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Rare Eye Diseases – Looking Outside the Box

Introduction
Pathogenic mutations in BEST1 are known to 
cause a number of distinct autosomal dominant 
dystrophies including Best disease, Adult vitelli-
form macular degeneration (AVMD), autosomal 
dominant vitreoretinochoroidopathy (ADVIRC) 
and the recessive disease, autosomal recessive 
bestrophinopathy (ARB).1,2 This spectrum of dis-
eases, collectively known as bestrophinopathies, 
affect the macular region, with patients typically 
presenting in clinic within the first two decades of 
life. The prevalence of individual bestrophinopa-
thies is rare and varied, however, in a recent study 
of 3000 patient families with inherited disease, 
BEST1 was the 5th most mutated gene, account-
ing for 3.9% of affected families, and one of the 
highest causes of autosomal dominant macular 
dystrophy.3 Bestrophinopathies primarily affect 
the retinal pigment epithelium (RPE), a mon-
olayer of cells that interacts with and sustains the 
light responsive retina. In the RPE, BEST1 is 

normally expressed on the basolateral membrane, 
where it acts as an ion channel.4–6 Dysfunction of 
RPE with age or as a result of inherited muta-
tions, can lead to degeneration of the retina. Over 
the last 30 years, research has focused on investi-
gating the biological function of BEST1 in the 
RPE and the mechanisms by which BEST1 muta-
tions contribute to retinal disease. These advances 
have led to a better understanding of disease 
mechanisms and development of potential thera-
pies to treat the unmet clinical needs for 
bestrophinopathies.

Clinical spectrum of bestrophinopathies

Best disease
Best disease is the most common bestrophinopa-
thy, with an estimated prevalence ranging from 
1:5,000 to 1:67,000 and an onset that usually 
occurs during childhood or early adulthood.7,8 
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The disease was first described in 1883 as a pecu-
liar change in the macula9 and later identified in a 
large German family, by Dr Friedrich Best, who 
noted its dominant inheritance pattern.10 Best 
disease is characterised by the presence of vitelli-
form lesions that evolve over time, and progress 
through a number of stages, which may or may 
not follow chronologically for each patient. 
During the initial previtelliform stage, the fundus 
appearance and visual acuity (VA) are normal; 
however, there may be subtle changes of the RPE, 
appearing on the central retina as yellowish pig-
ment changes, with some granularity defects.2,11 
Best disease is most easily identified during the 
vitelliform stage, where a yellow demarcated ‘egg-
yolk’ vitelliform lesion, 2–3 mm in diameter, is 
observed on the macula (Figure 1(a)). At the 
vitelliform stage there may be mild vision loss and 
a decrease in VA, although VA has been reported 
to be normal in some patients.2,11 Patients may 
also report photophobia, metamorphosis and 
night blindness at this stage.7,12

Over time, the demarcated borders and yellow 
appearance of the vitelliform lesion can become 
more irregular and a partial resorption of fluid 
may lead to the appearance of a pseudohypopyon, 
where various inflammatory cells infiltrate the 
anterior chamber. Despite the dramatic appear-
ance of a pseudohypopyon, VA may only be 
mildly affected.2,11 The disease can then progress 
to a vitelliruptive stage, where breakdown of the 
vitelliform lesion leads to a ‘scrambled-egg’ fun-
dus appearance, with irregular yellow deposits 
present. At this stage, VA may be steady or may 
begin to decline as the disease progresses.2,13 Best 
disease can then progress to an atrophic stage, 
resulting in death of the RPE and loss of photore-
ceptors cells. Hyperpigmented fibrous scar tissue 
can be present in the macula, leading to wide-
spread geographic atrophy, synonymous with 
progressive and irreversible retinal cell loss.11

During the atrophic stage VA can decline dramat-
ically (from 6/12 to 6/60 or less) and loss is irre-
versible. The breakdown of the RPE barrier can 
also lead to choroid neovascularisation (CNV). 
The presence of newly created, weak blood ves-
sels, prone to rupturing, can lead to subretinal 
bleeds, fluid accumulation and a sudden decrease 
in VA.14 Complications due to CNV have been 
reported to occur in 2%–9% of Best disease 
patients.7 Best disease is generally bilateral, with 
lesions displaying some relative symmetry, but 
cases of unilateral Best disease have also been 
described.15

For the most part, vision loss is gradual with 75% 
of affected individuals retaining a VA of 6/12 or 
better into their fifties in at least one eye;13 how-
ever, the presence of CNV can lead to a steep 
decline in VA. Patients can also present with 
hyperopia, astigmatism16 and anterior segment 
abnormalities, such as shallow anterior chambers, 
putting them in the risk group for having a narrow 
anterior angle and suffering from acute angle clo-
sure glaucoma (AACG). Best disease can also be 
multifocal, with numerous vitelliform lesions var-
ying in size clustered around the macular.17 
Patients can also be prone to subretinal haemor-
rhages, the formation of macular holes, and reti-
nal detachment in response to modest trauma.7,18

