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The coronavirus (COVID-19) pandemic has disrupted clinical trials globally, with unique

implications for research into the human gut microbiome. In this mini-review, we explore

the direct and indirect influences of the pandemic on the gut microbiome and how these

can affect research and clinical trials. We explore the direct bidirectional relationships

between the COVID-19 virus and the gut and lung microbiomes. We then consider the

significant indirect effects of the pandemic, such as repeated lockdowns, increased hand

hygiene, and changes to mood and diet, that could all lead to longstanding changes to

the gut microbiome at an individual and a population level. Together, these changes may

affect long term microbiome research, both in observational as well as in population

studies, requiring urgent attention. Finally, we explore the unique implications for clinical

trials using faecal microbiota transplants (FMT), which are increasingly investigated as

potential treatments for a range of diseases. The pandemic introduces new barriers to

participation in trials, while the direct and indirect effects laid out above can present a

confounding factor. This affects recruitment and sample size, as well as study design and

statistical analyses. Therefore, the potential impact of the pandemic on gut microbiome

research is significant and needs to be specifically addressed by the research community

and funders.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome (SARS)
coronavirus 2 (SARS-CoV-2) and has resulted in a global pandemic, as well as subsequent
restrictions of public and private life. While clinical trials worldwide have been challenged as a
consequence, there are unique implications for the rapidly evolving gut microbiome research.

The gut microbiome is the vast diverse population of an estimated 100 million−100 trillion
microorganisms and their genes that populate the gastrointestinal tract (1). Through complex
pathways, they play essential roles in the immune and metabolic pathways, thereby influencing
maintenance of health and the pathogenesis of disease (2). This complex system can be disturbed
by disease or lifestyle changes, mechanisms that become highly relevant in the context of the
COVID-19 pandemic.
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We propose that there are direct interactions between the
gut microbiome and COVID-19, as well as indirect associations
through the lifestyle changes induced by lockdowns and
increased hygiene (see Figure 1) that need to be considered
for ongoing and future microbiome studies. These range from

FIGURE 1 | Direct and indirect impact of the COVID19 pandemic on human gut microbiome studies.

experimental and observational, to longitudinal and population
studies, as well as clinical trials using Faecal Microbiota
Transplantation, FMT. We highlight how recruitment to studies,
representativeness of samples, as well as the collection, storage,
and analysis of stool samples are affected and how these effects
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can be mitigated through efficient study design, additional and
rigorous statistical analysis, and collective effort.

DIRECT INTERACTIONS BETWEEN
SARS-CoV-2 AND THE GUT MICROBIOME

Increasingly, evidence shows an interaction between COVID-19
and gut microbiota homeostasis. Interactions between a healthy
host and microbiota are extensive. They involve regulation of the
innate and adaptive immune system (3), as well as maintenance
of gut immune homeostasis and have disease-modifying potential
(4). Additionally, the role of the gut microbiota is implicated
in several lung diseases, with an indication of bidirectional
communication termed the “gut-lung axis” (5). While this
literature is rapidly growing, we provide a high-level overview.

The gut microbiome appears to contribute to the course
and severity of COVID-19. A disrupted gut microbiome (gut
dysbiosis) can be understood in terms of loss of beneficial
microbes, proliferation of potentially harmful microbes, and
reduction of microbial diversity (6). This leads to epithelium
breakdown and inflammation, which have been shown to
increase levels of angiotensin-converting enzyme 2 (ACE2), the
target of SARS-CoV-2. Additionally, increased gut permeability
can lead to pro-inflammatory bacterial products to leak out
and circulate systemically, triggering inflammatory cascades (7).
A specific gut microbiota composition may predispose healthy
individuals to severe COVID-19 infections; increased levels of
pro-inflammatory bacterial species correlated with elevated levels
of pro-inflammatory cytokines and increased disease severity.
Disruptions to the bidirectional microbiome-immune system
dialogue are thought to be the cause of chronic inflammatory
conditions, such as ulcerative colitis, and acute systemic multi-
organ dysfunction, often accompanied by abnormal cytokine
production. Therefore, a disrupted gut microbiome may also
contribute to increased pro-inflammatory cytokine production
(“cytokine storm”), known to worsen severity of SARS-CoV-2
infection (8). Proteomic and metabolomic profiling has shown
progression to severe COVID-19 infection can be predicted
both in infected patients and in healthy individuals (9).
Furthermore, elderly and immunocompromised populations are
known to have reduced microbiota diversity. Since many of
these vulnerable patients have had worse clinical outcomes
for COVID-19, this strengthens the possibility that the gut
microbiome is affecting clinical progression. Reduced gut
microbiome diversity may therefore be useful as a predictive
biomarker of COVID-19 severity (10).

