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ABSTRACT

Traditional quantitative MRI (QMRI) signal model fitting to
diffusion-weighted MRI (DW-MRI) is slow and requires long
computational time per patient. Recently, g-space learning
utilises machine learning methods to overcome these issues
and to infer diffusion metrics. However, most of g-space
learning studies use simple multi layer perceptron (MLP) for
model fitting, which might be sub-optimal when estimating
more complex diffusion models with many free parameters.
Previous works only investigate the application of g-space
learning on diffusion models in the brain. In this work, we
explore g-space learning for prostate cancer characterization.
Our results show that while simple MLP is adequate to es-
timate parametric maps on simple models like classic VER-
DICT, deep residual regression networks are needed for more
complex models such as VERDICT with compensated relax-
ation (R-VERDICT).

Index Terms— diffusion MRI, regression, residual, deep
networks, model fitting, qMRI, prostate cancer microstructure

1. INTRODUCTION

Prostate cancer (PCa) is the second most commonly occur-
ring cancer among men in the world. However, PCa diag-
nosis still relies on biopsy, which is invasive and unpleas-
ant for the patients [1]. Thus, development of reliable non-
invasive diagnostic is needed. VERDICT (Vascular, Extracel-
lular and Restricted Diffusion for Cytometry in TumoUrs) [2]
is an advanced microstructural imaging technique for cancer
characterization, which has been proposed as an additional,
non-invasive PCa diagnostic tool. VERDICT combines an
optimized DW-MRI acquisition protocol with a mathemati-
cal model to estimate microstructural features to characterize
cancer.

In this work, we compare two VERDICT models, clas-
sic VERDICT [2][1] and VERDICT with compensated re-
laxation (R-VERDICT) [3]. R-VERDICT model [3] incor-
porates compartment-specific relaxation effects that decouple
relaxation and diffusion properties of the tissue. Hence, we

have additional maps in R-VERDICT; 9 quantitative maps of
prostate diffusion and relaxation properties (see Figure 1) in-
stead of 5 maps in classic VERDICT.
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Fig. 1. The nine R-VERDICT parametric maps obtained from
DW-MRI images (with different b-values), generated by Deep
Neural Networks (DNN) model.

The task in quantitative DW-MRI is to find a mapping
from a limited number of noisy signal samples to quantify mi-
crostructural tissue properties [4]. However, computation of
numerical modelling can be time consuming. Machine learn-
ing has become an important tool to efficiently solve compu-
tational problems in many applications in diffusion DW-MRI
applications [5]. Machine learning approaches called g-space
learning can infer the parameters of diffusion MRI using deep
neural networks [6].

Pioneer work on g-space learning by [7] estimates model
parameters using MLP as regression neural network. In [7],
training datasets are prepared using the fitting results of real
MRI data (in-vivo), which may introduce more variation in
training data. Synthetic (in-silico) g-space learning proposed
by [8] only uses synthetic training datasets generated from
equations derived from a model. Use of synthetic training
data has been proven to have the same quality as using the
real data (in-vivo) in deep learning model fitting[9]. Addition-
ally, synthetic g-space learning has fully controllable quality
of training data, clearly defined gold standard parameters [6]
and shown to be useful when the training signals are not avail-



able.

Most previous works in g-space learning relied on sim-
ple MLP and only investigated diffusion models applied on
brain [10][7][8][9][6]. Here, we aim to do synthetic q-space
learning on prostate cancer characterization. In this paper, we
also investigate the performance of deep regression models in
noise level matching (NLM) synthetic training data.

2. MATERIALS AND METHOD

2.1. Datasets

This study is part of the INNOVATE clinical trial [11]
which involved 44 patients (median age, 64.8 years; range,
49.5-79.6 years). VERDICT MRI data for all patients were
acquired using an optimised imaging protocol for VERDICT
prostate characterization with 5 b-values (90, 500, 1500, 2000,
3000s/ mm?) in 3 orthogonal directions [12]. The DWI se-
quence was acquired with a voxel size of 1.25x1.25x5 mm?,
and the images were reconstructed to a 176 x 176 x 14 matrix
size. The regions of interest (ROIs) corresponding to prostate
lesions were contoured by an experienced radiologist. The
pre-processing pipeline includes denoising of the raw DW-
MRI data then correction for Gibbs ringing. Then, we applied
mutual-information rigid and affine registration.

2.2. Q-space learning for R-VERDICT

Machine learning techniques can explore data-driven compu-
tational methods that express relationships to the DW-MRI
signal [5]. Q-space learning infers diffusion model parame-
ters using regression neural networks [7]. This work aims to
generate the 9 parametric maps of R-VERDICT (see Figure 1)
using g-space learning. As proposed in [3], the mathematical
equation for R-VERDICT is:
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Please refer to [3] for further explanation of the Eq.l.
We generate 100,000 synthetic DW-MRI signals (split into
80% for training and 20% for validation) using Eq.1 with dif-
ferent values for the model parameters randomly chosen be-
tween biophysical range: SO = [0, max b=0 intensity], T1 =
[10,4000] ms, T2;. = [1, 150] ms, T2yascrees = [150, 800] ms,
fees= [0.01, 0.99], fic = [0.01, 0.99], R = [0.01, 15] pm and
Dees = [0.5, 3] m?/ ms. We also add Rician noise correspond-
ing to SNR = 35 to the training data [3]. The number of sam-
ples, type and level of noise for synthetic DW-MRI signals
are chosen experimentally and based on real MRI data.

