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“Faced with the achievements of Darwin, one cannot claim that 
mathematics are needed for successful theoretical work in biology. 
But they certainly make it easier.”

John Maynard Smith (1989)
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Abstract

The thesis addresses various problems arising in parasite population dynam ­

ics through the use of mathematical techniques, and in particular of stochastic 

processes.

Parasite diseases generally fall into two categories, those in which a host has a 

small number of disease classifications, such as susceptible, infected and immune, 

and those in which the severity of the infection is an im portant property of the dis­

ease. It is the latter type tha t is addressed in this thesis. Parasite-host interactions 

are studied via simple nonlinear stochastic processes describing the dynamics of 

parasites within hosts. In particular, the effect of parasite-induced host m ortality 

and acquired immunity on the distribution of parasite numbers in hosts is consid­

ered. Moment closure techniques for approximating nonlinear stochastic processes 

are investigated for the models, including an assumption based on a new multivari­

ate negative binomial distribution. Approximate results are compared with exact 

results where obtainable, and results from stochastic simulations elsewhere.

Various stochastic models are proposed for the study of between-host parasite 

dynamics in a population of immortal hosts. Their solutions and properties are 

evaluated through the use of systems of differential equations, which lead to  varying 

results according to the host population size and the assumptions made concerning 

the method of parasite transmission. It is suggested th a t the structure of a disease 

transmission process, often implicitly ignored in the modelling process, may have 

a greater effect on the parasite distributions than currently thought.

Throughout the thesis examples of diseases in humans and wildlife are given to 

illustrate the motivation behind the mathematical models and the discussions.
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Chapter 1

Introduction

1.1 Thesis Overview

This thesis addresses and discusses various problems arising in parasite popula­

tion dynamics through the use of mathematical techniques, and in particular of 

stochastic processes. The structure of the thesis is as follows. In the following 

section we introduce the biological aspects of parasitology th a t are relevant to the 

studies of the thesis. We then introduce some of the roles mathematics has to play 

in analysing populations in Section 1.3, and in Section 1.4 we review some of the 

relevant mathematically-based work in the area.

In Chapter 2, some basic techniques for the analysis of stochastic population 

processes th a t will be used in the thesis are outlined. The techniques are illustrated 

with a simple example.

Chapter 3 begins with a further discussion of mathematical models in various 

areas of parasite dynamics, and then the subject of parasite-induced excess host 

mortality is investigated with a particular model. Approximation techniques appli­

cable to this, and other parasite dynamic models, are investigated in this chapter, 

and further in Chapter 4.

In Chapter 4, the problem of including acquired immunity into parasite-host
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models is discussed, and further suggestions for both models and analysis of ap­

proximation techniques are considered.

Chapter 5 compares the effects of a number of different transmission mechanisms 

on the distribution of parasites among hosts. Again, discussion of other work 

relevant to the area is included.

Finally, in Chapter 6 we outline some areas where the work of this thesis may 

be extended and where further research would be relevant and interesting.

1.2 Aspects of Parasitology

In this section we outline some of the biological aspects relevant to the modelling 

and discussions of this thesis. We do not attem pt to cover any aspect of parasitology 

extensively, but merely try to give a flavour of the biology tha t motivates the ideas 

presented.

Parasites have been credited with representing more than half the living species 

of animals and plants (Price, 1980). However, there is no universal definition of 

a parasite. Anderson and May (1978) require a parasite to utilize its host as a 

habitat, have nutritional dependence on and cause ‘harm ’ to its hosts. Esch and 

Fernandez (1993) give the ‘classical’ definition of parasitism as

... an intimate relationship between two organsims in which one lives 

on, off, and at the expense of the other,

though they point out that the major problem of this definition is tha t ‘...harm is 

a relative term .’ A discussion of definitions and different historical approaches to 

the study of parasites is given by Cheng (1969), and in Price (1980, Chapter 1).

For the purpose of studying the dynamics, effects and properties of parasites 

from a modelling perspective, as we shall mostly be doing, the strict definition is 

not too im portant. Parasites are closely associated with disease and this in itself 

makes their study important. However, even if there is no firm evidence of parasites
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directly afflicting a host species this does not mean their study is not of interest 

from an ecological point of view. As Price (1980, Preface) writes, “Parasites affect 

the life and death of practically every other living organism.”

For the purpose of modelling, parasites can be split roughly into two different 

categories. The first contains those in which the most im portant factor is sim­

ply whether the host does or does not have the infection, and the second involves 

parasites for which it is im portant to model the severity of the infection. M athem at­

ically, the former category can usually be sensibly modelled using com partm ental 

models, the latter must also include a more detailed account of the dynamics of 

the parasite population. The difference can be thought of as being in the choice of 

unit of study, the host or the parasite.

The terms microparasite and macroparasite have become widely used for the 

two categories (Anderson and May, 1979). Roughly speaking, viruses, bacteria, 

funghi and protazoa can be thought of as microparasites, and are associated with 

compartmental models. Macroparasites can be thought of relating to metazoa 

(multi-cellular organisms) including helminths and, for modelling purposes some 

arthropods such as ticks and lice. It is on models for macroparasites tha t we shall 

concentrate in this thesis. The numbers of humans infected with macroparasites 

are enormous, for example it is estimated tha t one quarter of the world’s population 

is affected by intestinal helminths (Bundy and Cooper, 1989).

The main differences betwen microparasites and macroparasites are as follows. 

Microparasites are typically much smaller and reproduce directly, and usually at a 

very fast rate inside the host. Macroparasites do not generally reproduce directly 

inside the host, but have complicated life cycles, involving many stages inside and 

outside the host, and often vector hosts and free living stages. They are physically 

much larger than microparasites, as the name suggests, and usually have longer gen­

eration lifetimes. The acquired immunity stimulated in the host by microparasites 

often provides long term protection, whereas specific immunity to macroparasites 

is usually short term (Anderson and May, 1979). As hosts do not usually develop
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full immunity after infection by macroparasites, these infections tend to be more 

persistent and endemic in a host population. Microparasites are often associated 

with epidemics in the host population, though they too can be endemic.

The essential features of a parasitic relationship between two organisms were 

drawn out in one of the earliest pieces of work on quantitative ecological parasitol­

ogy by Crofton (1971b) as

1) The parasite is physiologically dependent on the host;

2) The infection process tends to produce an overdispersed distribution 

of parasites within the host population;

3) The parasite kills heavily infected hosts;

4) The parasite species has a higher reproductive potential than 

the host species.

This second property can also be known as contagion, clumping or clustering, 

but is most frequently described in present ecological literature as aggregation of 

parasites.

Aggregation is one of the most im portant aspects of macroparasite epidemiology 

and ecology. It has effects on both the host and parasite populations. Anderson and 

May (1991, page 10) describe it by saying tha t ‘...sometimes 20% of the hosts can 

harbour 80% of the parasites’. As the morbidity or mortality of a disease is often 

related to the parasite level of the host, the aggregation can cause the hosts with 

high parasite levels to suffer the effects of disease tha t would otherwise be quite 

mild if the parasites were spread evenly among the hosts. This has implications for 

the application of chemotherapy treatm ent to reduce disease. Many macroparasites 

reproduce sexually inside the definitive host and so sexual mating chances inside 

the host are increased by aggregation. On the negative side for the parasites, the 

sum of intra-host density-dependent constraints in the whole parasite population 

will be larger than if parasites were distributed uniformly over a host population.

The cause of aggregation has been subject to much debate but with no con-
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elusive answer. The distinction often made (see for example Esch and Fernandez 

(1993, Chapter 4) or Poulin (1998, Chapter 6)) is th a t hosts can gain unusually high 

parasite burdens either due to chance effects or by being more predisposed to par­

asitism. Host predisposition could occur through heterogeneities in host behaviour 

(affecting their chance of becoming infected) or in host immunity and resistance 

levels, often genetic (Wassom, Dick, Arnason, Strickland, and Grundmann, 1986; 

Lively and Apanius, 1995). Even if predisposition is established in a host-parasite 

relationship in the field, it is often difficult to separate out the immune and be­

havioural differences (Chan and Isham, 1998). In chapters 3 and 5 we study and 

discuss further some possible causes of aggregation.

The role this clustering of parasites plays in regulating the host population has 

itself been the subject of study (Anderson and May, 1978). As well as increasing 

the morbidity of heavily infected hosts, parasite infections can be considered to 

cause mortality, either directly or, more frequently, through indirect mechanisms 

(Hudson and Dobson, 1995). These may include reducing the host nutritional levels 

and thereby increasing susceptibilities to predators and further infection (see Booth, 

Clayton, and Block (1993), Slater and Keymer (1986) and Slater and Keymer (1988) 

for examples of this), or reducing the host’s ability to obtain food (Saumier, Rau, 

and Bird, 1994). In any case, mortality rates have often been shown to be related 

to parasite burden, and this has an effect on the parasite host population stucture 

(Scott and Anderson (1984), Boray (1969) and Hudson and Dobson (1995) provide 

examples). This is related to the third of Crofton’s aspects of parasitism. Aspects 

of this area are discussed in Chapter 3, where specifically the effect of parasite- 

induced excess host m ortality on the distribution of parasites in a host population 

is studied.

In general, a parasite can enter a host through direct means, (by penetrating 

the host’s skin) or indirectly, for example by encysting (protecting itself in a shell 

inside a vector host until the vector is eaten) or by more direct ingestion by the 

definitive host from the environment. Endoparasites live within their hosts, while
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ectoparasite is the term given to parasites that live on the exterior of the host and 

are usually not entirely dependent on their hosts for survival. Studies in this thesis 

will relate to endoparasites, but some models may be applicable to ectoparasites 

as well.

1.2.1 Parasite Life Cycles

A helminth is a term used for parasitic worms tha t usually covers the phylum 

Platyhelminthes, Nematoda and Acanthocephalanes, or flatworms, roundworms and 

spiny-headed worms respectivley. We briefly describe some of the im portant prop­

erties and examples of each, and give more detailed descriptions of life cycles of 

three particular parasites. This is with the aim of illustrating the variety of compli­

cated life cycles macroparasites can have, and to give an indication of the potential 

difficulties that arise when attem pting to transfer information about a life cycle into 

a model. We will refer to the examples given here throughout the thesis. See Lyons 

(1978), Despommier and Karapelou (1987) and LaPage (1963) for more details, on 

which much of the following is based.

The classes of flatworms tha t are endoparasitic are Cestoida (tapeworms) and 

Trematoda (flukes). Endoparasitic flukes are usually in the subclass Digenea. They 

are mostly found in the gut of a vertebrate host. Male and female reproductive 

organs are both found on adults, except in the family Schistosomatoidea. Two of 

the most common human fluke diseases are Schistosomiasis (estimated to afflict 

200 million people worldwide (WHO, 1993)), and the human liver fluke, Clonorchis 

Sinensis which infects through encysts in fish. The life cycle of Schistosoma man- 

soni, one of the three main species tha t cause Schistosomiasis, starts when the 

cercariae stage of the worm penetrates the human host’s skin from freshwater. 

They then migrate to the liver, mature in about forty days and then mate. The 

female produces around 300 eggs per day, about half of which reach the intestine 

and are passed out of the host with faeces. If the eggs reach water, miracidium
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hatch from the eggs, penetrate into snails and release around two hundred thou­

sand cercariae each, 15-75 days later. The cercariae swim to the water surface and 

remain infectious to hosts for around one day.

Tapeworms (Cestoida) usually live in the intestine of veterbrates. Adult worms 

contain both male and female reproductive organs. Definitive hosts are infected by 

ingesting either an infected intermediate host or its faeces.

Nematodes (roundworms) tend to have less complicated life cycles than flat­

worms, and the sexes are always separate. There are always four larval stages, 

termed L1-L4. Nematode parasites tha t live in animal intestines have direct life 

cycles, and examples include Hookworm (a disease caused by Necator americanus 

and Ancyclostoma duodenale and estimated to effect several hundred million people 

(Bundy and Cooper, 1989)) and many parasites of livestock. The lifecycle of the 

Teladorsagia circuminta nematode which infects sheep is as follows. Each female in 

the host lays around 105 eggs per day, some of which pass out through host faeces 

onto the pasture, and hatch in around 15 hours. Once L3 larvae have developed, 

they climb up grass blades to become more easily ingested by grazing sheep. Once 

ingested, they take 3-4 weeks to become m ature and able to reproduce sexually.