SARS-CoV-2 ribonucleic acid (RNA) has been found in
COVID-19 patients’ faeces (11, 12), implying transmission
of SARS-CoV-2 could include faecal-oral (13). Furthermore,
a meta-analysis found gastrointestinal symptoms occurred in
17.6% of infected patients, and were more common in severe
cases (14). Mechanisms underpinning gastrointestinal symptoms
remain unclear but are thought to involve ACE2 receptors,
which are highly expressed on intestinal epithelial cells (15),
in particular the brush border membrane of small intestinal
enterocytes. ACE2 gene expression has been shown to increase

with age, potentially accounting for differential susceptibility
to more severe disease (16). Xiao et al. reported significant
infiltration of plasma cells and lymphocytes with interstitial
oedema in a histological analysis of one patient’s intestinal tract
(17). ACE2 expression has been shown to be downregulated
in SARS patients, leading to reduced absorption of tryptophan
and decreased release of antimicrobial peptides (18). This can
lead to gut dysbiosis and sustain virus survival (19). ACE2
modification of the microbiota may therefore account for the
observed gastrointestinal symptoms (20).

Importantly, studies have shown that SARS-CoV-2 RNA can
be detected from stool samples for up to 14 days following clinical
resolution and a negative respiratory tract sample (11, 17, 21).
These results align with articles reporting viral shedding in
stool samples collected from patients suffering from infections
caused by other human coronaviruses, such as SARS-CoV-1
and MERS-CoV (22). Although there are limitations to studies
reporting SARS-CoV-2 viral shedding, including lack of detail
on robustness of analytical methods implemented, and lack of
clearly reported study designs, the results have clear potential
implications for infection prevention control, as well as for the
FMT field (see below). However, to what extent the viral RNA
correlates with intact viral particles is currently unclear.

Regarding lung microbiota, only one study to date has found
changes in microbiota composition in SARS-CoV-2 patients,
finding more pathogenic bacterial strains compared to healthy
controls (9). The SARS-CoV-2 microbial composition was
similar to microbiome changes observed with other respiratory
viruses such as influenza. It is not currently known how
ecologically stable the gut microbiome is during COVID-19
progression. Evidence suggests an association between illness
severity and microbiota diversity in mechanically ventilated
patients (23); this may apply to severe COVID-19 cases requiring
ventilation. Further microbiome disease-related changes have
been found when considering complications of COVID-19, such
as acute respiratory distress syndrome (ARDS). High-throughput
sequencing of gut and lung microbiota indicate altered bacterial
composition in ARDS patients (compared to patients without
ARDS), these bacterial composition changes may correlate with
COVID-19 outcomes (24).

INDIRECT EFFECTS OF PANDEMIC ON AN
INDIVIDUAL OR POPULATIONS’
MICROBIOME

The COVID-19 pandemic led many countries to enforce
lockdowns and other measures to reduce virus transmission.
Although these vary in form, they share the promotion of better
hand hygiene, reduction in social interaction, travel limitations,
and a shift towards working from home. There are several
indirect effects of the pandemic that have the potential to impact
the gut microbiome at a large scale.

A key message from governments across the world is the
importance of hand hygiene. Indeed, there is now large-scale use
of disinfectants and sanitisers across society. The contribution of
the environment to the microbiome is recognised and the use of
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sanitizers now and in the future may affect the microbiome of
several ecological niches in humans, animals, and environments
(25). While this may directly impact an individual’s microbiome
due to reduced exposure to environmental microbiota, its effect
may also be seen at a population level. Health campaigns can
result in long term behavioural changes (26), implying that the
impact of regular hand sanitisation on the gut microbiome may
endure long after the pandemic has resolved.

