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Systematic Review and Patient- Level Meta- 
Analysis of SARS- CoV- 2 Viral Dynamics to 
Model Response to Antiviral Therapies
Silke Gastine1,*, Juanita Pang2, Florencia A.T. Boshier2, Simon J. Carter1, Dagan O. Lonsdale3,4, 
Mario Cortina- Borja5, Ivan F.N. Hung6, Judy Breuer2, Frank Kloprogge7 and Joseph F. Standing1

Severe acute respiratory syndrome- coronavirus 2 (SARS- CoV- 2) viral loads change rapidly following symptom 
onset, so to assess antivirals it is important to understand the natural history and patient factors influencing this. 
We undertook an individual patient- level meta- analysis of SARS- CoV- 2 viral dynamics in humans to describe viral 
dynamics and estimate the effects of antivirals used to date. This systematic review identified case reports, case 
series, and clinical trial data from publications between January 1, 2020, and May 31, 2020, following Preferred 
Reporting Items for Systematic Reviews and Meta- Analyses guidelines. A multivariable Cox proportional hazards 
(Cox- PH) regression model of time to viral clearance was fitted to respiratory and stool samples. A simplified four 
parameter nonlinear mixed- effects (NLME) model was fitted to viral load trajectories in all sampling sites and 
covariate modeling of respiratory viral dynamics was performed to quantify time- dependent drug effects. Patient- 
level data from 645 individuals (age 1 month to 100 years) with 6,316 viral loads were extracted. Model- based 
simulations of viral load trajectories in samples from the upper and lower respiratory tract, stool, blood, urine, 
ocular secretions, and breast milk were generated. Cox- PH modeling showed longer time to viral clearance in older 
patients, men, and those with more severe disease. Remdesivir was associated with faster viral clearance (adjusted 
hazard ratio (AHR) = 9.19, P < 0.001), as well as interferon, particularly when combined with ribavirin (AHR = 2.2, 
P = 0.015; AHR = 6.04, P = 0.006). Combination therapy should be further investigated. A viral dynamic dataset and 
NLME model for designing and analyzing antiviral trials has been established.

Finding antivirals that target severe acute respiratory syndrome- 
coronavirus 2 (SARS- CoV- 2) will be crucial in managing the on-
going pandemic. In addition to the development of novel agents, 
substantial efforts are underway to establish whether currently 
available agents may be repurposed.1 A key biomarker for clin-
ical antiviral activity is viral load in bodily fluids and assessing 
a drug’s or drug combination’s ability to reduce viral load is an 
important first step in identifying therapies that influence clin-
ical outcome.

To correctly assess antiviral activity, it is first necessary to un-
derstand viral load natural history. As a rapidly progressing, pri-
marily respiratory viral infection, SARS- CoV- 2 elimination from 
the body seems to be mainly driven by a combination of innate 
immune response and exhaustion of target cells available for infec-
tion.2 Observational cohort studies published to date have shown 
that the rate of viral load decline seems slower in older patients, 
those with more severe disease, and those with comorbidities, 
such as diabetes mellitus and immunosuppression.3– 6 Interpreting 
these observational studies requires caution because patients have 
often received antiviral therapies. Due to the timepoint of initial 

infection being unknown, assessing viral load in response to treat-
ment must account for time since symptom onset.7

Since February 2020, case reports and case series of patient- level 
viral dynamics have been published, some of which report dosing 
of antiviral drugs.8 Clinical trials of antivirals and their association 
with viral load are also beginning to read out.9 Meanwhile, large 
pragmatic trials of repurposed monotherapy antivirals have yet to 
find a clearly effective agent.10 At this crucial juncture, it is vital to 
develop a pharmacodynamic modeling framework that can be used 
to describe the natural history of SARS- CoV- 2 viral dynamics, make 
initial estimates on antiviral efficacy of agents used to date, and to 
design and evaluate phase II trials using viral load as a biomarker.

This systematic review therefore aimed to search for case reports, 
case series, and clinical trials reporting serial individual patient- 
level SARS- CoV- 2 viral load measurements in humans from any 
sampling site upon which an individual patient- level meta- analysis 
was then performed. A nonlinear mixed- effects (NLME) viral 
dynamic model was fitted to describe the viral trajectories in each 
sampling site and to give a quantitative measure of viral dynamics. 
In data of sufficient quality, the parameters of multivariable Cox 
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proportional hazards (Cox- PH) regression models of time to viral 
clearance, and NLME models of antiviral efficacy were estimated.

METHODS
Protocol and registration
The protocol for this systematic review and individual patient meta- 
analysis, which follows the Preferred Reporting Items for Systematic 
Reviews and Meta- Analyses (PRISMA) Individual Patient Data sys-
tematic reviews guideline,11 was first published on May 27, 2020, at: 
https://github.com/ucl- pharm acome trics/ SARS- CoV- 2- viral - dynam 
ic- meta- analysis. The final dataset and statistical analysis code are 
also published here. The review was registered with PROSPERO 
(CRD42020189000).

Eligibility criteria
This study aimed to identify serial viral loads with time in human sub-
jects infected with SARS- CoV- 2 in order to describe and model viral 
load trajectory. The inclusion criteria were therefore papers contain-
ing individual subject- level reports of viral load with time, either since 
symptom onset or time since start of monitoring for asymptomatic sub-
jects, and sampling site. Authors of manuscripts describing summary 
statistics of viral load with time were contacted requesting participant 
level data. Viral load was defined as either a value in copies/mL or a 
cycle threshold (Ct) value of an uncalibrated polymerase chain reaction 
(PCR) assay.

Overall search strategy
Since SARS- CoV- 2 was notified to the World Health Organization 
(WHO) on December 31, 2019, we did not expect to find relevant papers 
published prior to this date. Hence, PubMed, EMBASE, medRxiv, and 
bioRxiv were searched with a date range of January 1, 2020, to May 31, 
2020. The following search terms were used for PubMed and EMBASE: 
SARS- CoV- 2 OR COVID OR coronavirus OR 2019- nCoV AND viral 
load OR cycle threshold OR rtPCR OR real- time PCR OR viral kinetics 
OR viral dynamics OR shedding OR detection OR clinical trial. Due 
to character limits in the search engine, the following search terms were 
used for medRxiv and bioRxiv: SARS- CoV- 2 OR COVID- 19 OR coro-
navirus AND viral load OR cycle threshold OR PCR OR viral dynamics 
OR clinical trial.

After removing duplicates, two reviewers independently identified 
papers for full text screening, with any discrepancies resolved by a third 
reviewer.

