
Science of the Total Environment 777 (2021) 146200

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
A system dynamics-based scenario analysis of residential solid waste
management in Kisumu, Kenya
K. Dianati a,⁎, L. Schäfer b, J. Milner c, A. Gómez-Sanabria d, H. Gitau e, J. Hale f, H. Langmaack b, G. Kiesewetter d,
K. Muindi e, B. Mberu e, N. Zimmermann a, S. Michie f, P. Wilkinson c, M. Davies a

a Institute for Environmental Design and Engineering (IEDE), Bartlett, UCL, UK
b Buro Happold, UK
c London School of Hygiene and Tropical Medicine (LSHTM), UK
d International Institute for Applied Systems Analysis (IIASA), Austria
e African Population and Health Research Centre (APHRC), Kenya
f UCL Centre for Behaviour Change (CBC), UK
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• We present a system dynamics study of
solid waste management in Kisumu,
Kenya.

• Scenarios involve a waste-to-biogas ini-
tiative and a ban on open burning in
landfill.

• Combined scenario generates 1.1m
tonnes cumulative GHG savings
by 2035.

• Largest contribution (42%) is from bio-
gas substituting traditional cooking
fuels.

• Combined scenario may save 1,150 cu-
mulative life years by 2035, plus ~220
more p.a.
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The problem of solid waste management presents an issue of increasing importance in many low-income set-
tings, including the progressively urbanised context of Kenya. Kisumu County is one such setting with an esti-
mated 500 t of waste generated per day and with less than half of it regularly collected. The open burning and
natural decay of solid waste is an important source of greenhouse gas (GHG) emissions and atmospheric pollut-
ants with adverse health consequences. In this paper, we use system dynamics modelling to investigate the ex-
pected impact on GHG and PM2.5 emissions of (i) a waste-to-biogas initiative and (ii) a regulatory ban on the
open burning of waste in landfill. We use life tables to estimate the impact on mortality of the reduction in
PM2.5 exposure. Our results indicate that combining these two interventions can generate over 1.1million tonnes
of cumulative savings in GHG emissions by 2035, of which the largest contribution (42%) results from the biogas
produced replacing unclean fuels in household cooking. Combining the two interventions is expected to reduce
PM2.5 emissions from the waste and residential sectors by over 30% compared to our baseline scenario by 2035,
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GHG accounting
Health impact assessment
Kisumu
resulting in at least around 1150 cumulative life years saved over 2021–2035. The contribution and novelty of
this study lies in the quantification of a potential waste-to-biogas scenario and its environmental and health im-
pact in Kisumu for the first time.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Municipal solid waste management (MSWM) in sub-Saharan Africa
(SSA) remains a critical challenge despite the development of several
continent-wide and regional policies and strategies to address this
(see for example African Union Commission, 2015, EAC, 2016, WHO,
2018). With projected population growth, rapid urbanization and eco-
nomic growth, production of solid waste is expected to increase, and
this, coupledwithweak implementation of existing legislation and bud-
getary constraints for waste services, may worsen the situation (UNEP,
2018). In most cities in the region, open dumpsites (both controlled
and uncontrolled) are the final resting place of the collected municipal
solid waste (MSW), posing environmental and health challenges for
city dwellers (UNEP, 2018). Emissions of climate changing greenhouse
gases (GHG) occur at various stages across the SWM service chain.
Across many African cities, waste collection and transportation fleets
are old, leading to higher emissions of GHGs (Friedrich and Trois,
2011). In addition, with the prevalence of open dumpsites without gas
harvesting systems, the decomposition of organic waste leads to the re-
lease of methane (Friedrich and Trois, 2011). This gas can, however, be
Fig. 1.Map of Kis
Source: African P

2

harnessed as an alternative and clean source of energy for themore than
half of households in SSAwho rely on biomass and kerosene for cooking
(Lambe et al., 2015; Morrissey, 2017). Biomass fuels as well as kerosene
have been associated with high emissions of household air pollutants
with implications for the health of users and their families (WHO,
2021). With the 2030 deadline of the SDGs—including SDG 7 on access
to clean affordable energy—less than a decade away, governments in
Africa and elsewhere where biomass is a dominant fuel must find alter-
native clean fuels for households. Via exploring the potential of a pro-
posed waste-to-biogas initiative in providing energy for cooking, in
reducing GHG emissions, and in improving air quality and associated
health outcomes, this paper provides a unique opportunity in the search
for pathways towards affordable and clean energy in Kisumu County,
Kenya.

Kisumu County, which has Kisumu City as its capital, is strategically
positioned in the west of Kenya on the shores of Lake Victoria (Fig. 1),
the second largest freshwater Lake in the world. Kisumu, the third larg-
est city in Kenya, is a key commercial and transport hub for theWestern
region of Kenya and the East African region. In spite of that, over half of
Kisumu City's population are categorised as poor (Olang et al., 2018),
umu County.
opulation and Health Research Centre
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and the County scores 0.49 on the Human Development Index (HDI),
below the national average at 0.56 (County Government of Kisumu,
2019). The 2019 population census indicates that the county has a pop-
ulation of about 1,156,000 people (KNBS, 2019). Population has been
growing at a rapid rate of about 2.3% per year and is expected to con-
tinue to grow at over 2% per year until 2030 (United Nations, 2019).

Rapid urbanization and changing consumption patterns, together
with poor environmental management, have turned MSW into an
alarming crisis for Kenya, manifest in the commonly overflowing
dumpsites in the cities which are cause for environmental and health
hazards (Awuor et al., 2019). As with many urban areas in the Global
South, Kisumu is struggling with an overflowing dumpsite as well as
consequent environmental and health risks associated with improper
disposal of MSW (Sibanda et al., 2017). Kisumu County generates
about 500 t of solid waste per day1 (Oyake-Ombis, 2017) out of
which, based on estimates we obtained from local actors in the system,
only about 40% is collected for disposal at the city's open landfill (see
Appendix A, Section i). Other estimates indicate even lower shares,
starting from as low as 10–20% (Aguko et al., 2018; Awuor et al., 2019).

Kachok dumpsite (Fig. 2 left photo), located within the city's central
business district and only 2 km from the centre, has accumulated the
city's waste since 1975 (Awuor et al., 2019). The dumpsite is about
2.7 ha and is characterised by open burning ofwaste—aimed at reducing
the volume of waste and preserving disposal space at the site (Awuor
et al., 2019)—as well as noise, odour from decaying organic matter,
dust, and smoke. There are also concerns around insecurity, public
health, and environmental degradation due to the pollution of Lake
Victoria through leachate run-offwhich typically contains heavymetals,
organic pollutants and microbial pathogens (County Government of
Kisumu, 2017; Sibanda et al., 2017; Tyagi et al., 2018). Uncontrolled
open dumping and open burning of waste contribute to the emission
of climate altering GHGs such asmethane (CH4), aswell as carbon diox-
ide (CO2) and black carbon (BC). In addition, the open burning of waste
also generates toxic air pollutants such as fine particulate matter into
the air which cause respiratory, cardiovascular and other kinds of dis-
eases when inhaled (Sibanda et al., 2017). Aguko et al. (2018) report
higher concentrations of such air pollutants over and around Kachok
dumpsite (Aguko et al., 2018). Efforts towards relocating the
overflowing dumpsite to a larger site farther away from the city centre
have so far not been successful. In a comprehensive review of the state
and history of Kachok dumpsite, Awuor et al. (2019, p. 4) make the fol-
lowing observation: “[i]n its location and current state, [Kachok
dumpsite] is an environmental and health hazard defeating the purpose
for waste disposal sites; which is to protect human andwildlife popula-
tions from health hazards and the environment from degradation.”

The lion's share of the city's waste remains uncollected and accumu-
lates in skips (or where skips used to be), is openly burnt, illegally
dumped on vacant land, alongside roads (resulting in numerous un-
sightly garbage heaps scattered around the city, see Fig. 2 right photo)
or in drainage systems (resulting in frequent flooding of neighbourhoods
with waste and sewage water) (Gutberlet et al., 2017; Sibanda et al.,
2017). The County has developed and revised an Integrated Solid Waste
Management Plan (KISWAMP) (County Government of Kisumu, 2017),
but this has so far failed to result in a transformation of the state of
MSWM in Kisumu (Awuor et al., 2019).

In line with Kenya's strategic target of reducing GHG emissions by
30% by 2030, as pledged at COP-21 in Paris, 2015 with a strong focus
on increasing access to renewable energy (Dalla Longa and van der
Zwaan, 2017), Kisumu County's KISWAMP (County Government of
1 Estimates for the amount of waste generated in Kisumu vary widely, from 200 up to
500 t/day (Sibanda et al., 2017). Thewide range of these estimates is due to the lack of sys-
tems to formallyweigh generatedwaste (e.g. via a weighbridge at dumpsites), leaving the
Kisumu Department of Environment to rely on rough per capita methods for estimating
waste volumes. Here, we use the Oyake-Ombis (2017) figure which covers the entire Ki-
sumu County.
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Kisumu, 2017) discusses the potential in waste-to-energy (WtE) tech-
nologies. Currently, a wide range of such technologies exist. These are
broadly categorised as thermal (e.g., incineration, pyrolysis, gasifica-
tion) and biological (e.g., aerobic composting or anaerobic digestion/
biogasification) (Moya et al., 2017). We assert that incineration, which
is the most widely used method (Fernández-González et al., 2017), is
not suitable for the context of Kisumu primarily because the composi-
tion of waste in Kisumu, which consists of over 60% biowaste (Sibanda
et al., 2017), as is common in low-income settings (Hoornweg and
Bhada-Tata, 2012; Kumar and Samadder, 2017), negatively affects its
calorific value and impairs the practicability and energy efficiency of
thermal treatment options which are more suitable for low-moisture
waste (Dlamini et al., 2019; Franca and Bassin, 2020). Secondly, inciner-
ation requires very large waste input to be viable and is more suited to
areas of higher population (Fernández-González et al., 2017). It is also
very capital-intensive, estimated by Kisumu County to require around
$20 M of initial capital investment (County Government of Kisumu,
2017, p. 54) and also involves high operating costs (Tyagi et al., 2018).
Lastly, there are important environmental and health concerns around
incineration, as it may emit various particulate and gaseous pollutants
(Kumar and Samadder, 2017; Tyagi et al., 2018; Istrate et al., 2020).
Other advanced thermal treatment processes such as pyrolysis and gas-
ification are deemed to be “technically challenging, relatively unproven
at commercial scale, and […] the generated energy may be needed to
power the process (Tyagi et al., 2018, p. 381).”

The same mostly organic composition of Kisumu's waste, however,
makes it highly suited for biological treatment (Gebreegziabher et al.,
2014). Anaerobic digestion (AD) is the biological decomposition of or-
ganic waste in an oxygen deficient environment (Dlamini et al., 2019),
which turns the ‘biowaste’ into two valuable products: (a) energy-rich
renewable biogas, a methane-rich gas produced by biological means,
and (b) nutrient-rich digestate which can be used directly or after
composting in agriculture (Tyagi et al., 2018). As it entails relatively
lower capital investment compared to thermal treatment options, AD
is also considered the most feasible MSWM solution in low-income
countries (Kumar and Samadder, 2017), with various studies asserting
that it holds significant promise in SSA for helping tomitigate the prob-
lems of urban waste management, energy insecurity and climate
change (Abila, 2014; Gebreegziabher et al., 2014; Dlamini et al., 2019;
Franca and Bassin, 2020). Biogas technology helps mitigate climate
change by reducing GHG emissions, both via substituting fossil fuels for
cooking, heating, lighting, or electricity generation, and via avoiding emis-
sions associated with mineral fertiliser production (Gebreegziabher et al.,
2014). There is generally a consensus on the favourable environmental
consequences of the diversion of organic waste from aerobic, GHG emit-
ting composting to anaerobic digestion (Istrate et al., 2020).