All aspects of travel have been severely restricted during
the pandemic. Not only has national and international travel
been reduced or even stopped, but there is a lack of household
mixing. Overall, this will have lessened the exposure to a range of
external environmental microbiota. Pre-pandemic, international
travellers had a higher proportion of Escherichia species and
increased antimicrobial resistance genes (27). While it is known
that travel is a modifying factor for the adult microbiome (28),
we do not know the effect of an absence of travel on the
microbiome. These changes in travel habits may have impacted
on the individual and population microbiome that could last into
the future if international and national travel restrictions remain
in place. The long-term increase in home working also needs to
be carefully considered.

The impact of diet and lifestyle on the microbiome is
unquestionable. The sudden lifestyle changes induced by the
COVID-19 pandemic have been shown to alter eating habits,
exercise and everyday behaviours (29). The increase in working
from home, stockpiling groceries due to restrictions in shopping
will have altered an individual’s diet and therefore impacted the
microbiome (30). Whether this results in greater or less diversity
is unknown and may vary depending on the population itself.
The psychological and emotional pandemic responses may have
increased likelihood of dysfunctional or altered eating habits
(31). Beyond modulation of host immunity, gut bacteria can also
impact metabolic health, with specific gut bacteria changes and
gut dysbiosis observed in metabolic disorders such as obesity
and diabetes, known to be diet associated (32). Additionally,
malnutrition is a massively concerning problem particularly
for children in low and middle income countries, caused by
pandemic-related financial straits, changes to food availability,
and the interruption of school, healthcare, and social protection
services (33, 34). Apart from the immediate increase of wasting
syndrome, this will also have longer-term effects on physical and
mental health through changes to the gut microbiome, setting
off cascades of maladaptive metabolic responses and impaired
immunity (35). Moreover, malnutrition has been suggested to
negatively impact the course and outcome of a COVID-19
infection (36).

There are several non-dietary lifestyle changes that have
occurred as a result of the pandemic. Exercise habits have
changed both in the positive and negative manner. This is
worthwhile considering since exercise can itself modulate the
gut microbiome, orthogonally to changes induced by diet (37).
The pandemic has increased alcohol consumption and smoking
habits (38), in populations—both known to modulate the oral,
lung, and gut microbiota (39, 40). A more unexpected result of
the pandemic is the increase in pet ownership, which in itself can
impact on the human gut microbiome (41).

The psychiatric and psychological burden of the pandemic
is yet to be determined but early reports suggest a profound
population level shift. The bidirectional microbiota-gut-brain
axis has an active role in affecting mood and behaviour,
research suggests population-level relationships between the
microbiome and mental health (42). Social isolation, growing
financial insecurity, and fear of the virus combined with
unfamiliar social and lifestyle restrictions constitute major
socioeconomic stressors that can potentially challenge individual
and collective well-being and mental health, thus impacting the
gut microbiome. The full psychiatric impact of the pandemic
is not yet elucidated, but the implications are thought to be
significant (31, 43). The pandemic has also been reported to alter
sleeping patterns and quality (44), which in turn can negatively
affect mood, stress, and anxiety. Additionally, the circadian
rhythm is known to have a bidirectional relationship with the
gut microbiome—disturbances in the gut microbiome can affect
sleep regulation (41), and disturbances in circadian rhythms can
alter the gut microbiome (45). This relationship has in fact been
proposed as the mechanistic link between sleep disruption and
metabolic syndrome, which can lead to diabetes, cardiovascular
disease, and cancer (45). Therefore, the long-term consequences
of COVID-19 on mental health should be considered in the
light that this may implicate further microbiome interaction and
additional negative health consequences for the host.

A recent review brings these changes together with the hygiene
hypothesis (46), which refers to the current shift in the human
microbiome composition towards lower diversity and loss of
ancestral microbes that has been brought about by increased
hygiene, antibiotics, and urban living (47). Taking these two
processes together, the authors predict a substantial reduction of
microbiome diversity whichmight not be able to be compensated
for by the communal microbiome. We support this view and
while the authors focus on opportunities for research into
factors affecting the microbiome, we want to highlight the issues
these changes present for ongoing and forthcoming microbiome
research and clinical trials.

