
‘<£>+<n> ST
we have
20m _©+m(, [m-©71") .1
@+ 2 (1 & ) >3+ m)
Therefore, if |z —y| > 0, (2.19) follows. If instead, |£/(§) —n/(n)| = 0, then
€—nl 11 &  n| (L1&  Inl\|& -0
i 2w~ Gt wleral > 4

and (2.19) follows.
From (2.19), we have that there is Cys,s > 0 such that if |£/(€) — n/(n)| > 0 or |z —y| > 0,

b(&)—c((&) + ()~ (1€ — nl* + (€) () |z — yl*) + M log(n)
< bl€) — 57e0”({€) + () — 5e((§) + <77>)’1 (1€ = nl* + (&) (mlz — yl*) + Cars,

and the Schur criterion and gives (2.17) for b < d

64

Proof of Proposition 2.3. We start by recalling the characterization of the analytic wave
front set using the standard FBI/Bargmann—Segal transform:

Tu(x,&h) == cpyh™ % / er (v OT3@=0Ny(ydy, we S (RY).
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Then

(w0,&0) € WFa(u) <=

{3 d, U = neigh((x0, &) (2.20)

| Tu(z, & h)| < Ce 0/ (2,€) €U, 0<h< h.

see [23, Theorem 9.6.3] for a textbook presentation; note the somewhat different convention:
Tu(z,&h) = e‘ﬁngl/hu(m —i€).

We first prove (2.14). Hence suppose (g, &) € U x T'. Let x € S° be supported in a small
conic neighbourhood, Uy x Ty, of (0, &) and choose x; € S° which is supported in U x I' and
is equal to 1 on a conic neighbourhood of the support of x and o € SY supported in U x T’
and equal to 1 on a conic neighbourhood of the support of x;. Our assumptions then show
that e*€/PyoTu € L?*(R*") for some a > 0. We now write

X OTu = xe"OTS (x1e7 ey Tu + (1= x1) ()N () Tu).

Since u € H=N, (§)"NTu € L*(R*") and (2.16), (2.17), now show that "€ yTu € HX for
some b >0 and any K. By taking K > n and applying [23, Corollary 7.9.4], we obtain a
uniform bound

Tu(x,&)] < Ce ™, (2,6) € Uy x T,
Let Ay be the fixed h in the definition of T'. Then,

T (2,6/(€): /(€)= Tu(x,&) = O(e %), (2,€) € Uy x Ty. (2.21)

Putting wo := &/(&o), it follows that .7 (2, w, h) = O(e~%/") for (x,w) in a small neighbourhood
of (zg,wp). But then (2.20) shows that (xg,wo) € WF,(u). Since WF,(u) is a closed conic set,
we conclude that (zg,&p) € WF,(u).

Now suppose WF, (u) N (U x T') = ). Then for (x,w) near Uy x (I'o NS™™ 1) (with Uy and
Ty, as in the statement of the theorem), 7 (z,w,h) = O(e~%/"). Reversing the argument in
(2.21), we see that

|Tu(z, &) < Ce ™ (,€) € Uy x Ty.
Now, since u € H~N(R"), (¢)"NTwu € L?(R?"). In particular, since [¢)| < C(¢) and the support
of 9 is contained in Uy x 'y, (2.15) follows. O

The next proposition relates weighted estimates to deformed FBI transform:

PROPOSITION 2.5. Suppose that Hy, A = A¢, is defined in [14, (4.7)] with G satisfying
(2.4) with €y chosen as in the definition of Hy.
Then there exists 1) € S'(T*R™) such that T : B5 — L*(T*R", %€/ dzdE) extends to

T=0(1): Hy — L*(T*R", ¥ @9/ qgde), (2.22)
and S : L*(T*R", e~ C¥&/"dyde) — Bs, extends to
S =0(1): LXT*R", 2@/ drde) — Hy. (2.23)
In addition,
b(x,€) = G(z,€) + Oeg) st (1+R)- (2.24)

For a simpler version of this result in the case of compactly supported weights, see [13, § 8].

