
 1 

The relationship between glycaemia, cognitive function, structural brain outcomes and 

dementia: A Mendelian randomisation study in the UK Biobank 

 

Victoria Garfield, PhD1, Aliki-Eleni Farmaki, PhD1, Ghazaleh Fatemifar, PhD3, 5, Sophie V. 

Eastwood, MRCGP1, Rohini Mathur, PhD2, Christopher T. Rentsch, PhD2, Spiros Denaxas, 

PhD3,4.5, Krishnan Bhaskaran, PhD2, Liam Smeeth, PhD2, Nish Chaturvedi, MD1 

 

1MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, 

University College London, 1-19 Torrington Place, London, WC1E 7HB 

2Department of Non-communicable Disease Epidemiology, London School of Hygiene & 

Tropical Medicine, Keppel Street, London, WC1E 7HT 

3Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA 

4The Alan Turing Institute, British Library, 96 Euston Road, London, NW1 2DB 

5Health Data Research UK (HDR UK), 222 Euston Road, London, NW1 2DA 

 

Corresponding author: Dr Victoria Garfield, 1-19 Torrington Place, London, WC1E 7HB, 

United Kingdom, Tel.: +44(0)2035495589, email: v.garfield@ucl.ac.uk 

 

Word count: 3,913 

Figures: 2 

Tables: 3 

 

 

 

 

 

  

mailto:v.garfield@ucl.ac.uk


 2 

Abstract  

We investigated the relationship between glycaemia and cognitive function, brain structure 

and incident dementia using bidirectional Mendelian randomisation (MR). Data were from 

UK Biobank (n~500,000). Our exposures were genetic instruments for type-2 diabetes (157 

variants) and HbA1c (51 variants) and our outcomes were reaction time (RT), visual memory, 

hippocampal and white matter hyperintensity volumes, Alzheimer’s dementia (AD). We also 

investigated associations between genetic variants for RT (43 variants) and, diabetes and 

HbA1c. We used conventional inverse-variance weighted (IVW) MR, alongside MR 

sensitivity analyses. Using IVW, genetic liability to type-2 diabetes was not associated with 

reaction time (RT) (exponentiated ß=1.00, 95%CI=1.00; 1.00), visual memory (VM) 

(expß=1.00, 95%CI=0.99; 1.00), white matter hyperintensity volume (WMHV) (expß=0.99, 

95%CI=0.97; 1.01), hippocampal volume (HV) (ß coefficient mm3=-2.30, 95%CI=-

12.39;7.78) or AD (OR 1.15, 95%CI=0.87;1.52). HbA1c was not associated with RT 

(expß=1.00, 95%CI=0.99; 1.02), VM (expß=0.99, 95%CI=0.96;1.02), WMHV (expß=1.03, 

95%CI=0.88; 1.22), HV (ß=-21.31, 95%CI=-82.96; 40.34), or risk of AD (OR 1.09, 

95%CI=0.42; 2.83). IVW showed that reaction time was not associated with diabetes risk 

(OR 0.94, 95%CI=0.54; 1.65), or with HbA1c (ß coefficient mmol/mol=-0.88, 95%CI=-1.88; 

0.13) - after exclusion of a pleiotropic variant. Overall, we observed little evidence of causal 

association between genetic instruments for T2D or peripheral glycaemia and some measures 

of cognition and brain structure in midlife.  
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Observational evidence largely suggests that hyperglycaemia, diabetes and insulin resistance 

are associated with poorer brain health, including worse cognitive function, risk of cognitive 

decline and dementia (1–4). The exact mechanisms remain elusive (5), as well as how to best 

treat those with a diagnosis of both diabetes and cognitive dysfunction (6). These factors limit 

intervention attempts as it is unclear whether hyperglycaemia per se is the culprit or whether 

instead, vascular risk factors (e.g. hypertension, dyslipidaemia, inflammation) mediate the 

association between diabetes and poorer brain health outcomes. It is also unclear whether the 

associations between hyperglycaemic conditions and brain outcomes are causal in nature. 

Some evidence also supports a bidirectional relationship (5), implicating a vicious cycle 

whereby diabetes may result in dementia and dementia could then trigger further diabetes 

complications (7).  