Adult vitelliform macular degeneration
Adult vitelliform macular degeneration is a domi-
nantly inherited bestrophinopathy. AVMD typi-
cally has an onset of between 30 and 50 years of 

Figure 1.  Representative illustrations of 
Bestrophinopathy fundus appearance. (a) Best 
disease, with the egg yolk-like vitelliform lesion 
observed at the macula. (b) Autosomal recessive 
bestrophinopathy, characterised by multifocal 
deposits and lesions around and beyond the macula. 
(c) Autosomal dominant vitreoretinochoroidopathy 
typified by presence of a hyperpigmented 
circumferential band of pigmentation in the 
peripheral retina. (d) Best-related retinitis 
pigmentosa characterised by the presence of 
peripheral pigment changes, bone spicules and 
foveal deposits.
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age, with more females seeming to be affected.12 
AVMD patients present with vitelliform lesions 
(similar to Figure 1(a)) that can be smaller than 
those observed in Best disease patients. Generally, 
AVMD has a less dramatic effect on vision and 
patients may not progress through all the stages 
described for Best disease, however, although CNV 
is rare, atrophy can occur7 with complications, such 
as CNV or pigment epithelial detachment.19,20 In 
general, AVMD is clinically indistinguishable 
from Best disease and has been described as a 
milder form of Best disease, owing to its later 
onset and slower progression. The resemblance 
between the two conditions has led to the sugges-
tion that AVMD should be reclassified as Best 
disease.2,7

Autosomal recessive bestrophinopathy
ARB is an autosomal recessive disease resulting 
from bi-allelic homozygous or compound hete-
rozygous mutations within the BEST1 locus. 
Parents of ARB patients generally have normal 
vision, suggesting a tolerance of BEST1 haplo-
insufficiency.7,21 ARB is estimated to have a 
prevalence of 1:1,000,000, with an onset range 
between 4 and 40 years of age, although a juve-
nile onset is typical.7,22 ARB presents distinc-
tively, with an alteration in the RPE leading to 
the formation of multiple subretinal deposit at 
the macula and midperipheral retina21 (Figure 
1(b)). The distinctive vitelliform macular lesions 
seen in Best disease are rare but may be present 
in some ARB patients at late stage.23 The fun-
dus of patients with ARB has a speckled appear-
ance with multiple yellow/white, round, 
demarcated, and partially confluent lesions 
located towards the fovea and the vascular 
arcades, at the posterior pole and around the 
optic nerve.21,24 ARB also appears to affect the 
periphery, indicated by presence of peripheral 
drusen and RPE atrophy.23

Patients also typically present with accumula-
tion of subretinal fluid, culminating in some 
patients having cystoid macular edema with ret-
inal fibrosis.7,22,25,26 Some developmental anom-
alies may also be present in ARB, and patients 
may be hyperopic and have shallow anterior 
chambers, increasing their risk of AACG.7,21 
Vision loss is slow and progressive,23 but in some 
cases central vision may eventually stabilise; how-
ever, complications such as CNV and AACG can 
lead to a rapid deterioration of vision.7,21,24,27

Autosomal dominant vitreoretinochoroidopathy
ADVIRC follows a dominant mode of inheritance 
and seems to differ from the other bestrophinopa-
thies as it does not present with distinctive lesions 
of the macula. Instead, ADVIRC patients present 
with a strongly demarcated 360-degree circumfer-
ential hyperpigmented band in the peripheral ret-
ina, from the equator to the ora serrata28,29 (Figure 
1(c)). ADVIRC is a very rare condition with a 
prevalence of 1;1,000,000, with only five BEST1 
mutations currently known to cause the dis-
ease.28,30 The typical age of onset is during early 
childhood, with the hyperpigmented band gener-
ally seen in early stage patients. For older patients, 
the hyperpigmented band is considered a hallmark 
for ADVIRC; however, a recent reports have 
described its absence in some patients, indicating 
a high phenotypic variability.2,31,32

