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ABSTRACT

Background Endogenous retroviruses (ERVS) play a role in a
variety of biological processes, including embryogenesis and
cancer. DNA methyltransferase inhibitors (DNMTi)-induced
ERV expression triggers interferon responses in ovarian cancer
cells via the viral sensing machinery. Baseline expression of
ERVs also occurs in cancer cells, though this process is poorly
understood and previously unexplored in epithelial ovarian
cancer (EOC). Here, the prognostic and immunomodulatory
consequences of baseline ERV expression was assessed in
EQC.

Methods ERV expression was assessed using EOC
transcriptional data from The Cancer Genome Atlas (TCGA)
and from an independent cohort (Hammersmith Hospital,
HH), as well as from untreated or DNMTi-treated EOC cell
lines. Least absolute shrinkage and selection operator
(LASSO) logistic regression defined an ERV expression
score to predict patient prognosis. Immunohistochemistry
(IHC) was conducted on the HH cohort. Combination of
DNMTi treatment with y3 T cells was tested in vitro, using
EOC cell lines and patient-derived tumor cells.

Results ERV expression was found to define clinically
relevant subsets of EOC patients. An ERV prognostic score
was successfully generated in TCGA and validated in the
independent cohort. In EQC patients from this cohort, a high
ERV score was associated with better survival (log-rank
p=0.0009) and correlated with infiltration of CD8+PD1+T
cells (r=0.46, p=0.0001). In the TCGA dataset, a higher ERV
score was found in BRCA1/2 mutant tumors, compared to wild
type (p=0.015), while a lower ERV score was found in CCNE1
amplified tumors, compared to wild type (p=0.019). In vitro,
baseline ERV expression dictates the level of ERV induction

in response to DNMTi. Manipulation of an ERV expression
threshold by DNMTi resulted in improved EOC cell killing by
cytotoxic immune cells.

Conclusions These findings uncover the potential for
baseline ERV expression to robustly inform EOC patient
prognosis, influence tumor immune infiltration and affect
antitumor immunity.

BACKGROUND
About 40% of the human genome consists
of repetitive sequences. Among these,
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endogenous retroviruses (ERVs) are a class
of transposable elements (TE) that derive
from ancient exogenous retroviral infections
resulting in incorporation of the viral genome
into the host."

Though ERVs are usually silenced by heavy
DNA and histone methylation, ERV tran-
scripts seem to play a role in early mamma-
lian development, with high transcriptional
activity of distinct ERV families being
observed in human embryos during pre-
implantation development2 while, in cancer,
aberrant expression of TE has been hypothe-
sized to drive tumorigenic mutations.®

DNA methyltransferase 1-deficient mice
develop T cell leukemia in the absence of
functional Toll-Like Receptors, partly via ERV
hypomethylation and deregulation,” while
in human colon cancer samples, RNA in situ
hybridisation demonstrated a correlation
between HERV-H expression and localisation
of suppressive infiltrating Tregs.”

High levels of expression of specific ERVs
were identified in clear cell renal cell carci-
noma, breast, colon, and head and neck
cancers from TCGA, and correlated with
increased immune infiltration, particularly
a high CD8+ Tcell fraction as well as check-
point pathway upregulation.’

Interestingly, treatment with the DNA
methyltransferase inhibitor (DNMTi) decit-
abine can induce transcription of ERVs into
double-stranded RNA (dsRNA) and mimic a
viral infection, triggering an interferon (IFN)
response.”

This literature highlights a role of TEs,
including ERVs, in cancer and immunity
which is not fully clarified or understood,
with their expression being linked to tumor
initiation and evolution, as well as stimulation
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of antitumoral innate immunity and recruitment of
both Tregs and cytotoxic T lymphocytes to the tumor
microenvironment.

Importantly, a strong correlation exists between the
presence of intratumoral T cells and improved clinical
outcome in advanced ovarian carcinomas.” Epithelial
ovarian cancer (EOC) is usually diagnosed at an advanced
stage and carries a poor prognosis and it is therefore
crucial to find new tools to stratify patients and design
effective therapeutic interventions.

Pretreatment with epigenetic therapy has emerged as
a potential strategy to stimulate immunologically cold
tumors, including EOC, toward a less immunosuppressive
and immune ‘evasive’ phenotype.'’ 1

Here, for the first time, we investigated the significance
of ERV expression at basal level in high-grade serous
ovarian tumors and again in the context of DNMTi treat-
ment of EOC cell lines. Our findings demonstrate the
influence of baseline ERV expression on patient survival
and on immune cell infiltration into EOC tumors and
confirm the potential for manipulation of an ERV expres-
sion threshold by DNMTi treatment.

RESULTS

Baseline ERV expression defines subsets of EQC patients and
informs patient survival

Given the dual role of ERV expression in cancer, and the
importance of immune infiltration for OC prognosis,
we first investigated baseline ERV expression in ovarian
tumor expression data from TCGA.

A total of 25207 ERV repeats were found expressed in
all primary OC samples (n=373) and consensus clustering
analysis identified four main clusters, defined by ERV
expression. This indicates that different patterns of ERV
expression define subgroups of EOC patients (figure 1A
and online supplemental figure S1).

Next, we generated multivariable Cox models—
adjusted for age, stage, grade and residual disease—to
determine whether the expression of each single ERV
repeat in the TCGA dataset (n=25207) was associated
with overall survival (OS). For each ERV, samples with
complete clinical data (n=328) were allocated to groups
(high or low) using the ERV repeat’s median expression
level as cut-off. Of the 25207 ERVs tested, 632 had a favor-
able association with OS (Cox p<0.05) and 1187 an unfa-
vorable association (Cox p<0.05) (figure 1B).

Interestingly, some ERV families, that is groups of ERV
repeats with the same sequence but at different genomic
loci, were associated with both favorable and unfavorable
OS (online supplemental table S1), suggesting that the
repeat location, rather than the family or sequence, may
have a predominant role in affecting OS.

The ERV families that were exclusively associated with
either favorable (n=58) or unfavorable OS were identified
(n=76) and those with more than one ERV repeat associ-
ated with OS, are shown in figure 1C. The ERV repeat
ERV_3328078 belonging to the ERV family MER4-int

was found to have the lowest HR, ie, high expression
of this ERV was significantly associated with the highest
survival advantage (HR 0.69, p=0.001). Similarly, ERV
repeat ERV_3224702 (HERVL-int family) presented the
second lowest HR (figure 1D, top). Instead, ERV repeats
ERV_0122156 (LORIl-int family) and ERV_0786197
(HERVP71A-int family) presented the top and second
highest HRs, indicating that patients presenting low (ie,
below median) expression of these repeats are more
likely to survive for longer (figure 1D, bottom).

An ERV expression score predicts good prognosis in EOC
patients

A total of 226 ERV repeats were found to be significantly
associated exclusively with an improved OS and further
filtered using least absolute shrinkage and selection oper-
ator (LASSO') to compute a prognostic score. Figure 2A
shows a schematic representation of the steps and data-
sets used in developing the ERV score.

We first generated the model on a training set, consisting
of 75% of the EOC TCGA samples with complete clinical
data (n=246). Features (ERVs) were selected by a penal-
isation system, and weights were calculated for filtered
features. The weighted sums of 32 selected ERVs resulted
in a numerical score for each TCGA OC sample analyzed,
which was named ERV score.

The 32 ERVs were annotated with ERV family and
LASSO coefficients (online supplemental table S2).
Online supplemental figure S2 shows each feature’s
coefficient against the calculated LASSO parameter
lambda and the optimal lambda value, indicating optimal
number of features to be combined into the predictor
score, obtained by 10-fold cross-validation using cv.glmnet
within the glmnet package in R.

