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Hydraulic control of continental shelf waves
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This paper studies the hydraulic control of continental shelf waves using an inviscid
barotropic quasi-geostrophic model with piecewise-constant potential vorticity, in which
the shelf is represented by a flat step of variable width. A coastal-intensified geostrophic
current generates topographic Rossby waves, which can become critical at a local decrease
in shelf width when the background current opposes Rossby wave propagation. That
is, the shelfbreak perturbation permanently modifies the flow field over arbitrarily large
distances and the flow transitions from sub- to supercritical as it crosses the perturbation.
Critically-controlled flows also lead to the exchange of significant volumes of water
between the shelf and the deep ocean. We derive the boundaries for which critical control
occurs in terms of a Froude number and the dimensionless magnitude of the perturbation,
and analyse the possible transitions between controlled and far-field flow. When first-
order dispersive terms are included in the model transitions are resolved by dispersive
shock waves, which remain attached to the forcing region when the Froude number is close
to the boundary for critical flow. Contour dynamic simulations show that the dispersive
long-wave model captures the quantitative behaviour of the full quasi-geostrophic system
for slowly-varying shelves, and replicates the qualitative behaviour even when the long-
wave parameter is order one.

1. Introduction

Coastal trapped waves (CTWs) are vorticity waves that arise when columns of fluid are
forced across isobaths, either by upper-layer Ekman transport or by the interaction of an
alongshore current with a change in bathymetry. CTWs are a ubiquitous feature in the
worlds oceans and form a major component of the subinertial variability of geostrophic
currents. They are extremely long lived, and can communicate the ocean’s response to
localised events over hundreds to thousands of kilometres. Linear CTWs are governed
by a form of the vorticity equation in which the non-dimensional parameter is the slope
Burger number (Zhang & Lentz 2017, eq. 16),

where Ny is a scaling for the buoyancy frequency, f is the Coriolis frequency, and H
and L are representative depth and cross-shelf length scales respectively. The slope
Burger number illustrates the relative importance of stratification and the continental
shelf. For large S, the shelf-width scale L is small compared to the Rossby radius of
deformation NoH/f and CTWs behave much like Kelvin waves (i.e. they ignore the shelf
and propagate as if along a vertical wall). Alternatively when S < 1 stratification is not
important and CTWs are barotropic topographic Rossby waves, often called continental
shelf waves (CSWs). CTWs can therefore be thought of as a hybrid between internal
Kelvin waves and topographic Rossby waves (Brink 1991). This paper is concerned
with CSWs, which are known to occur off the coast of Scotland, along the Iceland-
Faroe ridge, and on the Amundsen Sea shelf (Gordon & Huthnance 1987; Miller et al.
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1996; Wahlin et al. 2016). In particular, we use an idealised quasi-geostrophic model
to study the interaction between CSWs and localised changes in bathymetry. We show
that when CSWs are generated by a background current flowing counter to Rossby-
wave propagation the flow can become critically controlled. Zhang & Lentz (2017) (ZL17
hereafter) have previously shown that this mechanism drives the strong onshore flow that
is observed in the Hudson Shelf Valley, and thus critically-controlled flows can lead to
an enhanced exchange of shelf and open-ocean water. In this work we employ an inviscid
model in which the boundary between shelf and open-ocean water is a material contour
that evolves according to a single equation. The model admits a single Rossby mode
and is therefore simple enough that we are able to show analytically which regions of
parameter space permit hydraulic control, as well as analysing in detail the transition
between the controlled state and the far-field flow. An interesting feature of the model
is that it admits unsteady solutions where the shelf water penetrates deep into the open
ocean, which we call ‘offshore plumes’. These occur when the turning flow generated by
vortex stretching is weaker than the background coastal current, so that fluid columns
which cross the shelfbreak head directly offshore rather than turning rightwards under
the image effect.

1.1. Hydraulic control of continental shelf waves

CTWs propagate to the right in the Northern hemisphere (facing seawards), and thus
can become arrested by a current flowing with the coastline on its left. ZI.17 use numerical
simulations representative of the Hudson shelf valley to illustrate the asymmetric response
of topographically-generated CTWs to the direction of the background wind-driven flow.
This is summarised in figure 1, which is adapted from figure 11 of ZL17. Figure 1 is a
Hovmoller diagram showing the evolution of sea-surface height (SSH) anomaly, taken in
an along-shore slice with fixed off-shore co-ordinate located over the valley. The inset
to (a) shows a plan view of the shelf bathymetry, with offshore distance increasing with
the ordinate, and the red dashed line shows the location of the Hovmdller slice. The
direction of the wind is shown as a thick black arrow in either plot, and is the same
as the direction of CTW propagation in (a) and counter to CTW propagation in (b).
In either case, a mode-1 CTW propagates away from the valley at early times towards
positive . The slope of the grey dashed line gives the speed of the mode-1 CTW, which
matches the early-time signal. When the background flow opposes CTW propagation as
in (b), a train of standing lee waves develops on the left of the valley and spreads at
approximately the mean speed of the background current (the slope of the black dashed
line in (b)). ZL17 show that the characteristics of the lee waves are consistent with
CTWs that have phase speed equal and opposite to the background flow, and thus they
are arrested CTWs. Unlike the higher-mode lee waves, the mode-1 wave (grey dashed
line) can escape from the valley because its phase speed is much greater than the mean
speed of the background flow. (Note that the mode-1 wave signal leaves the domain after
4 days, whereas the lee wave signal persists near = —100 over the whole simulation.)
Martell & Allen (1979) identify the same response in a simpler barotropic model, and
additionally demonstrate that the standing lee waves do not occur in the long-wave limit
where the alongshore topographic scale is large compared to the shelf width. The majority
of this work is concerned with the case shown in (b), where the background flow opposes
CTW propagation.

As noted by Zhang and Lentz, the combination of a wave that propagates away from an
obstacle against the background flow and standing waves on the other side is suggestive
of hydraulic control, whereby geometric constrictions force a transition from subcritical
to supercritical flow (Gill 1977; Johnson & Clarke 2001; Pratt & Whitehead 2008). Gill
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Figure 1: Hovmoller diagram showing sea-surface height (SSH) anomaly in an
along-shore slice taken at the centre of the valley. The wind direction is shown as a
thick black arrow and drives flow (a) in the direction of CTW propagation, and (b)
counter to CTW propagation. The inset to (a) shows a plan view of the bathymetry,
with depth increasing offshore. The red dashed line gives the location of the Hovmoller
slice. In (a) and (b), the SSH anomaly is defined relative to the flow far away from the
valley on the windward side. Thick green contours show curves of zero anomaly. The
slope of the grey dashed line is the phase speed of a mode-1 CTW, and the black
dashed line in (b) is the mean speed of the background flow. Triangles mark the edge of
the valley. Adapted from Zhang & Lentz (2017), (© Copyright 2017 AMS.

& Schumann (1979) and Dale & Barth (2001) study the hydraulic control of coastal
flows using a model where each layer has uniform potential vorticity (PV). This model
therefore does not have Rossby waves, and the controlling mode is the internal Kelvin
wave (S > 1). In contrast, Haynes et al. (1993) study controlled barotropic flow (S = 0)
in a stepped channel with piecewise-uniform PV and thus a single Rossby mode. They
show that two different types of control are possible: one where the flow is controlled at
the maximum perturbation in step width, as for Kelvin waves, and one where the flow
transitions from one supercritical branch of the solution to another via a control point at
the edge of the perturbation. Johnson & Clarke (1999) extend this model to include first-
order dispersive effects, which enables them to specify the location of the jump between
branches. The analytical study of critical control in systems with more than one mode
is significantly more complicated; and has been considered by Hughes (1985) and, in the
weakly nonlinear limit, by Grimshaw (1987) and Mitsudera & Grimshaw (1990).

The present work complements previous studies by using an inviscid quasi-geostrophic
(QG) model with piecewise-uniform PV to study the control of CSWs generated by
a coastal-intensified geostrophic current. By using an idealised model with a single
Rossby mode we are able to clearly identify hydraulically-controlled flow, and analytically
determine the regions of parameter space in which it occurs in terms of upper and lower
bounds on the Froude number, F. The idealised model also allows us to study the form
of the transition between controlled and far-field flow. In many cases, this transition is
accomplished in the long-wave model by a shock (a discontinuity in the off-shore location
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of the material interface separating shelf and ocean water). In the full QG system shocks
are replaced by slowly-modulated wave trains, which are the manifestation of standing lee
waves in the present model. We analyse these wave trains using the method of ‘dispersive
shock-fitting” (El 2005; Jamshidi & Johnson 2020) and show that standing lee waves only
occur when F' is close to the lower boundary for critical flow.

The rest of the paper is organised as follows. Section 2 develops the model and govern-
ing equations, §§3-4 analyse the leading and first-order long-wave equations respectively,
including conditions for critical control and the form of the transition between controlled
and far-field flow. Section 5 compares theoretical results with numerical simulations of
both the dispersive long-wave equation and the full QG system, and §6 discusses the
relevance of the present, idealised, model to the real continental shelf.