Filarial nematodes are usually transm itted by mosquitoes and flies, and are 

responsible for causing filariasis, a complex of diseases including onchoceriasis (or 

river blindness) and elephantiasis, tha t are widesperad in warm climates (an esti- 

amted prevalence of 300 million (Wakelin and Blackwell, 1988)). Elephantiasis is 

caused by Wuchereria Bancroft«, the life cycle of which is as follows. When an in­

fected mosquito bites a human host, L3 larvae enter the blood stream and migrate 

to the lymphatic nodes where they develop to sexual m aturation in approximately 

one year. Females produce larvae known as microfilarie which can live for about 

l |  years in the blood stream. The microfilarie are found in peripheral blood at 

periodic time intervals, corresponding to the times when the appropriate vector 

mosquitoes feed on the host most frequently. Once microfilarie have been taken up 

by a biting mosquito they become infectious within two weeks, and so the life cycle
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is completed.

The third phyla of parasitic helminths are spiny-headed worms (Acanthocepha- 

lanes) which usually live in the gut of birds and fish and often have indirect life 

cycles.

1.2.2 Immunity to Parasites

As previously mentioned, acquired immunity to macroparasites is not usually long 

term. In Chapter 4 we discuss and compare models for the immune response, 

some previously proposed and some new. The area of immuno-epidemiology, the 

study of the role of the immune system on a disease at the population level is a 

relatively new, but growing area. It is, however, a difficult area in which to apply 

mathem atical modelling as knowledge of the details of the dynamics, biological 

workings and effects of the immune system is still incomplete. The immune system 

of vertebrate hosts is extremely complicated, and it is difficult to identify the 

roles and effects of cells involved, and still harder to quantify these effects. The 

details and workings of an immune response are very particular to  the host-parasite 

interaction concerned but here we give an extremely rough outline tha t is necessarily 

a huge oversimplification.

There are many difficulties when measuring an immune response to a parasite 

infection, not least the question of which antigen or antibody should be measured 

(Woolhouse, 1995). An antigen is the material released by the parasite, often 

proteins, tha t is recognised as ‘foreign’ by the host so th a t an antibody reaction 

is produced. Due to its relative complexity, a macroparasite is likely to  release a 

wider range of antigens upon entering the host than a microparasite. For this reason 

details of all the immune responses to macroparasites are harder to  understand fully. 

Additionally, there may be more than one type of macroparasite in the host, each 

stimulating a different immune response.

The immune system involves a large number of different cell types interacting
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and stimulating reactions against the invading body. The defence is either through 

direct attacks by antibodies, by cytotoxic T cells killing infected host cells or by 

macrophages killing intracellular parasites. The whole process involves an enormous 

amount of feedback, signalling and self-regulation th a t itself is the subject of a 

growing amount of mathematical modelling. Often the m ature parasites are capable 

of evading the hosts’ immune defences, so th a t the immune response may only 

cause pathological effects to the host itself. In helminth infections, it is the larval 

worms th a t are often killed directly by antibodies before they are able to mature. 

In some host-parasite relationships the cost to the host of mounting an immune 

response high enough to completely expel the macroparasite may be too great when 

considered as a trade off against the harm of the parasite. The complexity of the 

response may also partly explain why host immunity is rarely life long.

Detailed knowledge of immune responses to helminths is still limited, if grow­

ing. For this reason, the approach taken towards modelling the immune system 

in Chapter 4 is to simplify the process greatly and consider the effects of possi­

ble mechanisms on the parasite population, rather than details of cell interactions. 

Further details are given in Chapter 4. For a more detailed account of the biolog­

ical workings of the immune response to helminths, see for example Stites, Terr, 

and Parslow (1994, Chapter 50), Roitt, Brostoff, and Male (1996, Chapter 18) or 

Wakelin and Blackwell (1988).

1.3 M athematics and Population Biology

Mathematics does not rest as easily with biology as it does with physics, astronomy 

or even chemistry. These disciplines have made advances hand in hand with m ath­

ematics for centuries, whereas it is relatively recently th a t a wide theory involving 

the synthesis of mathematics and biology has developed. The main reason for this 

is of course the scarcity of robust, general laws in biology th a t can be expressed 

mathematically. As J. Maynard Smith (Maynard Smith, 1968, page 2), a long time
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proponent of the use of mathematics in biology, says

We rarely know enough about the laws governing the components of 

biological systems to be able to write down the appropriate equation 

with any confidence in the first place.

Ultimately, perhaps this can be viewed as a consequence of a biological system 

itself consisting of many physical and chemical systems ongoing within, for every 

tiny biological action.

Historically, the biological sciences appeared to lag behind the physical sciences 

until the last hundred years or so. When the great advances of the seventeenth 

century were being made in quantitative studies of mathematics, physics and as­

tronomy (or natural philosophy as it was known then), the view of Descartes of the 

body as a mechanical device, and more generally his idea of universality encom­

passing biology, was widely accepted. William Harvey (1578-1637) is often cited as 

providing some of the first work in quantitative biology (see for example Asimov 

(1965)), following his publication in 1628 tha t showed th a t blood must circulate 

the body (Harvey, 1628). However, many other attem pts at applying the advances 

in quantitative and mechanistic thinking proved unsuccessful due to the lack of 

biological knowledge.

John G raunt’s (1620-1674) famous study of disease in London, and the inven­

tion of the life table using the London Bills of Mortality (Graunt, 1662) are some 

of the earliest examples of analysis of population data. Thomas M althus’ seminal 

essay on populations (Malthus, 1798; Boulding, 1959) suggesting th a t they tend to 

grow geometrically (exponentially) included one of the earliest m athem atical mod­

els of populations. It led to the term ‘Malthusian param eter’ used by Fisher (1930) 

for the intrinsic natural growth rate; tha t is, the growth rate of a population in the 

absence of changes in birth and death rates due to resource or other constraints. 

Even earlier than Malthus, Euler (1767) used mathematical techniques to study 

human population growth (see Keyfitz and Keyfitz (1970) for an English transla­
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tion). P.F Verhulst first proposed a mathematical model tha t included constraints 

on the exponential growth of the Malthus model, known as Verhulst’s Logistic 

Curve (Verhlust, 1838). Other im portant pioneering work included models with 

age structure and the renewal integral equation by Lotka (1907) and Sharpe and 

Lotka (1911). The following work of Lotka (1924), Volterra (1926) and Volterra 

(1931), including the well known predator-prey equations, provided the foundations 

for much of the further mathematical modelling of populations th a t has developed 

this century (see Scudo and Ziegler (1978) for some English translations of this 

work). The area has now grown to be a vast field, both in the range of biological 

populations modelled and the mathematical techniques used. On a historical note, 

perhaps the first published use of mathematics in the study of populations in biol­

ogy in Western Science was Fibonacci’s series, in Leonardo of Pisa’s (c 1170-1250) 

Liber Abaci, published in 1202 (Young, 1998). The series was given as an answer 

to the problem

How many pairs of rabbits can be produced from a single pair in a given 

year if every month each pair begets a new pair, which from the second 

month on becomes productive ?

and is now known to be relevant for patterns of petals and leaves in plants.

In general it could be argued tha t just as the physical sciences have traditionally 

stimulated advances in mathematics, biological sciences have also contributed to a 

large number of advances in mathematics this century, particularly in the area of 

probability and statistics. Bienayme (1845) and, independently, Galton and W at­

son (Galton, 1873; Watson, 1873; Galton and Watson, 1874) studied populations 

probabilistically and laid the foundations for branching process theory. A large 

amount of early work in stochastic processes was applied to problems on popula­

tion growth (see for example Kendall (1949)). Perhaps the first widespread and 

most successful application of mathematics to biology has been in the field of pop­

ulation genetics, Mendel’s laws of inheritance providing a relatively rigorous basis
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for establishing the mathematical foundations.

Generally, the use of probability and statistics is im portant in biology due to 

the inherent differences between ‘similar’ organisms. The applications of stochastic 

processes to the biological, and especially population, sciences has therefore been 

a flourishing field. The choice between stochastic and deterministic models should 

depend largely on the motivation behind the modelling, and often both  have a 

role to play. Mathematical and statistical models can be used for a wide range of 

purposes. It may not be especially productive to attem pt a general discussion on 

the merits of different approaches to modelling here, but it is worth understanding 

the benefits tha t can be gained.

Models can be used for purely predictive purposes, for description of processes 

and for gaining understanding of the mechanisms of a process under study. Often 

purely predictive models have no relationship to the actual (physical or otherwise) 

mechanisms involved. This may be because the processes are not of interest, or 

are too complicated to be modelled directly. None of the models presented in this 

thesis are of this type. However, the use of stochastic mechanisms themselves may 

be considered as a way of subsuming the workings of a large amount of highly 

detailed mechanisms into a probabilistic description. As mentioned earlier, this 

is especially relevant in the biological sciences as the intricate details of so many 

processes are too complicated to model explicitly.

Descriptive models generally provide information about the relationship be­

tween different variables, whilst mechanistic models start from assumptions about 

the actual physical process involved and study the consequences. Of course there 

is a large amount of overlap in model types. There exists a spectrum of approaches 

within mechanistic models ranging from detailed models aiming at a high level of 

realism, to more general models aimed at providing a framework for discussion of 

the processes being modelled. May (1973) has called the two approaches (respec­

tively) tactical and strategic models. As they contain specific details, the benefits of 

the tactical models are perhaps more obvious, whilst on the benefit of the stategic
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models May (1973) writes ‘such (strategic) framework can serve a useful purpose 

in indicating key areas or relevant questions for field and laboratory (study), or 

simply in sharpening discussion of contentious issues.’ Further, he writes, ‘tactical 

and strategic approaches mutually reinforce, each providing new insights for the 

o ther.’ In this thesis, the models of chapters 3 and 4 lie somewhere in between the 

two approaches, whilst as they stand the models of Chapter 5 are very much of the 

strategic nature.

For excellent overviews on the use of mathematical techniques in population 

biology see Renshaw (1991) and Nisbet and Gurney (1982). In the following section 

we concentrate on mathematical models of infectious diseases.

1.4 Population Dynamics of Infectious Diseases

The first recorded instance of mathematics being used to study the dynamics of 

a disease was by Daniel Bernouilli in 1760 (Bernoulli, 1760), but it was not until 

the early part of this century tha t the area really progressed. This is in part due 

to a greater knowledge of the biological workings of diseases. The understanding 

of biology was such that it was not until the mid eighteenth century tha t the idea 

of spontaneous generation of micro-organisms was completely dispelled by Louis 

Pasteur. The advances around this time in microbiology paved the way for a 

better understanding of infectious diseases.

Hamer (1906) was the first to propose the idea of an epidemic developing ac­

cording to m athematical rules involving susceptibles and infectives using a com­

partm ental model. Ross (1911) and Kermack and McKendrick (1927) (reprinted in 

Kermack and McKendrick (1991)) developed these ideas into deterministic continu­

ous time models for malaria and general epidemics respectively, and the foundations 

of a growing body of literature in epidemic theory developed. Early probabilitic 

work on epidemics included McKendrick (1926), who introduced a stochastic com­

partm ental model, and the chain binomial models of Reed and Frost (Abbey, 1952)
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and Greenwood (1931). The number of papers on m athem atical studies of infec­

tious disease has grown enormously since these early works, and reviews have been 

provided by Bailey (1975), Anderson and May (1991); see also the collections An­

derson and May (1982b), Isham and Medley (1995), Mollison (1995) and Grenfell 

and Dobson (1995).

The early works on epidemics described above are relevant to microparasites. 

Kostitzin (1934) was perhaps the first to study m athem atical models th a t directly 

considered disease severity in terms of parasite numbers in hosts (see Scudo and 

Ziegler (1978, pages 369-408) for an English translation). He considered an infinite 

system of differential equations representing numbers of hosts in particular infection 

states. Despite the huge number of people affected by m acroparasite infections, it 

was not until much later, in the nineteen sixties, th a t m athem atical modelling in 

this area was taken further.

Hairston (1962), Hairston (1965) and MacDonald (1965) provided early deter­

ministic attem pts to model schistosome parasites, whilst Tallis and Leyton (1966), 

Tallis and Leyton (1969) and Leyton (1968) used stochastic models for within host 

dynamics of nematode parasite infections in sheep. The papers of MacDonald 

(1965) and Leyton (1968) were amongst the first to include sexual m ating of par­

asites in modelling terms. Initially, schistosome parasite modelling received the 

m ajority of the attention in macroparasite modelling, which included determinis­

tic work (May, 1977; Cohen, 1977; Goddard, 1978), and hybrids of stochastic and 

deterministic models (Nasell and Hirsch, 1973; Nasell, 1985; Lewis, 1975).

A more ecological approach to helminth modelling with the interaction of the 

host and parasite populations being the focus, was initiated by Crofton (1971b), 

Crofton (1971a) and pursued by Anderson (1974), Anderson and May (1978) and 

May and Anderson (1978).