Data extraction
Viral loads were reported as either numerical values in tables, figures, or 
in viral load vs. time plots. Where possible, numerical values were copy- 
pasted directly into a comma- separated value format from the source, 
whereas tabulated numerical values contained in pdf images were ex-
tracted using https://extra cttab le.com/. Viral loads reported in plots were 
extracted using Web Plot Digitizer.12

Each viral load was paired with a time since symptom onset, or in as-
ymptomatic subjects, the time since viral monitoring started. Furthermore, 
sampling site and, if viral load not reported in copies/mL, the PCR assay, 
including the primers used, were extracted along with limit of quantifica-
tion and limit of detection, if available. The following patient- level covari-
ates were extracted if available:

• Presence of fever > 37.5°C at any time (non- time- varying covariate)
• Age, where possible individual age but otherwise the study’s reported 

central measure (e.g., mean and median)
• Sex or the male/female ratio was extracted if patient- level data not 

reported

• Need for and days of intensive care treatment
• Need for and days of mechanical ventilation
• Whether the patient died and time to death from symptom onset.

In addition, a standardized disease score was constructed for each pa-
tient as follows:

0 -  asymptomatic
1 -  mild disease (fever, cough, or other mild symptoms reported)
2 -  moderate disease (in addition to mild criterion: need for supplemental 

oxygen/noninvasive ventilation)
3 -  severe disease (requirement for mechanical ventilation).

All data were stored on a shared github repository, and standardized R- 
scripts took data from each paper to merge into a single master dataset. A 
quality control check on viral load values and all covariates was performed 
for each paper by an independent reviewer.

Data quality assessment

Viral load quality score. Two quality assessments were applied to each 
dataset. First, the quality of viral load reporting was rated on a 1– 3 scale. 
The highest quality 1 was assigned to studies reporting viral load in cop-
ies/mL or reporting a calibration curve allowing for direct conversion of 
Ct values to viral load. Quality 2 was assigned if viral load was reported in 
PCR Ct and primers used in the assay were reported, but calibration data 
was missing. In this case, a published calibration curve for that primer 
from another source was used to convert to viral load in copies/mL.13,14 
Where more than one calibration curve was available for the same primer 
the mean slope and intercept was used. The lowest (quality score 3) was 
assigned when viral load was reported in PCR Ct but no further infor-
mation was available on the PCR assay. In this instance, a conversion to 
copies/mL was made using the mean slope and intercepts from all cali-
bration curves.

Drug quality score. The second quality assessment on a three- point scale 
related to reporting of the antiviral drug therapy administered: which 
drug(s) and upon which days did patients receive the drug(s). The highest 
quality 1 was assigned when it was reported which days each patient re-
ceived each drug, or these data were provided by corresponding authors. If 
it was reported that no antiviral was administered, this was also assigned 
quality 1. Quality 2 was assigned when antiviral drug treatment was re-
ported, but ascertaining which days the patient had received the drugs was 
not possible. The lowest category, quality 3, was assigned when it was not 
possible to determine whether or not antivirals had been administered.

Statistical analysis

Primary analysis of time to viral clearance using Cox proportional 
hazards modeling. The primary analysis was conducted on observed 
time to viral clearance, which was analyzed fitting Cox- PH regres-
sion models with adjusted hazard ratios (AHRs) estimated for each 
covariate. We verified the assumptions of proportional hazards using 
the Therneau– Grambsch test.15 The data used for this analysis were 
limited to respiratory and stool sampling sites only, as virus was found 
to be mostly undetectable at other sites. Furthermore, only data from 
patients with known antiviral history (drug quality 1 and 2) were used. 
To assess the possible risk of bias in different drug and viral load qual-
ities, the analysis was repeated on two further subsets: first, with only 
drug quality 1 and respiratory samples, and second on assay quality 1 
data only.

Time to viral load dropping below the limit of detection (LOD) was 
modeled with Cox- PH regression in R (version 3.6.3).16 Where a single 
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patient contributed samples from multiple sampling sites (e.g., upper re-
spiratory and stool), the time to the last site testing negative was used. 
Multivariable models for covariate effects on time to viral clearance were 
fitted, with additional interaction terms for drug therapies included, 
where multiple antiviral agents were given simultaneously. In studies 
reporting sex as a proportion of male patients, 10,000 datasets were sim-
ulated using the reported fraction of male patients to randomly assign 
individuals to being male patients from the binomial distribution. The 
Cox- PH regression model was then fitted to each dataset and parameter 
estimates compared with the model, where individual sex was assigned by 
rounding the fraction of male patients. Model parameter estimates were 
visualized using Forest plots.

Secondary analysis antiviral pharmacology model. The secondary 
analysis was to use an NLME model to quantify the increase in viral 
elimination rate with antiviral therapy. This analysis used data only from 
respiratory samples and rated drug quality 1.

Nonlinear mixed- effects viral dynamic model. First, a descriptive analysis 
of all data was undertaken. An NLME viral dynamics model was fitted to 
the individual patient- level viral load vs. time data. The structural model was 
based on the general target cell limited model, which has previously been used 
to describe respiratory viral infections.7,17 This model consists of three ordi-
nary differential equations relating to changes in uninfected target cells (T), 
infected target cells (I) and free virus (V) over time (t), as follows:

where β is the rate at which target cells become infected in the pres-
ence of virus, δ is the death rate of infected cells, ρ is the rate of viral 
production from infected cells, and c is the rate of clearance of free 
virus. This model is structurally unidentifiable, as tested through 
the “IdentifiabiltyAnalysis” package in Wolfram Mathematica ver-
sion 12.1 (Wolfram Research, Champaign, IL),18 unless the initial 
condition for T, β, or ρ are known. Furthermore, the elimination 
rate of free virus (c) is likely to be much faster than the death rate of 
infected cells (δ). Hence, by assuming a quasi- steady- state between 
I and V, and normalizing the total cell number by the number of 
infected cells when observations begin (t = 0), it is then possible to 
reduce the model to a structurally identifiable, two- state ordinary 
differential equation model relating to the fraction (f) of infected 
cells with time and infected cells as a proxy for viral load as follows19:

with γ, a new parameter equal to ρβT0/c and interpreted to be 
the maximum rate of viral replication. δ can now be interpreted 
as overall viral elimination rate. This population model was then 
fitted to viral load data with time using the following form:

where yij was the viral load from subject i at time tij, f is the nonlin-
ear model defined above with parameters φi, and εij the residual 
between the model prediction and the observed data.