THE EFFECT OF COVID-19 ON
MICROBIOME STUDIES

Experimental, Correlational, and
Longitudinal Microbiome Studies
Due to wide-reaching effects of COVID-19 and its unique
interaction with the microbiome, it is important to consider how
representative of the target population participants have become.
Characteristics of patients enrolled before, during and after
the pandemic may now be systematically different (48). These
characteristics extend at least to the microbiota composition and
diversity, but there may bemore subtle changes.Whilst it appears
an elegant concept, the reality of defining pre-, during-, and post-
pandemic periods may be prohibitively complex due to global
variability in the timing of the pandemic. Additionally, national
as well as individual adherence to specific measures to combat
the pandemic, as outlined above, differed substantially which
introduces potentially significant between-subject variability,
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especially for studies recruiting globally. This could bias
microbiome analysis and subsequent application of these results,
particularly if studies are not designed to compare the pre-, intra-
, and post-pandemic time points. There are further demographic
and socioeconomic disparities to consider in light of the fact that
COVID-19 is disproportionately affecting minority ethnicities
and elderly populations, which already are lesser represented
categories in any clinical trials (49). For longitudinal studies, for
example, larger study populations may now be required due to
the pandemic acting as a confounder, whereby more participants
are lost to follow up due to COVID-19 infection.

Structural, clinical, physician, patient barriers to clinical trial
participation during the pandemic have been already identified
in the oncology field, accounting for most of patients’ non-
participation (50). Appraising these barriers from the perspective
of microbiome trials, it is evident they can limit the resulting
demographic of participants recruited. Structural barriers such
as transportation, travel cost, availability of child and elderly
care, changes in working patterns and employment opportunities
have all been affected by the pandemic. Clinical barriers have
increased during the pandemic due to narrower eligibility criteria
and stricter safety concerns. There is also potential increased risk
of selection bias and drop-out associated with personal aversion
towards sample collection (51), due to individual awareness of the
presence of viral RNA in faeces. Increased rate of comorbidities
secondary to COVID-19 pandemic, together with the need to
screen people for comorbidities in addition to asymptomatic
infections, represents another issue.

Physician attitudes may also have changed as a result
of the pandemic. Concerns about patient’s safety may be
heightened, meaning physicians might be hesitant to encourage
enrolment in a new microbiome study. Moreover, time
spent in clinical appointments for giving information about
trials, discussing risks/benefits with the patient, and collecting
informed consent is now severely affected due to restricted
face-to-face interactions. Indeed, the generalised shift towards
telemedicine for consultations may make recruitment to trials
more difficult. It is also important to consider patients’ and
participants’ attitudes may have changed, due to indirect effects
of the lockdown, heightened concerns about sampling collection,
and reluctance to attend clinical appointments and clinical trials
in person.

Finally, sample collection and processing needs to be
considered. The pandemic is unlikely to significantly interfere
with most gut microbiome sample collection. The microbiome
population can be investigated e.g., with 16S rRNA gene
sequencing, quantitative PCR, or shotgun metagenomic
sequencing. These investigative approaches analyse faecal
samples; which rely on reproducible sample collection, storage
and processing (52). However, there are technical issues,
including safety concerns of shipping biological samples,
according to the category of UN 3373 “Biological Substance,
Category B.” During lockdown, it is likely that sample transport,
delivery, and storage have been delayed. It is advised that
transportation time should be shortened as much as possible,
to avoid undesirable microbial growth and decline of sample
quality (53). Furthermore, faecal sample collection methods have

been shown to affect the microbial community profile (52). If
these have changed during the lockdown or have been adversely
lengthened, this may have detrimental impacts on subsequent
analysis and comparisons.

Interventional Faecal Microbiota Transfer
Trials
There is growing scientific and clinical interest in the use of FMT
to treat a diverse range of diseases in addition to Clostridium
difficle infections; it is now trialled for inflammatory bowel
disease, cancer and neurological disorders. FMT involves delivery
or infusion of stool from a healthy donor to a patient with the
disease of interest and presumed gut dysbiosis. In the UK, the
MHRA has defined this as a pharmaceutical intervention and it
is therefore subject to the same regulatory framework.

The presence of SARS-CoV-2 RNA in the stool of infected
individuals raises the suggestion of virus transmission via FMT,
the risks of which are currently unknown (13). It is also unclear if
asymptomatic but serologically positive individuals can transmit
the virus if viral particles are detected in faeces (54). The Food and
Drug Administration (FDA) has subsequently advised additional
safety protections for FMT are necessary, recommending stool
used should have been originally donated before 1st December
2019. This clearly limits shelf-life of samples. Donor stool may
have altered before, during and after COVID-19, which impacts
trials ongoing or due to begin recruiting imminently. This
suggests all stool samples should now be routinely tested and
stringently screened for COVID-19 (55), which may lead to
stricter exclusion criteria for stool donors. As the COVID-19
status of the donor may affect its recipient adversely, is it more
acceptable to adopt a single donor approach instead of several
pooled donors, who may collectively carry higher virus risk. The
COVID-19 status of the recipient is also worth considering, as
recipients may be rendered more susceptible if their donor is
COVID-19 negative. Is it more advantageous for a donor to
have had the virus previously and potentially confer immune
protection via IMT, or does this conversely put the recipient more
at risk of developing COVID-19? Unanswered questions remain.