In Kenya, in the city of Naivasha, 76 km fromNairobi, a 2.4MWcom-
mercial biogas plant, with a cost of $6.5million and an annual treatment
capacity of 50,000 t of organic waste, inaugurated in 2017 and is report-
edly the largest grid-connected biogas power plant in Africa, meeting
the power needs of 6000 rural homes (Roopnarain and Adeleke, 2017;
Kemausuor et al., 2018). In this paper, however, rather than proposing
to use biogas from waste to generate electricity, we explore the option
of making the biogas directly accessible to households for use in
cooking. Currently, close to 80% of households in Kisumu use traditional
biomass fuels (mainly wood and charcoal) for cooking (KNBS, 2019,
p. 336). Indoor air pollution caused by traditional cooking is today's
most important environmental health risk and second-largest risk fac-
tor in all categories in Eastern SSA (Lim et al., 2012). Women and chil-
dren are disproportionately at risk of health issues caused by indoor
air pollutants. Furthermore, the use of wood and charcoal for cooking
is a major driver of deforestation and GHG emissions (Carvalho et al.,
2019). Evidence shows that using alternative cook stoves significantly
reduces indoor air pollution, and numerous studies demonstrate the
link between reductions in household air pollution and improved respi-
ratory health (Anderman et al., 2015). Tumwesige et al. (2017)



Fig. 2. Kachok dumpsite (left) and roadside scattered waste in Nyalenda slum (right).
Photo credit: Aarathi Prasad
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monitored real-time PM2.5 and CO concentrations in 35 households in
Cameroon and Uganda where biogas and firewood (or charcoal) were
used and found that fully switching to biogas for cooking reduces both
CO and PM2.5 concentrations to below WHO recommended limits. Al-
though no direct evidence on the health benefits of households
switching to biogas is available, comparable studies of households
switching to LPG suggest that such a shift could bring respiratory and
cardiovascular health benefits of the order of 20–25% reduction in risk
of a wide range of diseases (Semple et al., 2014). Within the context
of Kisumu, Carvalho et al. (2019) compare the results of four biomass
cookstove strategies on reducing energy consumption and air pollutant
emissions in Kisumu County and find that, at least in themedium-term,
the highest energy savings, as well as reductions in GHG, PM2.5 and BC
emissions and the accompanying burden-of-diseases, in comparison
to business-as-usual, are achieved via a transition to biogas cookstoves
(Carvalho et al., 2019). Currently, 18.7% of households in Kisumu use
LPG for cooking, versus less than 1% using electricity (KNBS, 2019), tes-
tament to the higher degree of readiness for the uptake of gas-burning
cookstoves versus electric ones. Furthermore, electricity generated
from biogas plants would have to compete with low-priced (often
subsidised) electricity from other sources, while electricity generation
from biogas is relatively expensive, even with free substrates, especially
in countrieswhere the technology is imported (Kemausuor et al., 2018).
The above considerations justify the choice to use the biogas directly for
cooking rather than for electricity generation.

In Kenya, there are already numerous small-scale biogas installa-
tions in operation (Kemausuor et al., 2018), including in Kisumu
(Sibanda et al., 2017). Within the Africa Biogas Partnership Program,
which aimed to promote adoption of biodigesters by rural households
in SSA, over 27,000 households in Kenya, Tanzania andUganda installed
a biodigester between 2009 and 2017, half of which in Kenya (Clemens
et al., 2018). In fully replacing traditional cooking fuels by clean biogas,
Kenya showed the highest success, with half of the adopters exclusively
using biogas, while the other two countries reported higher rates of fuel
stacking, i.e., using a mix of fuels rather than a complete transition to
biogas. Clemens et al. (2018) suggest that the Africa Biogas Partnership
Program has succeeded in creating a nascent biodigester market in East
Africa, but challenges such as high upfront cost, limited access to credit,
and lack of maintenance still remain. Similarly, Sibanda et al. (2017)
maintain that technical knowhow and financial investment in this
area is limited and further capacity building is needed (Sibanda et al.,
2017).

In summary, it appears that anaerobic digestion of biowaste to pro-
duce biogas for use in household cooking holds great potential in reduc-
ing waste to landfill and associated externalities (e.g., pollutant and
GHG emissions, groundwater contamination), while simultaneously
improving indoor air quality and related health outcomes. Within this
context, the purpose of this study is therefore to explore the idea of a
transition towards anaerobic digestion of Kisumu's organic fraction of
MSW and the use of the produced biogas in household cooking on the
levels of waste accumulating in landfill or waste scattered elsewhere,
4

on waste related GHG emissions, on air pollutant concentrations, and
on related health impacts. The novelty and importance of this paper
lies in the quantification of a potential waste-to-biogas scenario and
its environmental and health impact in Kisumu for the first time.

Existing studies on the impacts of WtE technologies in other con-
texts—e.g., Ayodele et al. (2017) in Nigeria, Chaya and Gheewala
(2007) in Thailand, Evangelisti et al. (2014) in the UK, and Rigamonti
et al. (2010) and Cremiato et al. (2018) in Italy—tend to take a static
Life Cycle Assessment (LCA) approach. Considering that the waste sys-
tem involves distinctly dynamic processes, such as the accumulation,
depletion and degradation of stocks of waste, static methods do not ap-
pear up to the task of informing policymaking in this area,where invest-
ments are often large-scale with long timeframes in mind. Thus, for
various reasons, the primary method used in this study is system dy-
namics (SD). Firstly, a key advantage of SD over common spreadsheet
waste management models such as LCA is the dynamic nature of SD
models, versus the static optimization in spreadsheet-based methods
(Adamides et al., 2009; Inghels and Dullaert, 2011). Secondly, it not
only allows to simulate material flows but also captures the
decision-making structures managing these flows. Thirdly, SD is a
white-box modelling approach, with fully transparent model boundary
and assumptions. Fourth, it allows for a visual representation of the un-
derlying system, which enhances the model's communicability. As
reviewed later in Section 2.1, SD has been widely applied to problems
of MSW around the world.

The rest of the paper is structured as follows. In the next section, the
methodology used in this study is described. Subsequently, in Section 3,
the results from our scenario analyses are visualised, compared and
contrasted. The paper concludes in Section 4 with a brief discussion of
the results, implementation challenges and study limitations. This man-
uscript is accompanied by three Appendices including a full documenta-
tion of themodel, list of model parameters, and detailed specification of
the scenarios. The paper is accompanied by an online supplement con-
taining a folder with the model and all scenario runs.

2. Methods

The aims and scope of this study were determined based on a series
of eight focus group discussions in Kisumu during July 2019with repre-
sentatives from Kisumu County's Department of Environment, the local
industry, non-government groups, community-based organizations,
academia and resident associations. These discussions, which were
audio-recorded and later transcribed, provided context information of
the current waste management situation and diverse stakeholder per-
spectives about it (Salvia et al., 2021). Our scenario definitions were
also informed by these discussions.

Multiple methods are combined for the purpose of this study. First,
the central method applied is SD (Sterman, 2000), which is introduced
in the following Sub-section 2.1. In Sub-section 2.2, a description of
the SD model follows. As seen in Appendix B, where all parameter as-
sumptions used in the SD model and their sources are listed, the
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primary source for parametrising themodel has been existing academic
papers, national and international databases and industry publications.
Data for certain parameters specific to the state of SWM in Kisumu,
such as the city's current waste collection capacity or estimates of the
current stock of waste in the city's landfill, were obtained in correspon-
dence with the Kachok dumpsite manager and Kisumu county officials.

Second, emission factors used to calculate GHG emissions were ob-
tained according to the IPCC guidelines (IPCC, 2006), as described in
Section 2.3. Third, the method for estimating ambient and household
PM2.5 concentrations is described in Section 2.4. Fourth, these esti-
mates are fed into a life table health impact assessment model (as de-
scribed in Section 2.5). This Methods section concludes with a
description of our scenarios.

In their review of the main existing approaches to GHG accounting
in waste management, including national accounting, corporate level
accounting, life cycle assessment, and carbon trading methodologies,
Gentil et al. (2009) emphasise the importance of transparency in GHG
accounting concerning aspects such as waste type and composition,
time period considered, GHGs included, choice of system boundaries,
etc. Following this guideline, full transparency is followed in describing
the method and the model in the following sub-sections, and in more
detail in the Appendices. This being an initial, high-level, aggregate
model, it has several limitations, as discussed later in Section 4.3.

2.1. System dynamics and its past applications to SWM

System dynamics is a method based on computer simulation where a
model of the cause-and-effect relationships of a real-world complex sys-
tem is built, parametrised and validated using real-world information.
The sources of such information can be varied and can include not only
those available in numerical datasets and scientific literature, but also
those gleaned from the mental models of experts (Forrester, 1987).

Thanks to its strengths in bringing together knowledge from a variety
of fields in an integrated framework and in tackling dynamically complex
problems, SD has been widely applied to the problem of MSWM in the
past. In terms of quality, papers applying SD to SWM are very mixed.
The history of such applications goes back around three decades, starting
withMashayekhi (1993)who uses an SDmodel capturingmajor interac-
tions between different socioeconomic and environmental factors to
study the problem of solid waste disposal in New York. Later, and within
Fig. 3. Overview of model se
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the context of a lower-income country, Sudhir et al. (1997) propose an SD
model for the study of the potential consequences of various structural
and policy alternatives for a sustainable urban SWM system for a typical
metropolitan city in India, and conclude by recommending the allocation
of waste management funds in proportion to the requirements of collec-
tion, disposal and processing, as opposed to prioritising short-term inter-
ests such as only collection of waste. Still within the context of India,
Talyan et al. (2007) use an SD approach to quantify CH4 emissions from
MSW disposal under various scenarios in Delhi. Their model shows that
an improved waste management system, involving the introduction of
composting, biogasification, and refuse-derived fuel, would significantly
reduce CH4 emissions over time despite an increase in waste generation.
Sufian and Bala (2007) build an SD model for SWM in the city of Dhaka,
Bangladesh, the results of which show that in order to improve environ-
mental outcomes, it is not sufficient to increase budget for waste collec-
tion capacity, but this needs to be accompanied by increasing the
budget for treatment, mirroring the finding of Sudhir et al. (1997). This
mindset informs the current study as well.

Within the context of Kisumu, Gutberlet et al. (2017) apply a combi-
nation of action net theory and systems thinking to build a map of the
waste management system in Kisumu with all its actors, actions, pro-
cesses and interconnections. Their main conclusion is that “new waste
initiatives should build on existingwastemanagement practices already
being performed within informal settlements by waste scavengers,
waste pickers, waste entrepreneurs, and community-based organiza-
tions (Gutberlet et al., 2017, p. 106).”

2.2. Model description

The full model documentation is provided in Appendix A – Full
Model Documentation. In this section, a high-level schematic over-
view of the model is shown in Fig. 3. The model consists of four
inter-connected sectors: (1) Waste Collection, (2) Biogas, (3) Land-
fill, and (4) Scattered Waste. Variables calculated in one sector are
often used as inputs in another sector. In the first sector, which cap-
tures waste collection, indicators such as total waste generated, total
waste collection capacity, proportion of waste collected and greenhouse
gas emissions due to waste transport are calculated. In particular, total
food waste collection capacity becomes a key input to the Biogas Sec-
tor, as a constraint on biogas production capacity along with the
ctors and interlinkages.



Table 1
CH4 and CO2 emission factors.