During early stage disease, ADVIRC affects the 
peripheral retina, with very little change in the 
appearance of the central retina. As ADVIRC 
progresses, it can encroach onto the macular 
region, causing central vision loss.33 VA can range 
from 6/6, to absence of light perception in some 
cases; however, the majority of patients are able 
to maintain good vision of at least 6/12 through-
out life.31,33,34 Patients can also present with 
punctate white retinal opacities, a pale optic disc 
and attenuated and narrow blood vessels.33,34 
Further complications include retinal neovascu-
larisation (leading to retinal bleeding and macula 
edema), retinal fibrosis, atrophy of the underlying 
choroid, retinal detachment and vitreous haemor-
rhage.7,28,33,35 Interestingly, ADVIRC patients 
may also have a wide range of eye development 
issues, including: microcornea, nanopthalmos, 
discrete rotatory nystagmus, hyperopia, presenile 
cataracts, iris dysgenesis, optic nerve dysplasia 
and a shallow anterior chamber leading to risk of 
AACG.7,28,33–35 These findings suggest that bes-
trophinopathy mutations may also contribute to 
broader ocular defects. Microcornea, rod-cone 
dystrophy and staphyloma (MRCS), a disease 
linked to BEST1 mutations, shares many 
ADVIRC-associated clinical features and the 
phenotype could be on the spectrum of ADVIRC 
disease expressivity.28,36

Retinitis pigmentosa
A number of patients have also been diagnosed 
with a bestrophinopathy-related form of retinitis 
pigmentosa,37 classified by dense pigmentary 
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changes in the peripheral retina. This can be 
accompanied by retinal gliosis, vascular attenua-
tion, peripheral bone spicules, pale optic discs, 
yellow and foveal deposits and macular edema 
(Figure 1(d)), leading to patients typically having 
vision loss and night blindness. However, these 
may represent misdiagnosed cases of ADVIRC or 
ARB.1,2,38 Targeted next-generation sequencing 
has retrospectively diagnosed cases of bestrophi-
nopathy-related RP as ADVIRC, despite patients 
lacking the hallmark ADVIRC hyperpigmented 
circumferential band on clinical presentation.32 
Alternatively, BEST1-related RP may be the 
result of multigenic mutations.39,40

Diagnosis of bestrophinopathies
Although the clinically distinct features of the 
bestrophinopathies may be sufficient for diagno-
sis, a number of additional tests can be used for 
confirmation. The electrooculogram (EOG) 
measures the standing potential, the electrical dif-
ference between the front and the back of the eye, 
and is used to assess the potential across the RPE, 
an indicator of its health.41 The EOG measures 
the potential during exposure to the dark and fol-
lowing exposure to light, to calculate a light peak 
(LP): dark trough ratio, termed the Arden ratio.41 
According to the International Society for Clinical 
Electrophysiology of Vision (https://iscev.wil-
dapricot.org/standards), a standard Arden ratio is 
between 1.7 and 4.3; this typically decreases 
below 1.5 in patients with bestrophinopa-
thies.21,23,28,33,35,41 However, in some patients, the 
Arden ratio may be normal or only slightly 
reduced,11,12,33,42 this has been observed in 8% of 
Best disease cases,31 highlighting the need for 
genetic testing to correctly distinguish and diag-
nose a bestrophinopathy. The electroretinogram 
(ERG) is typically found to be normal in patients, 
although delayed cone and rod response may be 
observed in ADVIRC patients28,31,34 and full-
field, pattern and multifocal ERG’s can be 
affected in ARB patients.2,24,27,43

Disease progression can be monitored using optical 
coherence tomography (OCT), measuring foveal 
thickness, retinal degeneration and RPE atrophy, 
and the presence of retinal edema or subretinal 
fluid.7,16,23,35 Fluorescein angiography and fundus 
autofluorescence, can also be used to examine 
blood vessel structure and accumulation of lipofus-
cin respectively in patients.7 Hyperfluorescence is 
observed during early stage Best disease, but can 
decline as the disease progresses. In ADVIRC 

patients, autofluorescence appears normal in the 
central retina, but is often blocked in the periphery 
by the characteristic peripheral hyperpigmented 
ring.34 Patchy areas of hyperautofluorescence, cor-
responding to fluid accumulation and small conflu-
ent lesions, are typically observed in ARB patients.21 
CNV, a serious complication in bestrophinopathy, 
can be confirmed using OCT and fluorescein angi-
ography. Despite these modern imaging tech-
niques, genetic testing is generally used to confirm 
clinically suspected bestrophinopathy and identify 
novel BEST1 mutations.1,21,28,35,44

Clinical management of bestrophinopathies
There are currently no treatments for the bestro-
phinopathies; however, complications experi-
enced as a result of disease, can be managed. One 
common complication is neovascularisation, 
which, although problematic, has been treated 
using photodynamic therapy (with the use of 
verteporfin),45 photocoagulation or through anti-
vascular endothelial growth factor (VEGF) injec-
tions, such as Avastin or Bevacizumab.7,46 
Interestingly, sufficient VA can be retained in 
some Best disease patients displaying CNV with-
out any treatment.14 Complications such as mac-
ula edema have been treated using oral 
acetazolamide with a nepafenac suspension39 (p. 
129), while vitrectomy surgery has been used to 
repair macular holes.18 In patients at risk of 
AACG, monitoring intra-ocular pressure and 
irido-corneal angle with goniocsopy is recom-
mended. Intraocular pressure can be used to 
assess the development of glaucoma, which can 
be controlled with topical drops or treated with 
prophylactic yttrium aluminium garnet (YAG)-
laser iridotomy.35 Bestrophinopathy patients are 
at risk of subretinal haemorrhages, they may 
therefore be advised to avoid contact sport and 
wear safety glasses at times to circumvent this 
complication.47

