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ABSTRACT

Weak lensing by large-scale structure is a powerful probe of cosmology if the apparent alignments in the shapes of distant galaxies
can be accurately measured. Most studies have therefore focused on improving the fidelity of the shape measurements themselves, but
the preceding step of object detection has been largely ignored. In this paper, we study the impact of object detection for a Euclid-like
survey and show that it leads to biases that exceed requirements for the next generation of cosmic shear surveys. In realistic scenarios,
the blending of galaxies is an important source of detection bias. We find that MetaDetection is able to account for blending,
leading to average multiplicative biases that meet requirements for Stage IV surveys, provided a sufficiently accurate model for the
point spread function is available. Further work is needed to estimate the performance for actual surveys. Combined with sufficiently
realistic image simulations, this provides a viable way forward towards accurate shear estimates for Stage IV surveys.
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1. Introduction

Over the past decades, the theoretical framework that describes
the formation of cosmic structures has been tested by ever more
precise observations (see e.g., Planck Collaboration XIII 2016,
for a comprehensive comparison of results). Although there is
discussion about small differences between cosmological param-
eter estimates (e.g., Riess et al. 2019; Joudaki et al. 2020), the
general agreement is remarkable given the difficulties in obtain-
ing these results. Importantly, the main ingredients of this ‘con-
cordance model’ are not understood at all: dark matter and dark
energy make up the bulk of the mass-energy content of the
Universe, with a ‘mere frosting’ of baryonic matter. Although
a cosmological constant is an excellent fit to the current data,
its unnaturally small value is by no means satisfactory. Con-
sequently, many alternative explanations have been suggested,
including modifications of the theory of general relativity (see
e.g., Amendola et al. 2018, for an overview). In order to dis-
tinguish between such a multitude of ideas, dramatically better
observational constraints are needed.

The study of the distribution of matter as a function of red-
shift is of particular interest, because it is sensitive to the growth
of structure, modified gravity, and the expansion history. The
practical complication that most of the matter is made up of
dark matter can be overcome by measuring the correlations in
the ellipticities of distant galaxies that are the result of the dif-
ferential deflection of light rays by intervening structures, a phe-
nomenon called gravitational lensing. In the case that only single
images of distant galaxies are distorted by the gravitational lens-
ing effect, this is known as weak lensing. The amplitude of the
distortion provides us with a direct measurement of the gravita-
tional tidal field, which in turn can be used to ‘map’ the distribu-
tion of matter directly. This makes weak lensing by large-scale

structure, or cosmic shear, one of the most powerful probes to
study dark energy and the growth of structure: the statistical
properties of the matter distribution can be determined as a func-
tion of cosmic time. These measurements can be compared to
models of structure formation, which depend on the cosmologi-
cal parameters (see e.g., Kilbinger 2015, for a recent review).

The typical change in the observed ellipticity of a distant
galaxy caused by gravitational lensing (known as shear) is about
a percent, much smaller than the intrinsic ellipticities of galaxies.
This source of statistical uncertainty can be overcome by aver-
aging over large numbers of galaxies, although intrinsic align-
ments complicate this simple picture (see e.g., Joachimi et al.
2015; Troxel & Ishak 2015, for reviews). The cosmological lens-
ing signal has now been measured using ground-based observa-
tions of relatively modest areas of the sky (see e.g., Troxel et al.
2018; Hildebrandt et al. 2020; Hamana et al. 2020, for some
recent results from Stage III surveys) but future surveys will
cover much larger fractions of the extragalactic sky, increasing
the source samples accordingly.

The change in ellipticity is also smaller than the typical
biases introduced by instrumental effects. Consequently, aver-
aging the shape measurements of large ensembles of galaxies is
only meaningful if these sources of bias can be corrected for to
a level that renders them sub-dominant to the statistical uncer-
tainties afforded by the survey (see Mandelbaum 2018, for a
detailed review on weak lensing systematics). This will be par-
ticularly challenging for the next generation of surveys (Stage
IV), such as the ones carried out by Euclid1 (Laureijs et al. 2011)
and the Nancy Grace Roman Space Telescope2 (Spergel et al.
2015) from space, and the Legacy Survey of Space and Time

1 https://www.euclid-ec.org/
2 https://www.stsci.edu/roman
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by the Rubin Observatory3 (LSST Science Collaboration 2009)
from the ground.

The point spread function (PSF) is the dominant source of
bias in the measurements of galaxy shapes, driving the desire
for space-based observations (Paulin-Henriksson et al. 2008;
Massey et al. 2013). Another complication is the fact the shapes
are measured from noisy images, which can lead to biases in the
ellipticity (e.g., Melchior & Viola 2012; Refregier et al. 2012;
Miller et al. 2013; Viola et al. 2014). Given a survey design, our
current understanding of these biases, and our ability to correct
for them, requirements can be placed on the instrument per-
formance, but also on the accuracy of the shape measurement
algorithm. For instance, Cropper et al. (2013) present a detailed
breakdown for Euclid, which forms the basis for some of the
numbers used in this paper.

Fortunately, the impact of the various sources of bias can be
studied by applying the shape measurement algorithm to sim-
ulated data, where the galaxy images are sheared by a known
amount. Comparison with the recovered values provides an
estimate of the biases. For example, Erben et al. (2001) and
Hoekstra et al. (2002) used simulated images to examine the
performance of the ksb algorithm developed by Kaiser et al.
(1995). Comparing a range of methods, the Shear TEsting
Programme (STEP; Heymans et al. 2006; Massey et al. 2007)
demonstrated the importance of how a method is actually
implemented. To examine the origin of the variation in per-
formance further, the GRavitational lEnsing Accuracy Testing
(GREAT) challenges (Bridle et al. 2010; Kitching et al. 2012;
Mandelbaum et al. 2015) used idealised simulations to demon-
strate the importance of noise on the performance.

However, as recently shown by Hoekstra et al. (2015), the
actual performance of the algorithms depends crucially on the
input of the simulations, such as the distribution of galaxy ellip-
ticities and the inclusion of faint galaxies. This was studied in
more detail in Hoekstra et al. (2017, H17 hereafter) for a Euclid-
like survey. These studies showed that the fidelity of the image
simulations is crucial for an accurate estimate of the overall
shear bias, which depends on the bias in the shape measurements
and the selection of galaxies. H17 did not consider both con-
tributions separately, but recent studies (e.g., Fenech Conti et al.
2017; Kannawadi et al. 2019) have shown that biases are already
introduced in the first step of the analysis: the detection of
objects. This source of bias has been largely ignored until
Fenech Conti et al. (2017) showed that it can be as important
as the shape measurement bias in ground-based surveys. More
recenty, Hernández-Martín et al. (2020) showed that detection
bias is also relevant for lensing studies using Hubble Space Tele-
scope data.

Consequently, even if the shapes of the detected galax-
ies are somehow measured perfectly, the shear will be biased.
Such a detection bias is expected because the significance with
a galaxy is detected typically depends on its orientation with
respect to the shear (Hirata & Seljak 2003) or the PSF (Kaiser
2000; Bernstein & Jarvis 2002). In this paper we study detection
bias using image simulations, similar to those used in H17. We
explore how well the bias can be quantified and which param-
eters are most relevant. We find that the blending of galaxies is
the dominant source of detection bias. Such blends are absent
from studies that measure shear biases using isolated galaxies
(or when placed on a grid). To reduce shape noise, studies typ-
ically use pairs of simulated galaxies where a second galaxy is
rotated by 90◦ (or quartets, rotated by 45◦). However, if one then

3 https://www.lsst.org

requires that both galaxies are detected, as in Pujol et al. (2019),
the detection bias is also removed. Although this is a viable
approach to reduce the number of simulated images to quantify
the bias introduced by the shape measurement algorithm, it is
important to realise that the resulting bias cannot be applied to
the actual data, but needs to be adjusted to account for detection
bias.

A further complication arises from the fact that it may not be
possible to determine the shape for every detected galaxy. Hence
the shape measurement step introduces additional selections,
as does assigning weights to capture the fidelity of the shape
measurement. Finally, to improve constraints on cosmological
parameters, the source samples are split into multiple tomo-
graphic bins, using photometric redshifts. The reliance on reli-
able multi-band photometry introduces further selections. Those
selection biases will depend on both the shape measurement
algorithm and the way samples are selected.

The setup we use in this paper is very similar to the one
used in H17, and in Sect. 2 we briefly describe the simulation
setup, highlighting some of the changes we implemented. We
study detection bias and its dependence of the SExtractor
setup and the PSF in Sect. 3. Similar to H17, we explore the
sensitivity to changes in the simulation input in Sect. 4. In
Sect. 5 we quantify the performance of MetaCalibration
(Huff & Mandelbaum 2017; Sheldon & Huff 2017) as a way to
avoid image simulations for the calibration of the shape mea-
surement step. We also examine the usefulness of its exten-
sion, the so-called MetaDetection approach (Sheldon et al.
2020), which aims to avoid selection biases altogether in Sect. 6.
We discuss the implications of our results for future surveys in
Sect. 7.

2. Simulation setup

The simulated images were created using the publicly available
software package GalSim4 (Rowe et al. 2015). This suite of rou-
tines was originally developed for GREAT3 (Mandelbaum et al.
2014, 2015), but it has become the de facto standard for image
simulations in the weak lensing community. As was done in
H17, the galaxies are described by Sérsic profiles, with half-light
radii, apparent magnitudes and Sérsic indices n drawn from a
catalogue of morphological parameters measured from resolved
F606W images from the GEMS survey (Rix et al. 2004). We
only considered galaxies fainter than magnitude m = 20 and
used the morphological parameters from the GEMS catalogue
for galaxies down to m = 25.4, and normalised the counts to 36
galaxies arcmin−2 with 20 < m < 24.5.

As shown in H17, it is important to include galaxies down
to mlim ≈ 29, and we followed the same procedure, except that
we used a flatter count slope at fainter magnitudes: we adopted
a power law slope of αfaint = 0.24 (instead of αfaint = 0.36 using
by H17), which matches the observed counts better. The intrin-
sic ellipticities were drawn from a Rayleigh distribution with
scale parameter ε0 = 0.25, so that the mean source ellipticity
is 〈|εs|〉 ≈ 0.31. We assumed that the intrinsic ellipticities εs do
not correlate with the morphological parameters, but note that
Kannawadi et al. (2019) have shown that this is not the case in
reality. We refer the interested reader to H17 for more details on
the input catalogue.

In our baseline simulations we placed galaxies randomly, but
with random sub-pixel offsets. We created pairs of images, where
the galaxies were placed at the same location, but rotated by 90◦

4 https://github.com/GalSim-developers/GalSim
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Table 1. Relevant SExtractor setup parameters.

DETECT_MINAREA 6
DETECT_THRESH 1.5
FILTER_NAME gauss_3.0_7x7.conv
DEBLEND_NTHRESH 32
DEBLEND_MINCONT 0.005
CLEAN_PARAM 1.0
BACK_SIZE 600
BACK_FILTERSIZE 3

Notes. Column 1: keyword in SExtractor configuration file; Col. 2:
value of the parameter.

in the rotated case. We applied the same shear to all the galaxies
in such a pair by changing the true (simulated) ellipticity using
(Seitz & Schneider 1997):

εobs =
εs + γ

1 + γ∗εs , (1)

where εs is the intrinsic complex ellipticity, γ is the complex
shear that is applied5, and the asterisk indicates the complex con-
jugate. If both galaxies of a pair are averaged, 〈εs〉 = 0 and the
observed ellipticity is an unbiased estimate of the shear. Hence,
a non-zero detection bias implies that one of the two galaxies in
a pair is not detected in a shear-dependent fashion.

In our baseline setup, the galaxies were placed at random
positions, thus ignoring the impact of clustering. This was stud-
ied in more detail in Euclid Collaboration (2019) who found that
faint satellite galaxies that cluster around their host galaxy do
affect the bias estimates. Moreover applying a shear to a par-
ticular configuration of galaxies also changes their positions. We
ignored this in our baseline simulations, but we found that shear-
ing the positions as well as the galaxy images barely changed the
results (see Sect. 3.1 and Table 2 for more details). Finally, we
also created images where the galaxies were placed on a grid,
so that they are about 9′′ apart, thus eliminating any blending.
This provided a useful reference to compare our baseline results
against.