Item Unit Food waste Non-food waste

CH4 emission factor for scattered waste tonne CH4/kt 10.13 8.85
CH4 emission factor for landfill waste tonne CH4/kt 20.27 17.70
CO2 emission factor for burnt waste tonne CO2/kt n/a 464.89
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cumulative capacity of the biogas facilities, together determining
total biogas generated. Subsequently, the savings in GHG emissions
resulting from a switch to clean biogas for cooking are calculated
and accumulate in the stock of cumulative savings in GHG emissions
due to products of anaerobic digestion.

A by-product of the biogas plants is digestate, which can be used as
fertiliser, either directly or upon further processing into compost. This
organic fertiliser reduces the need for inorganic fertiliser use in the re-
gion, potentially countering another source of GHGemissions. However,
there is substantial uncertainty around the extent of such savings
(Møller et al., 2009). Cecchi et al. (2011) estimate these savings in the
range of 30–40 kg-CO2t−1 while cautioning that fugitive CH4 and N2O
emissions when digestate is applied on land, ranging from 0 to 50 and
from 30 to 60 kg-CO2t−1 respectively, can cancel out any savings
(Cecchi et al., 2011). The aggregate result will depend on the exact op-
erating conditions and is likely to be small (Møller et al., 2009). There-
fore, any digestate-related GHG saving or load is disregarded in this
model. Similarly, assuming that any fugitive CH4 emissions from the
biogas plant are flared, such emissions are not accounted for.

Next, the waste that remains and that is not used for biogas produc-
tion is transported to landfill, as captured in the Landfill Sector, given
our mixed waste collection constraints (coming from theWaste Collec-
tion Sector). The accumulation of food and non-food waste in landfill,
together with any reductions in thewastemass via open burning, natu-
ral decomposition and informalwaste-picking are captured in the Land-
fill Sector. Furthermore, emissions of different types of GHGs as a result
of burning and decomposition, including carbon dioxide (CO2), meth-
ane (CH4) and black carbon (BC), are also calculated, alongwith the an-
nual and cumulative savings inGHGemissions (both from landfill waste
and from scattered waste, as imported from Scattered Waste Sector).
Various emission factors for food and non-food waste required for
these calculations are derived based on best available evidence, as de-
scribed in Section 2.3. A key feature of the model is that the food and
non-food contents of the waste that remains after biogas production
and is disposed of are dynamically calculated. This leads to outcomes
which are not immediately evident without using simulation, as we
will see in the results (Section 3).

Similarly, the Scattered Waste Sector captures the accumulation,
depletion and emission processes for food and non-food waste
which is not collected due to the constraints of our waste collection
fleet capacity and is structured in the sameway as the Landfill Sector.
Besides GHG emissions, particulate matter (PM2.5) emissions from
both landfill and scattered waste are also calculated in this sector,
which are then used for estimating the potential effects of our sce-
narios on population health, according to the method described in
Section 2.5.
Table 2
Estimation of emission factors.

Kisumu waste composition Composition in % kt waste Dry matter
in % of wet

Food waste 0.636 49.56 40
Paper 0.122 9.51 90
Plastic 0.102 7.95 100
Glass 0.032 2.49 100
Scrap Metal 0.013 1.01 100
Other 0.095 7.40 90
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With regards to the boundaries of themodel, based on Gentil et al.'s
(2009) proposed upstream-operating-downstream framework for GHG
accounting inwastemanagement, in the ‘indirect upstream’ category, in
the model we have accounted for emissions from waste transport; in
the ‘direct operating’ category, we have accounted for landfill and
scattered waste emissions (CH4 from decomposition and CO2 and BC
from burning), and in the ‘indirect downstream’ category, we have
accounted for savings resulting from the biogas substituting biomass
in household cooking. These boundaries for the model can be consid-
ered in compliance with Møller, Boldrin and Christensen's (2009,
p. 823) conclusion that “irrespective of the employed technology, as
long as the produced biogas is utilized for energy substitution, the indi-
rect downstream emissions are the most important factor. Direct emis-
sions at the AD facility and indirect upstream emissions play less
important roles.”

2.3. Development of emission factors

We use emission factors from the GAINS model (Amann et al., 2011,
2020) in our analysis. Methane emission factors and carbon flows follow
Gómez-Sanabria et al. (2018) and are developed in line with the method
presented in the IPCC Guidelines (IPCC, 2006, vol. 5 ch. 3). Both are repre-
sentative of the particular waste composition in Kisumu from County
Government of Kisumu (2017). Following the local waste management
conditions, the estimated emission factor for landfill food waste is
20.27 t CH4/kt dumped food waste. For the non-food waste fraction, the
emission factor is estimated at 17.70 t CH4/kt dumped non-food waste.
For scattered waste, emission factors for food waste and non-food waste
are estimated to be 10.13 t CH4 /kt and 8.85 t CH4 /kt, respectively.

Furthermore, the method suggested in the IPCC Guidelines (IPCC,
2006, vol. 5 ch. 5) is applied to estimate CO2 emissions from open
waste burning. Emission factors are calculated for each fraction of
waste based on the fossil carbon content. CO2 emissions from biogenic
origin are not included in the estimates as advised in the IPCC Guide-
lines (IPCC, 2006, vol. 5 ch. 5). This means that CO2 emissions from
open burning of food and wood waste are set to zero. The implied CO2

emission factor for open burning of the non-food waste fraction in
Kisumu is 464.89 t CO2/kt of waste burnt.

Emission factors for black carbon (BC) and PM2.5 are adopted from
Akagi et al. (2011) and Christian et al. (2010) and are in line with the
emission factors used by Klimont et al. (2017) and Wiedinmyer et al.
(2014). The emission factors are 8.74 t/kt waste burnt for PM2.5 and
0.65 t/kt waste burnt for BC. These emission factors are for mixed waste
and are not representative of Kisumu's particular waste composition.

Table 1 presents estimated CH4 and CO2 emission factors for the
Kisumu waste composition.
content
waste

DOC % in dry
waste

Fossil carbon content in
% of total carbon

Total CC in % of
dry waste

38 0 38
44 1 46
0 100 75
0 0 0
0 0 0
0 100 3



Table 3
Summary of scenarios.

No. Scenario
name

Waste collection fleet Biogas production capacity Ban on landfill
waste burning

(1) Baseline Slow gradual increase in mixed waste trucks (one additional truck every two years)a – No.
(1b) Ban on

Burning
Same as above. – Yes. Over

8 years.
(2) Biogas New organic waste handcarts from 83 units (49.3 t per day = 18 k tonnes/year) in

2022 gradually up to 411 units (246.6 t per day = 90 k tonne/year) in 2028.
From 18,000 t/year (six facilities) in 2022 up
to 90,000 t/year (30 facilities) in 2028.

No.

(2b) Biogas + Ban
on Burning

Same as above. Same as above. Yes. Over
8 years.

a All other scenarios include this baseline assumption.

2 Here, we assume that all waste burning in the dumpsite is humanly induced. This is,
however, not necessarily the case as spontaneous combustion without human interven-
tion also occurs.
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Table 2 shows the background information needed to carry out the
estimation of the emission factors.

2.4. Estimation of ambient and household PM2.5 concentrations

The PM2.5 annual emissions obtained based on the above emission
factor are converted into ambient PM2.5 concentrations using a simpli-
fied version of the atmospheric calculations in the GAINS model
(Amann et al., 2020) which themselves rely on a linearized representa-
tion of full atmospheric chemistry transport model simulations. GAINS
contains atmospheric transfer coefficients from all source pollutants
for PM2.5 in Kenya to a 0.1° receptor grid. As detailed in Appendix A
(Section iv), we developed an integrated atmospheric transport coeffi-
cient from near-ground emissions of PM2.5 in Kisumu to ambient
PM2.5 concentrations in Kisumu, which is then applied to the respective
emissions from residential combustion and MSW burning to estimate
their impacts.

For household PM2.5 concentrations, we used an approximation
method with a high level of uncertainty, described in detail in
Appendix A (Section ii), which is based on empirical measurements re-
ported in Muindi et al. (2016, p. 7 Table 3) on mean levels of indoor
PM2.5 concentrations in households using different cooking fuel types.

2.5. Health impact assessment

We estimated the effect of changes in exposure to ambient and
household PM2.5 on mortality in Kisumu under each scenario using life
tables based on the IOMLIFET model (Miller and Hurley, 2003) pro-
grammed in R (version 3.5.1, R Foundation for Statistical Computing,
MA, USA). The effects of changes in PM2.5 were modelled by applying
to the life tables the Global Burden of Disease (GBD) Integrated
Exposure-Response functions relating long-term PM2.5 exposure to
mortality risk from five causes – ischaemic heart disease (IHD), chronic
obstructive pulmonary disease, stroke, lung cancer and lower respira-
tory infections (LRI) (Apte et al., 2015). The functions for IHD and stroke
varied by age.

The life tables were set up using age- and gender-specific population
and cause-specific mortality data for Kenya from the GBD's GHDx tool
for the closest available year of data to the study period (2017). The
national-level population data was downscaled to represent the popu-
lation of Kisumu. Single-year-of-age mortality rates were calculated
from 5-year rates via one-way spline interpolation using the MS Excel
add-in, SRS splines (version 2.5, SRS1 Software LLC, MA, USA).

We combined ambient and household PM2.5 as a time-weighted av-
erage, assuming that men and women in Kisumu spend 50% and 80% of
their time indoors at home, respectively. To account for delays in
changes in mortality risk following air pollution exposure reductions,
we incorporated cessation lags for each outcome. These were exponen-
tial functions parameterised using evidence from studies of smoking
cessation (Lin et al., 2008) and assumptions about disease progression
over time. For IHD and lung cancer, we assumed the full effect would
be reached after 15–20 years, with shorter lags for COPD, stroke and LRI.
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The outputs from the life tables are life years lived by the population
over the study period. Solid waste may give rise to other forms of ad-
verse health impact but in the analysis presented in this paper, we con-
centrate only on those arising from contamination of the outdoor air by
fine particles (PM2.5) arising from burning of solid waste.

2.6. Description of scenarios

In this study, we simulate four different scenarios as summarised in
Table 3. The scenarios were developed in close connection to planned
developments of Kisumu City regarding waste management strategies
(County Government of Kisumu, 2017) and designed to account for
local structural factors as well as international guidelines.

In our (1) Baseline (business-as-usual) scenario, we assume only a
gradual increase in the mixed waste collection transport fleet, in line
with recent trends. Waste volume at the dumpsite is mainly managed
through open burning (as the existing mechanical compactor is insuffi-
cient and usually non-operational due to inadequate maintenance). At
the same time, since most of the waste is composed of moist organic
matter, combustion occurs only on the surface and does not signifi-
cantly reduce waste volume (Awuor et al., 2019). This open burning is
a major contributor to emissions of GHGs and atmospheric pollutants
(Forbid et al., 2011). In scenario (1b) Ban on Burning, we assume the en-
forcement of a gradual regulatory ban on the open burning of waste in
landfill.2 The ban on open burning is one of the Global Waste Manage-
ment Goals set out by the United Nation's Environment Programme
(UNEP) in the Global Waste Management Outlook (Wilson et al.,
2015). This being a major change in SWM practices in Kisumu, in con-
sultation with local county officials we assume that the Ban takes
place over an extended period of eight years, bringing the fraction of
waste annually burnt in landfill from the current 23% per year
(Onyango and Kibwage, 2008) gradually down to zero. This Ban is as-
sumed to be enforced only in dumpsite at this stage.