2. Model and governing equations

Consider quasi-geostrophic flow on an f-plane, with Cartesian axes Ozyz fixed in a
rotating frame of reference. The equation for PV conservation over variable topography
b(x,y) is

D 2 v fb

Di (V P ) + H) =0, (2.1)
where Ly = +/gH/f is the Rossby radius of deformation, ¢» = gh/f is the QG stream-
function which is related to the velocity by (9v/0x, 0y /dy) = (v, —u) and H is the mean
fluid depth far from the shelf. The conserved quantity in (2.1) is the quasi-geostrophic
PV, which we denote g. The model is barotropic, although the exact same results apply
when a lighter, infinitely-deep, quiescent layer is included in z > H so that we may also
choose to interpret the present work as a model for the inviscid dynamics of the bottom
layer of the coastal ocean. Fluid occupies the half-plane y > 0, with a vertical coast at
y =0 and a flat continental shelf of width Y}, (z) which we write

) {HOH/f 0 <y < Ya(),

0 y > Yh(x), (2.2)

for some Iy > 0. The extension to include a linear continental slope is conceptually
straightforward but will not be considered here. We will focus on the case where the
shelf-width Y}, is a slowly-varying function of z, and is constant apart from a localised
perturbation around z = 0. In all numerical simulations that follow we will use

Yi,(x) = Y, — Asech (z/W)?, (2.3)

although the analytic results do not depend on our choice of sech(x/W)? as the function
describing the shelfbreak deviation. Thus the key geometric parameters describing the
shelf are Y,, the shelf-width away from the perturbation, A, the magnitude of the
perturbation, and W, which measures the width of the topographic forcing region and
in the long-wave limit used for analysis is formally large compared to Li. We place no
restriction on the magnitude of A, but the quasi-geostrophic limit requires that depth
variations are small so that application of the present model is best suited to coastlines
with a deep continental shelf and b < H. The present model could also be used to study
the dynamics of shelf ridges such as the Charleston bump, in which case H represents
the depth of the shelf and b is the height of the ridge, and the inner shelf dynamics
are assumed to be isolated from flow at the shelfbreak which is now at y — oco. Note
also that the inner-shelf interpretation of the model gives a more realistic value for the
deformation radius Lg, which becomes very large (thousands of kilometres) if the depth
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Figure 2: A flat continental shelf occupies the region 0 < y < Y, (z), with a vertical
coast at y = 0. The model ocean is barotropic, with two regions of uniform PV
separated by an interface at y = Y (z,t). Motion is driven by a coastal-intensified
background current, in this case from right to left. (a) Side view. (b) Plan view; the
dashed curve is Y}, and the solid curve is Y.

scale H is taken as the mean depth of fluid far from the shelf. Figure 2 shows a schematic
of the flow and identifies the various parameters. The long-wave behaviour of the present
model without a continental shelf is analysed in detail in Jamshidi & Johnson (2020)
(JJ20 hereafter), and much of what follows here is guided by that analysis.

We will consider the initial-value problem where PV front is initially aligned with the
shelfbreak, so that the initial distribution of PV is

. {Ho 0<y<Yh(SU)

0 Yu(z)<y. (2:4)

The PV is therefore piecewise constant, with a gradient that is entirely due to the
topography rather than any internal variation of vorticity, and the model admits a
single Rossby wave mode. Models with piecewise-constant PV have been used previously
in theoretical studies of coastal outflows (Kubokawa 1991; Johnson et al. 2017) and
boundary currents (Pratt & Stern 1986; Jamshidi & Johnson 2020), and this restriction
is necessary for the analytic work below. The implications of requiring both piecewise-
constant PV and quasi-geostrophic dynamics are discussed further in §6. Due to the choice
of PV profile, the topographic forcing term in (2.1) cancels with ¢ in regions where the
PV front and shelfbreak are aligned so that the governing equation is homogeneous

¥

L3
With no background flow to disturb the front the unique solution to (2.5) is ¢ = 0 and
the initial condition (2.4) persists for all time. In order to generate CSWs, consider a
background flow that starts impulsively at ¢ = 0, and displaces the PV interface to some
y = Y (z,t). In regions of the domain with Y # Y}, columns of fluid have crossed the
shelfbreak and either moved off-shelf and gained relative vorticity (Y > Y}, plus sign in
figure 2) or moved on-shelf and lost relative vorticity (Y < Y}, negative sign). Thus for
y between Y, and Y there is a forcing term on the right-hand side of (2.5), the sign of
which depends on whether the PV front is on- or off-shelf. Following the algebra through
for the various cases, one arrives at the following equation (which is similar to equation

V2 =0. (2.5)
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(2.4) in Haynes et al. (1993)):

v
VA= o5+ o (H(Yh —y) = HY = y)) =0, (2.6)
R
where H is the Heaviside function. The PV interface Y (z,t) evolves according to the
kinematic boundary condition
oy d
ot dx
so that given a closed expression for ¢ (x,Y;t) the entire flow field can be tracked by
solving the scalar equation (2.7). In writing (2.7) we have assumed that the interface
is at all times a single-valued function of x. This assumption will later be checked by
contour dynamic simulations of the full QG system (2.1) which allow for more complicated
interface shapes.
For simplicity we shall restrict discussion to a monotonic, coastal-intensified back-
ground flow profile. The appropriate boundary conditions are

P(z,Y (2,1),1), (2.7)

Yp=Qo on y=0, (2.8a)
Y —=0 as y— oo, (2.80)
along with the requirement that ¢» and u = —0y/0dy are continuous everywhere. In

some oceanographic applications it may be more suitable to choose a background flow
that is intensified at the shelf-break, and (2.8a) should be modified accordingly. Note
that the system (2.1) and boundary conditions (2.8) are symmetric under the following
transformation
V= -, r—=—-x, b—=>-b Qo— —Qo, (2.9)

so that the problem is equivalent to that of a trench of depth b against a vertical wall.

We non-dimensionalise ¢ with |Qq|, horizontal lengths with Ly, and introduce
a = Ly (ITy/|Qo|)*/?. The non-dimensional parameter a is the ratio of the Rossby radius
to the vortex length Ly = (|Qo|/IIy)"/?, which is the appropriate scale for a vortical
current of flux |Qo| and vorticity Iy (Johnson & McDonald 2006). Alternatively, a
measures the relative strengths of the background current and vortical flow driven by
columns of fluid crossing the shelfbreak, with large a corresponding to strong vortical
flow. Further interpretation of @ is given in the context of coastal outflows in Johnson
et al. (2017). With these scaling choices, the boundary condition (2.8a) becomes
1 = @ = =£1 depending on whether the background coastal current is to the right
(Q = +1) or the left (Q = —1), and the governing equation is

V3 — ¢ +a® (H(Y, —y) — H(Y —y)) = 0. (2.10)
The key parameters of the problem are thus a, Q, Y, A and e = 1/W.

2.1. The long-wave limit
In the limit e = 1/W — 0, we write
O(X,y,T) =¢° + ' +0() ... (2.11)
where we have introduced the long-wave co-ordinate X = x/W and slow time T' = ¢/W.
At leading order in ¢, the field equation (2.10) becomes
821/)0
Oy?

¢+ a® (H(Yn —y) = H(Y —y)) = 0. (2.12)



Hydraulic control of shelf waves 7

The solution to (2.12) depends on whether the PV front is on the shelf (Y < Y},) or off
the shelf (Y > Y},). For the case where the front is on the shelf,

Qe + a*sinh (y) (e —e™ 1), 0<y<Y,
VX, y,T) =4 Qe Y + a2 [1 —sinh (y)e ™" — cosh (Y)e Y], Y <y<Y,, (213)
Qe™Y + a? (cosh (Y},) — cosh (Y)) e, y>Y,
while when the front is off the shelf,
Qe™Y + a?sinh (y) (e_Y — e‘Yh) , 0<y<Yy,
VO X,y,T) =4 Qe ¥ + a2 [—1 + sinh (y)e™Y + cosh (Y)e™Y], Y, <y<Y, (2.14)
Qe™Y + a? (cosh (Y},) — cosh (Y)) e, y>Y,

upon enforcing continuity of ¥ and v at y = Y and Y = Y} as well as the boundary
conditions (2.8). We introduce the index j = sign (Y}, — Y) to differentiate between the
two cases, and write

2
GO, T) = QY + L [ () o2y (1 YY) |

2

= Qe(Ya Yh)

The function Q.(Y,Y},) depends on X only through location of the PV interface ¥ and

the shelf width Y}, and thus is the hydraulic functional for this problem (Gill 1977;

Pratt & Whitehead 2008). The net along-shore flux of shelf water is given by @ — Qe.
Substituting (2.15) into the kinematic boundary condition (2.7), we have

(2.15)

aY oYy a? /. Yy
el VYV ) = — ( JY=Yn) _ —(Y+Yh)) Zn 2.1
ar T gx =5 (e ¢ X’ (2.16)
which is a forced nonlinear wave equation with long-wave speed
O’ y @ —(Y+Y3) -2y i(Y=Y3)
CY,Yy) = ~ o =Qe " + 1 [e h) —2e +e’ h ] . (2.17)
Y ly=y

Equation (2.16) will be referred to as the hydraulic equation. From left to right, the terms
in (2.17) can be identified as the contributions from: background flow, image vorticity due
the shelfbreak, image vorticity due to the PV front, and stretching/squashing generated
by off- or on-shelf movement of the front. Much of the qualitative behaviour of the
hydraulic equation can be understood through C'. In particular if Y > Y} then C is not
a monotonic function of Y, but rather has a unique maximum at

Q + a? cosh (Yh))

YYzlog( 942

(2.18)
Thus, in the language of conservation laws, the flux function ). may be non-convex when
the front is off-shelf. Non-convex flux functions admit a rich variety of compound wave
solutions, and are studied in detail for the canonical example of the Riemann problem
(i.e. the initial-value problem where the initial condition is a step change in Y) by El
et al. (2017) for the modified Korteweg—de Vries equation, and by JJ20 for the present
model without a shelf. Note that (2.18) is valid (i.e. Y2 > Y},) only when Q < a? and

Y, < Yy = log (W) (2.19)

Thus when @ = 1 and the background current is in the same direction as CTW phase
propagation, compound-wave structures exist when the flow is dominated by vorticity
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(a > 1), as in JJ20. However when Q = —1 and the background current opposes CTW
propagation compound-wave structures exist for all a, provided the shelfbreak Y} is
sufficiently close to the coast (i.e. Y}, < Y,). Note also that 0C/9Y is discontinuous
at the shelfbreak and, for the case where Q = —1, changes sign if Y3 > Y, . Thus
compound-wave solutions can also occur in the Riemann problem when the front crosses
the shelfbreak; although this situation does not arise in the initial-value problem (2.4).