To allow for a more direct comparison to the results pre-
sented in H17, unless specified otherwise, we used the same
setup for the telescope parameters, and used a circular Airy PSF
for a telescope with a diameter of 1.2 m and an obscuration of
0.3 at a reference wavelength of 800 nm, which is a reasonable
approximation to the Euclid PSF in the VIS-band (Cropper et al.
2018). The individual images are 4000 pixels on a side, with a
pixel size of 0′′.1 per pixel. The noise level is the same as used in
H17, corresponding to a surface brightness of 27.7 mag arcsec−2.
This mimics the depth of four coadded exposures, and yields a
typical number density of 47 galaxies arcmin−2 with a signal-to-
noise ratio larger than 10, as measured by SExtractor, and a
number density of 33 galaxies arcmin−2 if we restrict the magni-
tude range to 20 < m < 24.5.

2.1. Analysis setup

We used SExtractor (Bertin & Arnouts 1996) to detect
objects in the simulated images. Our baseline setup uses the
(relevant) parameter values listed in Table 1, which are fairly

5 The actual observable is the reduced shear g ≡ γ/(1 − κ), where κ
is the convergence, and g should be used in Eq. (1). However, we only
consider the shear in this paper, so that g = γ throughout.

standard. To detect an object, at least DETECT_MINAREA adja-
cent pixels need to be above the threshold, which is specified
by DETECT_THRESH times the noise level. We let SExtractor
determine the background level, although we could have spec-
ified a global value of zero. We explored various background
determination settings, and found that they did not change our
results. We discuss the purpose of some of these parameters and
their impact on detection bias in more detail in Sect. 3.4 and
Appendix A.

For reference, we also repeated the shape measurements
using the KSB algorithm employed in H17, where we note
that the results differ because of a number of changes in the
pipeline that were implemented. As already discussed in Sect. 2
we changed the power law slope of the counts of faint galax-
ies, which shifts the bias as indicated by Fig. 9 in H17. We also
improved the modelling of the PSF parameters: the pixel size
of 0′′.1 is relatively large compared to the FWHM of the PSF of
a 1.2m diffraction limited telescope. In H17 the correction for
the PSF was based on parameters that were estimated directly
from the poorly sampled images. Although this does not impact
their main conclusions, it does change the actual biases. Here
we used measurements of the PSF shear and smear polarisabili-
ties (Kaiser et al. 1995; Hoekstra et al. 1998) that were measured
from 4× oversampled images. Moreover, we increased the width
of the weight function by a factor 1/

√
ln(2) ≈ 1.2, which also

changes the shear bias6.

2.2. Detection and photometry performance

Figure 1 shows the fraction of simulated galaxies that were
detected by SExtractor as a function of the input magnitude,
minput. To obtain this result we matched the input catalogue to
the SExtractor output and selected those objects that were
detected within a radius of 3 pixels from the input coordinate.
The black line shows the results for our baseline simulation,
whereas the red line shows the fraction of detected objects if the
galaxies are placed on a grid about 9′′ apart. In the latter case the
sample of detected galaxies is complete down to minput = 23.5,
after which the completeness starts decreasing. The sample of
galaxies detected in the baseline simulation is incomplete at all
magnitudes, although 98% of the galaxies are detected down to
minput = 23.5. The increased incompleteness is caused by blend-
ing, because the results for galaxies that have a nearest neighbour
with minput < 26 that is at least 5′′ away (blue line) resemble that
of the grid-based images. If we instead select galaxies with a
nearest neighbour with minput < 26 within 2′′, the incomplete-
ness increases (light blue line).

This basic result shows that the detection of galaxies is
affected by the presence of neighbouring galaxies. Before we
proceed to explore the impact on shape measurements, we
briefly examine the impact on the recovered magnitudes. The
black line in Fig. 2 shows the distribution of ∆m, the differ-
ence between mAUTO, the magnitude reported by SExtractor
as MAG_AUTO, and the input magnitude minput, for galaxies with
20 < mAUTO < 24.5 in the baseline simulations. The results
show a clear tail towards negative ∆m, which is what we expect
for blended objects. This is confirmed if we consider the dis-
tributions for ‘isolated’ galaxies (blue; nearest neighbour >5′′
away) and ‘blended’ galaxies (light blue; nearest neighbour <2′′

6 We use the observed value of the half-light radius FLUX_RADIUS
as measured by SExtractor to define the width of the weight
function. For a Gaussian profile the corresponding dispersion σ =

FLUX_RADIUS/
√

2 ln 2.
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Fig. 1. Fraction of the simulated galaxies that are detected by
SExtractor as a function of the input magnitude, minput. The black
line corresponds to the reference case where galaxies are placed ran-
domly in the images. The blue line shows results for ‘isolated’ galaxies,
with a nearest neighbour more than 5′′ away, whereas the light blue
line is for galaxies with a nearest neighbour within 2′′. In the latter
case the fraction of detected galaxies is considerably lower, whereas
the results for the ‘isolated’ galaxies approaches that of the simulations
where galaxies are placed on a grid about 9′′ apart (red lines). The error
bars indicate the scatter in the results, and the lines connect the points.

away): the distribution of isolated galaxies roughly matches that
of the grid-based simulation (red line; normalisation matched to
the blue curve), whereas the distribution of the blended galaxies,
comprising 36% of the galaxies, matches the tail for ∆m < −0.5.

The fraction of isolated galaxies is small, only 7.5% of the
galaxies match the criterion. In practice, however, SExtractor
will miss nearby neighbours if they are too close. If we use
the distance to the nearest detected galaxy for the isolation cri-
terion instead, we find that the fraction of apparently isolated
galaxies is almost 19%; the dashed blue line in Fig. 2 shows
the corresponding distribution, indicating the increased fraction
of blends. Finally, SExtractor raises a flag for objects that if
finds to be blended. The light grey dashed line in Fig. 2 shows
that it can indeed eliminate some of the blended objects, but
many remain. Undetected blends are likely to bias the photomet-
ric redshifts, coupling these to biases in the shape measurements,
but exploring this further is beyond the scope of this paper.

Finally we note that the distributions do not peak around
∆m = 0, but that 〈∆m〉 = 0.14 for 20 < mAUTO < 24.5 in the
grid-based simulations. The amount of missing flux does depend
somewhat on the brightness, increasing from 〈∆m〉 = 0.056 for
the brightest galaxies (mAUTO = 20) to 〈∆m〉 = 0.166 for the
faintest ones (mAUTO = 24.5). It also depends somewhat on the
source ellipticity, which partly explains the asymmetry towards
positive values of ∆m. Although the dependence of ∆m on ellip-
ticity is modest, it implies that a simple magnitude cut may lead
to changes in the ellipticity distributions of the detected galaxies,
potentially complicating the link between shape measurements
and photometric redshift determinations further.

3. Detection bias

The measurement of the weak gravitational lensing signal relies
on accurate estimates of the shapes of distant galaxies, which

Fig. 2. Distribution of ∆m, the difference between mAUTO, the magnitude
reported by SExtractor, and the input magnitude minput for detected
galaxies with 20 < mAUTO < 24.5 for our baseline setup (solid black
line; galaxies placed randomly). The distribution of ‘isolated’ galax-
ies (solid blue line) matches that of the grid-based results (red line),
whereas the tail towards negative ∆m matches that of ‘blended’ galax-
ies. The light grey dashed line shows that many of the objects flagged
by SExtractor are indeed blends, but that many remain undetected.
Blends even occur for objects that have no detected neighbour within
5′′ (dashed blue line).

are both faint and small. The images are corrupted by noise and
instrumental effects. It is essential to remove, or at least account
for, these sources of bias. For this reason most effort has focused
on undoing the biases in the shape measurement step itself, but
the preceding step, the detection (and selection) of galaxies that
are used in the analysis, has received much less attention.

As shown already in Hirata & Seljak (2003), we do expect
the detection of objects to introduce a bias. Gravitational lens-
ing conserves the surface brightness, and as a result a galaxy
with an intrinsic orientation perpendicular to the shear will
appear rounder at the same surface brightness level. Since
SExtractor uses a surface brightness threshold and a circu-
lar kernel for the detection, such a galaxy is more likely to
be detected, resulting in the average shear to be biased low.
The detection and selection biases are typically much smaller
than the shape measurement biases, but they can no longer be
ignored for Stage IV surveys (Albrecht et al. 2006), and require
more detailed study (as shown by Fenech Conti et al. 2017;
Kannawadi et al. 2019, they are already relevant for Stage III
surveys).

We discuss both detection and selection biases. The former
refers to the very first step in the analysis, resulting in a sam-
ple of objects for which a shape measurement can be attempted.
The subsequent shape measurement may not always be success-
ful, or different weights may be assigned to the measurement,
which leads to selection biases. Similarly the desire to divide the
galaxies into tomographic bins introduces selection biases that
need to be accounted for. We emphasise that these biases occur
even if the shape measurement itself is unbiased.

To mimic a perfect shape measurement, we follow
Fenech Conti et al. (2017) and compute the true measured ellip-
ticity based on the input complex ellipticity εs and applied com-
plex shear γ as given by Eq. (1). For each galaxy detected by
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Table 2. Average multiplicative and additive biases for galaxies with 20 < mAUTO < 24.5.

Setup µ1 µ2 c1 [×105] c2 [×105]

Baseline
SExtractor −0.010 61 ± 0.000 13 −0.010 53 ± 0.000 13 −0.73 ± 0.51 −0.73 ± 0.49
SExtractor – no background −0.010 43 ± 0.000 18 −0.009 74 ± 0.000 18 −0.68 ± 0.73 0.36 ± 0.71
SExtractor – FLAG= 0 −0.012 14 ± 0.000 23 −0.011 78 ± 0.000 22 −0.71 ± 0.93 0.70 ± 0.92
KSB detection −0.019 17 ± 0.000 23 −0.018 72 ± 0.000 23 −0.09 ± 0.88 1.17 ± 0.88
KSB selection −0.018 66 ± 0.000 22 −0.018 19 ± 0.000 22 −0.08 ± 0.86 1.12 ± 0.86
KSB shapes −0.089 15 ± 0.000 31 −0.087 57 ± 0.000 32 −3.34 ± 1.20 0.74 ± 1.21

Sheared image
SExtractor −0.010 62 ± 0.000 19 −0.010 43 ± 0.000 18 −0.84 ± 0.71 −0.18 ± 0.73
KSB detection −0.019 28 ± 0.000 22 −0.019 01 ± 0.000 23 −0.19 ± 0.88 −1.18 ± 0.87
KSB selection −0.018 77 ± 0.000 22 −0.018 47 ± 0.000 22 −0.16 ± 0.86 −1.18 ± 0.85
KSB shapes −0.088 79 ± 0.000 31 −0.087 66 ± 0.000 33 −2.14 ± 1.21 −1.34 ± 1.22

Grid
SExtractor −0.006 94 ± 0.000 24 −0.006 97 ± 0.000 24 −1.53 ± 0.9 0.85 ± 0.91
KSB detection −0.013 25 ± 0.000 28 −0.012 57 ± 0.000 29 −0.81 ± 1.15 −2.83 ± 1.12
KSB selection −0.012 81 ± 0.000 27 −0.012 09 ± 0.000 29 −0.79 ± 1.11 −2.77 ± 1.08
KSB shapes −0.053 57 ± 0.000 30 −0.052 51 ± 0.000 32 −1.14 ± 1.25 −1.80 ± 1.25

Notes. In the ‘baseline’ case the galaxies are placed randomly and their images are sheared. For the ‘sheared image’ results the full scene is sheared
instead, thus altering the positions. Galaxies are placed on a regular grid, about 9′′ apart for the ‘grid’ results. The rows labelled ‘SExtractor’
report the detection bias. The biases for objects with a KSB shape measurement are labelled ‘KSB detection’, and as ‘KSB selection’ when the
weighting scheme is included. The results using the actual KSB shape measurements are reported as ‘KSB shapes’. All the KSB measurements
also include the SExtractor detection bias. The reported uncertainties may differ for similar setups, because fewer simulations were analysed.

SExtractor, we find the nearest input galaxy. For the analysis
we consider only galaxies with observed magnitudes mAUTO <
25, but the input catalogue includes many more galaxies that are
fainter. As most of those are not detectable individually (see e.g.,
Fig. 1), we only consider the nearest object with minput < 26 from
the input catalogue. We define a mismatch if the separation is
more than 3 pixels, which is the case for 0.2% of the objects with
mAUTO < 25. The fraction is larger for fainter objects (e.g., 1.4%
for detections with 25 < mAUTO < 26) suggesting that some of
these are just noise peaks. However, we note that such misiden-
tifications do not bias our shear estimate, but rather introduce
noise in our measurement because the shape noise is not can-
celled in this case7. Even though the impact of these mismatches
on the results is negligible, we omit them from our analysis.