In the (2) Biogas scenario, we assume a phased commissioning of 30
decentralised biogas facilities in different locations in Kisumu County
over a period of eight years (about four new facilities each year). Each
facility is envisaged as a medium-sized plant with a treatment capacity
of 3000 t of biowaste per year (roughly 8 t per day), taking the total cu-
mulative capacity up to 90,000 t annually, roughly two thirds of
Kisumu's food waste, by 2028. The plants are proposed to be commis-
sioned gradually so that the required funding becomes less prohibitive
and can be provided in installations and so that learning from commis-
sioning and operation of plants can be transferred from each phase to
the next. These are envisaged to bemedium-sized facilities with trained
staff, with the intention of avoiding dis-adoption of the technology re-
ported to often take place in household-level initiatives as a result of
technical problems and untrained users (Clemens et al., 2018). Such a
program is compatible with existing mindset in the County
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Government. In one of our focus group discussionswith representatives
from the local government one County official said the following:

“even if we cannot get one big plant to produce that amount of bio-
gas or energy, can we use this devolved system so that every sub-
county has a place where we can drive and dispose of the organic
waste.”

It is also in linewith Gebreegziabher et al.'s (2014) recommendation
of communal or institutional level installations as the ideal scale for
overcoming the infrastructure challenges of biogas. Biogas initiatives
of a similar scale have already been successfully implemented else-
where in the developing world, e.g., the Valorgas project in India
(VALORGAS, n.d.).

In terms of substrate provision, these plants would need to be sup-
plied with source-separated organic fraction of MSW. The decentralised
approach has the advantage of minimising the distance travelled for
transporting the waste to treatment facilities (Gebreegziabher et al.,
2014). We assume that a separate collection system for food waste is
gradually built up to match the plants' expanding waste treatment ca-
pacity. The collection and transportation of the food waste shall be
done by special-purpose handcarts, capable of accessing narrow alley-
ways in the informal settlements and operated by waste collectors for-
mally employed by the City—perhaps recruited from among current
informal actors in the sector, in line with Gutberlet et al.'s (2017)
context-specific recommendation of building improved SWM practices
on existing ones.

As outlined and justified earlier in the Introduction, we assume that
the produced biogas will then be bottled and distributed to households
at filling stations for use in cooking instead of currently prevalent bio-
mass and kerosene (KNBS, 2019, p. 336). A distributed set of facilities
makes the filling stations more easily accessible for households while
providing jobs to the local community. Based on the assumption of a
3000 t per year treatment capacity, a yield of 100 m3 per tonne of
food waste (Veeken (2005) cited in Müller (2007, p. 26, Table 3)), and
an average household need of 262.5 m3 biogas per year for cooking
(see Appendix B for sources and calculation), each facility is expected
to provide cooking fuel for around 1150 households. A recent working
paper by Twinomunuji et al. (2020) suggests that, in the SSA region,
biogas-based cooking fuels would compete favourably in price with
other commercial fuels, including LPG. While highlighting the promise
in such initiatives, they furthermore identify several barriers towards
widespread interest in bottled biogas in Africa, which will be discussed
later in Section 4.2.

Finally, in scenario (2b) Biogas + Ban on Burning, we combine the
abovementioned assumptions of scenarios 1b and 2. In all scenarios
we assume a growth in the number of households in line with the
growth rates in the United Nation's Probabilistic Population Projections
(median variant) (United Nations, 2019).
Fig. 4. Baseline simulation: developments in
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3. Results

In this section,we use simulation to gain insight into the likely future
developments in the dynamics of waste accumulation, associated GHG
emissions, PM2.5 concentration and consequent health outcomes
under the described sets of scenario assumptions.Wewill start by com-
paring projected trends in waste accumulation under the Baseline and
Biogas scenarios in the first sub-section and continue by comparing
GHG emissions under the two scenarios in the following sub-section.
Next, we will look at results from the Ban on Burning scenario and the
Combined scenario. The last two sub-sections deal with projections re-
lated to changes in PM2.5 and the resulting health impacts.
3.1. Stocks of waste: Baseline and Biogas scenarios

Fig. 4 shows simulated developments in the stocks of waste under
the Baseline scenario. As can be seen, landfill waste (both food and
non-food components) keeps increasing, reaching over 500,000 t by
2035, as a result of population growth along with a gradual increase in
the city's fleet of mixed waste trucks. Scattered Waste, on the other
hand, starts rising initially, peaks at just over 300,000 t around 2027
and gradually falls thereafter, down to about 242,000 t by 2035. This is
because of the assumption of a gradual expansion in the waste collec-
tion fleet which eventually overtakes the slow growth in population,
with the proportion of waste inappropriately disposed of (not shown
here) going down from around 57% in the beginning to around 22%
over the 15 years of the simulation period.

Fig. 5 portrays developments in the four stocks of waste under the
Baseline and Biogas scenarios. The top two graphs showprojected devel-
opments in food and non-food waste in landfill, while the bottom two
graphs show projected developments in scattered waste. Regarding
landfill waste, both food and non-food components increase in a linear
fashion under the Baseline scenario. As for the Biogas scenario, landfill
food waste is projected to reach less than 60% of its Baseline value by
2035. This is not surprising because as more and more of the
food waste (57% by 2035) is used for biogas production, there is less
food waste being transported to landfill, to the point that the flow of
food waste into the stock comes close to the aggregate outflows due
to decomposition and burning, keeping landfill food waste relatively sta-
ble. Conversely, there is a relatively higher accumulation of non-food
waste in landfill, as the waste that is left after biogas production to be
transported to landfill becomes more non-organic in nature, with the
non-food content ratio (not shown here) going from around 37% ini-
tially to 58% by the end of the simulation period in the Biogas scenario,
while it stays roughly constant in the Baseline simulation.

As for scattered waste, both stocks start decreasing after a few years
in all simulations, with the decline beingmuch greater under the Biogas
scenario, where scattered waste reaches near zero by the end of our
A) landfill waste and B) scattered waste.



Fig. 5. Stocks of waste, Baseline vs. Biogas scenario. A) Landfill food waste; B) Landfill non-food waste; C) Scattered food waste; D) Scattered non-food waste.
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simulation period. The improvement in accumulated scattered waste
under the Baseline scenario is a result of an assumed gradual expansion
in the city's waste collection fleet where it is assumed that one truck is
added to themixed waste collection fleet every two years. In the Biogas
scenario, on top of this we have an assumption of a fleet of special-
purpose food waste handcarts coming into operation. This increases
total waste collection capacity to 100% of the waste by 2028 and leaves
zero inflow to the stocks of scattered waste. It takes several more years,
however, for the already existing scattered waste to completely vanish
as a result of either natural decay or open burning.

3.2. Greenhouse gas emissions: Baseline and Biogas scenarios

Projected GHG emissions resulting from scenarios 1 and 1b are
shown in Fig. 6. The behaviour of total CO2eq methane emissions due to
waste decomposition (panel A) can be understood by referring to the
two graphs on the left hand-side of Fig. 5.Withwaste being transported
increasingly to landfill, landfill waste tends to dominate in determining
the behaviour of total CH4 emissions, with the CH4 emission curves fol-
lowing the curves of accumulating landfill waste in trend, albeit at a
slightly slower rate which is a result of the fall in scattered waste. The
Biogas scenario is expected to cut such emissions down by 45% by
2035, from around 24,400 to around 13,500 t per year. Similarly, black
carbon emissions due to waste burning rise at a decreasing rate in the
Baseline scenario, while they stay fairly stable under the Biogas scenar-
ios, cut by about 33% by 2035 as compared to Baseline. Since the BC
emission factor assumed for all three types of waste is the same, the
change in emissions in our scenarios cannot be the result of a redistribu-
tion of waste among the various stocks (food/non-food landfill/scattered
waste) but is rather the result of a reduction in the sum total amount of
the waste that is disposed of due to the recycling of a part of the total
waste for biogas production.

On the bottom left (panel C), we can see that total direct CO2

emissions due to waste burning do not change in the Biogas scenario
compared to Baseline, with the two curves fully overlapping. This is be-
cause, as mentioned in Section 2.3, these emissions are a product of
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non-food waste only, and total non-food waste does not change under
the Biogas scenario, rising slowly with population as it does in Baseline.

Total CO2eq emissions from waste (panel D), resulting from both burn-
ing or decomposition, is the sum of the other three variables. Here we see
a decrease in total emissions under the Biogas scenario of about 25% per
year by 2035, from around 116,000 to around 87,000 t per year.

As a result of this reduction in emissions throughout the 15 years of
the simulation as shown in the above figures, as well as many house-
holds being able to switch from fossil fuels to renewable biogas for
cooking and the resulting digestate from the biogas production process
replacing an equivalent amount of inorganic fertiliser, we expect to see
a substantial cumulative saving in GHGemissions in the Biogas scenario,
as shown in Fig. 7. Simulation suggests that by 2035, each year around 9
million m3 of biogas can be generated in this way, providing cooking
fuel for 8–9% of total households in Kisumu county. Total cumulative
savings in emissions reach 700,000 t of CO2eq by 2035. Two thirds of
these savings come from households switching to biogas, with one
third resulting from the reduction of waste in landfill and scattered
waste.

3.3. Ban on Burning scenario

Based onwhat we saw in Fig. 6, it becomes clear that potentially sig-
nificant improvements in total emissions are undermined by the lack of
any improvements in direct CO2 emissions from burning. Therefore, if
we are to make more substantial and sustainable improvements in
GHG emissions, we need to stop the open burning of landfill waste. Sce-
narios 1b and 2b are envisaged around this assumption. These are the
same as Scenarios 1 and 2, except that in each case a ban on the open
burning of landfill waste is gradually enforced, on top of the other as-
sumptions in each scenario. Let us first compare the results of Scenario
(1b) Ban on Burningwith the (1) Baseline and (2) Biogas scenarios to see
how stopping the burning would affect developments in the stocks of
waste and the resulting emissions.

In Fig. 8, the Baseline stacks are shown on the left for each year (in
blue), the ones for the Ban on Burning scenario are in the middle (in



Fig. 6. Comparison of emissions Baseline vs. Biogas scenario.
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grey), and those for the Biogas scenario are on the right (in green). Food
waste columns are darker in colour, with non-food columns lighter and
on top. As can be seen, both types of waste accumulate more rapidly in
landfill under the Ban on Burning scenario, as open burning constitutes
an importantway of reducing themass of waste in landfill and stopping
it would lead to waste piling up more rapidly. In total, by 2035, we ex-
pect total landfill waste to be 2.3 times higher than theBaseline scenario.
Mentally simulating the aggregate outcome of this intervention for total
emissions is not straightforward because on the one hand landfill waste
is growing faster but on the other hand emissions due to burning are
reduced to zero in landfill. Simulation can help here by providing a
projection for future emissions, as shown in Fig. 9.

In Fig. 9, once again, left-hand side (blue) bars represent the Baseline
scenario, middle bars (grey) the Ban on Burning scenario, and the right-
hand ones (green) represent the Biogas scenario. The three different
types of GHGemissions are distinguished in each columnusingdifferent
colours. As can be seen, in the Ban on Burning scenario, CH4 emissions
due to waste decomposition rise faster, due the quicker accumulation
Fig. 7. Cumulative saving in GHG emissions under the Biogas scenarios.
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of waste in landfill, as seen earlier in Fig. 8. The other two types of emis-
sions (i.e., CO2 and BC emissions due to burning), however, are drasti-
cally reduced and, upon the full enforcement of the ban (in 2029),
only arise from the burning of scattered waste in places other than the
managed landfill. This reduction more than compensates for the in-
crease in CH4 emissions, and as a result the aggregate emissions decline
notably, standing at about 35% lower than Baseline and 13% lower than
Biogas by 2035. The dynamic behaviour of aggregate emissions under
the Ban on Burning can be understood in the following way: In the be-
ginning the enforcement isweak and thus aggregate emissions keep ris-
ing, albeit behind the Baseline. By 2026, aggregate emissions peak as the
enforcement of the ban is strengthened. By 2029, a trough is reached as
the ban goes into full enforcement, after which aggregate emissions
start rising slowly again in line with increases in waste generation, but
still more slowly than Baseline. Cumulative savings in GHG emissions
as a result of this single intervention amount up to 342,000 t by 2035,
evidence of how effective the enforcement of such regulation could be
in reducing emissions. As for the Biogas scenario, with significantly
lower dumping of food waste, BC and especially CH4 emissions are
lower than Baseline, with total emissions standing 25% lower by 2035.