Both the models tailored towards specific parasite host relationships and more 

general host parasite models have received a growing amount of attention since 

the nineteen eighties. See Anderson and May (1985), Anderson and May (1991),
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Roberts (1995) and Roberts, Smith, and Grenfell (1995) for reviews. Here we 

give a brief selection of recent work in this area, -  more detailed outlines of some 

macroparasite models will be given in Section 3.1.

Much of the work in macroparasite modelling has concentrated on models th a t 

are essentially deterministic although some allowance for the variability of parasite 

load between hosts may be made. One way of doing this is to make assumptions 

about the statistical distribution of parasites in the host population th a t remains 

fixed in time. Essentially this reduces the dimension of the dynamical system to 

a manageable level. See Crofton (1971a), Anderson and May (1978) and May and 

Anderson (1978) for early work using this method. The technique has been used for 

the study of a large number of ecological effects involving parasitic diseases, often 

with the purpose of assessing whether particular host parasite effects are stabilising 

or destabilising for the host population. Diekmann and Kretzschmar (1991) provide 

a more general model based on the assumptions of Anderson and May (1978), and 

Kretzschmar (1993), Adler and Kretzschmar (1992) and Kretzschmar and Adler 

(1993) analysed these assumptions further and suggested extensions to the method. 

W hite, Grenfell, Hendry, Lejeune, and Murray (1997) and W hite and Grenfell 

(1997) have used the technique to consider seasonality of host birth rates. Roberts 

and Dobson (1995) have looked at the dynamics of more than  one type of parasite 

in a host population. Also see Damaggio and Pugliese (1996) and Pugliese, Rosa, 

and Damaggio (1998) for further work in this area.

The collections Scott and Smith (1994) and Grenfell and Dobson (1995) provide 

a good source of work on a wide number of problems in parasite dynamics. See 

also Roberts and Heesterbeek (1995) and Heesterbeek and Roberts (1995)

The work of Hadeler and Dietz (1983) provides a neat solution using generating 

functions to the problem of keeping parasite numbers discrete whilst anlaysing host 

parasite population dynamics. Hyperbolic partial differential equations were solved 

for a model th a t included age structure of the host population. See also Hadeler 

(1984) in this area, as well as extensions of this work by Kretzschmar (1989b) and
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Kretzschmar (1989a).

Anderson and Gordon (1982) looked at different processes affecting the disper­

sion of parasite loads, with emphasis on the effect of parasite-induced host mor­

tality. They summarised some stochastic immigration-death processes, as well as 

providing some Monte Carlo simulations. See also Pacala and Dobson (1988) for 

studies of parasite distributions on host populations.

There are few stochastic models for macroparasites, especially when taken in 

comparison with the microparasite literature. The interesting work of Barbour 

and Kafetzaki (1993) uses a stochastic model to investigate possible causes of ag­

gregation for a closed populations of identical, immortal hosts. The model con­

tains an assumption concerning the hosts’s immune mechanism th a t leads to in­

teresting threshold phenonema that are looked at in Barbour, Heesterbeek, and 

Luchsinger (1996). Recently, but without including parasite-host interactions, 

Quinnell, Grafen, and Woolhouse (1995) have proposed a discrete-time stochastic 

model in which they investigate the effects of predisposition (of hosts to infection) 

on parasite aggregation by assuming th a t the numbers of parasites picked up by a 

particular host in separate time periods are dependent random variables. Grenfell, 

Dietz, and Roberts (1995a) extended within-host stochastic models to include im­

mune effects and parasite induced host mortality analytically, and work by Grenfell, 

Wilson, Isham, Boyd, and Dietz (1995b) and Isham (1995) follows on from this. 

Many of the studies in chapters 3 and 4 of this thesis have developed from the ideas 

of these three papers.
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Chapter 2

Stochastic Population Processes

2.1 Probability Equations

The stochastic processes used in this thesis will represent population processes. 

They are all discrete and positively valued, and in continuous time. Some basic 

theory is presented in this chapter with emphasis on those techniques used later 

on. Markov processes are mostly used, though possible extensions to Semi-Markov 

processes are indicated, and in places analysed. The advantage of Markov processes 

is th a t they are relatively tractible mathematically, whilst still providing qualitative 

information about the process under study.

In this section we describe a method for writing down a partial differential equa­

tion for a probability generating function of a discrete valued Markov process th a t is 

based on the forward equations of the Chapman-Kolmogorov property. As we use 

discrete valued processes, we work mostly with probability generating functions, 

though the results given apply more generally to characteristic functions.

Assume the joint probability generating function for an N  variable, continuous 

tim e Markov process, X (£), exists and is written P (s ; t) E , where s x ® =

n £ i  s f '® .  Its partial derivative can be written in the form

lim
St—̂0

(2 .1)
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where A X ( t )  = X ( t  + 6t) — X ( t ) .  If the Markov process is specified such th a t the 

limit

K { a \  X ; t ) : =  Jim j t  ( E ( s a x U  | X (t)) -  l )  (2.2)

exists, and ^E(sAX^  | X (t))  — l j  /S t  is bounded above and below for finite St, we 

can interchange the expectation and limit and write (2.1) as

—  =  E ( t f ( s ;X ( < ) ; t ) S* W ). (2.3)

Consider more specifically an N  variable integer valued Markov process th a t 

has a set of possible transitions, C = Z N\0 ,  with transition probabilities of the 

form

P { A X ( t )  = c | X ( t )  = x )  =  f c(x)St  +  o(St) 

for all c G C, so tha t 

P { A X ( t )  = 0 | X { t )  =  x)  =  1 -  Y ,  fc (x)S t  +  o{St),
cec

where f c(x)  is assumed to be a multinomial in the components of x  for each c. We 

can write K  as

K(s;  x\ t) =  lim j -  s c {fc{x)St  +  o(St)) -  fc (x )St + o{St)\
6t~>°S t  \ c £  cec  J

=  £ / c ( z ) ( s c - l )  (2.4)
c ec

and hence (2.3) can be written as

where K  is now a partial differential operator and has component SiJj- for 

% =  As K  is infinitely differentiable for \s\ < 1 we can

interchange the expectation and differential operator and write

g . K  ,P,»;,)) (2.5)
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which provides a partial differential equation for the probability generating function 

of X ( t ) .  W hittle (1957, page 269) has referred to (2.5) as the Bartlett relation, but 

B artlett himself (Bartlett, 1949) credits Palm (1943) as being the first to publish 

this result. Bailey (1964, page 70) refers to this as the ‘Random variable’ technique, 

(possibly because it uses A X  (t ) as a random variable), but we shall call it the Palm 

relation, or the forward equation for the probability generating function.

2.2 Moment Equations

Though this section is concerned with moments of a stochastic process, we first 

post a brief warning about relying too heavily on them. Some processes may 

have realisations tha t rarely look anything like their means. The obvious example 

for population processes is a population tha t relies on self perpetuation so tha t 

there is a chance of extinction. In such cases the mean of the process may fall 

well below the mean conditional on the survival of the population. Fade out in 

epidemics (in which a disease in a closed population may become extinct) is one 

of many examples of this (see Bailey (1975)). The observation of a population will 

sometimes occur only if the population has survived, and so care should naturally 

be taken in interpreting these sorts of results. In addition, if a distribution is 

typically non-Gaussian then only considering say the first two moments may leave 

out a lot of im portant information.

The result (2.5) given in Section 2.1 enables us to find a partial differential equa­

tion for the probability or moment generating function of many Markov population 

processes. If this can be solved then moments are easily obtainable from either 

generating function. It is also possible to derive ordinary differential equations for 

any order moment without directly solving the Palm relation (2.5) by differentiat­

ing and setting the arguments to 1 or equivalently equating coefficients of powers 

of the argument. This is of interest if the partial differential equation is not easily 

solved, or if only the moments of the process are required and so there is no need
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to find the full generating function.

It is often the case tha t if the Palm relation (2.5) is not directly solvable then the 

ordinary differential equations for the moments derived from it are also not easily 

solvable. Markov processes in which the transition probabilities are nonlinear in 

the variables, called nonlinear processes, often fall into this category. The benefit 

of deriving the ordinary differential equations for the moments comes from being 

able to interpret more readily any solutions obtained via approximation techniques, 

numerical or otherwise. W hen numerical approximation techniques are applied to 

the partial differential equation for the generating function, results are at best 

difficult to utilise.

Any differential equation for a moment of a nonlinear process will involve terms 

of higher order moments so a solution cannot be found as no system of moments 

will ever be closed. Various methods of approximating nonlinear processes will be 

discussed in the next section.

There is a slightly quicker method of deriving moment ordinary differential 

equations th a t does not involve the use of generating functions. It is essentially 

similar in th a t it utilises the forward equation for the process. We use an example 

to illustrate this.

Consider an immigration-death process. If the death rate of each individual is 

constant regardless of the number of individuals present, then we have linear death. 

Suppose, however, tha t the death rate of each individual increases when there are 

more individuals present, due to density dependent constraints such as competition 

for resources. It may be th a t the individual death rate is proportional to the total 

number of individuals present, and we then have a density dependent immigration- 

death process. In this case deaths occur in the population during (£, t +  5t) with 

probability f iM(t )28 t  + o(St), where M(t)  is the population to ta l at tim e t. The
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two possible transitions we are considering are, from M(t)  to

M(t)  +  1 

M(t)  -  1

at rate A 

at rate j± M ( t ) 2

by which we mean that, conditional on M (t), M ( t  +  5t) can take the values

M(t)  +  1 with probability A5t +  o(6 t)

M(t )  — 1 with probability f i (M(t))25t +  o(6 t)

M ( t ) with probability 1 — A St — f i (M(t ) )2 8 t +  o(5t)

Using the notation of Section 2.1,

f i {x)  = A 

f - i {x )  =  fix2

so th a t the Palm relation (2.5) for the probability generating function P(x; t) := 

E (̂ sM^  is

As mentioned above, succesive differentiation of (2.6) with evaluation at s =  1 will 

give an ordinary differential equation for the moments, as will expansion and evalu­

ation of coefficients. Alternatively, these differential equations can be formed from 

the specification of the process itself as follows. Using the transition probabilities 

above, we can write

M(t)  +  c with probability o(5t) for c G N\{ — 1,0,1}.

(2 .6 )

E (M( t  + St) |M (t) ) =  (M(t)  + 1) (A<5t +  o(St)) +

(M ( t ) — 1) (f iM(t )2St +  o(8t)^j +  

M(t)  ( l  — (A +  f iM( t )2)5t +  o(St)) +  

E  (M(t)  +  c) o(5t)
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and

E (M (t +  5 t f \ M( t ) )  =  (M ( t ) +  l )2 ( \6t  + o(St)) +

(M(t)  — l )2 ( fj,M(t)2St +  o(St)'j +

M ( t f  ( l  -  (A +  + o{8t)) +

(M{t) + c fo{8 t ).
ceN/{-i,o,i}

Rearranging and dividing both sides by St gives

yt (E(M(t  + 8 t ) \ M ( t ) ) - M ( t ) )  =  A -  + 4 2 1

and

J  ( e ( M( t  + St)2\M(t))  -  M ( t f )  =  A +  2AM(t)  + /i M ( t ) -  2tx { M ( t ) f  + 

where upon we remove the conditioning and take limits as St —> 0 to obtain

=  &{E ( i ( E ( M ( i +  « ) - M (i) |M W ) ) )}

=  A -  nE(M( t )2) (2.7)

and

=  l i m { E Q ( E ( M ( i  +  « ) 2 - M W 2|M (i) ) ) )}

=  A +  2AE(M(i)) +  fj,E(M(t)2) — 2/j,E(M(t)3). (2.8)

This is not a closed system as each equation contains terms of higher order moments. 

Equation (2.8) includes E (M (t)3) - including the differential of E (M (t)3) would add 

the term  E (M(t )A) and so on. As already noted, this will be the case in general for 

processes with nonlinear transition probabilities.

The degree of the nonlinearity of the transition probabilities will affect how 

many higher order terms are in each equation. If the transition probabilities for 

variable M  involve k variables multiplied together, the ordinary differential equa­

tion for a moment of M  will contain moments of order k — 1 higher. For example,
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if there are transition probabilities which are products of three of the variables of 

the process, (in a univariate case proportional to M ( t ) 3), then each differential 

equation of the order moment will contain terms of the n  +  2 ^  order . This 

can be seen from studying the form of (2.5).

2.3 Approximation M ethods

2.3.1 M oment Approximations

Various approximations can be made in order to close the system of differential 

equations for the moments of the process. One is to assume a relationship between 

some of the moments of different orders. This involves taking the equations for the 

moments we are interested in and writing all higher order terms in those equations 

in terms of the variables concerned. The crudest of these approximations is to make 

the deterministic assumption th a t E ( M 2) =  E (M )2 so th a t the system of means is 

closed. This is equivalent to assuming tha t there is no variance in the process.