Proof. The statement (2.22) is equivalent to
TS\ = O(l) . LQ(A76_2H(Q)/hda) - LQ(T*R”,GQw(B)dﬁ)
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and hence we analyse the kernel of the operator T'Sy which is given by

K(a,f) = ch™ % | ehleol@n TGl (50 % (an) % (1+ §lax —y))dy,
R’!L
where the notation (and also notation for ® below) comes from (2.11). The integral in y
converges and can be evaluated by a completion of squares as in [14, Proposition 4.4]. That
gives the phase (2.9) with o € T*R™ and 8 € A. The critical point in y is given by

1 .
Yela, B) = m(@&)‘h + (Be)Bo +i(Be — ). (2.25)
We then have (2.22) with
¥(@) = max (~ Im ¥(a, ) + H(5). (2.26)

We have (see [14, (3.3),(3.4)])

dp(=Tm ¥(ev, B) + H(f)) = Im(=0. (¥(a, (2,C)) = (dz[a)](z.0)=pen-

Now, if y.(«, (z,()) is the critical point in y, then
aZvC\I/(O‘a Z) = 62,(((1)(045 yC(a’ (27 C))) - (i)((za <)7 yc(oz, (Z’ C)))) = _aZ’C(ﬁy:yc(z’C) (27 C)

= —(dz + (ye — 2) - dC +i(C) (2 — ye) - dz + 5(2 = ye)*C - dC/(C).
For G = 0, the critical point (see (2.25)) is given by o = 5. Hence
B. = Bc(a) = (Oéw + O(EQ)SO, ae + O(EQ)Sl), (2.27)

with €y as in (2.4).
Hence we obtain 1) by inserting the critical point §. into the right-hand side of (2.26)

Y(a) = —Im ¥ (a, B.(a)) + H(B.(a)) € SHT*R™). (2.28)

(We note that for G = 0 the maximum in (2.26) is non-degenerate and unique and it remains
such under small symbolic perturbations.) From (2.9), we see that

Im ¥(a, (o)) = Im ¥(a, 0 + Oleg) goxs1) = g - Ge(ar) + O(ed) 51

Inserting this into (2.28) and recalling that H = £G¢ — G, we obtain (2.24).
To obtain (2.23), we apply the same analysis to Tx.S and we need to show that two weights
coincide. That is done as in [13, § 8]. O

3. Proof of Theorem 2

As already indicated in § 1.2, to prove the theorem we construct a family of weights G. € S?,
uniformly bounded in S!, supported in a conic neighbourhood of I' = {(0,0,&;,0) : & > M},
M > 1, and satisfying 0 < G, < C.log(¢). In addition,

H,G.>0, G.—& onT (inS'), (3.1)

with H,G. > €' in a suitable sense (see (3.4)) for e < 1.
We will then put A.:= Ag, so that the assumption v € C™ will give u € Hy_. On the
other hand, the assumption that I' " WF, (Pu) shows that || Pul|r, < C with the constant C

independent of €. But then [14, Proposition 6.2] and the properties of G, show that |julz, is
bounded independently of e. Propositions 2.3 and 2.5 then show that WF, (u) N Ty = 0.
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3.1. Construction of the weight
We now construct a family of weights, G, satisfying (3.1). In fact, we need more precise
conditions on G, given in the following

LEMMA 3.1. Suppose that p satisfies (1.9) at py = (z9,&) € T*R"\ 0 and T is an open
conic neighbourhood of py. Then, there exists G. € S*(T*R™), supp G. C T, such that

0207 Ge| < Cap(©)™171, 0< Ge < Cellog(é),

3.2

Ge($7£)|1§|§|§1/6 = (I)(1'7§)|£|7 S Sghg(T*Rn)a (I)(.’Eo,tfo) = 1, t> ]-7 ( )
HyGe(2,€) = co((§)™0:Ge(z, &) |* + (€)™ ?|0,Ge(2,6)?), (3.3)

VM, v>03My, K, V0 < €< e, Hy,Ge'% + My(€)K > M, (€)™ e, (3.4)

We stress that the constants C,p and ¢y are independent of € and M;.