Bestrophin-1
Bestrophinopathies are caused by mutations in 
the Bestrophin-1 (BEST1) gene, which maps to a 
16 kB region of chromosome 11 (11q13), where 
it spans 11 exons, producing a 1758 bp transcript 
expressed exclusively in the RPE, of the adult 
eye.7,48–50 BEST1 is also expressed in extra-ocular 
tissues including the trachea, lung, kidney, sperm, 
colon, and testes, and within astrocytes, neurons, 
and epithelia of the central nervous system.7,51–53 
In addition BEST1 is also expressed in the retina 
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during foetal development.54 BEST1 is a member 
of the Bestrophin family, an ancient group of 
membrane proteins, and has been identified in 
most metazoan organisms.55 The coding region, 
which starts in the second exon, encodes a 68 kD 
protein, consisting of 585 amino acids4 with a 
highly conserved intracellular N-terminal domain 
containing 4 transmembrane spanning domains 
and a long diverse cystolic C-terminal domain 
tail.56–59 Chicken and bacterial proteins have been 
used to analyse the crystal structure of BEST1, 
revealing a homo-pentameric organisation com-
prised of five BEST1 protomers58,59 arranged 
around a central axis to produce a barrel-shaped 
pore (Figure 2). The channel protrudes just out-
side the cell membrane, with the majority of the 
protein located in the cytosol. In the pentameric 
structure, Ca2+ clasps within each protomer come 
together as a belt around the central section of the 
channel, forming a hydrophobic neck, which is 
dilated by the binding of cytosolic calcium, allow-
ing the flux of Cl- ions.58,59 Over 250 distinct 
pathogenic BEST1 mutations have been discov-
ered thus far,48,60 these are thought to affect chan-
nel formation, channel function, or protein/
channel localisation (Figure 3).

The retinal pigment epithelium
Bestrophinopathies primarily affect the RPE, a 
monolayer of pigmented cells that lies between 
the neural retina and the choriocapillaris, directly 
below the cone and rod photoreceptors. RPE 
cells form tight connections with each other act-
ing as a physical barrier between the retina and 
the underlying choroid and forming an essential 
component of the blood-retinal barrier.61 The 
RPE apical membrane is scattered with micro-
villi, which project between the outer segments of 
the photoreceptors. Despite its simple structure, 
the RPE performs a number of crucial roles that 
are needed for photoreceptors to detect light and 
keep the retina healthy (Figure 4). Disruption in 
these functions can lead to retinal degeneration 
and loss of vision.

The RPE is involved in the phagocytosis and deg-
radation of photoreceptor outer segments (POS). 
The removal and processing of POS waste pre-
vents the build-up of photo-oxidative by-products, 
and is crucial for RPE and photoreceptor cell 
health.62 Furthermore, essential substances con-
tained within the POS, such as retinal, can be 
recycled by the RPE, as part of the visual cycle, 

Figure 2.  Architecture of the BEST1 channel. (a) The structure of a BEST1 protein unit is divided into four 
segments, composed of alpha helices represented as S1a-c (red), S2a-h (yellow), S3a-b (blue) and S4a-b 
(magenta), the transmembrane regions (TM) are indicated. The calcium clasp is represented by a turquoise 
sphere and the start of the C-terminal tail is coloured green. (b) The BEST1 channel, viewed from the 
extracellular side, is formed from five BEST1 proteins arranged in a pentameric structure, forming a barrel 
shaped ion pore (c).
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Figure 3.  BEST1 disease causing mutations. (a) Annotated BEST1 protein sequence with ClinVar benign/likely 
benign mutations indicated in green. (b) Potential effects of mutation on BEST1 channel.

Figure 4.  Crucial roles of retinal pigment epithelium (Adapted from Strauss, 200561).
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and returned to photoreceptor cells to enable 
phototransduction.61 The RPE is a highly active 
phagocytic monolayer, engulfing and ingesting 
around 25,000 outer segment discs per day, with 
each RPE cell in the macular fovea phagocytosing 
around 20 POS daily.63 Changes in cell pH, Ca2+ 
and ion balance can impact on RPE phagocytosis 
of POS and affect lysosomal function,61,64 there-
fore disruption of cell homeostasis can affect the 
removal of waste, resulting in the build-up of 
toxic debris within and around cells, ultimately 
leading to cell atrophy.65

