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A b stra ct

This thesis examines consequences of correlation structure in three areas of applied proba

bility: mathematical population genetics, birth processes, and “exchangeable” measures on 

distributive lattices. The first three chapters concern probabilistic models in genetics. Ini

tially we generalize the Moran model to allow more than one individual to reproduce per 

generation, investigating the effect of this on the behaviour of the model. The conclusion is 

that while things apparently happen faster, the basic properties are the same. This model also 

serves to unify conventional neutral theory, as it links the Moran model to the Wright-Fisher 

model.

We then consider aspects of the neutral theory. Commonly a neutral model is supposed 

in which successive generations behave independently. This may well be unrealistic. Here we 

take the Moran model and adapt it to allow for correlations in offspring numbers between 

generations. An analysis of the model shows that the conditional distribution of allele fre

quencies is unchanged, although the expected number of alleles present decreases. Similar 

results are also obtained when correlation is introduced to the more general model with more 

than one reproducer per generation. In each case the approach involves a detailed study of 

the genealogy of the models.

Next we consider the effect of correlation in Markov Birth Processes. We show that 

if the birth rates form a super(sub)-linear sequence then the sizes of its families are posi

tively (negatively) correlated. From this we prove a conjecture of Faddy which says that if 

the birth rates of a process X(<) are super(sub)-linear then the variance ratio V(t )  (defined as 

VarX ( t ) /  ( E X ( t ) [ ^  -  l j^)  is greater than (less than) 1.

Finally we study correlation inequalities. The FKG Inequality is a well known result 

giving sufficient conditions for positive correlations in probability measures on distributive 

lattices. There are few analogous results concerning negative correlation. We give sufficient 

conditions for a particular form of negative correlation when the underlying distributions 

possess a certain exchangeability property.
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C hapter 1

INTRO DUCTIO N

This thesis seemingly contains several d isparate  parts, the  chapters concerning 

themselves variously w ith m athem atical population genetics, b irth  processes, 

and inequalities on lattices. However, while it was not the m otivation for 

studying these subjects, a linking them e does emerge: th a t of ‘correlation’. 

Cham bers English D ictionary defines correlation as ‘the s ta te  or act of being 

related to  one ano ther’. The interest of course depends on w hat the correlation 

is acting upon.

In chapter 5 we find probably the most na tu ra l in terpretation . We are ul

tim ately  interested in the possible correlation occurring between the sizes of 

families whose to ta l num ber is modelled by a b irth  process. C an we find sets 

of transition  rates such th a t the sizes of families are positively (or negatively) 

correlated? In chapters 2-4 the correlation is of ano ther type. We model the 

evolution of populations of DNA or genes by adapting  a popular standard  

model to  allow for correlation in the choice of parents in consecutive genera

tions. How does this effect the outcome? Finally, in chapter 6 , we investigate 

correlation inequalities. The FKG inequality is a  well known result which 

can be in terpreted  as a  statem ent of positive correlation. There are very few
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analogous results for negative correlation in this context, and we present a 

first step in th a t direction.

Despite the  linking them e just outlined, the  subject m atte r of the chapters 

varies quite  widely. Consequently, there is no a ttem p t here to  present a survey 

of the  relevant existing theory or detailed in troduction to  the m athem atics 

involved: it being felt more na tu ra l to  do this separately for each subject. We 

therefore content ourself w ith an outline of each chap ter and the  m otivation 

for th a t which is within.

As s ta ted  before, chapters 2-4 all revolve around the  subject of m athem at

ical population genetics, and as such, form som ething of a  unit. There is a 

very large existing body of theory concerning the evolution through tim e of 

a population of individuals. We use the  term  ‘individual’ loosely here: com

monly, w hat we are referring to  is a population of sequences of DNA. DNA 

can be thought of as a long strand  of d a ta  which provides essentially all the 

inform ation necessary in  the  construction of living m aterial. P articu la r sec

tions of the DNA molecule correspond to  different pieces of inform ation. For 

instance, one section may define hair colour and another blood group. A lter

natively it may be size and shape of petals etc. We call a  sequence of DNA 

which defines a  single piece of inform ation (eg. one of the above) a gene, and 

often it is a population of such genes th a t is modelled.

Various simplifying assum ptions are m ade for the  purposes of such m od

els and we interest ourself w ith the  effects of the relaxation of some of these. 

Specifically, in chapter 2 we consider the two m ost popular m athem atical m od

els of evolution: the M oran model, in which there is only one offspring (and 

hence death) per generation (population size being fixed); and  the W right- 

Fisher model, where the  entire population dies and is replaced by offspring 

between each generation. The conclusions following from these two models
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are sim ilar when the  population size is large, the differences being explained 

by th e  effects of time-scaling: in a sense, one model can be viewed as an  ac

celerated version of the other. Consequently we present and analyse a  class 

of models which can be seen as unifying the  two apparen tly  different models 

as opposite ends of a  single spectrum . As one m ight hope, we find th a t all of 

this unifying class of models behave in the same way (m odulo time-scaling). 

W hile th is is not directly related to  correlation it provides a  useful framework 

for extending the  results of chapter 3, as well as adding insight to  the  models 

themselves.

In chap ter 3 we proceed to  relax ano ther of the common assum ptions of 

m athem atical models of genetic evolution, (one th a t is inherent in b o th  the 

M oran and W right-Fisher models): the assum ption th a t offspring num bers 

in different generations are independent. In  m any circum stances it m ay be 

thought reasonable th a t if a particu lar individual has a large num ber of off

spring in  one generation, it may be  likely to  have a larger th an  expected 

num ber of offspring in the next generation. In  o ther words, offspring numbers 

in different generations m ay be correlated. Clearly there are m any possible 

form ulations of a model to  allow for such a phenomenon. We propose a simple 

ad ap ta tio n  of the M oran model (where there is only one parent per genera

tion) which says (inform ally) th a t there is a  probability  p , (0 <  p  <  1), th a t 

the paren t in the next generation will be the sam e as the  parent in the  imme

diately previous generation. We note th a t this is not intended to  represent a 

situa tion  in which selection is acting although this m ay indeed have a similar 

effect. W hile our approach is clearly a  simplistic one, the  subsequent analysis 

suggests th a t for a  wider class of models containing this sort of correlation 

(cf. chap ter 4), the  behaviour will rem ain fundam entally  the same. T he bulk 

of this chap ter has appeared in Donnelly and M arjoram  (1989).



C hap ter 4 represents the  final installm ent of m athem atical genetics. Es

sentially it is an  am algam  of the ideas in the preceding two chapters, and to 

some ex ten t indicates how our conclusions about models including correlation 

m ay be dependent upon the actual form of the model chosen. We see w hether 

correlation betw een parents, of the type ju s t outlined, has any effect on some 

of the  broader class of models presented in chap ter 2. For those we are able 

to  analyse, we find th a t the conclusions are substantially  the  sam e as before.

For th e  rem aining parts  of the thesis we move away from  genetics. In 

chap ter 5 we concern ourself w ith correlation in b irth  processes and relate 

this to  a  conjecture due to  Faddy (1990). He notes th a t if the  b irth  rates {A,} 

of a b irth  process form a convex sequence, then  we find there is more variation 

th an  there would be if the rates were linear (ie. At =  i \  for all i), and conversely 

there is less variation if the  {A,} form  a concave sequence. He reports th a t 

although com puter sim ulations support this conjecture, no proof has yet been 

found. W e first relate this condition on the  variances to  a  sta tem en t about 

correlations between family sizes (viewing descendants of a  particu lar initial 

individual as belonging to  its ‘fam ily’), showing th a t it is equivalent to  the 

existence of positive or negative correlation respectively. We then  present a 

proof of the  conjecture showing the existence of the  required correlations via a 

consideration of the m onotonicity of the  b irth  process. Aspects of this chapter 

feature in Donnelly, K urtz and M arjoram  (1992).

C hap ter 6 relates to  correlation inequalities. T here already exists a famous 

and  m uch used result relating to  aspects of positive correlation of measures 

on a lattice: nam ely the FK G  inequality. T here has been little  work on the 

subject of negative correlation in this context however. Initially  we spend a 

little  tim e to  determ ine w hat m ight represent a  reasonable definition for such 

negative correlation by looking a t various examples of situations where some
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sort of negative correlation is (intuitively) clearly occurring. This leads to  a 

na tu ra l definition, and from this we proceed to  prove a result which m ay be 

viewed as a partia l converse to the FK G  inequality. W hile there exist related 

results giving conditions on a m easure /i which lead to  it having negative 

correlations of some sort, their in terpreta tion  is far from clear. O ur result 

has the natu ra l in terp re ta tion  th a t the underlying m easure fi corresponds to 

a d istribution on an exchangeable set of random  variables.

Finally, some comments regarding organisation. In order to  keep the 

am ount of algebra down to  m anageable levels, and so improve readability, 

some of the more routine or lengthy m athem atical details are relegated to 

separate appendices. There are three of them , corresponding to  work in chap

ters 3,4 and 6. The num bering scheme for equations herein works as follows: 

We label definitions theorems etc. w ith two numbers, the  first is the num ber 

of the  chapter w ithin which it is found, the second is the num ber of the  re

sult itself. Im portan t form ulae are num bered in the  same fashion, b u t in a 

separate sequence.
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N o ta tio n

x ( N )  ■■ 

x ( N )

[•] =  integer part

=  the number of elements (or modulus)

0 ( N a) =  lim
v '  N ->  o o

x ( N )
N a

< c c some positive constant

= o ( N a) =  lim
N —*oo

x ( N )
N a

=  0

C =  inclusion (not strict)

c A d =  greatest lower bound of c and d

c V d =  least upper bound of c and d

IR =  the real numbers.
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C hapter 2

POPULATION GENETICS  

MODELS

2.1 A  U n ify in g  C lass o f  G e n e tic  M o d e ls

T he sub ject of population genetics is an old and well established one and 

a good to u r of it is provided by Ewens (1979). During the course of its 

developm ent m any models of population behaviour have been proposed and 

investigated, but here we will consider only those models which assume a fixed 

population size N .  This is an  assum ption which proves not to  be as restrictive 

as it sounds. As long as the  changes in population size are independent of 

genetic com position the analysis goes through w ith very little  modification. 

Indeed, often we will consider effectively infinite populations anyway. Two 

models of a  fixed size population stand  out as being by far the most popular 

and m ost analysed. The first is due to  S.W right (1931) and R .A .Fisher (1930), 

while th e  second was introduced by P.M oran (1958). Here we will briefly 

describe b o th  models and their properties and then  move on to  consider a 

more general class of models which m ay help unify their separate theories. A
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reader requiring a more detailed investigation of these models should consult 

the aforem entioned Ewens (1979), or alternatively K ingm an (1982a).

F irstly  though, we will outline the fu rther assum ptions m ade by these 

two models and briefly discuss the ir im port and effect. N ote th a t because 

of the  common applications of this theory we will use the term s ‘genes’ and 

‘individuals’ interchangeably, as we will ‘alleles’ and ‘types’.

(i) H aploid/D iploid. We assume the population is haploid ra ther th an  

diploid, ie. each individual has only one parent and all individuals are of the 

same sex. This somewhat restricts our field of attention! However things 

are not as bad as they sound. M any questions of genetic in terest can be 

answered by considering the  haploid gametes which transm it inform ation be

tween generations. A lternatively we can consider the  m itochondrial DNA 

present in most cells which is also tru ly  haploid. Thus we avoid overly re

stricting ourselves, although naturally  the development of similar theory for 

diploid populations would still be of m uch interest.

(ii) N eutrality. We assume th a t no type of individual is a t a selective 

advantage. In o ther words, no individual is more likely to  reproduce than  

ano ther and the distribution of offspring numbers is the  sam e for all genetic 

types. This is obviously a  m ajor assum ption. W hile most everyone would 

now agree th a t some neutral loci exist, the extent of neu tra lity  has been a 

cause of hot debate for m any years now (see Ewens (1977) or K im ura (1983) 

for example). We have little  to  say on the m atte r here, bu t hope to  add to 

the discussion in the two chapters following this one by introducing models 

which weaken the assum ption of neutrality.

(iii) Exchangeability. This is closely related to  neutrality. We assume th a t 

all individuals are probabilistically the same and th a t any labelling/ordering 

we care to give them  is of no significance in the analysis. In  particular, we
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assum e

P(ui = ni\ i =  1, 2, . . . ,  n) =  P(v{ = n i;i =  1, 2, ,  n )

where the {n-} are any perm utation  of the  {n,} and V{ is the  num ber of 

offspring of the zth individual in our population.

(iv) Single locus. W hen considering genetic populations we commonly 

consider only single loci. For example, if we are modelling a sequence of 

DNA we consider only one gene or alternatively one base (th e  sim plest unit 

of genetic inform ation). It was common to  then  allow this unit to  be one of 

a  finite num ber of types. It is easy to  see th a t this is not very restrictive a t 

all. If for example we model the behaviour of a  population of single bases of 

DNA we have four possible types (corresponding to  the  four base types). To 

m odel a  population of sequences of DNA of length / we can simply consider 

th is to  be a collection of (single locus) individuals which each has 4* possible 

types and conduct the analysis as before. Clearly for large I we quite quickly 

begin to  have an unm anageable num ber of possible types and this has led 

to  the  introduction of ‘infinite alleles’ models, which unsurprisingly allow an 

individual to  be any one of an infinite num ber of types. These models have 

proved of much use recently.

A further consideration is th a t of linkage. This is the  phenom enon whereby 

the  fate of one allele is affected by th a t of a  physically nearby allele which 

may be a t a selective advantage say. This may cause the first allele to  be more 

successful th an  m ight otherwise be expected and so its frequency would tend 

to  be higher th an  m ight ordinarily have been the case. This requires separate 

trea tm en t and we investigate it further in subsequent chapters.

(v) Spatial effects. We will assume there are none. So there is no tendency 

for related individuals to  be found geographically closer to  one another. This 

is of no consequence unless spatial considerations are likely to  be  particularly
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im p o rtan t, in which case the sort of models discussed here are not really the 

right ones to  be using anyway.

So, given the  assum ptions just outlined, we now detail the two models most 

often used.

T he W right-Fisher model assumes the existence of discrete non-overlapping 

generations G0, G 1? G2, . . .  which each contain a  fixed num ber of individuals 

N .  T he members of generation G r+1 are the offspring of the m embers of G r 

where, as before, the num ber of offspring of the j th  m em ber of G r is a random  

variable Vj, where YljLi Vj =  N .  The Vj are assumed to  have a sym m etric 

m ultinom ial d istribution  w ith the behaviour of successive generations being 

independent, so

ni  H------ 1- n N = N
N\

P(uJ =  n i -,(j = l , 2 , . . . , N ) )  = n i W _ _ nN<NN „i =  0, l

j  =  i , 2, . . . , i V

N otice th a t this means the model has a  particularly  appealing s tructu re  when 

looked a t w ith  tim e running backwards: each m em ber of G>+i simply chooses 

a paren t a t random , independently and uniformly, from the N  individuals of 

G r .

In con trast, the M oran model posits th a t we have a population of size N  

evolving th rough continuous tim e (say) where generational events occurs as 

points of a Poisson process of ra te  1. At each of these generational tim e-points, 

one individual only is chosen uniformly and a t random  to  die and  sim ulta

neously ano ther individual (also chosen a t random , and independently from 

the first choice) gives b irth  to  a single offspring, (all choices in one generation 

being independent of events in o ther generations). This second (parent) indi

vidual, m ay or m ay not be allowed to  be the first (dying) individual, according 

to  the context of the  model, bu t the  subsequent analysis and results are sub
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stan tially  the  same in either case. The M oran m odel also has a convenient 

s tru c tu re  when looked a t backwards in time.

B oth  of these two models can be set in either discrete or continuous time. 

In  the  first case t simply counts the generations (which are labelled 0,1,2,...), 

and in  the  la tte r t is continuous and generational events happen a t ra te  1. 

The analysis is fundam entally the same in either setting.

Essentially these models are concerned simply w ith reproduction. However 

most analysis is perform ed when we have the additional concern of random  

m utations affecting offspring individuals. The early versions of such models 

allowed an  offspring gene to  be one of only a finite collection of allelic types and 

work was then  undertaken to  find the stationary  or transien t d istribution  for 

the  frequency of a particu lar allele. However subsequent advances in biological 

theory led to  the realisation th a t it would be more realistic to  allow for an 

infinite num ber of allelic types. So now, when a parent gives b irth  to  an 

offspring, there  is a  probability u th a t the  offspring m utates to  a  completely 

new type never before seen in the population, otherwise w ith  probability 

(1 — u)  its type is the same as th a t of its parent.

These new types of model (ie. the infinite alleles models) differ m arkedly 

from the  others in th a t eventually any particu lar allelic type will vanish from 

the  population, to  be replaced by new types which have arrived via m utation. 

Hence, a lthough we are still in terested in behaviour a t stationarity , there 

are no longer any stationary  distributions for the frequency of a particu lar 

allelic type. So instead we concentrate on investigating allelic patterns: the 

d istribu tion  of the num ber of different allelic types present a t a particu lar 

m om ent in time, and the num ber of individuals of each type found.

This sort of analysis was initially perform ed by looking a t the  development 

of the models forward in time. Indeed the Ewens Sampling Form ula was de
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rived a t length in such a m anner. However analysis is much quicker and easier 

when one studies the struc tu re  of the family tree of the process backwards 

through tim e, and this is how much current theory is obtained. In  w hat follows 

we will continually use ideas and terminology from the recently popularized 

genealogical approach to  neutral models. For detailed background the reader 

is refered to  Tavare (1984), Donnelly and Tavare (1987), or K ingm an (1982a). 

For our purposes the following outline will suffice.

Initially we suppose no m utation  is occurring and take a  sample of size 

n  say from a population a t equilibrium. We arb itrarily  label the  generation 

from  which we have sampled to  be generation 0 (ie. G 0). We now define 

equivalence relations 77/ on the set {1, 2 , . . . ,  n} as follows:

77.o {(b 0> — I? 2 , . . . ,  77.}

and 77s contains the pair ( i , j )  if the «th and  j th  individuals in our sample 

share a common ancestor in G_a. So

77a C 77.a+1.

Thus, for either of the two models m entioned previously, the  sequence (77s) 

is a  M arkov Chain which describes the family tree of our sample going back

ward through time. Each equivalence class in 77a corresponds to  an  individual 

in Q_s and changes of s ta te  in (77a) occur when two equivalence classes are 

combined, u ltim ately term inating a t tim e T  (say) as

K t = {(*, j ) :  i , j  =  1, 2 , . . . , n }

Thus far the  description applies to either model bu t they now diverge 

slightly. For the W right-Fisher model we define a new process R t by changing 

the time-scale of 77, viz;

Rt R'[Nt\i 
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(where [•] represents the integer part). We now find th a t, in the lim it as 

N  —► oo, R t converges in d istribution to  a  process called the  n-coalescent 

(which will be described later).

For the  M oran model we need a slightly different time-scaling, so we define

R t = Rl^t/2-

Here th e  result is exact: R t is an  n-coalescent for all N.

T he form al definition of an n-coalescent is as follows. An n-coalescent is 

a M arkov chain w ith statespace E n, the set of all equivalence relations on 

{1,2, . . . , n } .  It s tarts  in s ta te  {(*,*); i =  1,2, . . . , n }  and  term inates in the 

absorbing s ta te  {(*,j); i , j  =  1, 2 , . . . ,  n}. The transition  rates are

— ̂ k(k  — 1) if £ =  77 and k = | £ |

qtv =  1 if £ ~< V

0 otherwise

where £ -*< 77 denotes th a t 77 is formed from (  by am algam ating two of its equiv

alence classes. M any properties of the n-coalescent are known, and for more 

details of these the reader is referred to  K ingm an (1982a) or K ingm an (1982b).

If we now suppose there is a  non-zero probability u th a t an  offspring,

when born, is a m utan t (where u is 0 ( N ~ 1) in order to  achieve a balance be

tween m uta tion  and random  genetic drift), we obtain  sim ilar behaviour. An 

n-coalescent still arises bu t now random  m utations occur am ong the equiv

alence classes of the coalescent as it evolves. Results are possible for m any 

sorts of conceivable m utation  structures, bu t m atters simplify somewhat if we 

suppose th a t each m utation  is to  a unique new allelic type. We proceed as 

follows:

As before we take a sample of n from a population of size N  and define an 

equivalence class valued Markov process R s in an analogous m anner. Specif
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ically we declare two individuals to  be in the  same old equivalence class a t 

tim e s if they share a  common ancestor s generations into the  past and there 

have been no intervening m utations. We label the old equivalence classes 

as £1, £2 5 • • •, where D s is the  num ber of old equivalence classes a t tim e 

s . Next we declare two individuals to  be in the same new equivalence class 

a t tim e s (counting tim e in discrete generational units) if, for some r  w ith 

1 <  r  <  s, they have a common ancestor r  generations ago, where this ances

to r is itself a m utan t, and there has been no subsequent intervening m utation. 

We label the new equivalence classes as 771, 772, . . . ,  t)fs-> where Fs is the  num ber 

of new equivalence classes a t tim e s. This description follows Donnelly and 

Tavare (1986), where they show th a t it is now also possible to  keep track of 

the ages of the  types of individuals w ith a coalescent and subsequently derive 

m any useful results.

In  fact K ingm an, and Donnelly and Tavare, show th a t it is tru e  th a t for a  

broad class of exchangeable models, where family sizes in different generations 

are independent, we get convergence to  the 7i-coalescent. This result does not 

apply to  the M oran model however, bu t a  similar result can be proved using 

different m ethods, (a  different time-scaling is needed).

It is w orth noting a t this point th a t if two models for reproduction have 

the same genealogical structure, then  the processes of genetic in terest which 

count gene frequencies or partitions will behave similarly (Donnelly (1985), 

Donnelly and Tavare (1987)). This is reflected in the fact th a t w ith suitable 

norm alization and the above tim e scalings, b o th  of the aforem entioned m od

els converge (forward in tim e) to  the  same diffusions (Ewens (1979)). This 

result and o ther related diffusion results are a consequence of genealogical 

robustness.

So we see th a t in some sense, in the  lim it, the  W right-Fisher model is
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like a  speeded up M oran model. B ut in the W right-Fisher model there are 

N  offspring per generation, whereas in the M oran model there is only 1 . So 

w hat would happen if 2 or 3 individuals were born per generation? O r if some 

proportion of the population size N a were born? Do we get effectively the 

same behaviour w ith a  gradual transition  of the tim e-scaling as the num ber 

of offspring increases, or does the  population behave in an entirely different 

fashion? Also, will we still be able to  use genealogical approaches to  derive 

results? Finally, can we prescribe a na tu ra l class of models which includes 

and explains the behaviour of bo th  the W right-Fisher and M oran models as 

particu lar cases of a  unifying whole ra ther th an  having, as a t present, to  

consider them  as two separate models which have sim ilar properties? It is the 

purpose of this chapter to  investigate exactly these questions.

2.2  M o d e l S p ec ifica tio n  an d  A n a ly s is

In this section we will consider models of a population of size N  where between 

1 and N  offspring are bom  a t a time. We could s ta te  the  model in either 

discrete or continuous tim e w ithout fundam entally changing its properties.

We will set the model in continuous tim e by supposing th a t generational 

events occur a t ra te  1 in a population of fixed size N  (the  individuals of which 

we arb itrarily  label l , 2 ,...iV for convenience). W hen such an event occurs 

c N a, (0 <  a  <  1, c > 0) offspring are born, and each independently picks a 

paren t uniformly and a t random  from the existing population. Hence if the 

num ber of offspring born to  individual i is a random  variable v\, i =  1, 2 , . . . ,  iV 

then  the join t d istribution  of offspring num bers is as follows:

/ / / c N a* N
P{v l = n'1,i/'2 = n 2t. . . , v ' N = n N) =  — ^ ^ ----------, where v\ =  cN a>

N c™ani\ri2' • • • tin '. v-J
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and 0 otherwise. Note th a t we are assuming here th a t c and a  have been 

chosen so th a t c N a is a positive integer less th an  or equal to  N .  This is 

merely of notational convenience. Note also th a t the  v\ are exchangeable 

and independent of offspring numbers in o ther generations. The offspring 

may be subject to  m utation, (each offspring m utating  to  a unique new type, 

independently and w ith probability u), bu t this aspect of the model does 

not effect our im m ediate analysis. After generating the offspring, we then  

independently pick (uniformly and a t random ) c N a members of the  previously 

existing individuals to  die. Thus the population is of a  constant size.

Note th a t there is an  alternative construction of this model, and it is this 

version we will use in the analysis. In this version we break down the gener

ational event in to  three steps:

Step 1. The c N a offspring choose their parents, independently, uniformly, and 

a t random , from the original population.

Step 2 . N  — c N a of the  original population are chosen, uniformly, w ithout 

replacem ent, to  each have an additional offspring (independently of step 1), 

which is an  identical copy of itself, (ie. not subject to  m utation).

Step 3. All of the original population of N  die.

This version clearly gives us a model w ith exactly the same behaviour as be

fore, bu t the offspring num ber d istribution has changed We denote these new 

offspring num bers by {i/,} and note th a t

N

2 >  =  jv.
t=l

Again the are exchangeable and independent of offspring num bers in other 

generations.
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2 .2 .1  T h e  A n a ly sis

To analyse this model we shall look a t the genealogy of the  process. F irstly  we 

sample n  individuals a t random  from the  population in equilibrium . We label 

this generation as generation 0. We now define an equivalence relation R s on 

the  set of integers 1, 2 , . . . ,  N  which contains the  pair ( i , j )  if and only if the 

ith  and j th  individuals in the sample have a common ancestor in generation 

—t. So (R s) tracks the ancestry back through tim e (ie. the genealogy). Note 

th a t Rq =  {(z, z) : z =  1 , 2 , . . . ,  n} and R a C R a+x. We then  seek the  conditions 

under which the Markov process (R a : s =  0 , 1 , 2 , . . . )  converges (after tim e 

scaling) to  the n-coalescent.

This approach closely follows the analysis of the  general class of exchange

able models in (K ingm an (1982c)), so we s ta rt by proving an  extension of his 

Theorem  1.

T h eo rem  2.1 Suppose that as the population size N  tends to infinity, the 

variance a 2 ofv{ (the offspring number distribution) converges in the following 

way

lim <j2N ^ a  ̂ =  S 2 (0 <  a  <  1, some S  > 0)
N —*oo

(where f(ot) is some function of  a )  and that

sup.E(z'i) <  oo for all k >  1
N

Then the finite dimensional distributions of the process

Rt — f(a)s~2t]

converge to those of  the n-coalescent.