 

Mendelian randomisation (MR) overcomes some of the limitations of causal interpretation in 

observational studies. So far, MR studies have focussed solely on Alzheimer’s dementia, with 

all three reporting no impact of diabetes (8–10). Pathways to cognitive decline and dementia 

involve a combination of vascular and neurocognitive mechanisms that may act either 

independently or in concert (11). Diabetes is more related to the vascular pathways but there 

is evidence that it also has neurotoxic consequences (12). There have been no previous MR 

studies that have investigated glycated haemoglobin (HbA1c) and a range of brain health 

measures, such as cognitive function or structural brain abnormalities. No previous MR 

studies have investigated whether the bidirectional association may be causal in nature. Thus, 

the present study used i) genetic instruments for type-2 diabetes and HbA1c, to examine the 

relationship with cognitive function, structural brain measures and Alzheimer’s dementia 

(AD); and ii) where possible, genetic instruments for cognitive function to investigate 

whether the relationship with diabetes or HbA1c might be bidirectional.   
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Research Design and Methods  

Study design 

Two-sample MR (a design that exploits genome-wide association summary statistics derived 

in non-overlapping samples) was used to mitigate biased results due to the ‘winners’ curse’ 

(the over-estimation of genetic associations which are common in the one-sample MR 

setting) because it is neither necessary, nor desirable, that the genetic variants to be 

instrumented be derived from the same sample as the one under study (13). An important 

advantage of using two-sample MR is that it allows sensitivity analyses to identify 

unbalanced (directional) horizontal pleiotropy (described under Statistical analyses), which is 

crucial to satisfy MR assumptions. In our MR analyses, there was some sample overlap for 

diabetes and cognitive function (reaction time), but not for the HbA1c genetic variants.  

 

Sample 

Full details of the UK Biobank (UKB) cohort have been described elsewhere (14). Briefly, 

UKB consists of 500,000 males and females from the general UK population, aged 40-69 

years at baseline (2006-2010). There was a maximum of 349,326 participants of European 

ancestry with both genotype and all the phenotypes of interest in the present study (Figure 1). 

 

Genotyping and quality control (QC) in UKB  

487,409 UKB participants were genotyped using one of two customised genome-wide arrays 

that were imputed to a combination of the UK10K, 1000 Genomes Phase 3 and the Haplotype 

Reference Consortium (HRC) reference panels, which resulted in 93,095,623 autosomal 

variants (15). We then applied additional variant level QC and excluded genetic variants 

with: Fisher’s exact test <0.3, minor allele frequency (MAF) <1% and a missing call rate of 
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≥5%. Individual-level QC meant that we excluded participants with: excessive or minimal 

heterozygosity, more than 10 putative third-degree relatives as per the kinship matrix, no 

consent to extract DNA, sex mismatches between self-reported and genetic sex, missing QC 

information and non-European ancestry (based on how individuals had self-reported their ancestry 

and the similarity with their genetic ancestry, as per a principal component analysis of their genotype). 

 

Outcomes: baseline cognitive function, structural brain magnetic resonance imaging (MRI) 

and dementia 

UKB administered five baseline cognitive assessments to all participants, via a computerised 

touch-screen interface, all of which are described in detail elsewhere (16). In the visual 

memory assessment, respondents were asked to correctly identify matches from six pairs of 

cards after they had memorised their positions. Then, the number of incorrect matches 

(number of attempts made to correctly identify the pairs) was recorded, with a greater number 

reflective of a poorer visual memory. Reaction time (in milliseconds) was recorded as the 

mean time taken by participants to correctly identify matches in a 12-round game of the card 

game ‘Snap’. A higher score on this test indicated a slower (poorer) reaction time. Both of 

these variables were positively skewed and therefore, reaction time scores were transformed 

using the natural logarithmic function [ln(x)], whilst visual memory was transformed using 

[ln(x+1)].  