The RPE maintains a healthy retinal environment 
and structural integrity by secreting signalling mol-
ecules, growth factors, neuroprotective factors and 
immunosuppressive factors, for example, pigment 
epithelium-derived factor (PEDF) and VEGF, 
allowing the RPE to communicate with other tis-
sues.61 As a crucial component of the blood: retina 
barrier the RPE is involved in the transepithelial 
transport of molecules between the retina and the 
choroid61 and maintaining the ionic homeostasis of 
the subretinal environment, transporting water 
and metabolites (e.g. glucose and lactate), control-
ling pH and removing waste products. The RPE 
regulates the buffering of ions in the subretinal 
space in response to the fast paced, light responsive 
activity of photoreceptors, maintaining ionic bal-
ance and pH. To do this, cells express a number of 
key pumps, transporter and ion channels at the 
apical and basal surfaces, including ligand-gated/
voltage-gated/Ca2+-activated potassium channels, 
Na+/K+–ATPase, voltage-dependent/ligand-gated 
Ca2+ channels, volume-regulated anion channels 
and Ca2+-activated chloride channels.66

Role of BEST1
Bestrophinopathies are classed as channelopa-
thies, due to the effects of mutations on the con-
ductance of currents through the cell membrane. 
BEST1 was first identified as a chloride channel in 
2002 after overexpression of exogenous BEST1 in 
HEK293 cells induced chloride currents that were 
calcium sensitive.67 Similarly, studies in human 
foetal RPE suggest it is an Ca2+ responsive chan-
nel, which is required to maintain the RPE tran-
sepithelial potential.68 In addition, structural 
studies support the hypothesis that BEST1 is a 
Ca2+ -dependent Cl- channel, controlling the flux 
of Cl- ions in cells.58,59 However, BEST1 may be 
involved in a number of processes within epithelial 
cells. BEST1 interacts with the CaV1.3α1D and 
CaVβ subunits of L-type voltage-dependent 

calcium channels,69,70 participating in intracellular 
Ca2+ signalling and potentially contributing to the 
generation of the LP.70–72 BEST1 may also regu-
late intracellular Ca2+, by modulating the release 
of Ca2+ from endoplasmic reticulum stores, this 
hypothesis is aided by the finding that some pro-
tein can localise away from the membrane.71,73,74 
There is also evidence to suggest that BEST1 can 
act directly as a volume-regulated anion channel, 
regulating cell volume and homeostasis in RPE 
cells,75 a role which would be essential for main-
taining cell homeostasis.

Although BEST1 is primarily thought to be a Cl- 
channel, it is highly permeable to other molecules, 
such as HCO3-,76 glutamate77 and gamma amin-
obutyric acid (GABA),78 implying that the chan-
nel could potentially serve as a pH sensor/regulator 
and be involved in neurotransmitter release. In 
addition, the presence of developmental ocular 
defects, for example, microcornea and nanoph-
thalmos, in some bestrophinopathy patients,  
suggests that BEST1 may play a role in normal  
eye development.16,35 Although protein is only 
observed in the adult RPE, BEST1 is expressed in 
human retinal cells during early development.54 
Given that eye development is reliant on correct 
spatial signalling from neighbouring cells, the 
expression of mutant BEST1 outside the RPE 
may affect cell: cell interactions, interfering with 
normal ocular developmental pathways.79,80

It is widely accepted that the BEST1 channel is 
activated by the binding of Ca2+, however the 
protein also contains an ATP binding motif, 
which may be important in modulating channel 
function. The binding of ATP can modulate 
channel activity, resulting in increased currents in 
the presence of Ca2+. This response is disrupted 
in iPSC-RPE cells from patients with a mutation 
in the binding motif, suggesting a relevance to 
physiological BEST1 function in human cells.72 
ATP is the primary candidate for the substance 
released during the light peak in electrophysiolog-
ical recordings, such as the EOG test. The EOG 
is the defining diagnostic test for bestrophinopa-
thies, with patients generally recording a decrease 
in the recorded light peak: dark trough ratio. The 
light peak reflects the increased conductance of 
Cl- across the RPE basolateral membrane. This is 
thought to occur in response to an unknown ‘light 
peak substance’ (LPS), released by photorecep-
tors after exposure to light, which binds to a 
receptor on the RPE cells, initiating a cascade 
that results in depolarisation of the RPE 
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basolateral membrane. Previously, ATP was 
thought to increase intracellular calcium through 
purinergic receptors, driving the conductance of 
chloride Cl- across the basal membrane.81 
However, the direct interaction of ATP with 
BEST1 within the RPE provides another means 
to drive depolarisation in response to light.