Note th a t the fact th a t the i/t- are exchangeable means th a t the  variance of
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is identical for all i (denote it by cr) and so we can w rite

=  lim N f M o-2 = S 2.” N—hx>

Hence we can w rite R t as

Rt  =  ^[Na~2t]-

Proof:

We follow the logic of K ingm an’s proof. F irstly  we need to  find 

Pin =  P(R ,+1 =  P I R s =  0  for £, 77 G E n

where E n is the  set of equivalence classes on { 1 , 2 , . . . ,  n}.  This probability is 

zero except for the case rj C £ when we label the equivalence classes in 77 as 

C1 (7 =  1, 2, . . . ,  a) and those in £ as

(7 =  1, 2, . . .  ,a;  f) =  1, 2, . . . ,  &7)

where

c, = U
(3=1

and the correspond to

7

7=1

particu lar individuals in the offspring generation, p ^  is the  probability th a t 

if individuals are selected a t random  from this generation and labelled as 

C-y/j, then  all the C^p for each fixed 7 have the same paren t, and th a t these 

parents for different values of 7 are distinct. This leads to  the  conclusion tha t

P i n  ~  P [ ( ^ ) k  ' ^ X v h ') b \ ( . v 32)1*2 *'  ' ( u j a ) b a ] ( 2 -1)

when £ C 77, and zero otherwise, and we define

( N ) k =  N ( N  — ! ) • • •  ( N  — k + 1)
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and  the  sum m ation is over all d istinct • • • ->ja in 1 <  j% <  TV.

Considering first the case where 77 is formed from £ by am algam ating two 

of its equivalence classes (w ritten  £ -< 77) we get an  upper bound on p ^

Hence

f t ,  < E  |(JV )j‘iV*-2 y j  Vi{vi — 1 ) |  

=  (N)ZlN k~1E{v1(vi -  1)}.

^   N k- i__________
n " N H ° ) N ( N - l ) - - - ( N - k  + l )

S 2 N k~
N f(a) ATt-i +  ck- 2N k~* +  ■ ■ • +  ct N  +  co 

for constants c^_2, C£_3, . . . ,  Co

(in fact, the  c; are Stirling num bers.)

______________ 5 2/iV f^)_______________
TV +  c/._2 4- Cfc_3TV-1 +  c^_4TV~2 +  . . .

=  j v & )  +  (2-2)

We also get the lower bound

f t ,  >  -  1)} -  (k -  2)N ~ 2E ( v \ )  -

and so we have

f t ,  >  N - ' j ^ + 1 ^ 0 ( N - 2)

k - 2  ^
N ~ 2E { Viu2},
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ATi+/(«)

asym ptotically.

So combining (2.2) and  (2.3) we get

Piv = j ^ m  + o ( N - ^ ) ),

(or alternatively, p^v =  iV_1ct2 n +  0 ( N ~ ^ 2+̂ a^)) ,

for £ -< rj.

Now consider the  case where £ < r) bu t £ -< 77 is false. We have a < k — 2 

and so (2.2) gives

I* , <  ( iv ) r ‘ (iv )0£ ;{ ^ }

as before. Thus we see th a t

p(„ =

And so, since we can w rite p w =  / + cn + o ( i v 1+ « “)), we conclude in a similar 

m anner to  K ingm an th a t the stochastic m atrix  Pn  =  ( P ^ )  satisfies

lim P ^ 2*1 =  «<n
N -+  00 yv

for all £ >  0, where is the infinitesimal generator of the  n-coalescent. □ 

Note th a t we can now apply this result to  our model w ith c N a offspring 

per generation so conclude th a t it behaves as an  n-coalescent in the limit 

provided we scale tim e via the m ap

1 1—> N a j f t

and show th a t the following two properties are satisfied:

(i) s\xpN E ( i / k ) < 00, for all K  >  1;

(ii) limjv-*oo cr2N f ^  =  S 2, for some S  > 0).
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To show (i), let 771, 772, . . . ,  tjn be the offspring num bers for a  W right-Fisher 

model w ith population size N .  T hen it is known (see K ingm an (1982c) for 

exam ple), th a t

sup E r j f  < 00 for all K  >  1.
N

There is an  obvious coupling of the processes for which i',- — 1 <  rji and hence 

it follows th a t

E ( v ? ) < E { { m  +  l ) * ) < o o ,

as required.

To show (ii), note th a t

Var(i/;) =  Var(A) +  V ar(B),

where A  and B  are the following random  variables:

x . l 0 w ith prob. c N a/ N

1 w ith prob. N~cN°-N  ’

Binomial(ciVa , —•).

Now E ( A )  = c N a/ N  and E ( A 2) = (1 -  ^ )  gives:c N a )  g i v e s ;

c N a \  f  c N a ' 2. . /  c N a \  (  c N a \
Var (A) =  ( l - —  )

c2

And

So

j V  l - o r  N 2 ( l - a ) ’

1 N - l
Var (B)  =  c N a

N  N  '

v  , v _  _ 2 c _______ c2________c _
a r w  iVt1-") iV2̂ -" )  N 2~a '
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Thus, if a  < 1 we define f ( a )  =  1 — a , to  get S 2 =  2c, and if a  =  1 we define 

f ( a )  =  0, (recall we m ust have c <  1,) to  get S 2 =  c(2 — c). In  either case, we 

have satisfied p roperty  (ii), and so we can apply the theorem  to our model to  

conclude th a t we do indeed get convergence to  the  n-coalescent, as N  —> oo.

Therefore we conclude th a t the genealogy of this new class of model be

haves, asym ptotically as N  -> oo, as an  n-coalescent. We note th a t if we set 

c =  1 and  a  =  1, our model is in fact the W right-Fisher model. Conversely, if 

we set c =  1 and a  =  0 we have the M oran model, (in the  form which allows 

the  paren t of two offspring to  itself die), although the  general result is tru e  for 

the  M oran model for any N .  O ther values of c and a  give a variety of models 

which m ay be thought of as interm ediate, and show th a t their behaviour is 

as one m ight have hoped.

Note th a t in most models of this type it is common to  include m utation  

effects (cf. chapters 3 and 4). The usual form for this is to  introduce a prob

ability 6 th a t any given offspring is of a  new -unique type (independently for 

each offspring), otherwise the  offspring is of the  same type as its parent. While 

we have not considered this here, we note th a t the action of m utation  operates 

independently of the subjects studied here and so the results herein will be 

uneffected if m utation  is introduced.
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C hapter 3

M O RAN MODEL W ITH  

CORRELATION

3.1 In tr o d u c tio n

Two of the  features common to  all neu tra l models of reproduction are the 

fact th a t in a  particu lar generation the num ber of offspring born  to  a given 

individual is independent of the  genetic type of the  individual, and the fact 

th a t the offspring numbers in different generations are independent. Indeed, 

the existence of such a complete neu tra l theory, and in particu lar the recent 

success in studying such models via the ir genealogy, depends crucially on 

the sym m etry which results from these two assum ptions. T here has been 

considerable recent interest in com paring the predictions of neutrality  w ith 

those which m ight be appropriate  for models in which selection is acting, w ith 

a  view to  using d a ta  to  test the applicability of the  neu tral theory. (See, for 

example, W atterson (1977) or Ewens (1990).) The in troduction of selection 

destroys the sym m etry of neutrality. N either of the above assum ptions obtain, 

and analysis of the model becomes substantially  more difficult.
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O ur purpose here is to  study a model in which the second assum ption is 

relaxed while the first is retained. Im agine following the  genes a t a selectively 

neu tra l locus which is in linkage disequilibrium  w ith a locus a t which selection 

is acting. Individuals w ith a  large num ber of offspring in one generation may 

have been so lucky because they possess a particu lar gene a t the  selected locus 

and consequently they (or their offspring) will have a tendency to  have more 

offspring ( th an  average) in the following generation. If the existence of the 

second (selected) locus is unknown, the effect of watching the  neu tral locus 

will be to  observe correlations in offspring numbers in successive generations, 

while the  offspring numbers themselves are still independent of the actual 

allele a t the  neutral locus. O ther situations, for example varying environ

m ental conditions acting either on the  “neu tra l” locus itself or an  associated 

locus, m ay have the same kind of effect. We m ust stress th a t we are not sug

gesting th a t exactly these scenarios will give rise to  correlation in precisely 

the  form we discuss, b u t ra ther th a t  possible scenarios m ight exist, and so 

the  phenom enon of inter-generational correlation in reproductive mechanisms 

w arrants consideration.

O ur principle in terest is in examining the  effect of this sort of departure 

from the usual assum ptions of neutrality  on the testing and estim ation proce

dures which have been developed and applied in this context. The approach, 

as in recent work throughout the neutral setting, is to  focus a tten tion  on the 

genealogy induced by the  model. The existence of selection has proved a m a

jo r stum bling block for genealogical m ethods. A fu rther novelty of the current 

study, then, is th a t the use of genealogy, in spite of the relaxation of one of 

the key assum ptions, m ay represent a  (small) first step tow ards the solution 

of more general problems.

F irst of all we introduce the model we will be considering, (a  variant of the
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M oran model), and proceed to  examine the  line of descent process and  the 

d istribution  of the num ber of alleles in a  sample taken  from the  population a t 

equilibrium . We then  extend this to  a study of the  d istribution  of allele fre

quencies, in age order, in the  sample. Finally we discuss the robustness of the 

results and the consequences for the use of statistical procedures appropriate  

to  the  neu tra l theory.

3 .2  T h e  M o d e l

Consider a population of fixed size N  haploid individuals (or genes) evolving 

through discrete generations. In each generation one individual is chosen 

to  have a single offspring and one individual is chosen a t random  (from the 

rem aining N  — 1 individuals) to  die. The population in the next generation

consists of the surviving individuals and the  new offspring. We introduce

correlation by supposing th a t the individual chosen to  reproduce will be  the  

reproducing individual in the previous generation w ith probability  p, 0 <  p < 

1, and otherwise will be chosen a t random  from  among all the  N  members of 

the  population. Formally we define a M arkov chain { X r : r  =  0 ,1 , . . . } ,  w ith 

statespace E n  x E n , where E n  =  { 1 ,2 , . . . ,  JV}, and  transition  probabilities

P ( X r+1 = ( i \ j )  \ X r =  (l\* ))

( p +  (1 ~  P ) / N ) / ( N  — 1) i ' , j € E N, i' = i, j ± i

(1 -  p) / f N(N -  1)̂  i ' , j  e  E n , i /  i, j  ±  i

0 otherwise

and the initial distribution

P ( x o  =  (»,,•)) =  i/^v (jv  - 1 |, i , j  e E N, i  #  j.
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Label the individuals in the initial generation from the set E n  and give off

spring the label of the individual they replace. The in terp re ta tion  is th a t 

if X r =  («, j ) ,  then  in generation r  the  individual labelled i will reproduce 

and  the individual labelled j  will die. (T he assum ption th a t these two indi

viduals are distinct is common to m any versions of the model, bu t is of no 

consequence.) The offspring individual will be of the same allelic type as the 

parent w ith probability 1 — u, or w ith probability  u (>  0) will be of a novel 

type, never before seen in the population. O ur process is thus a modified ver

sion of the  discrete-tim e, infinite alleles, M oran model. (N ote th a t the case 

p  =  0 corresponds exactly to  the M oran model.)

O ur interest lies in studying the genetic com position of samples taken from 

the  population a t equilibrium. In this section we focus a tten tio n  on L(£), the 

num ber of lines of descent of the  sample: L(t )  is the num ber of individuals, 

t generations into the  past, who have descendants, w ithout intervening m u

tations, in the sample. In  the  uncorrelated case the  behaviour of L{t)  is well 

understood (Griffiths (1980); Tavare (1984)): call the  generation in which 

the sample was taken 0, and label the preceding generations —1, —2 ,. . . ;  the 

process L(t)  behaves as a death  process (set in discrete tim e in this context) 

w ith lines of descent being lost either because two of the individuals in gen

eration t w ith  non-m utant descendants in the sample (such individuals will 

be said to  be in the  line of descent a t tim e t) share a common ancestor in 

generation — t — 1, or because one of these individuals is the  m u tan t offspring 

of an  individual in generation — t — 1.

The introduction of correlation means th a t the process L( t )  is no longer 

Markov: however, when it changes it will still decrease by exactly one, for one 

of the two reasons above. The probabilities of the above events, though, will 

now depend on w hether or not the reproducing individual in generation — t
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was in the  line of descent. Consider instead the process

A(<) =  (L (< ),a(t)); < =  0 ,1 ,2 , . . .

where L( t )  is the  num ber of lines of descent of the  sample a t tim e —t and 

a( t )  =  1 if the reproducing individual in generation —t is in the  line of descent 

and  0 otherwise.

Before proceeding we note the chain {X r , r =  0 ,1 ,2 , . . .}  is tim e reversible. 

I t is easy to  check th a t the equilibrium  distribution  places mass

nM =  i / n ( n  - 1)
on each pair (i, j )  £ E n  x E n  w ith i ^  j ,  and hence th a t, w ith the given 

initial d istribution, the chain is stationary. Reversibility is guaranteed (Kelly 

(1979)) by the fact th a t

n (iii)P ( x r+1 =  ( M )  I x T =  (i, j)) =  n (W)P ( x r+1 =  (;, j )  | x T =  (M ) )

for each pair (i, j ) , (h , /) 6 E n  x E n ,  which follows easily in this case, since 

P ( X r+1 = ( M )  I Xr  =  ( i j ) )  = P ( X r+1 = ( i j )  I X T =

As a consequence, the behaviour of the process when viewed backwards in 

tim e is (stochastically) equivalent to  its behaviour forward in time. In  par

ticular, when viewed backwards in tim e the  sequence of labels of reproducing 

individuals is Markov, and

P( i  reproduces in generation r \ j  reproduces in generation r +  1)

_   ̂ p + ( l -  p ) / N , if i = j

[ (1 -  P)/N,  if i ±  j.
\

It is thus evident th a t the process {A(t) : t =  0 ,1 ,2 , . . .}  is M arkov and th a t 

the  transition  probabilities follow from the definition of the  model. Suppose
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th a t A(t) =  (k,  1) and recall th a t this has the  in terpreta tion  th a t there are k 

lines of descent a t t ( th a t is, exactly k individuals in generation —t  w ith non

m utan t descendants in the sample) and th a t one of these is the reproducing 

individual in th a t generation. W ith  probability p  -f (1 — p ) / N  this same 

individual will have been the one who reproduced in the previous generation 

(—t  — 1), in which case a line of descent will be lost if the  individual (in 

generation — t) who is chosen to  die is one of the rem aining k — 1 in the line of 

descent (regardless of w hether or not the offspring is a  m u tan t), and not lost 

if it is one of the N  — k individuals outside the  line of descent. Conditional on 

this choice of individual to  reproduce, these two possibilities have probability 

( k — 1 ) / ( N  — 1) and (TV — k ) / { N  — 1), respectively. In either case, a ( t  +  l )  =  1. 

If the reproducing individual in generation — t  — 1 is different from th a t in 

generation —t, then  we may still have A(t + 1 )  =  (k — 1,1), if (and only if) the 

reproducing individual in generation — t — 1 and the individual in generation 

—t who is to  die, bo th  belong to  th e  line of descent a t t. T hus

P(A(t + l) = (fc-l,l)|A(*) = (*,l))

/ / -   ̂ lnr\ k — 1 . s k — l k  — l
=  (p  +  (1  -  P ) / N ) — j  +  (1 -  p ) — w —

k — 1 k k — 1
=  — 1 ~ P)N N  -  1 '

W ith  probability (1 — p ) ( N  — k ) / N ,  the reproducing individual will be outside 

the line of descent a t t +  1 (so a ( t  +  1) =  0) in which case a line of descent 

will be lost if the individual chosen to  die a t — t  is one of the  k in the line 

of descent a t t and the offspring is a m utant, and not lost otherwise. Similar 

argum ents in the case A(t) =  (fc,0) give the o ther transition  probabilities,
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which for convenience we now collect together and rename:

P iW  =  P ( H t  +  1) =  ( k -  1 ,1) | A(i) =  (* ,1 )) — T  +  ( 1 - P ) ' fcfc 1N - 1 v r ' N N - 1 

P , ( k )  =  P ( A ( t  +  1) =  (fc — 1, 0) | A(t) =  ( k ,  1)) =  (1 —

p3(k) = P ( A ( t  +  1) =  ( t , 0) | A(t) = ( k A ) )  = ( l - p ) N ~ k N ~ ^ ~ 1

p4(k)  =  P (A (t +  l )  =  (fc,l) | A(<) =  (fc,l))

N — k N  — k k t v - k N  — k .
=  T + (x -  rt-jy -jy - i-i 'C1 -" ) + ( ! -  P)]y 

p»(fc) =  J»(A(* +  !)  =  (* - 1 , 1 )  I A(f) =  (*, 0)) =  (1 -  p) •* fe _ 1ATAT-1

p6(k) = P ( A ( t  +  l )  =  (fc — 1 ,0 ) | A(t)  =  (fc, 0))

fc , ,A T -fc  k 
=  P j v ^ T ^  +  ^ - P )  jy  j y _ i "

pr(fc) =  P (A (f +  1) =  (fc,0) | A(t)  =  (fc,0))

N - k - 1  , N - k N - k - 1
=  p i v - 1  — jv T T "

pg(fc) =  P ( A ( t  +  1) =  (k,  1) I A(() =  (k,  0))

. k N  — k k N  — k k . .
=  { 1 ~ p ) n T = T  +  P j v T i ( 1 - " )  +  ( 1 - * )) jy

All o ther transition  probabilities are zero, and

P(A (0) =  (n , 1)) =  1 — P(A (0) =  (n, 0)) =  n / N .

T he num ber of lines of descent will decrease from L ( 0) =  n  to  L(oo) =  0,
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in steps of one. Each of these steps will be the  result of either a  coalescence 

(sharing of ancestors) or a m utation. Focus a tten tio n  on K ,  the  (random ) 

num ber of steps which were due to  a  m utation, by s tandard  genealogical 

argum ents (Tavare (1984) for example), K  will be the num ber of different 

alleles in the  original sample.

We now ask about the conditional probability  th a t in the transition  from  k 

to  k — 1 lines of descent, the  line will be lost through m uta tion  or alternatively 

through coalescence. It follows from the description of the  model, and in p a r

ticu lar from argum ents similar to  those given above, th a t the  s ta te  (k — 1,1) 

(ra th e r th an  (k — 1,0)) will be first entered from the  states (&,1) or (&,0) 

exactly because bo th  the individual chosen to  die and the  reproducing indi

vidual in the previous generation belong to  the line of descent. Furtherm ore, 

the  loss of a  line of descent will be due to  a  m utation  when the  offspring is a 

m u tan t and to  coalescence otherwise. For the s ta te  (k — 1 ,0) to  be entered 

first, a  m uta tion  m ust have occurred. T hus in an  obvious notation,

P (line  lost through m utation  | (k , 1) —> (k — 1 ,1))

_ PjjZ\u +  (1 “  P)j f j r^[u _  /o o\
— „ k - i  i k k- i  ~ u (3.2)

P n ZT +  V1 “  P ) n  1v=T

P (line  lost through m utation  | (A:, 0) —► (A: — 1,1)) =

=  u (3.3)

P (line  lost through m utation  | (fc, 1) —► (k — 1 ,0)) =  1 (3.4)

P (line  lost through m utation  | (fc,0) —> (k — 1 ,0)) =  1 (3.5)

Furtherm ore, the Markov structu re  of the process A(-) guarantees th a t these

0 -  P )  N  N - 1 U

( !  ~ P )
k k—1 
J V i V - 1
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conditional probabilities are independent of the  values of A(-) o ther than  those 

im m ediately before a  line of descent is lost. In  particu lar they are independent 

of the  events associated w ith the loss of the preceding (n  — k)  lines of descent.

Consider the  embedded process {<**(&) : k  =  n, n  — 1 , . . . ,  0} defined by 

a*(rc) =  c*(0), and for k =  n, n  — 1, n  — 2 , . . . ,  0,

a*(k)  =  a ( r k)

where

rk =  inf{£ : L{ t ) =  k}

is th e  tim e at which the num ber of lines of descent in the  sam ple first be

comes equal to  k. The sequence { a* (n ),a*(n  — 1 ) , . . .  ,a*(0)}  inherits the 

M arkov property  from A(t), bu t its transition  probabilities are not time- 

homogeneous. Denote by W  the num ber of zeros in the  sequence {a*(n  — 

l),a ;* (n  — 2 ) , . . .  ,a*(0)}. It follows from (3.2) to  (3.5) th a t we can w rite

K  =  W  +  y , (3.6)

where, conditional on W , Y  has a binomial d istribu tion  w ith param eters n —W  

and u. Thus we focus a tten tion  on the  d istribution  of W .

Let

ak =  P(a*(k  — 1) =  1 | a*(k ) =  1)

and

bk = P(a*(k  -  1) =  1 | a*(k)  =  0).

In diagram m atic form the  transition  probabilities Pi (k ) , . . .  ,ps(k)  can be rep

resented as in Figure 3.1. From  this we can see th a t a s tan d ard  first step 

analysis of the  M arkov chain A(t) gives (in the notation  of (3.1))

a* =  Pi(*0 +  P4(k)ak +  p3{k)bk
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FIGURE 3-1

bk =  P s ( k )  + pa(k)ak + p 7(k)bk.

Hence

(ak,bk) | 1 P&W  | = ( f t (Ar)1ps(fc)).
- p3(k ) l - p 7 { k )

So

(Pi(fc),Ps(fe)) ( i  -  pr(fc) ps(fc) ^

 ̂ Ps(fc) 1-P4(fc)  J(1 -  p4(fc))(l “  P r W )  ~  PXk )Ps(k )

W hich gives the solution

ak =  [pi(*0(l -  Pi{k)) +  p5(k)p3(k)]/[(l  -  p4(k))(  1 -  P?(k )) ~  P3( k ) P s ( k )]

h  =  [ Pi ( k ) P s ( k ) +  p 5( f c ) ( l  ~  P 4 ( * 0 ) ] / [ ( l  ~  P 4 ( f c ) ) ( l  -  P?( k ) )  ~  P3( k )P8(k )]-

We now substitu te  in from (3.1) and after considerable algebraic m anipu

lation (details of which can be found in Appendix I) we obtain

ak = (k — 1 ) ( N  + p -  1)/[(1 -  p ) ( N  -  k ) ( N  -  l) i i  + (k -  1 ) ( N  +  p -  1)] 

h  =  (k — 1) (N  +  p — 1 — p N u ) / [ ( l  — p ) ( N  — k ) ( N  — 1 )u + (k — 1) (N + p — 1)].
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These forms do not lend themselves to  explicit calculation. Instead we 

consider the usual lim iting regime of fixed sam ple size n\ large population 

size ( N  —► oo); and m utation  probabilities of order N ~ x: specifically we write 

u =  9 / ( N  +  9) in the  usual way. Then

k — 1
a'u =  lim ai. =   ------- —---- —-------   =  lim bk =  6*. (3.7)

k N - +  o o  ( l _ p ) ^  +  ( f c _ l )  TV—►oo k V '

T he distribution  of W  may be w ritten  as a  sum  of (finite) p roducts involv

ing the  ak s and bk s which will converge as N  —► oo to  the sam e sum  of the 

identical products of the a^’s. In  fact, since o!k =  6J.,

K =  m ) =  £ «  • • • < - „ ( !  -  “ IX 1 -  a 'h) ■ ■ ■ C1 -  aL-i)>

where the sum m ation runs over all subsets {ix, . . . ,  2n_m} of { 2 , . . . , n} and we 

have w ritten  { j i , . . .  , j m_x} for { 2 , . . . ,  n}\{z' i , . . . ,  zn_m}. Thus from  (3.7)

lim P ( W  = m ) =  ((1 ~  p)g)m Y ,  h  • • •
( ( 1 - O T W  U

where the sum m ation extends over all subsets h , . . . ,  Zn_m of 1 , . . . ,  n — 1 and 

here and below we have w ritten  X(n) for x (x  + 1 )  • • • (x  +  n  — 1). B u t (Donnelly 

and  Tavare (1986), Eq. A.2) this sum m ation equals | S |, where is a 

Stirling num ber of the first kind (Abram owitz and Stegun (1972)). So

lim P ( W  =  m ) =  I ff "  I S<»> |, m  =  1 , 2 , . . .  , n .
N^°°  ( ( l - W ( n )

Note th a t since W  is bounded and u —> 0 as N  —► oo, P ( y  =  0) —> 1 as 

N  —► oo, so from (3.6), the (asym ptotic) d istribution  of the num ber of types 

in the sample is

=  0  =  ^  - p ) 6 \ n)  ̂ ^ /  =  ( 3 -8 )

This has exactly the same form as the d istribution  of K  in the  uncorrelated 

(neutral) case (Ewens (1972)), the only difference being th a t in th e  uncorre

lated case the factor (1 — p)9 is replaced by 9. T h a t is, a t least under this
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lim iting regime, the only effect of the correlation on the d istribu tion  of K  is 

to  change it to  the distribution  appropriate  to  an  uncorrelated m odel w ith 

m uta tion  ra te  (1 — p)6 instead of 6.

In  the light of the observation th a t as N  —► oo, Y  —► 0 in probability in 

(3.6), lines of descent are lost through m uta tion  (in this lim it) exactly when 

L(t )  jum ps down by one in such a  way th a t the  a  com ponent of A(t) takes 

the  value 0, ie. exactly when a*(k)  takes the value 0 (k = n — 1, n — 2 , . . . ,  0). 

T he key to  the form of the d istribution  (3.8) is the form of a'k and b'k (in fact 

1 — ak and 1 — b'k) and the fact th a t these are equal: in the  uncorrelated case, 

the  probability th a t the change from k to  k — 1 lines of descent is due to  a 

coalescence is exactly (for example Donnelly and Tavare (1986))

k - 1
e  +  k - 1’ * =

th a t is (3.7) w ith (1 — p)6 replaced by 9.

3 .3  A lle le  F req u en cies a t E q u ilib r iu m

As well as studying the d istribution of the num ber of alleles in the sam ple a t 

equilibrium , it is na tu ra l to  ask, in the spirit of the  Ewens sam pling form ula 

(Ewens (1972)), about the distribution of allele frequencies, or in the spirit of 

Donnelly and Tavare (1986), about the frequency d istribution  of age ordered 

alleles. Such questions are naturally  studied in the context of an  exam ination 

of the  genealogy of the sample. As in W atterson (1984) or Donnelly and 

Tavare (1986) one could introduce an equivalence-relation valued coalescent 

process. In the uncorrelated case the  behaviour of this process (and certainly 

the fact th a t it gives rise to  the Ewens or age-ordered sam pling formulae) 

follows from th a t of the line of descent process and the fact th a t when two 

lines of descent coalesce it is equally likely to  involve any of the  existing lines.
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We shall show th a t, in the limit as the population size tends to  infinity, this 

is still tru e  in the correlated case.

Suppose the process A(-) takes the value (k,  0) a t some tim e s. A t some 

la te r tim e, t, say, the num ber of lines of descent will decrease to  k — 1 because

(i) an individual outside the line of descent will have a m utan t offspring 

who is in the line of descent;

(ii) an individual in the line of descent will have a m utan t offspring who is 

in the  line of descent; or

(iii) an  individual in the line of descent will have a non-m utant offspring 

who is also in the line of descent.