 

Structural brain MRI scans were performed by UKB in a subsample of participants using 

standard protocols, as published previously (17). The post-processed measures derived by 

UKB and used in this study included: mean hippocampal volume (mm3), and volume of 

white matter hyperintensities (WMH, mm3). WMH volume was log-transformed as it was 

positively skewed. The number of participants with WMH volume was 32,506 and 32,407 
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with hippocampal volume data available (Figure 1). This was after excluding n=114 

individuals who were outliers (+3SD from the mean) and who were not included in the 

genetic sample after QC. We checked whether there was any overlap between participants 

with AD and those with white matter hyperintensities, but as there was only n=1 with both 

AD and neuroimaging data, we did not consider this an issue for our analyses. We report 

results in mm3 for hippocampal volume and exponentiated betas/percentages for WMH 

volume. UKB provided algorithmically defined Alzheimer’s dementia. AD (2006-2017) was 

captured using ICD-10 codes (alphanumeric codes to classify symptoms, diseases, injuries, 

infections and disorders) in linked hospital episode statistics (HES) data, as well as from 

death certification, primary care, self-report and nurse interview. These algorithmically-

defined outcomes were provided by UKB. Coded diagnoses were compared with clinical 

expert adjudication of full-text medical records. Details of ICD-10 and primary care Read 

codes are presented in ESM Tables 6-7 and more in-depth information on the algorithm by 

Wilkinson et al. can be found elsewhere (18). 

 

Statistical analyses  

Analyses were performed using a combination of the mrrobust package in STATA, version 

15, the MendelianRandomisation R package, using RStudio version 1.1.456 and PLINK 

version 2.0.   

 

Selection of genetic variants for exposures 

For diabetes, 157 independent (via linkage disequilibrium clumping performed in PLINK, 

using r2=0.2 and a 250kb window) genetic variants were chosen from the 2018 genome-wide 

association study (GWAS) by Mahajan et al. (19), in which they combined data across 32 

studies, including 74,124 diabetes cases and 824,006 controls of European ancestry. In our 
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sample these variants had an F-statistic of 27.43  and explained ~1.5% (pseudo-R2=0.015) of 

the variance in 14,010 diabetes cases [defined using a validated (against primary care data) 

algorithm of self-reported doctor diagnosis and/or medication(20)]. The 51 HbA1c single 

nucleotide polymorphisms (SNPs) we used were from the latest trans-ancestry GWAS by 

Wheeler et al.(21). These variants explained 2.8% (R2=0.028) of the variance in HbA1c in our 

sample and had an F-statistic of 164.6. In UKB HbA1c assays were performed using five Bio-

Rad Variant II Turbo analysers(22)). LD clumping in PLINK confirmed that the 51 SNPs 

were independent (r2=0.2, 250kb window). For bidirectional MR analyses we used 43 SNPs 

associated with reaction time (RT) from a recent GWAS (23) of 330,069 white European 

UKB participants with both phenotype and genotype data available. The RT variants 

explained 0.3% of the variance in RT in our study and the instrument had an F-statistic of 

24.0. As with the diabetes and HbA1c SNPs, the RT SNPs were also confirmed to be 

independent via clumping in PLINK. We harmonised genetic variants from the published 

GWAS with UKB by aligning the effect alleles. Full details of all the SNPs are in ESM Table 

1. Our selection process for genetic instruments is detailed in Figure 2. Briefly, in relation to 

minor allele frequency (MAF), for T2DM and HbA1c, the authors excluded any (rare) 

variants with a MAF <1%. For the reaction time variants, as we were uncertain of MAF 

filtering in the discovery GWAS we inspected the MAF for each SNP and found that one 

variant had a MAF of 0.3%. However, when we performed a leave-one-out analysis 

excluding this variant (rs141885450) our results remained identical (data not presented). 

More details on the discovery GWASs for our exposures can be found in the original papers 

(19,21,23).  
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Main analyses 

We firstly performed linear/logistic regression to examine the associations between SNPs for 

HbA1c/diabetes, and all of our outcomes in PLINK. Secondly, we fitted logistic/linear models 

to examine the associations between RT SNPs and diabetes, and HbA1c. Then, inverse-

variance weighted (IVW) MR was implemented as our main model. This approach calculates 

the effect of a given exposure (e.g. diabetes) on an outcome of interest (e.g. visual memory) 

by taking an average of the genetic variants’ ratio of variant-outcome (SNP→Y) to variant-

exposure (SNP→X) relationship estimated using the same principles as a fixed-effects meta-

analysis (24). We also performed standard MR sensitivity analyses, including MR-Egger 

regression (which yields an intercept term which indicates the presence or absence of 

unbalanced horizontal pleiotropy)(25) and the weighted median estimator (WME – which can 

yield more robust estimates when up to 50% of the genetic variants are invalid)(26). Identical 

MR analyses were performed for diabetes (157 SNPs), HbA1c (51 SNPs) and: reaction time, 

visual memory, white matter hyperintensity volume, hippocampal volume and AD. 