More important are the cases where the object is blended
with a neighbouring one, which can also lead to a shift in
the location of the detection. In 0.4% of the detections with
mAUTO < 25 we identify a brighter object in the input catalogue
within a radius of 3 pixels. As the galaxies are placed randomly,
these are mere chance projections, which is consistent with the
observed distribution of separations. In these cases we assign the
input properties of the brighter object, because a shape measure-
ment algorithm would be more sensitive to its surface brightness
distribution.

We then proceed to compute the shear biases by comparing
the average ellipticity of the detected galaxies to the input shear
γtrue

i (where the index i ∈ {1, 2} corresponds to the real or imag-
inary part of the shear, respectively). The former is an estimate
of the shear, as can be seen by averaging Eq. (1): 〈εobs

i 〉 = γobs
i .

As is common, we assume that the observed shear and true shear

7 In our case, a noise peak is still associated with an input galaxy,
resulting in imperfect shape noise cancellation only. In contrast, includ-
ing noise peaks in an actual cosmic shear analysis does lower the sig-
nal. In practice, however, requiring robust photometric redshifts using
multi-band observations will remove most, if not all, of these.

are related as:

γobs
i = (1 + µi)γtrue

i + ci, (2)

where µi is the multiplicative shear bias, and ci is the addi-
tive shear bias. The values for µi are expected to be very
similar (Kitching et al. 2019). We determine both components
separately, and if they are consistent we refer to µ as the average
of the two components. Finally, we note that because we create
pairs of images where the galaxies are rotated by 90◦ the pres-
ence of a bias means that one of the two images is not detected,
or assigned a magnitude such that it is not included, and that the
probability of detection depends on the applied shear itself.

3.1. Detection bias estimates

Figure 1 shows that the presence of neighbouring galaxies affects
the ability of SExtractor to detect galaxies. We now proceed
to explore whether this results in a bias in the shear. Unless spec-
ified otherwise we report biases for galaxies with 20 < mAUTO <
24.5, which was adopted by H17 as a good approximation for
the range used by Euclid. This allows for a direct comparison to
their results for the overall shear bias, although we note that our
analysis differs somewhat (see Sect. 2.1 for details). We present
results for different setups in Table 2.

For our baseline setup, where galaxies were placed ran-
domly, we measured µdet

1 = −0.010 61 ± 0.000 13 and µdet
2 =

−0.010 53 ± 0.000 13, where the uncertainties reflect the finite
number of images that were analysed. We did not detect a sig-
nificant additive bias, but the detection bias is significant for our
Euclid-like setup, especially if we contrast this with the overall
requirement that |µ| < 2 × 10−3 (Cropper et al. 2013). Both mul-
tiplicative shear biases agree (〈µdet

1 −µ
det
2 〉 = (−0.9±1.8)×10−4),

which is why we show the average of both components in most
figures. In Table 2 we also present the detection bias when
we fix the background to its true value (i.e. zero; reported as
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Fig. 3. Top panel: detection bias for galaxies with 20 < mAUTO < 24.5
as a function of rsep, the distance to the nearest object detected by
SExtractor (black points). The open grey points show the detec-
tion bias as a function of the nearest neighbour in the input catalogue
brighter than minput = 26 (grey open points). For reference, the hatched
region indicates the detection bias for the grid-based simulations.
Bottom panel: fraction of galaxies that have a neighbour within a dis-
tance <rsep in the input catalogue (grey dashed line) or detection cata-
logue (black line). For small separations many of the true blends are not
recognised as such.

‘no background’). The changes in multiplicative shear bias are
small, but significant8: ∆µ1 = 0.000 37 ± 0.000 11 and ∆µ2 =
0.000 62±0.000 11. In the baseline setup we did not shear the full
scene, but only sheared the galaxy images. In reality the shearing
also alters the positions, which in turn might affect the results as
the separations between neighbouring objects change slightly.
If we shear the full image instead, the difference with respect
to the baseline case where we only shear the galaxy images is
∆µ = (0.52 ± 1.59) × 10−4, an insignificant difference. Similarly
the additive biases are consistent with the baseline results. To
obtain this estimate we used the fact that the galaxy images are
the same for both setups (though not their positions), but that the
background noise realisation is slightly different.

The black points in Fig. 3 show the detection bias for galax-
ies with 20 < mAUTO < 24.5 as a function of rsep, the distance
to the nearest object detected by SExtractor. For large sepa-
ration, the bias approaches the average bias we measured for the
grid-based simulations (indicated by the hatched region), but is
typically larger. This is because not all blends are identified as
such. For reference, we also show the bias as a function of the
distance to the nearest neighbour in the input catalogue brighter
than minput = 26 (grey open points). The amplitude of the bias
changes rapidly for galaxies with rsep < 1′′, and such galaxies
are probably best omitted from the analysis. The bottom panel
in Fig. 3 shows that this applies to about 10% of the galax-
ies. In reality this number will be higher because of clustering
(Euclid Collaboration 2019).

8 The measurements for different scenarios are based on the same
images, and are therefore correlated. We account for this by computing
the difference first and reporting its statistics. As a result, the difference
may be determined more precisely than the bias itself.

As indicated by Fig. 2, selecting objects with SExtractor
FLAG= 0 reduced the occurrence of blends, and we expect the
detection bias to be reduced (see Fig. 3). Instead we find that
the bias increased by about 13%, implying that the flagging of
blended objects is actually done in a shear dependent fashion.

These results indicate that blending is a significant source of
detection bias that depends significantly on the local galaxy den-
sity. We note, however, that the bias does not vanish for large
separations, but rather converges to the bias we obtained for
our grid-based simulations, indicated by the hatched horizontal
region (and reported in Table 2), if we select galaxies based on
the distance to the nearest neighbour in the input catalogue. In
the more realistic case (open grey points), where we separate
galaxies based on the distance to the nearest detected galaxy, the
bias is even larger because many blends remain undetected.

To investigate this further, we show µdet as a function of
magnitude in Fig. 4. The left panel, where we show results as
a function of the input magnitude, minput, is the shear detection
bias equivalent of Fig. 1. In this case the shape noise cancella-
tion results in small uncertainties, because galaxies are included
in the correct magnitude bin by design. The shear bias arises
because the probability of detecting faint galaxies is affected by
the orientation of the galaxy with respect to the applied shear:
galaxies that are aligned perpendicular to the shear are more
likely to be detected. The bias is negligible for bright galaxies,
and thus can be reduced by increasing the depth of the observa-
tions, something we explore further in Sect. 3.2.

Similar to Fig. 1, we find that the bias for isolated galaxies
(rin

sep > 5′′) matches that of the grid-based images, whereas the
bias is larger for blended galaxies (rin

sep < 2′′). Comparison of
the biases reported in Table 2 suggests that both blending and
the shear-dependent detection probability are important. The
bias at bright magnitudes is caused by blending, whereas for
fainter galaxies the detection probability itself depends on the
orientation with respect to the applied shear.

In reality the situation is complicated by the fact that the
observed magnitudes are affected by blending, the applied shear,
and measurement uncertainties, all of which spread the biases
over a wider range in magnitudes and lead to larger uncertain-
ties owing to imperfect shape noise cancellation. Consequently,
the error bars in the right panel of Fig. 4 are increased, and the
detection bias affects a larger range in magnitude. In particular,
as shown by the asymmetric distribution of magnitude errors in
Fig. 2, blending scatters objects towards a brighter magnitude
bin. Such blends are not always identified, and can thus intro-
duce significant biases even for apparently bright galaxies. For
instance, the bias for the bright blended galaxies is far beyond
the axis limits of the chart. We also caution that the results for
the brightest magnitude bin suffer from extreme Eddington bias,
because our input catalogue does not include galaxies brighter
than m = 20.

Figure 5 shows the multiplicative detection bias as a func-
tion of the input half-light radius (reff) for the baseline (black)
and grid-based (red) simulations. For both cases we observe
a strong dependence with galaxy size, which is the combined
result from the underlying distribution of fluxes and the corre-
lation between size and brightness. After all, brighter galaxies
are more likely to be detected, whilst for a given flux a smaller
galaxy is detected with a higher significance. The latter drives
the increase in detection bias with increasing reff , but as the
mean brightness increases with increasing size, the probabil-
ity of detection increases once more. Comparison of the bias
as a function of reff for isolated galaxies with the grid-based
results show that they agree well. Hence, the difference between

A124, page 6 of 22

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038998&pdf_id=3


H. Hoekstra et al.: Accounting for detection bias

Fig. 4. Left panel: multiplicative detection bias µdet as a function of the input apparent magnitude when galaxies are placed on a grid (red points) or
placed randomly (black points). The blue points show the results for isolated galaxies where the nearest neighbour is more than 5′′ away, whereas
the light blue points show the detection bias for galaxies with a neighbour within 2′′ (blended). Right panel: multiplicative detection bias as a
function of observed properties. The classification into isolated and blended galaxies is based on the nearest detected galaxy in this case. The lines
connect the points to show the behaviour for the different samples more clearly. The bias for the bright blended galaxies is beyond the axis limits
of the chart.

Fig. 5. Multiplicative detection bias µdet as a function of the input half-
light radius, reff , for galaxies with 20 < mAUTO < 24.5. The black
and red lines correspond to the baseline and grid-based cases, respec-
tively. The histograms show the distributions of galaxy sizes (black: all
galaxies; red: mAUTO < 21; blue: 24 < mAUTO < 24.5) The observed
behaviour is the result of the change in size as a function of brightness.

the grid-based and baseline simulations is caused by blending,
which affects galaxies of all sizes.

In contrast to what was done in Fig. 4, we do not show the
bias as a function of FLUX_RADIUS, the half-light radius deter-
mined by SExtractor, because it correlates with ellipticity.
Consequently, a split by FLUX_RADIUS is an implicit selection
in ellipticity, resulting in large biases. If one wants to split the
source sample by a particular observable, it is important to ver-
ify that it does not correlate with input ellipticity. This may not

be fully feasible in practice, but at least one should aim to min-
imise the dependence. Interestingly, we find that MAG_AUTO only
weakly correlates with the input ellipticity. This suggests that
splitting the sample into tomographic bins based on magnitude
and colour may not increase the selection bias much, although
further study would be required to quantify this.

3.2. Dependence on noise level

Figure 4 shows that the detection bias is negligible for bright,
isolated galaxies. Hence, we expect that the detection bias can
be reduced by obtaining deeper data. The results in Fig. 6 show
that this is indeed the case: it shows the multiplicative detec-
tion bias when the noise level in the image is multiplied by fnoise
(where fnoise = 1 corresponds to the baseline case). The black
(red) points show the results for the baseline (grid) simulations
for galaxies with 20 < mAUTO < 24.5. These are well fit by a
second order polynomial (solid lines).

The average increase in detection bias of µbase − µgrid =
−0.0035 is caused by blending and increases only weakly with
increasing noise level. Moreover, even for low noise levels
blending leads to a floor in the detection bias that is about
∼−0.004. Interestingly, the bias does not completely vanish in
the grid-based simulations at low noise levels. This is the result
of our galaxy selection, which is based on the magnitude esti-
mates by SExtractor. If we instead select the galaxies based
on their true (but unobservable) magnitudes, the bias quickly
vanishes (light red points and red dashed line). This implies
that the estimate of mAUTO depends slightly on the shear. For
the baseline case (light grey points) the bias plateaus to µdet =
−0.0024 as a result of blending.

These results show that the detection bias is a combination of
blending and the sample selection (in our case a magnitude cut).
Although we find that it may be possible to reduce detection bias
somewhat using deeper observations, blending quickly becomes
a limiting factor, even in space-based data.
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Fig. 6. Multiplicative detection bias µdet as a function of the background
noise level, which is multiplied by a factor fnoise with respect to the
baseline case. The black and red lines correspond to the baseline and
grid-based cases, respectively. The solid lines show results for galaxies
with 20 < mAUTO < 24.5, whereas the (light-coloured) dashed lines
indicate the bias if we select using the input magnitudes, 20 < minput <
24.5. In the latter case the bias vanishes for the grid-based case as the
noise level is low, but for the baseline case the bias plateaus to µdet =
−0.0024 as a result of blending.