In  the  case of (i) it is clear th a t the offspring, and so the line lost, is equally 

likely to  be any of the k available. For either (ii) or (iii) to  occur, a t some 

tim e r, (s <  r  <  t), the appropriate parent in the line of descent will have 

been chosen. As this parent is obviously not the paren t a t tim e s ( th a t 

paren t, by definition, being outside the  line of descent) it will have been 

chosen a t random  from among the population, and conditional upon it being 

one of the individuals in the fine of descent, it is equally likely to  be any such 

individual. Conditional on its offspring also being in the  line of descent the 

parent-offspring pair is then  equally likely to  be any of the (£) possible such 

pairs. Thus if a coalescence (event of type (iii)) occurs, the  coalescing lines are 

equally likely to  be any of the  possible pairs, while in an event of type (ii), the 

m utan t offspring is equally likely to  be any of the  k possible individuals. All 

of the  above choices are independent of the entire history of the  process prior 

to  tim e 6, and in particu lar of its behaviour a t each of the  previous occasions 

on which lines of descent are lost.

Thus for some given k £ {1,2, . . . , n  — 1}, conditional on the  fact th a t the 

process A(-) visits the  s ta te  (fc, 0) a t least once between the transition  from
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L(-) = k to L(-) =  k — 1,

ck =  P (a  particu lar pair of lines coalesce | one of the k lines is lost)

V1 
/

k
=  6fc( l  -  u) '

2

and

4  =  P ( a  particu lar line of descent is lost through m uta tion

| one of the k lines is lost)

=  (1 -  bk 4- 6fcM)fc_1.

N ote th a t

c'k =  limjv^oo ck =  6J. ^ ^ j  =

and

dj. =  limiv-foo d* =  (1 — 6j.)fc 1 =  ie({i-^e+k-i) *
(3.9)

In view of the  sym m etry inherent in the initial d istribution  of A, we also have 

(in an  obvious notation)

c'n =  n((l— p)0+n— 1) =  n((l-p)0+n-l) (3.10)

regardless of w hether or not the process A(-) ever visits (n, 0). T he d istribution  

of allele frequencies a t equilibrium  (w ith or w ithout age ordering) is completely 

determ ined by conditional probabilities of the above form.

For k = n  — 1, n — 2 , . . . ,  1, denote by A k the  event

{A(t) visits (k,  0) between the transition  of L( t )  from k to  k — 1}.
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Now, trivially

P ( A k | a*(k)  =  0) =  1, (3.11)

and  a standard  first-step argum ent (using the notation  of (3.1)) gives

P ( A k | a*(k)  =  1) =  p3{k) +  p4( k ) P ( A k \ a*(k)  =  1).

Thus

and it is easily checked th a t

lim P ( A k | a*(k)  =  1) =  1. (3.12)
N —*oo

Now let A  = n?=} A k and we have (using B c to  denote the complement of a 

set B )

P ( A C) = P  f i j  <  E  P(A‘k) -»  0 (3.13)
\ f c = l  /  k =  1

as N  —> oo from  (3.11) and (3.12).

Thus if B k;illtmmmtlJlk denotes the event th a t the  sample of n  taken from the 

population a t equilibrium  contains k types, w ith of the  oldest type, /x2

of the  second oldest, . . .  ,pk of the youngest type (and we note th a t as a

consequence of the M oran model form ulation, each type in the population 

has a  unique age),

P { B k;fllj...^k) =  P ( B k n  A)  +  n  A  )

=  P ( A ) P ( B k;, 1_ tlk | A)  +  P ( A c) P ( B k;(ll | Ac),

and in the light of (3.13) we have

lim P ( B k;tl 1,...tfik) =  I ^ ) -
N —+oo N —*oo
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This last, however, involves a calculation using the  c'k and dj., k =  1 , 2 , . . . , n, 

exhibited a t (3.9) and (3.10) identical to  the related calculation of, for exam 

ple, Donnelly and Tavare (1986). It follows th a t

r  p rR  , ( ( i - p ) f l ) * _______________ ^
&  ( ( l - p ) t f ) w w ( / * * +  /**-!)••■(/**+ ■•• +  ^ 1 )’ l ' '

and

lim P ( k  types in the sample,
N —*oo

Hi of one type, fi2 ° f  another, . . . ,  Hk of the kth)

( ( 1  - p ) e f  n\

( ( 1  -  p)8)(n) P 1P2 ■ ■ ■ PloPl'-Pl'- ■ ■ ■ /5*!

where (3j is the  num ber of alleles represented j  times, j  =  1 , 2 , . . . ,  n. Again, 

these are exactly the formulae appropriate  to  the uncorrelated neu tra l models 

w ith m utation  rates (1 — p)6: the age ordered sam pling form ula ((4.2) of 

Donnelly and Tavare (1986) and the Ewens sam pling form ula Ewens (1972)) 

respectively.

3 .4  D isc u ss io n

The m otivation for this analysis stem s from interest in the neutralist-selection- 

ist controversy. Observed “departures” from neutra lity  in the gene frequencies 

m ight initially, w ithout knowledge of the  above results, be thought to  be 

due not to  selective forces but to a  reproductive m echanism involving some 

form  of correlation, perhaps because of linkage disequilibrium  w ith a locus a t 

which selection is operating, or a variable environm ent, or some o ther cause. 

W hile perhaps surprising, these results suggest th a t (for this particu lar model) 

correlation cannot explain departures from neutrality.
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Tests for n e u tr a lity  are usually perform ed conditional  on K ,  the num ber of 

types in the  sample (since in the  uncorrelated case K  is a sufficient sta tistic  

for the  nuisance param eter 8). In the uncorrelated case the  d istribu tion  of 

allele frequencies (with, and hence w ithout, age ordering) conditional on K  

is identical  to  its d istribution  in  the uncorrelated case, so in the presence of 

correlation the  d istribution of any test statistic  will be identical to  its dis

tribu tion  in the uncorrelated, neutral, model. This has two consequences. 

F irst, observed departures from  neutrality  cannot be a ttr ib u ted  to  th is form 

of correlation. Second, any d a ta  which cause rejection of the neu tral hypoth

esis a t a  given level would also result in rejection of the  “correlated neu tra l” 

hypothesis a t the same level.

If the sam ple d a ta  are used to  estimate the m utation  ra te  8 , the appropriate  

course in the uncorrelated neu tra l case is to  base such estim ates on K .  (See 

Ewens (1972), for the form of the  estim ator.) T he use of this estim ator in the 

more general setting  will give asym ptotically unbiased estim ation of (1 — p)9 , 

and hence underestim ation of 8, if p  >  0 . (O f course, it m ay be possible to  

detect correlation, and possibly to  estim ate p separately by direct observation 

of the population and so correctly estim ate 9.)

A priori  one m ight expect the  introduction of correlation to  result in fewer 

alleles in the sample, w ith a  more diverse range of frequencies, th an  in the 

neutral case: intuitively, correlation should encourage relatively m ore coa

lescences and those coalescences should affect classes which themselves were 

recently the result of coalescences. It seems th a t the  correct (after the  fact!) 

in tu ition  is th a t coalescences are relatively more frequent and so the  num ber 

of types in the sample is (stochastically) sm aller (this expresses itself in a 

lower “m uta tion” ra te), bu t th a t the tim es between losses of lines of descent 

are sufficiently long to  ensure th a t the particu lar correlation present a t one
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such loss will have been “forgotten” by the next loss, and so actual class sizes 

(conditional on K )  are unaffected. On one level then, these results provide 

yet fu rther evidence for the very general applicability of the Ewens sampling 

formula: the  form of the  d istribution still applies, and the  conditional dis

tribu tion  of allele frequencies is exactly as it should be. It is w orth  noting 

a t this point th a t in this sense the results here are similar to  o ther work 

(Gillespie (1977); Sawyer and H artl (1985), for example) which shows th a t 

the  Ewens sam pling form ula is also valid in various non-neutral situations.

It is n a tu ra l to  ask about the robustness of these results: th a t is, to  what 

extent they are artifacts of the  specific assum ptions made. T he assum ption 

of a large population size (and the lim iting regime studied) is common and 

not unreasonable. (In the uncorrelated case, w ith the exception of the  M oran 

model, the Ewens sampling form ula itself is an approxim ate result, for the 

validity of which the  population size m ust be large com pared to  the  sample 

size.) In  fact, it is possible to  be exact throughout the  analysis about the  effect 

of this assum ption here, in order to  show th a t the  error in the  expressions 

(3.8), (3.14), and (3.15) is of order iV-1 .

W hat of the M oran model form ulation? In the next section we investigate 

a model in which a fixed num ber T (>  1) of individuals die and are replaced by 

new offspring w ith a similar mode of correlation, and determ ine w hat effect 

this has on the conclusions drawn from this section.

We also note th a t all the conclusions of the  model rem ain valid if it is 

changed so th a t the  reproducing individual in the “next” generation will be 

the reproducing individual of the current generation w ith probability  p / 2, its 

offspring w ith probability p /2, and otherwise an  individual random ly chosen 

from the  (whole) population.

It is less clear how to  extend this type of correlation to  more general (say
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W right-Fisher) reproductive mechanisms in a  simple (and hence tractab le) 

way (although B arton  (1988) studies related issues). Some general comments 

are possible, however. In  most form ulations of a  model w ith  non-overlapping 

generations, correlation will not change the ra te  a t which lines of descent are 

lost th rough m utation: in any given generation, a particu lar line of descent 

will be lost w ith probability u (which is usually assumed to  be of order TV-1 

in this context), independently of all o ther events. C orrelation m ight be ex

pected to  increase the ra te  a t which coalescences occur, in which case, as in the 

model studied here, the d istribution of the  num ber of types in the  sample will 

be stochastically smaller th an  in the uncorrelated case. In  the  model studied 

here, the  advantage to  a particu lar individual due to  correlation lasts for a  ge

om etrically d istributed  num ber of generations, while the tim es between losses 

of lines of descent are of the order of N ~ 2 generations, so th a t for large N ,  this 

advantage is “forgotten” between these events, and we have seen th a t as a 

consequence allele frequency distributions (conditional on I \ )  are unaffected. 

In m ost o ther models, including the  W right-Fisher model (see for example 

Donnelly and Tavare (1986), for a  general form ulation), the  tim es betw een 

losses of lines of descent are of order N  generations. (For the general model of 

Section 2 the  times between losses are of order N 2~a where 0 <  a  <  1). If the 

advantage of correlation again lasted for a  geometrically d istribu ted  num ber 

of generations (and this is not inconsistent w ith  linkage to  a non-neutral lo

cus), this would also be “forgotten” , and again allele frequencies, conditional 

on K , m ight be unaffected. There is some hope then  th a t results in the  same 

spirit as the ones discussed above m ight rem ain valid in a  considerably more 

general setting. T h a t is, correlation should result in a  stochastically smaller 

num ber of alleles in the sample (though perhaps not w ith a  d istribu tion  of the  

form (3.8)), bu t conditional on the num ber of alleles present, the  distribution
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of allele frequencies will be as predicted by the  Ewens sam pling formula.
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C hapter 4

CORRELATION IN M ORE  

COM PLICATED MODELS

In  the  spirit of the previous chapter we move on to  investigate how similar 

correlation may affect more com plicated models. In  particu lar in this section 

we shall in troduce correlation to  the  model in which T  individuals reproduce 

in each generation. We shall then  see w hether the effect of correlation in 

this model is sim ilar to  th a t in the conventional M oran m odel and try  to 

draw  some general conclusions regarding the way in which correlation effects 

are likely to  m anifest themselves in more general models. This represents an 

a ttem p t to  investigate to  w hat extent the conclusions of the previous chapter 

are artifacts of the specific model discussed. We s ta r t by giving an exact 

specification of the model to  be considered in this chapter.

We propose a population of N  individuals evolving forward through tim e in 

discrete generations (t =  . . . ,  —2, —1, 0, 1, 2 , . . . )  In the general course of evo

lution of the population, a t each generation, we choose T  existing individuals,

uniform ly a t random , to  die (thus all
/  N

choices are equally likely) and
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then  we choose T  other individuals to  be parents, each to  have one offspring. 

T he choice of parents a t tim e t +  1 is according to  the following regime:

(i) Label the  parents a t tim e t : X i ,  X 2, . . . ,  X t .

(ii) Independently  for each X i  (1 <  i <  T ), there is a p robabih ty  p  th a t X t is 

again the  parent a t tim e t -f 1. Suppose S  < T  parents are chosen this way.

(iii) Choose th e  rem aining (T  — S) parents uniformly a t random  w ithout re

placem ent from the ( N  — S)  individuals who are not already chosen. The 

surviving (N  — T ) individuals and the T  new offspring form the population 

in the  next generation. The offspring individuals may independently, w ith 

probability  u, m u ta te  in to  a  novel type which has not been in the  popula

tion before. We will note the usual assum ption th a t u is of order TV-1 . We 

fu rther assume th a t this correlated reproduction process has been going on 

indefinately and is therefore in equilibrium.

N ote th a t this model is slightly different from  the  sim ilar model in C hapter 

2, in th a t here parents may have only one offspring and the  reproducing 

individuals are distinct from the individuals th a t die. We do this as the 

algebra, which is already somewhat complicated, is a  little  more transparen t 

in this case. B ut although we do not give the details, exactly the  same results 

obtain  for the  earlier model.

More formally, we can define a Markov chain

Zt  =  {(2L? Y-t) : t =  0 ,1, 2, . . . }  w ith statespace Ej j  x Ejj

where Ej j  =  {A C  { 1 , 2 , . . . ,  N }  \ |A| =  T}. Here

X f =  {X*>1? X u2, . •. ,  X t,r} =  {parents a t tim e £}

Y^t =  {^t.ij Y , 2 , • • •, =  { dying individuals a t tim e t}.
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T he initial d istribution  places mass

N - T  

T (2 T)!
\ ( T \ )

a t each of the  points (x,  y) G i£jv x w ith all com ponents distinct (ie. 

x = ( x 1, . . . , x T) , y  = ( y u . . . , y T),Xi ±  x j t yi /  y j , x { ±  yh  Vz /  j )

To define the  transition  probabilities between and ( X UA. £ + 0 ,

suppose th a t m  is the num ber of individuals in common between X d = x:t and 

2Lt+1 — 3Lt+ 1  then

P(2Lt+1 =  £t+i,H*+i = yd+1\2Lt = xd, Y 4 = yi )

N - i N - T

N  — i

2T — i

p*(i -  p ) " - '

We assum e the population has been evolving in this way for an  indefinite pe

riod of tim e, and take a random  sample of n  individuals w ithout replacem ent 

from  the  population a t a  tim e which we will call t =  0. We then  trace the 

com position of the  sample w ith respect to  the ancestral population a t tim e 

—t  (£ =  0 ,1, 2 , . . . )  in a m anner akin to  th a t of the previous chapter.

We define “old” and “new” equivalence classes a t tim e t as in C hapter 3, 

denoted by (z =  1 , . . . ,  K t) and r]j, ( j  =  1 , . . . ,  Ft) respectively. We order 

the  rij by decreasing age, the  age of an equivalence class being the  num ber of 

generations since the m uta tion  which led to  its existence occurred, (ties are 

broken a t random ).
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So we can sum m arize the  s ta te  of the sam ple w ith  respect to  the ancestral 

population a t tim e —t by

Rt  =  {^i, e2, . . . ,  €fct] rji, 772, ,  r]Ft} =  {e*,^} say.

We shall concentrate on the X± com ponent of the  M arkov chain Z t in order 

to  investigate the  genetic com position of the population  a t equilibrium . In the 

light of this we shall s tudy  the  behaviour of K t . As in the previous chapter 

it is clear th a t { K t, t  =  0 , 1 , . . . }  is no longer M arkov, and again we study a 

more inform ative process.

Hence we define

{A(t )  = ( K t, C t) :  t  =  0 , 1 , 2 , . . . }

where Ct is defined to  be the num ber of parents a t tim e —t who are ancestors 

of old equivalence classes in the  original sample, (ie. the  num ber of parents a t 

tim e —t  who are in the line of descent), 0 <  Ct <  K t. I t  is evident th a t A(t) 

is a M arkov chain.

Before continuing we shall show th a t the process Xjt is time-reversible. It 

is easy to  check th a t the equilibrium  distribu tion  places mass

on each x  E Ejf ,  and th a t the process is finite and irreducible. T he choice of 

initial d istribu tion  ensures th a t it is also stationary.

Once again (Kelly 1979) reversibility will follow if

7rxi R(2L4+i — 2it+i I 2Lt =  2u) = £̂*+1 =  zu I 2Lt+i = ^+1)
for all E Ejj .  B ut this is clear since

P(2Lt+ 1 ~ ̂ .<+1 I 2Lt = 2u) = P(2Lt — 2u I 2Lt+i = +̂i)-
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FIGURE U

Therefore, as before the  behaviour of the process when viewed backwards 

in tim e is (stochastically) equivalent to  its behaviour going forwards. In  par

ticular, when viewed backwards 2Lt 1S Markov.

N ote th a t henceforth we are considering the process 2Lt going backwards in 

tim e, so th a t if we are currently  a t tim e — t, by “next” is m eant tim e — ( t- f  1), 

and so by “previous” we m ean time — (t — 1).

For ease of determ ining the  transition  equations we now split th e  repro

ductive procedure into two steps:

1. Select the  T  parents in the next generation,

2. Select the  T  offspring of the parents ju st identified.

Figure 4.1 illustrates this pictorially.

Step 1 consists of selecting the individuals m arked A  (or equivalently those 

m arked A ').

Step 2 consists of selecting those m arked B  (or equivalently B').

Define the  event Pd to  be

Pd =  {d  parents are draw n a t random  from
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the line of descent (a t the end of step 1)}.

Let C*_i =  c =  the num ber of parents in the line of descent

in the previous generation.

A nd let K t- 1 = K  =  the num ber of old equivalence classes in

Then

the previous generation.

P ( P d \ C t- 1 = c , K t. 1 = K )  =

cAd

E
i = 0

p \  i  -  p )c- {
\

i  \c

\ 1

T -(cV d)

x E
j = o

/

A 1 -  p)
T —c—j 1 T - c  N

V

K  -  i 

d — i T - d - j /

(4.1)

N - i - j  N 

T - i - j )  j  j

To see this, note th a t we first choose i of the c parents from the  line of descent 

again. T hen we choose j  of the (T  — c) parents not in the line of descent again. 

Finally we random ly choose the rem aining (T  — i — j )  parents in such a way 

th a t we finish w ith d parents in the line of descent.

So now we have picked the parents. It rem ains to  select the offspring, and 

there are four possible ways of doing this:
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(i) So th a t we don’t lose any lines of descent (ie. K t =  K t_1)

(ii) So th a t we lose a  line 'descent via a coalescence of two lines (ie. K t =  

A V i -  1)

(iii) So th a t we lose a  line of descent via a  m u ta tion  (again K t = Kt - 1 !)•

(iv) So th a t we lose more th an  one line of descent (ie. K t =  K t- 1 — /, l >  2). 

The probabilities of these events are as follows:

(i) Let Q k  denote the event { no line of descent is lost } (ie. K t =  K t~ 1). 

Then

P ( Q K \ P d, K t- 1 =I<)  = (4.2)

N  — I< -  ( T  -  d)

1 N - T ^

{T- d)A (K -d)

£
i=0

K - d N - T - K ^  

T - d - i
■(1 -  u ) ‘

To see this, notice th a t th e  offspring of the  d paren ts in the line of descent 

m ust no t be in the  line of descent themselves. H aving chosen these, the other 

(T  — d)  offspring are picked. We can have i (0 <  i <  T  — d) of these draw n 

from  the  line of descent, provided we ensure they do not themselves m uta te  

and thus cause the  loss of a  line of descent. T he rem ainder are picked from 

individuals not in the line of descent. The num ber of parents who are in the 

line of descent in the  next generation is (d +  i), ie. Ct =  d +  i.

Note th a t from the preceding two equations we have

0 (1 ) for d < c

and

P ( P d | Ct- i  = c , K t- i  = K )  =

P ( Q Kk { C t = e} | Pd, A V i =  K )  =

0 ( N  (d ĉ ) for d > c

0 (jV -(e- d)) for K  > e > d 

0 otherwise.
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(ii) Now pick offspring so th a t we lose a line of descent via a  coalescence of 

two lines. So:

let T k  = { lose a line of descent via coalescence }.

T hen

P(TK \ PdyKt-x =  K)

' K - d '  ‘ N - T - ( K - d )  

d -  1

N - T
— ( 1  —  u )  X (4.3)

d — 1

\

( N - T - K + 1 X

V T - d - i
H I  -

( T - d ) A( K- d)

E
*=o I N - T - d

T - d

Here we m ust pick one parent in the line of descent to  have an  offspring in 

the line of descent w ithout a m uta tion  occurring. The rem aining offspring of 

the (d — 1) parents in the line of descent m ust not themselves be in the  line 

of descent. We may then  pick 0 <  i < T  — d offspring from the line of descent 

and ensure they don’t m utate. Finally, pick the rest of the offspring from 

individuals not in the line of descent.

Note th a t C t = d +  i — 1.

Notice also th a t P (lose / lines of descent via coalescence) involves choosing 

I offspring from the line of descent, an event of probability  0 ( N ~ l). So we 

have, for I > 1,

P (lose I lines of descent via coalescence) =  0 ( N ~ l).
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(iii) Now we pick offspring so th a t we lose a  line of descent via m utation: 

Let M k  denote the event {lose a  line of descent via m utation}.

Then

P ( M k  I Prf, JT«_1 = K )  =

K - d

1

N - T - K + d  

d -  1

1 N - T  ^
u x (4.4)

(T-d )A (K -d )

E
i=0

r  /

I
K - d - l  

i

N  -  T  -  K  +  1 

T - d - i

N - T - d  

T - d

f  N - T - K  + d ' '

(  N - T  ^

(1 -  u)'

(T — d)A(K-d)

E
*=i

K - d

i

N - T - K

T - d - i (  •i
u( l  — u) t- i

VN - T - d  

T - d

Here we can do one of two things

(a) pick one of the  offspring of the individuals in the  line of descent to  itself 

be in the  line of descent, m uta te  it, ensure th a t all o ther such offspring are
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out of the  line of descent, and then  pick 0 < i < T  — d o ther offspring in the 

line of descent which don’t m utate,

(b) ensure th a t all offspring of individuals in the  line of descent are themselves 

outside the  line of descent, and then  pick a t least one other offspring to  be in 

the  line of descent and m ake sure th a t one of these other offspring m utates. 

Note th a t P ( M k ) =  0 ( N ~ 2).

Notice also th a t P(lose I lines of descent via m utation) will involve choosing 

I offspring from  the line of descent and then  m utating  each of them . So we 

have, for I > 1

P(lose I lines of descent via m uta tion ) = 0 ( N ~ 21).

(iv) If we are to  lose more th an  one line of descent between two generations 

then  a com bination of coalescences an d /o r m utations is needed. From  cases

(ii) and (iii) we can see th a t

P(lose I lines of descent solely via coalescence)= 0 ( N ~ l)

and

P(lose I lines of descent solely via m utation)=0(7V -2/).

Similarly

P(lose I lines of descent (m  of them  via m utation))

=  0 (iV _2m~(/" m)) =  0 ( N l~m).

Since there are only a  finite num ber of ways in which these events can occur, 

we see th a t

P(lose I lines of descent, / >  2) =  0 ( N ~ 3)

except for the  case where we lose two lines of descent via coalescence, which 

if there was a t least one parent in the  line of descent is 0 ( N ~ 2). However, it
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will become clear la ter th a t exact expressions for these probabilities are not 

required.

Now we can proceed to  construct the actual transition  probabilities by tak 

ing products of equation (4.1) and one of equations (4.2)-(4.4). We shall w rite 

them  out in expanded form as this is necessary for la ter simplification. U lti

mately, conditional on { K t - i  =  K }  and {Cf_i =  c} it will be seen th a t we need 

only consider term s up to  0 ( N ~ 2). So w ith P # , { K t- 1 =  K }  &nd {C t_i =  c} 

defined as before, and w ith

Q k  =  {no ^ ne descent is lost this generation (ie. tim e t) and we finish

w ith e parents in the  line of descent}

=  Q k  H {Ct—i = c] where QK =  { I \ t- i  = K }  

we have

P ( Q k  I K t.  1 =  K ,  C ,_, = c) = J 2  [P(Pd  I C, K )  x  P ( Q x  | d)]
d=  0

e cAd f  I

E < E P'(i -  p y - *
d= 0 i=0 V

T-(cV d)

E  [p’h - p )
T —c—j

X

( rr \  {1 — c

\  J

T  -  j  -  i 

d — i
(4.5)

K - i
X - tt :-----------------  :------ :------ - X - - - X

N  — j  — i N  — j  — i — 1 N  — j  — i — (d — i — 1)

N - K - j  N - K - j -  1 N  — K  — j  — ( T  — d — j  — 1)
X . .  . . X  _ _ ~ . X • • • X

N  — d — j  N  — d — j  — 1 N - d - j - ( T - d - j -  1) J
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N  — K  — ( T  — d) N  — K  — ( T  — d) — l
X  «. _ _  X  _ _ _  X

N - T N - T -  1

N  — K  — ( T — d) — (d — 1) „  
TV — T  — (d — 1)

(  T - d ^

e — d
(1 -  u ) e—d

K - d
x

K - d - 1
N - T - d  N - T - d - 1 

N - K - T  N - K - T - l
x x

i f - d - ( e - d - l )
i V - T - d - ( e - d - l )

N  — K  — T  — ( T — e — 1)
N - T - e  "  N - T - e - 1  N  -  T  -  e -  ( T  -  e -  1) _

N ote th a t we need only consider e — 2 < d < e i f w e  are ju s t interested in 

term s up to  0 ( N ~ 2).

The reader is spared the details of the simplification of this equation here, 

bu t a blow-by-blow account of it, along w ith th a t of equations (4.7) and (4.8) 

can be found in Appendix II (sections A,B and C respectively).

From  (4.6) we have

P ( Q eK \ K t- 1 = K , C t. 1 = c) =
0 (1 ) e <  c

0 (iV -(e- c)) e >  c.