A slightly more sophisticated, but sometimes more ad-hoc, method is to use 

fixed relationships between higher order moments tha t are determined from a spec­

ified random variable. (The deterministic approximation uses the constant random 

variable). There may be some reason or practical justification as to why a par­

ticular distribution is used, or the method may be used in a pragmatic, heuristic 

way.

For example, often the normal distribution is used to provide the assumptions 

about the moment relationships. An early discussion of this approximation tech­

nique was given by W hittle (1957). Some of the early uses of the method include 

Moyal (1949), see also Chandrasekhar (1943). W hittle himself, referring to the 

equivalent assumption of Chandrasekhar (1955) tha t the variates have cumulants 

which vanish for order greater than the third, says “the justification for this as­

sumption is not clear, but results yielded by treatm ents of this type appear to agree
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relatively well with both intuition and experiment.” This was of course before the 

days when extensive simulations were routinely possible.

There is a class of population processes (called density dependent population 

processes in Kurtz (1981)) tha t converge weakly to Gaussian processes in the limit 

of the initial population size, shown in Kurtz (1970) and Kurtz (1971). See Kurtz 

(1981) and Ethier and Kurtz (1986) for more details. For large populations, this 

provides some justification for the moment assumptions based on the normal dis­

tribution, and in some cases accurate results (see Isham (1991)). The processes 

considered in this thesis are not of this type.

The univariate normal distribution is defined by two parameters, and so the 

system of equations involving the first and second moments can be closed in a 

unique way. The univariate normal distribution yields the relationship

E (X 3) =  3E (X )E (X 2) -  2(E (X ))3. (2.9)

If the moment relationships are derived by assuming simply th a t the univariate 

random variable is symmetric, then setting the skewness to zero gives the same 

relationship. Thus in the univariate normal approximation case the assumption 

used to derive the moment relationship can be weakened to assuming symmetry 

about the mean.

If a distribution other than the normal is more likely to resemble the population 

distribution then using its moment relationships may give more accurate results. 

For example, if the population is highly skewed and takes only positive integer 

values (as most population processes will), a negative binomial distribution may 

sometimes be more appropriate. This distribution is relevant to some of the biolog­

ical processes studied later, and is frequently used in ecological models to fit field 

data. We investigate the accuracy of using this alternative distribution for various 

models in Section 2.4 and in Chapter 3. There are many ways of parameterising 

the negative binomial distribution; in the univariate case we will use parameters
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such th a t Y  ~NegBin(p, k) if Y  has probability generating function

k
(2 .10)

for real k > 0 and 0 < p < 1.

From (2.10) we have tha t E(T) =  k( 1 — p)/p,  Var(T) =  k( 1 — p) /p 2 and the 

relationship

can be derived.

We can see tha t this will present a problem if we wish the mean to have value 

zero at any point. In practice, positive integer valued population processes will 

not have mean zero unless the population is zero with probability 1. The only 

practical situation of interest where this may be the case is the initial state  of a 

population. Ways of getting around this, such as setting the initial mean to a 

very small value should be used carefully, though in many models it is unlikely 

th a t the moment equations will be sensitive to initial conditions. The problem 

arises from the fact tha t a constant value of zero cannot be obtained from the 

negative binomial distribution, unlike the normal distribution. However, given the 

approximate nature of the method, ways around the problem used carefully should 

not affect the results greatly.

As with the normal distribution, the negative binomial distribution has two 

param eters and so (2.9) and (2.11) will provide a unique method of substitution for 

systems with first and second order moments. If a third order moment is required, 

or included as an attem pt provide more accuracy to the first two equations, then 

a univariate three param eter distribution is needed. The negative binomial can be 

extended to  a three parameter version by considering the number of trials until k 

runs of r  successes occur, often called a negative binomial distribution of order r. 

We do not use this in the thesis, but setting r  =  1 gives the negative binomial 

distribution so any process whose moments follow the negative binomial moments

(2 .11)
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relationship closely are likely to be at least as closely approximated using this 

distribution.

If we have more than one variable in our stochastic process, we need to assume 

the moment relationships derived from a multivariate distribution. In order th a t 

there is a unique way of closing the system there should be the same number of 

param eters as there are moments we are interested in. For example, if the first and 

second order moments are kept in the system then an n  variable system will provide 

\ n ( n  4- 3) equations, (n  I s*1 order and £ ”=1 i = \ n ( n  +  1) 2n(  ̂ order moments) and 

so any multivariate distribution used will need to have \ n ( n  +  3) param eters to 

provide a unique closure.

A m ultivariate normal distribution has this required number of parameters. For 

example, if n = 3 there are three means and six elements of the symmetric variance 

m atrix (giving the nine parameters needed) and the third order moments have the 

form

E ( W i W 2W 3) = E ( W 1) E ( W 2W 3) + E ( W 2) E ( W 3W 1) + E { W 3) E { W 2W 1) -  

2E( W3)E { W1) E (W 2),

with the others following by symmetry of W i , W 2 and W 3 . Possible choices for a 

multivariate negative binomial distribution are discussed in Section 3.6.

While there are situations in which there is a good justification for using these 

types of approximations (Kurtz, 1971; Ethier and Kurtz, 1986; Isham, 1991), often 

the only ‘justification’ is a pragmatic one. Of course, in these cases, great care 

needs to be taken in their use and interpretation. In analysis of models of parasite 

dynamics Grenfell, Dietz, and Roberts (1995a) and Grenfell, Wilson, Isham, Boyd, 

and Dietz (1995b) have used the approximations without any real theoretical jus­

tification. Isham (1995) provides exact results for simple cases of the models of 

Grenfell, Dietz, and Roberts (1995a) tha t show some success for the approxima­

tions. More discussion of these approximation techniques is given in chapters 3 

and 4. Clearly care, and more research, is needed in this area, particularly as these
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so called ‘moment closure’ approximations appear to be a ttracting  great interest 

in the study of parasite dynamics, as well as in other biological fields (Chan and 

Isham, 1998; Michael, Grenfell, Isham, Denham, and Bundy, 1998).

In this thesis we provide further studies and insight into the use of these m eth­

ods, particularly in the area of parasite dynamics. The models studied are often 

simple enough tha t stochastic (or Monte Carlo) simulations can be run to check the 

accuracy of the approximations in relevant param eter areas where exact theoretical 

results are not available. We investigate the performance of the approximations for 

models proposed in this thesis and by others.

2.3.2 Determ inistic Rate Approximations

In addition to the uncertainty of their accuracy, moment closure approximations 

do not provide information about the probability distributions of variables, or in­

dividual probabilities of events. A further form of approximation is described here 

th a t does provide this information, though admittedly in a fairly crude way.

The idea underlying this section is as follows. If the probability of a transition 

is nonlinear, being a product of several variables (not necessarily distinct), then it 

can be approximated by the product of just one of these variables, and the means 

of each of the others, so tha t we then have an approximating, linear process. This 

will be equivalent to using the deterministic value for some of the variables in the 

transition probabilities.

As an example we return to the density dependent immigration-death process. 

Suppose we reformulate the problem, and let the per capita death rate be f im(t)  for 

some function m (t), and keep the immigration rate a t A. The partial differential 

equation for the probability generating function P(s]t)  := E is then

(2 .12)
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with P (x ;0 ) =  1, the solution of which is

P (s; t )  = exp | a ( s  — 1) J  d u j (2-13)

where tz(u, t) = n f*  m(s)ds.  This is simply a time inhomogeneous linear immigration- 

death process. If we now let m(t) = E (M(t))  then we obtain an approximation to 

the original density dependent process described above. We call this a deterministic 

rate approximation.

For stochastic population processes of the type considered in this chapter it 

will often be possible to find the probability generating function by using one or 

more approximations of this type, even if it is not in a closed form. It will be 

given in terms of at least one of the means of the process, for which a differential 

equation can be found by differentiating the probability generating function. If a 

closed solution is not obtainable for the mean, then any equation for any properties 

obtained from the probability generating function in terms m(t)  can be solved in 

conjunction with this differential equation (numerically if required). In multivariate 

models, or models with rates th a t depend on powers of the variable greater than 

one, there is more than one way of making this approximation. Notice th a t this 

approximating method will give the same means as an analogous deterministic 

model. From (2.13) we can see tha t in the particular example given the population 

follows a Poisson distribution. This is a consequence of it in effect being modelled 

as simply an immigration-death process.

We can approximate a large number of complicated nonlinear stochastic popu­

lation processes this way. It often amounts to simply considering the variables as 

nonhomogeneous birth, death, immigration or emmigration processes, whatever is 

required, and then writing down ordinary differential equations for the rates (usu­

ally involving the means). This gives the advantage of adding simplicity to the 

relationship between variables in stochastic systems, or adding some stochasticity 

to deterministic systems whose means have already been modelled. However, often 

the process will not yield much information about the original nonlinear stochastic

37



process modelled. In the nonlinear density dependent immigration-death process 

example above, the deterministic rate approximation simply amounts to using a 

deterministic model, with a Poisson distribution imposed about the mean. This 

will happen with any process tha t involves only death and immigration (in the 

sense th a t the level of a particular variable does not increase a t a rate proportional 

to th a t variable itself, i.e. there is no birth), as nonhomogeneous immigration linear 

death processes produce Poisson population levels. A large amount of the depen­

dence structure between the variables will always be lost, and we only use this 

approximation as a comparison to other methods of obtaining probabilities not 

otherwise obtainable.

Nasell has used hybrid approximations in which he replaces some processes by 

their expectations in population models for schistosomiasis (Nasell, 1985). This 

was justified by the large numbers relating to the variable (number of infective 

vector hosts) involved. Parthasarathy and Kumar (1991) is another example of 

this type of assumption being used to produce a stochastic model with means 

following a logistic growth curve, though in fact the stochastic process studied is 

ju st a linear birth-death process with the inhomogeneous death rate adjusted to 

obtain the desired means. We use and assess this method in Section 4.2 to estimate 

individual probabilities of a nonlinear stochastic population process.

2.4 A Density Dependent Immigration-Death Pro­

cess as an Illustration

As an illustration of the methods outlined in this chapter we consider some of 

the different approximations to the density dependent immigration-death process 

introduced in Section 2.2. For notational convenience we write m(t)  for the mean, 

E (M (t)), and s(t) for the second moment, E (M( t )2). We assume th a t the process is 

initially zero, i.e. M(0) =  0 with probability 1. Therefore the following differential
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equations should be solved with the boundary conditions m (0) =  0, s(0) =  0. The 

deterministic approximation of equations (2.7) and (2.8) gives

m = A — f im2 

s = m 2.

The symmetric or normal approximation assumption th a t E (M( t )3) =  3s m  — 2m 3 

reduces (2.7) and (2.8) to

m  = A — fis (2-14)

s = A +  2Am +  fis — 6fims +  4/im3 (2.15)

and the negative binomial moments approximation assumption th a t E (M( t )3) — 

m 2 +  s (2s / m — m  — 1) reduces (2.7) and (2.8) to

m  - A — fis (2.16)

s = A +  2Am +  iis +  2/i ( sm  +  s — m 2 — 2— ^ (2.17)
V

which were solved numerically with the boundary conditions m (0) =  10- 1° ,s (0) =  

10-20 to  avoid the singularity a t m  = 0. Tables 2.1 and 2.2 show the results for the 

mean and variance of various approximations of the density dependent process for 

param eter values A =  16 and (i =  1.

In these tables, and throughout the thesis, simulations are conducted for Markov 

processes by the standard technique of generating exponential distributions for the 

time-lengths between events, and then deciding which event occurs by reading from 

a uniform distribution. Estimates of properties of interest are then generated from 

a large number of runs. Approximate confidence intervals may be calculated using 

asym ptotic results concerning convergence to normal distributions for the sampling 

distributions of the estimates (see Bickel and Doksum (1977, Chapter 4) for more 

details). The simulation estimates given in this thesis have distributions th a t are 

normal in the limit of the number of runs performed, and so rough 95% confidence

39



intervals can be taken as plus or minus two standard errors of the estimate. In 

the results given in this section 6 x 104 runs were conducted. The values given 

in brackets after the estimate are twice the estimated standard error of the esti­

mate. Note th a t for this simple process, approximate equilibrium results can be 

found numerically via analytical results for the equilibrium distribution using time 

reversibility of the process.