Four parameters were estimated: the initial viral load at symptom 
onset (V0), β, δ, and γ. Interindividual variability was estimated for V0, β, 
and δ with each assumed to follow a log- normal distribution. Viral loads 
were log transformed and the residual error was assumed to follow a nor-
mal distribution. Parameter estimation by maximum likelihood was un-
dertaken using the stochastic approximation expectation maximization 
in NONMEM version 7.4.20 Model evaluation was undertaken by anal-
ysis of normalized prediction distribution errors and visual predictive 
checks.21 Viral loads below the LOD were included by integrating the 
density function from minus infinity to the LOD to yield a probability 
of the data being below the LOD (“M3 Method”).22

In some participants, multiple samples were taken at the same time-
point (either different sampling site or the same sample assayed by more 
than one method). In this case, a common residual error term was used to 
allow for modeling one- level nested random effects.

Descriptive analysis of viral shedding by sample site. The above 
model was fitted to data from each sampling site. The resulting param-
eters were then used to simulate the overall population viral load trajec-
tories. For the respiratory sample sites viral area under the curve (AUC), 
peak viral load and half- life were derived from the model and plotted vs. 
patient covariates.

Covariate analysis and antiviral drug effects modeling. The initial 
model used only data obtained in untreated patients. A covariate analysis 
was undertaken testing the influence of sampling site (nasal vs. oral vs. lower 
respiratory tract), sex, age, and disease status on V0, β, or δ. Covariates were 
retained in the model based on the likelihood ratio test with a threshold 
level of significance of P < 0.01, and if the same covariate addition to V0, β, 
or δ all gave significant improvement to model fit then the model with the 
largest decrease in −2 log likelihood (NONMEM objective function value 
(OFV)) was chosen. For the final model viral AUC, peak viral load and half- 
life were derived and plotted vs. patient covariates.

Using the final demographic model, data from patients undergoing anti-
viral treatment (antiviral drug quality 1) were added. A univariable analysis 
was performed, testing each drug’s ability to increase δ. Drugs showing sig-
nificant improvement in model fit (P < 0.01), according to the likelihood 
ratio test, were then included in the final multivariable model.

Simulations based on the antiviral pharmacology model
Simulations were performed to explore the change in viral trajectories for 
different timepoints of therapy initiation: day 1 after symptom onset, day 
3, day 7, and day 10. Interferon and ribavirin monotherapy along with 
the combination therapy interferon plus ribavirin were explored this way. 
A dummy population of 5,100 subjects with ages uniformly distributed 
across 50 to 100 years, consisting of an equal ratio of men and women 
was created. Each regimen was simulated using the entire population, 
assuming sampling from the upper respiratory tract or nose for a time 
window of 14 days. Comparisons of the sample size required to detect 
a significant difference in the proportion of undetectable virus between 
antiviral and no treatments were made after 7 days of treatment with a 
90% power and alpha level of P < 0.05 for antivirals starting at days 1, 3, 
and 7 post- symptom onset.

RESULTS
Results of the systematic search are given in Figure 1, and details 
of included papers in Table 1. Individual patient- level data were 

dT (t)

dt
= −�T (t)V (t) .

dI (t)

dt
= �T (t)V (t) − �I (t) .

dV (t)

dt
= �I (t) − cV (t) .

df (t)

dt
= −�f (t)V (t) .

dV (t)
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= � f (t)V (t) − �V (t) .
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extracted from 45 articles reporting viral loads and/or PCR Ct 
values with time since symptom onset. Of these 32 papers, either 
reported antiviral participant- level drug histories or these were 
provided by the corresponding author. The full dataset contained 
645 individuals contributing 6,316 viral load samples. The major-
ity of samples (n) were taken from the respiratory tract: nasopha-
ryngeal (315 individuals, n = 2,208), oropharyngeal or saliva (381 
individuals, n = 2,144), and lower respiratory tract (81 individu-
als, n = 799). The other reported samples sites were stool/rectal 
swabs (99 individuals, n  =  655), blood/plasma (42 individuals, 
n = 258), urine (31 individuals, n = 112), ocular (16 individuals, 
n = 50), and breastmilk (4 individuals, n = 90). Metrics of the full 
dataset are given in Table S1.

Full details of the extracted patient- level covariates are given 
in Table  2. Recording of fever, days in the intensive care unit, 
and days ventilated was largely unavailable. Therefore, no fur-
ther analysis was performed on these variables. However, it was 
possible to categorize disease status in all drug quality 1 and 2 
papers, either through reports in the manuscript or by contacting 
corresponding authors. Overall, most patients had mild disease 
376 (66.8%), whereas 79 (14.0%) patients had moderate and 84 
(14.9%) had severe disease. In total, 24 (4.3%) asymptomatic pa-
tients were reported. The distribution of recorded drug therapies, 
available for drug quality 1 data and respiratory site samples, is 

summarized in Table S2. Sixty- seven of these patients did not re-
ceive antivirals.

The NLME model fits to the overall data, stratified by sampling 
site, are provided in Table  S3 and Figure  S1. Simulations from 
the models for each sampling site showing the expected viral load 
trajectory along with the predicted proportion of samples, that 
would be below the LOD are given in Figure  2. For respiratory 
sites, model- derived AUC, peak viral load, and half- life are given 
in Figure S2.

Data on a total of 354 patients with respiratory and/or stool/
rectal sampling and drug quality 1 or 2 were available. A Forest plot 
of the parameter estimates from the Cox- PH regression model is 
provided in Figure 3. Viral clearance was fastest from upper respi-
ratory tract samples and slowest from stool. More sensitive assays 
(with lower detection limits) were associated with longer time to 
viral clearance and viral clearance was faster in female patientss, 
younger patients, and those who were asymptomatic.

Regarding antiviral therapies, only remdesivir (AHR  =  9.19, 
P < 0.001) and interferons (AHR = 2.20, P = 0.015) were inde-
pendently associated with faster viral clearance. The effect of in-
terferon alpha and beta (Figure S3) was similar and hence these 
were combined. Lopinavir/ritonavir, ribavirin, and interferons 
were most used and most used in combination. Adding interac-
tion terms for interferon plus lopinavir/ritonavir, interferon plus 

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) diagram detailing the systematic search results.

REVIEW



CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 110 NUMBER 2 | August 2021 325

Ta
bl

e 
1

 I
nd

iv
id

ua
l p

ap
er

s 
in

cl
ud

ed
 in

 t
he

 m
et

a-
 an

al
ys

is

S
tu

dy
 I
D

C
ou

nt
ry

S
am

pl
e 

ty
pe

A
ss

ay
 g

en
e

N
o.

 o
f 

pa
ti

en
ts

S
am

pl
ed

 
pa

ti
en

ts

S
am

pl
es

 
pe

r 
pa

ti
en

t 
m

ed
ia

n 
[m

in
 

– m
ax

]
Tr

ea
tm

en
t

S
ym

pt
om

 d
et

ai
ls

A
ge

, y
ea

rs
 m

ed
ia

n 
(I

Q
R

) 
{R

}
S

ex
 M

 (
F)

R
ef

.