We will also require the probabilities of losing a line of descent. So w ith

M k  =  {lose a line of descent via m utation} 

IV  =  {lose a line of descent via coalescence}

we have:

P ( M k  | K t- i  =  AT, Ct- i  = c)

TAK
= E  lp (pd I Kt-x  =  K ,  Ci—i =  c) x P ( M k  I <*)]

d= 0
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T a K

E
d= 0

cAd

E I  p'C1 -  p)c_i
t = 0

T -(cV d) ( T - c ' ' T - j - i )
E P>'(1 -

J

f
3 = 0 j  J d - i  y

K - i  K - i - 1
X T 7  :------------• x  T t =------------:---------- 7  X  • • • XN  — j  — i N  — j  — i — 1 N  — j  — i — (d — i — 1)

N - K - j  N - K - j - I  N  -  K  -  j  - ( T  - d -  j  -  1)
X  — ------------- :-----------  X  — -------------:------------:------------   X  • • • X

N  — d — j  N  — d — j  — 1 N - d - j - ( T - d - j -  1)

L I  V  1 /
K - d \  N  — K  — ( T  — d) 

1 u x
N - T N - T -  1

N  - K  - ( T - d ) -  1 v N - K - ( T - d ) - ( d - 2 )
X  ~ X  * * * X  ~

N - T - 2 N  — T  -  (d — I)

T - d

x E
t'=0

J C - d - l  K - d -  2 X - d - l - ( i - l )
________________________  v    X  • • • X

N - T - d  N - T - d - 1 JV -  T -  d -  (i -  1)

x
1 T - d ^

/

„  ^ J V - A - - ( T - l )
( 1  -  i t ) *  X   ----------^   - r -  X

v 7 N - T - d - i

^ N  — K  — ( T -  1) — 1 ^ N  - K - ( T - I ) - ( T - d - i - I )
X  1 * 1 X  * * * X

+

N - T - d - i - 1

N - K  - ( T - d )  
N - T

N - T - d - i - ( T - d - i  -  1)

N  — K  — ( T  — d) — 1 _ N  — K  — ( T — d) — ( d — \)
X  X  * * * X

N - T -  1 iV — T — (d — 1)
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T - d

x E
t=i

K - d  K - d - 1 K - d - ( i -  1)
X — ------—-------:-------- X • • • X

N - T - d  N - T - d - 1 N - T - d - ( i - 1 )
(4.6)

x u ( 1 — u) i-1

X

/  • /2

U J \

T - 1

T - d  \ N - K - T
X — ------= ------- ;------: X

2 N - T - d - i  

N - K - T - ( T - d - i -  1)
N - T - d - i - 1  N - T - d - i - ( T - d - i -  1)

A fter some not inconsiderable m anipulation (see A ppendix II, section B), (4.6)

simplifies to

QT
P ( M k  I = K ,  C t- i  =  c) =  j ^ [ K  -  cp] + 0(JV~3)

where we define u =  as is normal. In  particu lar, from  (4.6) we have

K S T
P ( M k  | K t_! =  AT, Ct_! =  0) =  +  0 ( N ~ 3).

And in a  sim ilar m anner for coalescence events we have 

P ( T k \ = A , C , _ 1 = c )

Ta K
=  £  [P (P j I K t = K ,  C t =  c) x P ( r *  I <*)]

d= 0

Ta K

= E
d= 0

cAd /  /  c ^
E pf(i -
i=0 \ \ 2

T -(cV d) /  rp _  \  (

. J=0 \  * )
T  -  j  -  i 

d — i

(4.7)



N - K - j  N - K - j - 1 N - K - j - ( T - d - j - 1 )
X N - d - j  X N - d - j -  1 X " ’ X N - d - j - ( T - d - j - l )

N - T - K + d
x <

K - d MN - T 1
V 1 /

N - T -  1

A - T - A + d - 1  jv _  T  -  A  +  d -  (d -  2)
X  —------—------   X - - X  7

T - d

x E
t = 0

(

L \

T - d

i

N - T - 2

K  — d — 1 
N - T - d

N - T - l  — (d — 2)

K  — d — 2 K  — d — 1 — (i — 1)
x —— =-----:— - x • • • x 7

N - T - d - 1 N - T - d - ( i -  1)

^  ^  N - T - K + 1
X ( 1  -  u ) % X  ----- —--------------r

v J N - T - d - i

N  - T - K  N  — 2 T  — K  + d + i + 2
X —  r:-------:------- ------ — X • • • X —

N - T - d - ( i  + 1) 

We simplify (4.7) to  get

N  — 2 T  -f 1

P ( T k  I C(_, =  0 , ^ , . ,  = K ) =  - - - ■ ■ t ( T (1 P) +  0 ( N - %

P ( V K | C(_! =  c >  0, K t - t  = I<) =  £
d=l

N 2

A  i  -
/  \c

N
+0(7V -2 )

In particu lar

P ( IV  | C,_, =  1 , K , - !  = K ) =  X) +  0 (IV -2)
N

and

P(Tk  I Cm  =  2, AVi =  A') =
2p(l -  p)(I< -  1) +  2p2( K  — 2) +  Q

AT iV
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By simplifying equation (4.6) (for details see A ppendix II, section C) we 

find the  following probabilities of not losing a line of descent in varying cir

cum stances:

P ( Q %  I C ,  

p ( Q k  I C ,  

p ( Q k  I C, 

P ( Q ° K  I c,

p ( Q k  I C,

P ( Q l  I c .

P ( Q ° k  I C  

p ( Q k  I c .

_! =  2,PsTt_1 =  JVT) =  (1 - p f  + O i N - 1)

:_1 = 2 , K t- !  = K )  =  2 p (l -  p) +  O i N - 1)

:-i =  2 , K t. 1 = K )  =  p2 +  0 ( N ~ 1) 

=  .SQ =  ( 1 - p )
_  T if (2  -  p) _  p P  

JV JV

(4.8) 

+  0 ( iV -2)

!—1 =  = K )  =
, T K  T K ( \ - p f

p _ |_  ( 1  _  p ) ---------- 1---------- i --------L ± -
F K N  N

p( 1 -  p ) K  p(I< -  1)T(2 -  p)
N

p( l  -  p )(A  -  1) 
N

N

+  0 ( N ~ 2)

*-i =  0, A*-! =  A ) =

p (A  — 1)(T  — 1)(2 — p)
N

x T K ( 2 - p )  
N

(  rr, \

+
V 2 /

+  0 ( N  )

A (A  — 1)(2 — p): 
N 2

T K ( K  — 1)(1 — p) 
N 2

K T
[Tp(2 - p ) - p { l - p ) ]  + 0 ( N  )

t-i  =  0, K t- i  = A ) =

N 2

(2 -  p ) T K  T K 6
N N 2
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- 2
( rr* \

V 2 /

K(I<  -  1)(2 -  p ); 
N 2

2 T K ( K  — 1)(1 — p) 
TV2

K T
+ — [ T p ( 2 - p ) - p ( l - p ) ]  + 0 ( N - * )

(  rr, \

\ 2 /

K(I<  -  1)(2 -  p ); 
N 2

+  0 ( J \T d)

These represent the  relevant transition  probabilities and Figure 4.2 shows the 

transition  diagram .

For any particu lar s ta te  (K t - i  =  K , C*_i =  c) we have the  s ituation  illus

tra ted  in Figure 4.3.

Note th a t

P ( Q k  l ^ t - i  = K , C t. 1 =  c) =
‘c" e 1 1 +  C^iV-1) for e <  cpe(i - pY

0 (iV “ (e- c)) for e >  c.

Define

=  IV  n  {Ct =  e} and M \  - M k  n  {Ct =  e}.

(So r v  =  {lose a line of descent via coalescence and finish w ith e parents in 

the  line of descent) etc. ). Then,

P ( T $ d | K t- i  =  K , C t- i  = c) =

We now have the following result:

0 ( N ~ ( d+V) for d > 0  

0 ( N ~ 1) for — c <  d <  0.
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VIA Co\Au£SC€WC£.

A(-) * (k',c*)
K'<K-t 
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L e m m a  4 .1  Let

H  =  m ax { P ( ( M £  \ K t. , =  K ,  CM  =  c )} V n m x { P ( lt | K M  = K ,  C,_, =  c)},d d'

fAen H  < 0 ( N - 1).

Proof:

Recall P (A f*  | =  RT, C t_x =  c) =  |£[*T -  cp] +  0 ( i V 3).

Hence
6T

P { M i  I fir,-! =  K ,  C t- i  =  c) <  — [ff -  cj>] +  0 ( N ~ 3)

and so

OJi
m ax {P (M £  | fir,_! =  C ,.! =  c)} <  — \K  -  cp) +  0 { N ~ 3).

Similarly

P ( T K \ K t- 1 = K , C t- 1 = c)

for c =  0 

+  0 ( N ~ 2) for c > 0.

W - m - r )  +  Q(Ar~3)
/  \

E S -i / ( l  -  p ) c- d
c

N u
k i d )

Hence

P(T%  | K m  = K ,  C,_! =  c) <  £
d-\

and so

max{P(r£ I t f , . ,  =  K ,  C,_! =  c)}c"

( \

\
Pd( i  -  Py ~ d

c

\ d J
A — a
-------- d

N
+  0 (fV -2)

<  £
i=l

pd( l - p ) c—d

d /

i i r - < f
+  0 ( N ~ 2)
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Thus

H  <
0T_
N 2

[K -  cp] +  0 ( N ~ 3)

V £
d=1

/ ( I  -  p) c—d

\ d )

K - d + 0(N~z)

=  0 ( N  ) □.

Therefore, if we now define Ld to  be the event {lose a  line of descent before 

visiting ( K ,d ) ,  some d ^  c | currently in (K ,  c)}, then

P(lose a  line of descent before visiting (K , d) some d < c \ currently  in (K , c))

=   P ( L d) + 0 ( N - 2)_____
P ( L d) + (1 -  f )  + 0 ( N ~ ' )  ( h

Since P ( L d ) <  2( K  — 1 )H  =  0 (iV _1). So now if we follow the  same limiting

regime as in th e  previous chapter and let N  —► oo we get:

^lim P ( th e  process A (t)doesn’t visit(7Ct,0 ) before K t decreases

from  its current value)

=  0 .

In the m anner of C hapter 3 we now prove the  following lemma:

L e m m a  4 .2  Asymptotically,  A(t) will visit (K ,  0) before K t decreases, for all 

K t = K .

Proof:

Define

A x  =  {A(t) visits (Tv,0) before K  decreases).
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Set A  =  flJLjAfc, and so
n — 1

P (A C) =  P ( U lz X A d  < Y ,  P (Ak)  -*  0 as N  -»  oo □.
k=1

We will use this result la ter on to  prove sym m etry of equivalence classes. 

We now define

n  r = P
transition  from I\  to  K  — 1 lines 

of descent occurs via coalescence

there are currently  c parents 

in the line of descent

As in  the  previous chapter we need to  determ ine the probability th a t a partic 

u la r decrease in the num ber of lines of descent occurs because of coalescence. 

So we need to  evaluate the  n c’s.

A s tandard  first-step analysis of the transition  probabilities for A(t) gives

n c =  p cU c +
v1/

p c ( i  -  p ) n c_ i  +

( \  c

V 2 /
pc- 2( 1 -  p)2n e_2 +

+

L e m m a  4 .3

/  \c

c — 1
p( 1 -  p ) - 1!!! +  (1 -  p)°n0 +  0 (JV -1).- 1 ' (4.9)

IIC =  n 0 +  0 ( N  ) for all c > 0.

Proof:

From  (4.9) we have

(i - p c)n c =
/  \

C

\ l )
p c ( i - p ) n c_i + P°  2( 1  -  p f H c - 2  +

V

H - C l - p ^ n o  +  O ^ - 1). (4.10)

So n 1( i - p )  =  ( i - p ) n 0 +  o ( A - 1) =» n x =  n 0 +  o ( iv - 1).
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We now proceed by induction. So suppose the result is tru e  for all d < c, then  

(4.10) gives

( i  -  pc) n c =
f  \C

V 1 /
p - H i - r i l i i o  +  o c jv - 1)]

+ pc_2( i  -  p)2[n0 +  o ( jv -1 )] +

+  (i  -  p)cn 0 +  o i N - 1 ) .

(  \  /» \/»
=> (i -  pc)n c =  n 0

c
pc_i(i -  ? )+

t

^ 2 1
p C -2 ( l_ p )2  +  . . .

. . . ^ i - p ^  +  ocjv- 1).

=*. ( i - j f ) n c =  n 0( i  -  pc) +  o (n - ' )

=> ILC =  n 0 -f 0 ( N ~ 1) as required □.

So it is sufficient to  evaluate IIo, bu t first we m ust obtain  a more accurate 

expression for Ux. Once again by a first-step argum ent on the  transition  

probabilities for A(-) =  (A , 1) we get

^  =  p ( K  — 1) t p( K - l ) ( T - l ) ( 2 - p ) ^
N N

+ n . p) N  N  t  N

P( K  -  1)T(2 -  p) +  K 1 -  P)(K  -  1)
N N

+n0(i -  p) i  -

T I < ( 2 - p )  p K
N N

+  0 ( N ~ 2). (4.11)
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A fter substitu ting  for n 2 and a little  simplification (details of which can 

be found in A ppendix II, section D), we find

i  +  p(K  _  p(2 - p ) ( K  - 1)n i  =  +  n 0(1 -  p ) N N (1 - p ) N
+  0 ( N  ). (4.12)

Hence

n 0 =
(1 -  p ) K ( K  -  1 )T  

N 2

, K T {  2 -  p) 
N

(4.13)

■bHo +
A ( A  -  1)(2 -  p):

T A ( A  -  1)(1 -  p) T K

+ n x

N 2

(2 -  p)T7iT TAT0

N 2

N 2

[Tp(2 -  p) -  p ( l  - p ) ]

(

N N 2
— 2

T  ) A (A  -  1)(2 -  p f  

2 N 2

+ n ;
/  T  ' K ( K  -  1)(2 -  p f

A  2 J
N 2

+  0 ( N  ). (4.14)

Substitu tion  for Hi and n 2 and much simplification (which again can be found 

in A ppendix II, section D), reveals

A  — 1
n 0 = +  0 ( A - 1).( i - p ) e  + ( K - i )

This is the same as in the uncorrelated case bu t w ith 0 replaced by (1 — p)0. 

It is also identical to  the  result in C hapter 3. So, informally, we have the 

following result:
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T h e o r e m  4 .4  As N  —> oo the conditional distribution of  allele frequencies 

fo r  the model presented here with parameters p  and 0 (representing correlation 

between choice o f  parents and mutation probability respectively) is the same 

as for  a model in which there is no such correlation (ie. p = 0) and where 0 

is replaced by $' — (1 — p)9.

Now recall th a t we have already shown th a t the process A(t) will visit 

( K t, 0) before K t decreases, for all K t. Define B k  as the  event th a t the 

sam ple of n  taken from the population a t equilibrium  contains K  types, w ith 

Pi of the  oldest, p 2 of the second o ld est,.. . ,  jiK of the youngest type. Then 

if A  denotes the event th a t A(t)  visits (A*,0) before K t decreases to  K t- i  f°r 

all K u then  we have:

P ( B k  ;mi »•••» p-k ) =  P { B k ;wi-i hk n  A )  +  P ( B k  n A )

=  P ( A ) P { B k .m I A)  +  P ( J ) P ( B K m  I A)

and so

lim P ( B k .m , =  lim  P ( B K.M  | A).
N-t-oo N-t-oo

This implies th a t the d istribu tion  of identical to  th a t obtained

in C hapter 3 and hence it is the same as for the  uncorrelated case w ith 6 

replaced by (1 — p)9 (see for example Donnelly and Tavare (1986)).

It follows th a t

lim P ( R  ' ((1 ~ p ) 0 ) K ________________ n!________________
w - ~  1 K m ’- ’uk> ((1 - p ) 0 ) {n)p K ( p K +  fiK_1) . . . ( p K +  . . .  +  fl l)

and

lim P ( K  types in sam ple;pi of one type ,p2 of a n o th e r ,. . .  , p k  of the  K th)
N —+oo

_  ((1 — p)9)K n\
((1 -  p)0) (n) P1P2 ‘ ’ PK P l W -
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w here /3j is the  num ber of alleles represented j  times, j  =  1, 2, • • •, A". For a 

m ore detailed look at the consequences of this result please refer to  C hap ter 3.

72



C hapter 5

CORRELATION A N D  

VARIABILITY IN BIRTH  

PROCESSES

5.1 In tr o d u c tio n

D e fin it io n  5.1 A birth process { X ( t ) , t  >  0} with birth rates X1, A2, . . is a 

continuous t ime Markov chain with state space { 1 ,2 ,3 ,. . .}  and infinitesimal 

transition rates, for i =£ j

\ j m P ( X ( t  + h) = j \ X ( t )  = i) = {
if  j  =  i +  1

0 otherwise.

We suppose th a t the  process s tarts  a t a value N  > 0 a t tim e 0. It is common 

to  think of X ( t )  as representing the num ber of individuals present a t tim e t 

and so upw ard jum ps in A (-) correspond to  births, hence the name.

Throughout this section we will view the b irth  process X (-) in a  particular 

way. Specifically, we regard a  process which s tarts  a t a  value N  as consisting
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of N  individuals. Subsequently, whenever a  b irth  occurs we shall refer to  the 

new individual as the  ‘offspring’ of one of the existing individuals (the  parent 

being chosen random ly, w ith the assignm ent of parents being independent 

for each b irth ). Consequently we refer to  the family of the  z individual 

(z =  1 , 2 , . . . ,  N )  as the  z ^  initial individual and all its (not necessarily direct) 

descendants. B irth  processes arise as models in a  wide variety of settings.

In the  m ost general form  of the  process we allow the b irth  rates to  take any 

value. However, in general, a lthough one can w rite down explicit expressions 

for the probability  distributions of X ( t ) ,  they fall short of being illum inating 

and little  useful inform ation can be obtained. In  particular, expressions for 

the m om ents are far from simple. In  order to  make fu rther progress one m ust 

make assum ptions regarding the form of the transition  rates. T he simplest 

assum ption to  place is th a t they are constant, ie.

An =  A for all n.

Now things become relatively simple. Specifically, we have a Poisson process. 

There are m any applications for such a model (we refer those interested to 

K arlin and Taylor (1975)).

A common way to  allow the b irth  rates to  vary is to  suppose th a t they 

depend linearly on the num ber of individuals present, ie.

An =  zzA, n = 1 , 2 , . . .  .

This is usually refered to  as the  linear b irth  (or ‘Yule’) process. T he common

est application for this form ulation is to  model population growth (in bacteria  

for instance). Here it is reasonable to  suppose th a t each individual is having 

offspring a t ra te  A and this leads naturally  to  the b irth  rates ju st specified. 

We can w rite down specifically the d istribution  of X (t)  (given th a t we s ta r t
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w ith  N  individuals) as:

P ( X ( t )  = n  I JT(O) =  N )  =  "  ~  1 I e_ArA‘( l  -  e~xt)n~N
\ N  -  1

N ote th a t this is the Negative Binomial d istribution and if we s ta r t w ith 1 

individual we get a Geometric distribution. O ther applications include the 

early stages of an  epidemic, where X ( t )  records the  num ber of people who 

have been infected by tim e t.

However it is easy to  see why the  b irth  rates of a  process m ight vary non- 

linearly. T he environm ent m ight be such th a t there is a lim it to  available 

resources (food or space for instance) and so it is n a tu ra l to  suppose th a t the 

b irth  rates will begin to  fall off as the population size increases. Alternatively, 

b irth  rates (per individual) might increase as the population grows due to  

im provem ents in the environment (ex tra  w arm th or more m ates for instance).

For the rem ainder of this chapter we will explore the behaviour of non-linear 

b irth  processes. We do this in order to  b e tte r understand  th e  relationship 

between qualitative aspects of the process behaviour and broad features of its 

param eter values. In  particu lar we will consider correlations in family sizes 

and use this to  investigate a conjecture due to  Faddy (1990) regarding the 

relationship between the variance of linear and non-linear b irth  processes.

5.2  C o rre la tio n  in  B ir th  P r o c e sse s

In  the rem ainder of this chapter we will use the concept of m onotonicity. A 

full consideration of this can be found w ithin Liggett (1985), so we content 

ourself here w ith a brief summary. Let a stochastic process {W(f) ,  t  >  0} be 

defined on a partially  ordered statespace E;  for exam ple E  =  {0, l} 5 where 5  

is a  countable set, whence a na tu ra l partia l order is set inclusion. A function
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/  is then  said to  be increasing (decreasing) on E  if

ei <  e2 =>• / ( e i )  <  (> )  / ( e 2) for all ei <  e2 in E.

H W ( t )  and  Z (t)  are E'-valued random  variables we then  say th a t X  is stochas

tically greater th an  Z  (w ritten  W  Z)  if

E [ f (X ( t ) ) ]  > E [ f (Z ( t ) ) \  for all increasing functions /  on E.

We then  define W  to  be a monotone process if the following is true:

If W '(-) and W " (  ■) are two versions of W (-) then

w ' ( 0 )  I* w " { 0 )  =*• w \ t )  I* w ” ( t )  for all i  >  0.

The most common way of dem onstrating m onotonicity is via coupling.

We now re tu rn  to  b irth  processes.

D e fin it io n  5 .2  A sequence Ai, A2, . . .  is said to be superlinear i f  An/n ,  n  =  

1 , 2 , . . . ,  is non-decreasing and sublinear i f  \ n/ n ,  ri =  1 , 2 , . . . ,  is non-increas

ing.

It is easy to  show th a t convexity of the sequence A1? A2, . . .  implies superlin

earity  and concavity implies sublinearity.

Throughout this section we will take X (0) =  N  > 1, the initial value of the 

b irth  process, to  be fixed. Further we will restrict our a tten tion  henceforth 

to  non-explosive processes (so th a t we assume ]£ £ i A"1 =  oo). We augm ent 

the b irth  process by assigning parents to  newly bo m  individuals as described 

earlier and label the  initial individuals from { 1 , 2 , . . . ,  N } .  We consider the 

process {(X i ( t ) , . . .  ,Xjv(t )) ,  t > 0} where X{(t)  is the num ber of individuals 

present a t tim e t who are descended, possibly via some in term ediate  individ

uals, from the  zth initial individual, w ith the founding individuals counted as 

descendants of themselves. More formally, X(-) =  (X i(-), X 2(• ) , . . . ,  X ^(-)) is
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M arkov w ith s ta te  space E  =  {1 ,2 ,3 , . .  .}N , X t(0) =  1, * =  1 , 2 , . . . ,  N ,  and 

the non-zero off diagonal elem ents of its generator m atrix  are given by

x%
=  ---1 \ ~7~~ i * =  1?2, . . . ,N .

Xi H r  Xn
(5.1)

We now consider the presence of correlation between the  sizes of the  N  

families. In  particu lar we prove the  following result:

T h e o re m  5 .3  For the family size process {X (t), t  >  0} defined above, for  

=  1»2, . . .  ,IV, i ^  j ,

(i) C o v(X i ( t ) ,X j ( t ) )  >  0 i f  the birth rates are superlinear,

(ii) Cov(Xi(t) ,  X j ( t ) )  <  0 i f  the birth rates are sublinear.

R em ark N ote th a t since X (0) =  N  the  actual values taken by Ai, A2, . . . ,  \ n - i 

have no effect on the  behaviour of X (-). Hence, for convenience only, we will 

assume th a t these values are defined such th a t the  super(sub)-linearity  of the 

sequence \ n , ^ n +i> • • • is preserved.

Proof:

We first prove the  superlinear case. Consider two versions X(*) and X(*) 

of the M arkov chain X (-) w ith transition  rates as in (5.1) w ith  X (0 ) =  

( x \ , . . . ,  xjv), X (0 ) =  ( 5 i , . . . ,  xjv) and suppose x t- >  x t- for all * =  1 , . . .  , N .  

We aim  to dem onstrate  m onotonicity and so we define our statespace to  be 

E  =  { 1 ,2 , . . .} ^ .  Note th a t we can define a  partia l order on E  as follows:

( x i , . .. ,x;v) <  (y1?. . .  , y N) iff x t- <  yi for all i =  1 , . . . , iV. (5.2)

R eturning to  our two versions X (-) and X (-) we see th a t since the  b irth  ra tes 

are superlinear the  ra te  a t which X t(-) jum ps is sm aller th an  the  ra te  a t 

which X t(*) jum ps for all i =  1 , . . .  , N .  We can easily couple X(-)  and X(-)  

so th a t families in the la tte r jum p whenever corresponding families in the
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form er do (as well as possibly jum ping a t o ther times). T hus we ensure th a t 

if X (0 ) <  X (0 ) then  X ( t )  < X ( t ) for all t  >  0. This implies th a t our original 

process X (-) defined in (5.1) is monotone.

By definition, all transitions of X(-) are to  com parable states in the  partia l 

order (5.2). Specifically, if the current s ta te  is x  =  ( x i , . . . ,  x n ) and the  process 

jum ps, it will be to  a s ta te  x of the  form x  =  ( x i , . . . ,  X* +  1 , . . . ,  xjq). It will 

always be the  case th a t x > x in the  partia l order on E , and in particu lar x 

and  x  are certainly comparable. Hence it follows (as in Liggett 1985 II.2.18) 

th a t if is the generator of the process X(-) and /  and g are increasing 

functions from  E  in to  IR which are in the dom ain of H, then

t t f g  > f& g  +  gtof- (5.3)

We now appeal to  a  correlation inequality due to  Harris (1977) (see also 

Liggett 1985, Theorem  II.2.14) which effectively says th a t for a m onotone 

process X (-) whose generator satisfies (5.3), we have

E [ f (X ( t ) ) g ( X ( t ) ) ]  > E \ f ( X ( t ) ) ]  £[</(*(*))],

whenever /  and g are increasing functions on E.

If we could now set / ( ( x i , . . . ,  x ^ ) )  =  x t- and flf((xi,. . . ,  x n )) =  xj  ( i ^  

j ) we would have dem onstrated the  correlation required for the  proof. B ut 

unfortunately  we need the  generator to  be bounded. Furtherm ore we also 

require the functions /  and g to  be bounded. To deal w ith this problem  we 

introduce the  following approxim ation argum ent.

Let E* =  {1 , 2 , . . .  , 00}^  have partia l order as in (5.2) b u t w ith the  ad 

ditional proviso th a t e < 00 for all e £ {1 ,2 , . . . } .  Define X M(-) to  be 

the  process w ith jum p rates as in (5.1) whenever x i <  -W an d for
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( y i 9  » yAr) 7^ O l , . . . , Z A r ) ,  E Z o X i >

Q(xi,...,xN)(yi,—,yN) =  '
if yi =  • • • =  yjv =  oo 

0 otherwise.

W hile EiLi  <  -W (and hence ESLi x i < M )  we may use the  same cou

pling as before to  keep the  processes ordered. There are now two additional 

cases however. Firstly, if Yl Xi < M  < EiLi  then  make X M(-) jum p to 

(o o ,. . .  ,oo) no la ter th an  the first jum p of X M(') (recall Am  >  X ^ n by
2-̂  i=i Xx

assum ption). Secondly, if M  < EiLi x i <  EiLi x i, then  make b o th  processes 

ju m p  to  (o o ,. . . ,  oo) simultaneously. As before it follows from this th a t X M(-) 

is m onotone and since all its jum ps are to  com parable states in the partia l 

order, the  generator condition (5.3) obtains.

For K  > 0 we now define //<-, gx  ' E* —► IR by

/ t f ( ( z i , .  • - , x N)) =  x i A K ,  gK{{xu  . . . ,  x N)) =  x j  A K  (i ^  j) .