In this g-space learning, we treat each image voxel indi-
vidually as a data sample. We investigate different models to
predict the parametric maps from the protocols, as illustrated

MSE Model 1 Model2 Model 3
fvasc 0.0023 0.0024 0.0026
fic 0.0015 0.0017 0.0018
fees 0.0018 0.0018 0.0018
R 0.4007 0.4044 0.4100
Cellularity | 5.6x10°% 5.4x10° 5.4x10%¢

Table 1. MSE of the 5 classic VERDICT parametric maps
generated by deep regression models, compared to NLSS.
Bold numbers show the least MSE obtained for the estimated
maps.

in Figure 2. For all models, we train the networks by back-
propagating the mean squared error (MSE) between the real
model parameters and networks predictions, as the objective
we try to minimize. We perform the optimisation with the
adaptive moment estimation (ADAM) for 100 epochs (early
stopping to prevent overfitting) and mini-batch of 100. We
normalize the input data to [0,1] and rescale the prediction
back from the networks. The number of input matched with
the dimension of input signal generated by DWI-MRI proto-
col and output neurons equal to the number of tissue parame-
ters to be estimated. We consider three different models with
different architectures, as described in the following section.
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Fig. 2. Deep regression networks in our study: Model 1:
Three-layer MLP. Model 2: stacked residual regression net-
works. Model 3: stacked residual regression networks with
soft-thresholding.

2.2.1. Model I: Simple MLP

For the first model, we use a multi-layer perceptron (MLP)
with three hidden layers, each consisting of 150 hidden units
with a nonlinearity function rectified linear unit (ReLU) and
a final regression layer. This model has been applied and
worked well on brain microstructure model fitting (DKI,
NODDI, etc.) in [7][6].



2.2.2. Model 2: ResNetReg

Previous trend on deep learning is to go deeper in the net-
works to achieve a better accuracy. However, much deeper
networks face vanishing gradient problem and fail to per-
form better than the shallow counterpart [13]. This problem
in training very deep networks has been alleviated with the
residual neural network (ResNet) [13]. ResNet introduced
shortcut connection to train very deep convolutional models,
with no extra parameters and no added computation complex-
ity. For this nonlinear regression implementation, we replace
the convolution layers by fully connected layers, as shown to
work in [14].

There are two building blocks in this residual regression
network, identity block and dense block, as illustrated in Fig-
ure 2 for Model 2. In identity block, input and output have
the same dimension, whereas in dense block they have differ-
ent dimension. The network structure in Model 2 begins with
an input block, then every dense block is followed by two
identity blocks, so forth, and the output block in the end. We
adapted this model to our R-VERDICT g-space learning with
the optimized network at depth 31 and width fixed at 128.

2.2.3. Model 3: ResNetReg + Soft-thresholding

In Model 3, we propose to add the stacked residual regression
network on Model 2 with soft thresholding, as it is shown
to work effectively to remove noise-related features in [15].
MRI signals are formed as magnitudes of complex values and
the noise distribution appeared as Rician. In DW-MRI VER-
DICT protocol, raw data is also noisy hence may not be an
exact noise level matching with our experimental synthetic
training data. Soft thresholding has often been used in sig-
nal denoising methods where the unimportant features are en-
forced to be zeros, so that the learned high-level features can
become more discriminative [15]. Using deep architecture,
we assume that the value of soft threshold can be learned in
the dense block unit, as shown in Figure 2, where it is in-
serted as nonlinear transformation layer before addition with
residual connection.

Model 1

Model 2 Model 3

Fig. 3. VERDICT fj. maps generated by deep regression net-
works compared to NLLS as reference. Lesions are contoured
on DW-MRI (red) and on the maps (white).

3. RESULTS

We evaluated the different models of deep regression network
on real DW-MRI data from 44 patients. As benchmark, we
compare the performance of our models to the conventional
non-linear least square (NLLS) minimisation. Previous liter-
ature has focused extensively on comparisons between NLLS
and deep learning based model fitting [7][10] demonstrating
that deep networks is a valid alternative to NLLS.

3.1. Deep regression networks for classic VERDICT

VERDICT model is the sum of three major tissue compart-
ments that mostly contribute to the measured DW-MRI signal:
intra-cellular, intra-vascular and extra-cellular/extra-vascular
[2][1]. For classic VERDICT, we estimate 5 parametric maps
and evaluate the quality of the models in terms of MSE. We
observe that for Model 2 and 3, setting narrower width (16)
and lower depth (28) could help improving the performance
of residual regression networks for classic VERDICT. From
Table 1, we can see that Model 1 best estimates f;. maps and is
slightly better than Model 2 and 3 in estimating R maps. Al-
though for fi. Model 1 gives the most similar maps to NLLS,
but visually in Figure 3, all models could show the lesion
ROIs with high values in fi. maps.