1
S

G
P

U
R

T,
 V

n,
 U

n,
 R

e,
 B

r
N

, 
O

rf
1

ab
2

2
1
4

– 2
8

N
on

e
Ye

s
0
.5

1
 (1

)
41

2
K

O
R

U
R

T,
 L

R
T,

 V
n,

 U
n,

 R
e

R
dR

p,
 E

2
2

9
8

– 1
3

6
lp

vr
, 
ot

he
r

Ye
s

5
5/

3
5

1
 (1

)
8

3
H

K
G

U
R

T,
 L

R
T,

 V
n

R
dR

p
2

3
2

3
3
 [1

– 2
4]

lp
vr

, 
ri
ba

, 
If
n

Ye
s*

  
(n

ot
 lo

ng
it
ud

in
al

)
6

2
 {
3
7–

 7
5

}*
1

3
 (1

0
)*

2

4
C

H
N

U
R

T,
 L

R
T

N
, 

O
rf

1
ab

1
2

5
2

ri
ba

, 
ifn

, 
ot

he
r

Ye
s 

(n
ot

 
lo

ng
it
ud

in
al

)
6

3
 (4

7–
 6

5
) 

[1
0

– 7
2
]

8
 (4

)
4
2

5
K

O
R

U
R

T
R

dR
p

1
1

1
1

lp
vr

, 
az

it
, 
ot

he
r

Ye
s

5
4

1
 (
0
)

4
3

6
C

H
N

U
R

T,
 L

R
T

N
8

0
 (2

)
2

3
0

– 5
0

- 
- 

- 
- 

4
4

7
C

H
N

U
R

T
N

, 
O

rf
1

la
b

17
17

8
 [1

– 1
7

]
- 

Ye
s 

 
(n

ot
 lo

ng
it
ud

in
al

)
5

9
 {
2

6
– 7

8
}

8
 (
9
)

1

8
C

H
N

U
R

T,
 R

e,
 V

n
S

1
6

1
6

1
 [1

– 3
]

- 
- 

- 
- 

4
5

9
FR

A
U

R
T

R
dR

P,
 E

3
6

2
6

7
 [
3

– 7
]

cq
hc

q,
 a

zi
t

- 
M

ea
n 

4
5
 +

/-
  2

2
1

5
 (2

1)
3

5

1
0

C
H

N
U

R
T

N
, 
O

rf
1

la
b

51
5

0
4
 [1

– 1
4]

lp
vr

, 
If
n,

 u
m

if,
 

th
ym

, 
ot

he
r

Ye
s

4
3

 (2
9

– 5
3)

2
5

 (2
6
)

4
6

1
1

C
H

N
U

R
T,

 V
n,

 R
e

N
, 
O

rf
1

la
b

6
6

9
 [
2

– 1
9]

- 
- 

- 
5

(1
)

47

1
2

C
H

N
U

R
T

N
9

4
9

4
3
 [1

– 6
]

- 
- 

4
6
 (3

3
– 6

1)
*

47
 (4

7
)*

3

1
3

S
G

P
U

R
T

N
, 
S

, 
an

d 
O

rf
1

ab
1

8
1

8
1
6
 [

7–
 2
5
]

lp
vr

Ye
s

47
 {
3
1–

 7
3
}*

9
 (
9
)*

4
8

1
4

C
H

N
U

R
T

- 
5

5
6

lp
vr

, 
If
n,

 o
th

er
Ye

s
{3

6
– 7

3
}*

3
 (2

)
4

9

1
5

C
H

N
U

R
T

O
rf

1
ab

2
2

7–
 9

lp
vr

, 
ri
ba

Ye
s

1
9/

3
6

2
 (
0
)

5
0

1
6

FR
A

U
R

T,
 R

e
R

dR
p,

 E
, 

R
dR

p
- IP

1
, 
G

A
PD

H
5

5
1

1
 [
5

– 1
3
]

re
m

d
Ye

s 
 

(n
ot

 lo
ng

it
ud

in
al

)
4

6
 (3

1–
 4

8
)

3
 (2

)
51

17
G

ER
U

R
T,

 L
R

T,
 R

e
R

dR
P,

 E
9

9
47

 [1
3

– 5
4]

- 
Ye

s
4

0
 (3

3
– 4

9
)

8
 (1

)
3
7

1
8

C
H

N
U

R
T,

 R
e

N
, 
O

rf
1

la
b

1
0

9
1

1
 [
2

– 2
0]

- 
Ye

s
7
 (3

– 1
3)

6
 (4

)
5
2

1
9

K
O

R
U

R
T,

 V
n,

 R
e,

 U
n

E
2

2
1

8
– 3

3
N

on
e

Ye
s

0
.0

8
, 
ne

on
at

e
0
 (2

)
5

3

2
0

U
S

A
U

R
T

- 
4

4
1

9
3
 [
2

– 8
]

- 
- 

{2
3

– 9
2
}, 

6
1
 (m

ea
n)

*
2

3
 (2

1)
*

5
4

2
1

TW
N

U
R

T,
 L

R
T

R
dR

p1
, 
R

dR
p2

, 
E,

 N
5

5
2

0
 [1

7–
 2
4]

lp
vr

, 
N

on
e

Ye
s

5
2
 (
5

0
– 5

3)
2
 (3

)
5

5

2
2

C
H

N
U

R
T,

 L
R

T
- 

2
1

3
1

3
7

 [4
– 1

9]
AV

T
Ye

s
5
2

 (2
– 8

6
)

1
0

8
 (1

0
5
)

5
6

2
3

C
H

N
U

R
T

- 
1

1
9

in
f, 

cq
hc

q,
 

ot
he

r
Ye

s 
 

(n
ot

 lo
ng

it
ud

in
al

)
4

4
1
 (
0
)

5
7

2
4

U
S

A
U

R
T

- 
1

2
1

2
2
5
 [1

4
– 4

9]
re

m
d,

 o
th

er
Ye

s 
 

(n
ot

 lo
ng

it
ud

in
al

)
5

3
 {
2
1–

 6
8

}
8
 (4

)
5

8

2
5

H
K

G
U

R
T,

 L
R

T,
 V

n,
 R

e
- 

1
1

1
1

9
 [
2

– 2
2
]

lp
vr

, 
ri
ba

, 
ifn

*
Ye

s 
 

(n
ot

 lo
ng

it
ud

in
al

)
5

8
 (4

2
– 7

0
)

7
 (4

)
5

9

 (
C

on
ti
nu

ed
)

REVIEW



VOLUME 110 NUMBER 2 | August 2021 | www.cpt-journal.com326

S
tu

dy
 I
D

C
ou

nt
ry

S
am

pl
e 

ty
pe

A
ss

ay
 g

en
e

N
o.

 o
f 

pa
ti

en
ts

S
am

pl
ed

 
pa

ti
en

ts

S
am

pl
es

 
pe

r 
pa

ti
en

t 
m

ed
ia

n 
[m

in
 

– m
ax

]
Tr

ea
tm

en
t

S
ym

pt
om

 d
et

ai
ls

A
ge

, y
ea

rs
 m

ed
ia

n 
(I

Q
R

) 
{R

}
S

ex
 M

 (
F)

R
ef

.