T h e  process X M(*) (w ith X M(0) =  ( 1 , . . . ,  1) a.s.) now satisfies the  conditions 

of (L iggett’s version of) H arris’ theorem. Thus for any t  >  0 we have

E ( f K( X M(t))gK( X M(t))) > E ( f K( X M(t ) ) )E (gK( X M{t))) (5.4)

Since the  original b irth  process -A(-) is non-explosive,

N
tm  =  inf{t : ^  Xi( t )  = M } => oo

t=i

as M  —► oo (and => denotes weak convergence), from which it follows th a t 

X M(') =>• X ( ’) as M  —> oo. Let M  —► oo in (5.4) to  obtain

E { f K{X ( t ) )g K{X{t) ) )  > E ( f K( X ( t ) ) ) E ( g K(X ( t ) ) ) .

Now let K  —► oo and use m onotone convergence to  w rite

E ( X 6 t ) X , i t ) )  = E ( f ( X ( t ) ) g ( X ( t ) ) )
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>  E ( f ( X ( t ) ) ) E ( g ( X ( t ) ) )

= E ( X i { t ) ) E ( X j ( t ) )  for all i ±  j.

as required.

We now consider the case of sublinear b irth  rates. U nfortunately this case is 

not so straightforw ard. We will again wish to  dem onstrate m onotonicity via a 

coupling argum ent, bu t before we can proceed w ith  this we need to  reform ulate 

our b irth  process. F irstly  note th a t . . . ,  Xjv(^) are exchangeable, so we

can w rite

C o v ( X i( t ) , X j (t)) = C o v ( X 1( t ) , X 2(t)) i , j  =  1 ,2 , . . .  ,1V, i #  j.

Next, define Y (-) =  (F1( - ) , r 2(-)) by

Y ^ t )  = X l (i), Y2( t) =  X 2(t) +  • • • +  X N(t).

N ote th a t Y (-) is a  Markov process defined on a s ta te  space E'  =  { 1 ,2 ,..  .}2.

Again we now consider two versions F (-) and Y(-) of Y (-) w ith Y (0) =  

(2/1, 2/2), Y (0) =  ( y i , y 2) but now y x >  y u  y 2  <  y2. Assume fu rther th a t 

£1 +  2/2 >  2/i +  2/2- We define the  non-zero off-diagonal entries of the  generator 

m atrix  of the process (Y, Y )  to  be (w riting An =  An/n ):

Q( yi ,y 2 ) ( y i , y 2 ),{yi+'i-,y2 ) ( y i , y 2 ) 2/i *̂-3/1 +3/2

#(3/1 .i/2)(w 1&2),(3/1,3/2MW+1.£2) =  V i ^ - y i + h (5.5)

9 (3/i,j/2)(yi»y2).(i/i.i/2+i)(yi,ji2+i) y i ^ - y i + f c

y(3/ii3/2 )(5i 13/2)1(3/1.3/2+1H3/1 *3/2) 2/2-̂ -j/i+y2 y2-^-yi+y2

whenever y x <  £1, y 2 >  £2, 2/1 +  2/2 <  £1 +  £2- If 2/i <  2/i, 2/2 >  £2, 2/i +  y2 =
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yi + y2 = k say, the generator m atrix  has non-zero off-diagonal entries 

9(yi,j/2)(yi,i/2),(yi+i,j/2)(yi+l,y2) =  Vl^-k

9 ( y i , j / 2 ) ( w » i ' 2 ) , ( y i , y 2 + i ) ( y i , i / 2 + i )  =  3/2 A *  ( 5 - 6 )

9 ( y i , 2 /2 ) ( y i> y 2 ) , ( y i , i /2 + l ) ( y i+ l , y 2 )  =  A-k{V2 — Vi) =  ~  2/1 ) •

Thus, when yi +  y2 < y\ +  3/2 the first com ponents of bo th  processes jum p 

independently, bu t Y2(-) jum ps whenever Y2(') jum ps, and a t some additional 

tim es. If yi +  3/2 =  3/i +  3/2> the b irth  processes Vi(-) +  Y2{-) and Yi(-) +  T2O) 

jum p sim ultaneously and if the additional individual joins the first(second) 

com ponent in the  F (-) (respectively y(*)) process, it joins the sam e com ponent 

in the Y ( ’) (respectively T (-)) process. We construct the  coupling like this to 

ensure th a t, w ith the given initial conditions, we have

Y i ( t ) < Y i ( t ) ,  Y2( t ) < Y 2(t)  for all t. (5.7)

If 3/i <  Vii 3/2 >  3/2 but j/i +  y2 > yi +  1/2 use the  above construction (ie. (5.5)) 

w ith the  role of tildes and non-tildes swapped and  the  roles of com ponents 1 

and 2 swapped to  obtain  the  ordering (5.7) once more.

We now wish to  invoke H arris’ theorem  to  draw  conclusions about negative 

correlations. As it stands this is not possible. T he key is to  define a  partia l 

order on E'  as follows:

(a?i, a?2) ■< (yi, 3/2) iff £i <  3/i, ^2 >  3/2-

The above construction then  ensures th a t y (0 )  ■< y(O ) implies th a t Y ( t )  ■< 

Y ( t )  for all t, so th a t w ith this partia l order and sublinear b irth  rates, the 

process y (- )  w ith jum p rates (5.5 and 5.6) is m onotone. Again, all jum ps are 

to  com parable states in the partia l order, so the generator condition (5.3) still
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obtains. (W ith  the  partia l order increasing functions are increasing on the 

first com ponent and  decreasing on the  second, in the  usual sense.)

We now proceed in a  very similar m anner to  before. F irst we note th a t the 

generator (5.5 and  5.6) m ay still be unbounded, so another approxim ation 

argum ent is used. Denote by Y M( •) the  process w ith  jum p rates (5.5 and 5.6)

w ith the b irth  rates At-, i — 1 ,2 , . . . ,  replaced by At- A , * =  1 ,2 ,  (So Y M

has bounded generator.) This new sequence is still sublinear so th a t by the 

above construction, Y M{•) is still m onotone, and of course (5.3) still obtains. 

Now define / # ,  g x  : E  —i► IR by

2/2) =  Vi A K ,  gK{yuV 2 ) =  - ( 2/2 A K ).

Since f x  and  g x  are bo th  increasing in the partia l order H arris’ theorem  

gives

E [ f K( Y M(t))gK( Y M(t))] > E [ f K( Y M(t))]E[gK( Y M(t))].

Let M  —► 00, m ultiply through by —1, and then  let K  —► 00 to  obtain

<  E ( Y 1( i ) )E(Y2(t))

as required. □

Recall th a t

Y1(t) =  X ^ t ) ,  Y2(t) =  X 2(t) +  • • • +  X N(t)

and the  X{(t)  are exchangeable random  variables. Hence we have shown the 

existence of positive (negative) correlations in family sizes for processes w ith 

super(sub)-linear b irth  rates. We now aim  to use this to  provide a  proof for 

a conjecture due to  Faddy (1990).
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5.3  R e la t iv e  V a ria tio n  and  F a d d y ’s C o n jec tu re

We will now consider Faddy’s conjecture for b irth  processes. If a b irth  process 

-A(-) has linear b irth  rates (An =  n \ )  then  A"(t) has a  Negative Binomial 

d istribu tion  and so if X (0) = N  we have:

E X ( t )  =  N e Xt,

VarX ( t )  = N e xt(ext -  1) =  E X ( t )
E X ( t )  _  x

N
(see for example Cox and Miller (1965) C hapter 4). As a m easure of the 

qualitative behaviour of a b irth  process, Faddy (1990) defines the relative 

variation as follows:

V( t )  =   V&TEXU) • (5-8)E X ( t ) [ £ j &  -  1]
In his paper Faddy makes some num erical calculations of this quan tity  for 

a class of piece-wise linear forms for An. He finds th a t there is always more 

(relative to  the linear case) variation for convex An and less for concave An 

and this leads him  to conjecture th a t this may always be the  case. However 

a proof of the result in this form has rem ained elusive and  so we shall now 

spend a little  tim e to  obtain  more insight into relative variation.

Given a b irth  process X ( t )  which s ta rts  w ith N  individuals (ie. X (0) =  TV), 

we w rite X (-) as above, so

where X t(-) is the process constructed by considering the 2th  individual and 

its descendants. As before we will refer to  the com ponent X t(-) as the family 

of the zth individual.

F addy’s conjecture involves a  consideration of the  relative variation. The 

next lem m a presents an  equivalent condition. (N ote th a t for the rest of this 

chapter we shall drop the param eter t  whenever convenient.)
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L e m m a  5 .4  For a birth "process X ( t )  defined as previously, the following two 

conditions are equivalent:

(i) V ( t )  > (< )  1

(«)  > (<) ( W  (5-9)

Proof:

E X 2 -  [EX]2 
E X { ^  -  1]n O > l  > 1

o  E [ X 2} -  [EX]2 > -  E X

E [ X 2] + E X >  [EX]2

E [ X ( X  +  1)] ^  [ E X ?
*  n + i  * ~ f r

E [ X ( X  + 1)] ( E X X 2 
N ( N  +  1) ~  \  N  J

The reversed inequality is directly analogous. □

Clearly, the  right-hand side of (5.9) (ie. ( ^ )  ) represents the  square of the 

expected family size of a single one of the initial individuals (ie. by exchange

ability ( E X i ) 2). B ut is there a more na tu ra l representation  of the left-hand 

side? The next lemma suggests th a t there is.

L e m m a  5 .5  As before, write the birth process as X ( t ) =  ( X i ( t ) , . . .  ,Xpj(t)) .  

Then
E [ X ( X  + 1)] (

N ( N  +  1) =  E { X lX 2 )  (5 '10)
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T he in terp re ta tion  of this result is illum inating. E ( X \ X 2) is the  expected size 

of the  product of the family size of two distinct initial individuals. Hence, the 

relative variation is in fact a  consideration of the  correlation between family 

sizes of initial individuals. The relative variation is greater th an  one exactly 

when th e  family sizes are positively correlated, and less than  one when the 

sizes are negatively correlated.

Before we can continue w ith  the  proof of Lemma 5.5 we need the result 

below:

L e m m a  5 .6  Let Pm  denote the probability that two individuals drawn uni

formly at random from the population at time t are from different families,  

conditional on {X (t) = M } .  Then

M  + 1 N - 1
M (5.11)M-1JV + 1

Proof:

T he result is clear for M  =  N 9 since then all families have only one m em ber 

and so P m  — 1. We proceed by induction on M .

So suppose (5.11) is true for M  and note th a t we can get M  +  1 individuals 

by adding 1 individual to  one of the N  existing families, (the  new individual 

is equally likely to  be an offspring of any one of the existing M  individuals).

Suppose the family sizes (w ith M  individuals present) are jP i ,^ ,  • • • , F n - 

T hen if we let A  denote the event th a t when we random ly select two individ

uals from  M  + 1  we don’t pick the new (ie. M  + 1 ^ 1) individual, and B be the 

event th a t when we random ly select two individuals they are from different 

families and one of them  is the new (M  -f 1 ^ )  individual, we have

Pm +i =  PM x  P ( A )  + P (B)
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2 / Pm  +
M + l 

2

1 -

M

2

/

£ ^ ( U )

(where P ( i , j )  denotes the probability  th a t the  first individual

is in family i and the second is in family j . )

M  — 1 2 ^
M + l  M+  M + l ^

F T T p -  +  m T T ? f ^  =  =*5*j Fi ,—,Fn

x P ( X t = F l t . . . , X N = FN \ M)

(in an  obvious notation)

M  I p  ■ 2  v  — E l p ( x  — p
M  + l  M+ M  + 1 % f ± Fk M M  ( 1 11 . , X n = Fn  | M)

M - l n 2 „  „
M  + l  M+ M  + 1 ?

M -  1 
M  +  l ■Pm  +

L M M  

2 N ( N - l )
M + l M 2 P[X!X2 | M]

by exchangeability.
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Now note that
M

PM =  Z J 2
i < j  v,w =0

vwP(Xj  = v, Xj  =  w | X  =  M)  

( M  ^

\  2 /

E
t<j M

2

N

2

2 /
So continuing from  before we find

M

p  M  - 1 p  , 2 JV(iV - 1) V 2 ^
■TM + l  — T TTT-nV f +M  +  l M  +  l  M 2

M

A’  ̂

2 /

=  PiM
M - l  2(M  — 1)
M  +  1 M (M  +  1)

(M  +  1) +  1 JV — 1 
(M  +  1) -  1 iV +  1

We can now re tu rn  to  Lemma 5.5. 

P ro  off of Lem m a 5.5):

Let X ( t )  =  M .

as required
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Then, w ith Pm  defined as before, we have

E X xX 2 =  X  E { X xX 2 | X  =  M ) P ( X  = M )
M = N

= E
M = N N

2

■PMP (X  =  M )

( m '

= E
M = N

— i p ( x  =  Af)
N  

2 /

jK at JV(JV + 1 )  

E X ( X  + 1 )
as required

N ( N  +  1)

So Faddy’s conjecture about relative variation is simply a consideration of 

the correlation between the family sizes. If we now combine the  lemmas in 

this section w ith theorem  5.3 we have shown the following:

T h e o re m  5 .7  Let X ( t )  be a non-explosive birth process starting at X (0) =  

N  > 1 with birth rates {An : n  =  JV, N  +  1 , . . .} ,  and define the relative 

variation to be
VarX(t)  

then

(i) ~i?■ increasing as n increases =>• V( t )  >  1.

V( t )  =
E X ( t )
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(it)  ka. decreasing as n increases =$>V(t)< 1.

For the sake of completeness we now wish to  prove Faddy’s conjecture for 

processes s ta rtin g  w ith N  =  1 individual. Once again we will approach this 

via a consideration of correlations, bu t now we have only one family. To get 

round this we introduce the  somewhat less n a tu ra l concept of colonies.

We s ta r t w ith  our b irth  process {X (t), t > 0} w ith transition  rates as in 

(5.1) and we use this to  construct another Markov chain {(Z i( t ) ,  Z 2( t )), t  >  0} 

w ith s ta te  space { 0 ,1 ,2 ,. .  .}2 and  0) =  Z 2(0) =  0. Again we view transi

tions in our process as representing b irths and assign a parent, independently 

of all o ther events, to  each new individual born into the  b irth  process by 

choosing a t random  (uniformly) from among all the  individuals present when 

the b irth  occurs. Further, we will allocate each individual bom  into the pro

cess into one of two colonies: each offspring of the  single founding individual 

is assigned to  a  colony a t random  (each choice having probability k), in

dependently of all o ther events, otherwise offspring join the colony of their 

parent and Z\( t ) ,  Z 2(t) denote the  num ber in each colony a t tim e t. Thus 

the founding individual does not belong to  either colony. Formally, the  pro

cess Z(-) = (Z i(-), Z 2(’)) is M arkov and has generator m atrix  w ith non-zero 

off-diagonal elem ents given by

^ u + » 2 + i  3 i — H +  32 — *2? ^

^ t i + t 2 + l  t\+ iJ + 1 3 \ — 32 =  *2  +  1-

Observe th a t in the  linear case, Z\(-) and Z 2(-) are independent linear b irth  

processes w ith im m igration.

We can now prove a com panion result to  theorem  (5.3):

T h eo rem  5 .8  For the 'process {(Z i( t ) ,  Z 2(t)), t > 0} defined above, and any

t > 0,
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(i) Cov(Zi( t), Z 2(t)) >  0 i f  the birth rates Al5 A2, . . .  are superlinear,

(ii) Cov(Zi(t) ,  Z 2(t)) <  0 i f  the birth rates Al5A2, . . .  are sublinear.

Proof:

This is analogous to  the proof of Theorem  5.3 and  so we m erely sketch the 

outline.

In the  superlinear case we use a na tu ra l coupling argum ent and endow E  

w ith  th e  obvious partia l order to  dem onstrate  m onotonicity of (Z i(-), Z2(-)). 

Again jum ps are to  com parable states in the  partia l order so the  generator 

condition (5.3) is satisfied. We then  simply repeat the approxim ation argu

m ent from the proof of theorem  5.3, invoke H arris’ theorem  and  conclude the 

result (i).

For the  sublinear case we once again reverse p a rt of the  p a rtia l order and 

then  a construction very similar to  th a t in the  la tte r  half of theorem  5.3’s 

proof shows th a t (Z i(-), Z 2(-)) is monotone. A fter an  analogous approxim ation 

argum ent and use of H arris’ theorem  we have com pleted the proof.

□

We will now begin to relate this result to  the final p a rt of Faddy’s con

jecture. Recall th a t we have constructed our process (Z i(-), Z2(-)) from re

alisations of the original family-valued process X (-). A little  thought reveals 

th a t conditional on the value of X ( t )  the d istribu tion  of (Z i( t ) ,  Z 2{t)) is in

dependent of the b irth  rates (and of t), since it is solely dependent on the 

assignm ent of new individuals into colonies.

L e m m a  5 .9  For the process { (Z i(t), Z2(t)), t  > 0} defined above, with X ( t ) =  

^i(^) *h ^ 2(0 “b 1 and M  =  1 , 2 , . . .

( i f E i Z ^ t )  | X ( t )  = M )  =  E ( Z 2(t) | X ( t )  = M )  = ( M  — l ) /2 ,

(ii) E i Z ^ Z i i t )  | X ( t )  = M )  =
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Proof:

P a rt (i) follows by sym m etry. The second p a rt is clearly tru e  for M  =  1 and 

M  =  2 since Z \ ( t ) Z 2(t) =  0 a.s. unless X ( t )  >  3. We will prove the  result 

by induction and so assume the result is true  for M  =  to. In  w hat follows, 

consider choosing two individuals from those in the colonies a t tim e t. Then

P(chosen  individuals are from different colonies | X ( t )  =  m) 

2 E ( Z 1( t ) Z 2(t) | X ( t )  =  m)
(m  — l)(m  — 2)

by the  induction hypothesis. Now, when X ( t )  =  m  +  l ,  condition on w hether 

or not the  chosen pair contains the most recently born individual, and use the 

inductive hypothesis and sym m etry, to obtain

P(chosen  individuals are from  different colonies | X ( t )  =  m  +  1)

(5.13)

(  I  
1 -

V

m  — 1 

2

I

\  t  \ _1Nm

\  2 /

most  recently born individual is from 

x 2 P  colony 1 and o ther individual X ( t )  = m

\  chosen is from colony 2

(where t ' is a tim e ju s t before the  m  +  l t h  individual is bom ). By conditioning 

on the values of Zi( t ' )  and Z 2(t') ju s t before the  b irth  of the m ost recent

\
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individual, and  recalling th a t conditional on the value of X ( t ' )  the  Z ’s are 

independent of t \  we may w rite this last probability as

E  /  ^ ( O + i ^ l x ( / )  =  \
\  m m — 1 1 J

= m - \ m  -  I ) ” 1 ( E i Z ^ Z i i t ' )  \ X ( t ' )  = m )  +  ^ E ( Z 2(t') \ X ( t ' )  =  m ) )

m  — 2 1 1
8m 4 m  8

from  the  inductive hypothesis and part (i). Substitu te  this into (5.13) to  

ob tain

£ (Z ! ( t )Z 2(*) | X ( t )  = m  + 1)

m(m — 1)
~  2

x P (ch o sen  individuals are from different colonies | X ( t )  =  m  +  l )

1 m (m  — 1)
4 2

as required. □

We m ay now conclude our proof of Faddy’s Conjecture:

C o ro lla ry  5 .10  For a birth process {X(£), t  >  0} with birth rates A1? A2, .. 

and AT(0) =  1,

(i) Var(X(t) )  >  E ( X ( t ) ) ( E ( X ( t ) )  — 1) i f  the birth rates are superlinear

(ii) Var(X(t) )  <  E ( X ( t ) ) ( E ( X ( t ) )  — 1) i f  the birth rates are sublinear.

Proof:

It follows from  Lem m a 5.9 th a t

E { Z , ( t ) Z m  =  ~ F ( (X ( t)  -  1 ) ( X ( t )  -  2))
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E{Z ,{ t ) )  = E ( Z 2(t))  =  S ( X ( *}) - ■

Thus

Co^ Z 2{ t ) ,Z 2{t)) =  g g ( (X ( f )  - 1  ) ( X ( t )  -  2)) -  W X W> -  V*

=  I  [V ar(X (t)) -  E (X (t) ) (E (X (t) )  -  1)] 

so th a t th e  result now follows from  Theorem  5.8. □

It should be noted th a t it is possible to  prove Faddy’s conjecture for all 

N  >  1 using this la tte r approach, b u t the  colony process it uses seems less 

na tu ra l th a n  the  family process used in the  earlier proof.

Having com pleted the proof of Faddy’s conjecture we conclude by noting 

th a t it is possible to  prove th a t, if the b irth  rates are super-linear, the existence 

of individuals in different families is positively correlated. We once again 

regard our process as consisting of N  > 1 families and simply label the possible 

individuals w ithin a particu lar family w ith the  positive integers, so the  n th  

individual b o m  into  family i is labelled (i, n) say. We then  use a  na tu ra l 

coupling to  show th a t the process in this form ulation is monotone. Next define 

f i iTl to  be 1 if the n th  individual in family i is alive and  0 otherwise. Similarly 

define gj,m for the  m th  individual in family j .  f  and g are clearly increasing 

(and bounded) functions on our s ta te  space. It is now a straightforw ard 

application of H arris’ theorem  (w ith the usual approxim ation argum ent for 

the generator) to  obtain  the  desired result.

It is clearly tem pting to  speculate th a t for sub-linear b irth  rates the ex

istence of individuals in different families is negatively correlated (excluding 

the initial founder individuals). W hile the au tho r suspects the  tru th  of this 

statem ent, no proof has yet been found.
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C hapter 6

CORRELATION  

INEQUALITIES

6.1  P o s it iv e  C o rre la tio n  In eq u a litie s

A concept which arises naturally  in m any areas of applied probability is th a t 

of positive correlation. It is often intuitively reasonable to  expect related 

events to  be positively correlated. However, m any of the results one expects 

to  be straightforw ard are very hard  to  prove. A particularly  useful result in 

this context has proved to  be an inequality due to  Fortuin, K asteleyn and 

G inibre (the so-called FKG Inequality). This has provided quick m ethods 

of proof for m any previously very difficult results, as well as leading to  the 

discovery of new ones. For full details of the result the interested reader is 

referred to  Fortuin, K asteleyn and G inibre (1971). We shall give an explicit 

s tatem ent of the result in a form suitable for our fu ture requirem ents.

Define a la ttice T to  be a partially  ordered set in which any two elements 

x  and y in T have a least upper bound xW y and a greatest lower bound x Ay.  

A la ttice  is called distributive if the operations V and A satisfy either of the

94



following (equivalent) conditions:

x A ( y V z )  =  (x A y)  V (x A z)  for all x,  y, z  in T (6-1)

x V (y A z)  =  (x V y) A (x V 2) for all y, 2: in I \  (6.2)

We define a real-valued function /  on such a set T to  be increasing (decreasing) 

if for any ordered pair x < y  in T we have f ( x )  < / ( y )  ( f ( x )  >  /(y ) ) .

Now if jjl is a positive finite m easure on a partially  ordered countable set T

we define ( / )  to  be
, n  _  £ * e r  P(J ) / ( J )

E x e r K * )  '

T hen we have

T h eo rem  6 .1  (F K G  In eq u a lity ) I f  T is a finite distributive lattice and fi 

is a positive measure on T satisfying the following condition:

(a) For all x  and y in T, fi(x A y)fJ.(x V y) >  f i(x)f i(y),

then i f  f  and g are both increasing (or decreasing) functions on T we have

i f 9 ) > if)(g).

A simple example of a finite d istributive lattice  is

=  2X =  {all subsets of X }  where X  =  X 2 , . . . ,  Xjq (some N).

Here, for A, B  £  H we define

A  A B  =  A  D B  and A  V B  = A  U B.

We shall re tu rn  to  this example later.

As was sta ted  earlier, the FKG Inequality has been used to  provide rel

atively simple proofs of results which were previously difficult. An example 

of this is the  result first proved by H arris (1960) in the field of percolation
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models which now follows as an  easy consequence. Percolation processes were 

originally introduced by B roadbent and Hammersley (1957) as a means of 

modelling the  flow of liquid through a random  medium. These models have 

proved useful in a  wide variety of applications, such as petroleum  flow in sand

stone and as simple examples of critical phenom ena in statistica l mechanics. 

More details can be found in Kesten (1982) and Welsh (1986), bu t here we 

simply present a brief description of the  salient features.

We s ta r t by supposing the existence of a finite regular la ttice G (the  infinite 

case is usually a straightforw ard extension). We then  let V  denote the set of 

vertices (or sites) of G, and E  denote the set of edges (or bonds). There 

are two types of percolation: site percolation and bond percolation. Site 

percolation includes bond percolation as a  special case (Fisher (1961)), and 

so we shall only consider the former here. In  this model sites are either open 

or closed, and it is defined by introducing a random  field fi on V  where p(A ) 

is th e  probability th a t A  is exactly the  set of open sites. Hence we can define 

the  d istribution  function F  by F ( A )  = Y,yda  so F ( A )  is simply

the  probability  th a t the  set of sites A  is open.

For events {A  open} and {B  open} to  be positively correlated we would 

expect a  statem ent like the following to  be true:

P ( A  open | B  open) >  P ( A  open) where A, B  C V,

or more generally

P ( A  open | B  U C  open) >  P ( A  open | B  open) A , B , C  C V.

N ote th a t the above results are trivial in the case of classical percolation 

(which defines //(A) =  p l^ ( l  — p ) ^ ^ ) ,  bu t we will move on to  give more 

interesting examples. Indeed these results will be true  of any probability
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m easure \i which obeys the  conditions of the  FK G  Inequality, ie.

fi(A U B) f i (A  n B ) >  fi (A)fi (B) A , B  C V.

To see this choose

/(* )  =
1 A C X  

0 otherwise

1 B C X

0 otherwise.

N ote th a t in this case ( / )  =  P ( A  open), similarly (g) =  P ( B  open) and 

(f g ) =  P ( A  U B  open). Thus the conclusion of the FKG Inequality gives us 

the  required behaviour.

Moving on, if we now define

P (a  —> b) = P (3  a  p a th  of open sites from a to  6)

and  similarly P (c  —>> d), for a, 6, c, d G V, we can w rite

P(a  -> 6) =  £  t i X ) f a * ( X )  
x c v

where
/

1 if X  contains a set of sites forming a 

/ 0)t(X ) =  p a th  from a to  b

0 otherwise

Clearly f ajb and f C)d are increasing functions (since f a,b{X) =  1 and X  C 

Y  implies f a,b(Y) =  1)? so we apply the FKG Inequality to  deduce th a t 

P(a  —> b \ c —> d) > P(a  —> 6). In  o ther words, the  probability  th a t there ex

ists a p a th  of open sites from a to  6, given th a t a sim ilar p a th  exists from c 

to  d, is greater th an  the probability of existence of such a p a th  given no prior 

knowledge. This is intuitively w hat one would expect, since the existence of
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a p a th  from c to  d tells us th a t more vertices th an  m ight be expected are 

open and this increases the likelihood of there being a sim ilar p a th  from a to  

b. This is ju st one example of the sort of inform ation which can be deduced 

using the  FKG Inequality and it is the result proved a t some length directly 

by H arris (1960). There are obviously m any others.