2.2. Dispersive effects
At next order in € = 1/W, the streamfunction correction ' (X,y, T) satisfies
ale B wl _ _82¢0
Oy? X2’
Although formally the power series expansion in € requires that W > Ly, we show in
§5 that the first-order dispersive correction 1* captures the qualitative (and much of the
quantitative) behaviour of the full quasi-geostrophic system even when € = 1 and thus
W = Ly. This is also true in JJ20 and in long-wave models of coastal outflows (Johnson

et al. 2017). Equation (2.20) is to be solved subject to continuity of ¢! and u' at Y and
Y}, and the coastal boundary condition 11 (X,0,T) = 0. After some algebra, we find:

2 92 2 2 2 2
1 _ a0 at Ly (0 oYy oY
VEAYT) == Tt e <8X2 Y ox " oaxe
2 2 2 2 2
@ _yiy, dv,? %, av,?  a%y,
e (Y<dX “ae ) Thay Tt

a? dv, 2 a%y; dv,?  a%y, ,
+ IeJ(Y Vi) (y (d)? —j dX;‘) -Y d)? + dX; (1 +3Yh)> ;
(2.21)

(2.20)

Substituting (2.21) into the kinematic boundary condition (2.7) gives the dispersive long-
wave equation
oYy 5 1, 0Y
ar T(C+HECx = ax

where C' = —9¢! /3Y can be computed from (2.21) using
4 (82Y> oY oy - d (ay>2 _ LY

(WX, Y, T) + 91 (X, Y, T)), (2.22)

0X?2 9X3 / 0X 0X2"

Note that outside the region of topographic forcing, Y is constant and (2.21)-(2.22) revert
to equations (2.17)-(2.18) in JJ20. An additional conservation law, which is needed for

the dispersive shock-fitting applied below, may be formed by multiplying (2.22) through
by Y:

0 v, 0 v
+a2 2 [(Y +1)e” VY0 _ (Y + 1) e 4 (1- jY)ej(Y_Yh')}
X 2 (2.23)

0 [,,0Y7 ooy, L oy? 0\, oy
+aeaX{Y X +4<8X 2Y—8X2 (-14(14+2Y)e™?")

=0.
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3. The hydraulic equation

In this section we analyse the hydraulic equation (2.16) and show that the range of
solutions can be presented in terms of A, the shelfbreak perturbation magnitude, and F',
a Froude number which is defined below.

3.1. Steady solutions

By the kinematic boundary condition (2.7), ¢ is constant in steady flow. In the
hydraulic equation, this requires that

Qe(Y,Y)) =2, (3.1)

for some constant @, with @), the hydraulic functional defined in (2.15). Contours of Q.
for the particular choice of parameters @ = —1 (i.e. background flow opposing CTW
propagation) and a = 0.8795 are shown in figure 3(a). Given a shelfbreak profile Y}, (in
fact, given just the far-field width Y, and the perturbation magnitude A) each contour in
figure 3(a) that crosses Y3, =Y, and Y}, = Y, — A represents a possible steady solution Y’
to the hydraulic equation (2.16). The steady solution chosen by the initial-value problem
can be determined as follows.

For small A < A_, the flow evolves to become steady in the forcing region, and the
steady state is entirely sub- or supercritical. Transient disturbances thus propagate away
from the forcing region in one direction only and the initial condition ¥ = Y, persists
on the other side. Thus the constant ¢ may be determined by evaluating (3.1) on the
undisturbed side:

D =Q.(Y,,Y,) = —e 0. (3.2)
Figure 3(b) shows an example of steady supercritical flow when Y, = 1 and A = 0.01.
The solid curve is the PV front Y and the dashed curve is the shelfbreak Y, and in
order to see the scale of the topographic forcing region this and all other solutions have
been plotted in the original co-ordinate x. The long-wave co-ordinate X = x/W is found
by re-scaling the horizontal axis so that the topographic perturbation lies in | X| < 1.
The contour corresponding to figure 3(b) is highlighted in (a) (upper red dashed curve).
The solution starts at (Y,Y;,) = (1,1) and follows the contour (3.2) to the maximum
perturbation Y;, = 0.99 as the shelf narrows, before retracing the path to (1,1) as the
shelf widens again. The solution is therefore symmetric about the origin and the front is
off-shelf (Y > Y},) throughout.

If A > A, is sufficiently large then the contour through (Y5, Y,) does not extend to the
maximum displacement Y, = Y, — A and instead the steady solution selects the unique
contour that satisfies

C(Y,Y, — A)=0. (3.3)
The long-wave speed vanishes at the maximum topographic displacement, which is thus
a control point for the flow (Pratt & Whitehead 2008). The vanishing long-wave speed
corresponds to a turning point in the (Y,Y})-plane, so that the contour selected by
the initial-value problem in critically-controlled flow is the one that is horizontal at
Y, =Y, — A. Given a far-field shelf width Y;, the critical value A., beyond which the
flow becomes controlled is thus that at which the contour through (Y;,Y;) is horizontal
(A, is shown for ¥, = 1 as a dotted line in figure 3(a)). Figure 3(c) shows an example
of critically-controlled flow with A = 0.05, and the corresponding contour is highlighted
in (a) (lower red contour). The solution traces the highlighted section of the contour
once, so that Y is monotonic and asymmetric as a function of Yj. Note that Y # Y,
when Y}, =Y, so that critically-controlled flow alters the far-field state on both sides of
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Figure 3: (a) Contours of the hydraulic function Q.(Y,Y}). Steady solutions must lie on
a single contour. The black dashed lines are Y =Y}, and Y3, = 1, and dotted lines show
critical values of the perturbation size A at which the solution changes type when

Y, = 1. The red dashed curves show examples of supercritical and critically-controlled
solutions which are plotted as the solid lines in (b) and (c) respectively, and the
shelfbreak Y3 (x) is shown dashed. The non-dimensional Rossby radius is a = 0.8795
and Q = —1 so that the background flow opposes Rossby wave propagation, with

A =0.01in (b) and A = 0.05 in (c).

the shelfbreak perturbation. Note also that the PV front upstream of the perturbation
(relative to the background current, > 0) has been displaced far into the open ocean, so
that the critically-controlled flow is associated with enhanced shelf-open-ocean exchange.

To determine the conditions that lead to critical flow, first consider an asymptotic
expansion of the long-wave speed C(Y,Y},) about the far-field state Y = V), = Y. To
leading order,

2 2
C~Qe Y — Lo & (3.4)
2 2
The right-hand side of (3.4) vanishes when F' = 1, where
—Q
F=—F—"7" .
a?sinh (Y,) (3:5)

is the Froude number for this problem. The condition F = 1 can only be satisfied if
@ = —1 and thus as in ZL17 hydraulic control is only possible when the background
current opposes CTW propagation. One can also show that control only occurs when
the perturbation is a localised narrowing in shelf width (A > 0) as follows. In order for
disturbances to propagate away from the forcing region, the critically-controlled solution
must have C' > 0 for large positive X and C < 0 for large negative X. Since C is
dominated by the the term due to the front moving on- or off the shelf, we can conclude
that Y > Y}, for large positive X (vortex stretching generates C > 0) and Y < Y}, for
large negative X, so that Y/9X > 0 in controlled flow. Writing the steady version of
(2.16) as

oY _ v, 00,
0X  dX oy’

where 0Q./dY}, > 0, we see that in critically-controlled flow C' and dY},/d X have the same
sign. That is, dY},/dX > 0 for X positive and the perturbation must be a local decrease
in shelf width. From now on we will restrict our attention to A > 0 and Q = —1 and thus
describe x > 0 as ‘upstream’ relative to the background flow. Critically-controlled flows
are subcritical (C' > 0, F' < 1) upstream of the shelfbreak perturbation and supercritical
(C <0, F > 1) downstream. In completely supercritical flow C' < 0 everywhere, dY}, /dX
and 0Y/0X have opposite signs and the front is displaced off the shelf (figure 3(b)), while
in subcritical flow the front is on the shelf.

Haynes et al. (1993) and Johnson & Clarke (1999) study the related problem of
hydraulically-controlled flow in a stepped channel, and show that several other types of
controlled solutions can occur. The fact that these do not appear in the present geometry
suggests that they rely on an opposing wall to support their existence, as can be deduced
by figure 2 of Johnson & Clarke (1999).