In disease-focused microbiome trials, the impact of COVID-
19 on the disease should be considered upon recruitment
of participants receiving FMT. The disease population may
now be atypical, due to COVID-19 disease interactions and
interruptions of regular treatment, and likely constitute a
vulnerable population. Indeed, clinical trials often focus on
vulnerable populations, who are more at risk from COVID-19.
Specifically, there is growing interest in bidirectional interactions
of the gut microbiota and neurodegenerative diseases, which
constitute a diverse population, likely to be more vulnerable.
For example, patients with Multiple Sclerosis, a common patient
group for FMT trials (56) and a high-risk group for COVID-
19 (due to wide-spread use of immunosuppressant medication),
may have shielded extensively or had reduced face-to-face
check-ups due to reduction of clinical services. This altered
environment may have subsequently changed their microbiome
composition, raising the question of how representative the
sample now is of the wider MS patient population independent
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of the pandemic. The same applies to Motor Neurone Disease
or Parkinson’s Disease patients, whom are also increasingly the
focus of FMT trials. Other risk factors for severe COVID-19
infection include hypertension, diabetes, and obesity. All are
associated with changes to microbiota composition and diversity,
posing the question of whether COVID-19 risk factors should be
considered upon recruitment for microbiome trials.

Finally, FMT trials often utilise hazard ratios and primary
endpoints, which may no longer be plausible if defined before
the pandemic. Trials utilising imaging are likely to be delayed
and restricted due to the pandemic. All are crucial considerations
for future study analysis and interpretation. Possible mitigations
include sophisticated covariate adjustments (57) for variable
COVID-19 prognosis and trajectory. Double/debiased machine
learning approaches may be indicated to distinguish primary
outcomes and to perform formal statistical inference (58).

CONCLUSION

In summary, the COVID-19 pandemic may impact several
aspects of microbiome studies that need to be explored further.
The direct interaction between the gut microbiome and the
severity of COVID-19 infection is a highly active research area
and we look forward to the future publications in the area.
Additionally, we have explored the indirect effects on individual
and population microbiome composition. To reduce the impact
of these changes on microbiome studies, pre-, intra-, and post-
pandemic microbiome reference libraries may be necessary to
exclude potential COVID-19-related confounders and to assess
for stability across these fluctuating time points. Funders in
this area may consider specific calls in this area and a UK or
international gut microbiome consortium may be needed to
coordinate efforts.

The impact for trials is an immediate concern. For trials
already underway, this—in addition to the baseline shift of
microbiome abundance—may mean the trial is no longer
sufficiently powered. An open data policy is recommended to
mitigate this, although funders should be open to additional
studies being required. Finally, FMT studies must consider
potential COVID-19 transmission, and may need to account

for the pandemic-related microbiome compositional changes
in the analysis. To avoid pandemic-related confounds when
assessing microbiota interactions with non-COVID-19 diseases
or interventions, large study populations will likely be most
useful. Additional testing of stool donors (e.g., for COVID-19
infection or antibodies), potential confounds (e.g., shielding),
and open microbiome data will undoubtedly be required. Again,
additional funding may be required to specifically address
these points.

In summary, “COVID-19 is with us for the long haul, a
marathon that we will run for months or years to come” (59).
Current studies and future work needs to specifically address
and account for these potential sources of change. There are
other emerging areas that need to be considered such as the
effect of “Long COVID” and multiple COVID-19 vaccinations
which may also impact the gut microbiome studies. We must
maximise utility of data already collected and reconsider how
future trials can be protected. Lessons can be learnt from rapid
progress achieved by clinical trials designed to research COVID-
19, exposing certain aspects of trials that can be improved
universally to benefit patients, researchers and clinicians. The
microbiome community must work with funders to perform the
necessary research to establish the actual impact of the pandemic.
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