M any models in statistical mechanics are concerned w ith ferromagnetism. 

Ferrom agnetism  derives from the  quantum  m echanical spinning of electrons. 

T he “spin” (and hence the  m agnetic m om ent) can be represented by an arrow 

which points up or down and which flips between the two orientations. So 

each site of the lattice  G  has a “spin” of either +1  or -1 and we in terpret f i ( A )  

as the  probability  th a t the set of sites w ith positive spins is exactly A .  The 

m ost common such model is the classical Ising model (see Ellis (1985) Section 

IV for instance). It has /i given by

- a \ X \ - (3 e {X )
H{X)  =  ---------- --------  X  C V,

where a ,  /?, Z  are constants and  e ( X )  is the num ber of edges having only one 

endpoint in X .  Obviously we can view this as a  percolation (w ith the two 

different spins corresponding to  open and closed sites). It is easy to  check 

th a t e ( X  U Y )  +  e ( X  n  Y )  <  e (X )  +  e(K ), and  this implies th a t fi satisfies the 

conditions of the  FKG Inequality, which can hence be applied. For instance, it 

can be used to  prove the  existence of infinite volume Gibbs states (for details 

see Ellis (1985) Section IV).

A nother common area of application for the  FK G  Inequality is th a t of 

particle systems. An easy example is the  voter process. Informally, in this 

process sites of a graph wait independently for an exponentially distributed 

period of tim e until their associated “bell” rings. A site can have one of 

two possible colours (commonly black and w hite). W hen its bell rings a  site
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chooses a neighbour a t random  and assumes the colour of th a t neighbour. 

Should the  neighbour be of the same colour then  no change occurs. We fol

low the evolution of the  process through tim e and investigate its behaviour. 

Amongst o ther things the FKG Inequality can be used to  show th a t the in

variant measures for the distribution  of vertex colours is positively correlated. 

For a  more rigorous and in-depth look a t these processes the reader is referred

to  Liggett (1985).

Finally we give an application in the  field of com binatorics. Define an

FKG Inequality is used to  prove the following result:

T h e o re m  6 .2  I f  (ajt : 0 <  k < n) is log convex and “positive and (6,- : 0 <  i <

T he proof proceeds by defining dk =  ak/(k)  for 0 <  k < n, S  = { 1 , 2 , . . . ,  n} 

and  n(A )  =  d\&\ for all A  C 5 . Then if we set f ( A )  =  g(A)  =  (A  C 5 ) 

we can, after a  little  work, apply the FKG Inequality to  conclude the result. 

For more details refer to  Seymour and Welsh (1975).

Notice th a t if we pu t a* =  1 for all k we get:

T h e o re m  6 .3  (C h e b y sh e v )  I f  b0 <  . . .  <  bn and c0 < . . .  <  cn, or b0 >

. . .  >  bn and c0 >  . . .  >  cn then

infinite sequence {a* : k > 0} to  be log convex if a\  <  ajk_iaik+i (1 < k < oo). 

A sequence (bk : k > 0) is log concave if {6-1 : k > 0} is log convex. Commonly 

occurring examples of log convex sequences include the binom ial coefficients 

and  Stirling numbers of bo th  kinds (Abram owitz and Stegun (1972)). The

n ) ,( c t- : 0 <  i < n) are both increasing (or both decreasing) sequences then
n n n n

UkbkCk >  a^ k  akck-
k=0 k—0=0 k—0 k=0 k=0
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6.2 N egative Correlation

We now want to  tu rn  our a tten tion  to  the subject of negative correlation, 

bu t first we m ust give a  little  thought to  how we will define the concept. 

It is, of course, no problem  to  define positive correlation. If one looks a t the 

conclusion of the  FKG Inequality one has an excellent definition, ie. the system  

(or underlying m easure fi) is positively correlated if E ( f g )  >  E ( f ) E ( g )  for / ,  g 

b o th  increasing (or bo th  decreasing) functions. B ut unfortunately  it is not so 

simple where negative correlation is concerned. O ur first thought m ight be to  

simply reverse the  direction of the FKG Inequality to  get E ( f g )  < E ( f ) E ( g ) .  

B u t if we p u t f  = g we contradict the Cauchy-Schwartz Inequality and so 

clearly this is inappropriate. So w hat kind of definition is appropriate? To 

help determ ine this we will now give a  few examples of situations in which 

some sort of negative correlation seems to  be present.

(i) D eath  Processes: These occur widely throughout statistica l literature 

and  can arise naturally  in m any ways, (for instance, m any occur as compo

nents of com partm ental systems). An elem entary account of death  processes 

can be found in Taylor and K arlin (1984), bu t for our purposes the  following 

definition will suffice.

A d eath  process {X(<) : t > 0} is a continuous tim e M arkov chain w ith 

X (0) =  N  and infinitesimal transition  probabilities ( “death  ra tes” )

Urn h~YP ( X ( t  + h) = j  | X ( t )  = k ) = {
fik if j  =  k -  1

0 if j ^  k, k — 1.

T he s ta te  0 is an  absorbing state. In Ball and Donnelly (1987) the authors 

prove a conjecture of Faddy concerning the relative variation of death  pro

cesses for concave or convex death  rates. In  the  course of this they prove

th a t if we label the  individuals initially present in the  process 1 , 2 , . . . ,  N  and
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define indicator random  variables

1 if n  is alive a t tim e t
n =  1 , . . . ,  N  

0 otherwise
m  =

then  if the  death  rates h n , • • • ? ^ l form a concave sequence we have

E ( I m( t ) In(t)) > E ( I m( t ) ) E ( I n(t))

and if the  death  rates form a convex sequence we have

E ( I m( t ) In(t)) < E ( I m( t ) ) E ( I n(t)).

The result for a convex sequence of death  rates can be in terpreted  in the 

following way

P(ind iv idual m  present a t t | individual n present a t t)

<  P(individual m  present a t t )

In o ther words, the  presence of particles is negatively correlated.

(ii) T he A nti-Voter Process: We formally define the  anti-voter process rjf 

by supposing the existence of a  finite connected graph G w ith  vertex set V  

and edge set E.  Initially we colour the vertices in A  black and those in V \ A  

white. T hen  we associate a “random  clock” w ith each vertex of G which rings, 

independently for each vertex, a t the instances of a  Poisson process of rate 

1. W hen a clock rings the associated vertex chooses a  neighbour a t random  

and adopts the opposite colour to  the chosen neighbour. T he set of vertices 

which are black a t tim e t is denoted by rjf. Clearly, since the  statespace of 

the process is finite, it m ust have an equilibrium  distribution, and one would 

expect because of the na tu re  of the  model some form of negative correlation 

in the equilibrium  distribution. In fact it is possible to  prove th a t for graphs
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w ith enough symmetry, the equilibrium  distribution  is negatively correlated 

in  the  sense th a t if x  and y are neighbouring vertices, then

P ( x  black | y black) <  P ( x  black)

and

P ( x  white | y white) <  P ( x  white)

For the exact result and further details see Donnelly and  Welsh (1984).

(iii) Anti-ferrom agnetic Models: If one considers the Ising model as stated  

in section 6.1 for j3 > 0 we have an example of positive correlation. In  some 

sense a  positive (3 encourages neighbouring vertices to  have the same spin. 

However, if we allow (3 < 0 we get a form of negative correlation. A t present 

it has proved impossible to  trea t this model in any generality and indeed it is 

not clear how such an analysis should proceed. B ut these models do exhibit 

negative correlation and they are discussed in more detail in Griffiths (1972 

Section V .C .I.).

(iv) A Simple Infection Model: Suppose the  existence of a  finite population 

of individuals Xi, x<i,. . . ,  x n , and introduce a model of infection where the 

probability  th a t a particu lar subset , z t-2, . . . ,  X{k is infected is simply a 

function of k. Then, given th a t there are exactly M  infected individuals, 

we have
M

P{xi  infected) =  —  for 1 <  i <  JV,

M  -  1 M
P{xi  infected | x j  infected) =  —— — <  —  for 1 < i , j  < N ,  i =£ j.

So the  sta tu s of individuals is negatively correlated.
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6.3 A  N egative Correlation Inequality

Before we do anything it is necessary to  spend a little  tim e proving a lemma

which will be useful la ter on:

L e m m a  6 .4  Given sequences o f  positive numbers (afc)JL0, (&*)/?= o an& (x k)k=o 

such that the following conditions are satisfied:

(i) a 0 — b0 < 0

(ii) Ok — bk increases as k increases,

Define c* =  a* — 6*, k = 1 , . . .  , n. Then Ck increases as  k increases and

(Hi) £ * = o a * - =  0,

(iv) Xk decreases as k increases.

Then
n n

Y  akXk < Y  h*Xk'
k=0

(Note that condition (i) is implied by (ii) and (Hi). I t  is included merely for 

clarity.)

Proof:

Xk decreases as k increases. Thus since ( —Xk) increases as k increases we can 

apply Chebyshev’s inequality (theorem  (6.3)) to  get

Thus

B ut o ck — 0 by assum ption (iii), so

n
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k=0 k=0

Having com pleted our brief diversion we now proceed as before and suppose 

the existence of a set

X  = { X U X 2, . . . , X N]

and let

=  2X =  {all subsets of X }.

Hence | ft, |=  2N.

Let fi be a  m easure, /z : 17 —► [0,1] such th a t /i(A) =  1. Finally,

define

Q ( A ) =  £  t f ? )
Y e n , Y D A

We now re tu rn  to the problem  of defining w hat we m ean by negative cor

relation. Recall th a t

( f g)  5: {f )  (g) for all increasing functions / ,  g

is not possible. R estricting this to  functions / ,  g which are the  indicators of 

disjoint sets gives

Q ( A U B )  < Q (A )Q (B )

or alternatively

P ( A  | B)  < P ( B )

as is suggested by the examples of negative correlation in the  previous sec

tion. However, we can’t extend this to  all indicators (because of the  Cauchy- 

Schwartz Inequality again), bu t we may hope to  “correct” the  left-hand side 

to  get the following

Q (A  U B ) Q ( A  n B )  < Q (A )Q (B )  for all A, R.
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It is in fact in this form  th a t we will prove a negative correlation inequality:

So we aim  to  prove a result analogous to  the  FKG Inequality, bu t for 

a negatively correlated m easure /i. Specifically, we will prove the  following 

result:

T h e o re m  6 .5  Suppose we have a measure fi and a function Q both acting on 

St =  2X where X  =  {Xi,  X 2, . . . ,  X ^ }  and Q(A)  =  ^2yen,YDA Suppose

further that ^(-) depends only on | • | and that /x(AU B )  <  f i(A) fi(B)

for  all A , B  ESI . Then

Q (A  U B ) Q { A  D B )  < Q (A )Q (B )  for all A , B  ESI.

Before beginning the formal proof we have a few general comments. F irstly 

we should point out th a t this work is closely related to  th a t given by Karlin 

and R ino tt (1980). In particu lar the theorem  on page 501 of th a t paper. Their 

work is in a continuous setting however. They define a  m easure //(•) as the 

density of a  continuous random  vector (X i, X 2, . . . ,  X n) and show th a t for a 

/i(-) satisfying certain  conditions we can make the following statem ent:

for 1 < & < &  +  / <  n, for a general class of functions {&}” , (which includes 

the  indicator functions). This is a more general result, bu t as several authors 

have pointed out (eg. Block, Savits, and  Shaked (1982), and Joag-Dev and 

Proschan (1983)) the condition on // (ie. th a t fi is strongly m ultivariate reverse 

rule of order 2 (see K arlin and R inott (1980) for definition)) is very hard  to 

in terpret and difficult to  verify. Additionally, although the  authors briefly 

m ention the  case where the X t- are discrete (as they are for our result), and 

say th a t some of th e  results carry over, they give no details. T he advantages of 

the approach presented here are th a t the condition on the underlying measure
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fi is more natural, easier to  check, and th a t the  proof of our result is more 

direct. It is w orth noting th a t if the set of random  variables (X 1?. . . ,  X n) are 

exchangeable then  the condition th a t =  f i (B)  whenever | A  \ = | B  | is 

im m ediately satisfied. We also note w ithout proof the result

L e m m a  6 .6  Suppose f i (A)  =  f i (B)  whenever  | A  | =  | B  \ and denote the 

value taken by fi on sets of  size i by /!{. Then

/it_i/it+1 >  (< )  //• for  all i

=> f i (A fl B) f i (A  U B )  > (< ) fj,(A)pi(B) for  all A , B .

So it is sufficient to  check /i,_i/x;+i >  (< )  fjf for all i in order to  satisfy the 

first condition of our result.

We shall prove theorem  6.5 in stages. In outline we will proceed as follows. 

Initially we prove the result for singleton sets A, B.  There are then  two cases 

to  consider for more general A, B:

(i) A n B  ^ 0

(ii) A D B  = 0.

In the  first case we suppose A H  B  =  C  and define

Sic =  { D  € n  | C  C D )  and QC( E)  = J 2  ^ (F )-
Y e n c ,YDE

T hen  for a  n a tu ra l choice of measure f ic on Sic we apply induction on N  = 

| O | to  get

Q c ( E  U F ) Q c { E  n  F ) <  Q c ( E ) Q c ( F ) for all E  < F  E Sic 

and so deduce th a t

Q ( E  U F ) Q ( E  D F)  < Q( E ) Q( F)  for all E,  F  e  SI
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as required. In  the second case (ie. A  fl B  =  0) we define C  =  A  U {b} 

where b £ B  and so

Q ( B  n  C) Q( B  U C ) <  Q( B) Q( C)

by case (i). Then, by induction on | A  U B  |, we see th a t

Q( A  U b)Q(A  fl b) < Q(A)Q(b) .

Combining the  two we get the required conclusion.

We now begin the formal proof of theorem  6.5 w ith the  following proposi

tion:

P r o p o s i t io n  6 .7  Suppose

fi{A fl B)fj. (A U B )  <  f i (A)f i (B)  for all A  < B  €

and that f i (A) =  fJ*(B) whenever  | A  |= | B  |. Then

<?({«} n  {b})Q{{a}  U {b})  <  Q({«})Q({6})

for all a,b  E X  with a ^  b.

( Clearly i f  a — b we simply have equality.)

[Note th a t in fu ture we shall abuse no tation  by w riting Q(a)  instead of Q({a}) 

etc. ].

Proof:

As n ( Y )  depends only upon | Y  | denote by /i, (i =  0 , 1 , . . . ,  N )  the value 

taken by /j, on sets of size i , (ie. =  [J.(Y) where | Y  |=  i). Hence the 

conditions f i (A D B)/ j. (A U B )  < fi(A)fjt(B) for all A , B  € £1 are equivalent to

*\ j =  0 , 1 , . . .  N
{Hi-kl*j+k < HiPj)  for all i < j  (6.3)

fc =  0 ,  A  j ) .
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In  our case we have | a | =  | b | =  1 and so n(a)  =  fi(b) =  fii, 

Since Q(a)  =  a mQO e^c- we ^ ave

^  I n - i
<?(«) =

t=i \ i — 1
=  Q ( b ) .

Similarly

and

A  I N - 2  
Q(a  U  b) =  Mi

i—2 \ i -  2

TV

Q(a  n  b) =  Q(0) =  1 =  Mi 

Now let n z =  Q(a  U  b). Then

i=0

f N \

* /

A  I n - i
Q(a)  - Q(b) =

i=l \ 2—1

=  Ml
 ̂ JV — 1 \  (  N  -  1 ^

+  M T V

0 j  ^ A T - 1

TV— 1

+  5 3  Mt
i=2

TV-1

Mi +  MTV +  53 Mi

/

+
i= 2 A 2-1 J \

N  — 2 

2 - 2

=  5 3  Mi
i=2

TV /  JV -  2 \  ^

• o  +  ^  ^2 — 2  I i= 1\

N  — 2 

2 - 1

— 71̂. “I- nx

'TV-1where n x is defined as 5Zi=i Mi 

22̂  — 1 (2t\x ~\~ TX2 )

1 N - 2  ^

2 — 1
. Now define n y by

/

108



£ > l
'  JV > _

N - 1 1 N - 2  s N

+  I >o•li  ̂ * > t=l i - 1  J t=2

N - 2  

i — 2

\

/  J

=  Âo +  H i(-^  — 2) 4- h n - i [N — (2 +  N  — 2)] 4- h n ( 1 — 1)

N - 2

+  P*
i=2

/  JV ^ 1 N - 2  ^ ( N - 2 )1 to -.

A  2 / i - 1  J 1 to

Now for i =  2 , 3 , . . . ,  N  — 2 we have

N  -  1(  N - 1  ^

\  2

N - 2

i

So, on simplification,

/
+

+

i -  1

N - 2  

i — 1
+

N  — 2 

i — 1

N  — 2 

i - 2

N - 2
Tly =  )  ] (J-t

i= 0

N - 2

i

N ote th a t by definition of n y,

Q(0) =  1 =  n y 4* 2nx +

Now we have

Q(a  U b) =  n*, 

Q(a) =  Q(6) =  n z 4- na

and

Q (a n  b) =  Q(0) =  n y 4- 2n* 4- n z.

We w ant to  show Q(a  fl b)Q(a U b) <  Q (a)Q (6), th a t is

fiz(jny “I- 2xix 4” ^  (n 2 4- ^ i)  — 4~ "f" 2tXjx
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which is equivalent to

So it is sufficient to  show th a t

n zn y < n\ .

1 
____

1N 
i 

1 ̂
•

N - 2

Y1 Vi
( N - 2  \

<
t=2 \ 1 ~  / i=0

K * J .

*t=} N - 2

th a t is,

"  N - 2
l _  Z s  M i
j = 2 i= 0 \  j  ~  2

We can rew rite (6.4) as

N - 2

i

\  N - l  N - 1 /

<  E  E  ViVj
i=l j=1

N - 2 N - 2

N - 1 tA(AT-t) N - l  ( i - l ) A ( N - i )

^  v )  > Lt i—kLl i+ k a i,k "I" ^  , )  > A4!—1 —fc^i+fca i,Jk (® -^ )
t= l  Jt=0 i=2 k=  0

N - l  ( i - l ) A ( N - i - l )  N - l  ( t—2)a(7V—*—1)

<  E  E  ^ i —k^i+k^i,k 4“ ^  ^  > f î—l — kf^i+k^itk
t= l  k=0  i= 2  k=0

for a  sequence of coefficients {cti.jb}, {a* ,* .} , {&;,*}> { K , k } -  other words 

a^k =  the  coefficient of fi^kfJ-i+k in the  left-hand side of (6.4) 

ai k = the  coefficient of m-i-kV>i+k in the left-hand side of (6.4) 

b^k =  the  coefficient of /z,_A;/it+fc in the right-hand side of (6.4) 

b'i k =  the  coefficient of in the  right-hand side of (6.4).

In  some cases some of these coefficients will be zero. T heir actual values 

will be found later.

Hence to  prove (6.4) (and hence the proposition), it is sufficient to  show 

th a t the  following two conditions are satisfied:

N - l  iA(N- i)  N - l  ( i - l ) A ( N - i - l )

)   ̂ ^  y fJ'i—k^’i+k^'ifk ^  ^  ^   ̂ f^i—kf^i+k^i,k ( ^ ' ^ )
t= l  k= 0 t= l  k = 0

110



N - l  ( i - l ) A ( N - t )  N - l  ( i - 2 ) A ( N - i - l )

i=2 k=0 i=2 k=0
(6.7)

N ote th a t since m  =
\

N
we have th a t /zt- =  //at-i for all i. Hence it is

sufficient to  show th a t (6.6) is true  for i <  y  and th a t (6.7) is tru e  for i < f + i -  

We s ta r t by showing (6.6):

It is sufficient to show it for each 2 =  0 , 1 , . . . ,  y  . T h a t is, to  show

N

iA(N- i )  { i - l ) A ( N - i - l )

)  v H’i—k(J'i+kQ'i,k ^  )  > fJ'i—kf^i+k^ifk
k=0 k=0

(6 .8)

for each * =  1 , 2 , . . . ,

N ote th a t if we now define

•T/s — f^i+kfti—ki ®k — and

we have sequences as in the statem ent of Lemma 6.4. Clearly the Xk are 

decreasing as k increases (by the conditions for the proposition), so it remains 

to  check conditions (i), (ii) and (iii). If these are satisfied then  the lemma 

implies th a t (6.6) is true. So we need to  determ ine the  exact values of the 

at?s and b^s.
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Now the  ajt’s are as follows: 

\  /

ak =  <

N - 2

N - 2

N - 2  

i — k

0

And the b^s  are given by:

k >  0
N - 2 N - 2 N - 2

i +  k — 2
i +  k < N  — 2

k = 0N - 2

2 < i < N  — 2

N - 2

N  — 2 < i + k < N

k > 0

otherwise.

N - 2  ^

 ̂ i — k -_1 /  V

1 to 1 to

i - i  ) i - 1

0

N - 2

- k —

\

/

f c > 0  

i — k >  1 

i +  k < N  — 1 

k =  0

1 <  i < N  -  1 

otherwise.

By sym m etry we are assuming z <  y ,  so for i =  0 we have no term s for either

ak or bk. For i =  1 we have to  show 

„ \  /  i V _ 2 >

i 1 —2 y

which is true  since bo th  sides equal 1.

N - 2
<

N - 2  

2 —  1

N - 2  

i — 1
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For «* =  2 , 3 , . . . , and k > 0 we have

1 to 1 to f N - 2  N '  N - 2  N
ak bk = +

i - k  J  ̂ i -f- k — 2 j { i + k j  ̂ i — k — 2 j

- 2
N - 2

i — k — 1 

Note th a t for k =  0 we have

N - 2  

i + k — 1
(6.9)

bk —
( N - 2  ^

\

N - 2

i - 2

N - 2

i - 1

\ 2

/

( N  — 2)!(N  — 2)!
(i -  1 )!(*' -  2)! (N -  i -  1 ) l (N -  i -  2)!

1
i ( N - i )  ( i - l ) ( N  - i - 1 )

<  0 as required.

So condition (i) is satisfied. Note also th a t
N

M

N  '  

M -  1
N - M + l

M

implies th a t 

/

V

N - 2  

i — k \

N - 2  

i — k — 1

i k — 2 

\

J

N - 2  

i -f k — 1

N  — i k — 1 i k  — 1 
i — k N  — i — k

N - 2  

i +  k

N - 2  

i — k — 2
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N - 2  

i + k — 1

Hence, if we w rite

<?! =

N - 2  

i — k — 1

N  — i — k — 1 i — k — 1 
* +  k N  — i -f k

and

N - 2  

i — k — 1

C* =
N - 2  

i — k — 1

then  for k > 0, we may re-write (6.9) as
V

&k — bk = Ci
• n N - i  +  k - i ) ( i  +  k - i )  \
A  (i — k ) ( N  -  i — k) J

{ N  — i — k — 1 i — k — 1 
+ \ i + k  N - i + k ~ 1

=  C,
( N — i + k — l ) ( i  +  k — 1) — (t — k ) ( N  — i — k)  

(*’ — k ) ( N  — i — k) 

( N  — i — k — l)(z — k — 1) — (z +  k ) ( N  — i + k)  
(i -f k ) ( N  — i + k)

=  Cr
1 +  2k N  - N - 2 k _ ^ _ l  + 2 k -  2 k N  -  N

_ (« — k ) ( N  — i — k) (i + k ) ( N - i  + k)_

=  Ci
(1 - N ) ( l  - 2 k )  (1 — N ) ( l  + 2k)

(i -  k ) ( N  -  i - k )  (i + k ) ( N  - i  + k)_

=  C i( l  — N )
(1 — 2 k)(i  + k ) ( N  — i + k)

(i — k)(i  +  k ) ( N  — i — k ) ( N  — i + k)

(1 +  2 k)(i  -  k ) ( N  - i - k )
(i — k)(i  + k ) ( N  — i — k ) ( N  — i + k)
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=  C17T

=  c

2(1 -  N ) ( i N  -  i2 + k2 -  2k2N )
(z -  k)(i  + k ) ( N  -  i -  k ) ( N  - i  + k)

2(2k 2N  +  z2 -  k2 -  i N)
2 (z — k)(i  + k ) ( N  — i + k)

2[k2( 2N -  1) -  i ( N  -  i)}
2(i -  k)( i  + k ) ( N  - i  + k) '

This clearly s ta rts  negative (for k =  0) and becomes positive as k increases 

(since N  > i > k).  So p art (ii) is satisfied. It rem ains to  show p a rt (iii). 

Hence

^ (  N - 2  \  (  N  - 2 ^
+

k=0

( N - 2  ^ 1

\

N - 2  

i — 2 \

N - 2  

2i — 3

( N - 2  '

2 i - 2

N - 2 N - 2

i + k — 2

(6.10)

\ 1 to

CM1

+
/  ̂ i + k J OS 

. 1 1 to

where the first com ponent corresponds to  the (k =  0) term , the  second corre

sponds to  ( k =  z —1), the th ird  to (fc =  z), and the fourth  and fifth com ponents 

correspond to  (k =  1 , 2 , . . . ,  z — 2). Also

N - 2N - 2 1 N - 2  ^

— k — 1

N - 2
. (6.11)

(N ote th a t 6t- =  0.) Now note th a t the (k = I) term  in the  fourth  component 

of the  right-hand side of (6.10) equals half the  (k  =  Z — 1) term  in the  final 

com ponent of the  right-hand side of (6.11). Similarly the  (k =  I) term  in 

the  final com ponent of (6.10) equals half the (k =  / +  1) term  in the  final
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component of (6.11). Hence we write

i—2
c  =  £

k—2

c\|1 1 N - 2  ^
+

'  N - 2  N 1 N - 2  ^

 ̂ i — k J  ̂ i k — 2 j  ̂ i +  k i 9* 
. 1 1 to

to  get

ah — c +
k= 0

+

+

N - 2  

\ *

N - 2

0

N - 2  

i + 1

N - 2

i - 2

^ 1 N - 2  ^ 

2 i - 2

( N - 2  N 

* - 3

+
N  — 2 

1

N  — 2 

2i — 3

+
N  — 2 

i — 1

N  — 2 

i — 1

^  . N - 2
Y,*>k =  c +
A := 0  \  Z —  1

and so we have

N  — 2 \ / N  — 2

i - 1  I \ i -  2

+

+

N  — 2 

z — 3

(  N - 2  ^ /

N  — 2 

i + 1

N - 2

2 i - 2

+
N  — 2 

1

= 0
fc=o A;=0

N - 2

i

N - 2  

2i — 3

as required. So condition (iii) is satisfied and hence (6.6) is shown. It now 

rem ains to  show (6.7). This proceeds in an  exactly analogous m anner to  the 

proof of (6.6) and the interested reader can find the  details in Appendix III.
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Having dem onstrated  th a t conditions (6.6) and (6.7) are satisfied, we have 

com pleted the proof of Proposition 6.7. □

We now move on to  the proof of the m ain result, Theorem  6.5.