C(Y,Y3) (3.6)
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3.2. Offshore plumes

Assuming that the front is off-shelf at the control point, solving the criticality condition
(3.3) gives

Y = —log (;21 + cosh (Y, — A)). (3.7)

This is the locus of turning points in the hydraulic contours of figure 3(a). As
A — Ag =Y, — acosh (1/a?), the control point ¥ — oo and the critical solution
is no longer valid. The lower dotted line in figure 3(a) gives Ag when Y, = 1. For A > Aq
neither the supercritical nor critically-controlled solution exists and the flow never
becomes steady. Instead, the flow develops into an ever-expanding ‘off-shore plume’
similar to the growing solutions for coastal outflow plumes discussed in Johnson et al.
(2017) and Jamshidi & Johnson (2019). As in Johnson et al. (2017), offshore plumes only
exist when a < 1 and the flow induced by vortex stretching as shelf water crosses the
shelfbreak is not sufficient to overcome the background current. Instead, the incoming
flow is directed principally off shore, and Y grows indefinitely in the forcing region.
Offshore plumes have no equivalent in free-surface hydraulic flow, which always becomes
steady, but are somewhat related to the ‘supercritical leap’ of Haynes et al. (1993) in
that the flow attains two different supercritical states on either side of the topographic
forcing region.

Numerical simulations of (2.16) show that at large times the shape of the front in the
source region is approximately constant so that 0Y /9T is independent of X. Thus we
can obtain an approximate description of the offshore plume through the ansatz

Y(X,T) = Y,(X) +9(T). (3.8)

Ignoring terms proportional to exp (—2Y") in (2.16) and only considering regions where
Y > Y} we have

o , o, avi] _y
aiT = |:(1 — a” cosh (Yh))aiX +a sinh (Yh) dX:| e . (39)
Substituting (3.8) into (3.9) gives the separable equation
d dy, dy;
929 _ 11— a2 cosh (Vi) 22 26inh (V5) = | o= Ye(X) 1
el = {( a” cosh ( h))dX + a”sinh (Y3,) x| © ) (3.10)

where the left-hand side is a function of T" alone and the right-hand side is a function of
X and so both are equal to 3, a constant. Solving each side separately we find

9(T) =log (T — Tp) + log 3, (3.11a)
and, via the substitution exp (Y,) = 6(X)(—1+ a? cosh (Y3,)) for (X)) unknown,
Y, (X) =log [(—1+ a®cosh (V},))/(X — Xo)] — log 3, (3.11b)

so that, at late times in the offshore plume,
Y(X,T) = log [(—=1 + a® cosh (Y3))(T — To) /(X — Xo)], (3.12)

for some constants Ty and X. Note that the numerator is an even function of X so that
in general (3.12) has two singularities. If Xy > 0 is chosen so that cosh [V} (X()] = 1/a?,
the singularity at X = X may be eliminated. Equation (3.12) is then valid in X > — X,
while for X < —X| the asymptotic solution approaches the unique contour that has its
control point at Y, = Ag, Y — oo. The combined asymptotic solution is singular at
X =—-Xo.
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Figure 4: Offshore-plume solution to the hydraulic initial-value problem (2.16).
Dash-dot curves show contours of the streamfunction ¢° at ¢t = 15000 (contour interval
is 0.15), the thick black curve is the frontal position Y, the red dashed curve is the
asymptotic solution (3.12) and the black dashed curve is the topography Y}, (z). The
black dotted line is x = —x, the location of the singularity in the asymptotic solution.
Parameters are Y, = 0.8, A = 0.7, a = 0.9895 and W = 5.

Figure 4 shows instantaneous streamfunction contours in a numerical simulation of
the initial-value problem (2.16) in the offshore plume regime. The contours are shown
dash-dotted, and the thick black curve is the plume boundary Y. There is a slow, broad
recirculation of shelf water in the region of topographic forcing and upstream, and the
plume boundary at ¢t = 15000 agrees well with the asymptotic solution (red dashed curve)
away from the singularity at * = —xo (the black dotted line). The flow upstream is
undisturbed and the alongshore flux of shelf water is 1 —exp (—Y,) while the downstream
flux is 1 — a?/2, which is the asymptotic value of Q. as Y — oo.

3.3. Boundaries for critical control

An alternative approach to the hydraulic diagram of figure 3 is to consider the problem
in the (A, F)-plane. Given the far-field shelf-width Y, we seek the range of Froude
numbers,

F_(A) < F < F (A),

for which critical flow occurs. The curves F1 mark the transition from critical to non-
critical flow, and are derived analytically in Appendix A by simultaneously solving the
criticality condition (3.3) and the condition for steady, non-critical flow (3.2). These
boundaries can also be expressed in terms of the parameter a. Figure 5(a) shows how the
(A, F)-plane is divided for a narrow shelf (Y, = 0.5). The flow is supercritical for F' > F,
and subcritical for F' < F.. For wider shelves (figure 5(b), Y, = 1) the curve F,(A) is
non-monotonic and offshore plumes occur in the region marked ‘growing’, where F' lies
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Figure 5: Regions of the (A, F)-plane where the flow is critically controlled. (a) A
narrow shelf, here with Y; = 0.5. The flow is critically controlled when F' lies between
the solid curves F(A). (b) A wide shelf, here with Y, = 1. The dashed curve is F(A),
and offshore plumes occur when F < FF < F, ..

between Fg(A) (shown dashed) and F,.,, the maximum value of F, and also the point
of intersection between the two curves.

3.4. Transition to the far field solution

Outside the region of topographic forcing, the hydraulically-controlled flow displaces
the PV front Y from its initial position Y, to a new, constant, location that we denote
Y. a for x > 0 and = < 0 respectively. By the heuristic arguments of §3.1 we expect that
controlled solutions are off-shelf upstream and on-shelf downstream, so that Y, > Y, and
Y, <Y,. If the flow is off-shelf controlled then

e Yu = f% + cosh (V)

9\1/2 (3.13)
— |(cosh (Y;) — cosh (Y, — A)) (cosh (Yy) +cosh (Y, — A) — CLQ)] .

To obtain Y, in on-shelf controlled flow, or Y, in either case, requires the solution of
at least one cubic equation and yields an expression that is too complex to include
here. The dependence of Y, ,, on F' and A, for the case where Y, = 0.8, is shown in
figure 6. Increasing F' moves the front offshore both downstream and upstream of the
topographic perturbation, while increasing A leads to a more extreme displacement of the
front relative to the shelfbreak (further offshore upstream, further onshore downstream).
The transition between the topographically-influenced state Y, ,, and the undisturbed
far-field value Y, may be accomplished in one of three ways, depending on the relative
value of the long-wave speed C(Y,Y,) on either side of the transition. Outside of the
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Figure 6: Adjusted frontal position in controlled flow (a) downstream and (b) upstream
of the topographic perturbation, for Y, = 0.8 and various values of Froude number F'
and topographic perturbation magnitude A. Shown are the analytic solutions (curves)
and numerical solutions to the dispersive long-wave equation (symbols). The solid
curves and circles are for shelves with A = 0.05, dashed curves and squares with

A = 0.1 and dash-dot curves and triangles with A = 0.25.

forcing region, characteristic curves in the (z,¢)-plane are straight lines with slope
dz/dt = C(Y,Y,) and so the value of C' determines whether curves collide (resulting
in a shock) or separate (a rarefaction). The third possibility, a shock-rarefaction, is a
compound wave solution that can occur when C' is non-monotonic (see JJ20, §3). If the
transition from Y, to some value Y is resolved by a shock, this propagates at speed

_ QE(K YI)) — Qe(YIJ,}/O)

V(Y) T . (3.14)

First, consider the downstream transition. As noted above, Y; < Y, and so C is a
monotonic increasing function of Y. Thus characteristic curves collide and the down-
stream transition is always resolved by a shock with speed V(Y,) < 0. Next, consider
the upstream transition. For Y > Y;, C' has a maximum at Y = Y5 (given by (2.18)
with Y, = Y,). f Y, < Y3, C is monotonic increasing and the transition is again resolved
by a shock with speed V(Y,). Since Y, > Y; and V > 0, rearranging (3.14) shows that
Q.(Y,) < Q.(Y,) and the transport of shelf water in the controlled solution is reduced
compared to the far-field background flow. Thus critical flow ‘blocks’ the background
current by reducing the flow of shelf water towards the topographic perturbation (figure
4 shows that the same occurs in off-shore plumes). If Y, > Y5 then C' is monotonic
decreasing, characteristics separate and the transition is resolved by a rarefaction. This



16 S. Jamshidi and E. R. Johnson

Subplot | Type F A a t

(b) Supercritical 1.4 0.4 0.9 500
(c) Offshore plume 1.2 0.6 0.97 2 000
(d) Shock 0.9 0.1 1.12 1 200
(e) |Shock-rarefaction 0.9 0.4 1.12 1 200
() Subcritical 0.2 0.1 237 40
() Rarefaction 0.2 0.5 2.37 200

Table 1: Details of the different initial value problems displayed in figure 7. In all cases
Y, =0.8.

occurs when

1-322
F<Fy=—"21, 3.15
1-22 ( )
so that, for F' sufficiently small and Z, < 1/4/3, critically-controlled flow is resolved
upstream by a rarefaction.
In the remaining case, where Y, < Y5 < Y,, C has an interior maximum within the
transition and there are three possibilities:

(i) C(Y,,Y,) > C(Y,,Y,). A simple-wave rarefaction cannot connect Y, and Y,
because C' has an interior extremum, so the transition is resolved by a shock-
rarefaction.

(ii) C(Y,,Y,) < C(Y,,Y,) and V(Y,) satisfies the Lax entropy condition

This ensures that information can propagate into a shock of speed V(Y,), and is
a necessary condition for such a shock to be physically admissible.