3.4. Combined scenario

Having seen the significant potential of this intervention for reduc-
ing emissions, we will now investigate the expected outcome of com-
bining this with our Biogas scenarios, identified as Scenario 2b in
Table 3. Under the Biogas + Ban on Burning scenario, savings as a result
of changes in landfill and scatteredwaste, at 661,300 t CO2eq during the
15 years of simulation (~44,000 t per year on average), are drastically
higher than the Biogas scenario alone at 226,700 t CO2eq (~15,000 t
per year on average). Cumulative savings in emissions due to the pro-
duced biogas is equal in both scenarios, amounting up to around
473,400 t CO2eq (~31,500 t per year). Total cumulative savings under
the Biogas + Ban on Burning scenario amounts up to over 1.1 million
tonnes of CO2eq over 15 years. Per capita annual GHG emissions in
Kenya has been estimated to be 0.41 t CO2eq in 2018 (Knoema, n.d.).



Fig. 8. Total waste in landfill: Baseline, Ban on Burning and Biogas scenarios.
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If we assume current per capita emissions in Kisumu to be approxi-
mately at this level, total GHG emissions in Kisumu amounts to around
480,000 t CO2eq per year. Therefore, a cumulative saving of 1.1 million
tonnes of CO2eqwould be equivalent to 2.35 years' worth of total annual
CO2 emissions of all sources in Kisumu at the current rate.

Furthermore, it would be of interest to investigate the share of each
individual intervention in the resulting cumulative savings in GHG
emissions. This is visualised in Fig. 10 below. As can be seen, the largest
contribution (42% of total in 2035) is derived as a result of the biogas
produced replacing unclean fuels in the community's kitchens. On top
of that there are significant savings (30% of total in 2035) thanks to
the gradual enforcement of a ban on the open burning of waste,
pointing to the crucial importance of enforcing suchmeasure for reduc-
ing emissions. Next, we expect substantial savings (20% of total in 2035)
in emissions associated with recycling part of the organic waste, divert-
ing it away from landfill and into biogas production. Also interesting is
the non-negligible portion of the savings (8% of total in 2035) that can-
not be contributed to any individual intervention alone and is rather the
synergistic outcome of simultaneous implementation of all interven-
tions (the portion shown in black in Fig. 10). As we saw earlier
(Fig. 9), the ban on burning policy alone significantly reduces emissions
due to burningbut at the same increases emissionsdue towaste decom-
position, due to the higher levels of accumulatedwaste. Therefore, com-
bining this intervention with the Biogas scenario which helps decrease
Fig. 9. GHG emissions: Baseline, Ban
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the accumulation of food waste gives results that are superior to simply
superimposing improvements from each separate intervention. There-
fore, a ban on open burning together with the biogas production inter-
vention helps maximise potential benefits.

3.5. PM2.5 concentrations

In this section, we look at results for changes in ambient PM2.5

concentration from cooking and waste burning as shown in Fig. 11.
These results take into account PM2.5 emissions due to both the open
burning of waste (dark grey) and household cooking (light grey). The
totals are compared at present (Year 2021) versus at the end of our sim-
ulation period under our four scenarios (Year 2035). Concerning the de-
mographics of cooking fuel types, the proportions of households using
different fuel types are assumed to stay constant relative to each other
(based on national statistics (KNBS, 2019)), except for the proportion
of households using biogas which is endogenously and dynamically
generated in the model. As this proportion goes up with expanding
waste-to-biogas capacity, the proportion of households using other
types of fuels decrease proportionately while staying constant relative
to each other.

As seen above, at present the estimated average contribution of
cooking to ambient PM2.5 concentration in Kisumu County is about
7.0 μg/m3 and the part attributed to waste burning is roughly 1.3 μg/m3,
on Burning and Biogas scenarios.



Fig. 10. Share of individual interventions and synergy in total cumulative savings in GHG emissions.
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together adding roughly 8.3 μg/m3 to ambient PM2.5 concentration. Under
the Baseline scenario, as a result of growth in population, this total is ex-
pected to rise by over 50% to 12.6 μg/m3. The Biogas scenario stands at
a total of 10.8 μg/m3 by 2035, 14% lower than Baseline, with improve-
ments coming from both sources (a transition to biogas for cooking as
well as less waste being burnt). The Ban on Burning scenario brings a
slightly more substantial reduction of 18% compared to Baseline, with
all of this reduction naturally deriving from less waste burning (which
only takes place in places other than landfill in this case). As expected,
the highest reduction results from combining the two interventions,
which brings total PM2.5 concentration from the two sources down to
8.7 μg/m3, over 30% lower than Baseline, and only 5% higher than the
present level, despite the nearly 40% projected rise in population over
the period.

Concerning household air pollution, themodel projects an improve-
ment of nearly 10%, from an average of 73.4 μg/m3 down to an average
of 66.5 μg/m3 in indoor air concentration by 2035 as a result of a fraction
of households (8.2%) being able to switch to biogas for cooking, as well
as slightly improved ambient air pollution.

3.6. Health outcomes

Fig. 12 shows results of the health impact assessment using life ta-
bles. Panel A presents total annual life years saved over the population
of Kisumu, while panel B shows cumulative results by the end of the
Fig. 11. Changes in ambient PM2.5 concentrations from cooking and waste burning.
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study period (2035). The highest impact is associated with the com-
bined scenario, under which by 2035 we expect to see nearly 220 life
years saved annually and a cumulative saving of over 1150 life years be-
tween 2020 and 2035. The Biogas intervention contributes approxi-
mately 70% of this estimated health benefit since it affects both indoor
and outdoor air pollutant concentrations via reductions in the amount
of waste burnt outdoors and the amount of unclean cooking fuels
burnt indoors.

Given the time lags between changes in exposure and health out-
comes, the estimated improvements are expected to grow substantially
larger over time andwould be greater than presented here if wewere to
extend the follow up period.

4. Discussion and conclusions

In this section,wewill start with a summary of our findings and con-
tinuewith a discussion of some of the implementation challenges of our
proposed policies and conclude by briefly enumerating some of the lim-
itations of this study and suggesting avenues for further research.

4.1. Summary of findings

Consistent with the qualitative forecasts of Awuor et al. (2019),
Sibanda et al. (2017) and others, our results show that under
business-as-usual, the state of waste accumulated in Kisumu's landfill
is expected to worsen significantly, with the volume of waste reaching
over 550,000 t by 2035, three times its current volume. Under the Biogas
scenario however, which entails a gradual expansion of waste -to-bio-
gas capacity up to 90,000 t per year by 2028, we can expect to see a re-
duction of about 7% in accumulated waste in landfill by 2035. As for
scattered waste, under the Biogas scenario we can expect it to reach
near zero by 2035, promising clean roads as a result of an assumed grad-
ual expansion in the city's waste collection fleet. In addition, simulation
suggests that, given our assumptions, by 2028 each year around 9 mil-
lion m3 of biogas can be generated from biowaste, providing cooking
fuel for 8–9% of total households in theKisumu county. Under theBiogas
scenario, total cumulative savings in emissions reach just over 700,000 t
of CO2eq by 2035, two thirds of which come from the biogas replacing
traditional fossil fuels for cooking.

On the other hand, with an assumed regulatory ban on the open
burning of waste in landfill, waste is shown to accumulate more rapidly
in landfill, as would be expected. However, aggregate GHG emissions



Fig. 12. Life years saved compared to Baseline.
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decline notably, standing at about 35% lower than Baseline by 2035.
Combining the two interventions, i.e., Biogas and Ban on Burning, gives
over 1.1 million tonnes of cumulative savings by 2035. Out of this
total, the largest contribution (42% in 2035) is derived as a result of
the biogas produced replacing unclean fuels in the community's
kitchens. This result is consistent with the findings of Møller et al.
(2009) who report that indirect downstream emissions tend to be the
most important factor in GHG accounting of waste-to-biogas initiatives.

With regards to air pollutant emissions and concentrations, combin-
ing the two interventions is expected to bring total PM2.5 emissions
from the residential and waste sectors down by over 30% compared to
Baseline by 2035; a level only 6% higher than present, despite the nearly
40% projected rise in population over the period. Furthermore, the
model estimates a potential improvement of around 10% in indoor air
PM2.5 concentrations by 2035 as a result of a fraction of households
(8.2%) being able to switch to biogas for cooking, as well as improved
ambient air quality. This mirrors the qualitative but empirical findings
of Clemens et al. (2018), who report that 45%–91% of users in the
Africa Biogas Partnership Program reported reduced eye problems and
respiratory symptoms. Our health impact assessment suggests that
these combined improvements in exposure can be expected to result
in nearly 1150 cumulative life years saved by 2035, with an additional
~220 years or more added to those savings every year by that point.

4.2. Implementation challenges

In our modelling and analysis, we did not consider potential difficul-
ties in the implementation of the interventions considered. Kemausuor
et al. (2018) present a comprehensive review of barriers towards the
uptake of biogas technology in Africa and maintain that, given the
large initial investment costs, financing is at the heart of the barriers
to extended uptake of biogas. Therefore, this study is part of a larger
multi-partner effort to obtain funding for the described waste-to-
biogas initiative from an international green climate fund. Other bar-
riers identified by Twinomunuji et al. (2020) based on their case studies
in Uganda and Ghana include varying enforcement of regulations, un-
certainties around user experience with biogas including cooking pref-
erences, and lack of in-country expertise. Furthermore, there are
safety issues around operation of biogas installations having to do
with the toxicity and the combustibility of biogas which can cause
fires and explosions, although the associated risks are lower than chem-
ical plants (Trávníček and Kotek, 2015).

In addition, transitioning towards our particular preferred scenario
(Scenario 2b. Biogas + Ban on Burning) would require planning for and
investing in the filling stations needed to make the product available
to households, which poses an important technical and organisational
challenge. It would also call for significant behavioural changes by
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households and other actors involved in the system. Firstly, households
would need to sort their organic waste for collection. This has been
identified as an ongoing challenge in Kisumu over several decades
(Henry et al., 2006; M. Aurah, 2013; Sibanda et al., 2017; Awuor et al.,
2019), although some householdwaste is sorted for composting and in-
formalwaste picking (Sibanda et al., 2017). Field studies suggest there is
an interrelated set of barriers to efficient waste sorting at scale. One is
that households and public spaces in the city lack segregated bins
(Sibanda et al., 2017; Awuor et al., 2019). Where they are available,
waste types are still often mixed either at the point of disposal, or
when the bins are emptied and waste transported to the dumpsite
(Sibanda et al., 2017; Awuor et al., 2019). Knowing this may undermine
households' motivation to segregate waste. This might be further
compounded by disagreement among stakeholders about who is re-
sponsible for the city's solid waste management, and a perceived mis-
match between the government's expectations of the public and the
public's willingness to participate in waste management (Schlueter,
2017).

Secondly, our combined scenario would require households to
switch to and sustain the use of biogas as a cooking fuel. Despite
the health, climate and economic advantages of switching from tra-
ditional to cleaner cooking fuels, studies in Kenya and other low-
and middle-income settings indicate that such considerations do
not necessarily drive sustained adoption (Jonušauskait, 2010; Rupf
et al., 2015; Puzzolo et al., 2016; Chalise et al., 2018; Hamid and
Blanchard, 2018; Thompson et al., 2018). Barriers identified among
rural Kenyan communities to the sustained adoption of biogas in-
cluded a lack of information and understanding about its use, bene-
fits and cost-efficiency compared to traditional fuels (Ndereba,
2013; Hamid and Blanchard, 2018).