Multivariable Cox proportional hazards models,
adjusted for age, stage, grade and residual disease,
showed a significant difference in OS (figure 2B left) and
progression-free survival (PFS) (online supplemental
figure S3A) depending on a high (above first quartile) or
low (below first quartile) ERV prognostic score. Figure 2B
(left) shows the Kaplan-Meier survival curve for EOC
patients in the training set (n=246), illustrating improved
OS for patients with high (ie, above threshold) ERV
prognostic score (log rank p<2e-16, HR=0.03405, 95% CI
0.0178 to 0.06513).

Next we validated the model in a testing set, consisting
of the remaining 25%°C TCGA samples with complete
survival data (n=82). In the testing set, similarly as in the
training set, improved OS was significantly associated
with a high ERV prognostic score (log rank p=0.04, HR
0.4239, 95% CI 0.1878 to 0.9567). The Kaplan-Meier plot
for the testing set is shown in figure 2B (right). A similar
effect was observed when calculating PFS on the testing
test (online supplemental figure S3B).

In order to better interpret their biological significance,
the ERV prognostic scores for each sample in TCGA
(both training and testing sets) were correlated with the
median ERV expression values of the 32 LASSO selected
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Figure 1 Baseline ERV expression defines subsets of OC patients and informs patient survival. (A) Heatmap showing the ERVs
(n=1000) used for consensus clustering analysis and the TCGA OC samples (n=373), grouped using the dendrogram resulting
from k=4 clustering. The colors show the z-scaled log10 of the ERV expression and are defined in the color scale. (B) Volcano
plot showing the calculated multivariate Cox regression models between each ERV repeat’s expression and OS in TCGA OC
dataset. HRs were plotted against the negative log10 of the adjusted cox p value for the 25207 ERV repeats found expressed
in TCGA OC samples. Multivariable Cox models were adjusted for age, stage, grade, histology and residual disease, using ERV
expression values as continuous variables. Significant HRs (p<0.05) are colored. HR <1 indicates association between ERV
expression and improved OS (n ERVs=632 for Cox p<0.05); HR >1 indicates association between ERV expression and worse
OS (n ERVs=1187, Cox p<0.05). (C) ERV families with more than one ERV repeat, exclusively associated with better (left) or
worse (right) survival in TCGA OC dataset, annotated with name of the family and number of entities (ie, repeats). (D) Kaplan-
Meier plots of OS according to above median (high) or below median (low) expression (ie, RPKM) of selected ERV repeats.

The ERV family is indicated in brackets. The HR was estimated by a multivariable Cox model adjusted for age, stage, grade,
histology and residual disease. The Cl is indicated, in brackets. ERV, endogenous retrovirus; OC, ovarian cancer.
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Figure 2 An ERV expression score predicts good prognosis in OC patients. (A) Schematic representation of the steps and
datasets used in generating the ERV prognostic score. (B) Overall survival (OS) of OC patients by high (above first quartile) or
low (below first quartile) ERV prognostic score in the training (left; n samples=246) and testing (right; n samples=82) sets from
TCGA. The HR was estimated by a multivariable Cox model adjusted for age, stage, grade, histology and residual disease
(log-rank p values as well as Cl are indicated). (C) Pearson’s product-moment correlation between the median ERV RPKM

of the 32 ERV components of the ERV prognostic score and the prognostic score in OC TCGA samples (n=328); the shaded
area indicates the confidence interval (0.58, 0.70) (D) Progression-free survival (PFS) of high-grade serous ovarian cancer
(HGSOC) patients by high (above first quartile) or low (below first quartile) ERV prognostic score in Hammersmith Hospital

(HH) validation dataset (n samples=58). The HR was estimated by a multivariable Cox model adjusted for age, stage, grade,
histology and residual disease (log-rank p values are indicated). The Cl is indicated, in brackets. (E) Left: boxplots showing the
ERV score in BRCA 1/2 mutant tumors (n=21; including all types of somatic mutations except silent mutations), compared with
wild-type tumors (n=307) from the TCGA dataset. Right: boxplots showing the ERV score in tumors with CCNE1 amplification
(n=101), compared with tumors without CCNE1 amplification (n=227) from the TCGA dataset. P values were obtained using the
Wilcoxon rank-sum test with continuity correction. EOC, epithelial ovarian cancer; ERV, endogenous retrovirus; LASSO, least
absolute shrinkage and selection operator; OC, ovarian cancer.
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features. There was a Pearson’s product-moment correla-
tion of 0.65 (p<2.2e-16), suggesting that higher levels of
expression of the selected 32 ERVs may be associated with
improved survival (figure 2C).

Importantly, the ERV prognostic score was success-
fully validated on an independent dataset, consisting
of 58 samples from high-grade serous ovarian cancer
(HGSOC) patients from Hammersmith Hospital London
(HH dataset). The ERV score was calculated here by
applying the previously generated LASSO weights to the
expression of 23 ERV features shared by the TCGA and
HH datasets. A high ERV score was significantly associ-
ated with improved PFS in the HH samples (log rank
p=0.009, Cox model adjusted as above; figure 2D). It was
not possible to calculate OS for these samples as the clin-
ical information was too recent.

Given the impact that BRCAI/2 aberrations and
CCNE1 amplification have on HGSOC prognosis,"” '* we
next investigated whether there may be any association
between the ERV score and these aberrations in the TCGA
dataset. Strikingly, the ERV score was found to be signifi-
cantly higher (Wilcoxon p=0.015) in BRCA 1/2 mutant
tumors (n=21; including all types of somatic mutations
except silent mutations), compared to wild-type tumors
(n=307) and significantly lower (Wilcoxon p=0.019) in
tumors with CCNE1 amplification (n=101), compared to
tumors without CCNE1 amplification (n=227; figure 2E).
Due to the fact that BRCA mutant tumors present better
patient prognosis,13 1 while tumors with CCNE1 ampli-
fication present worse patient prognosis,'* ' these data
support the prognostic value of the ERV score, with a
high ERV score being associated with improved survival
in HGSOC.

The ERV score correlates with infiltration of effector inmune
cells in EOC

In order to investigate whether higher baseline ERV
expression may affect immune cell infiltration of ovarian
tumors, we calculated Pearson’s correlation coefficients
between the expression of each of the 25207 ERV repeats
from the OC TCGA analysis and the expression of genes
for T cell markers CD8, CD4, CD25, and activated or
exhausted T cell markers LAG3 and PD-1, within the
same samples.

Figure 3A shows the number of significantly posi-
tively correlated ERV repeats (false discovery rate (FDR)
adjusted p<0.05, correlation coefficient r>0) for each of
the immune genes of interest.

Five ERV repeats were found to be strongly correlated
with all the immune genes of interest (figure 3B), indi-
cating that these five ERVs may be translated into immu-
nogenic antigens and attract effector T cells to the
tumors. High individual expression of each of these five
ERVs was also found to be associated with better survival
in the TCGA dataset, though their prognostic value was
limited compared to the combined ERV score (online
supplemental figure S4).

Furthermore, significant positive correlations (p<0.05,
r>0) were found between the ERV score and the expres-
sion of PD-1 (Pdcdl) and LAG3 (Lag3) (online supple-
mental figure S5, top), both normally found expressed
on activated or exhausted T lymphocytes, in the EOC
TCGA samples (n=328).