Table 2.1: Simulated and Approximated Mean of Density Dependent Immigration- 

Death Process

Time Simulation (2 s.e.) Deterministic Normal Negative Binomial

0.1 1.46 (0.01) 1.52 1.45 1.45

0.2 2.48 (0.01) 2.66 2.46 2.48

0.5 3.58 (0.01) 3.86 3.55 3.57

1.0 3.73 (0.01) 4.00 3.72 3.72

Table 2.2: Simulated and Approximated Variance of Density Dependent

Imm igration-Death Process

Time Simulation (2 s.e.) Deterministic Rate Normal Negative Binomial

0.1 1.34 (0.01) 1.52 1.45 1.33

0.2 1.91 (0.01) 2.66 2.14 1.92

0.5 2.02 (0.01) 3.86 2.19 2.11

1.0 2.00 (0.01) 4.00 2.16 2.11

We see th a t both the normal and negative binomial approximations evaluate 

the mean extremely well (Table 2.1), with the negative binomial approximation 

providing a slight improvement over the normal. However, it is in the evaluation of
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the variance of the process (Table 2.2) tha t the negative binomial noticeably out­

performs the normal. The deterministic approximation significantly over-estimates 

the value of the mean, whilst the deterministic rate approximation is of little use 

for estim ating the variance.

The mean levels in this example are not high, and yet the ‘moment closure’ 

approximations still work well. It is worth noting, however, th a t the normal ap­

proximations do not always provide sensible solutions. Consider the phase portraits 

Figure 2.1 and Figure 2.2 on page 42 for the system obtained from the normal ap­

proximations ((2.14) and (2.15)). The solid lines are the isoclines upon which rh 

and s are zero, and so from Figure 2.1 in which A//x =  1.5 we can see there is no 

equilibrium for which both m  and s are positive. Notice th a t the isocline for rh =  0 

is just the vertical line s = A//x. For A =  1.5, fj, = 1 the simulated equilibrium mean 

is 0.93, the negative binomial approximation gives a value of 0.92, whilst the normal 

approximation becomes negative. The threshold at which there are no longer any 

positive equilibrium values for the mean under the normal approximation comes 

when X/fi < 27/16 =  1.6875. For Aj j i  above this value (Figure 2.2) there are two 

positive equilibrium values. The one arrived at from the initial point of m  = s = 0 

is the higher of the two m  values and is stable, which can be seen from the direction 

arrows indicating whether m  and s are increasing or decreasing.

The deterministic approximation of course does not have this problem of giving 

negative means. The negative binomial approximation is shown to be of greater 

practical use than the normal approximation in this model. Intuitively this can be 

considered as being a consequence of its discrete, positive valued properties.

The linear death case provides a Poisson distribution for population numbers, 

and hence an index of dispersion, defined as I(M ) := var(M )/E (M ), of 1. Notice 

from the simulated results th a t the index of dispersion of the process is less than 

1, and hence reduced from the linear death case. We conjecture th a t this will be 

the case for all param eter values of this process, and is a result of the density 

dependence. The per capita death rate in realisations with unusually large values
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Figure 2.1: Phase Portrait for m  := E (M(t))  and s :=  E( M( t ) 2) with X/fi  =  1.5
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Figure 2.2: Phase Portrait for m  := E (M(t))  and s := E (M( t )2) with A//i =  2
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will increase, and this will act to reduce the variation of the process with respect 

to its mean. The approximations capture this phenomena for the param eters given 

in Tables 2.1 and 2.2, but, as we have seen above, the normal approximation can 

give misleading results for low population numbers. In Figure 2.2 the dashed line 

indicates where I(M ) is 1, so th a t we see for 27/16 < X/fi  <  2 the approximations 

wrongly predict overdispersion at equilibrium (I(M) > 1), whilst a t A//i =  2, in 

Figure 2.4 we see th a t I(M ) at equilibrium will be estim ated as one. For A//i >  2, 

I(M ) will be correctly estimated as less than one at equilibrium.

To illustrate this with a numerical example, when A =  1.7 and fi =  1, so th a t 

X/fj, is just above the threshold discussed above of 27/16, the normal approximation 

equilibrium index of dispersion is 1.36 whilst the simulated value is 0.67, and the 

negative binomial provides 0.71. Again the negative binomial approximation is 

shown to be a more useful approximation method than the normal, but clearly 

care must be taken when using either. When used for more complicated nonlinear 

stochastic processes, any conclusions drawn from moment closure approximation 

w ithout theoretical justification should be checked with stochastic (Monte Carlo) 

simulations. In this simple model, the fact th a t the normal approximations seem 

to work better at equilibrium for larger A/ fi corresponds to both the param eter 

governing the nonlinearity (fi) being smaller, and the rate of parasites entering the 

host being larger, two effects th a t both seem likely to improve the approximations.

W hilst we do not provide any theoretical justification for the negative binomial 

approximation, it does appear useful for processes of the im m igration-death form 

often used in this thesis and elsewhere for studies of parasite dynamics. We inves­

tigate further the suitability of moments closure approximations in the models of 

parasite dynamics in chapters 3 and 4.
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Chapter 3

Host Parasite Interactions

3.1 Introduction

One of the most im portant common feature of macroparasites is their high level of 

aggregation amongst the host population. Im portant early work in Crofton (1971b) 

and Crofton (1971a) highlighted this, and there have been numerous studies of host 

parasite relationships revealing highly aggregated parasite numbers (see Shaw and 

Dobson (1995), Hudson and Dobson (1995) and Anderson and May (1991, Chapter 

15) for examples and further references). Essentially, parasite aggregation means 

th a t a large proportion of the parasite population is harboured by a small number of 

hosts so th a t the frequency distribution of parasites per host is highly overdispersed 

(see Poulin (1998) for further discussion).

The interactions between host and parasite dynamics are highly complicated and 

models so far have tended to concentrate on particular aspects of the relationship 

in order to make the analysis tractable. As a result, capturing both the cause and 

effect of aggregated parasite distributions has eluded theoreticians, and studies 

usually focus on one or the other. The importance of the variability in parasite 

numbers across hosts means tha t including statistical or stochastic effects at some 

level is necessary to help investigate the issues of interest.

44



As we have discussed in Section 1.2 distributional models rather than compart- 

mental models are necessary for the study of macroparasite infections. In theory, 

the models could be purely deterministic, so th a t all random chance events are 

excluded, and still model the frequency distribution of parasites across the host 

population. Two methods of achieving this immediately spring to mind. The first 

is to model variables Pi(t) say, (where t  could incorporate the tim e and /o r host 

age or type) for the number of hosts harbouring i parasites (for 2 G Z). The sec­

ond is to model the parasite load in each individual, say j ^ ,  host, Both

could of course be extended to include stages of parasite development and parasite 

stages th a t are free living or harboured in vector hosts, along with many other 

complications.

In practice, however, it is difficult to gain much information directly from the 

first method as it yields an infinite number of differential equations. It is usually 

used as a starting point for further simplification via statistical assumptions about 

the parasite frequency distribution, see Crofton (1971b), Crofton (1971a), Anderson 

and May (1978), Kretzschmar and Adler (1993) and Pugliese, Rosa, and Damaggio 

(1998) for examples. It has the advantage of modelling parasite loads as discrete 

values and of incorporating host death more easily than the second method, which 

uses discrete and fixed values for the number of hosts but continuous values for 

parasite numbers. The property of discrete parasite loads is sometimes mistakenly 

used to identify such models as stochastic even though there is no random element 

involved. This property has added importance when modelling m acroparasites th a t 

reproduce sexually inside the definitive host, as successful m ating between male and 

females is not always guaranteed at low parasite levels (May, 1977; Leyton, 1968; 

Gabriel, Hanisch, and Hirsch, 1989).

The second method (modelling the load in host j  as Hj( t )) will produce a 

finite system of differential equations for finite host populations, and is useful for 

modelling aggregation due to host heterogeneities. In a deterministic framework 

th a t does not allow for demographic stochasticity or random effects, this method
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can only obtain aggregation across all hosts if the host population is modelled 

as heterogeneous. However, the dynamics of the host population are difficult to 

incorporate in this framework.

In general, purely deterministic models with no statistical or stochastic addi­

tions th a t attem pt to include parasite load distributions will be restrictive in the 

information they provide. A technique introduced in Crofton (1971b) and extended 

in Anderson and May (1978) to simplify the problem uses statistical assumptions 

about the parasite distribution to reduce an infinite system of differential equations 

to a lower dimensional system (often just two or three variables). Anderson and 

May (1978) used this approach to investigate stabilizing and destabilising parasite 

related effects on the host population; for example they concluded th a t overdis­

persed frequency distributions result in parasite-induced host m ortality being a 

stabilising factor tha t regulates the host population. This has become a generally 

accepted idea but the statistical assumptions made can often implicitly impose 

properties on the model. In the example of Anderson and May (1978) given above, 

Kretzschmar and Adler (1993) point out th a t choosing any distribution for the 

parasite frequency with an index of dispersion th a t is an increasing function of the 

mean in the Anderson and May (1978) model necessarily makes parasite-induced 

host m ortality a stabilising factor. This approach has its use in allowing compli­

cated nonlinear effects in parasite dynamics to be investigated. However, aggrega­

tion is always considered as an external, and crucially a static factor. This clearly 

limits the understanding th a t can be gained into aggregation in particular, and 

parasite dynamics in general. Hence, as an alternative method of study, stochastic 

processes have an im portant role to play in the area of parasite dynamics.

The first macroparasite models to use stochastic processes were Tallis and Ley­

ton (1966) and Tallis and Leyton (1969) which considered within-host parasite 

dynamics, primarily aimed at modelling experiments of trickle infections of ne­

m atode parasites given to sheep. These, and other stochastic (and deterministic) 

within-host parasite dynamics models are usually variants of an im m igration-death
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process (Anderson and May, 1991). Stochastic models of between host parasite 

dynamics are rare. The exceptions are the works of Barbour (Barbour and Kafet- 

zaki, 1993; Barbour, Heesterbeek, and Luchsinger, 1996) who models parasites in a 

population of immortal hosts. Nasell and Hirsch (1973) use hybrid approxim ations 

so the models are part stochastic, part deterministic. The assumption is th a t the 

vector host population is large enough so th a t a deterministic approxim ation is ap­

propriate, whilst the within-host parasite populations are modelled using stochastic 

processes (see Nasell (1985) for a summary and further references).

A summary of some within-host models, and the effect of various factors such 

as parasite-induced host mortality and density dependent constraints on parasite 

distributions, is given in Anderson and Gordon (1982). One of the points the 

authors highlight is tha t within-host density dependent effects reduce dispersion, 

an example of which we saw in the density dependent im m igration-death process 

discussed in Chapter 2. Interestingly, they also state th a t

... the prime cause of overdispersion in the distribution of parasite 

numbers within a host population will be stochastic factors in the en­

vironment, as opposed to a demographic nature

which they conclude from the fact that

... the underlying pattern  of variability in parasite abundance between 

hosts, generated by stochastic factors of a demographic nature, will be 

Poisson in form where the variance to mean ratio is approximately equal 

to unity.

The explanation given for this is tha t the basic immigration-death process (an 

M /M /oo queue) provides a Poisson distribution, (remember there is no direct in­

ternal reproduction i.e. no ‘b irth ’ in the process). The environmental factors they 

refer to are host heterogeneities in exposure, suceptibilities and defense capabilities 

modelled by making parameters such as the immigration rate random variables 

across the host population.
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Their conclusion is a slightly naive generalisation for two reasons. Firstly, it is 

possible to have overdispersed distributions in within-host models w ithout making 

the parameters random variables. The most obvious example being an M / M / o o  

queue with batch arrivals, corresponding to parasites entering the host in clusters 

rather than one at at time. The second reason is tha t the immigration rate may 

well depend on the parasite levels in other hosts, themselves subject to demographic 

stochastic effects, and hence it will not necessarily be deterministic in form, even 

in each host. Both these effects create more dependence between parasites than 

the simple M / M / o o  queue model tha t provides Poisson distributions. The first of 

these points is discussed in this chapter (specifically, see Section 3.3.5), whilst the 

second is addressed in Chapter 5.

The Anderson and Gordon (1982) paper used Monte Carlo simulations to show 

th a t parasite induced host m ortality (in which hosts with higher parasite burdens 

are more likely to die) reduces dispersion of the parasite distribution, (though see 

Section 3.3.6 for an exception to this). A more complicated nonlinear stochastic 

model for within-host dynamics incorporating acquired host immunity as well as 

parasite-induced host m ortality was studied in Grenfell, Dietz, and Roberts (1995a). 

This provides a framework for incorporating these two effects stochastically and 

though exact results were not obtained, it was an advance in the recognition of the 

role stochastic models have to play in the area. Moment closure approximations, as 

described in Section 2.3.1, were used to analyse the models. In common with many 

other within-host parasite dynamic models focusing on the evolution of parasite 

loads, the underlying assumption of this model is tha t the age distribution of par­

asites within hosts is in equilibrium with respect to time. This essentially means 

th a t the input of parasites into the host is independent of any parasite levels.