Proof. We use the normal form for p constructed in [19, § 3]. That means that we take xo = 0
and £y = e1 := (1,0,...,0) and can assume that p(x,&) = —£{"x; in a conic neighbourhood of
p = (0, 7). For simplicity, we can assume that m = 1 as the argument is the same otherwise.

Let x € C°(R;[0,1]) satisfy

suppx C [=2,2], X< =1, &xX'(t) <0. (3:5)
and put ¢(t) := x(t/0). Here ¢ will be fixed depending on T'. Using this function we define
P = O(z,&) := 12037 where

p1:=o(x1), p2:=0(€/&) e3=(2']), b= (1—-e((&)+)) (3.6)

We choose § small enough so that supp® C I.
We define G, as follows

Ge(r,8) = ®(,8)qe(€1),  qe(t) 1=/0 (x(es) + (1 = x(es))(se) ") ds. (3.7)

We check that
518€1q6 min(€17671)7
E1lg, <1je + € (L4 1og(€€1))es1/e < e < &1lg <1ye + € 12+ log(e€r)) e e

Uniform boundedness of G, in S' means that q. in (3.7) satisfies \8§1q€| < CrélF with
functions C} independent of €. But this is immediate from the definition. We also easily see
that G. converges to G := ®(x,£)&; in S'F as e — 0. This proves (3.2).

To see (3.3), we first note that, since ® >0, ® € S, the standard estimate f(z) > 0=
df (2)[> < CF(2) gives

(3.8)

VA%

®(@,€) > e1 (110:@ (@, I + [0:2(, €)[). (3.9)
Note also that we have H,, = £,0¢, — 210,, and therefore
Hy® = —z1¢'(21) 020039 — (1€'/€0)@"(1€']/61)01903% — p1902003619" ((61)+) 2 0. (3.10)
Since g € S, €10¢,qc(&1) = 261(0¢, qe(£1))?. We also claim that
€10¢, 4 (61) = 267 ge(61). (3.11)

In fact, using (3.8) we see that to prove (3.11) it is enough to have

min(t, e ') > eat ™ (tlicq e (t) + € (24 log(te))]lt>1/5(t))2.
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This clearly holds (with co = 1) for ¢t < 1/e and for t > € is equivalent to co(2 + logs)? < s,
s = te > 1, which holds with ¢y = %. It follows that

£106,q(&1) = e2(&7 1 qe(61)% + 60,0 (1)),
which combined with (3.9) and (3.10) gives
HpGe = (6106, qc) + (Hp®)qe

> ©(£10¢,qc) = c261P(06,qc)* + 3 (E110: @ + |0, @7) &7 g2

> o (£110:Ge* + & 0. G]?).

Since (£) ~ & on the support of G., we obtain (3.3).
Finally we prove (3.4). Since by (3.10) we have H,G. > ®H,q., we see that (3.4) follows
from proving that for any M; we can find K, M5 and ¢; such that for & > 1,

DH,Hq P + Mocls > My P, (3.12)
Using (3.8), we see that for & < 1/¢ we need G 7% + Mot > M e7%<. This holds for
K=0, My=2y M-t

since for v > 0 and a > 0, ae?® — Me¥® > — 2y~ leyMi—1
For & > 1/e, we need to find K and M, for which

e DT 4 Mol > My ®ee, (3.13)
Using ae® + MyeM? > M, e® with a := ¢ '® and
b:=veqe < (2 +1log(e61)) < (2 +log&y),
we obtain (3.13) with My = M;e?"™1 and K = yM;. Hence we obtain (3.12) proving (3.4). O