Moreover, the ERV score was found significantly posi-
tively correlated (p=0.01, r=0.14; online supplemental
figure S5, bottom left) with the expression of the gene for
viral recognition protein RIG-I (Ddx58), within the TCGA
EOC samples (n=328), indicating that a high ERV score
may result in higher expression of viral response genes.
Similarly, a significant positive correlation was found
between the ERV score and the expression of IFNB (Ifnbl;
p=0.03, r=0.11; online supplemental figure S5, bottom
right). Since these associations did not present a strong
correlation coefficient and in order to better validate the
biological significance of the ERV score, we conducted
multiplex IHC, staining for common markers of tumor
infiltrating lymphocytes (TILs), on EOC samples from
the HH dataset (n=47). Figure 3C (left) shows a represen-
tative immune-enriched EOC sample. Strikingly, a signif-
icant positive correlation (r=0.46, p=0.0001) was found
between the ERV score and expression of CD8+PDI1+
double positive cytotoxic T cells (figure 3C, right),
strongly suggesting that a higher expression of these ERVs
may increase immunogenicity and therefore recruitment
or activation of effector immune cells.

Baseline ERV expression in HGSOC cell lines
In an effort to better understand the significance of base-
line ERV expression in EOC and how this can be manip-
ulated, we conducted RNA-sequencing of the Kuramochi
and Ovsaho HGSOC cell lines. As expected, we found a
clear separation between the cell lines, based on expres-
sion of all ERVs. Differentially expressed (DE) ERV
repeats between the two cell lines (absolute log2FC>+2;
FDR adjusted p<0.05) were then identified; 2775 DE
ERV repeats were found to be DE (figure 4A); 1763 ERV
repeats were upregulated in Kuramochi, compared with
Ovsaho, while 1012 were downregulated (figure 4B).

Interestingly, the median ERV expression values, a
surrogate measure of overall ERV expression, were signifi-
cantly higher in the Kuramochi samples, compared with
Ovsaho (figure 4C). When the gene expression profiles
of the two cell lines were compared, genes for viral sensor
protein RIG-I (ie, Ddx58, logFC 5.421 FDR adjusted p
value 1.53-12) and MDAb (ie, Ifihl, logFC 2.546, FDR
adjusted p 2.84-08) were found upregulated in Kura-
mochi cells, compared with Ovsaho cells. Accordingly,
ingenuity pathway analysis (IPA) revealed an enrichment
for IFN signaling in Kuramochi cells, compared with
Ovsaho cells (figure 4D). This enrichment was further
confirmed by testing a specific IFN response gene list
from the Molecular Signatures Database'® against all the
genes in the analysis (figure 4E).

Altogether these data demonstrate the existence of
distinct patterns of ERV expression in different HGSOC
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Figure 3 Immunomodulatory consequences of ERV expression in OC. (A) Summary of significant and positive (FDR adjusted
p<0.05, r>0) Pearson’s correlations between the expression of ERV repeats and selected immune genes in TCGA OC samples
with complete clinical data (n=328). (B) Correlation matrix of ERV repeats and T lymphocytes surface markers. Pearson’s
product-moment correlations were calculated between each ERV repeat analyzed in TCGA OC dataset (n=25207) and immune
genes of interest CD25, CD4, CD8, PD1 and LAGS. Significant correlations (FDR adjusted p<0.05) were filtered by correlation
coefficient (cut-off r>0.3) and only non-intragenic ERVs were retained. The color scale indicates the correlation coefficient and

the size of the dot indicates the p value. (C) Correlation between

ERV prognostic score and multiplex IHC CD8+PD1+scores

in HH samples (n=47). A representative immune-rich sample from the HH cohort, stained by multiple IHC for CD4, CD8,

PD1 and FOXP3 is shown on the left: colors are indicated in the legend (bottom) as well as representative scoring (top right).
The CD8+PD1+double positive cells were scored and normalized by the total number of immune cells, generating an IHC
PD1+CD8+score for each sample (n=47). The IHC PD1+CD8+score was correlated to the ERV score and plotted in R (right).
ERV, endogenous retrovirus; HH, Hammersmith hospital; IHC, immunohistochemistry; OC, ovarian cancer.

cell lines and confirms that a higher spontaneous expres-
sion of ERVs may determine increased expression of
genes for antiviral mediators RIG-I and MDA and conse-
quential IFN type I induction.

Baseline ERV expression dictates magnitude of response to
DNMTi and immune cell combination treatment in HGSOC cell
lines
Viral mimicry via induced expression of ERVs has been
described as a key consequence of epigenetic modifica-
tion in cancer cells.”® Here, for the first time, genome-
wide changes in ERV expression were investigated
following 1pM guadecitabine—a DNMTi—treatment of
Kuramochi and Ovsaho cell lines.

As expected, treatment with guadecitabine resulted
in a significant dose-dependent decrease in global DNA

methylation, as measured by bisulfite pyrosequencing
of Long Interspersed Nuclear Element-1, as a surrogate
measure of global DNA methylation (online supple-
mental figure S6).

ERV expression status drove a clear separation between
guadecitabine-treated and vehicle-treated Ovsaho cells,
but not between 1M guadecitabine-treated and vehicle-
treated Kuramochi cells (figure 5A). This indicates that
only subtle changes in ERV expression may occur in
the Kuramochi cell line—which presents higher levels
of ERV expression at the baseline—at a 1 pM guadecit-
abine treatment. Seventy-one ERV repeats were found
DE in the guadecitabine-treated Kuramochi samples at
either early or late time point, while more than double,
183, in guadecitabine-treated Ovsaho cells (figure 5B).
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Figure 4 Baseline ERV expression in HGSOC cell lines. (A) Spearman’s correlation coefficients were calculated between
experimental replicates in Kuramochi and Ovsaho cell lines for all ERV repeats analyzed. The dendrograms were generated by
unsupervised hierarchical clustering and show the relationship between samples. The colors in each sample are indicative of the
correlation coefficient and are defined in the color scale. (KURA=Kuramochi; OVS=0vsaho; V=vehicle; DAY5=early timepoint;
DAY8=late timepoint; R=replicate). (B) Top: Volcano plot showing the log2 fold change in expression against the -log10 FDR
adjusted p value for each ERV repeat analyzed in vehicle-treated Kuramochi or Ovsaho HGSOC cell lines. Significantly DE ERV
repeats (absolute logFC >2 and FDR adjusted p<0.05) are colored. Bottom: Summary of total number of ERV repeats analyzed
in the Kuramochi versus Ovsaho comparison, including number and direction of change of each DE ERV repeat. (C) Median
ERV expression in baseline Kuramochi and Ovsaho HGSOC cell lines. Median of RPKM values from all ERV repeats analyzed

in each vehicle-treated sample for Kuramochi and Ovsaho. The median value for each sample is shown together with the
mean+SEM (**p<0.001, t-test). (D) IPA was used to identify pathways positively or negatively regulated in Kuramochi compared
with Ovsaho. A p value threshold of 0.01 was applied. The pathways were identified in IPA and visualized in R, annotated with
negative log10 p value (blue color scale), gene ratio (number of DE genes in each pathway/total genes in the pathway; defined
by the size of dot) and IPA-calculated activation z-score (indicative of upregulation or downregulation of genes; x axis). (E)
Enrichment for interferon response genes in HGSOC cell line Kuramochi compared with Ovsaho. Mean-rank gene set tests were
conducted to assess whether the genes from the cell lines’ analysis were highly ranked relative to an interferon response gene
list, in terms of their logFC. P value was obtained from a Wilcoxon test. Each black line represents a gene in the interferon gene
list, obtained from the Molecular Signatures Database (down=downregulated, up=upregulated). DE, differentially expressed;
ERV, endogenous retrovirus; IPA, ingenuity pathway analysis.
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Figure 5 Manipulation of ERV expression threshold by DNMTi increases HGSOC cell lines immunogenicity. (A) Heatmaps