3.2. Deep regression networks for R-VERDICT

We compare the performance of all the models in terms of
MSE for all the 9 parametric maps of R-VERDICT. This rep-
resents a quantitative evaluation of the results presented. As
shown in Table 2, mostly residual regression based networks
have lowest errors in predicting the maps compared to sim-
ple MLP. Especially for the parametric map that is the most
prominent for cancer characterization fi. [16], residual regres-
sion networks (Model 2 and 3) give better estimation com-
pared to Model 1.

Since MSE has different range for each of R-VERDICT
maps, we also computed the MAPE (Mean Absolute Percent-
age Error) so that we can have overall error comparison for all
maps. With MAPE, we calculated the errors with respect to
each map range. From Table 3, Model 3 gives the least error
for all R-VERDICT parametric maps.

Visually, we also show the results of the parametric maps
generated by different models, with respect to the ground
truth (standard NLLS), as depicted in Figure 4. Parametric
map fi. is the most useful for lesion characterization, with
Cellularity, T2;., and T1 maps from R-VERDICT are com-
plementary. In Figure 4, all of the models basically could
show lesion in the fj; maps but Model 3 can discriminate it
better (high value in lesion ROI). Superiority of deep regres-
sion networks in detecting cancer lesion is shown in Figure
4 for Cellularity maps where the lesion can be barely seen in
the maps generated by NLLS. For relaxation properties: T2;.



Table 2. MSE of all of the R-VERDICT maps generated from
deep regression models, compared to NLSS as the reference.
Bold shows the least MSE obtained for the estimated maps.

MSE Model 1 Model 2 Model3
fvasc 0.0018 0.0016 0.0013
fic 2.51x10*  2.24x10*  1.53x10*
fees 1.1x10%  1.04x10°  1.00x1073
R 0.1775 0.2227 0.1918
Cellularity | 3.4x10°  4.5x10°  2.5x10°¢
Dees 0.0077 0.0062 0.0061
T2vasc_ees | 290 329 354

T2ic 18 19 17

T1 2007 2390 2161

Table 3. MAPE for all R-VERDICT maps.

MAPE Model 1  Model2 Model 3
All maps | 0.44 0.42 0.39

and T1 maps, deep regression networks can spot the lesion
region with low values.
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Fig. 4. Example of R-VERDICT parametric maps generated
by deep regression networks compared to NLLS. Lesions are
contoured on DW-MRI (red) and on the maps (white).

4. DISCUSSION

We studied deep regression network for synthetic g-space
learning, to estimate VERDICT parameters from DW-MRI
data. Our results suggest that while Model 1 is already
adequate to generate classic VERDICT parametric maps,
it is outperformed by residual regression networks in R-
VERDICT, which has more parametric maps. In our exper-
iments, we also have tried another advanced model: auto-

encoder ResNetReg [17]. For classic VERDICT, we found
that auto-encoder ResNetReg gives similarly good prediction
for all maps like other models. However, its performance was
way below the MLP for R-VERDICT so that we only present
the stacked residual architecture models in this work.

In general, deep regression networks give much lower
MSE for all basic 5 parametric maps (Table 2) compared
to the ones predicted with classic VERDICT (Table 1). For
R-VERDICT, fj. maps are best estimated by Model 3 (Table
2) with significantly reduced MSE compared to Model 1.

Residual regression networks work better than simple
MLP because R-VERDICT model is more complex, with
9 maps to be estimated compared to other diffusion MRI
models with less number of parametric maps estimated in
[6], such as DKI (2 parameters), DTI (4 parameters), and
NODDI (3 parameters). Stacked residual regression archi-
tectures work well because deeper networks perform better
at approximating more complex nonlinear functions like R-
VERDICT equation (Eq.1). The addition of soft-thresholding
module in Model 3 improves the estimation of R-VERDICT
maps, especially on the volume fraction maps. It is because
soft-thresholding could handle noise in real MRI data better,
which may not be an exact match with synthetic training data
[6]. We also show that R-VERDICT maps generated by deep
residual regression networks retain cancer conspicuity.

There are several limitations that we would like to ad-
dress. Firstly, we considered only VERDICT-based qMRI
models for prostate. Secondly, we train the model on syn-
thetic training data with noise matching level, which is an
ideal condition. In the future, we will assess our findings by
considering additional diffusion models and more noise vari-
ation in synthetic training data.

5. SUMMARY

Deep regression network is a viable approach for g-space
learning on R-VERDICT model fitting. The use of synthetic
training data requires less time and yields good quality pa-
rameter estimation without the need of paired parametric
maps from real MRI data. While most g-space learning stud-
ies utilise simple MLP, we show that deep residual regression
networks are more robust for complex models with many
parameters, such as R-VERDICT, and can improve lesion
conspicuity. Hence, the maps can be used for improving PCa
diagnosis by better targeting biopsies and avoid unnecessary
biopsies.
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