Model systems for bestrophinopathies
A number of animal models have been used to 
investigate BEST1 in RPE cells, including rats, 
mice, and dogs. The rat model of Best disease, 
created by overexpressing mutated forms of 
BEST1, localises the protein in the RPE basolat-
eral membrane and displays electrophysiological 
findings typical of human disease, yet no ocular 
disease phenotype was observed.82 Similarly in a 
BEST1-/- knock out mouse model,5,83 although a 
reduced light peak, reminiscent of Best disease, 
was observed, no ocular phenotypes were 
reported. Knock-in mice expressing mutant forms 
of BEST1 may represent better rodent models as 
the reduced electrophysiological responses are 
also accompanied by lipid accumulation, and ret-
inal detachments.11,84 There may be a limit to 
how much rodent models can contribute to our 
knowledge of bestrophinopathies as these animals 
do not possess a macula and therefore might not 
develop the equivalent retinal lesions seen in 
human macular diseases.85

Although dogs do not have a macula, there is a 
region in the retina called the area centralis, pop-
ulated with a higher density of cones and free 
from large blood vessels. Within this region is a 
foveal-like region, susceptible to a canine form of 
recessive bestrophinopathy,86 termed canine mul-
tifocal retinopathy (CMR). CMR affects a num-
ber of canine breeds and is caused by mutations 
in cBEST1, making the dog a naturally occurring 
animal model of bestrophinopathy.87,88 In these 
animals, the area centralis is affected by vitelli-
form lesions typical of Best disease, with focal 
detachment between the RPE and the neural ret-
ina also noted89 or, more typically, multiple reti-
nal lesions, reminiscent of ARB.21,90 The CMR 
model is aiding current knowledge of disease pro-
gression through lesions, pseudohypopyon and 
atrophy stages. Loss of RPE apical microvilli 
leading to microdetachment of the retina is 
thought to be the earliest features of CMR, indi-
cating an RPE-photoreceptor disease interface for 
bestrophinopathy.91,92

Much of the early work examining BEST1 in 
human cells involved overexpression of the pro-
tein in the kidney epithelial cell lines, HEK-293 or 
MDCKII.67,93 Yet, RPE cells have a unique polar-
isation signature, independent of E-Cadherin, 
where sorting of proteins to the apical and base-
ment membrane for example, Na+ /K+ ATPase 
and monocarboxylate transporter 1, is reversed 
compared to other epithelial cells.94 Wild type 
(WT) BEST1 does not localise to the membrane 
of HEK-29337 and MDCKII already express 
endogenous ion channels that could impact on 
electrophysiological recordings. In addition, over-
expression studies in foetal RPE have provided 
valuable insights into the oligomerisation of 
BEST1, its role as an anion channel and its 
involvement in regulation of transepithelial resist-
ance.68,95 However, the availability of foetal RPE 
tissue limits its use as a common model system.

The advent of induced pluripotent stem cell 
(iPSC) technology has transformed the modelling 
of bestrophinopathies in vitro (Figure 5). 
Reprogramming of human somatic cells to a state 
of pluripotency using embryonic transcription 
factors has enabled researchers to derive RPE 
from patients skin or blood sample, providing a 
cell model which contains an individual patients 
unique genetic makeup.96–98 iPSC-derived RPE 
have a pigmented, cobblestone-like epithelial 
morphology, replicate many of the functions of 
RPE and express BEST1 in the basolateral mem-
brane, allowing the investigation of inherited oph-
thalmic disorders within a disease-in-a-cell 
system.

Disease modelling using iPSC-RPE has repli-
cated many of the features of bestrophinopathies, 
including reduced channel activity, defects in 
POS phagocytosis lysosome defects, accumula-
tion of lipofuscin and reduced net fluid trans-
port.40,54,99–102 iPSC-RPE studies have also 
provided more evidence suggesting BEST1 can 
function as a voltage gated anion channel,5 regu-
late calcium signalling6 and be regulated by 
ATP.72 Cellular studies have identified distinct 
pathological features that can be used to distin-
guish between the effects of different mutations102 
and different bestrophinopathies for example, 
anion transport is increased in ADVIRC cells and 
decreased in Best disease cells compared to con-
trols.100 Disease-in-a-dish modelling using iPSC-
RPE may yet reveal more about the nature of 
BEST1 mutations. However, the power of these 
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cells is the ability to investigate new therapeutics 
by performing drug/compound screens and devel-
oping the next generation of personalised genomic 
medicines.

Therapies for bestrophinopathies
Ophthalmology has been at the forefront of devel-
oping the new era of genomic and regenerative 
medicine approaches, including gene therapy, 
CRISPR genome editing, antisense oligonucleo-
tide and stem cell therapies. Rapid clinical 
advances for retinal degeneration have been ena-
bled by the accessibility and small size (6 mm) of 
the macula, ocular immune privilege, real-time 
ocular imaging, visual function testing, and the 
availability of two eyes in a patient–allowing one 
to serve as an untreated. Currently there are no 
curative therapies for bestrophinopathies, there-
fore research is focusing on developing a number 
of clinical treatments.