In this and the following chapter we extend and expand the ideas presented 

in Grenfell, Dietz, and Roberts (1995a). The present chapter mostly focuses on 

parasite-induced host mortality, whilst acquired immunity is the main focus of 

C hapter 4. We also discuss the use of moment closure approximations for these
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kind of systems.

Isham (1995) solved a simpler version of the Grenfell, Dietz, and Roberts 

(1995a) model where the only nonlinearity was the parasite-induced host mor­

tality  increasing at a rate linearly proportional to the parasite load. Isham investi­

gated the relationship between load distribution and input distribution when this 

parasite-induced host m ortality is added, following on from results given in Gren­

fell, Dietz, and Roberts (1995a) for the purely linear model (obtainable through 

simple queueing theory). As exact results for the moments conditional on host 

survival are obtainable, Isham was able to asses the moment closure approximation 

used in Grenfell, Dietz, and Roberts (1995a) for this particular nonlinearity. The 

results are fairly impressive, though the param eter governing the nonlinearity is 

small relative to all others. See Section 3.7 for further discussion of these.

In Section 3.2 we extend the Isham (1995) model to include parasite larvae, m a­

ture parasites and parasite offspring, and we relax some assumptions made, includ­

ing exponential parasite lifetimes. In addition, we investigate im portant properties 

such as disease control and parasite load at host death in Section 3.3. The model 

is extended further to describe how host morbidity can be incorporated in Section 

3.4. Sections 3.5 - 3.8, are concerned with assessing the moment closure technique 

for this multivariate conditional system, and include an alternative moment as­

sum ption derived from a multivariate negative binomial distribution (Section 3.6) 

and incorporation of random parameters into the approximation (Section 3.8).

3.2 A M odel of the Dynamics of Killing Parasites

The model presented here is designed to study within-host parasite dynamics, with 

emphasis on the effect of parasite-induced excess host mortality. We consider hosts 

as coming under attack from parasites and hence hosts th a t harbour higher parasite 

loads have increased death rates. Although we model the parasites as being able 

to “kill” their hosts, they do not necessarily have to cause host m ortality directly.
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They can be considered as simply weakening the host, making it more vulnerable 

to predators, or more susceptible to  other diseases. In this way the parasites simply 

increase the host’s overall death rate, but we do not consider whether this is by 

direct and indirect methods.

The main assumption made concerning parasite-induced host m ortality is th a t 

the death rate of a host increases linearly with its parasite burden. There is evidence 

for this in some parasite-host relationships (Anderson and May, 1991; Hudson and 

Dobson, 1995). Generally, if parasites have a large effect on the death rate of hosts, 

this will adversely effect their own productivity. Once a host dies, the parasites 

no longer have a livelihood, and so with parasite-induced host mortality, average 

parasite burdens in surviving hosts can intuitively be expected to be lower than for 

identical, non-killing parasites. There are many other issues concerning the effect 

of parasite-induced host mortality, in particular how it affects the full distribution 

of parasite loads, tha t are discussed in Section 3.3.

3.2.1 M odel Definition

We consider a particular host th a t is born, free of parasites, a t time t =  0 and is 

exposed to parasite larvae at times of a non-homogeneous Poisson process of rate 

4>(t). At an exposure instant, the host acquires a random number C  of larvae, 

independently from one exposure to another, where C  has probability generating 

function h(z) = hcz c. Once in the host, each parasite evolves independently 

of all others. A particular larva remains in the larval stage for a random time, 

T l  th a t has probability density function fa.  At the end of this period, the larva 

either matures, with probability ct(Tl): or dies. The m ature parasite has a random  

lifetime as an adult, T m , th a t is independent of Tl  and has density /m,  a t the 

end of which the parasite dies. During this adult stage, the parasite gives birth  

to  clumps of offspring in a non-homogeneous Poisson process of rate p(a) where a 

is the age of the parasite since m aturation. At each b irth  a random number, D,
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of offspring are produced, independently between births, where D  has probability 

generating function k(z) = Y?£=o kd,zd. The offspring have independent lifetimes, 

Tn , with density /w, th a t do not depend on the age of the parent at birth  or any 

other variables of the process.

At time t, we are interested in the following three variables: L(t),  the number of 

parasite larvae in the host; M (t), the number of m ature parasites in the host; N(t) ,  

the number of parasite offspring still alive at t tha t have been generated during (0, t] 

by adult parasites infecting the host. We assume th a t the host has a natural death 

rate  //jj-(t) at time (and age) t in the absence of any parasite burden and th a t this 

rate  is increased by an amount on for each larva and a m for each adult parasite with 

which it is currently infected. In practice, it will usually be the case th a t only one 

of on and a m is non-zero, for example cn = 0 in the model of (Grenfell, Dietz, and 

Roberts, 1995a). However an alternative interpretation of this model with non-zero 

on, could be to regard the ‘m aturation’ of a parasite as representing a change in a 

parasite’s virulence during its lifetime in the host. There is no problem including 

an corresponding to an offspring effect if this is appropriate, bu t we shall not do 

so here. Properties of the variables L( t ) , M ( t ) , N( t )  will be needed, conditionally 

upon the survival of the host to age t  for comparison with observed data.

As long as the three lifetime variables (Tl , T m , Tn ) are all exponentially dis­

tributed, and cr(-) and p(-) are constant, the trivariate process { L( t ) , M ( t ) , N( t ) }  

is a Markov process and its properties can be investigated by appropriate use of 

forward equations, in the way followed by Isham (1995), who investigated the spe­

cial case when </>(•) is constant and cf(Tl ) =  0 a.s.. Here we shall consider the 

more general model with arbitrary lifetime distributions, and follow the alternative 

approach previously suggested by F.G.Ball (1995, private communication).
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3.2.2 M odel Equations

It is convenient to suppose tha t the process by which the host acquires larvae 

continues indefinitely (even after the death of the host) and let Z(t )  be an indicator 

variable which takes the value 1 if the host is alive a t t  and 0 otherwise. (Note 

the difference from the notation used in Isham (1995) where M(t )  represents the 

parasite level conditional on host survival).

Since the excess instantaneous death rate of the host over and above the rate of 

natural m ortality depends upon the current numbers of larvae and m ature parasites, 

it is clear th a t the distribution of Z{t)  depends on the aggregated variables A(t) — 

/o L( u)du , the accumulated lifetimes of all larvae within the host from birth up to 

tim e £, and B(t)  = Jq M( u ) du , the corresponding to tal for m ature parasites.

We start by finding the joint generating function of the five variables {Li t ) ,  M ( t ), 

N(t ) ,  A ( t ), B{t)}.  We condition first upon the number K  of infection instants th a t 

have occurred up to time £, and given K  =  k, the arbitrarily  labelled times T  =  

{ T i,. . .  ,T fc} of these events and the corresponding clump sizes C =  { C i,. . .  , C*,}. 

By assumption, K  has a Poisson distribution with mean $ (i)  :=  J j <j>{u)du and 

the Ti are independently distributed with density </>(•)/<£(£) over (0, £]. It follows 

immediately tha t

G(x, y ,  z, si, s2; t) := E zw(f)e- s i )

=  E * ,t ,c  j l l  [E (xLiiy Miiz Niie - ‘lA,‘e - nB“ \T $ \C>') (3 .1)

where {By, My, TVy, Ay, By} are the contributions to {L{t),  M (t) , N ( t ) , A ( t ) , B( t )}  

resulting from the j th  parasite in the ith  clump, j  = 1 , . . .  , Ci and i = 1 , . . .  , K,  

and the dependence of these variables on t is not made explicit. Thus if we define

g(Xj y, z, si, S2; w)  :=  E (xLijy Mijz Nije~SlAije~S2Bij \Ti = t — w'j , 

it follows tha t

G(x,  y, 2;, s1? s2; t) =  exp { -  J  </>(t -  w)[l -  h{g{x, y, z, Si, s2; w))]dw^  . (3.2)
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To find g(x, y, z, Si, s2; w \ ) we focus first on all of the offspring of a particular 

parasite (the j th  member of the ith  clump of parasites encountered by the host, 

say) where we assume th a t this parasite is one th a t matures, rather than  dying at 

the end of the larval stage, and th a t it does so at tim e t — r , r  < t. We are interested 

in the number Ni j  of these offspring tha t are still alive a t time t and define the 

variable to be the smaller of t  and the ‘age’ (i.e. the time after m aturity) of the 

m ature parasite at death. W ith probability Eij  =  r ,  while for o <  £ < T,

Ei j  has probability density /m(£)j where T m (u) = P (Tm > u).

Given Ei j  =  £, the offspring are generated over the interval (t — r, t  — t  +  £) 

in clumps th a t occur in a Poisson process of rate p(u — t  +  r) ; the number of these 

clumps has a Poisson distribution with mean jjf p(u)du,  and they are, conditionally, 

independently located with density p(u — t + r ) /  Jq p(u)du.  An offspring born at u 

has a probability — u ) of being alive at t, independently of all other offspring 

in both  the same and distinct clumps.

P u tting  all these results together, it is straightforward to deduce tha t, for the 

j th  member of the zth clump of parasites encountered by the host, conditionally 

upon th a t parasite m aturing at t — r  and having E jj =  f , the number, Ni j ,  of 

offspring still alive at t has probability generating function

ingested at Ti = ti over the interval (£*,£], and the corresponding values of the 

five variables Ly, My, iVy, Aij and Bij.  There are a number of mutually exclusive 

possibilities

•  the larva is still alive at £, so th a t =  1, =  0, Nij = 0, = t — U and

= 0; — with probability T ^ i t  — U)]

•  the larva dies at some time U +  v G so th a t =  0, My =  0, =

rj(z\ f , r )  := E(zN^  | f , r)  =  exp £ [1 -  k  (1 -  (1 -  z ) T n ( t  -  v))] p(u)dw|

(using the substitution v = u — t +  r) .

Now consider the possible histories of the j th  member of the clump of larvae
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0, Aij = v and By =  0; — with probability density / l (v ){ 1 — cr(u)};

•  the larva matures at some time U + v G (U, t\ and dies a t U + v for some 

£ £ (0, t  — ti — v), so tha t Lij = 0, My =  0, iVy is a random variable with 

probability generating function rj(z;£,t — U — v), = v and By =  £; —

with probability density / l M / m K)'7!'1’);

•  the larva matures at some time U+v  G (U, t] and is still alive a t t  so th a t B y  =  

0, My =  l,^Vy is a random variable with probability generating function 

rj(z; t — U — v , t  — ti — v), = v and By = t — ti — v; — with probability

density ~ U -  v)a{y).

Combining these cases, we find th a t

g ( x , y Jz , s 1, s 2]w) := E ( x Lijy |T i = t -  u>)

(3.3)
rw r w —v

/  e~SlVf L{v)(j(v) /  e~S2̂ 7](z)^w -  v ) f M( O d€dv +
Jo Jo

[  ye~SlV f L(v)a(v)e~S2̂w~v r̂j(z', w — v , w  — v ) T m {w ~  v)dv.
Jo

Now let

P{ x , y , z - t )  := E(xL®y M® z N®Z(t ) )

and

Q( x , y , z \ t )  := =  1).

It is clear tha t

P (Z(t) = 1|A(t),  B (t)) =  exp (aiA(t)  +  a mB(t )  +  fiH(u)duj  |  (3.4)

and therefore tha t



Thus P (Z(t)  =  1) =  P ( l ,  1,1; t) and

Q (x , y , z ; t )

= P ( z ,2/ , 2: ;£ ) /P ( l , l , l ; i )

=  G(x, y, z, a h a m; t ) /G{  1, 1, 1, a h a m\ t)

= exp{— f  <j){t-u)[h(g( 1,1,1, a h a m\ u ) ) - h ( g ( x ,  y, z, a u a m\ u))]du\  (3.6)

Due to the conditioning on host survival the natural host death rate /i#  (t) plays 

no part in this final result.

3.3 Results and Ecological Implications

3.3.1 M oments

We denote by L c(t), M c(t) and N c(t) respectively the larval, m ature and offspring 

numbers conditional upon the survival of the host to time t, so th a t Q(x,  y, z; t) is 

the joint probability generating function of these variables.