Additionally, for reaction time, visual memory, WMHV and hippocampal volume, we 

repeated the MR analyses using only the 16 glycaemic HbA1c SNPs and then the 19 

erythrocytic SNPs (16 SNPs were unclassified, as per the discovery GWAS). We did not 

perform these analyses for the AD outcome, due to the likelihood of imprecision because of a 

substantially reduced sample size. For bidirectional analyses, we used the reaction time SNPs 

to investigate associations with HbA1c and diabetes. Results are presented as exponentiated ß 

coefficients (multiplicative effect size) for RT/visual memory/WMHV, AD risk and unit 

differences in hippocampal volume (mm3), per unit increase in HbA1c (mmol/mol) and 1-log-

odds of diabetes. For bidirectional MR analyses, results are expressed as diabetes risk and 

unit differences in HbA1c (mmol/mol) per unit increase in reaction time (milliseconds). To 

ensure that our results were not affected by residual population stratification we performed all 
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of our MR analyses with adjustment for 10 genetic principal components. These results were 

qualitatively identical to the main results and thus, we present them in ESM Table 9.  

 

MR assumption checks 

MR has three strict assumptions that must be met for study results to be valid:  

I) The association between the genetic variants for the exposure and the exposure 

itself must be strong and robust (this means that these associations have usually 

been replicated and validated via genome-wide association studies – GWAS –). 

This assumption was met because our genetic variants for diabetes, HbA1c and 

reaction time (RT) were all from large-scale recently published GWAS. However, 

for the RT SNPs only, as there was some concern about weak instrument bias, we 

additionally included an MR-Egger Simulation Extrapolation (SIMEX)(27) 

sensitivity analysis, which we report in the Results section.  

II) The association between the genetic variants (for the exposure) and the outcome 

must only be via the exposure under study, otherwise this is known as unbalanced 

horizontal pleiotropy and may bias MR results. This assumption was assessed 

using the methods detailed below, including MR-Egger. 

III) There should not be an association between the genetic variants (for the exposure) 

and common confounders of the relationship under study (e.g. the diabetes SNPs 

should not be associated with factors such as smoking). We checked this 

assumption by regressing multiple confounders (BMI, deprivation, systolic blood 

pressure, total cholesterol, triglycerides, C-reactive protein – for which outliers 

>3 standard deviations were removed –), smoking and stroke) on the diabetes, 

HbA1c and RT SNPs. We applied a Benjamini-Hochberg false discovery rate (BH-

FDR) of 0.25 to account for multiple testing.  
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Additional analyses to mitigate bias due to sample overlap for the diabetes instrument  

As mentioned earlier, UKB contributed to the Mahajan et al., 2018 (19) diabetes GWAS and 

thus, we performed some analyses in addition to the main MR analyses to understand 

whether our diabetes and brain health results may be subject to ‘Winner’s curse’ bias. Thus, 

we turned to the earlier 2014 GWAS by Mahajan and colleagues (28) as this study did not 

include UKB. We looked up the 157 diabetes SNPs used in our instrument and found 77 of 

them in the Mahajan et al. 2014 GWAS summary statistics (this reduced number of SNPs 

may be due to differences in coverage of imputation panels, i.e. the 2014 GWAS imputed to 

Phase II/III of HapMap and the 2018 GWAS used the Haplotype Reference Consortium – 

HRC -). We took the corresponding log(betas) and standard errors for this 77-SNP diabetes 

instrument (F-statistic=30.88) from the Mahajan et al. 2014 GWAS so, that the estimates 

would not include UKB. Third, we performed all of our MR analyses (IVW, MR-Egger and 

WME) with this instrument and as results were qualitatively the same as when we used the 

157-SNP instrument, we present these in ESM Table 8.  