(iii) CY,,Y,) < C(Y,,Y,) and V(Y,) > C(Y,,Y,). In this case, characteristic curves
collide but a simple shock does not satisfy the Lax entropy condition and so
the transition is resolved by a shock-rarefaction. Following JJ20, the interme-

diate value Y3, at which the shock joins the rarefaction satisfies the equation
C(Ym,Ys) =V (Yu).

The boundary that determines whether the transition is resolved by a shock or a shock-
rarefaction can be determined numerically by checking the conditions above. Figure 7
shows representative examples of each type of solution, all with Y, = 0.8. The solutions
are presented in (A, F)-space in (a), following figure 5. The horizontal dotted line is Fg,
and the dotted curve is the boundary between critical flows that are resolved upstream by
a shock, and those resolved by a shock-rarefaction. An example of each type of solution
is shown in (b)-(g), again presented in terms of the original variable x so that the scale
of the topography is clear. Subplots (d), (e) and (g) are critically controlled, and are
all resolved downstream by a shock (not visible in (d) or (e)). Subplot (c) shows an
offshore plume, and subplots (b) and (f) are super- and sub-critical flows respectively.
The parameters for each run are summarised in table 1.
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Figure 7: Representative examples of the initial value problem with Y, = 0.8. (a)
Classification of the solution in (A, F')-space as in figure 5. The dotted curves show the
boundaries where the upstream transition changes type. (b)-(g) Examples of each type
of solution. The black dashed curve is the shelfbreak Y (z) and the solid curve is the
location of the front, Y (z,t). Symbols correspond to the location of the solution in

(A, F)-space, and full details are given in table 1. Here and elsewhere solutions are
presented in the original variables x and ¢ so that the scale of the topographic forcing is
clear.
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4. The dispersive equation

The dispersive evolution equation (2.22) may be solved numerically using a pseudo-
spectral method, where the equation is Fourier-transformed in z and advanced in time
using an adaptive fourth-order Runge-Kutte scheme. We also employ an artificial damp-
ing term at the edge of the domain to allow for longer integration times.

4.1. Steady solutions

As in the outflow problem of Johnson et al. (2017), the dispersive initial-value problem
selects a different steady solution to that predicted by hydraulic theory. Figure 6 compares
analytic solutions from the hydraulic theory (curves) with numerical solutions to the
dispersive equation (2.22) (symbols, all computed with ¢ = 0.2). At this value of ¢, the
difference between the hydraulic predictions for the adjusted far-field state Y, ,4 and the
numerically-computed values is small (always less than 10%, and in most cases much less)
so that the hydraulic predictions may be used in the analysis of the dispersive long-wave
equation below. However, the differences between the hydraulic and dispersive steady
solutions can be resolved by modifying the criticality condition (3.3) to account for the
effects of dispersion. Following (2.7) and (2.11), the steady dispersive equation is

PUXY) + X Y) =9, (4.1)
for some constant ¢. Differentiating (4.1) with respect to X gives

0 1 0 1

LI o T
0X 0X dX \ 9Y aYy

where 0v/0X vanishes at X = 0 for symmetric topography (as can be seen by direct

computation using (2.15) and (2.21)). Anticipating that 9Y/0X is non-zero at the

topographic perturbation in critical flow, the criticality condition for the dispersive

equation is

(4.2)

C + 2Ct =0, (4.3)

X=0
where C' = —9y'/9Y is a function of Y}/ (X), so that the dispersive critical solution
depends on the curvature of the topographic perturbation at X = 0 as well as the

magnitude of the constriction. By definition, the group velocity is non-zero at the critical
section defined by (4.3). Thus in the (time-dependent) dispersive equation, information
may propagate away from X = 0 even in critically-controlled flow. Nevertheless the
critical section marks the transition from subcritical to supercritical flow (in terms of
the phase speed) and the condition (4.3) determines the unique solution selected by the
time-dependent problem (2.22), and indeed by the full QG equations, as can be verified
by numerical simulation. (Note that following Grimshaw (1987) one may show that the
flows termed ‘critical’ here are the result of a resonant interaction between free waves
and the topographic perturbation. This description may have more physical relevance in
the dispersive case where phase and group velocity do not coincide.) Following Johnson
& Clarke (1999), it is simpler to solve the steady equation (4.1) without consideration
of (4.3), and verify criticality afterwards. Numerical solutions of (4.1) are computed by
truncating the domain at X = £L for large L, and initially estimating Y (L) as the
hydraulic value Y,. This gives an initial guess for & = ¢°(Y,,Y,). Equation (4.1) is
then integrated from X = L to X = 0 with the boundary conditions Y (L) = Y, and
Y’(L) = 0, in order to give the subcritical flow and determine Y (0). Since @ is known, the
supercritical flow in X < 0 may be found by solving (4.1) as a boundary-value problem
using the known value of Y (0) and the boundary condition Y/(—L) = 0. The combined
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Figure 8: Dispersive critically-controlled solution with Y, = 0.8, A =0.1, F = 0.8 and
€ = 0.2. The solid and dash-dotted black curves show the solution at ¢ = 1000 for the
full QG and dispersive long-wave equations respectively, and the dashed red curve is
the numerically computed steady dispersive solution. The critical hydraulic solution is
shown dotted for comparison.

solution is necessarily continuous at the origin, but in general Y’ is discontinuous.
The value of Y(L) (and hence @) is iterated on using Newton’s method until Y’(0) is
continuous. By (2.21), this also enforces continuity of Y”(0). Figure 8 shows an example
where the upstream hydraulic and dispersive states differ by 2%. The red dashed curve
is the critical dispersive solution, while the black curves show numerical integrations of
the full QG problem (solid curve) and the long-wave dispersive equation (dash-dotted
curve) at ¢ = 1000. The hydraulic steady solution is shown dotted for comparison. Apart
from the presence of small-amplitude waves upstream in the time-dependent solutions
all three curves with finite € are identical, confirming that first-order dispersive effects
are sufficient to capture the quantitative behaviour of the QG equation.

4.2. Transition to the far-field

In the full QG system, dispersion prevents shocks from forming. Instead, wave-
steepening leads to slowly-modulated wave-trains, which are a typical feature of
dispersive wave equations (El et al. 2017). For the present work, it is sufficient to note
that one common type of modulated wave-train, the dispersive shock-wave or DSW, can
be analysed using the method of dispersive shock-fitting (E1 2005). DSWs are expanding
waveforms with a linear wavetrain at one end and a solitary wave at the other, and are
also referred to as undular bores in the context of gravity waves. Dispersive shock-fitting
allows one to extract the key parameters of DSWs, namely the wavenumber at the
linear end, the conjugate wavenumber (equivalently amplitude) of the solitary wave,
and the propagation speed of either end. The same technique also identifies the range of
parameters for which transitions are resolved by ‘attached DSWs’, expanding modulated
wave-trains which remain attached to the topographic perturbation much like the
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standing lee waves of Martell & Allen (1979) and ZL17. A full discussion of DSWs in
the flat-bottomed version of the present model is given in JJ20.

4.2.1. Travelling wave solutions

We will first set out some basic properties of travelling wave solutions to the dispersive
equation, applicable outside the forcing region where Y, = Yj is constant. The dispersion
relation for linear waves of wavenumber k propagating on a background Y, is

w=CYao,Yy)k — G(Yoo )k, (4.4)
where
G(Y) = % [1—e 2 (1+2Y)] (4.5)
is always positive (c.f. equation 4.2 of JJ20). The soliton dispersion relation is
® = —iw(Yoo,ik) = C(Yao, Yo )k + G(Yao ) &2, (4.6)

for k the half-width of the solitary wave. The fact that the solitary-wave phase velocity

can be described by linear-wave dynamics can be seen by considering the exponential

tail and making a substitution proportional to exp (kX — @T), so that the solitary wave

propagates with speed 5§ = @/ k (Kamchatnov 2019). Comparing soliton and linear phase

speeds shows § > s and so DSWs always have linear waves on the left-hand side.
Writing the dispersive long-wave equation (2.22) in potential form, we have:

ay
9

G(YV) (%) = a2 2 +2(2— a%e Y0)e™Y — 2427V —Y0)
+ 4a® min (Y)Y, + 2sY2 4+ aqY + E

=V({Y,Y;s,, FE). (4.7)

Here £ = X — sT is a co-ordinate fixed in a reference frame moving with the wave, s is
the speed of the travelling wave, and a and E are constants of integration. Note that
since G > 0 travelling-wave solutions to (4.7) exist whenever V > 0 and we may ignore G
in our analysis. The behaviour of travelling-wave solutions is determined by the number
and type of roots of the function V, with solitary waves requiring that Y., is a local
minimum of V. JJ20 present a full discussion of the range of values of s for which solitary
waves exist, but for the present work it is sufficient to note that C(Y.,Y,) < 5 < sk,
where sy is the speed of the kink soliton discussed below.