Many interesting properties of this process can be derived from the joint proba­

bility generating function (3.6), and we give a few here to provide some illustrations 

of the mechanisms of the process. The first two moments of M c(t) are

(3.7)

(3.8)

where

g(w)  := 0 (1, 1, 1, a h a m; w) = e aiWF L(w) +
r w  r r w —u

/  e~aiUf L{u) 1 -  a(u) +  a(u){e~arn̂ w~u f̂ M(® -  u) + /  e~amVf M(v)dv} du 
J o L J o .

and

~ / \ ._  d g ( x , y , z , a h a m-,w) rw
- e ~ a m W  /  e ^ a m ~ a i ^ u a { u ) f j X u ) J : M { w  —  u ) d u .

x ~ y —z —\ 0
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The covariance between L c(t) and M c(t) is

cov (L c( t ) ,M c(t)) = f Q w ) ti'(g(w)) T l ( w ) e~aiW gy(w) dw , (3.9)

and further second order moments are provided in Appendix A. Notice th a t g(w) 

and gy(w) are both decreasing in cq and a m and hence any differential of h(x ) 

evaluated at x = g(w) is non-increasing in on and a m. From this we can see th a t 

E (M c(i)), var(M c(t)) and Cov(Lc(t), M c(t)) are all decreasing in a\ and crm, and 

indeed this is the case for all the means, variances and covariances of the process.

Note th a t the indices of dispersion of Lc(t), M c(t) and N c(t) and the correlations 

between any of these do not depend upon the rate of exposure to parasite clumps, 

</>(•), if this rate is constant. In addition, from (3.7) and (3.8) we can see th a t 

l ( M c(t)) := var(M c(t))/E (M c(t)) > 1 so th a t the parasite-induced host m ortality 

can never generate underdispersion, contrary to the results presented in Anderson 

and Gordon (1982). See Section 3.3.5 for more details.

If on =  a m =  0 we have g(w) = 1 and these results reduce to those obtainable 

from queueing theory models; see Section 3.5. It is intuitively obvious, and can 

be seen by noticing th a t g ( x , y , l , a i , a m',w) does not depend upon the survivor 

function of the offspring lifetime, th a t the joint distribution of numbers of larvae 

and m ature parasites is not affected by the offspring. Also, when a m = 0 (i.e. 

only the larvae affect the host’s death), g(x, 1, 1, cq, 0; w) does not depend upon 

the survivor function for m ature parasites either, and hence nor does the marginal 

distribution of the number of larvae. This is to be expected, as the only way 

the properties of the offspring or m ature parasites can affect larval distribution is 

through their influence on host mortality. Some simplification occurs when either 

a.1 or Oim is zero. For example, if </>(•) is constant and cq =  0 then

E {Mc{t)) =  (M sW ) -  !)•

Some probabilities of empirically observable events are simply expressed in 

term s of the generating function Q (x :y ,z] t) .  In particular, the probability th a t a
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live host is free of all parasites (larvae, adults and offspring) is given by Q (0, 0, 0; t), 

while the probability th a t the host is free of both larvae and m ature parasites is 

Q(0, 0,1; t). The probability distribution of the number of offspring associated with 

the host at time t has probability generating function Q (l, 1, z\ t), while th a t of the 

number of offspring at time t, associated with a host th a t is parasite-free (both 

larvae and adults) at t is Q (0, 0, z\ t ) /Q (0, 0, 1; t) = P ( 0, 0, z; t ) / P ( 0, 0, 1; t).

In some macroparasitic infections the offspring may be the only variable easily 

observable, so the distribution of the m ature and larval loads given the offspring 

number is of interest. In theory this can be obtained from the joint probability 

generating function, but in practice the individual probabilities are generally dif­

ficult to obtain. However, the distribution of M c(t) and L c(t) given th a t N c(t) 

is zero is easily expressed in terms of the function Q. We have P ( N c(t) = 0) =  

Q (1,1 ,0 ;£), and so the joint probability generating function of M c(t) and L c(t) 

given N c(t) = 0 is Q(x, y, 0; t ) /Q(  1 ,1 ,0; t) = P ( x , y, 0; t ) / P (  1,1, 0; t). For example, 

P ( M c(t) =  0 |yVc(t) =  0) =  P ( l ,  0,0; t ) / P ( l ,  1,0; t), which is the probability th a t a 

host is truly free of infection if it has no parasite offspring.

3.3.2 Host Survival

The probability th a t the host survives to time t  is

S(t)  := P ( l ,  1,1; t) = e x p j y  <j)(t — w)(h(g(w)) — I) dw^ exp J  dw

If is constant, this can be written as

S( t)  =  exp j— J  iiH{w)dw^  exp j—J  a/E (L c(u;))du; j exp j— J  a mE (M c(w))dw

(3.10)

so th a t the survival of the host can be expressed in terms of just the expectations 

of the parasite loads given survival (and of course the host’s natural death rate).

Figures 3.1 and 3.2 on pages 58 and 59 plot the survival probability of the host 

for different input distributions. The param eter values not stated are F l {x ) —
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Figure 3.1: Host Survival Probability with 0 =  6 and m c = 50 for Various Distri­

butions of C

e~ ^ l+lt)x,a(x ) - 7i/(ni  +  7Z) and with & = 20,71 = 30, fim =  10

and ot\ = 0, a m = 0.2. The figures show th a t the overdispersion of the random 

variable, C, has a noticeable effect on the survival function of the host when the 

mean of C  is high relative to the encounter rate, </>(•). In th a t case, hosts with 

unusually large parasite loads will be subject to high death rates; it follows th a t 

the effect is more marked the larger the impact of the parasites on host death, i.e. 

when ai and a m are high. The effect C  has on the host survival probabilities comes 

directly from the effect C  has on E (Mc(t)) (see result 3.10). Higher aggregation 

of C  will decrease the effect of parasite-induced host m ortality on the mean of the 

parasite load means conditional on host survival, E (Mc(t)).

The probability tha t the host is dead by time t is 1 — S(t)  (for t > 0), so tha t 

we can easily obtain the probability density function, f o ,  of the tim e of host death; 

in particular when 0 (-) is constant,

/o (f)  =  77(1 -  S(t)) = S{t)[aiE(Lc(t)) +  a mE (M c(t)) +  //#(*)] 
at

= S(t)  [0(1 -  h(g(t)) +  (t > 0). (3.11)
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Figure 3.2: Host Survival Probability with 0 =  60 and m c =  5 for Various D istri­

butions of C

Often the only data  obtainable on parasite numbers are from dead hosts, so th a t 

the distribution of the parasite load at the time of death of the host is of interest. 

If the age of a host upon death is known, then it is useful to compare the load of 

hosts upon death with th a t of surviving hosts of a similar age. For the remainder 

of this section we assume th a t S(t)  < 1 for t > 0, i.e. th a t there is a non-zero 

probability of host death. Suppose tha t the host dies at time t and let Ld(t)»M d{t) 

and Nd{t) be the number of larvae, m ature parasites and offspring present a t this 

time, i.e. P ( M ^ t) = m) = lim^-to P(M (t )  =  m \Z ( t  +  6t) =  0, Z(t)  =  1). The joint
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Figure 3.3: Mean Parasite Loads at Host Death and in Surviving Hosts; </> =  

60, m c =  5, a m =  0.2

probability generating function for L d̂  > and N d̂  is then

• —  yMd(t)

death and the host’s natural death rate is insignificant compared with the effect 

of m ature parasites, we have E(M d̂ )  «  E (Mc(t)) + I (M c(t)), where !(•) indicates

dim y 2  x lymznP(L(t )  = I, M(t) -  m, N(t)  = n \Z ( t ) =  1, Z ( t  +  =  0)
St—}o . .

aim  V   ̂ +  <ft) =  0 |£ (i)  =  l , i ( i )  =  l ,M ( t )  = m , N ( t )  = n) x
l ,m ,n > 0

P ( i ( i )  =  I, M(t)  =  m, N(t )  =  n |Z (t) =  1) 1

+  n n { t )Q { x ,y , z \ t )

The moments of L d^ , M d^  and N d̂  can be easily found, for example

V(M i{t)) = j ^ r  {a ,E(Lc(t)Mc(t)) + amE (Mc(t)2) + ^„ ( t )E { M c(t))} ■

In the special case when on = 0 and //#(£) ~  0, i.e. when larvae do not affect host
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index of dispersion, so th a t the difference between the expected loads of surviving 

hosts and those th a t have just died is simply the index of dispersion of the load 

of the surviving hosts. For this case, Figures 3.3, 3.4 and 3.5 on pages 60 and 61 

show the expectation of the m ature parasite load at host death as a function of 

time, together with the expectation of the m ature parasite load for surviving hosts 

with the same exposure time. Param eter values not stated are as in Figures 3.1 

and 3.2. The difference between the two means is larger in relative term s when C  

is greater relative to </>(•), i.e. for higher input variability (compare Figure 3.4 with 

Figure 3.5), and as expected this is more marked for higher a m (compare Figure 

3.3 with Figure 3.4).

These results illustrate th a t the high variability of the parasite numbers causes 

the effect of parasite-induced host m ortality to be greater.

Results for the larval load a t death can be found in the same way, as can higher 

order moments of M d(t), e.g.

2 q tE (Lc( t)Mc{t)2) + q mE(M c(t)3) +  MH(<)E(Mc(t)2)
1 i{t)> a ,E(Lc(t)) +  a mE (M c(t)) +  n B {t)

If the age of a host is not known upon death, for example if a host is found 

to be dead in the wild, then the parasite loads a t death can be used; let these be 

Ld, Md , Nd. Their joint generating function is simply

poo
E (xLdy Mdz Nd) = /  ^ ( x , y , z \ t ) } D(t)dt

J o
d Q (x ,y , z - t )  dQ(x,  y, z\ t) \

=J  ̂ S { t ) ia i x -------—  ba my  — bfj,H{t)Q(x, y, z; t n d t .

Thus the expectation of the number of m ature parasites a t death can be ex­

pressed as

E (Md) =  r  S(t) {a,E{L{t)M(t))  + a mE ( M ( t )2) + dt

and further moments can be expressed similarly.
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3.3.3 Disease Control

If the transmission of the parasite to the host is stopped, for example by controlling 

the parasite vector outside the host or by moving the host to an uninfected area, 

then it is of interest to see how long it is before the host becomes parasite free 

(or dies). Suppose transmission is a t a constant level until it ceases a t tim e 9, i.e. 

<j>{t) =  </> for 0 <  t < 9] (f)(t) =  0 for t > 9, then from (3.6), the joint probability 

generating function for Lc(t), M c(t), N c(t) for t > 9, is

Q(x, y, z-1) =  exp j - < ^  ^[h(g( 1, 1, 1, a h a m\ u ) ) - h ( g { x ,  y, z, a h a m; u))]du|(.3.12)

Given a host is alive at time 9, the probability th a t it is still alive a t t > 9 is 

simply S ( t ) / S ( 9 ), where S  is as given in Section 3.2. Thus if the host is alive when 

transmission is stopped at time 9, the probability the host survives further to time 

9 +  (3 is simply

exp |  j  (cf)(h(g(w)) -  1) d w ) j e x p j - ^  fj,H(w) dw^j . (3.13)

As S(t)  x Q(0,0, 0; t) is the probability the host is parasite free and alive, S( t ) {  1 — 

Q (0, 0, 0;£)} is the probability th a t a host is alive and contains parasites and so 

can pass on the infection. Figures 3.6, 3.7 and 3.8 on pages 64 and 65 show 

1 — S ( t ){1 — Q (0, 0, 0;t)}, with <j>(t) = 0 for t > 10, which allows enough time 

for the parasite level to be a t its quasi-stationary level before control is started. 

This gives an idea of how long transmission control needs to be m aintained. Three 

different lifetime distributions for the m ature and larval parasites are used with 

means fixed a t the values in Figures 3.3 - 3.5, bu t with shape param eters varying 

as indicated in the figures. O ther parameters not given are as in Figures 3.3 - 3.5. 

The different tail lengths of the m ature parasite lifetime distributions affect the 

tim e for which control needs to be maintained. W ith higher parasite-induced host 

mortality, the curves approach 1 faster, because of the extra chance th a t the host 

dies and is unable to transm it infection further (compare Figure 3.6 with Figure 

3.7).

63



0.9

.0 0.8

0.7

' “ 0.5

I  0.4

 Exponential
— • Gam ma 3 

• ■ Gam ma 7
0.1

0.1 0.2 0.3 0.4
Time Since Control

0.5 0.6 0.7 0.8 0.9

Figure 3.6: Probability Host is Not Infectious; </> =  6, m c = 50, a m = 2

0.9

O  0.8

—  Exponential
-  • Gam ma 3 
• - • Gam ma 7

0.7

“ 0.5

I  0.4

=  0.3 
CO 
"§ 0.2

0.1

0.1 0.2 0.3 0.4 0.5 0.6
Time Since Control

0.7 0.8 0.9

Figure 3.7: Probability Host is Not Infectious; 4> — 6, m c =  50, a m = 0.2

64



0.9

O  0.1

0.7

■“ 0.5

X  0.4

=  0.3
CO 

_Q 
0  0.2

 Exponential
— Gam ma 3 

■ ■ ■Gam ma 7

0.1 0.2 0.3 0.4 0.5 0.6
Time Since Control

0.7 0.8 0.9

Figure 3.8: Probability Host is Not Infectious; 0 =  60, m c =  5, a m =  0.2

As this effect increases, the choice of lifetime distribution becomes less impor­

tan t. W ith more parasite inputs events i.e. greater 0, the chance of the host being 

parasite free is less, even though the mean load levels may be similar (Figure 3.8). 