 

Results  

Sample characteristics 

Sample characteristics are presented in ESM Table 2. In our sample 54% of participants were 

male and the mean age was 56.7 years; 27% participants reported ever smoking and 20% 

were in the most deprived group. Mean HbA1c was 35.9 mmol/mol, mean reaction time was 

554.6 milliseconds and the mean number of visual memory errors was 4.1. (number of 

incorrect matches – errors –). Mean hippocampal volume was 3830mm3, while the median 

white matter hyperintensity volume was 2824mm3. Mean SBP and BMI were 138.2mmHg 

and 27.3kg/m2, respectively. Median values for triglycerides and CRP were 1.5 and 1.3 

mmol/mol, respectively, while mean total cholesterol levels were 5.7 mmol/mol. There were 
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14010 participants with diabetes, 746 with AD and 6301 with stroke at baseline. On average, 

participants engaged in 3.6 days of moderate physical activity for more than 10 minutes.  

 

MR results for diabetes/HbA1c → reaction time and visual memory  

Diabetes was not associated with reaction time or visual memory using IVW and these results 

were consistent with MR-Egger and WME approaches (Table 1). HbA1c was not associated 

with reaction time using IVW, MR-Egger or the WME. However, the MR-Egger intercept p-

value was <0.05; thus, we performed leave-one-out analyses and found that rs10774625 was 

pleiotropic. When we removed this SNP from the model the intercept p-value changed to 

>0.05 and results remained consistent. When restricted to the 16 glycaemic and subsequently 

19 erythrocytic SNPs, there was no evidence of an association with RT (Table 1). Using all 

51 SNPs, none of the three MR approaches used showed evidence of an association between 

HbA1c and visual memory (Table 1). When restricted to the 16 glycemic SNPs, there was 

also no association with visual memory (Table 1). Finally, when restricting to the 19 

erythrocytic SNPs we also observed no associations with visual memory across all MR 

approaches (Table 1). 

 

MR results for diabetes/HbA1c → hippocampal volume, white matter hyperintensity volume 

and Alzheimer’s dementia (AD) 

Diabetes was not associated with hippocampal or white matter hyperintensity volume, or AD 

using IVW, MR-Egger, or WME approaches (Table 2). For HbA1c, using the 51-SNP genetic 

instrument there was no evidence of associations with white matter hyperintensity volume 

(Table 2). When we restricted analyses to only the 16 glycaemic and the 19 erythrocytic 

SNPs we also saw no evidence of associations between HbA1c and WMHV (Table 2). For 

HV, the 51-SNP HbA1c instrument showed no associations across the IVW, MR-Egger and 
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WME (Table 2). When analyses were restricted to the 16 glycaemic and subsequently, the 19 

erythrocytic SNPs there was also no evidence of associations with hippocampal volume 

(Table 2). Both HbA1c (using all 51 SNPs) and diabetes were not associated with AD using 

conventional IVW MR (OR (95% CI) 1.09 (0.42;2.83) and 1.15 (0.87;1.52), respectively).   

 

Bidirectional MR results for: reaction time → diabetes/HbA1c 

In the bidirectional analyses, we observed no associations between RT and diabetes with all 

MR approaches producing consistent results (Table 3). However, our results suggested an 

association between RT and HbA1c, but the MR-Egger intercept p-value was <0.05 

indicating unbalanced horizontal pleiotropy. Thus, we performed leave-one-out analyses and 

found that the pleiotropic SNP was rs10775404. The results for the WME after exclusion of 

this variant suggested an association such that slower RT was associated with lower HbA1c 

(Beta coefficient = -1.11 mmol/mol [95%CI -1.95;-0.28]). Also, the MR-Egger intercept p-

value was >0.05 after exclusion of this variant. 

 

Results from additional MR assumption checks 

We performed MR-Egger SIMEX alongside the conventional IVW MR to address issues 

with weak instruments in relation to the reaction time SNPs. Our SIMEX analyses were 

consistent with all the other MR approaches for RT and diabetes (Table 3). However, for RT 

and HbA1c MR-Egger SIMEX suggested the presence of unbalanced horizontal pleiotropy 

and we decided to perform leave-one-out analyses. We identified rs10775404 as the 

pleiotropic SNP and after excluding this variant the MR-Egger SIMEX intercept p-value 

increased to >0.05. Additionally, we checked to see whether our genetic instruments for 

diabetes, HbA1c, and RT were associated with common confounders. When we regressed 

BMI, socioeconomic deprivation, systolic blood pressure, total cholesterol, smoking, stroke 
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at baseline, triglycerides, and C-reactive protein on the diabetes, HbA1c, and RT SNPs, we 

observed some associations between our genetic variants and confounders, using a 

Benjamini-Hochberg false discovery rate (BH-FDR) of 0.25 to account for multiple testing 

(Supplementary Tables 3–5). 