For both sorting waste and switching fuels, tools for designing and
implementing behaviour change interventions may help achieve these
transitions. Systems methods can also be used to understand the
wider network of actions needed to support these changes (Gutberlet
et al., 2017). Planned future work within the Complex Urban Systems
for Sustainability and Health (CUSSH) programme (Belesova et al.,
2018) will involve qualitative systems mapping of human behaviours
involved in SWM in Kisumu to identify drivers of behaviour. From
these, frameworks such as the Behaviour Change Wheel (Michie et al.,
2011) may be applied to identify possible interventions which can be
assessed for their suitability to the local context against criteria such
as APEASE (Affordability, Practicality, Effectiveness and cost-
effectiveness, Acceptability, Side-effects/safety, and Equity) (Michie
et al., 2014).

Thirdly, there are likely to be several challenges towards
implementing a ban on the open burning of waste in landfill. Since
Kisumu's main landfill, Kachok dumpsite, is already overflowing, and
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since open burning is a key method used to reduce the volume of accu-
mulated waste (Schlueter, 2017; Awuor et al., 2019), banning open
burning, if unaccompanied by other interventions to reduce the inflow
of waste to landfill and to keep waste levels down, can lead to more se-
vere environmental problems due to waste overflow. Additionally,
scavenging on dumpsites often involves the use of fire to recover recy-
clables such as tyrewire/tyre derived steel, and these practices are likely
to continue unless alternativemethods of recovering thesematerials are
introduced. Furthermore, in open dumpsites spontaneous combustion
can happen that is not humanly induced. Spontaneous combustion oc-
curs when landfill waste is heated beyond ignition temperature as a re-
sult of exothermic reactions (Awuor et al., 2019).

4.3. Limitations

In building the model used in this study we have made a number of
simplifying assumptions. For example, we have assumed that waste
generation per household will stay constant over our simulation period
of 15 years. However, Olang et al. (2018) have demonstrated that the
amount of waste generated per household for Kisumu is dependent
on factors such as household size and income. The model can be im-
proved by incorporating these drivers based on any existing future pro-
jections for income and household size and by allowing waste
generated per household to vary based on these.

Another key limitation of the model has to do with its choice of
boundaries concerning the GHG accounting aspect, which includes
only those components believed to be the most significant. The
upstream-operating-downstream framework suggested by Gentil
et al. (2009) includes several other components that, albeit less impor-
tant in scale, represent useful potential additions to ourmodel. These in-
clude leaked N2O and CH4 emissions from the biogas plant and
digestate-related considerations (including fugitive and transport emis-
sions and mineral fertiliser substitution savings).

Certain limitations are imposed on this study by the generally poor
availability of data in the context of Kisumu. For instance, our estimation
of PM2.5 emissions and particularly ambient concentrations resulting
from them are subject to considerable uncertainty. While the GAINS
model has been validated against ambient PM2.5 observations globally
(Amann et al., 2020), we are not able to provide ground truthing of es-
timated PM2.5 concentrations in Kisumu due to the lack of ambient
PM2.5 monitoring data there.

In addition, as explained in Appendix A (Section ii), the parameters
we have used to estimate the average household PM2.5 concentration
due to cooking are necessarily simplifications. Such estimates are ob-
tained using a simplified method outlined in Appendix A (Section iv)
and our focus is solely on the potential for biogas in reducing pollutant
concentrations. The methodology for evaluating changes in indoor air
PM2.5 concentration can be improved if empirical data on household
air pollution for the context of Kisumu becomes available.

Moreover, with regards to capturing the health impacts of our sce-
narios, we have limited our analysis to the effects of particulate matter,
while the risks associated with for instance contamination of Lake
Victoria or flooding as a result of drainage systems being blocked by
waste or the risks of vector-borne disease from breeding in water de-
posits in the waste are not considered, and therefore our reported
health impact results are likely to be underestimates.

Lastly, concerning our Biogas scenario, while we have assumed the
provision of substrate only from household food waste, a potentially
promising alternative could involve an industrial symbiosis scenario
where MSW is co-digested with waste from breweries operating in Ki-
sumu. Under such scenario, the resulting biogas could be used not only
for the required heat in the brewing process but also to produce
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electricity for the grid. There is an abundance of studies exploring the
potential in co-digestion of brewery waste, although most studies ap-
pear to be in experimental and pilot stages (Tewelde et al., 2012;
Murunga et al., 2016; Gunes et al., 2019).

Notwithstanding the above limitations, we maintain that, with re-
spect to orders of magnitude and the relative performance of scenarios,
our results are still valid and can be useful as a basis for policy planning
over the medium term in the area of solid waste management in Ki-
sumu. Findings can also provide informative background for policy
planning in similar contexts.

In summary, the analysis presented in this paper demonstrates that
a move towards recycling foodwaste to biogas for use in home cooking,
alongwith a regulatory ban on the open burning of waste in landfill, can
considerablymitigate the emission of GHGs and atmospheric pollutants
inKisumu.While helping the country towards achieving its emission re-
duction targets within the framework of the Paris Agreement, these
measures also contribute to reducing the adverse impacts of waste
and waste-related air pollution on public health. Having in mind the
scarcity of health impact studies of environmental policy interventions
in the context of Kisumu, as well as the rapid pace of change in this con-
text and the opportunities this presents for sustainable development
initiatives, we believe this studymakes an important and timely contri-
bution. The pioneering of Kisumu in reimagining its SWM system
through measures such as those suggested in this paper can turn the
County into a role model for others in Kenya, potentially providing a
steppingstone towards a full revamping of SWM in the country, which
can boost the positive impacts estimated in this study by orders of
magnitude.

CRediT authorship contribution statement

K. Dianati: Conceptualization, Methodology, Software, Formal anal-
ysis, Investigation, Writing – original draft, Visualization. L. Schäfer:
Conceptualization, Validation, Investigation. J. Milner: Methodology,
Software, Formal analysis, Writing – original draft, Writing – review &
editing. A. Gómez-Sanabria: Methodology, Formal analysis, Writing –
original draft, Writing – review & editing. H. Gitau: Investigation, Writ-
ing – original draft. J. Hale: Conceptualization, Writing – original draft,
Writing – review & editing. H. Langmaack: Conceptualization, Investi-
gation. G. Kiesewetter: Methodology, Software, Formal analysis, Writ-
ing – original draft. K. Muindi: Investigation, Writing – review &
editing. B. Mberu: Supervision,Writing – review & editing. N. Zimmer-
mann: Supervision, Writing – review & editing. S. Michie: Supervision,
Writing – review & editing. P. Wilkinson: Conceptualization, Supervi-
sion, Writing – review & editing, Funding acquisition. M. Davies: Con-
ceptualization, Supervision, Writing – review & editing, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This researchwas funded inwhole, or in part, by theWellcome Trust
[Grant number 209387/Z/17/Z]. For the purpose of Open Access, the au-
thor has applied a CC BY public copyright licence to any Author Ac-
cepted Manuscript version arising from this submission. We are also
grateful to Irene Pluchinotta, Giuseppe Salvia, and the Anonymous Re-
viewers for their constructive comments.
Appendix A. Full model documentation
In this appendix, the formulation and parametrisation of the SDmodel is explained in detail. Themodel and the simulation runs are available as on-
line supplementary material to this paper. Themodel is built in Vensim, a widely used SD simulation software package. Thewhole 120-plus-variable
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model is presented sector by sector, with visual snapshots to aid understanding. The following table elaborates the colour-coding and other informa-
tion needed to interpret the diagrams.
Table 4

Model coding explained, adapted from Dianati et al. (2019).
Code
L

U
V

R
G
B
B

3 All our assumptions for model parameters (w
4 An average household in Kenya uses 125 kg o

(IRENA, 2016, p 18). 125 kg multiplied by 2.1m3/
Meaning
ower-case variable
 Endogenous variable (formulated based on other variables within the model). The dynamic behaviour of such variables is given by
software simulation.
pper-case variable
 Constant. Such constants are either fixed parameters (black), or policy/scenario variables set by the user (green)

ariable with first word in upper case, rest in
lower case
Exogenous (data) variable. Past behaviour of such variables is given by historical data. Variables stays constant for future
simulation, unless otherwise specified.
ed variable
 Key indicator.

reen variable
 Policy/scenario variable, decided upon by the user.

lue variable, in angle brackets
 ‘Shadow’ variable, copied from another section of the model.

lue arrows
 Causal relationships, from cause to effect. Each (endogenous) variable is formulated based on variables connected to it via incoming

arrows.

rey arrows
 Initial condition setting.
G
As outlined earlier in the body of the paper, the model consists of four inter-connected sectors: (1) Waste Collection, (2) Biogas, (3) Landfill, and
(4) Scattered Waste. In this section, the four sectors will be described in detail.

i) Waste Collection Sector
This sector, as depicted in Fig. 13, carries out simple accounting operations and involves no dynamic complexity (such as feedback loops, delays or
accumulations). It is, however, useful in capturing the waste collection process within the case study in a visual and aggregate way.
Specifically, two different types of waste collection capacity are modelled: Firstly, the currently existing mixed waste collection trucks which trans-
port the waste to landfill without any segregation of waste; and secondly, potential specialised waste collection capacity for separated food waste,
whereby a number of waste handcarts would collect food waste from households (including in narrow alleyways of informal settlements where
poor access prohibits the use of trucks) and take it to decentralised biogas production facilities, as modelled in the next sector. Total mixed/food
waste collection capacity in Fig. 13 is the number of trucks/handcarts multiplied by the average capacity of the vehicles. The only currently existing
capacity for waste collection consists of five mixed-waste trucks (with an average capacity of about 45 t per day3). Total waste collection capacity,
which is the sum of all existing capacity plus any future added capacity, determines the proportion of waste collected, as a key indicator, on the
right-hand side of the diagram. Currently, this capacity stands at about 225 t per day, which is about 43% of the total approximately 522 t per day
of waste generated. Any remaining waste that is not collected is assumed to be inappropriately disposed of in open pits or scattered on roadsides
and elsewhere, as modelled later in the ScatteredWaste Sector. Total GHG emissions due to waste transport, which is accounted for in total GHG emis-
sions from waste as seen later, is also calculated in this sector based on a constant level of GHG emissions per waste truck of around 52.6 kg of CO2 per
day. This is based on an average consumption of around 20 l of diesel per day and an emission factor of 2.63 kg/l (DEFRA, 2007, p. 29).

ii) Biogas Sector
The second sector of the model includes another set of accounting equations for keeping track of the portion of waste that is – or rather could be, in
the future – recycled into biogas and fertiliser. The sector is presented in two diagrams: Fig. 14 shows the structure where savings in GHG emissions
are calculated.
Starting with Fig. 14, the cumulative number of biogas facilities is a ‘policy variable’, which means that it is a user-determined external input to the
model that is based on our scenario assumptions (as described in Table 3). The resulting total biogas capacity, based on an average waste processing
capacity per biogas facility, together with the concurrent restriction of total food waste collection capacity (imported from the previous sector), gives
total food waste treated for biogas production. This determines total biogas generated based on a constant food waste to biogas yield factor, assumed
equal to 100 m3 of biogas per tonne of food waste. This is based on the figure provided by Veeken (2005) cited in (Müller, 2007, p. 26) for plants
of a similar scale and technology in India as those we envisage for commissioning in Kisumu. Subsequently, total biogas generated gives on the one
hand the number and proportion of households using biogas from waste for cooking, which is determined based on a constant average biogas consump-
tion per household of 262.5 m3 per household per year.4 On the other hand, total biogas generated can be used to calculate saving in GHG emissions due
to households switching to biogas for cooking based on a constant saving in GHG emissions per m3 of biogas from waste used as cooking fuel, which is es-
timated at 4.93 kg/m3. This estimate is based on the current proportions of households using different types of cooking fuel in Kisumu (KNBS, 2019,
p. 336) alongwith the GHGemission factors associatedwith those types of fuels (International Renewable Energy Agency (IRENA), 2016, pp. 18, 21).