of Spearman’s correlation coefficients between guadecitabine and vehicle treated samples from RNA-seq for all ERV repeats
analyzed in Kuramochi and Ovsaho. Spearman’s correlation coefficients were calculated between experimental replicates

in Kuramochi (A) and Ovsaho (B). Samples are annotated by timepoint and treatment condition. The dendrograms were
generated by unsupervised hierarchical clustering and show the relationship between samples. The colors in each sample are
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Figure 5 (Continued)

indicative of the correlation coefficient and are defined in the color scale. KURA=Kuramochi; OVS=0vsaho; V=vehicle; 1=1 M
guadecitabine; DAY5=early timepoint; DAY8=late timepoint; R=replicate). (B) Guadecitabine-induced ERV expression changes
in HGSOC cell lines; Left (Kuramochi - top and Ovsaho - bottom) Volcano plots showing the log2 fold change in expression
against the -log10 FDR adjusted p value for each ERV repeat analyzed at the early and late time points. Significantly DE ERV
repeats (absolute logFC>1.5and FDR adjusted p<0.05) are colored. Right (top and bottom): Heatmaps of DE ERV repeats in
guadecitabine-treated Kuramochi and Ovsaho. Each line represents the RPKM values for each DE ERV repeat in each sample
from Kuramochi and Ovsaho. Samples are annotated with treatment condition. The dendograms show hierarchical clustering
of samples and genes. The colors indicate intensity of expression as annotated in the color scales (top left). (C) Median ERV
expression in baseline vs guadecitabine-treated Kuramochi and Ovsaho OC cell lines. Median of RPKM values from all ERV
repeats analyzed in each sample for Kuramochi and Ovsaho. The median value for each sample is shown together with the
mean+SEM (**p<0.001, t-test). (D) Classification of DE ERVs from guadecitabine-treated Kuramochi and Ovsaho DE ERVs
from each cell line’s dataset were assigned to ERV classes according to the annotation database HERVd; the number of

DE repeats in each class was normalized to the total number of ERV repeats in each class within the HERVs annotation. (E)
Evolutionary age of DE ERV repeats in guadecitabine-treated OC cell lines. LogFC of each DE ERV plotted against its CpG
density, normalized by bp size of the element, at the late time point. The DE ERVs were filtered with a percentage CpG density
threshold of less than 5. The plot is annotated for evolutionary age, as defined in the work by Ohtani et al. CpG densities were
calculated using a publicly available annotation of bisulfate sequenced human genome from the Repitools R package. (F) mRNA
expression of IFNa in Kuramochi and Ovsaho cell lines treated with increasing doses of guadecitabine. Increasing doses of
guadecitabine were used to treat Kuramochi (left) and Ovsaho (right) cell lines before mRNA expression analysis by gPCR. Data
is shown as mean+SEM from three biological replicates (**p<0.01, t-test). (G) Real time quantification of Caspase 3/7 expression
in guadecitabine-treated HGSOC cell lines or patient ascites-derived primary OC cells in coculture with ex vivo activated y6 T
cells. Guadecitabine-treated ascites-derived primary OC cells or cell lines were cocultured with y8 T cells from healthy donors
ata 1:1 or 5:1 tumor cell to T cell ratio. Apoptosis was quantified in real time using a caspase 3/7 green dye in IncuCyte. Data
are presented as mean+SD based on three technical replicates. Statistical differences were analyzed using wilcoxon matched
pairs signed ranks test. DE, differentially expressed; DNMTi, DNA methyltransferase inhibitor; ERV, endogenous retrovirus; IFN,

interferon; OC, ovarian cancer; gPCR, quantitative PCR.

The overall change in ERV expression, measured as the
median ERV expression value between all samples, was
significant in Ovsaho but not in Kuramochi (figure 5C).
This may indicate again that the baseline ERV expression
profile dictates the potential for ERV upregulation in
response to DNMTi treatment.

On classification of the DE ERVs, there was no specific
ERV class that was enriched following guadecitabine
treatment and the class representation profile in the DE
ERVs differed between the two cell lines. ERVK was the
class with the most ERV expression changes in Ovsaho
(figure 5D); of note ERVK is one of the evolutionary
youngest ERV classes.'” Indeed, analysis of the CpG
density within each DE ERV sequence revealed that, in
the guadecitabine-treated Kuramochi samples, most of
the DE changes occurred at CpG densities between 0%
and 2% (figure 5E); in the guadecitabine-treated Ovsaho
samples the DE changes spread past 2% CpG density
(figure 5E). As methylated cytosine within CpG islands
are prone to deaminate to thymine over time,'® older
repetitive elements present less CpG density."”

These data indicate that in different cell lines, or distinct
ovarian tumors, the mechanisms regulating baseline ERV
repression, and therefore their epigenetic-driven re-ex-
pression, may vary.

Additionally, we found an increase in IFNo. mRNA
expression in Ovsaho with increasing doses of guadecit-
abine. In Kuramochi cells, a significant increase in IFNo.
mRNA expression was observed only at 5pM guadecit-
abine, compared to the vehicle, potentially due to the

enhanced ERV and IFN enrichment at the baseline in this
cell line (figure 5F).

Next, we cocultured guadecitabine-treated cell lines
Kuramochi, Ovsaho or ascitic primary ovarian tumor
cells with cytotoxic yd T cells from healthy donors (1:1 or
5:1T cell:tumor ratio, using over 85% 6 TCR+ T cells).
Using IncuCyte live cell imaging, we measured a signifi-
cant increase in Caspase 3/7+ cells, when guadecitabine-
pretreated Kuramochi and Ovsaho cells were cocultured
with Y0 T cells at 1:1 or 5:1 T cell:tumor ratio (figure 5G).
This effect was similarly reproduced using OC primary
cell cultures derived from the ascites of a treatment-naive
patient (figure 5G). Importantly, the significant increase
in tumor cell death in the presence of combination
guadecitabine and Y8 T cell treatment was higher in Kura-
mochi, compared to Ovsaho.

Altogether these data suggest that distinct baseline ERV
expression profiles may significantly influence baseline
immunogenicity and efficacy of DNMTi-driven immuno-
modulation in OC.

DISCUSSION

Immune infiltration is known to significantly affect patient
survival in EOC.” Recent evidence has shown a role for ERV
expression in influencing antitumor immunity and conse-
quential immune cell recruitment. In this work, we first
investigated the expression of ERVs in OC and their rela-
tionship with patient survival and immune infiltration. Using
an adapted RNA-seq analysis method, in which a reference
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ERV annotation is used instead of canonical gene anno-
tation, it was possible to find ERVs expressed in >350high
grade serous EOC samples from TCGA.

The expression of ERVs was found to separate the samples
into four main clusters; even though each of these clusters
was not associated with a differential OS benefit (data not
shown), these data show that different patterns of ERV
expression define subgroups of EOC tumors.

In normal cells, epigenetic mechanisms prevent the
expression of ERVs.”” Altered epigenetic states have
been reported in EOC, governing tumorigenesis and
driving resistance to platinum-based chemotherapy.®! **
The differential ERV expression observed in the TCGA
dataset may be a consequence of the different epigenetic
landscapes of the tumors.

When looking into each ERV repeat’s association with
patient survival, ERVs were found to be associated with
both improved or worse OS depending on their genomic
location, which may explain why the expression clusters
are not associated with survival. This suggests that ERV
repeats, belonging to the same family, may affect survival
differently, once transcribed, in a yet unknown mecha-
nism. One potential mechanism could be recruitment of
transcription factors and regulation of gene expression;
indeed, ERV long terminal repeats can act as promoters
or enhancers for nearby genes.” Alternatively, the expres-
sion of a given ERV at a particular locus may be the result
of an either permissive or repressive epigenetic state of
the region and therefore a passenger effect of the epigen-
etic modifications present in their vicinity.