 

Discussion 

In the first comprehensive Mendelian randomisation study of HbA1c/diabetes and brain 

health, we show that overall there is unlikely to be a causal relationship. In bidirectional MR 

analyses, we found no relationship between reaction time and diabetes or HbA1c.  

 

No previous studies have attempted to investigate, using MR, the association between HbA1c 

and any of the outcomes reported here. Other approaches did not, nor did we find any 

association when the instrument was restricted to the glycaemic variants, providing little 

support for a true association. Bidirectional findings of RT and diabetes showed no evidence 

of causal relationships across IVW, MR-Egger and WME MR approaches. The IVW and 

MR-Egger also showed no associations between RT and HbA1c. However, our WME result 

showed a marginal association, in an unexpected direction between RT and HbA1c, such that 

slower RT was associated with lower HbA1c. However, as this was inconsistent with the IVW 

(conventional MR) and MR-Egger we believe that this finding should be interpreted with 

utmost caution. 

 

We are the first to investigate diabetes/HbA1c and hippocampal and white matter 

hyperintensity volumes using an MR approach, but we observed no evidence of associations 

between these phenotypes. Although UKB has the largest brain imaging study in the world, 

perhaps a larger sample size would allow for more precise estimation of the relationships 
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with these structural brain outcomes. However, the weak association between diabetes and 

AD only is at least supported by previous MR studies, which reported no impact of diabetes 

on AD (8–10) and thus, taking all of this evidence together, it is likely that diabetes does not 

exert a causal influence on risk of AD. Additional support for these findings comes from a 

recent study which suggests that, using a polygenic risk score for diabetes, the association 

between diabetes and cognitive state shown by observational studies (2) may be explained by 

early life socioeconomic factors and childhood cognition, as well as educational attainment 

(29).  

 

Our MR findings were validated by checking that we met all three core assumptions. 

Assumption I was met by ensuring that we selected the best available genetic variants for our 

exposures (diabetes, HbA1c and reaction time) from the latest and most robust GWA studies. 

Assumption II, which relates to horizontal pleiotropy between exposure SNPs and the 

outcomes, was checked by performing standard sensitivity analyses under the MR-Egger and 

Weighted median estimator models. Where necessary (Egger intercept p<0.05), we 

performed additional leave-one-out analyses to exclude a SNP that was identified as 

pleiotropic and re-ran our MR analyses. Finally, we checked assumption 3 by performing 

linear/logistic regressions between our genetic instruments for diabetes, HbA1c, and RT, and 

unobserved confounders. As we found evidence of associations with some confounders after 

applying a BH-FDR, we believe that these warrant further investigation but are beyond the 

scope of our study. The reasons for these associations could be firstly, related to the fact that 

these traits are all polygenic in nature, and/or secondly, it could also be that some of these 

associations indicate vertical, rather than horizontal pleiotropy. Future research could 

investigate whether any of these SNPs are vertically pleiotropic by performing MR mediation 

analyses, either using multivariable MR or two-step MR (30).  
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Our study design had some limitations in terms of the reaction time and diabetes genetic 

variants, as the GWAS from which we selected these SNPs both contained UKB in their 

samples. However, we  also performed sensitivity analyses using a diabetes instrument and 

estimates from a previous GWAS that did not include UKB (28) and results remained 

qualitatively identical. For HbA1c a two-sample MR design with no overlap was employed. 

We had lower precision for MR analyses with AD, hippocampal and white matter 

hyperintensity volumes and larger samples are required for more robust conclusions. It is also 

possible that the lack of evidence for causal relationships in the present study may indicate 

that other cognitive function and neuroimaging outcomes should be studied in future. 