Gene therapy
Gene therapy involves introducing exogenous 
genetic material, that is, a working copy of the 
BEST1 gene, into the cells of a host in an attempt 
to treat the underlying cause of a disease. This 
approach is predicted to be optimal in loss of 
function mutations, where levels of functional 

protein are low or absent (Figure 6). A number of 
research groups have provided proof-of-concept 
approaches treating bestrophinopathy with a gene 
augmentation approach. Guziewicz and col-
leagues, have used subretinal injections of BEST1 
adeno-associated virus (AAV)-mediated augmen-
tation gene therapy to reverse the early retinal 
microdetachments and lesions seen in canine 
models of ARB (CMR). Improvements were 
maintained for at least 23 months and no reports 

Figure 5.  Generation of patient derived iPSC-RPE as a human disease model system for the study of 
bestrophinopathies and development novel forms of treatments for patients.

Figure 6.  Gene therapy approaches for 
bestrophinopathies can be tested in patient iPSC-RPE 
cells in a trial in a dish scenario. This approach could 
be used as a screen to identify mutations responsive 
to the treatment prior to clinical application in the 
patient.
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of retinal toxicity noted up to 6 weeks post-injec-
tion. This approach also preserved the cytoarchi-
tecture of the RPE–Photoreceptor interface and 
normalised the otherwise diseased hyperthick 
outer nuclear layer, providing proof of principle 
that gene therapy may be a viable treatment for 
patients with CMR-like ARB.88

IPSC-RPE are also being used to assess the feasi-
bility of BEST1 gene therapy in human cells 
(Figure 6). Initial studies, using iPSC-RPE from 
patients with ARB show that gene therapy deliv-
ered using baculovirus rescues the Ca2+ -dependent 
Cl- channel deficiencies observed in cells from 
patients with recessive disease.103 Surprisingly, 
supplemental gene therapy may also be a potential 
treatment for dominant bestrophinopathies. Ji and 
colleagues examined iPSC-RPE cells derived from 
six patients with Best disease, where dominant 
BEST1 mutations affected the subcellular locali-
sation or function of BEST1. Here they found that 
treatment of patient iPSC-RPE with BEST1-AAV 
restored deficiencies in Ca2+ -dependent chloride 
channel activity, with the viral BEST1 protein 
localising to the plasma membrane.102 Despite 
these successes and exciting proof-of-concepts for 
recessive and dominant disease, gene therapy may 
not be a suitable treatment for all BEST1 muta-
tions. Gene augmentation using lentiviral BEST1 
was able to restore Ca2+-activated Cl- channel in 
activity and phagocytosis of outer segments in 3 of 
4 patient lines tested, but one cell line, with the 
Ala146Lys mutation, did not respond to the treat-
ment. This may be due to dominant effect of the 
mutated protein on the supplemental WT BEST1 
protein.104 Although gene therapy for BEST1 is 
still in its infancy, early indications in these pre-
clinical models suggest it may be a viable option 
for recessive disease and, in some cases, dominant 
disease with responsive mutations, highlighting 
the need for careful screening of potential gene 
therapy candidates.

Genome editing
Individual mutations within the BEST1 gene can 
have different consequences on the protein, 
affecting its localisation, the formation of the 
BEST1 pentametric channel formation or chan-
nel function. The interaction of the dominant 
protein with the supplemental protein may still 
affect individual patients’ responses to gene ther-
apy. In these cases, alternative options need to be 
investigated. Genome editing provides a thera-
peutic means to get to the heart of the problem, 

changing the mutated DNA sequence or switch-
ing off a faulty gene. The CRISPR-Cas9 
(Clustered Regularly Interspaced short palindro-
mic repeats with CRISPR associated protein 9) 
system is currently the most popular, efficient and 
adaptable method to induce permanent changes 
in cellular DNA.105

Initially described as a bacterial defence mecha-
nism to identify and inactivate invading viral 
DNA, CRISPR-Cas9 is now one of the most 
promising means to treat inherited diseases (31). 
CRISPR-Cas9 is an RNA guided endonuclease 
that can be directed to cut double stranded DNA at 
a specific site upstream of a short protospacer adja-
cent motif (PAM). The cut site can be determined 
by providing a complementary single guide RNA 
(sgRNA), which directs Cas9 to produce a double-
strand break at a precise sequence (Figure 7(a)). At 
this point the cell activates mechanisms to repair 
the DNA using either homology directed repair 
(HDR) or non-homologous end joining (NHEJ), 
which provides opportunities to edit the gene.106