3.3. KSB biases

In Table 2 we also present measurements for the shear biases
for the KSB algorithm (Kaiser et al. 1995; Hoekstra et al. 1998),
because we made a number of changes in both the simula-
tions and the measurement setup since H17 (see Sect. 2). With
this modified setup we measured a total shear bias of µKSB

1 =

−0.089 15±0.000 31 and µKSB
2 −0.087 57±0.000 32. The results

also suggest that a small additive bias was introduced, although
more simulations would be needed to confirm the result. The
detection bias is about 9 times smaller than the total shear bias,
which explains the focus of previous studies on shear bias.

We also report the biases introduced by the steps in the shape
measurement analysis following the initial SExtractor detec-
tion. The ability of the KSB algorithm to measure a shape also
depends on the shear, resulting in an increase in the detection
bias. For the ‘KSB detection’ bias we used the true shapes, but
only for those galaxies where a shape was measured. The results
in Table 2 show that the bias doubles for all image setups. The
bias is reduced somewhat if we weight the true ellipticities with
the KSB weights (‘KSB selection’).

Although the shape measurement bias itself is dominant, the
detection bias is not negligible. As the detection bias is most
readily quantified using image simulations, like the one we use
here, we need to quantify the sensitivity of the detection bias to
the simulation setup, similar to what was done by H17 for the
overall shear bias. We return to this in Sect. 4, but first examine
the sensitivity to the SExtractor setup and PSF anisotropy.

3.4. Sensitivity to detection setup

Table 1 lists the main parameters that play a role in the object
detection. These can be grouped into three categories. The first
three pertain to the detection itself, the next three affect the

Fig. 7. Multiplicative detection bias µdet as a function of the width of
the filter used in the detection step for galaxies with 20 < mAUTO <
24.5. The blue (red) points correspond to µ1 (µ2). The histogram shows
the distribution of corresponding sizes based on the half-light radius
of the galaxies, suggesting that a width of 2−3 pixels is best. The bias
increases quickly for larger values of σfilter.

behaviour for blended objects, and the last two are relevant for
the background estimation. As already mentioned, the back-
ground parameters do not play an important role for our study.
Also the choices for DETECT_MINAREA and DETECT_THRESH do
not affect our findings for galaxies with 20 < mAUTO < 24.5 (pro-
vided they are not modified significantly), but the choice of the
filter that is used to detect objects is relevant. To detect objects in
the presence of noise, the images are convolved with a suitable
kernel before searching for peaks. The optimal filter has a profile
that matches the object of interest. For this reason Kaiser et al.
(1995) developed a hierarchical peak finder, which employs a
series of filters, but is slower. SExtractor is run with a single
filter, specified by the keyword FILTER_NAME. Here we run it
using the various predefined round Gaussian filters, defined by
their dispersion σfilter.

The results are presented in Fig. 7 for galaxies with 20 <
mAUTO < 24.5, where we show the multiplicative detection
biases for the two shear components separately. They show a
similar behaviour with filter width σfilter, but we observe a small
offset, which is more significant for smaller filter sizes. The his-
togram shows the distribution of corresponding sizes based on
the half-light radii of the galaxies, suggesting that using a Gaus-
sian filter with a width of 2−3 pixels is best. The bias increases
quickly for larger values of σfilter.

Figures 1 and 4 show that the presence of neighbouring
objects affects the detection and introduces detection bias. We
explore how changes in the parameters that affect the deblend-
ing of objects (DEBLEND_MINCONT , DEBLEND_NTHRESH, and
CLEAN_PARAM) in Appendix A. We find that the detection biases
for the default parameters are close to optimal, and that even
substantial variations have only a minimal impact. Hence, the
observed detection biases are not the result of a poorly chosen
setup of SExtractor.

3.5. Sensitivity to PSF anisotropy

Thus far we focused only on the multiplicative detection bias that
arises because the probability of detecting a galaxy depends on
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Fig. 8. Additive bias c1 (blue) and c2 (red) as a function of the PSF ellip-
ticity εPSF

1 . The bright colours correspond to the baseline case where
galaxies are placed randomly, whereas the light coloured points were
obtained by placing galaxies on a grid. In the former case the additive
detection bias is about 5.6% higher, but in both causes galaxies are pref-
erentially detected when their orientation is aligned with the PSF. We do
not observe a significant c2 (red points), nor a change in multiplicative
bias (not shown).

its orientation with respect to the shear (Hirata & Seljak 2003).
However, we expect the PSF to be anisotropic due to optical
aberrations that are practically unavoidable, especially for a wide
field imager. Such PSF anisotropy also introduces a preferred
direction. In this case surface brightness is not conserved, and
a galaxy with an intrinsic orientation parallel to the PSF ellip-
ticity direction will have a higher peak brightness compared to
a galaxy oriented orthogonal to the PSF anisotropy. As a con-
sequence, we expect to preferentially detect galaxies that are
aligned with the PSF anisotropy, leading to a positive additive
bias (Kaiser 2000; Bernstein & Jarvis 2002).

To study this, we created simulated images where the PSF
was made elliptical in the ε1 direction and ran SExtractor to
quantify the additive and multiplicative shear biases. Figure 8
shows the resulting additive bias ci. We find that that c2 is con-
sistent with zero (red and light red points), but we find that the
object detection introduces a significant additive shear bias c1,
both when galaxies are placed on a grid (light blue points) or
placed randomly (blue points); the bias in the latter case is only
5.6% higher.

As expected, the bias has the same sign as the PSF
anisotropy, demonstrating that SExtractor preferentially
selects objects that are aligned with the PSF (this was also
observed in Kannawadi et al. 2019). Although the amplitude is
small, only 0.4% of the original PSF ellipticity, this bias cannot
be ignored if the PSF is anisotropic. For instance, Cropper et al.
(2013) argue that |c| < 5 × 10−4 is required, which is reached
for εPSF = 0.137. PSF anisotropy is therefore a non-negligible
source of additive detection bias, which will vary spatially
because we expect the PSF ellipticity to change across the field-
of-view.

We also examined the change in multiplicative shear bias as a
function of εPSF and we found no significant trend. This is worth
noting, because we show in Appendix B that sources of additive
bias tend to introduce multiplicative biases of similar amplitude,

but opposite sign in shape measurements. This connection can be
used to empirically estimate the level of multiplicative bias for
(residual) systematic effects that cause additive bias. In contrast,
the lack of a change in multiplicative detection bias in the case
of an anisotropic PSF shows that detection bias is fundamentally
different from the shape measurement process itself.

4. Realism of the simulations

The blending of galaxies is a significant source of shear bias, and
for a reliable estimate of the bias it is therefore critical to capture
this in the simulated data. Studying the performance of galaxies
on a grid may help in the comparison of methods, or the training
of machine learning approaches (Gruen et al. 2010; Tewes et al.
2019; Pujol et al. 2020), but the actual estimate relies on realistic
simulations. In this Section we explore how the detection bias
depends on the properties of the simulated galaxies, such as their
size and ellipticity distributions.

The realism is, however, not limited to the properties of
the detected galaxies, because the performance of the shape
measurements is also influenced by the presence of galax-
ies below the detection limit. This was first demonstrated by
Hoekstra et al. (2015) for ground-based observations. Similarly,
H17 showed that for the Euclid-like data we consider here, the
multiplicative shear bias depends on mlim, the apparent magni-
tude of the faintest galaxies that are included in the image simu-
lation. They found that galaxies as faint as mlim = 29 can modify
the multiplicative bias for the KSB algorithm.

The impact of very faint galaxies was studied in more detail
in Euclid Collaboration (2019), who found that the dependency
with mlim also depends on the shape measurement algorithm, and
how it deals with blending. In our KSB setup the nearby objects
are crudely masked, but no attempt is made to correct the surface
brightness profile, thus biasing the estimates of the moments.
Model fitting methods will generally do better in this regard, in
line with the findings of Euclid Collaboration (2019). The clus-
tering of galaxies results in a higher level of blending around
brighter galaxies, and consequently, Euclid Collaboration (2019)
showed that the clustering of the faint galaxies increases the
overall bias further. We do not consider this additional compli-
cation here, but note its importance when one aims to calibrate a
shear measurement algorithm to be applied to actual data.

These studies only considered the final shear bias, but in
Fig. 9 we show how the SExtractor detection bias depends
on mlim. Our results show that the detection bias is much less
sensitive to the inclusion of faint galaxies, especially when com-
pared to the KSB shear estimates (indicated by the light grey
points and dashed line). The dotted line indicates the change in
bias when we select galaxies based on minput. This shows that the
bias partly arises from faint galaxies, for which the detection bias
is larger (see Fig. 4), scattering into the sample of sources used
in the analysis (defined as 20 < mAUTO < 24.5). Nonetheless,
the convergence is only achieved for mlim = 27, still 2.5 mag
fainter than the magnitude limit of the sample of sources that we
consider here.

4.1. Sensitivity to galaxy number density

H17 (their Fig. 5) showed that the KSB shear bias increases if the
number density of the simulated galaxies is increased by a factor
nfac (also see Table 2). Consequently the bias will be larger near
clusters and groups of galaxies, thus coupling the shear bias to
the large-scale structure, which will need to be accounted for
as shown by Hartlap et al. (2011). An increase in detection bias
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Fig. 9. Change in multiplicative detection bias ∆µdet (with respect to
µ(mlim = 29)) for galaxies with 20 < mAUTO < 24.5 as a function of
mlim, the magnitude of the faintest galaxies that are included in the sim-
ulation (black points). The dotted line shows the change in bias if we
select galaxies based on their input magnitude (20 < minput < 24.5). The
change in multiplicative bias for the KSB algorithm is indicated by the
light grey points. The hatched region indicates a tolerance of 10−4.

Fig. 10. Multiplicative bias as a function of nfac, the relative increase
in galaxy number density with respect to the baseline simulation. The
grid-based results correspond to nfac = 0. The black points show how the
detection bias increases with nfac. The red (blue) points correspond to
the MetaCalibration (MetaDetection) results discussed in Sect. 5
(Sect. 6). The light coloured points show the biases for relatively iso-
lated galaxies (distance to nearest galaxy in the input catalogue larger
than 2′′).

will play a role, because Fig. 3 shows that it depends on the
distance to the nearest galaxy. As the density increases, the mean
separation decreases and the bias increases accordingly.

We quantify the sensitivity of the detection bias to the galaxy
number density in Fig. 10. The black points show µdet as a func-
tion of nfac, where nfac = 0 corresponds to the grid-based sim-
ulations (no blending) and nfac = 1 is our baseline case. For

reference, a value of nfac = 2 roughly corresponds to the galaxy
density in the innermost regions of a massive cluster of galaxies
(see e.g., Fig. 11 in Hoekstra et al. 2015). We find that the detec-
tion bias increases linearly with increasing galaxy density, with
∂µdet/∂nfac = −0.003 69±0.000 13. As blending is a likely cause
we repeat the measurements for a sample of relatively isolated
galaxies (i.e. no neighbour brighter than m = 26 in the input
catalogue within 2′′) and show the results as light grey points in
Fig. 10. The slope is almost halved, but not fully eliminated.

The spatial variation in nfac caused by the clustering of galax-
ies will lead to spatial variations in the multiplicative bias across
the survey. Provided these variations are small, the impact on
the cosmological signal is expected to be negligible, as shown in
Kitching et al. (2019). However, it is important that the galaxy
number density in the simulations matches the average value in
the survey, because a mismatch results in an overall shift in the
shear bias. We discuss the area of high-quality data that is needed
to achieve this in Appendix C.

4.2. Sensitivity to morphology

The detection bias depends on the morphology of the galaxies,
because the size affects the signal-to-noise ratio and the inci-
dence of blending. Moreover, the bias depends on the intrinsic
ellipticity: the detection bias vanishes if εs = 0, whereas we
observe a significant detection bias for our reference setup. Such
dependencies on morphology are of particular concern, because
they vary with redshift (Kannawadi et al. 2015), and can link
shear biases to the lensing signal as the morphology depends on
the galaxy density: early type galaxies are generally larger and
rounder, and occupy higher density regions. Moreover, their pho-
tometric redshifts are typically more precise thanks to their more
pronounced 4000 Å break, coupling the shear measurements to
the binning of galaxies into tomographic bins. These connections
highlight the need for simulations that capture the full process of
photometric redshift and shear estimation simultaneously. This
is, however, left for future study.