4.2.2. Compound-wave solutions

When Y, > Y5 the upstream transition crosses the inflexion point and, as in the
hydraulic equation, is resolved by a compound-wave structure which combines a kink
soliton with a simple-wave transition (either a modulated wave-train or a rarefaction).
The kink soliton is a monotonic travelling-wave solution that connects two far-field states
Yoo < Y3 and Y > Y5. In terms of the potential function (4.7), kinks correspond to the
case where )V has a double root at both Y., and Yy and can thus be thought of as a
limiting case of the solitary wave with infinite width (for a finite-width solitary wave, ¥V
crosses the axis at the peak of the wave). Thus kinks can be found by seeking the pair
(sk, Yk ) such that V(Yx) = V'(Yk) = 0, with o and E determined by the requirement
that Y is also a double root of V. Since kink solitons are faster than any solitary or
linear wave, we expect that they will appear on the right-hand side of any transition
that crosses Y5 and thus Y, = Y,. The compound-wave structure is completed by a
secondary transition from Yy to Y,. Since Yk, Y, > Y5, C' is monotonic decreasing over
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Figure 9: Compound-wave transitions in the dispersive equation. In both cases, Y, = 1
and € = 0.1. (a) The upstream transition is resolved by a R|K. The horizontal dotted
line shows Y. (b) The upstream transition is resolved by a DSW—|K. Horizontal
dotted lines in the inset (c¢) show the hydraulic upstream state Y, and kink level Y.
Symbols in (a) and (b) correspond to figure 10(a), which shows the location of the
solutions in the (A, F) plane. Full details are given in table 2.

this range and transitions with Y < Y, are resolved by a rarefaction-kink (denoted R|K).
Similarly, transitions with Yx > Y, are resolved by a depression DSW-kink (DSW~|K
— the solitary wave is a trough on the background Y,). In general the kink and the
simple-wave transition propagate at different speeds, so that at large times the two are
separated by a plateau at ¥ = Y.

A representative example of each type of compound-wave transition is shown in figure
9. In (a), the transition is resolved by a rarefaction-kink. The kink is at = =~ 300, and is
connected to the rarefaction by a plateau at Y = Yx (horizontal dotted line). In (b), the
kink connects to Y, via a DSW™. For this set of parameters, the difference between Y
and Y, is small so a zoom of the transition is shown in (c), where the upper and lower
horizontal dotted lines show Y and Y, respectively.

4.2.3. Dispersive shock-fitting

Dispersive shock-fitting is a technique for determining key observables of a DSW (wave
number and speed at either end), given the far-field states on either side. For a certain
class of equations (integrable equations) the full structure of the DSW arising from
the Riemann problem can be written down analytically. El (2005) shows that the key
observables may be determined for a much broader class of equations, provided they
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Subplot | Type F A a € t
9(a) RIK 1 0.25 0.93 0.1 10 000
9(b) DSW~|K 0.96 0.15 0.91 0.1 16 000
10(b) | Upstream attached 1 0.05 0.92 0.2 10 000

(c) Both detached 0.9 0.05 0.97 0.1 4500
(d) |Downstream attached 0.75 0.03 1.07 0.2 2 500

Table 2: Details of the initial value problems displayed in figures 9 and 10. In all cases
Y, =1

meet a number of technical conditions. These technical conditions are reviewed for the
present problem in Appendix B, which also outlines the method for computing the key
observables. Assuming that the time taken for the controlled solution to be established
over the topography is much less than that required for the full development of a DSW,
dispersive shock-fitting may in principle be used to predict the key parameters of DSWs
that arise from transitions between critical and far-field flow in the present initial-value
problem (El et al. 2009). However we will show below that the downstream solitary wave
speed has a local minimum at F' = F,,, so that for F' < F,, the downstream wave-train
cannot be described using dispersive shock-fitting.

DSWs develop upstream when the hydraulic equation predicts that the transition will
be resolved by a simple shock. Thus for a given set of parameters {Y;,, A, F'} we expect a
DSW with Y_ =Y, and Y, =Y, where Y, > Y| so that the leading sohtary wave is one
of elevation (i.e. a peak rather than a trough). As discussed in Appendix B, the trailing
linear and leading solitary wavenumbers are

86’
k2 = 2/3 / G(Y 1/3 dy, (4.8a)
~ 5‘C
k2= 2/3 / G(Y)T s Ay, (4.8D)

and the propagation speeds of the upstream DSW edges are

ow

_ ow = o) 4.
Su= o , 5. (4.9)

Yu, ku k.,

respectively. In some cases, s, < 0 so that the linear end of the DSW is predicted to
enter the region of topographic forcing. Numerical simulations show that in this case
the upstream transition is resolved by a partial DSW, which remains attached to the
topography and continuously generates waves at the upstream edge of the forcing region.
Partial DSWs also occur in free-surface flow over an obstacle, as was shown for the Su—
Gardner (dispersive shallow-water) equations by El et al. (2009). When the upstream
transitions is resolved by a DSW~|K we may apply dispersive shock-fitting to a secondary
Riemann problem with Y_ =Y, and Y, = Yk (see §5.2 of JJ20).



Hydraulic control of shelf waves 23

2.5

) o

2

|
400 800

ol

|
—800 —400

0 L L L L J ! L
0 0.1 0.2 0.3 0.4 0.5 —500 —250 0 250 500

A T

Figure 10: As in figure 7, but for the dispersive equation and with Y, = 1. The upper
and lower dash-dotted curves in (a) mark the boundaries where the upstream and
downstream DSWs, respectively, detach from the topography. Dotted curves mark
where the upstream transition changes type, from DSW+ to DSW~|K (left-most dotted
curve) and then to R|K (right-most dotted curve — see figure 9). Examples of attached
and detached DSWs are shown in (b)-(d). Symbols correspond to the location of the
solution in (A, F')-space, and full details are given in table 2.

Assuming that the downstream transition is resolved by a DSW, we have

2 Yo oC
k2= ———— Y) V3= gy, 4.1
17 3G(Y,)2/3 - g(y) 5% ) (4.10a)
~ 2 Yo ocC
= Y)Y dY. 4.10b
d 3g(}/d)2/3 Y, g( ) 8Y 9 ( O )
and the corresponding speeds
D ¢ 711,17} (4.11)
8k YO, kd kd

The downstream DSW is again one of elevation, with the linear waves on the left. If
S, > 0, the downstream DSW remains attached to the topographic perturbation and
waves are continuously generated at the downstream edge of the forcing region.

Figure 10 shows a representative example of each type of simple-wave transition
(attached downstream DSW, attached upstream DSW, both DSWs detached). The
boundaries that divide (A, F')-space are plotted as dash-dotted curves in (a), which shows
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Figure 11: Hovmoller diagram for ¢, using the same parameters as figure 10(d) and

with y =Y, — = A. The displacement over the forcing region is an order of magnitude

larger, and coloured white for clarity.

that over most of the parameter space both DSWs are detached from the topographic
feature as in (c). If F' is sufficiently large the upstream DSW can remain attached to
the topography as the background current is too strong to allow it to propagate away.
An example of this is shown in (b). There is only a small region of parameter space
where the downstream DSW remains attached to the topographic feature and in all
cases the downstream wave-train spreads much faster than the upstream one, reflecting
the fact that the background current and vortex squashing effects reinforce each other in
the downstream controlled state. Figure 10(d) shows an example where the downstream
DSW is attached, similarly to the standing lee waves of Martell & Allen (1979) and ZL17.
Note that this behaviour only occurs in a small region of parameter space, close to the
subcritical boundary F_(A). Figure 11 shows a Hovméller plot of the streamfunction
1 (equivalently the free surface displacement), taken at the middle of the perturbation

1
with y = Y, — = A. For clarity we show the free surface anomaly relative to Q exp (—y)

and have coloured the forcing region, where v is an order of magnitude larger, white.
The standing lee waves develop quickly, while the upstream signal is slower and relatively
weaker.

5. Comparison with numerical results
5.1. The dispersive long-wave equation

Figures 12-13 compare theoretical predictions for kink and solitary wave speed and
amplitude with values extracted from numerical integrations of the dispersive long-wave
equation (2.22). Due to the difficulties in resolving the linear end of the DSW in numerical
simulations, and thus of systematically identifying that end of the wave-train, no attempt
was made to validate predictions for the linear wavenumber and group velocity. In all of
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Figure 12: Solitary wave parameters in the upstream DSW, with Y; = 0.8 and € = 0.2.
Black curves show the analytical predictions for (a) the speed of the leading solitary
wave and (b) the value of Y at the peak of the wave. Curves and symbols are as in
figure 6, with red curves and inverted triangles (V) showing the speed and amplitude of
the kink soliton.

the data presented here Y, = 0.8 and € = 0.2, while I’ was varied across the full critical
range for each A to validate the theory for all types of transition.

Figure 12 shows the key parameters of the leading solitary wave in the upstream
transition. The speed and amplitude are shown in (a) and (b) respectively, and agreement
between theory and numerics is in general very good. The upstream solitary wave speed
depends only weakly on A, and for all A larger values of F' correspond to slower, larger-
amplitude solitons. The red curve in (a) shows the kink speed sk, which is an upper
bound on the solitary wave speed. For A = 0.1 (dashed curve) and F' < 0.7, dispersive
shock-fitting gives an invalid solution with s, > sk and thus amplitude predictions are
only shown for F' > 0.7. For A = 0.25 (dash-dotted curve) all of the upstream transitions
considered here are resolved by compound-wave solutions. The inverted triangles (V)
in (a) show the kink speed, while those in (b) show the kink amplitude for transitions
which are resolved by a DSW~|K. No attempt was made to systematically identify Yy
in transitions resolved by a R|K (those with F' < 0.9).