3.2. Microlocal analytic hypoelliticity

We will have bounds which are uniform in € but not in h. We start with the following

LEMMA 3.2. Suppose that P is of the form (1.8) with real valued principal symbol p and
suppose that T' C U x R™\ is an open cone, TNS" ! € U x S"~! and

G € S1(TR), |G| < Clog(¢),
H,G(2,€) = co((6)10:G (@, &)* + ()" ?|0:G (2, E)P).
Then for Th, Hx, A = Apc defined in (2.4) and (2.6), h and 6 sufficiently small, and u €
HXNJ'_m;

Im(humu}H;N > 30(H,G (&)~ NTyu, <§>_NTAU>L§ - Mh”””i{%*l_w (3.15)

A

(3.14)

where M depends only on P and the semi-norms of G in S*.
Proof. We use Proposition 2.2 and [14, Proposition 6.3] to see that for any K > 0,
m _ —2N m
Im(h Pu, u>HXN = Im((f) TAh PSATAU, TAU>L3\
= Im(ITp (&) M TIAR™ PSATIATAu, Tau) 12

. (3.16)
= ((Imbp, v )Tat, Taw) 3 + O(h™)Jul| ;=

= ((tmpla) ()" Taw, (€~ Thurz — Mhfjul| s

A
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From (2.7) and (3.14), we obtain
Imp[y = Imp(z —i09:G(x,£), & +100.G(x, £))

= 0H,G(2,8) + 020((§)"0:G(w,)|* + ()" *|0.G(x, €)*)
> 30H,G(x,¢),

if 6 is small enough. |
The next lemma allows us to use smoothness of u to obtain weaker weighted estimates:

LEMMA 3.3. Suppose U C R" is an open set,
G e SYT*R"), G>0, suppG C K xR", K €U,

and Ty, Hx, A = Agg are defined in (2.4) and (2.6). Then, there exists a > 0 such that for
every x, X € S® with Y = 1 in a conic neighbourhood of supp x and every K, N > 0, there exists
¢,C > 0 such that for all u € H-N(R"),

(€)= "xTaul ra < CUNE  XTull b2 (rerny + €=M 1)~V Tul| p2(r-mem))- (3.17)
In particular, if x = 1 on supp G, then
K _a -N
1€y e/l + 14€) ™ (1 = ) Taul

o . (3.18)
SO X Tull o ey + 16 Tull L2 (pegerny)-

Proof. First, observe that by [14, Lemma 4.5], for any § > 0,
ThS = Ky + Ons(e™ /") 2 () () -V 13,
and K has kernel, K;(«, 8), given by
Bk V@) (o, B)p(6~  Re o, — B l)) (5! min((Re ag), (Be)) ! Reae — Fel),

where (a, ) € A x T*R™ and ¥ is as in (2.9), and ¢ € C°(R) is identically 1 near 0. Therefore,
we need to only consider Ks(a, ).

To do this, let ¥ € S° be identically 1 on a conic neighborhood of supp . Then, for § > 0
small enough,

x(Re a)K;(a, B)(1 = x)(B) = 0.
Therefore,
xe “MERTAS(1 = %) = On (e eyn pagrro)ie)-v 12 -
For the mapping properties
xe “CMTNST (€ TRLATR") = (6) 7R L3,
we consider the operator
xe “Clhe I KTy Sx(€) ™K« L*(T*R™) — L*(A; dadé).
Modulo negligible terms, the kernel of this operator is given by
het @O E((2,€), (y,1))
where k € S° has
suppk C {|€ —n| < C8(€)} N {|e —y| < Co}. (3.19)
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and
o =1H(z,§) + ia0G(x, &) + ¥ ((z — i0Ge, & + i0G,(x,€)), (v, 1)),
with H(x,&) = 6(§, Ge(x,€)) — 0G(z,§). Using (3.19), we have

—_n)2 _ 2
Imy = aG +6¢ - Ge — 6G + m((x - (pa) ¢ EZ 1= (0G0

+0¢ - Ge + O(0(|z — yl|Ga| + (€)'€ — ml|Gel)
+O0*((&) MGl + (6)|Gel*))
+ (¢

> (a—0)G = CO*((&) 1 (Ga)* + ()IGel*) + c(&)(x — y)* + ()71 (€ —n)*.