To explore the impact of uncertainties in the morphology fur-
ther we analysed images where the input sizes were increased by
a factor fsize and where the input ellipticities were increased by
a factor εfac, similar to what was done in H17 (see their Figs. 4
and 10). The black points in Fig. 11 show the change in bias as
a function of these parameters. The left panel of Fig. 11 shows
that the detection bias increases linearly with increasing input
galaxy sizes, with a slope ∂µdet/∂ fsize = −0.0211 ± 0.0006. We
expect the bias to be smaller if the galaxies are smaller, because
the galaxies will be detected with a higher signal-to-noise ratio
for a given magnitude, whilst blending is reduced. Although this
dependence is rather steep, the distribution of galaxy sizes is
fairly well established, and mismatches between the simulations
and the data can be accounted for empirically (see the discussion
in H17).

The sensitivity to the input ellipticity distribution is more
worrisome, because it is generally more difficult to infer from
existing high-quality Hubble Space Telescope observations. We
found ∂µdet/∂εfac = −0.025 02±0.000 56, which is about half the
value that H17 measured for the full KSB bias. This suggests that
a significant part of the sensitivity to the input ellipticity distri-
bution is determined by the detection bias. Deeper observations
may help improve empirical constraints on the ellipticity dis-
tribution (Viola et al. 2014), but the measurements still require
an accurate algorithm to measure shapes. Moreover, the results
presented in Sect. 3.2 suggest that blending limits the gain of
such deeper observations. This requires further study, because
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Fig. 11. Left panel: change in multiplicative shear detection bias ∆µ as a function of fsize, the relative change in input galaxy size (black points).
Right panel: change in multiplicative detection bias if the input ellipticities are multiplied by a factor εfac. The dotted lines show the best fit linear
model. The red points in both panels correspond to the post-MetaCalibration results discussed in Sect. 5.

Fig. 12. Change in multiplicative shear bias ∆µ as a function Sérsic
index. The histogram indicates the distribution of Sérsic indices in the
baseline simulations. The black points show the change in detection
bias. The red points show the MetaCalibration results.

Kannawadi et al. (2019) showed that the ellipticity distribution
correlates with galaxy size and changes with redshift, whilst
ellipticity gradients will complicate matters further.

The left panel of Fig. 11 shows that the detection bias
is reduced if galaxies are smaller, as such galaxies are easier
to detect, whilst blending is reduced. We therefore expect the
radial surface brightness profile to influence the bias as well. We
explored two modifications, namely the sensitivity to changes in
the Sérsic index, nSersic, and rtrunc, the radius where the profile is
truncated.

The black points in Fig. 12 show the change in detection
bias when we keep the effective radii, fluxes and ellipticities of
the galaxies the same, but fix the Sérsic indices to a single value.

Larger values for nSersic result in profiles that are more centrally
peaked, reducing the detection bias. Indeed, the bias is reduced
slightly with respect to the baseline case for nSersic ≥ 1. The
histogram shows the baseline distribution of nSersic, which peaks
at values <1.

Throughout this paper we assume that the surface bright-
ness profiles of galaxies are described by a Sérsic-profile, which
are truncated at rtrunc = 3.5 effective radii for reasons of com-
putational speed. This ignores much of the variety in galaxy
morphology, where the bulge and disk components may have
different ellipticities and orientations. Moreover, spiral structure
complicates matters further. Better modelling of the morpholo-
gies of galaxies using deep, high-quality data will help address-
ing this specific problem. A less explored question, however, is
the surface brightness profile at large radii. Tal & van Dokkum
(2011) stacked the images of a large sample of luminous red
galaxies and found that a Sérsic-profile describes the data well
out to more than 7 effective radii. In contrast, detailed studies
of edge-on spiral galaxies indicate that the disks are truncated
around four disk scale lengths on average (Kregel et al. 2002).

We therefore created images where we truncated the profile
at different values for rtrunc (in units of the effective radius reff).
The black points in Fig. 13 show the change in SExtractor
detection bias, relative to the case of rtrunc = 10. The change is
small for rtrunc > 3.5, indicating that it is important to accurately
capture the surface brightness out to these radii.

The results presented in this section highlight the impor-
tance of capturing the morphological diversity of galaxies with
sufficient accuracy. This seems quite feasible in the case of
detection bias alone, but we expect the actual shear bias to be
affected more. This is evidence from Fig. 9, where the KSB bias
is sensitive to very faint galaxies, whereas the SExtractor
detection bias converges at mlim = 27 already. Similarly, H17
found steeper dependencies for many parameters. The key ques-
tion is therefore whether image simulations can be made suffi-
ciently realistic to capture the redshift-dependent morphologies
of galaxies for Stage IV surveys. As this appears to be challeng-
ing, we explore next a different approach that uses the survey
data to calibrate the shear estimate instead.
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Fig. 13. Change in multiplicative shear bias ∆µ as a function of rtrunc,
the radius where the galaxy profile is truncated in the simulated images
in units of the input half-light radius, reff . The black points show the
change in SExtractor detection bias. The red (blue) points show
the MetaCalibration (MetaDetection) results discussed in Sect. 5
(Sect. 6).

5. MetaCalibration

A different approach is to use the observations themselves to
determine the response of an ensemble of galaxies to a shear.
Huff & Mandelbaum (2017) worked out how one can estimate
the shear bias by shearing the images, whilst taking the PSF and
noise into account. They refer to this data-driven approach as
MetaCalibration, and in this section we explore its potential
to calibrate the multiplicative bias for our Euclid-like simula-
tions. In principle MetaCalibration can also be used to cor-
rect for PSF anisotropy, but in the following we only consider
the calibration of multiplicative shear bias, which allows us to
limit the study to our round Airy PSF.

The only assumption of MetaCalibration is that we can
construct a sheared version, Ish(x|γ) of the true image using the
observed image I(x) via Eq. (5) of Huff & Mandelbaum (2017):

Ish(x|γ) = P(x) ∗ [ŝγ{P(x)−1 ∗ I(x)}]. (3)

where ŝγ is the shear operator (Bernstein & Jarvis 2002), P(x) is
the PSF, I(x) the observed image, and ‘∗’ indicates convolution.
Hence, the observed image is first deconvolved (P(x)−1 ∗ I(x)),
then sheared by ŝγ, and finally re-convolved by the PSF. This
procedure, in its simplest form, only requires an accurate model
of the PSF.

In practice, noise in the data complicates the deconvolution
step, and a slightly larger PSF is needed to suppress the noise.
The modified PSF, Pmeta(x), to use in the reconvolution step in
Eq. (3) is (Huff & Mandelbaum 2017)

Pmeta(x) = P(x/(1 + 2|γ|)). (4)

These steps implicitly assume that the images are well sam-
pled, so that the image manipulations are not compromised.
However, in the case of both Euclid and the Roman Space
Telescope, the pixels are large compared to the PSF size. In
our calculations we do assume that we can construct a well-
sampled model of the PSF, but the images of the smallest galax-
ies might still be affected by undersampling. Kannawadi et al.

(2021) explore ways to mitigate this, but we note that image
simulations can also be used to correct for the biases that may
be introduced.

Another complication is that the shearing of the images leads
to anisotropic correlated noise, which needs to be accounted for.
One possibility is to determine the resulting bias using image
simulations, but Sheldon & Huff (2017, SH17 hereafter) show
that this problem can also be mitigated by adding anisotropic
noise. The latter approach does lead to a slight increase in the
overall noise level, but as shape noise typically dominates, this
is only a minor concern. There are other complications that are
particularly relevant for space-based observations, such as the
wavelength-dependence of the PSF, which we discuss in more
detail in Sect. 7.

If we use Eq. (3) to apply a small shear γ = (γ1, γ2) to a
galaxy image, and measure its shape e = (e1, e2) we can relate
the resulting shape to the original value eγ=0, because

e ≈ e|γ=0 +
∂e
∂γ

∣∣∣∣∣
γ=0
γ ≡ e|γ=0 + Rγ γ, (5)

where Rγ is the 2 × 2 shear response tensor. We can estimate its
elements by measuring the shapes of the galaxies in the sheared
images and computing

Rγ
i j =

e+
i − e−i
∆γ j

(6)

where the subscripts indicate the two shear components, and the
superscript the sign of the applied shear, so that ‘+’ means the
image was sheared by +γ j, etc; hence, ∆γ j = 2γ j.

This expression is true for any shape measurement, and it
allows us to estimate the shear, γ̂ for an ensemble of galaxies (as
〈e〉|γ=0 ≈ 0)

γ̂ ≈ 〈Rγ〉−1〈e〉 = 〈Rγ〉−1〈Rγ γ〉, (7)

where the shape measurements are obtained from the image that
is convolved with Pmeta(x). Hence, we average the estimates for
the shapes and the shear responses, rather than using estimates
per galaxy. The reason is that the estimates for Rγ are very noisy
for individual galaxies, and averaging reduces biases in the shear
estimate, which requires the inverse of Rγ. To reduce the noise
even further we average the estimates for Rγ for a particular
selection of galaxies over many images (typically 3300). We
verified that Rγ does not change as a function of shear in the
simulated images. Moreover, we found that the off-diagonal ele-
ments vanish and we therefore assume that Rγ is diagonal in the
remainder of this paper.

Equation (7) shows that the resulting shear estimate for the
ensemble of galaxies is actually weighted by Rγ, and hence
one would like to use a shape measurement algorithm so that
Rγ ≈ I. This is, however, not an immediate concern for our study,
because the PSF is isotropic and the same shear is applied to all
the simulated galaxies.

In principle it should not matter what shape measurement we
use, because any intrinsic bias in the estimator will be accounted
for by MetaCalibration. We therefore simply use the polari-
sation χ,

χ1 =
Q11 − Q22

Q11 + Q22
, and χ2 =

2 Q12

Q11 + Q22
, (8)

where the weighted quadrupole moments Qi j are defined as

Qi j =

∫
d2x xix jW(x) I(x), (9)
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Fig. 14. Difference between the multiplicative bias after
MetaCalibration, µmetacal and detection bias, µdet, as a func-
tion of the input magnitude minput for the grid-based simulations.
The bright (light) colours show the results when we apply a shear of
±0.02 (±0.01) in the metacalibration step. The solid black (open grey)
points show the average bias, and the blue (red) points indicate ∆µ1
(∆µ2). Using a larger shear results in smaller uncertainties and a better
agreement between the two shear components.

and W(x) is the weight function, for which we use a Gaussian
with a fixed value for the dispersion of σw. Hence, we do not try
to optimise the width of the weight function to each object, nor
do we try to correct for blending of objects.

The use of a fixed value for σw has the advantage that the
measurement does not depend on the observed size of the object,
which will differ for the different sheared versions of the images
as it correlates with the shear, so that Rγ fully captures the shear
response in the absence of detection bias. We adopt σw = 2 pix-
els (i.e. σw = 0′′.2) as our baseline, which is a reasonable value
to use for the galaxies in our simulations, as suggested by Fig. 7.
Moreover, as shown in our companion paper (Kannawadi et al.
2021), this weight function is wide enough to avoid aliasing bias.

We describe and test our MetaCalibration setup using the
grid-based simulations in Sect. 5.1. We study the performance
on our more realistic baseline simulations in Sect. 5.2, which
enable us to quantify the impact of blending. We also explore
the sensitivity of the post-MetaCalibration bias to changes
in the galaxy number density and morphology. The prospects of
MetaDetection (Sheldon et al. 2020) are examined in Sect. 6.

5.1. Grid-based simulations

SH17 presented a practical implementation of
MetaCalibration9, and we use the default setup here.
Although the image manipulations can be done on postage
stamps, we instead process the full simulated images. This
naturally allows us to quantify selection biases as described in
SH17 and Sheldon et al. (2020). However, in this section we
ignore the impact of selection bias.

We used the MetaCalibration implementation in GalSim
to create the five images needed to compute the shear response
for the grid-based simulated images. To do so, we have to choose

9 https://github.com/esheldon/ngmix

the value of ∆γ to use. Applying a larger shear has the benefit of
increasing the precision with which the shear response can be
measured, but if the value is too large, higher order terms may
become relevant. This was explored in SH17 who found that for
∆γ < 0.04 the changes are negligible. We therefore consider
two values for ∆γ, namely 0.02 and 0.04 and match the resulting
shape measurements to the SExtractor catalogue.