Similarly, a group of ERVs expressed in other cancer
datasets from TCGA were shown to have both negative
and positive associations with immune signatures,*
confirming the dichotomous effects of ERV expression
within the same cancer type.

Our analysis has identified the existence of ERV fami-
lies that are exclusively associated with either a survival
advantage or a disadvantage across independent cohorts,
robustly indicating that some families of ERVs may specif-
ically affect survival, potentially via their translation into
immunogenic ERV antigens. Indeed, some ERVs, partic-
ularly evolutionary young ERVs such as HERVK, have
retained open-reading frames within their gag and pol
genes® and envelope proteins derived from ERVK have
been shown to trigger immune responses in an Indian
rhesus macaque model.”® Similarly, the existence of ERV-
derived immunogenic antigens, capable of triggering
adaptive immune responses has been previously demon-
strated in renal cancer.”” **

Using LASSO logistic regression, it was possible to derive
and validate a numerical prognostic score for each TCGA
EOC patient in the analysis, based on the expression of
32 ERV repeats, with a high prognostic score being asso-
ciated with improved prognosis in these patients. Though
the prognostic power of the score was more limited in
the testing set—particularly for the PFS and potentially
due to the reduced number of samples—it strongly vali-
dated in a completely independent dataset (HH). Using

the TCGA dataset, the ERV prognostic score was strongly
positively correlated with the median expression of the
32 ERV features. This indicates that a high expression of
these repeats is significantly associated with survival.

The study by Smith et a** showed that high average
overall ERV expression in a number of tumors (no OC
data were included) was associated with worse survival. In
our study, unlike the overall median ERV expression, the
expression of 32 specific ERVs was found to be positively
associated with OS and PFS in EOC. This indicates a qual-
itative nature, rather than quantitative, of the effect of
ERV expression on survival in EOC and potentially other
cancers.

Another factor influencing the association between
ERVs and survival may be the transcription of the specific
ERVs into ERV-derived dsRNAs, able to trigger a RIG-1/
MDAb5-mediated antiviral response.” ® In our study,
the prognostic score was found to positively, although
weakly, correlate with the expression of RIG-I, using
bioinformatics tools, suggesting that dsRNAs, derived
from some or all of the 32 ERV features of the score, may
potentially trigger a RIG-I mediated immune response
and IFN type I induction. Indeed, a significant positive
correlation was also found between the ERV prognostic
score and expression of IFNB. Confirmation of these
findings by quantitative PCR (qPCR) in other cohorts
is warranted.

BRCA1/2 mutations and CCNEl amplification are
known prognostic factors for OC patients, with BRCA1/2
mutations being predictive of better patient prognosis,
while CCNE1 amplification being predictive of worse
outcome."” ' It was, therefore, intriguing to find that
tumors presenting mutations in BRCA1/2 and those
without CCNEI amplification present a higher ERV
score. It has been shown that tumors with defects in DNA
repair pathways present a high mutational burden and
higher levels of neoantigens.* *’ Furthermore, BRCA1/2-
mutated HGS ovarian tumors have been shown to exhibit
significantly increased CD3+ andCD8+ TILs.”' Tt is
possible that the high genomic instability due to defects
in BRCA1/2 may determine higher levels of transcription
of antigenic ERVs, supporting a link between DNA repair
defects, spontaneous expression of ERVs, immunoge-
nicity, and ultimately, survival—though this relationship
remains to be further investigated.

Furthermore, we investigated the relationship between
ERV expression and immune cell infiltration using
computational methods and validating our findings using
multiplex IHC. The expression of five non-intragenic
ERVs was shown to correlate with that of five known
surface markers of activated or exhausted T lymphocytes
within EOC tumor tissue. Though this may indicate that
these five ERVs could be translated into immunogenic
antigens and attract effector T cells to the tumors, confir-
mation by mass spectroscopy or immunopeptidomics
would be ideally used to support this hypothesis further.

Similarly, the ERV score was found to correlate posi-
tively, with activated/exhausted T lymphocytes markers
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PD-1 and LAG3. Importantly, this finding was validated by
multiplex IHC in the HH dataset, in which the ERV score
correlates with the infiltration of CD8+PD1+ double posi-
tive T cells. To our knowledge, this is the first time that an
ERV expression signature predicts immune infiltration in
ovarian tumors.

In order to further investigate the significance of base-
line ERV expression in OC, we compared the transcrip-
tional profiles of EOC cell lines Kuramochi and Ovsaho
as well as the ERV transcriptional changes induced by
treatment with guadecitabine in the same cell lines, which
were chosen as previously defined as best representative
of HGSOC from patients.32 At the baseline, an enrich-
ment for IFN response genes was found in Kuramochi,
compared to Ovsaho, including upregulation of genes for
viral response proteins MDAD and RIG-I, the key actors in
recognition of ERV dsRNA during viral mimicry.

A higher level of endogenous expression of MDAb
and RIG-I in Kuramochi may be due to a higher base-
line spontaneous transcription of ERV; indeed, when
the basal ERV expression profile of the two cell lines was
compared, a higher median ERV expression was found in
Kuramochi, compared to Ovsaho and, accordingly, there
were more ERV repeats upregulated than downregulated
in Kuramochi cells, compared to the Ovsaho cell line.

Aberrant baseline expression of ERVs has been shown
to occur in cancer cells due to functional inactivation of
tumor suppressor proteins, often by loss of DNA meth-
ylation, during oncogenesis.”> These tumor suppressors
are physiologically involved in regulating ERV expression
and repression. DNA demethylation using DNMTi has
been hypothesized to push ERV expression past a ‘toler-
ance’ threshold and therefore to enhance of immune
responses and therapy.”

When the ERV expression profile of the guadecitabine-
treated cell lines was examined here, more ERV expres-
sion changes, particularly upregulation of ERVs, were
found in Ovsaho cells, compared to Kuramochi cells; this
may be partly due to the observed higher baseline expres-
sion of ERVs in Kuramochi.

Upon DNA demethylation using guadecitabine, an
enrichment in IFN response genes was found in the
Ovsaho cells. This is in accordance with the hypothesis of
a threshold of tolerance of ERV expression, past which an
IFN response occurs. Indeed, there was a dose-dependent
increase in the expression of IFNo. on guadecitabine
treatment of Ovsaho cells, compared to the vehicle,
as measured by qPCR. In guadecitabine-treated Kura-
mochi cells, an increase in IFNo was only observed at
5pM guadecitabine. This indicates a dose dependent
effect in that higher doses of DNMTi may induce higher
ERV expression and consequential higher IFN type I
expression.

The fact that Kuramochi cells were shown to express
higher levels of ERVs and IFNo at the baseline, compared
to Ovsaho cells, may explain why a differential response
could not be measured at lower doses of guadecitabine
treatment, by qPCR (ie, at 0.1 and 1pM doses) and

transcriptomics analysis (ie, at 1 pM dose); these doses
may only determine subtle changes in ERV and IFNo
expression, compared to the baseline. As previously
hypothesized,” upon treatment with guadecitabine, there
may be an increase in ERV expression, past a ‘tolerance
threshold’, which together with changes in gene expres-
sion, may push EOC cells towards a more immunogenic
profile and higher sensitivity to T cell killing.