2
6

C
H

N
U

R
T,

 R
e

O
rf

1
ab

, 
N

3
3

2
6
 [
2

6
– 5

2
]

ifn
, 
cq

hc
q,

 
ot

he
r

Ye
s

2
8
 {
2
5

– 3
2
}

2
 (1

)
6

0

2
7

S
G

P
U

R
T

E
17

17
7

 [4
– 1

4]
- 

Ye
s*

3
7
 {
2

0
– 7

5
}*

1
1
 (
6
)

6
1

2
8

TW
N

U
R

T,
 L

R
T

N
, 
R

dR
p,

 E
1

1
2
4

9
- 

Ye
s 

 
(n

ot
 lo

ng
it
ud

in
al

)
5

0
0
 (1

)
6

2

2
9

C
H

N
U

R
T,

 R
e

- 
3

1
3

5
If
n 

an
d 

R
ib

a
Ye

s 
 

(n
ot

 lo
ng

it
ud

in
al

)
5
 {1

.5
– 6

}
2
 (1

)
6

3

3
0

C
H

N
U

R
T,

 R
e

N
, 
R

dR
p,

 E
1

1
6

3
lp

vr
, 
um

if,
 If

n,
 

ot
he

r
Ye

s
47

1
 (
0
)

6
4

3
1

K
O

R
U

R
T,

 L
R

T
E

2
8

9
1

3
 [
8

– 3
3
]

lp
vr

, 
no

ne
Ye

s*
4

0
 (2

8
– 5

4)
 {
2

0
– 7

3
}

1
5
 (1

3)
6

5

3
2

IT
A

U
R

T
- 

1
1

2
8

- 
Ye

s
6

5
0
 (1

)
6

6

3
3

G
B

R
U

R
T

- 
1

1
1

3
no

ne
Ye

s
51

1
 (
0
)

6
7

3
4

C
H

N
U

R
T,

 L
R

T,
 C

o,
 V

n,
 

U
n,

 R
e

- 
1
6

1
6

5
3
 [
2
7–

 1
0

6
]

- 
- 

5
9
.5

 {
2

6
– 7

9
}*

1
3
 (3

)*
6

8

3
5

H
K

G
U

R
T

R
dR

p
1

2
7

1
2
7

8
 [4

– 8
]

lp
vr

, 
ri
ba

, 
ifn

- 
51

.5
 {
3
1

.0
– 6

2
.5

}
6

8
 (
5

9
)

9

3
6

C
H

N
U

R
T

N
3
1

1
9

2
 [1

– 5
]

N
A

- 
41

 {
2

8
– 6

0
}*

1
0

 (2
1)

6
9

3
7

C
H

N
U

R
T

O
rf

1
ab

1
47

6
1

2
 [1

– 6
]

AV
T

Ye
s

4
2

.0
 (3

5
.0

– 5
4
.0

) 
{1

9
– 8

1
}*

6
7
 (
8

0
)

70

3
8

C
H

N
U

R
T,

 R
e

O
rf

1
ab

5
4

1
3

1
2
 [

7–
 2

0]
N

A
Ye

s
6

.8
 {
2

.7
– 1

1
.7

}*
3
7
 (1

7
)

71

3
9

C
H

N
U

R
T

O
rf

1
ab

3
0

8
1
0

9
 [

7–
 1

1]
Lp

vr
, 
ifn

, 
ri
ba

, 
cq

hc
q

Ye
s

6
3

.5
 {
4

5
– 8

1
}*

1
51

 (1
5
7

)
72

4
0

C
H

N
U

R
T

- 
1

1
5

ot
he

r
Ye

s
1
0

0
1
 (
0
)

7
3

41
AU

S
U

R
T,

 B
r

E
2

2
2
4
 [
2

0
– 2

8
]

no
ne

Ye
s

0
.7

/4
0

1
 (1

)
74

4
2

K
O

R
U

R
T,

 L
R

T,
 U

n
R

dR
p

2
2

2
5

lp
vr

, 
cq

hc
q

Ye
s

4
6/

6
5

0
 (2

)
7
5

4
3

V
N

M
U

R
T

R
dR

p
2

2
2

– 1
3

ot
he

r
Ye

s
6

5/
2
7

2
 (
0
)

76

4
4

FR
A

U
R

T,
 L

R
T,

 V
n,

 R
e

E
1

1
2
7

lp
vr

- 
- 

1
 (
0
)

7
7

4
5

G
ER

B
r

N
, 
O

rf
1

la
b

2
2

3
2

– 5
0

N
A

Ye
s

- 
0
 (2

)
7
8

- , 
no

t 
re

po
rt

ed
; 
AV

T,
 a

nt
i- v

ir
al

 t
he

ra
py

; 
br

, 
br

ea
st

m
ilk

; 
C

o,
 c

on
ju

nc
ti

va
; 

cq
hc

q,
 c

hl
or

oq
ui

ne
/h

yd
ro

xy
ch

lo
ro

qu
in

e;
 if

n,
 in

te
rf

er
on

; 
lp

vr
, 

lo
pi

na
vi

r/
ri

to
na

vi
r;

 L
R

T,
 lo

w
er

 r
es

pi
ra

to
ry

 t
ra

ct
; 
R

e,
 f

ec
al

/r
ec

ta
l/

an
al

; 
re

m
d,

 
re

m
sd

es
iv

ir
; 
ri
ba

, 
ri
ba

vi
ri
n;

 u
m

if,
 u

m
ife

no
vi

r;
 U

n,
 u

ri
ne

; 
U

R
T,

 u
pp

er
 r

es
pi

ra
to

ry
 t

ra
ct

; 
Vn

, 
ve

no
us

 (
bl

oo
d,

 p
la

sm
a,

 a
nd

 s
er

um
).