This gives total annual saving in GHG emissions due to products of anaerobic digestion, which is accumulated in the stock of cumulative savings in
GHG emissions. Stock variables, denoted inside a box, represent processes of accumulation in the real world, mathematically formulated via integra-
tion of the inflows minus the outflows, which are shown as valves flowing into or out of stocks.

The number of households using biogas from waste for cooking, as obtained above, is subsequently used to calculate total PM2.5 emissions due to
cooking with regards to ambient air. The former is first subtracted from the total number of households to give number of households without access
to biogas for cooking. This number is then multiplied by the initial proportion of households by cooking fuel type. This is a subscripted (vector) variable
with eight elements representing different cooking fuel types, namely wood OF (open-fire), wood ICS (improved cookstove), charcoal trad (tradi-
tional), charcoal ICS, kerosene, LPG, electric and biogas. The proportion of households using each different fuel type is given by census data from the
hether or not quoted here), together with our sources for this data, are listed in Appendix B.
f LPG annually for cooking (Nerini et al., 2017, p6). 1 kg LPG has the same energy content as 2.1m3 of biogas adjusted for stove efficiency
kg gives 262.5 m3.
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Fig. 13. Sector one – waste collection.
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KenyanNational Bureau of Statistics (KNBS, 2019, p. 336). Theproduct of thismultiplication gives thenumber of households by cooking fuel type for the
first seven elements of the vector. The value of the final element (biogas) is simply equal to the number of households using biogas from waste for
cooking, which is driven by total biogas generated, as we saw above. This variable is then used to obtain total energy consumption by cooking fuel
type via multiplying by the annual useful energy for cooking per household by cooking fuel type and dividing by the thermal efficiency by cooking fuel
type. All these variables are similarly vector variables and the two sets of parameters for thermal efficiency and useful energy are based on Carvalho
et al., 2019 (p. 173). The result is then multiplied by PM2.5 emissions factor by cooking fuel type (also from Carvalho et al., 2019, p. 172) to give the
total PM2.5 emissions due to cooking. This total is added to emissions related to waste burning in the Scattered Waste Sector to obtain ambient PM2.5

concentration from cooking and waste burning.
The same piece of structure also gives a rough estimate for the average household PM2.5 concentration due to cooking. This estimate is based on

empirical measurements reported in Muindi et al. (2016, p. 7 Table 3) on mean levels of indoor PM2.5 concentrations in households using different
cooking fuel types. To the authors this appeared to be the best practical method to come up with this estimate. However, it must be noted that the
method suffers from two major caveats: (1) Although the measurements are taken within the Kenyan context, they relate to a different setting,
namely the Korogocho informal settlement within the peri-urban areas of Nairobi, and (2) The given measurements do not have the same level of
granularity as the rest of the sector. Only three figures are given for households using (a) charcoal or wood (used for the first four elements in our
vector), (b) kerosene and (c) LPG/electricity (used for the last three elements of our vector). Albeit very rough, we believe that using this method
to obtain an estimate for the health impact of our different scenarios is superior to completely ignoring the effect of changes in indoor PM2.5 concen-
trations. Thus, the estimated average household PM2.5 concentration is obtained as the weighted average of the empirically indicated household PM2.5

concentrations by cooking fuel type where the weights are given by the proportion of households by cooking fuel type.

iii) Landfill Sector
All remaining waste which is collected but not treated for biogas production is sent to the landfill as much as the current waste collection capacity
allows. The part which is not collected due to a lack of capacity is assumed to be disposed of inappropriately and scattered or dumped anywhere
other than the main landfill, as modelled in the next sector. A fraction of the waste dumped in landfill or elsewhere is burnt to reduce volume
(Klimont et al., 2017, p. 8700). Waste burning emits CO2 into the atmosphere, while the decomposition of organic waste emits CH4, both of which
are greenhouse gases. The dumping of the waste in landfill and the resulting GHG emissions are captured via the structure introduced in this sector.
Fig. 15 shows the structure of this sector, which is a key part of the model as it captures the dynamics of the accumulation of waste as well as the
potentially changing composition of the waste in landfill. Landfill waste is disaggregated into the two stocks of landfill food and non-food waste, as
the two types have different profiles in terms of GHG emission potentials. The two stocks are similarly configured in terms of inflows and outflows.
The stocks are initialised according to estimates of total amount of waste currently existing in the city'smain landfill, which is estimated by dumpsite
management at around 140,000 t. This amount is split between the stocks of food and non-food landfill waste initially based on Aguko et al. (2018,
p. 6), who estimate empirically that 51.8% of Kachok's waste content is organic.
Total mixed waste to landfill is the lesser value between total mixed waste collection capacity and the total waste that remains after recycling some of it
for biogas (i.e. total waste generated minus total food waste treated for biogas production). These variables are imported from the Waste Collection
16



Fig. 14. Biogas Sector.
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Sector. A useful indicator calculated here is the percentage of food waste recycled for biogas production, i.e. total food waste treated for biogas production
divided by food content of waste generated.
The split of the total mixed waste to landfill going into each of the two food/non-food stocks depends on a dynamic food content ratio of waste to be
disposed. This ratio varies depending on how much of the food waste generated by households is used for biogas production. In order to calculate
the food content ratio of waste to be disposedwe first take out total food waste being treated for biogas production from food content of waste generated
(which is 63% of total waste generated in the Kisumu context), obtaining the food waste left after biogas production. Dividing this by the sum of the
same plus non-food content of waste generated (37% of total waste generated) gives the dynamic food content ratio of waste to be disposed. As we
will see later in our scenarios, this ratio will naturally go down as we start to recycle a part of the food waste into biogas. Multiplying this ratio by
total mixed waste to landfill gives total food waste to landfill, with the rest flowing into the landfill non-food waste stock.
As for the outflows, each stock has an outflow of waste burning. The fraction of waste burnt every year is assumed equal to 23% for all three stocks
based on Onyango and Kibwage (2008) cited in Gutberlet et al., 2017 (p. 113). Note that in our Ban on Burning scenarios thiswaste burning fraction is
linearly brought down to zero over eight years. Moreover, there are the outflows which represent waste decomposition. This is in accordance with
the IPCC, 2006 (vol. 5 ch. 3) recommendation of using a first order-decay for calculatingmethane emissions. Thewaste decomposition fraction differs
in each case, depending on the proportion of biodegradable matter for each type of waste. Höglund Isaksson et al. (2016) assumes an approximate
average half-life of 10 years for fast-degrading organic waste like food waste, i.e. a rate of 10% per year, and 20 years, i.e. 5% per year, for slow-
degradingwaste such as paper,which constitutes one third of non-foodwaste in Kisumu. Therefore, non-foodwaste decomposition fraction is assumed
equal to one third of 5% or 1.67% per year.
In the case of landfill non-food waste, an additional outflow of waste is captured which represents the landfill non-food waste informally recycled by
scavengers who contribute towards recycling plastics, bottles, cans andmetallic objects (Awuor et al., 2019). Based on our consultationwith Kisumu
county'swaste officials, there are currently around 80 such informalworkers, each collecting on average about 25 kg ofwaste every day. In the future,
the number of informal waste-pickers is assumed to grow according to the projected population growth rate. Since the composition of thewastewill
change under our scenarios, we assume that the capacity of each waste-picker is a function of the non-food content ratio of the waste in landfill. We
assume that this capacity stays at its current value of an estimated 25 kg/day per person under the current non-food content ratio. However, if the
non-food content ratio goes down to zero or up to 100%, in conjunctionwith that, it is assumed that thewaste-pickers' average capacity goes respec-
tively down to zero or up to twice the current capacity (linearly, in both cases).
Next, we are going to calculate waste-related GHG emissions for landfill waste based on the outflows of waste burning and decomposition. This is
done by multiplying the amount of food/non-food waste that is burnt or decomposed each year by the respective emission factors for CO2, CH4,
and BC. The structure for making these calculations is shown in Fig. 15.
Themethod suggested in IPCC (2006, vol. 5 ch. 5) is applied here to estimate CO2 emissions from openwaste burning. Emission factors are calculated
for each type of waste based on the fossil carbon content. CO2 emissions from biogenic origin are not included in the estimates as stated in the IPCC
(2006, vol. 5 ch. 5). This means that CO2 emissions from open burning of food, paper andwoodwaste are set to zero. The implied CO2 emission factor
for landfill non-food waste burning for the particular waste composition is Kisumu is assumed to be 464.89 kg CO2 per tonne of waste burnt (see
Section 2.3 for details on these calculations).
The other important contributor to globalwarmingwhich results from the incomplete combustion ofwaste is black carbon (BC). BC is a carbonaceous
aerosol (Klimont et al., 2017) with a global warming potential5 (GWP) of 460 based on a 100-year time horizon (IPCC, 2007). The emission factor
used here to estimate BC emissions is 0.65 kg BC per tonne of waste burnt (Akagi et al., 2011, p. 4047).
5 This parameter measures the ability of different GHGs to trap heat in the atmosphere.
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CH4 emissions are calculated and summed up using an emission factor of 17.70 kg per tonne of waste decomposed for landfill non-food waste and
20.27 kg for landfill food waste (see Section 2.3). Total CH4 emissions from the two stocks is then summed up with CH4 emissions due to scattered
waste decomposition as obtained in the next sector (Scattered Waste Sector) and the sum total converted to CO2 equivalent using methane's GWP
of 28 (Meyer and Pachauri, 2014). Summing up the resulting total CO2eq methane emissions due to waste decompositionwith total direct CO2 emissions
due to waste burning and total CO2eq black carbon emissions (both including emissions for landfill as well as scattered waste imported from the
Scattered Waste Sector gives total GHG emissions from waste burning and decomposition. Finally, summing this up with total GHG emissions due to
waste transport, imported from theWaste Collection Sector, gives total GHG emissions fromwaste burning, decomposition and transport. Using the ad-
ditional stock variable of cumulative savings in GHG emissions fromwaste, we accumulate the difference between GHG emissions in current scenario ver-
sus baseline. Adding the value of this stock with cumulative savings in GHG emissions due to products of anaerobic digestion, imported from the Biogas
Sector, gives our final key indicator of interest for each scenario, i.e. total cumulative savings in GHG emissions.