Homology-directed repair (HDR) is a critical 
DNA repair mechanism, commonly active during 
meiosis, requiring the presence of a homologous 
DNA for example, a sister chromatid. For genome 
editing, an sgRNA targeting a mutation site can 
be introduced into the cell alongside a homolo-
gous WT DNA template, which is then incorpo-
rated into the gene during the repair, replacing 
and correcting the mutated DNA region (Figure 
7(b)). However due to the practical limitations of 
HDR, the probability of donor DNA being used 
as a template in non-dividing somatic cells, like 
the RPE, is low, therefore HDR repair editing 
may not be efficient in an RPE cell in situ. An 
alternative and simpler method of editing uses 
NHEJ, a common cellular mechanism that joins 
the two ends of double-stranded DNA breaks 
back together. This method is highly prone to 
errors, resulting in indel creation and subsequent 
transcriptional frameshifts, which lead to degra-
dation of the transcript (Figure 7(c)). NHEJ can 
therefore be a useful way of switching off a gene 
in somatic cells, and could be used to target auto-
somal dominant diseases by directing Cas9 to tar-
get specific gene mutation sites on the dominant 
mutated allele.

Recently, Sinha and colleagues104 demonstrated 
the first proof-of-concept approach for gene edit-
ing in Best disease using NHEJ, with an average 
frame shift efficiency of 96%. CRISPR/Cas9 
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treatment of patient derived iPSC-RPE improved 
BEST1 channel activity and rhodopsin degrada-
tion. However, a major concern was the presence 
of off-target editing effects, which could affect the 
expression of other key genes in edited cells. A 
number of challenges remain before gene editing 
can be widely used in clinic, including the deliv-
ery of the gene editing system to target cells, effi-
ciency of the therapy, utilisation of repair 
mechanisms in RPE and retinal cells, and preven-
tion of off-target effects.107,108

Pharmacological approaches
Although a great deal of attention is being placed 
on using genomic medicine to treat inherited dis-
eases, pharmacological approaches may be valid 
for bestrophinopathies.109,110 Singh and col-
leagues,111 investigated whether modulating pro-
teolytic machinery using valproic acid, a histone 
deacetylase inhibitor, in combination with rapa-
mycin, an inducer of autophagy, could rescue 
POS processing defects observed in bestrophi-
nopathies. This combinatory treatment increased 
the rate of POS degradation and reduced the 
build-up of autofluorescence in patient derived 
iPSC-RPE, suggesting a link between POS han-
dling and proteolysis in RPE. Furthermore, this 
treatment also delayed disease progression in a 
canine model of ARB.

Recent interest has also turned to the use of 
molecular chaperones and proteasome inhibitors 

as therapeutics for bestrophinopathies. The pro-
teasome inhibitor, bortezomib and chemical chap-
erone, 4-phenylbutyrate (4PBA) have been used in 
combination to guide correct trafficking of exoge-
nous mutant BEST1 to the plasma membrane in 
MDCKII cells. This combination can also rescue 
channel activity defects in HEK293 cells express-
ing inducible forms of mutant BEST1. Similarly, 
4PBA and its analogue, 2-naphthoxyacetic acid, 
were able to increase BEST1 protein expression 
in iPSC-RPE from Best disease and ARB patients 
and restore channel function in HEK293 cells 
expressing mutated forms of BEST1.112

Conclusion
Bestrophinopathies are distinct retinal dystro-
phies with varying clinical heterogeneity and pen-
etrance that typically lead to central vision loss at 
an early age and have a huge impact on the daily 
lives of patients. The gene responsible for these 
diseases, BEST1, is a highly conserved anion 
channel, yet there are few animal models availa-
ble to fully understand its role in the development 
of disease, and although BEST1 expression is 
widespread throughout the body, it is still unclear 
why BEST1 mutations manifest in vision loss 
only. Patient derived iPSC-RPE are a crucial dis-
ease-in-a-dish model system that have enabled a 
greater understanding of BEST1 function and its 
role in human disease. These cells will be impor-
tant in revealing the role of individual mutations 
in the development of distinct bestrophinopathies 

Figure 7.  CRISPR genome editing can be used to treat patient mutations at the molecular level. (a) The 
CRISPR-Cas9 complex is used to create a double strand DNA break in close proximity to the patient. (b) A 
corrected DNA template can be incorporated into the sequence using homology directed repair, alternatively 
and (c) non-homologous end joining can be used to create insertions/deletions, resulting in frame-shifts that 
disrupt the target gene.
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and could help to interrogate the heterogeneity of 
disease, by identifying potential genetic modifiers 
of disease in families. In the future, iPSC may 
also help gain valuable insight into the impor-
tance of the RPE: retinal interface in bestrophi-
nopathies, through the culture of retinal 
organoids. The importance of iPSC-RPE can be 
fully appreciated in their use to develop and test 
potential genomic therapies for bestrophinopa-
thies. Current research suggests that, although 
there may not be a common approach to treat all 
bestrophinopathies, a range of options could be 
available for patients in the future, providing per-
manent treatments for these inherited diseases.
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