 *
C

oh
or

t 
le

ve
l i

nf
or

m
at

io
n 

is
 a

va
ila

bl
e,

 o
nl

y.
 N

o 
in

fo
rm

at
io

n 
on

 in
di

vi
du

al
 p

at
ie

nt
s.

Ta
bl

e 
1
 (

C
on

ti
nu

ed
)

REVIEW



CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 110 NUMBER 2 | August 2021 327

ribavirin, and lopinavir/ritonavir plus ribavirin in the Cox- PH 
regression analysis showed a trend toward synergy between inter-
ferons and ribavirin in the full dataset (AHR = 6.04, P = 0.006; 
Figure 3), as well as in the additional analysis taking in quality as-
sessments to account for potential bias: respiratory data limited to 
drug quality and in data limited to only viral load quality 1 data 
(Figure S4, Figure S5). Median sampling frequency in the main 
survival dataset was 1 day but there was a skewed distribution of 

sampling frequencies with the mean being 1.9  days and 4.8% of 
sampling frequencies being >  3  days. The main analysis was re-
peated excluding events with sampling frequencies over 3 days to 
check for potential bias caused by interval censoring, but the main 
effect sizes were similar (Figure S6).

Covariate relationships and drug effects were explored through 
NLME modeling with parameter estimates of the model given 
in Table  S4 along with visual predictive checks and normalized 

Table 2 Overview extracted variables across different analyses, median [range] (percentage of missing data records)

Descriptive (%missing)
All data  
n = 645

Cox- PH -  full dataset  
n = 354

NLME/ reduced Cox- PH  
n = 317

Age, years 46 [0.1– 100] (31.3%) 48 [0.1– 100] (0%) 46 [0.1– 100] (0%)

Sex, male/female 217/189 (37%) 215/139 (0%) 182/135 (0%)

ICU admission, yes/noa 36/371 (36.9%) 8/271 (21.2%) 8/257 (16.4%)

Invasive ventilation, yes/noa 14/348 (43.9%) 9/262 (23.4%) 5/247 (20.5%)

Death, yes/no 1/455 (29.3%) 1/330 (6.5%) 1/293 (7.3%)

Disease severitya (12.7%) (0%) (0%)

Asymptomatic 24 19 16

Mild 376 258 239

Moderate 79 52 44

Severe 84 25 18

Cox- PH, Cox proportional hazards; ICU, intensive care unit; NLME, nonlinear mixed- effects.
 aThere is discord between the reported ICU and mechanical ventilation and disease severity score due to incomplete reporting in some papers. Disease severity 
was taken from individual reports of disease status in cases where ICU admission and invasive ventilation were not specifically mentioned, and only disease 
severity was used in the analyses.

Figure 2 Model- predicted viral load trajectories at each sample site studied. Black lines are the median predictions, with shaded areas 
representing the 95% prediction interval. The percentage of samples that are predicted to be below a typical limit of detection (10 copies/mL) 
are given in two- daily time bins on each plot. [Colour figure can be viewed at wileyonlinelibrary.com]
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prediction distribution errors in Figure 4 and Figure S7, and visu-
alization of viral AUC, peak viral load, and half- life derived from 
the final model in Figure  S8. Drug effects were estimated to in-
crease δ. Drug regimens containing interferon (ΔOFV  =  −25.5, 
P < 0.001), lopinavir/ritonavir (ΔOFV = 9.97, P = 0.0016), and 
ribavirin (ΔOFV  =  −22.2, P  <  0.001) each improved model fit 
and so were taken forward to the final multivariable drug model. 
The estimated small lopinavir/ritonavir effect on delta, although 
showing significant model improvement in the likelihood ratio 
test, did not prove to be robustly detected in the bootstrap analysis, 
with the interval crossing the value consistent with no drug effect 
(Table S4). Implementing an additional synergy term, as detected 
in the Cox- PH model, did not improve the NLME model.

The final model was then used to simulate expected viral tra-
jectories from upper respiratory sampling sites for interferon, and 
ribavirin monotherapy as well as interferon plus ribavirin combina-
tion started at 1, 3, 7, and 10 days post- symptom onset (Figure 5). 
The sample sizes for hypothetical phase II trials to detect signifi-
cant differences in viral load vs. no treatment after 7 days of therapy 
are given in Table S5.

DISCUSSION
This systematic review and individual level meta- analysis has iden-
tified viral load trajectories from 645 individuals aged from the 
first month of life to 100 years. Data from all major sampling sites 
showed, that: following symptom onset in most patients, upper 
respiratory tract viral load has peaked and is declining, whereas in 
the lower respiratory tract viral load peaks 2– 3 days after symptom 

onset; virus is detectable in stool for at least 2 weeks in 75% of in-
dividuals, and virus is detected in low levels in blood, urine, ocular 
secretions, and breast milk (Figure 2). In addition to simulating 
the expected trajectory of viral load at each site, we were able to 
simulate the percentage of samples expected to be below a typical 
detection limit of 10 copies/mL (Figure  2). From this it can be 
seen that from day 10 post- symptom onset over a quarter of upper 
respiratory samples have undetectable viral load. This emphasizes 
the importance of early antiviral therapy, and for phase II trials 
using viral load as an end point to commence therapy in the first 
few days of symptom onset in order to reliably differentiate antivi-
ral effects from natural viral decline (Figure 5, Table S5).

Although we followed PRISMA guidelines on individual 
patient- level meta- analysis methods, registered our review with 
PROSPERO, and prospectively published our analysis protocol 
prior to finalizing our search, by including data from case reports, 
case series, and clinical trials it could be argued that the heteroge-
neous inclusion criteria of these data may bias the treatment effects 
we estimated. We therefore repeated the primary analysis on sub-
sets of the data based on sampling site, data quality, and sampling 
frequency (Figures  S4– S6) finding that the main effects were 
consistent. It should be noted that by far the largest drug quality 
1 dataset was the clinical trial from Hung et al.9 with 127 patients 
randomized to either lopinavir/ritonavir vs. lopinavir/ritonavir 
plus ribavirin plus interferon β, and our second largest drug quality 
1 group was those confirmed to have received no antiviral drugs 
(67 patients). In total, our NLME dataset contained data on 83 
patients receiving interferons, 187 patients receiving lopinavir/

Figure 3 Multivariable Cox proportional hazard results on all drug quality 1 and drug quality 2 data from respiratory and stool/rectal sampling 
sites. Adjusted hazard ratios exceeding 1 indicate virus being more likely to become undetectable. LOD, limit of detection.