Proof (of theorem  6.5):

We proceed by induction on TV (=  | X  |).

The result is clearly true  for N  =  1 as either A  =  0 or B  =  0 or A  =  B.

For N  =  2 we have either of the following two cases:

(i) A  =  0 or B  =  0 or A  C B  or B  C A, in which case the result is obvious.

(ii) A  =  {a}, B  =  {&} some a € X ,  b E X , a ^  b.

In  Case (ii) Proposition 6.7 obtains. So suppose the result is true  for all SV

such th a t | £l' | =  2m  (M  < N) .

Now, given A, B  6 there are two cases:

Case 1: A  fl B  ^  0

Case 2: A  fl B  =  0.

We s ta r t w ith  Case 1.

Suppose A  fl B  =  C  ^  0. Now define a new set t i c  as follows:

Slc  = {D € t l \ C  C D}

Define f i c (E)  = where T  =  J2e ^ c // (^ )-  Hence Y^EeUc = 1 and

H c ( E ) n c ( F ) =  /J(̂ ) ^

>  ^ f i ( E n F ) f i ( E u F )  

=  f.l c { E  fl F ) f i c ( E  U F ).

Clearly f ic depends only on | E  \ (by definition of /i), so f ie satisfies the 

conditions in Theorem  6.5. B ut since | Sic | <  | SI | we can use the  inductive
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hypothesis. So we define

Qc(E)  =  £  Hc{Y)
Yefic^DE

to  get

Q c ( E  fl F ) Q C( E  U F ) <  Q C( E ) Q C(F).

B ut Qc { E)  =  ^5^-, and so we have

Q ( E  n  F ) Q ( E  U F ) <  Q( E ) Q( F)  for all E,  F  6 ft.

In  particu lar

Q( A  n  B ) Q { A  U B )  < Q( A) Q( B)

and so Case 1 is proven by induction.

Case 2: A  D B  =  0.

Let

M  = \ A U B \  = \ A \  + \ B \ < N .

W ithout loss of generality suppose th a t | A  \ < | B  |

Define C  =  A  U {6} where b £ B.

T hen B  fl C = {6} ^  0, and

| B U C  |= | B U  A  |=  M  < N.

So by Case 1 we have

Q ( B  n  C ) Q ( B  U C ) <  Q ( B ) Q ( C ),

ie.

Q(b)Q(A  U B ) <  Q ( B ) Q ( A  U b),

which implies

(6 .1 2 )
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We now s ta r t another induction:

So suppose by induction, th a t for a set Z  — {Zi ,  Z2, . . . ,  Zpj} of size N ,  

Theorem  6.5 is true  for all sets D , E  € Z  such th a t | D  U E  \ < M.  (The 

first step of this induction, th a t is | D  U E  | =1 or 2, again follows from 

Proposition 6.7).

T hen  w ithout loss of generality we have picked A  such th a t \ A \ < 0 f .  

Thus
M

I A  U {6} | < ----- 1-1 < M  (for M  >  2) where b (E B,
2

and so by the second induction we have

Q { A U b ) Q ( A n b )  < Q(A)Q(b)

ie.

Q( A  U &)Q(0) <  Q(A)Q(b)

Thus,

Q { A u b )  < Q(A)Q(b) .  (6.13)

Hence by applying (6.12) followed by (6.13) we have

Q( A  n  B ) Q ( A  U B)  = l x Q ( A u B )  

Q ( B ) Q ( A U b )<

<

Q(b)

Q(B)[Q(A)Q(6)]
9(6)

=  Q( A) Q( B) .

In  o ther words Q( A  fl B ) Q ( A  U B )  <  Q( A) Q( B)  as required. So bo th  induc

tions go through, and the theorem  is proven.

□
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.1 A p p en dix  I

We present here details of the  derivation of a* and 6* from  C hap ter 3 page 37. 

We s ta r t w ith

ak = [Pi(*0(l “ Pr(*0) + Ps(k)p3(k)]/[( l  -  p4(*0)( 1 “ P?(k )) ~  P3(*0p»(*0]

bk = \ p i ( k ) p & ( k )  + P s ( f c ) ( l  ~ P 4 ( f c ) ) ] / [ ( 1  -  P4(*0X 1  -  Pr(k )) ~  P3(*0Ps(*0] 

W here the  P i ( k )  are as defined in (3.1). Let us begin by considering the 

num erator of a^:

Pi(*0(1 “ Pr(k )) + Ps(k )P3(k )

(  k — 1 / m . k k — l \
V N  -  1 +  ̂ ~ P ) N N - 1 )

(  N - k - 1  ,
X N - l  ~ ( 1 ~ p)

N - k N - k -  1 
~ N  N - l

,  . k  k  — 1 . SN  — k  N  — k  — 1
+(1 -  P)77-̂ 7— r(l -  p)-J V J V - 1 IV J V - 1

A; — I N  — k  N  — k  — 1 A: k  — I N  — k  N  — k  — 1
N N - 1  N  N - l N N - 1  N  N - l

- p (  1 -  p)
k  — I N  — k  N  — k  — 1  k  k  — I N  — k  — 1 

J V - 1  N  N - l  + J V J V - 1  J V - 1

+(1 ~ P )
k k — 1

+ p-
k - 1

N N - 1  r N - 1 ~ P
k — 1 N  — k — 1 
N - l  N - l

k - 1
N - l

9 N  — k  — 1  k

P - P  N  — 1 + ( 1 ~ P ) j v

. N - k - 1  f N - k  k '
- p a - r t  N _ 1 —
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k - 1 
N - l P-

N - k - 1  
N - l

N - k - 1
N - l

k — 1 
N - l

N fc N - k - 1  
p + ( i - p ) f - p  N _ 1

N - l
_ k - 1 ( l - p ) ( k - l )
p n = T  +  ~ N

Next the  num erator of &*.:

Pi(^)ps(fc) +  P5(^)(l -  P4(^))

k k — 1 
N N ^ l

(  * - 1  ,

(  k , N , Nk N - k , A
x (pivTi(1" u) + (1 “ p)iv jv-T*2 - «)j

fc fc — 1 /  N  — k k N  — k \
*■ “ P - ' j v i v - i  \  “ P j v - 1  _ (  — P ^ i v j v - i  - u 7

=  ( i - p ):
k k — 1 k N  — k . k k — 1 k N  — k .

-(2 - u ) -  — —----------—---- - ( 2 -  u)
N N - 1 N N - 1 N N - 1 N N - 1

+p(  1 -  P)
fc — 1 k N  — k 
1V -  1 JVJV -  1^ - U ^

k k — 1 k k — I N  — k
+ ' . N N - 1 N - V  ~ U> ~ N N - 1 N - 1

+ P 2N - I N
— (1 -  u) +  (1 -  p)

fc fc — 1
n J T ^ i

= p( i  -  p)
k — 1 k N  — k k k — 1 A:
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+ P 1
k — 1 k 
N - I N - 1

( l - u )  +  ( l - p )
k — 1 

N N - 1

=  K 1 -  P )(1 “  u )
k — 1 k 
N  - I N

N - k  + k'  
N - l

k — 1 k k k — 1

. k — 1 k . ov o ( k — 1 '

+(1 -  p)
fc k — 1 
N N - 1

. . k — 1 k . k k — 1
K 1 -  u) T t 7 T t 7 +  (1 -  p)-N - 1 N - 1 N N - 1

N - l
, s k — 1 / . k — 1

K 1 “  w) t 7 T +  C i - p ) 'J V - 1 N

Finally we move on to  the denominator:

( 1  -  p 4( k ) ) (  1  -  p 7 ( k ) )  -  P 3 ( k ) p 8( k ) ]

(  N - k  , . k N  — k .
=  ( 1 - p F T T - ( 1 - p ) ] v F = T ( 2 - “ ),

/  N - k - 1  , N - k N - k - 1x (1 - p — — ;------(1 - p ) -
N - l N  N - l

, N - k N - k - l (  k , x . k N  — k .
- d  -  P ) - j f  j v T I -  - « )  + ( ! - p ) n 7 T T [ {2 -  u)

=  (1 - p f
k N - k  ^ N  -  k N  -  k - 1  
N N ~ ^ 1 ^ 2 ~  U> ~ N ~  N - l
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N - k N - k -  1 k N - k  
~~N TV-  1 TV TV-  1

(2  — u )

+ p ( l  “  P)
N  — k N  — k N  — k — 1 k N - k , . N - k - 1

+  — —— r(2  — «)■T V - 1  TV T V - 1  TV TV — 1 TV-  1

N - k N - k - 1  k 
~  T V - 1  T V - 1 ( 1 - u )

TV — TfcTV — A: — 1
T V - 1  T V - 1

- ( 1 - p )
k N - k ,  , N - k N - k - 1  
------------ (2 — u)  H-------------------------
T V T V - r  '  TV TV- 1

~P
N - k  N - k - 1  

+TV — 1 T V - 1 + 1

=  K 1 ~ P)
TV - k N  - k N  - k - 1  k N - k N - k - 1

+T V - 1  TV T V - 1  TV TV — 1 TV -  1

N - k N - k - 1
T V - 1  T V - 1

-  (1 -  p)
k N - k , . TV — fcTV — fc — 1

-(2 -  u) +
TV T V - 1 TV TV-  1

~ P
TV- k  N - k - 1
N - l  T V - 1 + 1

=  (P ~  P2)
N - k N - k - 1  ( N - k  k 
N - l  T V - 1  I TV +  TV + P2

N - k N - k - 1
T V - 1  T V - 1

- ( 1  - p )
k TV — A , N - k N - k - 1

--------------- (2  — u )  H---------------------------------
T V T V - l v ; TV T V - 1

~ P
TV-Jb T V - J b - 1  

+T V - 1  T V - 1 + 1

T V - f c T V - J b - l  / 
PN  - 1  N - l

k N - k , ^  , N - k N - k - 1  
------------ (2 — u) H--------------------------
T V T V - r  ; TV T V - 1

123



- p
N - k  N - k - 1  

+
N - l  N - l

+ 1

=  P
N - k N - k - 1  N - k  N - k - 1
N - l  N - l  N - l  N - l

- ( 1  - p )
k N  — k k N  — k N  — k N  — k — 1

-(1 — tx) +  — —— r  +N  N - l N  N - l N  N - l +  1

=  P
N - k N - k - 1  N - k  N - k - 1
N - l  N - l  N - l  N - l

- ( i  -  p)
k N - k . , N - k

=  P
' N - k N - k - 1  N - k  N - k - 1
N - l  N - l  N - l  N - l

- ( 1  -  p)
k N - k , . N - k
n W = T ( 1 - u) +  — — 1 + p

=  p 1 + N - k N - k - 1  N - k  N - k - 1
N - l  N - l  N - l  N - l

(!  ~ P)
N ( N  -  1)

[ N( N -  1) -  k ( N  -  k)( 1 — u) — ( N  — k ) ( N  -  1)]

N - l
( N  — 1) +

N - k
N - l

( N  -  k -  1) -  ( N  -  k) -  ( N  -  k -  1)

(1 ~ P ) k  
N ( N - l )

[A;(l — u) — 1 +  Nu]

P
N - l

' T N 2 - N  k2 + k - 2 k N '  
2 k - N  + — — — +

N - l N - l
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+ i i _ £ l L [ j t ( i  _  «) -  1 + Nu]
N ( N  - 1 )

V
N - l

2k +
P  + k -  2 k N

N - l + W ( N ^ l ) [k{1- u ) - 1 + N u ]

N - l
k2 -  2k  +  2k N  +  k -  2k N

N - l +  “  1 +  Wu]

k
N - l

Hence

k — 1 N - k
p J T ^ i  +  ^  +  ^

* - i
TV

ak =
fc_i_ , (i-pjifc-1) 

P n - i  ^  iV

6t  = p(i -
p &Et  +  ( i  -  +  ( i  -  p ) t t

and this simplifies routinely to  give

( f c - l ) ( T V + p - l )
a k — (1 -  p ) ( N  -  k ) ( N  -  l )u  + (k -  1)(TV +  p -  1)

(fc — 1)(TV +  p — 1 — p N u )
(1 -  p) ( N  -  k ) ( N  -  l )u  +  (k -  1 ) ( N  +  p -  1)

as required.
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.2 A p p e n d ix  II

Here are the  details of the simplification of equations (4.5), (4.6) and (4.7). 

.2 .1  S e c tio n  A

Firstly  we give the  derivation of the equations (4.8) from equation (4.5).

P ( Q k  I Ct_i =  2 , K t- t  =  K )

0
=  £

d= 0
£ p ' ( i - p ) 2 '
i=o

2 > T-2

* /
£  p ’O  -  p)T 2 j
3= 0

( T - 2  N

X

►

J J>

+ 0 ( N ~ 1)

=  (1 -  p f  +  0 { N - ' )

P ( Q k  I C ,-! =  2 ,K (_1 =  JQ  

2( n \  T- 2
=  K 1 -  p)

V 1 y j:

=  2 p ( l - p )  +  0 (jV "1)

x : p ,' ( i - p ) r - 2- j
i=o

T - 2 ^

J )
+ 0 ( N ~ ' )

T—2
P ( Q 2K \ C t. 1 = 2 , K t. 1 = K )  =  p2 £  ^ ( 1  -  P)r ‘ 2_i

j=o

=  p-’ +  O C W 1).

T _ 2 \
+ 0 ( N  )

All these are very easy since for them  we ignore term s 0(iV  *). For the 

next three however we can only ignore term s 0 ( N ~2), so they take a little
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m ore care.

P (Q ° K  I C t - !  =  1) K f —i  =  K )

0 0 ( f 1 \
E E p \ l  - p ) 1-*d=0 t=0\  ̂* >

E ̂ ( i  - p )t ~w
i=o du

N - d - j

N - K - T  N - K - T - ( T - 1)
x l  X  1 X  ----------  ± --------- X - - - X

N - T N  -  T  -  (T  -  1)

(i-p)E [p,(1 - p f  1 3
3=0  y

r - i  ^
i  )

x i N ~ K ~ j  :: .. N  — K  — j  — ( T  — j  — I)
N - j N — j  — { T — j — 1)

N - K - T  N  -  K - T - ( T - 1 ) \ \
x i — —— - —  x • • • x — - — = — ,_ v . .  ’ I +  0 ( N  )

N - T N  - T - ( T -  1)

T - 1

(! - p)  Y ,
3=0

^■(1 -  p )T —l —j

\

T -  1 ( N - K \ 2T~j )  
V N  )

+  0 (i\T 2)

N - K - A  K  ^  ~
since — —----- :—  =  1 — — +  0 ( N

T - 1

N  — A  

(

N

C1 ~ P)
3=0

P 3 ( 1 ~ P )-

\

(  m  , \  (  Tr (  . \  \  \
1 - ^

N
T -  1

V j  J \

2 T - j  

1 /

+ 0 ( N ~ 2)
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=  (1 -  p) 

=  (1 -  p)

l - ^ ( 2 T - E [ B m ( T - l , p ) } )  + 0 ( N ~ 2)

1 -  £ ( 2 T  -  (T  -  1)P)] +  0 ( N ~ 2)

=  ( 1 - p )

We now move on to:
1 1A d

p ( Q k  I c t - i  =  i,A V i =  k ) =  J 2 J 2 c d,i say (cf- (4-5))>
d=0 i=0

ie. P ( Q 1k  I C<-i =  =  K )  =  co,o+ci,o+Citi.

So dealing w ith this in parts  we have

o o o II

/  T—1
( i  - p )  £ p>( 1 -  p )1’- 1-*

'  T - l  '

oII

j  J

N - K - j  N  — K  — j  — ( T — j  — 1)
X — X ----—-----:---------  X - X '

X

N - j

(  rr, \

N - j -  1

N  K  N - K - T  N - K - T - 1
x — ----=----   X — —— ——   X

V 1 /
N + 9 N - T  N - T - l  N - T - 2  

N  — I< — T  — ( T  — 2 ) \ \
x

N  — T  — ( T  — 1)

T - l '  T - l  N
(! -  P) S pJ( l - p ) r - 1- J'

J=0
j  /

N J  V N ,

\  1 /
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T- l

=  ( i - p ) 5 Z
j =0

p*(l ~ p )
T - l

(  T  \ K
N - T

V 1 .
+  0 ( i V 2)

T- l

=  ( ! - p ) ] C
3=0

p*(l - p ) T- l - j T - l K T
N

+  0 ( N ~ 2)

(1 — p ) K T +  0 ( N ~ 2).
N

Next we have

T- l

p) YL p>( 1 -  p f - ' - i
'  T -  1 N ( Tr 0oII J J V 1 /

K
N - j

N - K - j  N - I < - j - l  N - K -  j  - ( T - l - j  -  1)
X —   r X — ---------- -------  X- - - X

N  — 1 — j  N  — 1 — j  — 1 N  -  1 -  j  -  (T  -  1 -  j  -  1)

iV — J f  -  (T  — 1) TV -  J f  — (T  — 1) — 1
X .. ^ X  ^ X

N  — T  — 1 N  — T  — 2

N  -  K  -  (T  -  1) -  (T  -  2) 
iV — T —1 — (T  — 2)

+ 0 ( i V 2)

T- l
(! - p )  I ]

J=0
T^(l — P)

T - l - j 1 T - l  ) K ( T  — j )
N

+  0 ( N ~ 2)

(1 -  p ) ^ ( T  -  £ [B in (r  -  l,p )]) +  0 ( N ~ 2)
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=  ( i - p ) | ( r - ( T - i ) P) +  o ( J v - 2)

=  ( i - p ) ^ ( T ( l - p )  +  p) +  0 ( ^ - 2)

= ^ r ( i  -  p f  + p(1 J ) K  + o { N ~ 2).K ,
N N

Finally

T - l '  T -  1 NWIIrH p*(i -  p )t  1 3oII

j  /

N  - K - j  N  - K - j -  1 N - K - j -  ( T - l - j
X— ---------- r X — ----------    X - X

X

N  - 1 -  j  N - l - j - 1

N  - K - ( T - l )
N - T

N  — 1 —j  — ( T — 1 —j -

N - K - T  N  - K - T - l  N - K - T -  ( T -  2)
x — — —------ X — —— —   X • • • X

N - T -  1 N - T - 2 

+ 0 ( N ~ 2)

N  — T — 1 — ( T  — 2)

T - l

=  p E
j = 0

pj ( l  -  p) T - l - j '  T - i ] t  i f  -
V1 N  )

+  0 ( N ~2)

T - l

=
3=0

P i ( l - p )
T - l - j ( T -  1 ^

1 -

( K  - l ) ( 2 T - l - j )  
N

+ 0 ( N ~ 2) 

(
=  P

(I< -  1)(2T  -  1) ^

*  h
Pj ( i  ~  p) T - l - j T - l

\  i  I

( K  -  1 ) j  
N

130



+ 0 ( N ~2)

,  t)̂ -T - 11 +  £ = - L E [Bui<T -  l . r i | )  +  0(N-’)

Hence

p ( Q k  I Ct-1 = l , K t - i  =  K )  =  p + ( i - p ) I £ + K T n̂

p( 1 — p ) K  p ( K  — 1)T(2 — p)
N  N

p( 1 -  p ) ( if  -  1)
+  0 ( iV '2)N

Next

P(<?2„  I C t_a =  1 , K m  =  A')

= E
d= 1

2

i= 0
E p ’Ci - p )1" '

T -( lv d )  /

x E
j=  0 y

p*(l -  p)
T - l - j T - l (  T  j1 — j  — i

d -  1

K - i  1)
X -  :------r X • • • X '

N  — j  — i N  — j  — i — (d — i — 1)

T - d  

2 — d

K - d  I< -  d -  1
X N  — T  — d X N  — T  — d — 1 X

K  -  d -  (2 -  d -  1)
N  - T - d -  ( 2 - d - l )

131



+0(iV2)

2 T-d ( ( T  -
E p E ^ ( l - p f - 1- ’
d=l j=o \ \  i

(  rp . . NI — 3  — I

d -  1

t f - 1  J\ — 1 — 1 K - l - ( d - l - l )
X —— X ------—------ X- - - X--------

N N N

(  T - d ^  

\  2 - d  j

K - d  I < - d - l  K - d -  ( 2 - d - l )
X  ——  X -------—------- X • • • X --------

N N N

+ 0 ( N  )

T -l / 1 i—
* \

( T - l \ k - 1
p H  pJ( l  - p ) T_1-J X 1 X 1

i=o y I i

+ P e V ( i - p ) T“w
j = 0

T - j - l  ) K - 1  
N

x  1 + 0(N )

=  P
( T - 1 ) ( K  - 1 )  

N

K - 1
N

T—2 (
E
j = 0

7^(1 - P )
\

(  T - i  \  / T - j - l

1

\ \

/ / J
+ 0 (i\T 2)

=  p
( T  — 1 ) ( K — 1)

N

K - 1
N

T —2 I

j=o

T - 2  ^

3 ) } .
+ 0 ( N  )
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since
T _  i  \

J

T - j - l

1

T - 2 \
( T - l )

/

=  P
( T  -  1 ) ( K  - 1 ) ( K - l ) ( l  -  P) ( T  -  1)

N

p ( K  -  1 ) ( T  -  1)(2 -  p) 
N

N

+  0 ( N  ).

+ 0 ( N  )

Finally, for the last three equations we can only ignore term s 0 ( N  3), so 

these again take a little  more effort.

P(Q°k  I Ct_! =  0, K f —i = I<)

= £
d= 0

f : ( ^ (  i - p f - i '
3=0

_ N  - K - j  N  - K - j -  1  ̂ _ N  -  I< -  j  - { T  -  j  -  1)'
X , X X * * * X

N - j  N - j  -  1 i V - j - ( T - j - l )

N - K - T  N - K - T - l  N - K - T - ( T -  1)
X — —— —  X  —------—  X • • • X

N - T  

+ 0 ( N ~ 3)

N - T - l N  - T -  ( T - l )

T T  ^
£

I1x—1

3=0 J /

N  - K - j  N - K - j -  1
 77-------:-----  X  77------------ XN - j  N  -  j  -  1

N  — K  — (2T — 1)
TV — (2T — 1)

+  0 ( N ~3)

T

=  £
i=o

^ ( 1  - p ) T J
' I< K j

N  N 2\
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K  _  K ( j + l )  
N  N 2

x • • • x
K  K ( 2 T  - 1) 

“  W  N 2
+  0 ( N ~3)

N ~ A  , KT ^since —---- 7-  =  ( N  — A)
N - B

L  J L  E .
N  + N 2 + N 3

+ 0 ( N ~ 3)

- i - U j H - B i j t H  +  o i n )

T T \
E p’i 1  -  p ) r  J011 J /

X
K

X " N

T

E
j=0

^ ( 1  ~ P ) T 3

2 T - j  

1

T  >

* /

‘ X K 2 1
+

N 2

2 T - j  

2

Jif A'2 j 2 T  — j  I K  f  (2T  — 1)2T j ( j  -  1)
^  - ------------------------------------------ —

+ 0 (JV "3)

since e 1 i = e 1 i -  g  i = -  iC iz ii^  9 9
1 t=j i=l *=1 ^ ^

, r,/T,. ^  K  (2T — 1)2T
1 -  j v (2T  -  ^ ( B“ (r ^ ) ) ) "  J p - — 2 —

+E
1=0

p»'(l -  p )1-- 2' "  N r ii-2 (2T  -  j ) ( 2 T  - j -  1) j ( j  -  1) nNr
J /

JV2 ; v 2 2
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+ 0 ( N ~ 3)

1 -  | ( 2 T  -  Tp)  -  J L ( 2 T  -  1)2T

1=0

T  \  

j  )

K 2 K
^ * ( 4 T 2 -  2T  -  4T j  +  j 2 +  ,’) +  ^ ( i 2 -  j )

+ 0 ( N  )

K T  K ( 2 T - 1 )2 T
1 - — ( 2 - p ) ----------— 2-------

K 2
+ ^ ( 4 T 2 - 2 T -  4 T 2p + (T p ) 2 +  T p ( l -  p)  +  Tp)

+  ̂ [ ( T p ) 2 +  T p (l -  p) -  Tp] +  0 ( N - 3)

(since J  ~  B in(T , p) => E ( J 2) =  (m ean)2 +  (variance)3

=  (T p)2 +  T p (l -  p))

1 -  E t - ( 2  -  p) -  - E [ ( 2 T  -  1)2T +  4 T 2K  -  2 T K  -  4 T 2p K
1 V Jrntl V

+ (T p )2ii: +  T p (l -  p)7i +  T p K  + (T p ) 2 +  T p (l -  p) -  Tp] +  0 ( J V 3)

K T  K T
1 -  — (2 -  p) +  ^ [ T I < ( 2 -  p )2 -  T (4 -  p2) -  K ( 2  -  2 p  +  p2) +  2 -  p 2]

+ 0 ( N ~ 3)

1 -  ^ ( 2  -  p) +  ^ { T K ( 2  -  p )2 -  T(2 -  p )2 -  tf (2  -  p )2 +  (2 -  p)2
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—T(4p -  2p ) +  K ( 2  -  2p) -  (2 -  4p +  2p2)] +  0 { N ~ 3)

K T (  2 -  p) 
N +

(  rr, \

\ 2 /

K ( K  — 1)(2 — p)‘ 
N 2

K T  
N 2

[T(2 p -  p2) -  K (1  -  p) +  (1 -  2p +  p2)\ +  0 ( N ~ 3)

K T ( 2  -  p) 
N

\ 2 J

K ( I \  -  1)(2 -  p )2 T K (I<  -  1)(1 -  p)
N 2

+ N 2

K T  
N 2

{(K -  i ) ( i  -  p) +  T(2p -  p2) -  JF5T(1 -  p) +  (1 -  2p +  p2)] +  0 (A T 3)

! K T ( 2  -  p)
iV

\  2 /

JC (Ji -  1)(2 -  p )2 T K ( K  -  1)(1 -  p)
iV2 + iV2

I<T
[Tp(2 -  p) -  p ( l  -  p)] +  0(iV  )

as required. 