As reported in Table 2 we observe a significant multiplica-
tive bias for both shear components, which agree with each
other. If MetaCalibration yields an unbiased shear estimate,
the measured multiplicative bias, µmeta, however, should recover
the SExtractor detection bias, µdet. Indeed, we find that that
the bias that can be attributed to the shape measurements part
is much smaller, with µmeta

1 − µdet
1 = 0.001 65 ± 0.000 46 and

µmeta
2 − µdet

2 = −0.000 86 ± 0.000 43 for galaxies with 20 <
mAUTO < 24.5, comparable to the requirements derived in
Cropper et al. (2013).

To explore the performance of MetaCalibration further,
we show µmeta −µdet as a function of minput in Fig. 14. The use of
the input magnitude ensures efficient shape noise cancellation.
Comparison of the black (∆γ = 0.04) and open grey (∆γ = 0.02)
points shows that the overall performance is similar, but that
using a larger shear does indeed result in smaller uncertainties.
Importantly, when we consider the two shear components sep-
arately, we find that they differ for ∆γ = 0.02 (light coloured
points) when minput > 23.5, whereas ∆γ = 0.04 (bright points)
yields consistent values for µ1 and µ2. Sampling may play a role
here (see e.g., Kannawadi et al. 2021), but as the differences van-
ish when we apply the larger shear, we adopt this as our baseline.

5.2. Baseline results

We now proceed to use the setup with ∆γ = 0.04 and σw = 2
pixels to examine the performance of MetaCalibration on the
simulations where galaxies are positioned randomly. Moreover,
we explore the possibility to account for the selection bias using
the procedure outlined in SH17. Although our use of a fixed
weight function avoids introducing a weight bias10, the selection
bias introduced by SExtractor remains.

SH17 show how the selection bias can be included in
MetaCalibration, by noting it introduces an ellipticity11

dependent weighting, S (e), of an underlying ellipticity distribu-
tion P(e). Hence the ensemble averaged mean ellipticity can be
expressed as

〈e〉S =

∫
de S (e) P(e) e, (10)

where we assume that
∫

deS (e)P(e) = 1. We can express the
ensemble averaged version of Eq. (5) as

〈R〉 =

∫
de
∂[S (e) P(e) e]

∂γ

∣∣∣∣∣
γ=0

=

∫
de

[
S (e)

∂[P(e) e]
∂γ

∣∣∣∣∣
γ=0

+ P(e) e
∂S (e)
∂γ

∣∣∣∣∣
γ=0

]
≡ 〈Rγ〉 + 〈RS〉. (11)

10 The size estimated from the best-fit Gaussian is different for the two
image rotations after a shear has been applied. Using the observed size
would thus couple the weight function to the shear itself, leading to a
bias.
11 We use ellipticity here as a synonym for shape, but note that the dis-
cussion is independent of the estimator employed.
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Fig. 15. Left panel: multiplicative bias after full MetaCalibration as a function of mAUTO for the baseline simulations (black for
σw = 2 pixels; lightgrey for σw = 3 pixels) and the grid-based simulations (red points for σw = 2 pixels). Right panel: multiplicative bias after
full MetaCalibration as a function of the input half-light radius (reff) for galaxies with mAUTO. Bottom panels: estimated selection bias from full
MetaCalibration (points). The solid lines show the corresponding direct measurements of the selection bias (cf. Figs. 4 and 5).

Table 3. Average biases after MetaCalibration for galaxies with 20 < mAUTO < 24.5.

Setup µ1 µ2 c1 [×105] c2 [×105]

Baseline σw = 2 pixels
MetaCalibration (Rγ only) −0.009 35 ± 0.000 42 −0.008 80 ± 0.000 38 −0.73 ± 1.60 −1.24 ± 1.45
MetaCalibration (full) 0.002 74 ± 0.000 42 0.002 89 ± 0.000 38 −0.74 ± 1.62 −1.26 ± 1.47
MetaCalibration (full, rsep,in > 2′′) 0.000 00 ± 0.000 25 0.000 95 ± 0.000 26 −0.18 ± 0.96 0.93 ± 0.98
MetaCalibration (full, rsep,det > 2′′) −0.006 94 ± 0.000 31 −0.006 01 ± 0.000 30 −1.38 ± 1.18 0.74 ± 1.14
MetaDetection −0.000 81 ± 0.000 40 0.000 37 ± 0.000 41 −2.90 ± 1.54 0.43 ± 1.57

Baseline σw = 3 pixels
MetaCalibration (Rγ only) −0.012 59 ± 0.000 42 −0.012 23 ± 0.000 37 −3.01 ± 1.60 0.14 ± 1.40
MetaCalibration (full) 0.001 66 ± 0.000 42 0.001 64 ± 0.000 37 −3.05 ± 1.62 0.14 ± 1.42
MetaCalibration (full, rin

sep > 2′′) 0.000 21 ± 0.000 27 0.002 37 ± 0.000 25 −0.96 ± 1.05 1.19 ± 0.96
MetaCalibration (full, rdet

sep > 2′′) −0.007 14 ± 0.000 29 −0.005 25 ± 0.000 27 −2.16 ± 1.11 1.02 ± 1.03
Grid σw = 2 pixels

MetaCalibration (Rγ only) −0.008 52 ± 0.000 41 −0.006 99 ± 0.000 37 0.33 ± 1.57 1.31 ± 1.41
MetaCalibration (full) −0.001 07 ± 0.000 41 −0.000 36 ± 0.000 37 0.33 ± 1.58 1.31 ± 1.42

Notes. In the ‘baseline’ case the galaxies are placed randomly and their images are sheared. Galaxies are placed on a regular grid, about 9′′ apart
for the ‘grid’ results. See text for details on the various selections.

If there is no selection bias, that is S (e) = 1, the second term
in Eq. (11) vanishes and we can identify the first term with Rγ.
The second term quantifies the response of the shear estimate to
the selection bias. As discussed in SH17, RS can be estimated
by measuring the mean ellipticity from the unsheared image,
but selecting the measurements from the sheared images. The
MetaCalibration estimate of the selection bias is then

µsel
i =

Rγ
ii + RS

ii

Rγ
ii
· (12)

The left panel in Fig 15 shows the resulting multiplicative
bias after MetaCalibration when we account for the selec-
tion bias as a function of the observed apparent magnitude. The
residuals for the grid-based results (red points) are very small,
except for the galaxies with mAUTO > 24.5. The bottom panel

shows the MetaCalibration estimates for the selection bias,
which agrees well with the actual bias that we infer from com-
parison to the input catalogue.

We report the mean biases for the two shear components in
Table 3 for galaxies with 20 < mAUTO < 24.5. For the grid-
based simulations we find 〈µ〉 = 0.000 64±0.000 29, well within
requirements for Stage IV surveys. For the baseline case (black
points) the results are similar, but we do observe a significant
residual bias 〈µ〉 = 0.002 88 ± 0.000 29, driven by galaxies with
mAUTO > 23. For reference we also repeated the measurements
using a wider weight function with σw = 3 pixels, and we obtain
similar results (see Table 3).

The right panel of Fig. 15 shows the post-
MetaCalibration bias as a function of the input galaxy
size. For the grid based simulations (red points) the bias is flat
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Fig. 16. Left panel: multiplicative bias after full MetaCalibration for galaxies with 20 < mAUTO < 24.5 as a function of the separation to the
nearest galaxy with minput < 26 in the input catalogue (top) and selection bias (bottom) for a weight function with σw = 2 pixels (black) and
σw = 3 pixels (grey). Right panel: idem, but now as a function of distance to the nearest detected galaxy. The insets in the panels zoom in on the
results for separations larger than 2′′. The solid lines in the bottom panels show the corresponding direct measurements of the selection bias.

as a function of size, thus effectively correcting for the detection
bias (shown in the bottom panel, as well as Fig. 5. The biases
are also small for the baseline case, with both weight functions
yielding consistent results. Only for the smallest galaxies do we
observe a significant bias, which is not seen when galaxies are
placed on a grid. This rules out sampling as the cause, but rather
points to blending. Indeed, if we limit the comparison to isolated
galaxies (no neighbour within 2′′ in the input catalogue with
m < 26), the results are similar to the grid-based simulations.

This suggests that MetaCalibration cannot fully account
for the shear bias that is introduced by blending. Also the
clear difference between the observed and inferred selection bias
for the baseline case suggests that this is not correctly esti-
mated (the agreement is much better for the grid simulations,
shown in red). To explore this further we computed the post-
MetaCalibration bias as a function of separation to the near-
est galaxy in the input catalogue (m < 26) and show the results
in the left panel of Fig. 16.

Both choices for σw yield very similar results, except for
very small values for rsep where the larger weight function suffers
more from blending, resulting in somewhat larger net biases. In
both cases the bias rises quickly for separations rsep < 2′′ and
becomes highly negative for rsep < 1′′, suggesting that it may
be wise to exclude such galaxies from the cosmic shear analysis,
if possible. As the bottom panel in Fig. 3 shows, this implies a
30% reduction in the galaxy number density, so that one may
want to allow for larger residual biases, although the gain may
still be limited because undetected blends also tend to increase
the shape noise (Dawson et al. 2016).

The inset in the top panel shows that for rsep > 2′′ the bias is
small: we find a mean bias 〈µ〉 = 0.000 47 ± 0.000 19, whereas
the bias for the full sample is 〈µ〉 = 0.002 88 ± 0.000 29 (see
Table 3 for more results). This confirms that MetaCalibration
can provide (nearly) unbiased shear estimates for isolated galax-
ies. Unfortunately, in practice we do not know whether or not a
galaxy is blended, and the right panel of Fig. 16 shows the results
for a more realistic scenario.

The bias as a function of distance to the nearest detected
galaxy shows a similar dependence for small separations as
in the left panel, but the biases peak at larger values. Both
weight functions yield consistent biases, even though the esti-
mated selection biases differ (bottom panel). More importantly,
for rsep > 2′′ the bias no longer vanishes. Many of the blends are
not identified as such, resulting in a bias of 〈µ〉 = −0.006 49 ±
0.000 22 for apparently isolated galaxies. This is maybe not too
surprising, because the SExtractor detection bias for appar-
ently isolated galaxies (open grey points in Fig. 3) did not con-
verge to the value when galaxies are placed on a grid.

As this is perhaps the cleanest sample of sources that could
be identified in a survey, our results imply that an algorithm
that can provide unbiased shear estimates under ideal circum-
stances will still be significantly biased in reality. This also
has implications for machine learning approaches (Gruen et al.
2010; Tewes et al. 2019; Pujol et al. 2020), which will have to
be trained on simulations that include realistic blending.

Our findings suggest that, while MetaCalibration is able
to account for selection bias for isolated galaxies, blending
limits the performance in more realistic scenarios. The image
simulations can, however, be used to account for these resid-
ual biases, provided the simulations capture the complexities
of real data. We therefore explore the sensitivity of the post-
MetaCalibration bias to changes in the simulation inputs,
similar to what we did for the SExtractor detection bias.

The red points in Fig. 10 show that the sensitivity to the
galaxy density, captured by nfac, has changed sign compared to
the SExtractor detection bias, but the amplitude of the trend
is similar with ∂µmeta/∂nfac = 0.003 75 ± 0.000 33, suggesting
that it remains important to use the correct galaxy density in
the simulations. The changes in multiplicative bias as a function
of fsize and εfac are shown as red points in Fig. 11. Indeed, we
find that the sensitivities to these morphological parameters are
reduced significantly compared to the SExtractor detection
bias, with ∂µmeta/∂ fsize = 0.0087 ± 0.0022 and ∂µmeta/∂εfac =
0.0005 ± 0.0027. Similarly we find no clear change in bias if we
replace the Sérsic index by a single value (red points in Fig. 12).
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Fig. 17. Left panel: multiplicative bias after MetaDetection as a function of magnitude, with galaxies selected by the input magnitude (black) or
the observed magnitude (red). Right panel: multiplicative bias for galaxies with 20 < mAUTO < 24.5 as a function or rsep, the distance to the nearest
neighbour in the input catalogue (black points) and the distance to the nearest detected galaxy (red points). The light coloured points indicate the
corresponding results for MetaCalibration. In the case of MetaDetection the biases show no trend with magnitude or distance to the nearest
galaxy, and are consistent with zero.