Sample site

Viral load quality

LOD log10 cp/mL
Age (y)

Sex

Disease status

Azithromycin

Chloroquine/hydroxychloroquine

Remdesivir

Umifenovir

Thymalfasin

Interferon

Lopinavir/ritonavir

Ribavirin

Lopinavir/ritonavir:Interferon

Interferon:Ribavirin

Lopinavir/ritonavir:Ribavirin

upper respiratory tract
lower respiratory tract
stool sample/ rectal swab
high
low

0−39
40−59
60−79
80+
female
male
asymptomatic
mild
moderate
severe
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes

315
23
16

197
157
354
138
131
72
13

139
215
19

258
52
25

335
19

331
23

348
6

333
21

343
11

249
105
147
207
236
118
288
66

287
67

245
109

Reference
0.66 (0.31, 1.40)
0.25 (0.09, 0.68)
Reference
0.72 (0.38, 1.35)
0.86 (0.61, 1.21)
Reference
0.97 (0.61, 1.53)
0.52 (0.28, 0.95)
0.16 (0.02, 1.65)
Reference
0.71 (0.49, 1.04)
Reference
0.14 (0.05, 0.35)
0.16 (0.05, 0.47)
0.05 (0.01, 0.20)
Reference
0.97 (0.34, 2.81)
Reference
0.26 (0.03, 2.11)
Reference
9.19 (2.74, 30.87)
Reference
1.11 (0.40, 3.04)
Reference
0.09 (0.01, 1.10)
Reference
2.20 (1.17, 4.16)
Reference
0.95 (0.52, 1.73)
Reference
0.36 (0.07, 1.83)
Reference
0.53 (0.15, 1.89)
Reference
6.04 (1.68, 21.71)
Reference
3.08 (0.65, 14.65)

0.278
0.007

0.305
0.398

0.885
0.034
0.125

0.081

<0.001
<0.001
<0.001

0.956

0.206

<0.001

0.842

0.060

0.015

0.871

0.219

0.328

0.006

0.157

Variable N Hazard ratio p
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ritonavir, and 99 patients receiving ribavirin either alone or in com-
bination (Table S2). Therefore, whereas consistency in results with 
various subgroup analyses indicate confounding related to hetero-
geneous data is unlikely to have biased our main findings, the het-
erogeneity in drug and drug combination studies meant modeling 
was required to tease out individual drug effects.

A heterogeneous range of antivirals, administered in different 
combinations, was observed in our data (Table S2) meaning mul-
tivariable modeling of time to viral clearance was used to tease out 
individual drug effects. No antiviral activity was seen for chloro-
quine/hydroxychloroquine, azithromycin, lopinavir/ritonavir, 
umifenovir, and thymalfasin. However, remdesivir and interfer-
ons were both independently associated with shorter time to viral 

clearance (Figures 3, S4, S5). Remdesivir did not, however, signifi-
cantly decrease δ in the NLME model, but this is likely due to the 
low number of included patients.

Our most interesting finding is the promising antiviral activity 
of interferons, possibly due to low endogenous interferon levels in-
duced by SARS- CoV- 2.23,24 Interferons (alpha and beta) have shown 
extensive in vitro activity against SARS- CoV- 1 and Middle East 
respiratory syndrome coronavirus (MERS- CoV).25,26 However, 
this has not translated into clinical effectiveness in MERS- CoV,25 
although results from one trial are still pending.27 Although recent 
data suggests interferon beta may be more potent than alpha against 
SARS- CoV- 2 in vitro,28 possibly due to higher selective indices for 
interferon- beta 1b, upon finding similar effects of interferon alpha 

Figure 4 Visual predictive checks for the nonlinear mixed- effects model fitted to viral load data to each sampling site. For each site a plot of 
model simulations compared with observations is given for both the continuous data (upper) and the fraction of samples below the limit of 
detection (lower). Black circles are observed viral loads, purple shaded area is the 95% prediction interval of the simulated 2.5th and 97.5th 
percentile for comparison with the observed 2.5 and 97.5th percentile (dashed lines). The blue shaded area is the 95% prediction interval of 
the 50th percentile to compare with the continuous black line. In the lower plot, the observed proportion of samples below the lower limit of 
detection (LLOD) are shown as a black line and compared with the 95% prediction interval of the model predicted proportion of samples below 
the LLOD (green shaded area). [Colour figure can be viewed at wileyonlinelibrary.com]
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and beta in our primary analysis (Figure S3), we decided to com-
bine the interferon effect to better explore drug combinations. In 
the Cox- PH analysis, consistent across data qualities and sampling 
site combinations, we found either a significant or trend toward sig-
nificant synergistic activity of interferon plus ribavirin (Figures 3, 
4, S4). An extensive body of literature exists to show both inter-
feron alpha and beta are synergistic with ribavirin in vitro against 
both SARS- CoV- 1 and MERS- CoV.25 This synergy, however, was 
not confirmed when tested in the NLME analysis, indicating that 
the detected synergistic effect from the time to viral clearance anal-
ysis might be confounded. Correlations in the timing for start of 
drug treatment could be one confounder that is corrected for in the 
NLME approach. The time- dependent analysis from the NLME 
model suggests an additive effect for interferon and ribavirin, rather 
than a synergistic effect. Thus, combining interferons with a nucle-
oside analogue, possibly remdesivir or favipiravir as less toxic alter-
natives to ribavirin, is a potentially promising combination for viral 
load suppression. In our secondary analysis, we included interferon 
plus ribavirin in the NLME model and simulations show that virus 
should be suppressed 2– 3 days faster compared with no treatment 
(Figure 5). However, it must be noted that recent evidence from 
the WHO SOLIDARITY trial shows that interferons were associ-
ated with a trend to increased mortality29 whereas an unpublished 
press release reports inhaled interferon- β to be beneficial.30 There is 
a clear need for a well- designed phase II trial on interferons in early 
disease to confirm or refute the signal seen in our data.