Importantly, upon coculture with healthy donor
expanded Y0 T cells, which are innate-adaptive cytotoxic
immune cells, Kuramochi cells with a higher baseline
expression of ERVs appeared to be more sensitive to
immune killing. In both cell lines, treatment with DNMTi
could increase tumor cell death in the presence of Y0 T
cells.

In keeping with our data, ¥ T cell and NK cell ligands
MICA, MICB and ULBP1-3 have all been shown to be
repressed mainly by histone deacetylation and partly by
DNA methylation.* Treatment of cancer cell lines with
DNMTi alone or in combination with HDACi resulted
in upregulation of MICA and MICB, which resensitized
tumor cells to NK cell attack in vitro.>™>’ Furthermore, we
and others have previously shown DNMTi-induced upreg-
ulation of immunoregulatory genes, including HLA and
PD-L1'"%; such upregulation is likely another key factor,
beside ERV and IFN I induction, governing the observed
enhanced immune cell killing of DNMTi-treated tumor
cell lines in vitro.

A recent report has shown an ‘epigenetic switch’ in the
regulation of evolutionary young and old ERVs, defined
by their CpG density."” The age of the DE ERVs found
in the guadecitabine treatment analysis was assessed
here; the majority of the DE ERVs, in both cell lines,
presented a percentage CpG density of less than 5, which
indicates that low CpG densities are more amenable to
hypomethylation by DNMTi and consequential re-ex-
pression of associated ERVs. Besides DNA methylation,
histone methylation has been demonstrated to regulate
ERV repression, particularly of evolutionary ‘old’ ERVs'’;
when classifying the DE ERVs found in the guadecitabine
treatment analysis, there was little overlap in ERV class
and evolutionary age of the DE elements between Kura-
mochi cells and Ovsaho cells. This also led to our hypoth-
esis that different cell lines or ovarian tumors may rely
on different epigenetic mechanisms of ERV repression.
Ohtani et al found very little overlap in the numbers and
types of ERVs re-expressed following DNMTi treatment
of four mixed cancer cell lines,'” supporting the hypoth-
esis that the mechanisms governing ERV repression and
re-expression may be tumor cell specific.

CONCLUSION

In this study, we have shown that an ERV expression signa-
ture predicts good prognosis in high-grade serous OC
and correlates with immune infiltration of effector T cells
in these tumors. Accordingly, we have shown, in vitro, that
a higher baseline ERV expression may determine higher
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immunogenicity and dictate the response to DNMTi.
Further work may be aimed at using the ERV score to
identify those patients which may benefit from manipula-
tion of ERV expression using demethylating agents.

METHODS

Cell lines, primary ascitic tumor cells and immune cells
Kuramochi and Ovsaho cell lines were purchased from
the Japanese Collection of Research Bioresources (JCRB)
Cell bank and genetically authenticated by STR profiling
conducted by Eurofins Genomics. Cell lines were main-
tained in RPMI-1640 culture media (Sigma-Aldrich)
supplemented with 10% Fetal Bovine Serum (Sigma-
Aldrich) and L-glutamine 200mM, penicillin 10000
units, streptomycin 10 mg/mL solution (Sigma-Aldrich).

Peripheral blood mononuclear cells (PBMCs) were
isolated by Ficoll (Sigma-Aldrich) separation. PBMCs were
treated with Recombinant Human Interleukin 2 (IL-2,
Peprotech) and 1pg/mL zoledronic acid (ZA) (Zometa,
Novartis) for ¥d T cell isolation and supplemented with
IL-2 every 48 hours. Human primary immune cells were
cultured in RPMI-1640 media (Sigma-Aldrich) with 10%
Human AP Serum (Sigma-Aldrich) and L-glutamine
200mM, penicillin 10000 units, streptomycin 10 mg/mL
solution (Sigma-Aldrich).

Primary EOC cells were isolated from ascites by Ficoll
(Sigma-Aldrich) separation and maintained in RPMI-
1640 culture media (Sigma-Aldrich) with 20% FBS
(Sigma-Aldrich), L-glutamine 200mM, penicillin 10000
units, streptomycin 10 mg/mL solution (Sigma-Aldrich),
34ng/mL insulin (Sigma-Aldrich) and 2.2mM Sodium
Pyruvate (Sigma-Aldrich). Data from the ascites sample
used in this study was previously published'” and showed
that the sample was enriched for cells expressing EOC
cell markers WT-1, CA-125 and epithelial cell marker
EpCAM, used broadly as a tumor cell marker. All cells
were cultured at 37°C with 5% CO,,.

Treatment with guadecitabine and co-culture with yé T cells
Guadecitabine was provided by Astex Pharmaceuti-
cals, Inc. and reconstituted in its clinical diluent (65%
Propylene Glycol, 25% Glycerin, 10% Dehydrated
Ethanol) which was also used as vehicle control. OC cell
lines and primary tumor cells were treated with 0.1, 1 and
5pM guadecitabine or vehicle on day 1 and day 3. Cell
culture medium was replaced with fresh medium on day 5.
Cell pellets from each condition, to be further processed
for RNA-sequencing and qPCR analyses, were taken on
day 5 (referred to as early timepoint) or day 8 (referred
to as late timepoint). In co-culture experiments, on day
8, tumor cells in each treatment condition were seeded
in triplicates onto 96-well plates at a density of 7x103 cells
per well and incubated at 37°C with 5% CO2 for 24 hours,
before addition of immune cells.

In ¥& T cell coculture experiments, 24hours after
seeding of tumor cell lines or primary cells onto 96

well plates (described above), ZA was added to increase
isopentelyl-pyrophosphate expression (for higher yd T
cell recognition, as described39) on tumor cells and extra
wells were kept ZA-untreated as controls. After further
24 hours, Y0 T cells were added at various T cell:tumor cell
ratios and co-cultured for 24 hours before readout exper-
iments described below. Extra wells were maintained
without y8 T cells, as controls.

IncuCyte live cell imaging

For real-time monitoring of tumor cell killing, ¥ T cell
co-culture experiments were set up in the presence of
1 pM Green Caspase-3/7 Cell Apoptosis Reagent (Essen
Bioscience/Sartorius) and imaged every 45 min using an
IncuCyte ZOOM instrument with x10 magnification for
up to 55hours.

Quantitative real-time PCR

Total RNA from guadecitabine or vehicle-treated tumor
cells was extracted and purified using the RNeasy kit
(Qiagen). After quantification of the yield on a Nano-
drop instrument, total RNA was converted to cDNA
using the High Capacity cDNA Reverse Transcription kit
(Applied Biosystems). Real Time PCR was performed
using SYBR Green Master Mix (Applied Biosystems) in
a 7900HT Real-Time PCR System (Applied Biosystems,
Paisley, UK) with standard FAST settings on an SDS 2.4
software (Applied Biosystems) and analyzed using the 2
(-delta delta C(T)) method.* qPCR primers were vali-
dated by producing a standard curve with serially diluted
(1:4) ¢DNA inputs. PPIA was used as housekeeping
gene. Primer sequences were as follows: PPIA Forward:
5’- GTCCTGGCATCTTGTCCATG -3’, PPIA Reverse:
5’- CTTGCCATCCAACCACTCAG -3’; IFNo. Forward:
5-GACTCCATCTTGGCTGTGA-3", IINo. Reverse: 5
TGATTTCTGCTCTGACAACCT-3".