The sensitivity to the truncation of the surface brightness profile
is enhanced, as indicated by the red points in Fig. 13, but the bias
converges for rtrunc > 4.

6. MetaDetection

The results presented in Table 3 and Fig. 16 show that unde-
tected blending is a significant source of bias, even for space-
based Stage IV surveys. High quality, deep observations can help
improve the fidelity of the image simulations that are used to
quantify this residual bias, and our results indicate that the sen-
sitivity to the simulation inputs are relatively small, but it would
be better if this could be avoided in principle.

Sheldon et al. (2020) proposed an alternative implementa-
tion of the MetaCalibration approach where one effectively
bypasses the steps to estimate Rγ and RS. This approach, called
MetaDetection, uses the same sheared images, but both the
detection and the shape analysis are performed on these images.
By avoiding the use of the unsheared image as a reference, the
detection biases should vanish. The downside, however, is the
lack of such a reference image, which complicates the labelling
of galaxies that is needed to associate them with a tomographic
redshift bin.

We applied MetaDetection to our simulated images and
found that the resulting average bias for galaxies with 20 <
mAUTO < 24.5 is very small: 〈µ〉 = 0.000 01±0.000 30 (we report
the results for the individual shear components in Table 3). We
note that we have not quantified how this result changes when
we shear the scene when creating the images (see Sect. 3.1), but
the results presented in Sheldon et al. (2020) suggest that this
difference should be small for the much smaller Euclid PSF.

The left panel in Fig. 17 shows the bias as a function of
observed magnitude (mAUTO; red points) and input magnitude
(minput; black points). The average biases are small and do not
depend on magnitude, even for galaxies as faint as m = 25. For
reference, we indicate the corresponding MetaCalibration

results by the light coloured points. This is encouraging, because
one could imagine estimating photometric redshifts for the
galaxies in each of the five MetaDetection catalogues, which
could subsequently be used to assign them to tomographic bins.
How to incorporate this into a full cosmic shear analysis is
beyond the scope of this paper, but it is clearly worthwhile to
explore further.

The potential of MetaDetection is confirmed further by
the right panel of Fig. 17, where we show the bias as a function of
distance to the nearest neighbour in the input catalogue (black)
and the nearest detected neighbour (red). The improvement with
respect to the MetaCalibration case, indicated by the light red
coloured points, is evident: MetaDetection is able to account
for the blending of galaxies, resulting in residual biases that meet
the stringent requirements for Stage IV surveys (Cropper et al.
2013). Moreover, the blue points in Figs. 10 and 13 show that
the bias after MetaDetection no longer depends on the galaxy
density nfac or the truncation radius rtrunc.

7. Discussion

Our results show that the detection of galaxies results
in a significant source of bias for weak lensing surveys
(also see Fenech Conti et al. 2017; Kannawadi et al. 2019;
Hernández-Martín et al. 2020). Although both survey character-
istics and galaxy morphologies play a role, it is clear that unde-
tected blending is the main concern for Stage IV surveys. In
particular, we used MetaCalibration as a proxy for a per-
fect shape measurement algorithm, and showed that this problem
persists also in this case. Nonetheless, the reduced sensitivity
to the simulation setup indicates that image simulations can
provide accurate estimates of residual biases. Such simulations
may be needed regardless, because MetaCalibration cannot
account for all sources of bias (Huff & Mandelbaum 2017).

As discussed in Huff & Mandelbaum (2017), the image
manipulation step assumes that the image is linearly related
to the true surface brightness distribution. A wide range of
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instrumental effects limit the accuracy of this assumption. Some
of these can be partially corrected for during the image process-
ing, but the impact of their residuals should also be assessed
using sufficiently realistic image simulations. A particular con-
cern for Euclid and the Roman Space Telescope is the fact that
the pixel scale is relatively large compared to the PSF. This is
not a problem per se for the PSF itself, as a well-sampled model
might be inferred from the data, but galaxies with small observed
sizes might still be affected. However, Kannawadi et al. (2021),
with a larger fraction of small galaxies in their input catalogue,
show that the bias due to undersampling is effectively mitigated
when using a weight function with σw ≥ 0′′.15. This is consis-
tent with the absence of any significant residual biases in this
work, and therefore, undersampling of small galaxies need not
be a major concern for Euclid.

In the case of Euclid, charge-transfer inefficiency and the
presence of cosmic rays also bias the shape measurements.
Also blending and contamination by stars affects the shear bias
(Hoekstra et al. 2017), whereas spatial variations in the colours
of galaxies lead to colour-gradient biases (e.g., Semboloni et al.
2013; Er et al. 2018). These biases are also present after
MetaDetection, which does provide unbiased shear estimates
for our simulated Euclid-like simulations.

Our results suggest that MetaCalibration and
MetaDetection, combined with sufficiently realistic image
simulations, provide viable ways forward towards accurate
shear estimates for Stage IV surveys. Many practical compli-
cations remain, and we briefly review some of these here. We
start by examining the computational needs: Euclid aims to
measure the shapes of over two billion galaxies, which places
constraints on the time it takes to measure a galaxy shape.
We apply the MetaCalibration-step to the full images, and
run the object detection algorithm on the MetaCalibration
images, using the output for the unsheared image as our new
detection catalogue. The computational needs are driven by
the image manipulation steps, which take about 150 s for each
4000 × 4000 pixel image on a single core of an Intel Xeon
Gold 5115 2.4 GHz CPU in a Dell R840 server (equipped
with 80 cores). This includes some I/O because we save the
five images to disk for SExtractor, which in principle can
be avoided. The five SExtractor calls take on average 16 s
and the shape measurements themselves take a total of 7 s
for the baseline case. This amounts to a total processing time
of about 0.06 s per galaxy on a single core. In this paper,
we use MetaCalibration to correct for the convolution
with an isotropic PSF, but it can be extended to correct for
PSF anisotropy (SH17). This requires four more images to
be created, which approximately doubles the runtime of the
MetaCalibration-step.

The memory needs of our current setup are substantial
when creating the MetaCalibration images, requiring about
18 Gb per core. This prevented us from using all available
cores. In practice the analysis will have to be performed on
much smaller postage stamps, because the PSF will vary across
the field-of-view. In fact, in the case of Euclid, the PSF P to
use is the SED-weighted one. Although the PSF in this case
varies from object to object, it can be uniquely estimated from
unresolved multi-band data (Eriksen & Hoekstra 2018). As it
is important that the effects of blending can be captured, the
postage stamp should be at least be 8′′ × 8′′. This estimate is
based on the fact that the MetaCalibration bias converges for
rsep > 3′′ (see the right panel of Fig. 16). Eriksen & Hoekstra
(2018) show that the effective Euclid-PSF size varies by at most

about 2%, which suggests that using a single PSF for such a
postage stamp would still capture the bias caused by blending.

For our galaxy number density, a postage stamp of 8′′ × 8′′
means that the total number of pixels that needs to be manipu-
lated increases by about 30%. Given the reduced memory needs
this would actually allow more cores to be used by a typical
server. Including the correction for PSF anisotropy, we thus esti-
mate that analysing 2×109 galaxies would take about 70 days on
our benchmark server with 80 cores. We note that this is a bare
minimum, because one may want to analyse the individual expo-
sures instead. Nonetheless, these estimates suggest that it may
be possible to apply MetaCalibration to Stage IV data sets.
Alternatively, MetaCalibration or MetaDetection can be
applied to subsets of data to provide bias estimates for machine
learning algorithms. Once trained these can estimate shapes very
quickly (e.g., Pujol et al. 2020).

Finally we note that MetaCalibration and
MetaDetection allow us to obtain unbiased shear estimates,
but intrinsic alignments of galaxies prevent a straightforward
interpretation of the lensing signal (see, e.g., Joachimi et al.
2015, for a review). Direct observational constraints on the
intrinsic alignment signal rely on accurate ellipticity measure-
ments (Georgiou et al. 2019a). Moreover, the strength of the
alignment signal depends on the shape measurement itself (e.g.,
Georgiou et al. 2019b). Hence care has to be taken when using
physically motivated priors for the intrinsic alignment signal
(Johnston et al. 2019; Fortuna et al. 2021) in a cosmological
analysis when the shear estimates are based on an intrinsically
biased shape estimator, like the one we adopted here.

8. Conclusions

Accurate measurements of the shapes of galaxies are a key ingre-
dient for weak gravitational lensing studies. As a consequence
improving the fidelity of the shape measurement algorithms has
received much attention. Application of these algorithms to sim-
ulated data have played an important role in improving the per-
formance. It has also become clear that it is important that the
simulated data resemble the observations closely (see e.g., the
discussion in Kannawadi et al. 2019). H17 presented a detailed
study for a simulated Euclid-like data set, highlighting the chal-
lenges in ensuring sufficient realism.

In this paper, we use Euclid-like image simulations, similar
to the ones studied in H17 to examine another important source
of bias, which is present even if the shapes estimates are per-
fect. Detection bias arises because the probability with which an
object is detected (or selected) in an image depends on the shear.
This has been known for quite a while (e.g., Hirata & Seljak
2003), but its contribution to shear bias has been largely ignored
until recently. We find that the bias is generally smaller than
instrumental bias, but it does lead to multiplicative biases in the
shear that exceed requirements for the next generation of cosmic
shear surveys.

To quantify the size of the bias, we used SExtractor
(Bertin & Arnouts 1996) to detect objects. We matched the
resulting catalogues to the input catalogue from which we took
the true ellipticities. This mimics the performance of an ideal
shape measurement algorithm. As reported in Table 2 we found
that the average shear is underestimated by about 1%; five times
larger than can be tolerated for Stage IV surveys (Cropper et al.
2013). This result is robust against changes in the settings of
the detection algorithm. A smaller detection bias, which only
affects the faintest galaxies, is observed when we place galax-
ies on a grid. This is caused because galaxies that are oriented
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perpendicular to the shear are detected preferentially. In the case
of an anisotropic PSF, we found a small positive additive detec-
tion bias because galaxies that align with the PSF are detected
with a higher significance.

The larger bias in our baseline simulation, where galaxies
were placed randomly, is caused by the blending of sources,
with biases exceeding 2% for separations less than 1′′. Deeper
observations can reduce the detection bias, but blending intro-
duces a floor that still exceeds requirements. Following H17,
we also explored how the detection bias depends on the simu-
lation inputs. We found that the detection bias increases linearly
with galaxy density, the result of the higher occurrence of blend-
ing. The bias is also reduced when the galaxies are smaller or
rounder. We observe a slight dependence of the surface bright-
ness profile (quantified by the Sérsic-index n). It is, however,
important that the galaxy profiles are not artificially truncated
before four effective radii.

Although the detection bias is far less sensitive to variations
in the simulation parameters compared to the KSB algorithm
studied in H17, the realism of the simulations, in particu-
lar ensuring that the variety in galaxy morphologies is ade-
quately captured, remains a concern. We therefore explored the
performance of an alternative approach that uses the data to
determine the response of an ensemble of galaxies to a shear.
This so-called MetaCalibration was recently developed by
Huff & Mandelbaum (2017) and SH17 and showed promise for
isolated galaxies. The problem of blending was investigated in
more detail by Sheldon et al. (2020) who showed that a varia-
tion of MetaCalibration, dubbed MetaDetection, can be
used to address this.

We found that MetaCalibration provides a (near) per-
fect shear estimate in the absence of detection bias. Importantly,
the choice of shape measurement algorithm is irrelevant and we
opted for weighted quadrupole moments with a fixed width for
the Gaussian weight function. For isolated galaxies the perfor-
mance of MetaCalibration is only limited by the accuracy of
the PSF model (which we assume to be perfect) and biases intro-
duced by the pixelisation of the images (which are also negligi-
ble in our case). For the grid-based images we obtained a mean
multiplicative bias of 〈µ〉 = 0.000 64 ± 0.000 29, well within
requirements for Stage IV surveys. However, blending will limit
the actual performance and for our baseline case we measured
a significant bias of 〈µ〉 = 0.002 88 ± 0.000 29. We showed
that this is caused by blended objects, many of which cannot be
identified as such. In fact selecting galaxies that appear isolated
(no detected neighbour within 2′′) leads to a larger net bias of
〈µ〉 = −0.006 49±0.000 22. The post-MetaCalibration bias is
less sensitive to changes in the input galaxy sizes or the ellipticity
distribution, but does still depend on the galaxy number density.
Nonetheless, these findings suggest that image simulations can
be used to account for the residual biases in MetaCalibration.
Such simulations are needed anyway to determine the biases
caused by instrumental effects. Moreover, simulations will be
essential to understand the correlation between shear bias and
biases in photometric redshifts that blending should introduce.