Another main finding of our work was the limited antiviral 
effect of lopinavir/ritonavir, in addition to its lack of significant 
synergistic effect with either ribavirin or interferons. The protease 
inhibitor lopinavir had a modest but consistent in vitro activity 
against the major coronaviruses, including SARS- CoV- 2, although 

activity is confined to concentrations at the upper end of the clini-
cally achievable range.1 Although lopinavir significantly improved 
model fit when increasing δ, the bootstrap lower boundary crossed 
the threshold of no drug effect (Table  S4), and our simulations 
suggest monotherapy studies would require well over 500 partici-
pants per arm just to show antiviral activity. As recent phase III tri-
als have now conclusively shown, lopinavir/ritonavir is ineffective 
in monotherapy.29,31 It remains to be seen whether lopinavir/ri-
tonavir may be useful in combinations, however. In SARS- CoV- 1, 
lopinavir/ritonavir plus ribavirin was found to be synergistic in 
vitro and when initiated immediately upon diagnosis led to a signif-
icant decrease in mortality compared with historical controls.32,33 
Early postexposure prophylaxis against MERS- CoV in healthcare 
workers showed that lopinavir/ritonavir plus ribavirin reduced the 
incidence of infection from 28% to 0%.34 The lopinavir/ritonavir 
plus ribavirin combination has therefore been the basis for many 
clinical trials and treatment protocols, but our findings suggest 
that it may not be as useful in SARS- CoV- 2 (Figure 3).

The antiviral effects of remdesivir in vitro are well- established 
and despite only being able to extract individual patient- level data 
on six patients, it produced a significantly faster viral clearance in 
the primary analysis (Figure  3). Despite in some cases showing 
promising in vitro activity, we did not find significant antiviral 
effects of azithromycin, chloroquine/hydroxychloroquine, thy-
malfasin, or umifenovir. In the case of hydroxychloroquine and 
azithromycin, the raw viral load data from the heavily criticized 
study by Gautret et al.35 was included, but contrary to the origi-
nal analysis we found no clinical antiviral activity of either drug 
and, in the case of hydroxychloroquine, a trend toward slower viral 
clearance. The reason for this difference in interpretation appears 
to stem from using time since symptom onset as opposed to time 

Figure 5 Simulated viral load trajectories. Simulations with a dummy population equally distributed between 50 and 100 years, and equal 
male/female ratio were performed for each scenario. Drugs were started at day 1 (blue), day 3 (orange), day 7 (green), or day 10 (red) post 
symptom onset. Mean black line and error bars represent simulations of the dummy population without drug treatment. Colored mean 
lines and error bars represent the respective drug regimen. Percentage values represent expected proportion of samples below the limit of 
detection for no drug (black) vs. drug therapy (colored) at each timepoint. [Colour figure can be viewed at wileyonlinelibrary.com]
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since starting drug and with untreated patients being monitored 
from an earlier day post- symptom onset. This example highlights 
the necessity of accounting for the time course of the infection 
when analyzing viral loads.

In our secondary NLME analysis, the simplified target cell limited 
model provided a good fit to data from each sampling site. In many 
cases, this approximated a mono- exponential decay, but in others, 
particularly in lower respiratory tract, there was a pronounced peak 
in the first days following symptom onset. The model was stable 
with high interindividual variability on V0 and β, reflecting the fact 
that relative changes in these parameters lead to the initial part of 
the curve either rising then falling (in situations when V0 ≈ - β) or 
approximately monoexponentially declining (when V(0) >> - β). In 
addition, we found the model to be less sensitive to changes in γ, 
meaning it can take a wide range of values with little influence on 
model fit, hence we did not estimate an interindividual variability 
term on it. Increasing age was associated with significantly slower δ, 
and there was a small effect of male sex also being associated with 
slower δ (Table S4). The age effect translates to a 5- year- old having 
a viral decay terminal half- life of 1.0 day, a 47- year- old (median age 
in our population) 1.18 days, and a 90- year- old 1.24 days. Hence, 
a child has an almost 15% faster viral clearance than a middle- aged 
adult, and almost 20% faster than an elderly person.

In contrast to authors who have estimated parameters for more 
mechanistic models,36 we estimated all drug effects to increase δ, 
which implies a mode of action relating to inhibition of viral repli-
cation or stimulation of viral clearance mechanisms. Although for 
most of the drugs studied this may be reasonable, entry inhibitors 
may be more appropriately described by inhibition of γ, which may 
not be statistically identifiable with the data possible to collect in 
the clinical setting. Despite this potential limitation, we found 
similar agents (combinations including interferons and ribavirin) 
to those identified in the primary analysis of time to viral clearance.

The major limitation of our work is the lack of clinical trial data 
and lack of data on potentially important repurposing agents, such 
as favipiravir and nitazoxanide, and that only one of the authors of 
a major clinical trial agreed to share their data.9 Through applying 
quality assessment criteria on drug history and assay reporting, pre-
specifying our analysis in our protocol and PROSPERO registra-
tion before undertaking Cox- PH and NLME modeling we aimed 
to reduce possible bias in the heterogenous data available. Although 
we were able to extract a limited common demographics set, partic-
ularly in the high- quality data subset (age, sex, disease severity, and 
antiviral drug histories), our data may be limited by other nonantivi-
ral medications that were not fully reported in the included papers. 
Furthermore, as many of our included papers were on patients with 
mild or no symptoms and only contained data on one patient re-
ported to have died, we were unable to study associations of viral 
load and mortality. Viral load measured by PCR is not necessarily 
infectious virus, and recently it has been shown that only in samples 
above 107 copies/mL can SARS- CoV- 2 be cultured.39Therefore, our 
data should preferably be used to study viral trajectories in relation 
to antiviral therapy rather than to infer probability of transmission.

The detection of viable virus might be overcome through whole 
genome sequencing and the detection of subgenomic RNA. This 
has, however, only been conducted in a single study, included in our 

review. Woelfel et al.37 showed through E gene subgenomic RNA 
quantification and relating it to the entire virus genome RNA, that 
presence of subgenomic RNA fragments can be a hint for active 
viral replication and thus active infection. More recent studies by 
Alexandersen et al.38 and van Kampen et al.,39 however, detected 
subgenomic RNA up to 22  days after onset of symptoms. It is 
postulated this was related to subgenomic RNA being rather sta-
ble and associated with cellular membranes and thus detection of 
subgenomic RNAs in clinical samples does not necessarily indicate 
viral activity. Future controlled studies of subgenomic RNA levels 
in patients on and off antiviral therapies are urgently required to 
better understand this potential biomarker of drug effect.

In conclusion, this individual patient level meta- analysis has 
yielded useful insights into SARS- CoV- 2 viral dynamics. A model- 
based description of viral trajectories in different sampling sites has 
been elucidated, and we have found covariates, such as increasing 
age, disease severity, and male sex to be associated with slower viral 
clearance. Our review firmly establishes a role for early viral sup-
pression in the management of SARS- CoV- 2 and an important 
signal as to the possible benefits of interferons as a component of 
antiviral therapy has been found. It has been shown that viral dy-
namic models such as ours can increase the power to detect drug 
effects due to their utilization of serial measures40 and our model 
should be useful to others in both the design and analysis of future 
phase II trials, hence the model code and raw data from this analy-
sis are made available.
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