Next we have

p (Q k  I c t-\  =  0, J \V i =  A") =  d0 +  di say,

where d0 denotes the term s in (4.5) w ith d =  0, and d\ represents the terms 

w ith d =  1. So:

do — ^ 2
3=0

p * U- j x i V _ .
N  - K - j  N - K - j -  1

X -----—------    X
N - j - 1

N - K - { T - i ) \  T
N  — ( T — 1) J  1

K  N  
N - T N + Q
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( N - K - T  N - K - T - l  N -  K - T - ( T - 2 )
X I TT —  T  X — TT------ 77=------—---- X * • • X

N  — ( T + 1) N - ( T  +  2) N - T - ( T - l )

{

E
3= 0

t f ( l  ~  p)T 3

\ \  1 /

N K
N  + 9 N  — (2 T  — 1)

X
N - K - j  N - K - j -  1 w ^  N - K - T - ( T -  2)

X   . X * X
N - j N - j -  1 N  — T  — ( T — 2 )

(

E
j=o

^ ( 1  -  p) T J
\ J J \  1 /

1 -
N

x

E
j=o

p*(l -  p)T 3
\

a :

,jv  +

K ( 2 T  -
JV2

T  \ /  T  N

V 1 >

K
1 _  iVj

2T —2—j + l \
j  +  0(JV “ 3)

AT Are K ( 2 T  - 1) 
N  N 2 +  N 2

2 T - j - I  

1
+  0(JV "3)

E
i = o J 1 /

x
A' A'(0 -  2T +  1) K 2(2 T  - \ - j )
N  N 2 N 2

+  0 ( N  )

T K  T I < 6  T K ( 2 T  — 1) T I < 2 „  ^ /IT , ,
-  jv2 -  1 v5-(2T - 1 “  -E(Bin(r ’P)) +  ° ( JV )

TAT TA'0 T K ( 2 T  — 1) T 2A'2
JV TV2 + TV2 JV2

T K 2
( 2 - p )  +  —  +  0 ( N ~ 3).
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And

T - l

d. =  E

11rH

. h. 
■

'  T - j  '

OII

j  ) V 1 )

K
N - j

N - K - j  N  - K - j - I  N  — K  — (2 T  — 2)
X —   ------ — X  —-------:------   X - X

N - j -  1 N - j -  2 N - ( 2 T -  1)

T - l

= E
3=0

T  ) '  T - j '
p*(l -  p)T-*

i \  1 )

K
N  — (2T  — 1)

N  - K - j  N  - K - j - 1  N  - K - ( 2 T - 2 )
x —    —— x —   ----- x - - - x  v '

N - j N - j -  1 N - ( 2 T -  2 )

T - l

= E
3=0

T  \ T - j  )
PJ' ( 1 - P ) 7W

«/

i  J 1 y

X
I< I<(2 T  - 1) 
N  +  N 2

[ i  K 1
2 T —2—j+1*

JV.
+  0 ( N ~ 3)

T ~ 1 T - l
C1 - P ) T  E ^ C 1 ~ P ) T 1 3

3 = 0  \ j

(1 - p ) T  

(1 - p ) T

I< I \ ( 2 T  — 1) K 2 . '
JV iV2 N 2  ̂ J ^

K  I \ ( 2 T  — 1) K 2,„m
“* jv 2 J p  ~ 1 ~  (

+  o (jv - 3)

+  0 ( 7 V 3) 

+  0 ( i V 3)
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Hence

P ( Q k  I C t-1 =  0, Kt-1  =  A')

^  T K  T K 8  | T K ( 2 T  — 1) T 2 K 2 {2 - p )  t T / f 2
N N 2 N 2

T K ( 2 T  -  1)(1 -  p) (1 -  p ) T K 2

N 2 N 2

N 2 N 2

( T ( 2 - p ) - l + p )  + 0 ( N - 3)

(w hat follows is simply rearrangem ent...)

T K  T K 6  T  K
(2 -  P) —  -  - ^ 2 -  +  lv ^ [ ( 2T -  1) -  TA  (2 -  p) +  *  +  (2T -  1)(1 -  p)TV

- ( 1  -  p ) K T (2 -  p) +  (1 -  p )2JC] +  0 ( N ~3)

/ . T K  TKO T I \  r _ T/rr/ N
(2 “   +  jV ^ -2 7 1  K2 -  P) +  C1 “  P)(2 -  p)]

=  ( 2 - P )

+ f f [ ( l  -  p)2 +  1] +  T[2 +  2(1 -  p)] -  (2 -  p)] +  0(7V )

TI< T K B  2 T 2I< \ 2  -  p )2
JV TV2 27V2

T K  
' N 2"

( 2 - P ) 2 P2'
2 2

+  2T(2 — p) — (2 — p) +  0(7V"3)

(2 -  -  T K 6  -  2T 2A^2(2 -  p )2 +  T K 2 ( 2  -  p )2
JV TV2 27V2 27V2

T /\
TV2

K p 1
+  T ( 2 ~ p ) 2 P2'

2 2 - ( 2 - P ) +  0(7V )

^  T K  T K B  2 T 2K 2 ( 2  — p )2 | T K 2 (2 - p ) 2  ̂ T 2K { 2 - p f
TV TV2 27V2 27V2 27V2
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T K
N 2

(2 - p ) 2 _ p + ^ + _  
2 2 2 - +T(2- f +  0(AT-?)

(2 -  _  TA' g _  2T2g 2(2 -  p)2 +  T K 2 ( 2  -  p )2 +  T 2AT(2 -  p)2
JV JV2 2JV2 2JV2 2JV2

T A (2  -  p )2 T A  
2JV2 +  JV2 „ + $  +  a -  +  r  , - f +  0 (JV "3)

T J f  T K B  n 
(2 a t JV2

2 )

K ( K  -  1)(2 -  p); 
JV2

TAT
' tv 2

i f ( 2 - p ) 2 T ( 2 - p ) 2 | (2 — p)2

p2 ATp2 /  p2>
p + y + ^ + T  2 - v

+  0(JV -3 )

. T i f  TA"0 I T \ AT (A" -  1)(2 -  p )2 2 T K ( K  -  1)(1 -  p)
JV2 JV2

TAT
JV2

2 ( A ' - l ) ( l - p )
K ( 2 - p f  T { 2  -  p):

2 K p 2(2 -  p)2 F
 P + T  +  2 +  T  2 - T

+  0 (JV -3)

TA' T K B  I T  
 ̂ ~  N  ~  ~  i 2

\
at(A' - 1)(2 -  p )2 2T at(a : -  i ) ( i  -  p)

JV2 JV2

TI<
+ 2 W [ K ( 4  ~  4P ~  (2 "  P)2 +  p2) +  T (4  "  p2 “  (2 “  P)2)
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-4 (1  -  p) +  (2 -  p) - 2 p + p }  + 0 ( N  )

. T K  TKO  0 
=  (2 - p )— - I v r - 2

2 /

K ( K  -  1)(2 -  p)2 2 T K ( K  -  1)(1 -  p)
N 2 JV2

^  [T(4p “ 2p!) “ 2p + 2p2l +2 N 2

. T K  T K B  0 
— JV JV2

2 /

JV(AT -  1)(2 -  p)2 2 T K ( K  -  1)(1 -  p)
JV2 JV2

T K
+ — [Tp{2 -  p) -  p( 1 -  p)] +  0 (JV -3)

as required.

Lastly

P ( Q k  I ^<-1 =  =  *0

= E
d =  0

T - d  /  J >  \  f

E ^ l - p ) 7̂ '
j=0

T - j

d

K  K - 1  K - ( d - l )
X  —  : X   -------------— — "  X  • • • X

N - j  N - j  -  1 N - j - ( d - l )

N  - K - j  N  - K - j -  1 N  — K  — (2T — e — 1)
X  ,  .  ■ X  , .  .  X  • • • X

N  — d — j  N  — d — j  — 1 ]Sf - T - { T -  1)

T - d  

2  — d

K - d  K - d - I
X  — -----------= -------------: -----------   X

N - T - d  N - T - d - 1

K  — d — (2 — d — 1) x2 dl ^
x ( 1  - “ > } +  ° (JV }
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2

E
d=  0

*=* (  ■ T (  T ) (  T  -  i  \< E p,(1 _ p )  J
. j=o v \ n V d  /

a: k - i  K - ( d - i )
X —   X   :   X • • • X

/  T - d ^
X

\ 2 - d  /  

+ 0 ( N ~ 3)

N - j  N - j  -  1

K - d  K - d - 1
X --  —-----:---- -X

N - T - d  N - T - d - 1

N - j - ( d - l ) J \

K - d - ( 2 - d - l )  
N - T - d - ( 2 - d - l )

2 f
T - d /  /

£ E P*(l -  P)T~J
d=0 i=o \  \

x
( T - d ' '

\  2 - d  j

T \ I T - j

d

K  K - 1  K  — (d — 1 ) \
X N X N  x ‘ * ' x )

K - d - ( 2 - d - l )K - d  I < - d - l
x ------—------x

N N
x

N

+ 0 ( iV -3)

=  d0 +  di +  d2 say, where d, represents the term  for d = i in the  equation 

im m ediately above (t =  0 ,1 ,2 ). Now

d0 =

d, =

2 )

K  K  -  1
N  N

+  0 { N ~ 3)

(  T-l
E

yi=o
p>(l - p )

\

(  T  \  

V i  J

T - j ' 1 

1 J

K_
N

T -  1  ̂

1 /

K - 1

N
+  0(JV‘ 3)
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T —2

d2 = Y ,
j —0
  pJ( l - p ) T j
j=0 y

Hence

P ( Q 2k  I (?,_! =  0, Kt —\ =  K)  

K K - 1

T

V i  )

T - j

2

K K - 1  

N  N
+  0 ( N ~ 3).

N  N
1 T  ^ + '  T -  1 N T - l  I  

£
V 2 J . 1 ) j=o y

P*(1 -  P)
T - j

J

T - j  

1

, \ \  

/ /

+ E  pi(1 - p ) T- i T 
i= ° v  \ j j

\ T _ j  w

/ /  J

g ( g - l )
JV2

/  T  \ /
+

\

T - l

1
E I p ^ 1 -  p)t_ j
i=o

T - l

V 3  )

\  ( T  \

\ 1 /

T ~ 2 I I T
+  £  t 'C i - p ) 7' 3

3=0 \  \  J

T - j

2
+  0(N~3)

K ( K - l )
N 2

(  T  \ 

L \  2 /

+
T - l " - i  /

^X1 - p )  £  p^1 - p ) {t  1} J
3=0 \

K ( K -  1) 
JV2

+ E
i=o

T  \  

2 )
+  T (T  — 1)(1 — p)

\ \

v j  y

+  0(JV~3)
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+

K ( K - l )
N 2

K ( K - l )  
N 2

as required.

\  T - 2  / { T - 2  ^ w
( i - p ) 2 £ + 0 ( N

/  j'=° V j ) .

r-3>

T  ) T  \ T  \
+ 2(1 ~ P )  + ( 1 - P ) 2

K 2 J K 2  J 2 /

\
(2 -  p f  +  0 ( N ~ 3)

+  0 ( N ~ 3)

.2 .2  S e c tio n  B

N ext we proceed to  the simplification of equation(4.6): 

P { M k  | K t - i  = K ,  Ct- i  =  c)

Ta K  (cAd }  T a K  ( cAd }

= £  £( •• •)  = £  . £ ( • • ) \  +  ° ( N
d= 0 v i= 0  J d= 0 v t=cAd J

- 3

=  £
d= 0

/ (  \
< P\  1 -

c

\ \ d J

T - c

£
j = o

p>(l - p ) T - c —j

\

'  T - c ^ •s 1 1 a-

) }
\

i  J 0 J J .

MX <

v 1 /

K - d  8  

N  — T  N  + 8
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* = i K - d - 1 K - d - l - ( i - l )
x £ ^ ------= -------: X - - - X

*•=0

( T - d

+  l Ek t= l

N - T - d  N - T - d - ( i -  1)

K - d  K - d - ( i -  1)
x x

T - d  X 1

/

N - T - d N - T - d - ( i -  1)

0

N  + 0
M '  T - d ' '

*

>

I1 / K ‘ ) *

> +  0(JV _i’)

\ \

E
d= 0

p ^ i  -  p )
c—d

1 1 1

d \  K - d  8  |

1 J
' /

X <

A +
K - d  8  I T - d  

N - T - d N  + 8  I x

+ 0 ( i V 3)

E
d= 0

/ ( l  -  J?)c— d

E
d=0

E
d=0

pd( l  -  p)

1 1 1

d \ K - d 8  

1 ) N  N

( \  c

[ d j

+
K - d  8  I T - d  

N  N  I j
+  0 ( N ~ 3)

c—d K - d  8  

N  N
LV 1 /

+
T - d

1

\

/  J
► +  0 ( N ~ 3)

\
pd( 1 -  p) c—d 8 T_

w
{ K - d ) + 0 ( N  )

145



O L tT

r (  \ X

/ ( I  -  p)c~d
c

( K - d ) • +  0 ( N ~ 3)
< d t 4

Q T
=  J ^ [ K  -  E(Bin(c,p))] + 0 ( N - 3) 

QT  
=  W [K -  cp] + 0 ( N ~ 3).

.2 .3  S ec tio n  C

Lastly we tu rn  to  the  simplification of equation(4.7) which we break into two 

cases, (c >  0) and (c =  0):

P ( T k  \ K t^  = K ,  0 ^  = 0  0)

Ta K cAd. M
£ <£ p‘( i  -  p )c-i
d= 0 i'=0 V ‘ /

T-(cV d)
■ T ( T ~ C \

rp ■ ,  \l — l  --  l
X £

J

3=0
\  3 I

[  d ~ i  )

x
K - i  K - i - ( d - i - l )

X • • • X
N - j  -  i

x
K - d
N - T v1 /

N
N  + 0

N  — j  — i — (d — i — 1) 

+ 0 ( N ~ 2)

c
'
cAd ( (  \c

£ < £ 1 0 1

d= 0 t=0 \ \ 1 !
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X
T - c

£
3=0

(
^(1 -  P)

T - c - j

\

\  (  

V

T  -  j  -  i 

d — i

. \  

/

K  — i K  — i — (d — i — 1)
X  —— x • • • x

N N

K - d
N - T

V 1 /

N
N  + 6

+  0 ( N ~2)

£
d= 0

{(i =  d term )} x <
K - d
N - T

V 1 /  J
+  0 (JV -2)

= £  [OA1 _ p )
c—d

d= 0

X

1 ' '

• X  <

\

K - c
N - l

+ 0 ( N  )

=  £
d=i

pd( l  -  p) c—d K - d  , 
x  d

N
+ o(Ar2).

Now for c =  0 we have P (T K | A V i =  AT, C t_: =  0) =  Yd=o 

Di represents the d = I term  from (4.7) (i =  0 ,1 , . . .  ,c). Hence

P ( T K \ K t. 1 = K , C t . 1 = 0 )

= D 1 + 0 ( N ~ 3)

say, where
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T —l

Ei=o
p>{ 1 -  p)

\

T - j  K  

i

y  

/ .

K -  1 
N - T

(1 -  u)

+ 0 (A T 3)

K ( K  -  1) 
N 2

H  Pj ( 1 “  P)T J
3=0

T  ^ 1

\

►

3 J 1 J
> +  0 ( N  )

N 2

t * ( * - i )( i - p)

j = 0

( T - 1 ^ 1

\ 3 /  J
+ 0(iV-3)

+  0 ( j V 3)iV2

.2 .4  S e c tio n  D

Finally  we give the details of the simplification of the  first-step analysis of the 

transition  equations (ie. equations (4.11) and (4.13)). We s ta r t w ith (4.11): 

p ( K  - 1 ) , p ( K -  1 )(T  -  1)(2 -  p )II2
iAi  =     rN N

+ n 2
„ , „  ^ T K  , T K ( 1  — p ) 2 , p ( l - p ) K  
p + ( i - p ) - r + — ^ — + — R—

p ( K  -  1)3X2 -  p) +  p ( l -  p)(K -  1)

+n0(i — p )

N

TI < ( 2  -  p) p K  
N  N

N

+  0 ( N  )

Hence since n 2 =  Hi +  0 ( N  *) we have

T K  T I \ ( 1  — p ) 2 p { l - p ) K
( l - p ) - ( l - p ) -

N N N
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p(I< -  1)T(2 -  p) p( 1 -  p ) ( K  -  1) p ( K  -  1 )(T  -  1)(2 -  p)
TV TV TV

P ( g  -  1)
TV + n 0(i — p) i  -

T K ( 2  -  p) pl<
TV TV

+  0 ( N ~ 2)

So

III (1 p) (1 P) T K { 2 ~ P) P ( l - P ) ( 2 ^ - 1 )  | p ( g - l ) ( 2 - p )
TV TV TV

- 1) 
TV +  (1 - p )

_  T K ( 2  -  p) _  piV 
TV TV

n 0 +  o(Tv-2)

and  so

n x =
TV

(1 _  p)AT -  (1 -  p ) T K { 2  -  p) -  p( 1 -  p)(2iv -  1) +  p(/V -  1)(2 -  p) J

x P(A^ -  1) 
TV +  (1 - p ) 1 -

T K { 2  -  p) p K
TV TV n 0 +  0(TV“ 2)

1 - p
TV

a t -  [TA'(2 -  p) +  p (2A  -  1) -  -  1)]

X
p {K  - 1) 

N +  (1 -  p)
T K ( 2  — p) p K  

TV ~N~ n 0 +  0(TV )

1 - p 1 +
T K (2 -  p) + p(2I< -  1) -  -  1)

TV

X
P ( A  -  1)

TV +  (1 -  p)
T K (  2  — p) p K

TV TV n 0 +  0 ( N  )

TV A ~ /7vr_ 2
since ti r =  1 +  — 4- 0 ( NV TV- A TV
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p ( K -  1) 
(1 -  p ) N

+  IIq 1 -
TI<( 2 -  p) p K

TV TV

T K ( 2  - p )  + p (2 K  -  1) -  -  1)

TV
+  0 (N ~ 2)

p ( K  -  1)
+  n 0

(1 -  p ) N  

Now for (4.13):

( l - p ) I < ( K - l ) T

1 . p ( K  -  1) p { 2 - p ) ( k - i )
TV (1 - p ) N

+  0(TV" 2)

n 0 =
TV2

+IIo
t  K T ( 2  -  p) t I T  ) K ( K  — 1)(2 — p ) 2

TV TV2

N 2 TV2
[Tp( 2  -  p) -  p{l  -  p)]

+ n x
(2 -  p ) T K  T K 9  _  [ T  } K ( K  -  1)(2 -  p )2

Zi
TV TV2 TV2

+ n :
\  2 /

J V ( A '- l ) ( 2 - p ) '
TV2

+  0(TV“ 3)

( 1  -  p)I<(K -  1 )T  
TV2

+IIo
^ T ( 2 - _ p )  I T  

TV
AT(AT -  1)(2 -  p ); 

TV2
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N 2 N 2
[Tp( 2  -  p) -  p ( l  -  p)]

+ n a
(2 -  p ) T K  TKO

N N 2

- [ i l o  +  OCiV-1)]
\ 2 /

K ( K  -  1)(2 -  p ) 2 2T K ( K  -  1)(1 -  p )
N 2

+ N 2

K T
~N2~

[Tp( 2  -  p) -  p ( l  -  p)]

+  [n0 +  o ( iv -1)]
n, \

2 /

K ( K  -  1)(2 -  p f
N 2

+  0 ( N ~ 3)

( 1  -  p ) K ( K  -  1 )T  
N 2

+ n 0
_  T K ( 2  — p) _  T K { K - l ) ( l - p )  

N  N 2

4-n*
(2 - p ) T I <  T K 9

N N 2
+  0 ( N  ).

Hence

n 0 T K { 2  — p) ^  T K ( K  — 1)(1 — p)
N N 2

( l - p ) K ( K - l ) T
N 2

+ n. (2 -  p)TI< 
N

T K 6

N 2
+  0 ( i \ T 3)

And so

n 0
T K { 2  -  p) T K 6_ TK_(I< -  1)(1 -  p)

N N 2 N 2

(1 -  p)I<(K -  1 )T  
N 2

(2 -  p ) T K  
N

+  0 ( N ~ 3)
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We now substitu te  in for II x using (4.12) to  get:

n 0 N  N

~p{K - 1 )
L(1 - p ) N

+ n 0
.  P ( K  -  1) _  p ( 2 - p ) ( K -  1 ) ' 

N  (1 - p ) NN

+ 0 ( N ~ 2)

Therefore

n 0

+ o (n - 2)

(2 -  p) + j f  +  (X -W -P )  -  (2 -  p) -  P rrtfltt-?) +  t2- ^ * ^

____________ (1 -  p)2( K  -  1) +  p(2 -  p ) ( g  -  1) +  0 (JV -1)_____________
(1 -  p)9 +  ( K  — 1)(1 — p ) 2 -  (2 -  p)p( 1 -  p ) ( K  -  1) +  (2 -  p)2p(I< -  1)

( K  -  !) [(!  -  p f  +  p(2 -  p)] +  OC/V-1)
(1 -  p)0 +  ( K  -  1)[(1 -  p f  -  (2 -  p )p (l -  p) +  (2 -  p )2p]

_________ { K  -  1) +  O j N - 1)_________
(1 -  p)9 4- ( K  -  1)[(1 -  p)2 +  (2 -  p)p]

(since (1 — p)2 +  p(2 — p) =  1)

( K  - 1 ) + 0 ( N - 1)
(1 -  p)9 +  (K  -  1)

ie. n „ =  ( 1 _ p)g ~ (1g _ 1) + 0 ( N - ' )  as required.
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.3 A p p en dix  III

We need to  show
N - l  ( i - l ) A { N - i )  ' N - l  (*—2)A(iV—t—1)

y !  f^i-l-kf^i+kd-i^k — — O ^ )
i= 2 k = 0 t=2 k=0

A gain it is sufficient to  show it for each * =  0 , 1 , . . . ,  [ y  +  1]. T h a t is, to  show

( t - l )A ( JV - t)  ( t—2)a (A/—t—1)

y !  fJ’i - l - k f J’i+k a i,k ~  f t i - l - k fA i+ k b^ k
k= 0 k= 0

(.15)

If we now define

•̂ k — Ab'+fc/̂ i—1—fc? ^k — <md — î,k

we again have sequences as in the  statem ent of Lem m a 6.4. So if the four 

conditions of th a t Lemma are satisfied then  its conclusion gives us the desired 

inequality (.14). Condition (iv) is clear since the  Xk are decreasing by suppo

sition. To check conditions (i), (ii) and (iii) we need to  determ ine the  exact 

values of the  dk s and b^s.

T he a,k s are as follows:

dk =  <

N  — 2N  -  2

N  — 2 N - 2

N -  2 N - 2

i — 1 — k >  2 

i +  k < N  — 2 

0 < i  — 1 — k < 2  

or

N  — 2  < i + k < N  

otherwise.
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And the  b^s  are : 

2
i — k — 2

N  -  2 

z +  k — 1

0

z — 1 — k > 1 

z +  k < N  — 1 

otherwise

N ote th a t for z =  2 we have to  show

i /
£
fc=o

N - 2  

2 - 1  -  k \

(
< 2

/

N  — 2  

2 - 2 - k2  + k -  2

which is true  since bo th  sides equal 2( N  — 2). Now note th a t 

(  \

2 +  A: — 1

N - M  +  1 
M

N - 2  

i — k — 1

N - 2  

i — k — 2

and

and

and

/

V

/

\

N  — 2 

i + k — 2

N  — 2  

i -f k — 1

z +  k — 1 
N - i - k

N - 2  

i +  k

N - 2  \ N - i - k - 1

i +  k — 1

Hence if we w rite

N  -  3 

i — k — 3

Ci,k =

(

i k 

i — k — 2N - 2

i - k - 2  } N  - i  + k - l '

\ i — k — 2

(and note th a t > 0 ) ,  then  we have 

ak — bk

N - 2  

i +  k — 1

1 to N - 2  \ '  N - 2  ^ N - 2  \
+

 ̂ i — k — 1 j  ̂ z -f- k — 2 J  ̂ * +  k i

0011• N
N  — i +  k 
i — k — 1
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- 2

C *

Ci,k

N - 2  

i — k — 2

N - 2  

i + k — 1

( N - i  + k)(i  + k -  1) ( N  - i - k -  1 )(* - k - 2 ) 0
_(* — Jb — 1)(JV — * — fc) + (» + fc)(JV-» + fc + l)

(iV — i 4- &)(i +  — 1) — (i — k — 1 ) ( N  — i — k)
(i — k — 1 ) ( N  — i — k)  

( N  — i — k — l ) ( i  — k — 2 ) — (i + k ) ( N  — i +  k  +  1)

=  2C,-|
fc(TV- l )

(i +  fc)(iV — i +  k +  1) 

k ( N  -  1) +  N  -  1
_(* -  k -  1 ) ( N  - i - k )  (* +  k ) ( N  - i  + k +  1)

k(i  +  k ) ( N  — i +  k +  1) — (k  +  l ) ( i  — k — 1 ) ( N  — i — k)
(i — k — 1 ) ( N  — i — k)(i  +  k ) ( N  — i +  k +  1) 

(2TV -  l)fc(Jfc + 1  ) - ( N -  i)(i -  1)

=  2 Ci,k( N - l )

2Citk( N  -  1) _  k _  _  . k ^ .  +  k ^ N  _ i + k + 1^

So since we have k < i — 1 and i k <  iV, we can see th a t the num erator 

s ta rts  negative (a t k =  0) and increases (eventually becoming positive) as k 

increases. T he denom inator is always positive. So conditions (i) and (ii) are 

satisfied. Now for condition (iii) we have:

i — l  t - 3

E a * =  E
k=0 k=0

N - 2  \ 1 to 1 to 1 to

+
 ̂ i — k — 1 J  ̂ i k — 2 y i + k j  ̂ i — k — 3 y

+
( N - 2  ^ ( N - 2

2 i - 4

N - 2

0

N - 2  

2i — 3
(.16)
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x >  =  E 2
k= 0 k= 0

i-2 I  N  _  2 ^

i — k — 2
(.17)

/i +  k — 1

Now consider the  two term s inside the sum m ation on the  right-hand side of 

(.16) and  note th a t the  value of the first of these term s corresponding to  k = I 

equals half the  term  on the right-hand side of (.17) corresponding to  k =  / — 1. 

Sim ilarly the  value of the second term  in (.16) corresponding to  k = I equals 

half the  term  in (.17) corresponding to  k = I -f 1. We therefore define

t—3
*> =  £

k=l

(  N - 2  \ ( N - 2  N N - 2  \ N - 2  \
+.

y i — k — 1 j  ̂ i +  k — 2  y  ̂ i + k J

CO1
-4;1• e*

So

t-i

and

Y  a k ~  D  +
k= 0

+

X >  =  D  +
k=0

\ * _   ̂

N - 2

N - 2

i - 2
+

N - 2  

i -  3

N - 2  \ I N - 2

2 i - 4  I \ 0

N - 2  

i — 3

N - 2
+

N - 2

i -  1

N - 2  

2i — 3

^ /  N - 2  ^ 

i - 2

Hence

+
N - 2  

2i — 4 \
+

N - 2  

2i — 3 V /

i—1 t—1

Y  a k -  Y = 0
k= 0 k= 0

as required.

So all the  conditions of Lemma 6.4 are satisfied and we thus have the

required conclusion.
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