Cognitive decline is also an important outcome that we did not investigate, but there would 

have been very few individuals for this analysis, as only a sub-sample underwent repeat 

cognitive testing. The time between tests is also not likely to be sufficient for cognitive 

decline to manifest (mean =6y for visual memory and 4y for reaction time), as participants 

were on average, aged 57 years at baseline. In relation to other exposures of interest, duration 

of diabetes, as well as other glycaemic exposures could be considered in future. However, 

there are currently no genetic variants for duration of diabetes and instruments for traits such 

as insulin resistance are not particularly strong (e.g. HOMA-IR has only two validated SNPs 

with small effect sizes). It would also be of value to test other mechanisms, as it is possible 

that the observational association between hyperglycaemia and brain health is not due to 

elevated peripheral glucose levels.  Moreover, the UKB cognitive tests are novel and specific 

to this cohort and have thus, not been extensively validated (16). The AD diagnoses may be 

also be problematic, as accurate dementia diagnoses are extremely challenging to clinical 

experts, particularly amongst patients in the age range of UKB. However, previous UKB 

studies have used similar dementia diagnoses (31,32), although the algorithm we relied on 
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here additionally incorporates primary care data, alongside HES, mortality, self-report and 

nurse interview data. Our findings are unlikely to suffer from issues related to population 

stratification, as all of the individuals in our sample were of white European descent and in 

sensitivity analyses we adjusted for 10 principal components, which yielded the same results. 

However, MR studies should also be performed to investigate the associations we report here 

in other ethnic groups, particularly given that the SNPs we used were derived using trans-

ethnic GWA approaches. 

 

In conclusion, our Mendelian randomisation study of glycaemia and cognitive function, 

structural brain MRI measures and Alzheimer’s dementia suggests that these associations are 

not likely to be causal. However, we observed that greater HbA1c may worsen visual 

memory, but this finding, alongside all of the others we report, should be triangulated using 

other methods, in particular those relevant for causal inference.  
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Figure 1. Study design  

 

Figure 2. Genetic instrument selection 

 

Note. *MAF filtering at 0.01 done by GWAS authors; **passed genetic QC and confirmed to 

be independent at LD clumping thresholds of r2=0.2 and within a 250 kb window, using 1000 

Genomes CEU data; ***we performed leave-one-out analyses for this SNP (rs141885450) 

and as results were identical we have not presented these.  
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Table 1. MR results for the relationship between diabetes/HbA1c and reaction time, and visual 

memory 

 Outcome: 

Reaction time 

 Outcome: Visual 

memory 

 

Exposure: diabetes (157 SNPs) 

 exp(β) (95% CI) Egger 

intercept p-

value 

exp(β) (95% CI) Egger intercept 

p-value 

IVW 1.00 (1.00;1.00)  1.00 (0.99;1.00)  

MR-Egger 1.00 (1.00;1.01) 0.170 1.00 (0.99;1.01) 0.570 

WME 1.00 (1.00;1.00)  1.00 (0.99;1.01)  

Exposure: HbA1c (All SNPs) 

 exp(β) (95% CI) Egger 

intercept p-

value 

exp(β) (95% CI) Egger intercept 

p-value 

IVW 1.00 (0.99;1.02)  0.99 (0.96;1.02)  

MR-Egger 0.98 (0.96;1.01) 0.032* 1.00 (0.94;1.06) 0.675 

WME 0.99 (0.98;1.00)  1.01 (0.97;1.05)  

Exposure: HbA1c (16 glycaemic SNPs) 

 exp(β) (95% CI) Egger 

intercept p-

value 

exp(β) (95% CI) Egger intercept 

p-value 

IVW 1.01 (0.99;1.03)  0.98 (0.91;1.04)  

MR-Egger 1.01 (0.97;1.05) 0.861 1.08 (0.91;1.28) 0.207 

WME 1.00 (0.98;1.02)  1.01 (0.94;1.08)  

Exposure: HbA1c (19 erythrocytic SNPs) 

 exp(β) (95% CI) Egger 

intercept p-

value 

exp(β) (95% CI) Egger intercept 

p-value 

IVW 1.00 (0.98;1.02)  0.98 (0.94;1.02)  

MR-Egger   0.98 (0.95;1.01) 0.100 0.99 (0.93;1.05) 0.772 

WME 0.99 (0.98;1.00)  1.00 0.95;1.05)  

Note. IVW= inverse-variance weighted, WME= weighted median estimator, exp(β)= 

exponentiated beta (after log transformation), 95%CI= 95% confidence interval, *after 

performing leave-one-out analysis SNP rs10774625 was found to be pleiotropic and when 

analyses were re-run the Egger intercept p-value changed to 0.098. 
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Table 2. MR results for the relationship between glycaemia and brain structure and 

Alzheimer’s dementia  

 Outcome: HV  Outcome: 

WMHV 

 Outcome: 

AD 

 

Exposure:  HbA1c (All SNPs) 

 β (95% CI) Egger 

intercept 

p-value 

exp(β) (95% CI) Egger 

interce

pt p-

value 

OR (95% 

CI) 

Egger 

intercep

t p-

value 

IVW -21.31 (-82.96;40.34)  1.03 (0.88;1.22)  1.09  

(0.42;2.8

3) 

 

MR-

Egger 

-81.68 (-195.96;32.61) 0.220 0.97 

(0.70;1.32) 

0.624 1.80 

(0.30;10.