iv) Scattered Waste Sector
The final sector captures the accumulation of waste anywhere other than in landfill, such as on the roadside or in open pits, along with the resulting
GHG and PM2.5 emissions. This sector (Fig. 16) is constructed very similarly to the previous one, in the sense that scattered waste is conceptually di-
vided between the two stocks of scattered food and non-food waste, with similarly configured inflows and outflows.
What remains of total waste generated after subtracting total food waste treated for biogas production (Biogas Sector) and total mixed waste to landfill
(Landfill Sector) constitutes total waste inappropriately disposed of, which finds its way into one of the two stocks, depending on the dynamic food
content ratio of waste to be disposed as calculated in the Landfill Sector. The stock of scattered waste is initialised in relation to the stocks of landfill
waste. Based on an initial total waste generated of around 522 t per day in 2021 and an initial total mixed waste collection capacity of around 225 t
per day, it is estimated that initially around 225/522 = 43% of the waste is being collected and the remaining 57% is inappropriately disposed of
in places other than the landfill. Therefore, it is considered a fair assumption that the ratio of initial scattered waste to initial landfill waste should
also be close to 57/43. Given the rough estimate of 140,000 t for initial landfill waste, we reach an estimate of 185,000 t for initial scattered waste.
As before, each stock has two outflows of decomposition and burningwith the same fractions previously used for landfill waste.
Resulting GHG emissions are calculated in the sameway andwith emissions factors equal to those of the respective types of landfill waste, except for
CH4 emissionswhich are calculated using different emission factors. This is because in the case of scattered waste there is assumed to be a lower level
of compacting and therefore weaker anaerobic conditions resulting in lower CH4 emission factors for scattered waste as compared to landfill waste.
CH4 emission factors for scattered food and non-food waste are assumed to be 10.13 and 8.85 kg CH4 per tonne of waste decomposed respectively
(see Section 2.3). Total scattered waste emissions is calculated by summing up direct CO2 emissions due to waste burning, CO2 equivalent black carbon
emissions due to scattered waste burning, and CO2 equivalent CH4 emissions due to scattered waste decomposition.
Additionally, in this sector total PM2.5 emissions due to waste burning is calculated by summing up the burning rates of different types of waste
(food/non-food; landfill/scattered) and multiplying by waste burning PM2.5 emission factor. This factor is set to 8.74 kg PM2.5 per tonne of waste
burnt based on (Klimont et al., 2017, p. 8700) for all different types of waste as an approximation. Total PM2.5 emissions due to cooking is
imported from the Biogas Sector.
Each of the two emissions figures is converted into an implied figure for concentration via multiplying by a constantmean pm2.5 concentration per kt of
annual emissions of 2.05 (μg/m3)/(kt/year). This coefficient is derived from the global atmospheric calculations in the GAINS integrated assessment
model (Amann et al., 2020), which themselves rely on a linearized version of full atmospheric chemistry transportmodel simulations. Since Kenya is
a source region in GAINS, themodel contains atmospheric transfer coefficients from all source pollutants for PM2.5 fromKenya to a 0.1° receptor grid.
Here we use the coefficient for primary PM2.5 emissions from urban low-level sources in Kenya in conjunctionwith the share of Kisumu's population
in total Kenyan urban population to first calculate the response of ambient PM2.5 concentrations at 0.1° resolution to primary PM emissions from
Kisumu, and then take a population-weighted average across all grid cells in the city to derive an integrated coefficient fromKisumu to itself. Thereby,
we take two simplifying assumptions: 1) that only primary PM emissions play a role and local secondary particle formation can be neglected, and
2) that the contribution from such sources in other Kenyan cities to ambient PM in Kisumu is low. Assumption 1may lead to a small underestimation
of the coefficient, while assumption 2 may lead to a small overestimation. Given the large uncertainties in emissions, these simplifications seem
justified.
The sumof the two implied concentrations gives an estimate for ambient PM2.5 concentration from cooking andwaste burning. Changes in the resulting
concentrations have important health implications, as reported earlier in the Results chapter.

Appendix B. List of parameter assumption
Variable name
W
W

A

Note
 Value
20
Unit
 Source
aste Collection Sector

aste generated
per household
500 t per day divided by 301,000
households (representing 2017
population of 1,145,747 with a
household size of 3.81, based on 2019
data)
606.3 kg per year or about 1.66 kg per day
 kg/year or day
 (Oyake-Ombis, 2017, p. 24)
verage mixed
waste truck
capacity

• T
6

wo trucks with a capacity of 10 t each,

trips each per day

120 + 62 + 42 = 224 t/day, combined
capacity of 5 trucks

tonnes/day Dumpsite Manager, Director Environment City
and County Director Environment Conservation
(2 × 10 × 6 = 120 t/day)
• Two farm trucks with capacity 6 t and
4 t making 5 and 8 trips per day, respectively

truck
(6 × 5 + 4 × 8 = 62 t/day)
• Skip loader with capacity 7 t, 6 trips
daily on average
(7 × 6 = 42 t/day)
224/5 = 45 t/day average capacity of each
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Variable name
G

B
F

A

S

In

A

T

P

G

L
W

W

C

C

C

C

B

C

B

N

In
F

Note
 Value
21
Unit
 Source
HG emissions per
waste truck
Vehicles using 20 l per day of fuel
Average Diesel truck CO2 emission is
2.63 kg/l. This makes
2.63 × 20 = 52.6 kg of CO2
emissions per day or 19.2 Tonne/Year.
19.2
 tonnes/year
 (DEFRA, 2007)
iogas Sector

ood waste to
biogas yield factor
100
 m3 per tonne

Veeken (2005) cited in (Müller, 2007, p. 26,
Table 3)
verage biogas
consumption per
household
Equivalent to 125 kg
LPG/household/year Nerini et al.
(p.6).
1 kg LPG is equivalent to 2.10 m3 bio-
gas (IRENA, 2016, Table 8, p18)
≥ 125*2.1 = 262.5 m3 per household
per year
262.5

m3 per household
per year
Nerini et al. (2017, p6), (IRENA, 2016, Table 8,
p18)
aving in GHG
emissions per m3

of biogas from
waste used as
cooking fuel
…as opposed to equivalent energy
from fossil fuels
4.93

kg emissions per
m3 of biogas
(KNBS, 2019, p. 336) for types of cooking fuel
used by households and (International
Renewable Energy Agency (IRENA), 2016,
pp. 18, 21) for converting those into potential
savings
itial proportion of
households by
cooking fuel type
Wood Open-Fire (OF): 31%, Wood Improved
Cook Stove (ICS): 2%, Charcoal Trad (Tradi-
tional): 16%, Charcoal ICS: 30%, Kerosene:
13%, LPG: 5%, Electric: 1%, Biogas: 0%
%
 (Carvalho et al., 2019, p. 173 Table 3)
nnual useful
energy for
cooking per
household by
cooking fuel type
Wood OF: 23,544, Wood ICS: 16,416,
Charcoal Trad: 22,464, Charcoal ICS: 20,628,
Kerosene: 10,476, LPG: 7236, Electric: 5879,
Biogas: 7344
MJ/household/year
 (Carvalho et al., 2019, p. 173 Table 3)
hermal efficiency
by cooking fuel
type
Wood OF: 15%, Wood ICS: 24%, Charcoal
Trad: 31%, Charcoal ICS: 38%, Kerosene: 42%,
LPG: 54%, Electric: 71%, Biogas: 57%
%
 (Carvalho et al., 2019, p. 173 Table 3)
M2.5 emission
factor by cooking
fuel type
Wood OF: 14, Wood ICS: 8, Charcoal Trad: 9,
Charcoal ICS: 18, Kerosene: 1, LPG: 1, Electric:
0, Biogas: 4
g PM2.5/MJ energy
 (Carvalho et al., 2019, p. 172 Table 1)
HG saving per kg
of organic
nitrogen
replacing
inorganic
fertiliser
13.5
 kg GHG per kg N
 (Zhang et al., 2013)
andfill Sector

aste
decomposition
fraction
Proportion of waste that is
decomposed over a year?
10% for food waste and 1.67% for non-food
waste
% per year
 (Höglund Isaksson et al., 2016)
aste burning
fraction
Proportion of waste that is reduced
over a year as a result of burning
23%
 % per year
 (Onyango and Kibwage, 2008)
O2 emissions per
tonne of food
waste burnt
Zero
 tonne of CO2 per
tonne of waste
(IPCC, 2006, vol. 5 ch. 5)
O2 emissions per
tonne of non-food
waste burnt
464.887
 kg CO2 per tonne
of waste burnt
See Section 2.3
H4 emission factor
for landfill food
waste
20.27
 kg CH4 per tonne
of waste
decomposed
See Section 2.3
H4 emission factor
for landfill
non-food waste
17.70
 kg CH4 per tonne
of waste
decomposed
See Section 2.3
lack carbon
emissions per
tonne of waste
burnt
0.65
 kg BC per tonne of
waste burnt
(Akagi et al., 2011)
H4 global warming
potential
28
 dmnl
 (Meyer and Pachauri, 2014)
lack carbon's
global warming
potential
460
 dmnl
 (ICCT, 2009)
ormal capacity per
waste picker
25
 kg/day/person
 Dumpsite manager
itial landfill waste
 Very rough estimate.
 140,000
 tonnes
 Dumpsite manager

ood content ratio
of waste
generated
63%
 %
 (Gutberlet et al., 2017, p. 113)
(continued on next page)
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Variable name
In

S
In

C

C

W

M

1
W

N

N

N

A

N

N

A

2
C

C

W

3
N

Note
 Value
22
Unit
 Source
itial food content
ratio of dumped
waste
51.8%
 %
 (Aguko et al., 2018, p. 6)
cattered Waste Sector

itial scattered
waste
185,000
 tonnes
 See Scattered Waste Sector
H4 emission factor
for scattered food
waste
10.13
 kg CH4 per tonne
of waste
decomposed
See Section 2.3
H4 emission factor
for scattered
non-food waste
8.85
 kg CH4 per tonne
of waste
decomposed
See Section 2.3
aste burning
PM2.5 emission
factor
8.74
 kg PM2.5 per tonne
of waste burnt
(Klimont et al., 2017, p. 8700)
ean PM2.5

concentration per
kt of annual
emissions
2.05
 (μg/m3)/(kt/year)
 See Appendix A, Section (iv)
Appendix C. Scenario assumptions
Time
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 Unit
. Waste Collection Sector

aste
generated per
household
543.00
 kg/household/year
umber of
households
314,449
 321,323
 328,347
 335,525
 342,859
 349,881
 357,047
 364,359
 371,821
 379,436
 386,596
 393,891
 401,324
 408,897
 416,613
 Households
umber of
households
growth rate
2.2%
 2.2%
 2.2%
 2.2%
 2.0%
 2.0%
 2.0%
 2.0%
 2.0%
 1.9%
 1.9%
 1.9%
 1.9%
 1.9%
 dmnl/year
umber of
mixed waste
trucks
5
 5
 6
 6
 7
 7
 8
 8
 9
 9
 10
 10
 11
 11
 12
 dmnl
verage mixed
waste truck
capacity
(tonnes per
day)
45
 tonne/day
umber of food
waste
handcarts
(Scenarios 1
& 1b)
0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 dmnl
umber of food
waste
handcarts
(Scenarios 2
& 2b)
0
 83
 137
 192
 247
 302
 357
 411
 411
 411
 411
 411
 411
 411
 411
 dmnl
verage food
waste
handcart
capacity (kg
per day)
600
 kg/day
. Biogas Sector

umulative
number of
biogas
facilities
(Scenarios 1
& 1b)
0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 dmnl
umulative
number of
biogas
facilities
(Scenarios 2
& 2b)
2
 6
 10
 14
 18
 22
 26
 30
 30
 30
 30
 30
 30
 30
 30
 dmnl
aste
processing
capacity per
biogas facility
3000
 tonne/year
. Landfill Sector

umber of
 84
 85
 87
 89
 91
 93
 95
 97
 99
 101
 103
 105
 107
 109
 111
 Persons
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Time
W

W

2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
23
2029
 2030
 2031
 2032
 2033
 2034
 2035
 Unit
informal
waste-pickers
aste burning
fraction
(Scenarios 1
& 2)
0.23
 0.23
 0.23
 0.23
 0.23
 0.23
 0.23
 0.23
 0.23
 0.23
 0.23
 0.23
 0.23
 0.23
 0.23
 dmnl/year
aste burning
fraction
(Scenarios 1b
& 2b)
0.23
 0.2
 0.17
 0.14
 0.11
 0.08
 0.05
 0.02
 0
 0
 0
 0
 0
 0
 0
 dmnl/year
Appendix D. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2021.146200.
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