HH patient cohort

All procedures involving human participants were done
in accordance with the ethical standards of the institu-
tional and/or national research committee and with
the principles of the 1964 Declaration of Helsinki and
its later amendments or comparable ethical standards.
58 EOC patients made up the HH cohort and were
treated at the HH, Imperial College London NHS Trust
between 2004 and 2019. Data related to part of this
cohort was used in a previous study.41 Written consent
was obtained from all patients included in this study
who provided tumor tissue for research. Reporting
recommendations for tumor marker criteria were
followed throughout this study. Patient demographics,
surgical and tumor related data were collected retro-
spectively from medical records. Staging was defined
according to FIGO-criteria for ovarian epithelial carci-
noma and optimal debulking was defined by postoper-
ative residual disease <10 mm.
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Immunohistochemistry
IHC was conducted on 2-micron FFPE sections using
multi-color immune cell phenotyping for PD-1 (clone
NAT 105/E3), CD4 (clone SP35), CD8 (clone SP239)
and FOXP3 (clone 346/E7) as previously published* for
47 patient samples from the HH dataset.

We analyzed number of immuno-positive cells/ mm?
of tissue following independent review of specificity of
staining by two scorers (FAM, DP) as described."’

RNA sequencing

Samples for RNA sequencing were taken from Kuramochi
and Ovsaho cell lines, treated with 1 pM guadecitabine or
vehicle, each at day 5 and day 8 timepoints. Each sample
was collected in either two (Ovsaho) or three (Kura-
mochi) biological replicates. Total RNA was extracted
using the RNeasy Plus Mini Kit (Qiagen). RNA samples
were then quantified using a Nanodrop machine and
RNA integrity was assessed by TapeStation. Only samples
with RNA integrity score >8 were used for library prepa-
ration. Libraries were prepared using the NEBNext Ultra
Directional Library Preparation kit II (NEB), with rRNA
depletion, following the manufacturer’s instructions.

Sequencing was conducted on an Illumina HiSeq 2500
instrument with 100bp, paired end reads, at Imperial
College LMS Genomics facility. Around 50-60million
aligned reads were obtained for each replicate.

For HH tissue samples, RNA extraction, library prepa-
ration and sequencing were conducted at the Institute of
Cancer Research London following standard protocols
and using an Illumina NovaSeq 6000 instrument.

Adapter sequences were trimmed by BBDuK (US Dept.
of Energy Joint Genomics Institute) and reads were
aligned to hgl9 using TopHat2. Quality of trimmed reads
was assessed using FastQC. A hgl9 annotation for human
ERVs was obtained from the HERVd database.** Filtered
reads were assigned to HERV features using feature-
Count from the RSubread package allowing reads to be
multimapping but with the ‘primary only’ option, which
takes primary alignments only into account, similarly as
described.” ERVs were filtered by a cut-off of >10 RPKM
per ERV in at least two samples. Linear models to iden-
tify DE ERVs between samples were generated using the
limma package in R. ERVs were considered DE if the abso-
lute log?2 fold change in expression was >1.5and with an
FDR adjusted p<0.05. ERVs were annotated into repeats
and families using the HERVd as reference.

To generate CpG density plots, the DE ERV logFC
values found in the RNA-seq analysis were plotted against
the percentage CpG density within each ERV sequence,
derived using the Repitools R package.

Gene expression analysis was conducted similarly using
the biomaRt package to annotate genes.

Gene set and pathways enrichment analysis

Gene setand pathway enrichmentanalysis were performed
using genesettest and goana functions from the limma
package in R, which use the Wilcox mean rank test on a

given statistic, here log fold change values, to test whether
a set of genes is highly ranked or enriched relatively to
other genes. The Molecular Signatures Database was used
to source IFN response gene sets. Further pathway enrich-
ment analysis was run using IPA software237 (QIAGEN),
using the pre-calculated RPKM as input. For IPA analysis,
the cut-off for DE genes was lowered to an absolute log2
fold change in expression of >0.6.

Analysis of TCGA transcriptional data and survival analysis
Authorization to download EOC TCGA raw RNA-
sequencing data was obtained following an application to
the National Cancer Institute Genomic Data Commons
(NCI GDC). The GDC Data Transfer Tool Client was used
to download 379.bam files on Imperial College High
performance computing system, on which the files were
analyzed similarly as previously described, to define RPKM
values for ERVs within each sample. Matched clinical,
mutational and gene expression data was also obtained
from the NCI GDC. The ConsensusClusterPlus package
in R was used to identify robust clusters of OC patients
based on tumor ERV expression, by filtering the 1000
ERVs with the most variable expression across samples
and median centering their expression values. We then
used the ConsensusClusterPlus to identify robust clusters
of OC patients based on tumor ERV expression. OS and
PFS were determined using multi-variable Cox propor-
tional hazards adjusting for age, stage, grade, histology
and residual disease, using the ERV expression or ERV
score as continuous variable. The first quartile of the ERV
prognostic score was used as a threshold to define high or
low groups in the TCGA and HH cohort. All analyses were
performed in R using the survival and survminer pack-
ages. Pearson’s product moment correlations between
gene expression and ERV prognostic scores were calcu-
lated and visualized in R.

LASSO logistic regression

ERVs that were exclusively associated with OS in TCGA
samples with complete clinical data (n=328) were filtered
by applying two Cox proportional hazard models, one in
which ERV expression values were continuous variables
and one in which they were non-continuous. 226 candi-
date ERVs, exclusively associated with better survival, were
obtained and used as input for LASSO) analysis, which
performs feature selection by a penalisation system. The
LASSO model was built on a training set, made up of
246 randomly selected OC samples from TCGA, using
the glmnet package in R with ‘cox’ selected as family
and with 10-fold cross-validation. This allowed selection
of a Lambda coefficient at which the minimum number
of ERV features could be found. 32 ERV features were
selected, the weighed sum of which gave a numerical
value, named ‘ERV score’. TCGA samples of 82°C were
used as testing set. ERV score was similarly calculated
using the weighed sum of the ERV features within this
set. The ERV prognostic scores were subsequentially used
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in multi-variable Cox proportional hazards performed as
previously described.

Twenty-three out of 32 LASSO-selected ERV features
were found expressed in the HH validation dataset (n
samples=58) and the ERV score was similarly computed
using each feature’s LASSO weight and the expression
values (RPKM) within each sample.

Data visualisation and statistical analysis

Statistical analyses and data visualization were carried out
using Prism GraphPad V.5 software, Microsoft Excel and
R V.3.6.0. All the packages used in R are listed in online
supplemental table S3.
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Supplementary table and figure legends:

Table S1. ERV expression and overall survival in EOC patients.

Table reporting number of ERV repeats and families the high expression of which is associated
with improved or worse OS in TCGA OC samples (top). Venn diagram showing the overlap

between ERV families associated with improved and worse OS (bottom).

Figure S1. Consensus clustering analysis of OC TCGA samples (n=378) by ERV expression.
A. Consensus Cumulative Distribution Function (CDF) Plot showing the CDFs of the consensus
matrix for each k (indicated by colours), which allows determination of optimal number of sample
clusters (k) B. Relative change in area under the CDF curve, confirming optimal number of k as
four. C. Heatmap of the consensus matrix for k=4, ordered by the consensus clustering shown as a
dendrogram on top of the heatmap. Sample clusters are indicated. The analysis was generated using

the ConsensusClusterPlus package in R.

Figure S2. Building an ERYV prognostic score using LASSO

Building of ERV prognostic score using least absolute shrinkage and selection operator (LASSO).
LASSO was used on a training set made up of 75% of TCGA OC samples.

A. Coefficients were generated for each of the pre-filtered ERV repeats (i.e. features; n=226) and

plotted against the calculated LASSO parameter Lambda.

B. Partial likelihood deviance from Cox regression models plotted against each Lambda. Optimal

lambda values were obtained using cv.glmnet in R, and indicate optimal g number of features for

the model.