Figure 13 shows (a) the speed and (b) the amplitude of the leading soliton in the
downstream transition. For A = 0.05 and 0.1 (solid curve and circles, dashed curve and
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Figure 13: As in figure 12, but for the downstream solitary wave.

squares respectively) agreement between theory and numerics is reasonable. Dispersive
shock-fitting describes the DSW in the limit ¢ — oo, and at the time when integration
was stopped the amplitude of the downstream solitary wave was increasing slowly. It
is expected that longer integrations would reduce the error in (b) in cases where the
amplitude is less than the predicted value. However in some cases the amplitude is greater
than the predicted value, and indeed the numerical results for A = 0.25 (dash-dot curve
and triangles) are qualitatively different from the theory. This may be due to the apparent
minima in s, at F' = F.,(A) seen in both the theory and numerics in (a). El et al. (2006)
analyse the modulation equations for the Su—Gardner system and show that a minimum
in s as a function of the initial jump amplitude in the Riemann problem corresponds to
linear degeneracy in the Whitham system. Numerical simulations show that the DSW
terminates at the point of degeneracy, and the linear end is replaced by a finite-amplitude
wavefront (their figure 7). As the initial jump amplitude increases beyond the critical
value (which corresponds to F < F,, in figure 13(a)) the terminal point of the DSW
moves closer to the solitary-wave end. The parameters (4.8)-(4.11) are derived assuming
that the DSW is fully formed, and thus dispersive shock-fitting cannot formally be used
when F' < F.,.
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5.2. Quasi-geostrophic equations

The fully nonlinear free-boundary QG system (2.1) can be solved numerically to a high
level of accuracy using the method of contour dynamics (CD) with surgery (Dritschel
1988). We performed several simulations based on an adaptation of Dritschel’s algorithm.
The appropriate Green’s function for (2.1) is the modified Bessel function K,(y/z? +y2),
and topography is accounted for by including a contour in 0 < y < Yj(z) with negative
vorticity. To account for the wall, we must also include image contours at y = —Y and
Yy = 7Yh.

Figure 14 compares CD simulations of the full QG problem with predictions from
the dispersive long-wave model for critically-controlled flow. Red dashed curves show
the dispersive controlled solution computed as in §4.1, which agrees excellently with the
solution to the full problem over the forcing region. The horizontal dotted line in (a)
is the amplitude prediction for the upstream leading solitary wave, and is greater than
the maximum amplitude obtained in the CD simulation. In fact in the CD simulation
the amplitude of the leading wave reaches a maximum value around ¢ = 200 and
then decreases slowly from there, suggesting that higher-order dispersion smooths the
upstream transition and reduces the amplitude of the solitary wave. The maximum
peak observed in the CD simulation is 1.089, while dispersive shock-fitting predicts an
amplitude of 1.099. Thus the discrepancies are small enough that dispersive shock-fitting
may be used to estimate the speed of the leading solitary wave—the analytical prediction
is 5, = 0.128 while the average speed of the leading peak over 200 < ¢t < 900 in the CD
simulation is 0.120. For the parameters used in (a) §; > 0 so that the downstream DSW
is attached to the topography, and indeed the CD simulation shows that a modulated
wave-train develops on the downstream side of the forcing region but does not propagate
away. Long-wave theory may be used to predict the size of the largest wave: the stationary
solitary wave on the background Y., =Y, has its crest at Y7 = 1.25, while at ¢ = 900 in
the CD integrations the crest of the largest wave is at ¥ = 1.26.

In (b), both DSWs are detached from the topography. However for this set of param-
eters F' < F,, so that the downstream DSW is partially degenerate and its properties
cannot be predicted using dispersive shock-fitting. Indeed, the amplitude of the leading
wave in the downstream DSW is greater than the prediction obtained using dispersive
shock-fitting (bottom horizontal dotted line). The theory again appears to underpredict
the amplitude of the leading wave upstream (upper dotted line), although in this case
the amplitude was still increasing when the integration was halted at ¢ = 1000. The
analytical prediction for the speed is s, = 0.129 while in the CD simulation s = 0.127
when averaged over 750 < t < 1000. In (c), the upstream DSW is attached to the
topography. Here, F' > F,. and the dispersive long-wave theory accurately predicts the
amplitude of the solitary wave that leads the downstream DSW.

Figure 14(d) shows a simulation with ¢ = 1 and thus is a check on the validity of the
long-wave theory. At this extreme value of € the dispersive long-wave theory does not
accurately predict the adjusted values Y4, but the difference is still less than 5%. In
fact the contour dynamic simulation lies between the hydraulic and dispersive long-wave
predictions in the source region, which suggests that the departure from hydraulic theory
is not a monotonic function of e. However the qualitative behaviour is much the same,
with a monotonic steady solution across the source region and dispersive wave-trains
up- and downstream. The difference between the dispersive controlled solution and that
selected by the CD simulation is greater upstream, and correspondingly the prediction
for Y? is better than that for Y. Further CD simulations (not shown) suggest that

u
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Figure 14: Contour dynamic simulations showing critically-controlled flow in the full
QG problem. In (a), the downstream DSW is attached to the topography, in (¢) the
upstream DSW is attached, and in (b) and (d) both DSWs are detached. Red dashed
curves show the dispersive controlled solution, black dashed curves show the
topography, and black dotted lines show the solitary-wave amplitude predictions from
dispersive shock-fitting. Full details are given in table 3.
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Figure 15: Contour dynamic simulation in the offshore plume regime. (a) Snapshots of
the solution in the source region, every 200 time units starting from ¢ = 100. (b) The
solution at t = 900. Full details are given in table 3.

Subplot | Type F Y, A a € t
14(a) |Downstream attached 0.75 1 0.03 1.07 0.2 900
14(b) Both detached 0.8 0.8 0.1 1.19 0.2 700
14(c) Upstream attached 0.92 0.8 0.15 1.11 0.33 1900
14(d) Both detached 08 07 01 12 1 700
15(b) Offshore plume 1.1 1 0.3 0.88 0.2 900

Table 3: Details of the initial value problems displayed in figures 14 and 15.

the dispersive long-wave theory provides an accurate quantitative description of the QG
system up to € =~ 0.5.

Figure 15 shows a contour dynamic simulation in the offshore plume regime, where
neither the controlled nor the supercritical solution exist and the shelf water is directed
offshore. The growing behaviour is highlighted in (a), which shows snapshots of the
solution in the source region, taken every 200 time units starting from ¢ = 100. Since the
flow is unsteady the downstream state Y, is not well-defined and the downstream waves
are irregular and not ordered by amplitude (as seen in (b), where the full solution is
shown at t = 900). The early-time development of the plume ejects a filament of coastal
water into the open ocean (near x = —40 in (a)). Filamentation is a common feature
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of the contour-dynamic simulations, but is not shown in the other (late time) solutions
presented here as the contour dynamics algorithm removes vortex patches below a certain
size threshold for reasons of computational efficiency. (Small patches of vorticity do not
contribute much to the dynamics but complex filament shapes require a lot of nodes
and therefore take up a lot of computational time (Dritschel 1988).) The filamentation
instability is due to a convergence in the velocity field (Stern 1986) and is one possible
mechanism for the characteristic ‘squirts’ seen in the California Current system (Strub
et al. 1991).

6. Discussion

A fully-nonlinear, dispersive long-wave model has been used to study hydraulic control
of barotropic topographic Rossby waves. This model therefore complements previous
works by Gill (1977) and Dale & Barth (2001) by exploring control by coastal-trapped
waves in the limit of small S, and extends the rigid-lid channel-flow model of Haynes
et al. (1993) to a coastal setup. Section 3 classifies the behaviour of the hydraulic (non-
dispersive long-wave) equation and derives conditions for critical control in terms of Y,
the far-field width of the shelfbreak; A, the maximum magnitude of the shelfbreak per-
turbation; and the Froude number F'. The downstream transition between the controlled
state and the far-field flow is always resolved by a shock, while the upstream transition
may be resolved by a shock, a rarefaction, or a compound-wave shock-rarefaction. Figure
7 gives an example of each type of resolution, and shows how the (A, F)-plane is divided
when Y, = 0.8. In §4.2 we use dispersive shock-fitting to analyse the dispersive long-wave
equation, and show that shocks are replaced by modulated wave-trains which remain
attached to the topography when F' is near the boundary for critical flow. Figure 14
confirms that this behaviour also occurs in the full QG system, and that the dispersive
long-wave theory accurately predicts the solution in the forcing region and upstream at
large times.

The present model is too simple to make quantitative comparisons with real CSWs. A
sloping shelf and a more realistic background current can be incorporated following the
discussion of §2, while other factors such as stratification, external forcing and dissipation
will of course also be important in the real ocean. Further, in the quasi-geostrophic model
we require that variations in fluid depth are small (b < H) and that the inertial terms in
the momentum equations are negligible compared to the rotation terms, so that vortical
effects dominate the trajectory of a water column. However we note that the problem
of a coastal outflow with uniform PV has been studied using a very similar model to
that discussed here in both the quasi-geostrophic and long-wave shallow-water limits
(Johnson et al. (2017) and Jamshidi & Johnson (2019) respectively) with little change
in the behaviour. Thus some of the qualitative features that are noted here merit further
investigation. First and most important is to understand the regimes in which CTWs
exert hydraulic control in the real ocean. Zhang & Lentz (2017) and Saldias & Allen
(2020) both present numerical simulations of CTWs in a configuration very similar to that
used here, albeit with sloping topography and a background flow driven by (constant)
wind forcing. While ZL17 report steady flow when the background current opposes CTW
propagation, and a response consistent with an arrested CTW (their figure 14), Saldias
& Allen (2020) find that their simulations never become steady in the forcing region
and instead develop a meandering wave-train upstream. The reason for this difference
is not clear, although Saldias & Allen (2020) estimate that the Froude number for the
first three CTW modes in their model is 2, 0.2 and 0.1 respectively so that they may
be outside the range in which hydraulic control occurs. By exploring a wider range
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of flow speeds in a numerical model, one could potentially identify the boundaries for
critical flow, as well as boundaries at which control changes between different modes.
An improved understanding of hydraulic control could lead to a better parameterisation
of boundary currents in global ocean models. Controlled flow decreases the transport
of the background flow by recirculating some of the shelf water. This suggests that the
parameterisation of such currents may need to account for large variations in shelf width
that could significantly alter their structure and transport. Further, critically-controlled
coastal flows may be associated with enhanced exchange between the shelf and the open
ocean because they disturb the flow field far from the location of the perturbation. In
the present model the PV front also marks the boundary between shelf and open-ocean
water and so the large displacements in Y seen in, for example, figure 7(e), correspond
to large volumes of shelf water crossing the shelfbreak (upstream of the perturbation)
and deep water mounting the shelf (downstream). Indeed, ZL17 show that critically-
controlled flow leads to onshore velocities in their model of the Hudson Shelf Valley that
are significantly stronger than the equivalent offshore velocity when the background flow
is in the opposite direction, with a corresponding increase in transport (Zhang & Lentz
2018, figure 3c).