80) 

0.516 

WME -58.90 (159.26;41.45)  1.01 (0.97;1.05)  1.05 

(0.24;4.5

7) 

 

Exposure: HbA1c (16 glycaemic SNPs) 

IVW 60.85 (-57.25;157.45)  0.83 (0.59;1.18)    

MR-

Egger 

65.39 (-242.90;373.68) 0.846 0.69 (0.28;1.74) 0.812   

WME 54.04 (-100.79;208.86)  0.81 (0.55;1.19)    

Exposure: HbA1c (19 erythrocytic SNPs) 

IVW 19.93 (-71.92;111.79)  1.03 (0.82;1.31)    

MR-

Egger 

-47.90 (-192.45;96.65) 0.237 0.94 (0.64;1.38) 0.521   

WME -52.99 (-169.50;63.52)  1.11 (0.83;1.46)    

Exposure: Diabetes (157 SNPs) 

 β (95% CI) Egger 

intercept 

p-value 

exp(β) (95% CI) Egger 

interce

pt p-

value 

OR (95% 

CI) 

Egger 

intercep

t p-

value 

IVW -2.30 (-12.39;7.78)  0.99 (0.97;1.01)  1.15 

(0.87;1.5

2) 

 

MR-

Egger 

-6.69 (-29.37;15.99) 0.672 0.71 (0.92;1.12) 0.182 1.00 

(0.54;1.8

6) 

0.624 

WME -9.06 (-24.88;6.76)  0.99 (0.96;1.02)  1.03 

(0.81;1.3

2) 

 

Note. IVW= inverse-variance weighted, β= beta coefficient (mm3), exp(β)= exponentiated β 

(after log transformation), OR= odds ratio, HV= hippocampal volume, WMHV= white 

matter hyperintensity volume, AD= Alzheimer’s dementia. 
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Table 3. MR results for the relationship between reaction time and HbA1c and diabetes 

 Outcome: 

diabetes 

 Outcome: HbA1c 
 

Exposure: reaction time (43 SNPs) 

 OR (95% CI) Egger 

intercept p-

value 

β (95% CI) Egger intercept 

p-value 

IVW 0.94 (0.54;1.65)  -1.05 (-2.05;-0.05) 
 

MR-Egger 1.16 

(0.01;112.17) 

0.927 -10.51 (-18.16;-

2.86) 

0.0.015* 

MR-Egger-SIMEX 1.22 (1.63E-

07;9.25E+06)) 

0.972 -22.43 (-33.71;-

11.16) 

<0.001* 

Weighted median 0.65 (0.34;1.23)  -1.16 (-1.95;-0.28) 
 

 Outcome: 

diabetes 

 Outcome: HbA1c 
 

Exposure: reaction time (43 SNPs) 

 OR (95% CI) Egger 

intercept p-

value 

β (95% CI) Egger 

intercept 

p-value 

IVW 0.94 (0.54;1.65)  -1.05 (-2.05;-0.05) 
 

MR-Egger 1.16 

(0.01;112.17) 

0.927 -10.51 (-18.16;-

2.86) 

0.0.015* 

MR-Egger-SIMEX 1.22 (1.63E-

07;9.25E+06)) 

0.972 -22.43 (-33.71;-

11.16) 

<0.001* 

Weighted median 0.65 (0.34;1.23)  -1.16 (-1.95;-0.28) 
 

Note. IVW= inverse-variance weighted, β= beta coefficient (mmol/mol), OR= odds ratio, 

MR-Egger-SIMEX= MR-Egger-Simulation extrapolation, *leave-one-out analyses excluding 

SNP rs10775404 changed the Egger intercept p-value to >0.05.  

 

 