MetaDetection uses the same sheared images as
MetaCalibration, but both the detection and shape analy-
sis are performed on these images. The resulting multiplica-
tive bias for galaxies with 20 < mAUTO < 24.5 is very small:
〈µ〉 = 0.000 01 ± 0.000 30. Moreover, the bias does not depend
on magnitude or distance to the nearest neighbour, indicat-
ing the blending does not bias the mean shear. The lack of
a reference catalogue, which otherwise would re-introduce the
selection bias, may lead to practical complications. However, it

may be possible to assign photometric redshifts to the different
MetaDetection catalogues and define tomographic redshifts
for each catalogue. Alternatively, the MetaDetection esti-
mates for various selections of source can act as reference values
for machine learning approaches. More work is needed to exam-
ine the practical implementation of both MetaCalibration and
MetaDetection, but our results suggest that these, combined
with sufficiently realistic image simulations, provide a viable
way forward towards accurate shear estimates for Stage IV sur-
veys.
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Appendix A: Sensitivity to detection setup

Several parameters influence the deblending of objects by
SExtractor, and we examine their impact on the detection
bias here. Compared to the choice of filter function in the detec-
tion step (see Fig. 7), the changes in bias are smaller, but as
Fig. A.1 shows, they can still change by as much as 10−3 in the
most extreme cases. The changes are negligible, however, when
the parameters remain close to their default values.

As described in detail in Bertin & Arnouts (1996)
SExtractor uses multi-thresholding to separate objects that
were extracted as a single object during the detection step.
The pixels that make up an extracted object are thresholded by
DEBLEND_NTHRESH levels that are spaced exponentially between
the extraction threshold and the peak value; a low value reduces
the effectiveness of the deblending step. A tree model of the sur-
face brightness is created (see Fig. 2 in Bertin & Arnouts 1996)
and the model works its way down to the trunk, deciding at each
junction whether or not to split the object into separate ones.
This decision is governed by the value of DEBLEND_MINCONT,
which is the minimum fraction of the flux that needs to be

contained in the deblended source; hence a high value of this
parameter means that only sources of similar brightness are
deblended.

The left and middle panels in Fig. A.1 show the change in
µdet when we use different values for DEBLEND_MINCONT and
DEBLEND_NTHRESH, respectively. We see that the bias increases
by about 10−3 if the deblending is minimised. The biases barely
change if we vary the parameters about the baseline settings
(indicated by the vertical grey dashed lines).

Noise in the images may result in the outer regions of
sources to be broken up into smaller pieces. Such inadverted
‘deblending’ is undone by cleaning the catalogue. For each
object, SExtractor estimates the contribution from neighbour-
ing galaxies to the mean surface brightness assuming a Gaussian
extrapolation of their profile, and subtracts this from the object
in question. If it is still above the detection threshold, the object
is accepted. The width of Gaussian used to extrapolate the flux
from nearby galaxies can be changed from its default estimate
by CLEAN_PARAM. The right panel in Fig. A.1 shows that that lit-
tle cleaning (values less than 1) rapidly increases the detection
bias, whereas more aggressive cleaning has little impact.

Fig. A.1. Change in multiplicative shear bias ∆µ as a function of the SExtractor parameters that affect the deblending of objects. The vertical
grey dashed line indicates the baseline value (also see Table 1). These default values result in detection biases that are close to optimal.
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Appendix B: Relation between additive and
multiplicative bias

If one is concerned about a particular instrumental effect that
might introduce additive bias, one can simply average the shear
estimates in the appropriate coordinate system (e.g., the one
defined by the detector), because the cosmological signal should
vanish if enough data are included. For instance, Hoekstra et al.
(2011) used this approach to remove the additive bias caused
by charge transfer inefficiency (CTI) in Hubble Space Telescope
observations, and Hildebrandt et al. (2020) use this to account
for an additive bias that arises from the shape measurement algo-
rithm (as shown in Kannawadi et al. 2019). However, this empir-
ical approach ignores the fact that such systematics may cause
multiplicative bias as well, as we show here.

To do so we express the observed shape of an object in terms
of the unweighted quadrupole moments Qi j of its surface bright-
ness distribution (e.g., Massey et al. 2013). These can be com-
bined into the polarisation, which has two components χi defined
as:

χ1 =
Q11 − Q22

Q11 + Q22
, and χ2 =

2Q12

Q11 + Q22
· (B.1)

If we now consider a (residual) effect that changes the
observed quadrupole Q′11 = Q11 + δQ11, while leaving the other
moments unchanged12, the observed polarisation is:

〈χobs
1 〉 ≈ 〈χ

true
1 〉

(
1 −

δQ11

Q11 + Q22

)
+

δQ11

Q11 + Q22
, (B.2)

and

〈χobs
2 〉 ≈ 〈χ

true
2 〉

(
1 −

δQ11

Q11 + Q22

)
· (B.3)

The last term in Eq. (B.2) corresponds to the additive bias c1,
whereas both polarisation components are biased low by a factor
(1 + µ). In this simple case we find that µ1 = µ2 = µ = −c1.
Hence, instrumental effects that introduce additive shear bias by
modifying the recorded images, generally also cause a multi-
plicative bias that is similar in amplitude, affects both shear com-
ponents, but has the opposite sign.

To verify this result, we created images where we mimic
the effect of charge trailing, which in reality might be
caused by dielectric absorption in the read-out electronics
(Toyozumi & Ashley 2005). Rather than computing the actual
change in bias voltage, we simply assumed that the amount of
charge that is added to the next pixel in the ith column is given
by a power law, so that

f (i, j) = f (i, j) + ftrail f (i − 1, j)0.4,

where the value for the power law slope is inspired by what is
observed in OmegaCAM data (Hoekstra et al., in prep.), and
ftrail is the amplitude. To create the images we added a realis-
tic background level, computed the trailed image, added this to
the original image and finally subtracted the background again.
We analysed the resulting images as before.

Figure B.1 shows the resulting additive and multiplicative
bias as a function of ftrail, where we note that the applied values
are unrealistically large to ensure a signal that could be mea-
sured using MetaCalibration. The light coloured points show
the detection biases that we observe, which are negligible, with

12 For the purpose of this derivation we are free to choose a convenient
coordinate system.

Fig. B.1. Comparison of the change in multiplicative bias and additive
bias when some of the charge is trailed during the readout process. The
amount of trailing is determined by the value of ftrail. The light coloured
points show the (small) detection biases, whereas the bright coloured
points show the −∆c1 (black), ∆µ1 (blue) and ∆µ2 (red). The amplitude
of the additive bias is about half of the multiplicative bias, but has the
opposite sign, as predicted.

the exception of µdet
2 . The trend of µdet

2 with ftrail is largest if we
consider only isolated galaxies. The trailing changes both the
centroid and the flux of the galaxy, both of which will change
the multiplicative bias somewhat, but it is not obvious why this
does not affect µdet

1 . Nonetheless the detection biases are small,
even for this extreme level of charge trailing.

More relevant for the discussion here are the bright coloured
points, which show the biases after MetaCalibration. As pre-
dicted, the changes in µ1 (blue) and µ2 (red) are consistent,
and the sign of ∆c1 is opposite from ∆µ. The change is about
half of what is predicted by Eq. (B.2),but we note that it is
no longer applicable when weighted moments are used to mea-
sure the shapes, and corrections of O(1) are expected. In fact,
tests with an elliptical Airy PSF, for which the unweighted
quadrupole moments do not converge, show that the additive
PSF biases are smaller by as much as a factor 4. This lower sen-
sitivity to PSF anisotropy implies that allocating a residual bias
of |cPSF| < 1.5 × 10−4 corresponds to a tolerable error in the PSF
ellipticity of |∆εPSF| < 5.8×10−4 instead of <2×10−4 adopted by
Cropper et al. (2013), but we caution that the sensitivity depends
on the PSF profile. For instance when we used PSF models that
included various aberrations, we typically found larger residual
biases. In all cases, however, the sensitivity was lower compared
to the estimate based on unweighted moments.

An empirical correction for additive bias should therefore be
considered with these limitations in mind. Although our results
for this particular case show that the multiplicative bias is still
within a factor 2 of our naive prediction, it cannot replace
a proper physical modelling and calibration of instrumental
effects. One important reason to understand the cause of any
residual additive bias is that it may not be cleanly separable
from other biases; this would complicate estimating the impact
on the multiplicative bias. Nonetheless, provided that the biases
are small to begin with, we expect that the multiplicative biases
will be similar in amplitude to the additive bias. This is still
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helpful, because Kitching et al. (2019) showed that the impact
of such small scale-dependent multiplicative biases is reduced
further when we consider the power spectrum estimates used in
cosmological analyses.

Appendix C: Uncertainty in input galaxy number
density

Fig. C.1. Multiplicative bias that arises from uncertainties in the aver-
age galaxy number density, as a function from the area used to deter-
mine the average density, assuming the sensitivity of µ with nfac after
MetaCalibration (dashed red line in Fig. 10).

As shown in Fig. 10 the multiplicative bias depends on the
number density of galaxies in the simulated images. Moreover,
the results indicate that MetaCalibration is unable to fully
remove such a dependency, but in fact introduces a weak posi-
tive dependence as ∂µmeta/∂nfac = (0.0039 ± 0.0005). Here we
examine what area needs to be observed so that the uncertainty
in the observed value of nfac leads to a bias in the multiplicative
bias of |δµ| < 10−4.

To estimate the expected variation in galaxy density as a
function of angular scale we used the second data release of the
Marenostrum Institut de Ciències de l’Espai (MICE) grand chal-
lenge galaxy and halo light-cone simulation13. The mock galaxy

catalogue was obtained from a large N-body simulation, from
which a light-cone was constructed (see Fosalba et al. 2015,
for details). The simulation was populated with galaxies using
a hybrid halo occupation distribution and abundance matching
technique described in Crocce et al. (2015) and Carretero et al.
(2015).

The second data release includes a mock galaxy catalogue
that is complete for current Stage III surveys (mi < 24), but
restricted to z < 1.4, resulting in an average number density
of about 26 galaxies arcmin−2 brighter than mVIS = 24.5 in
the Euclid-VIS band. Although the catalogue thus lacks high
redshift galaxies, it is sufficient for our purposes because the
spatial variations are larger at lower redshifts where a fixed angu-
lar scale probes a smaller volume. We retrieved 9 patches, each
10 × 10◦, to determine the dispersion in galaxy counts when we
subdivide these data into smaller areas. The relative variation is
a direct estimate for the dispersion in nfac, which in turn can be
converted into an estimate of the uncertainty in the multiplicative
bias.

If we wish that the contribution to the uncertainty in the
multiplicative bias due to the uncertainty in the mean galaxy
density is <10−4, the observed sensitivity of the bias after
MetaCalibration implies that we need to know nfac with
a relative precision of about 2.6%. If we consider the varia-
tion in galaxy counts in a patch of 1 deg2 the MICE simula-
tions yield a dispersion of 0.064, which agrees remarkably well
with observed estimates of the variation in galaxy counts by
Herbonnet et al. (2020) on similar angular scales and depths.
In contrast, the approximately 0.25 deg2 covered by GEMS
(Rix et al. 2004) would introduce on average a multiplicative
bias of about 3 × 10−4, taking up a significant part of the overall
budget specified in Cropper et al. (2013).

Figure C.1 shows how the multiplicative bias µ depends on
the observed area of sky used to estimate the mean density of
galaxies in the image simulations. The error bars correspond to
the dispersion in the measured counts in the patches. The results
are well described by a power law with a slope of −0.27; the fit
indicates that to achieve a bias <10−4 we need to measure the
galaxy counts in an area of about 30 deg2. This estimate may be
somewhat optimistic because we did not consider the impact of
small clustering in our image simulations. Of course the actual
survey data can be used to validate the realism of the simulation,
but in practice deeper observations of smaller areas are more use-
ful as input to the image simulations. Hence, once can interpret
these results as the minimum area for which deeper observations
help to improve the fidelity of the image simulations.

13 MICECATv2 is publicly available at https://cosmohub.pic.es/
home
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