Another interesting question concerns the formation of attached and detached DSWs.
Figure 1 shows that the downstream DSW in ZL17 remains attached to the topography,
while the present model suggests that this only occurs when the flow is very close to
the subcritical boundary. Attached DSWs continually generate waves at one edge of the
forcing region, and thus would be easier to identify and analyse in more complex models
than detached DSWs, which may quickly degrade due to diabatic effects.

The ‘off-shore plume’ regime discussed in §3.2 and figure 15 is also of potential
importance. Off-shore plumes occur for sufficiently large shelfbreak perturbations when
the background current dominates over the alongshore flow generated by stretching of
fluid columns that cross the shelfbreak. Instead of turning to propagate upstream, shelf
water heads directly offshore and the flow never becomes steady in the forcing region.
Topographic features are known to cause the displacement of boundary currents that
flow counter to Rossby-wave propagation (for example, in the the separation of the Gulf
Stream at Cape Hatteras (Tansley & Marshall 2000) and the generation of upwelling
filaments at Cape Ghir (Troupin et al. 2012)) and this may be explained by PV-conserving
arguments similar to those proposed here. However the situation in the real ocean is more
complicated than in the present flat-bottomed model, where columns of fluid that cross
the shelfbreak can continue to move offshore easily. In an ocean with a sloping bottom,
the proclivity of depth-integrated flow to follow isobaths limits exchange between the
shelf and open ocean. Columns of fluid must instead separate from the bottom as they
cross the shelfbreak, and thus the dynamics differ from the barotropic model employed
here.

Perhaps the most restrictive assumption of the present model is that the assumption
of piecewise-constant PV eliminates all but a single Rossby mode. The extension of
control theory to flows with arbitrary PV distributions and therefore several modes is
an important area of study, although Hughes (1985) shows that analytically identifying
the controlling mode for a given geometry is likely to be difficult. Chapter 2.9 of Pratt
& Whitehead (2008) gives an overview of the barriers to analytic results in systems with
non-uniform PV (albeit in the context of gravity-wave control) and further discussion of
the consequences of this restriction. A different approach to studying hydraulic control
in flows with arbitrary PV distributions is to follow Mitsudera & Grimshaw (1990) and
ZL17 and identify the controlling mode as that with the phase speed which is nearest to
the (negative of the) background flow velocity. This suggests that control may in fact be
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more common in models with several modes, as there is a wider range of phase speeds
that can become arrested. Grimshaw (1987) shows that the controlling mode is resonant,
and thus if that mode has a non-zero coeflicient initially it will grow to dominate the
response at later times. However, in general mode-mode interactions may limit growth of
resonant terms at higher modes, and thus control is likely to be restricted to the first few
modes. Indeed, mode-1 resonant CSWs (defined as having small group velocity) have
been observed off the coasts of Scotland (Gordon & Huthnance 1987) and Antarctica
(Wahlin et al. 2016).

Finally, it is interesting that the agreement between dispersive long-wave theory and
the QG system is not as strong as in the flat-bottom model of JJ20. In particular, the the-
oretical prediction for the downstream solitary wave amplitude can have a qualitatively
different dependence on F as that observed in the numerical results (figure 13(a), dash-
dotted curves and triangles). We have suggested that this is due to a turning point in the
observed solitary wave speed, but a more detailed investigation of the equation is needed
to confirm this. The numerical results appear to show a DSW forming downstream,
but it is not clear what the equivalent for a finite-amplitude wave-front is for a DSW
that is degenerate at the solitary wave end, or indeed whether the minimum in § does
correspond to degeneracy of the Whitham system. Finding an equation that displays
this behaviour and has an integrable structure could lead to further developments in the
theory of dispersive shock waves.

Appendix A. Derivation of boundaries for critical control

Here we derive expressions for the boundaries of critical control, Fy(A), by treating
Q. and C as polynomials in Z = exp (—Y). The case where the front is off the shelf
(j = —1) is a quadratic in Z. However, when the front is on the shelf the corresponding
polynomial is cubic and the form of the solution is not informative, so in this case we
just present the equation to be solved.

First, suppose that the flow is critical. If the front lies off the shelf at the maximum
constriction, then solving the criticality condition gives (3.7). We call this kind of flow,
where the front is off-shelf at the control point, off-shelf controlled. In the alternative
situation, where the flow is on-shelf controlled, Y is found by solving the following cubic
equation in Z,

: (12 0,2
—a?7Z3 + (QeYT - 1) Z? + Ee*YT =0, (A1)

which has at most one root in Z > 0. (The cubic polynomial f(Z) defined by (A1) is
positive when Z = 0, and either Z = 0 is a local minimum or f/'(Z) < 0 for all Z > 0.)
The transition between (3.7) and (A 1) occurs when
1++v1 4
A:leYU—log<+a2+a>, (A2)
with off-shelf control occurring for A > Y;.

To find Fy(A), we solve the criticality condition (3.3) and the condition for non-
critical steady flow (3.2) simultaneously. For each pair (Y,, A) this gives two values of a
(equivalently the Froude number F') at which the flow transitions from being non-critical
to critical. For off-shelf control,

73 — 22,72 + Zp — 272 [2Z,(cosh (Y,) — cosh (Yq))]/?

2
=2
¢ (23— 1)? ’

(A3a)
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where we have introduced Zr = exp (A — Y,) and Z, = exp (—Y;). For fixed Y, equation
(A 3a) is used to give the supercritical boundary for controlled flow, Fy (A). For on-shelf
control,

2(Z,-2)

2 0

= A3b

=27z 1) (430)

where Y is given by the solution to (A 1). This gives the subcritical boundary F_(A).
For wide shelves (Z, < 1/2), the supercritical boundary F (A) is non-monotonic with

a maximum at Ag. Offshore plumes occur when A > Ag and F;(A) < F < F,,.,, where

1

Fro=—— A4
e = T (Ada)
cosh (Y, — A)
Fo(d) = ———————. A4b
«(4) Sinh (V) (A4b)
For narrow shelves the maximum Froude number for critically-controlled solutions is
47,
Fo = —— A
e = T (45)

which occurs at A =Y.

Appendix B. Conditions for dispersive shock-fitting

El (2005) shows that one may extract the key observables of DSWs arising in the
Riemann problem for a given equation providing certain conditions are satisfied. Thus,
assuming that DSWs form outside of the topographic forcing region, we apply the
following checks to (2.22) with Y}, = Yi:

(i) The equation admits a hydraulic limit obtained by introducing the slow variables
X = ex and T = et. This is equation (2.16).
(ii)  The linear dispersion relation is real-valued (c.f. equation (4.4)).

(ili)  The system possesses at least two conservation laws. These are equations (2.22)
and (2.23).

(iv)  The equation supports periodic travelling-wave solutions, parameterised by three
independent variables. These can be taken to be the constants of integration s,
a and E in the potential (4.7). The potential function must exhibit quadratic
behaviour in the linear and solitary-wave limits, which is true for the present
model provided Y is sufficiently far from the coast that G = O(1).

(v) The Whitham system composed of the two period-averaged conservation laws
plus the wavenumber conservation law k; + w, = 0 is hyperbolic. This is required
to ensure modulational stability of the wavetrain, and is easiest to check via
numerical simulations. However, non-convexity of the flux function Q. implies
that (2.22) is not genuinely nonlinear in an interval containing Y3 and in many
cases this leads to non-strict hyperbolicity (El et al. 2017). The compound-wave
structures discussed in §3 carry over to the Whitham equations, and lead to
richer behaviour than in the simple-wave case where the solution is a DSW.
For transitions that cross the inflexion point Y5, dispersive shock-fitting may be
applied to the secondary Riemann problem with Y. > Y5.

With these caveats about non-convexity and distance from the coast in mind, the key
parameters may be extracted as follows. The wavenumber and conjugate wavenumber
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at the linear and solitary-wave edges of the DSW are found by solving the differential
equations (c..f (El 2005))

dk Ow/0Y
Y ~ C(Y) — dw/dk’
dk  0w/dY

Y oY) - ow/ok’ B

For the present model, the general solutions to (B1) are

B(Y) = f} /g 51/3 d,

which are connected to the far-field solution by appl}gng the boundary conditions k = 0

at the soliton edge of the DSW where Y =Y, , and £ = 0 at the linear-wave end where

Y = Y_. Then, we evaluate (B2) at Y= to obtain k and k as in (4.8), (4.10).
Declaration of interests: The authors report no conflict of interests.
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