Table S2. Components of the ERV prognostic score. ERV ID, ERV family and LASSO weight

of the 32 ERV repeats which make up the ERV prognostic score.
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Figure S3. Probability of PFS by high or low ERYV prognostic score in training and testing
datasets.

Progression-free survival of OC patients by high (above first quartile) or low (below first quartile)
ERYV prognostic score in the training (left; n samples=246) and testing (right; n samples=82) sets
from TCGA. The HR was estimated by a multivariable Cox model adjusted for age, stage, grade,

histology and residual disease (Log-rank p value). The confidence interval is indicated, in brackets.

Figure S4. Probability of OS by high or low expression of selected ERVs in TCGA dataset.
Progression-free survival of OC patients by high (above median) or low (below median) expression
of the five ERVs from Figure 2b in TCGA dataset. The HR was estimated by a multivariable Cox
model adjusted for age, stage, grade, histology and residual disease (Log-rank p value). The

confidence interval is indicated, in brackets.

Figure S5. Correlations between ERV prognostic score and immune genes in TCGA OC
samples. Pearson’s product-moment correlations were calculated in R between ERV prognostic
score and immune genes PDCDI, LAG3, DDX58 and IFNBI, in TCGA OC samples (n=328).
Linear correlations were plotted in R; correlation coefficients and p values are indicated, as well as

the confidence intervals (shaded area).

Figure S6. Dose-dependent LINE-1 methylation changes in DNMTi-treated Kuramochi and
Ovsaho HGSOC cell lines.

Methylation of LINE-1 following guadecitabine treatment of Kuramochi and Ovsaho cell lines.
Percentage average methylation from four CpG sites within repetitive element LINE-1 in
Kuramochi and Ovsaho, 5 and 8 days following first guadecitabine treatment (described in the
methods). DNA methylation levels were determined by pyrosequencing and are shown as mean +

SEM based on 3 or 4 biological replicates
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(* p<0.05; ** p<0.01; *** p<0.001, t test).

Table S3. Summary of packages and functions used in R 3.6.0

Supplementary methods

DNA Methylation analysis by bisulfite pyrosequencing

Genomic DNA was extracted from tumour cell pellets, collected at the early (day 5) or late (day 8)
timepoint of the guadecitabine treatment protocol, using the Qiagen DNA mini kit. DNA samples
were quantified using a Nanodrop machine and 500ng total DNA was bisulfite converted using the
Zymo Gold methylation kit, together with 0% and 100% methylated control DNA samples. PCR
amplification of bisulfite converted DNA was conducted using primers specific to Long
Interspersed Nuclear Element-1 (LINE-1), as a surrogate measure of global DNA methylation. One
of the primers was biotinylated to allow for following pyrosequencing analysis using a biotinylated
product. PCR was conducted using the FastStart Tag DNA Polymerase kit (Sigma-Aldrich) with an
initial 6 minutes denaturation 95°C, followed by denaturation for 30 seconds at 95°C, annealing for
30 seconds at 53°C, extension for 30 seconds at 72°C and a final extension for 5 minutes at 72°C.
Denaturation, annealing and extension steps were repeated 40 times. PCR products were validated
to be specific by 2% agarose gel electrophoresis. Pyrosequencing was then conducted on samples
and control bisulfited converted DNA using PyroMarkQ96 technology (Qiagen) according to the
manufacturer’s instructions. The LINE-1 specific sequencing primers were as follows: Forward 5'-
GGATTTTTTGAGTTAGGTGTGGG-3', Reverse 5'-BIOTIN-

CAAAAAATCAAAAAATTCCCTTTCC-3, Sequencing 5'-AGGTGTGGGATATAGT-3'".
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Number of Number of ERV Number of ERV Number of Number of ERV Number of ERV Number of ERV
ERV repeats repeats ERV families families families families
repeats associated with associated with associated associated with exclusively exclusively
analysed survival survival with survival survival associated with associated with

advantage disadvantage advantage disadvantage survival survival
advantage disadvantage
25,207 226 272 115 132 59 76
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ERV ID Family LASSO weight

ERV_0000869 MLT1C -5.01E-04
ERV_0136673 MLT1N2 -3.01E-03
ERV_0252069 LTR107_Mam -1.34E-02
ERV_0284225 MER101 -3.74E-02
ERV_0312416 LTR5_Hs -6.26E-04
ERV_0581642 MLT1J -4.63E-04
ERV_0587882 PABL_B-int -7.68E-02
ERV_0703339 LTR41 -5.40E-05
ERV_1468120 MLT1F -6.48E-03
ERV_1661480 MER4B -2.90E-02
ERV_1683384 MER21C -1.03E-03
ERV_1869135 LTR47B3 -1.01E-02
ERV_2070611 MER39 -1.28E-02
ERV_2382813 MER65A -2.30E-03
ERV_2779506 THE1C -2.12E-04
ERV_2804251 THE1A -1.05E-02
ERV_2963122 MLT1F -4.86E-03
ERV_3035008 MSTA -1.43E-03
ERV_3087774 MER39 -3.01E-03
ERV_3308062 MLT1J2 -7.05E-05
ERV_3342201 MLT1C -1.63E-04
ERV_3355129 MLT1H -2.83E-03
ERV_3357665 THE1B -2.64E-03
ERV_3480744 LTR78B -2.59E-03
ERV_3603191 MER4-int -2.89E-02
ERV_3619438 MER41B -1.41E-04
ERV_3673831 Harlequin-int -5.55E-04
ERV_3673833 HERV15-int -1.71E-04
ERV_3937955 MLT2D -8.58E-04
ERV_4111570 HERVH-int -1.46E-02
ERV_4194774 MER4E -4.72E-03
ERV_4322434 ERVL-E-int -6.26E-03
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Source

Purpose

Function Package
useEnsembl biomaRt
rpkm edgeR
DGEList edgeR
ggplot ggplot2
glmnet glmnet
cv.glment glmnet
predict glmnet
voom limma
ImFit limma
eBayes limma
pheatmap pheatmap
featureCounts Rsubread
cor/cor.test stats
survfit survival
coxph survival

draw.pairwise.venn
viridis viridis
cpgDensityCalc Repitools

VennDiagram

https://bioconductor.org/packages/release/bioc/html/biomaRt.ht
ml

http://bioconductor.org/packages/release/bioc/html/edgeR.html

http://bioconductor.org/packages/release/bioc/html/edgeR.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/glmnet/index.html

https://cran.r-project.org/web/packages/glmnet/index.html

https://cran.r-project.org/web/packages/glmnet/index.html
https://bioconductor.org/packages/release/bioc/html/limma.html

https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html

https://cran.r-project.org/web/packages/pheatmap/index.html

https://bioconductor.org/packages/release/bioc/html/Rsubread.ht
ml

https://cran.r-project.org/web/packages/STAT/index.html
https://cran.r-project.org/web/packages/survival/index.html

https://cran.r-project.org/web/packages/survival/index.html|

https://cran.r-project.org/web/packages/VennDiagram/index.html
https://cran.r-project.org/web/packages/viridis/index.html|

https://bioconductor.org/packages/release/bioc/html/Repitools.ht
ml

Annotation of gene names

Calculation of RPKM values
Manipulation of read counts for DE analysis
Data visualisation

LASSO logistic regression

LASSO cross-validation

LASSO predictions

Transformation of RNA-seq data for linear
modelling

Fitting linear models for RNA-seq data

Empirical Bayes statistics for DE analysis

Plotting heatmaps

Assigning mapped sequencing reads to genomic
features

Calculating correlation coefficients

Computing an estimate of a survival curve using
the Kaplan-Meier method

Computing Cox proportional hazards models

Plotting Venn diagrams

Colour palettes

CpG density calculations
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