In particular, taking a large enough and using that G > 0, G € S*, (see the argument for (3.9)),
we have

Imy > S G(x,€) +c(€)(z —y)* + (&) 1€ —n)*
Therefore, applying the Schur test for L? boundedness completes the proof that
X(€)Fe " “MTyS(€) N = 0(1) - L(T"R") — L}

and the lemma follows. O
With these two lemmas in place we can prove the main result:

Proof of Theorem 2. By multiplying u by a C°-function which is 1 in a neighbourhood of z,
we can assume that u € H- V™ for some N, is compactly supported in U and pg := (70, &0) ¢
WF(u). By Proposition 2.1, there exists x € S with ¥ = 1 in an open conic neighborhood, T,
of pg such that for any K > 0,

€Y XTul| L2 < Ck. (3.20)
Also, since u € H=N+m,
(&)~ | 2 < C. (3.21)

Let I'y € I be an open conic neighborhood of py and y € S* with y =1 onI'; and suppy C I.

We choose 6 small enough so that (2.4) and (3.16) hold. We then fix 0 < h < 1 small enough
so that (3.16) holds. From now we neglect the dependence on h which is considered to be a
fixed parameter. We choose for G = G, constructed in Lemma 3.1 and supported in I';. We
recall that the estimates depend only on the S' seminorms of G and these are uniform in e.
We now claim that

we Hy N, Ac = Ao,

In fact, we can use (3.18) together with (3.20) and (3.21), observing that exp(aG./h) =
O.((£)¢/ (1)) and taking K = Ca/(he) — N + m.

Next, note that Pu € H~" is supported in U and py ¢ WF,(Pu). Propositions 2.3 and 2.5
(see (2.15) and (2.23), respectively) then show that for G, satisfying the assumptions of
Lemma 3.2 and 6 sufficiently small ||Pul| o~ < Co, where Cj depends only on Pu and

S1-seminorms of 6G..
We now apply (3.15) to obtain with A. as above,

%HUIIi,A—y +207 > ((0H,Ge — M(E™ (€)™ " T u, (€)™ N Tau) 3, (3.22)
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Let a be given by Lemma 3.3 (so that (3.17) holds). Then by (3.4), there exist M3 and K such

that

OH,G. + My(€)* e >%/M > (M + 1)(&)™ .

From (3.17), we have

IMax(€) e /M (&)™ N Thul7s

(3.23)
< CKEY M XTullf2 ey + 1) VTl 72 (pegny) < C%
Therefore, adding (3.23) to (3.22), and using that supp G. C x = 1, we have
%||u||§JXN +CE+ 203
> (O™ 1O N T, (&) N T uhg.
(3.24)

— (M1 =)&) 7€) N T u, (€)™ Tau)ry

> (&) HE TN Tau, (&) T uhpy — (M A Dl s,

where in the last line we use that x = 1 on supp G..
Using m > 1 and rearranging, this yields

lal, x <23 +4C3 + 20 + Dlfull vy

where C1,Cy and M are constants independent of €.

Since Ac N{[¢] < 1/e} = Ao N{|{| < 1/e} where Go:= ®[¢], we have that H|jej<i/e =
Holj¢|<1/e, where H. = 0£0:G. + 0G is the corresponding weight. Therefore, the monotone
convergence theorem implies that u € Hy,. Since ®(xo,t&y) = 1, t > 1, Proposition 2.3 shows
that (z9,&0) & WFa(u). O

10.

11.

12.

13.

14.
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