This emphasises the difficulty in relating prevalence data  to actual parasite load 

levels in host populations.

3.3.4 Variable Input

So far we have considered a single host, or equivalently a population consisting of 

a cohort of identical hosts. However, for many infections there may be substantial 

heterogeneity between hosts. A simple way of incorporating such heterogeneity 

into the model is to allow the function 0(-) to be a random function, $(•). This 

additional random variation could represent differences between hosts in their ex­

posure to infection (see Isham (1995) and Chapter 5 for brief discussions of other 

models for between host hetereogenity). Suppose we assume th a t the exposure rate 

$  is a constant 0 for a particular host, but varies randomly between hosts. W riting 

=  J o h ' i g i w ^ e - ^ J ^ L i w )  dw and e2L{t) = Jq hn(g(w))e-2aiW( T L(w))2 dw , it
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is straightforward to show from the results in Appendix A th a t

V[Lc(t)} =  e1£ (i)E[$]

Var[Lc(i)j =  f 1L(t)2Vfir[<I>] +  (eu .(i) +  e2/,W)E[<I>]

so th a t the index of dispersion of L c(t) can be expressed as 

r Var(Lc) e1L(t) + e2L(t) ,
h  - 1 ( 1 7T  -  ~ ^ J t )  +  t l L ( t ) u

where 1$ =  V ar($ )/E ($ ). The first term  is the within-host index of dispersion (in­

dependent of <L) obtained from the compound Poisson input, whilst the second term  

represents the contribution of the between-host variation (also see Isham (1995)), 

so this decomposition allows comparison of the relative sizes of the contributions 

from the two source of variation. Similar results are obtainable for M c(t) and N c(t).

W riting e3L(t) = ti'(g(w)) J rL(w)e~a‘wgy(w)dw, and

e1M(t) = Jq h'(g(w))gy(w)dw we also have (from (3.9)),

Cov (L c, M c) = e3LE ($) +  eiLeiMV ar($).

If we define the index of co-dispersion of L  and M , Il ,m , as 9 QV(Lc,Â =, then we
’ v E{Lc)E{Mc)

have
:= Co_vjLcl_MJ_ =  +  J eiL{t)£m{t)Ui

^ E ( L C)E (M C) y/e1L(t)e1M(t) 

again giving a contribution from within individual hosts together with a between 

hosts term. We have similar results for 1l , n ,  and Im , n -

3.3.5 No Parasite Induced M ortality

If there is no parasite-induced host mortality, i.e. ai — a m =  0, then there is no 

interaction between parasites and host and the process is linear (Tallis and Leyton, 

1966; Tallis and Leyton, 1969), and is simply an M /M /oo queue with batch arrivals. 

It is useful to consider this simple case as a means of comparison for results with

parasite-induced host mortality. We have g(w) = 1, and the ith moment of the
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process only depends on the moments of C, the clump size distribution, up to 

order i (see (3.6), (3.7), (3.8), (3.9) and Appendix A). It is the non-linear effect 

of the parasite-induced host m ortality tha t causes the full distribution of the input 

clump size, C, to affect even the first moment of the parasite loads. In general, a 

similar result holds for the effect of the distribution of offspring clump size, D , on 

the offspring number N c(t). However, in this model we have not included any effect 

of offspring on host death (i.e. a n  =  0 throughout), so when looking a t moments 

of N c(t) only the equivalent moments of D  need to be specified.

Consider the special case when all lifetimes are exponentially distributed and 

p(-) and <j (") are constant, so th a t the model is Markov, with larvae, adult and 

offspring parasite lifetimes having parameters /ij +  71, /xm5 Hn  respectively, and with 

a(u) = A/(A +  pi), and further assume tha t (f)(t) is constant. Then it is straight­

forward to perform the integrals in equations (3.7), (3.8), (3.9) and Appendix A 

to obtain explicit expressions for the second-order moments. For simplicity, we 

state  here only the limiting (quasi-stationary) moments as t  —> 00 which can be 

expressed in term s of input and output rates to each of the three stages;

4>E(C)
Vi +  71

li  4>E{C)

E (Lc(t)) ->

E (Mc(t)) —>

E (JVc(f)) ->

I(icW) —y

I (Mc(t))

ftm {ll T  /X;) 
pE(D) 4> E(C) 

(J*N Ahn { l l  +  P i)

l  +  i ( I ( C ) + E ( C )

ll (I(C) +  E ( C ) - 1 ) . (3.14)
2 h  +  Pi +

The dispersion of the m ature parasite load is always less than  th a t of the larval load. 

As 1(C) +  E(C) > 1, we can see again tha t none of the loads can be underdispersed 

(i.e. the index of dispersion of L c and M c are a t least 1.) Furthermore, they are only 

equal to 1 when E (C 2) =  E(C), i.e. when C =  1 a.s. (see Section 3.6). Notice th a t to 

produce this parasite load overdispersion C itself does not have to be overdispersed
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- there merely needs to be some probability of C  taking values greater than  1.

Of course, when a/ =  a m =  0 the model is linear and these moments can be 

obtained directly from the set of ordinary differential equations for these properties, 

w ithout any need to find the full solution for the probability generating function 

Q ( x , y , z ; t )  first.

In their analysis of the same (linear) model with larval and m ature parasites, 

Grenfell, Dietz, and Roberts (1995a, p371) give the index of dispersions at equilib­

rium in 3.14, though the values for I (M)  and the “negative binomial param eter” 

kM '■= (E (M ))2/(V ar(M ) — E(M )) appear to have been misprinted. They plot 

this k statistic for M  against the k statistic for the input distribution C. This is 

done for fixed values of E(C) so th a t Var(C) =  E(C )(E (C ) +  k c ) / k c . The plot 

is given for various levels of 4>, the encounter rate, and hence for various levels of 

E(M ) =  <j>E(C)/ Hm. The results show tha t as <j> increases, the value of kj^ in­

creases, and hence the aggregation in M  decreases. This is due to the swamping of 

the clustering effect of C  by the higher rate of encounters, making ingestion levels 

more uniform across realisations of the process.

In the paper (page 372), the authors infer from this th a t the aggregation of M  

decreases as the mean of M  increases, because, “the asym ptotic values of I for L  

and M  are independent of the means” . This is of course only true for fixed mean of 

C,  as in fact the equilibrium values of l(L)  and I (M)  are only independent of 0, 7

and n m (see (3.14)). W hen fixing E(C), they do then become independent of E(M ) 

and E(L). However, since the mean parasite burden can be increased by increasing 

either 4> or E (C), their conclusions should not be taken in general. Higher parasite 

levels in the hosts could produce more eggs per release of faeces, therefore higher 

larva concentration on the pasture, and hence higher levels for E(C). Presumably 

their fixed level of E(C) was used because of field data  and the conclusions were 

based on the assumption th a t 4> is more likely to vary than  E(C) in the particular 

case investigated. Similar arguments are used in Grenfell, Wilson, Isham, Boyd, 

and Dietz (1995b) when the model is fitted to data.
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For a system of this type, the im portant biological question is to establish 

whether increased parasite burdens are due to higher contact rates (0 ) or higher 

clump sizes (C). This then directly affects the level of dependence between parasites 

entering a host, which is the cause of overdispersion in this linear system.

3.3.6 Pure Poisson intake: C  =  1

If C  =  1 then exactly one larva is picked up at each encounter and so the input is 

Poisson. This affords considerable simplification of the model because then there 

is then no dependence between the life histories of distinct parasites. We have 

h(x) = x  and it follows from (3.3) and (3.6) th a t L c(t) has a Poisson distribution, 

independent of M c(t) and N c(t), with mean

[  <j>(t — w)e~aiWT L(w)dw (3.15)
Jo

while the marginal distribution of M c(t) is Poisson with mean

[  (f>(t — w) f  e~am(w~v^e~aiVa(v)fL(v)J:rM('w — v)dvdw.  (3.16)
Jo Jo

Thus the distribution of L c(t) is not only independent of M c(t) and N c(t) but 

is also unaffected by any parameters or distributions relating to m ature parasites 

or their offspring. This is true even when the m ature parasite load has an effect on 

the host’s survival (a m ^  0), and holds only in this special case of Poisson input 

when the host picks up just one larval parasite at a time.

The mean in (3.15) has a direct interpretation as a sum of contributions from 

all larvae picked up over (0, t]. A larva picked up at t — w (at rate (f)(t — w)) must 

survive until t (probability F l {w )) and not kill off the host (probability e~aiW).

A  similar argument applies to the mean of M c(t) in (3.16). However, this mean 

depends on the arrival rate into this second stage, which itself depends on the part 

of the model relating to larval parasites. Thus we still expect to  see the larval 

lifetime distribution and ai affecting the distribution of M c(t). A larva is picked up
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at tim e t — w a t rate <j)(t — w ) when the host is alive, m atures a t rate /l(u)<j(u) after 

a lifetime u, and must have not killed the host before it m atures (probability e~aiV). 

Then the resulting m ature parasite must have survived to time t (with probability 

3~m (w — v)) and not have killed the host (probability e~am(w-v)y

Of course in this model M c(t) and N c(t) are not independent as the offspring 

are directly produced by the m ature parasites.

The results here mean th a t if the model does not allow for larval parasites to 

be picked up in clumps (giving a cause of overdispersion in the absence of parasite- 

induced host m ortality), then within a cohort of identical hosts, neither the larval 

nor m ature parasite loads are underdispersed, (nor are they overdispersed), despite 

the regulatory effect of parasite-induced host mortality. This is in contrast to 

the intuitive idea put forward and demonstrated by Monte Carlo simulation in 

Anderson and Gordon (1982), in which it is stated th a t with Poisson immigration 

into the host, the variation to mean ratio of the parasite load will be decreased by 

parasite-induced host mortality. It is clear from the results of this section th a t it 

is only when there is a natural overdispersion of the parasite load in the absence of 

parasite-induced host m ortality (generated in this model by the clumped input), 

th a t this parasite-induced host m ortality will reduce the dispersion.

W ith the additional assumptions of the Markov model with constant </>, de­

scribed in Section 3.3.5, the means of L c(t) and M c(t), given in (3.15) and (3.16), 

simplify to

E (Lc(t)) = <j>-

E
fJ'm T Oim 'yi Hi qli " fii +  oti +  [ im T OLm

and we can see th a t in this case the effect on L c(t) and M c(t) of allowing parasite- 

induced m ortality is simply equivalent to an increase in the parasite death rates 

from Hi to Hi +  a ii and from Hm to Hm +
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3.4 Disease Progression

In the previous model of Section 3.2 the host is in one of two states, either alive 

or dead. The method of model analysis proposed by Ball (private communication) 

can be extended to allow the host to move through different stages of disease before 

death occurs. In many macroparasitic diseases the host may move through different 

stages of morbidity before death occurs. In some human m acroparasitic diseases, 

such as filariasis, the stages of morbidity are more im portant than  death itself, 

which can be quite rare.

Consider the host as being in one of m  +  2 states, representing disease free, m  

disease states and death. Let Z t be the variable denoting the state  of the host, 

so th a t Z t takes values in 0 ,1 ,..., m, m  +  1, with state 0 denoting no disease, and 

state  m  +  1 being an absorbing state representing host death.

The host increases its disease state a t a rate proportional to its parasite load. 

Parasites evolve in the same way as described in Section 3.2, so th a t the model is 

similar, with just the addition of extra disease states before death. The host may 

also die from natural causes at any time, and so Z t may jum p to state  m  +  1 a t an 

additional rate of //#(£) from any state.

The general model is as follows. Let L ( t ) : M { t )) be the rate of transfer of Z t 

from state  r  to  state r  +  1 as a result of the parasite load (so th a t vr (t\ L ( t ), M(t) )  is 

defined conditionally on the parasite loads in the host a t t , i.e. vr {t\L(t),  M(t) )  = 

P ( Z t+st = Z t +  1 | L t , M t) for r = 0 ,1 ,..., m).  Ideally we would include a recovery 

rate, pr say, so th a t Z t can move from disease state  r  to r  — 1, and also we would 

have vr{t\ L{t), M(t))  depending on r  in some way. However we wish to incorporate 

the evolution of the parasite loads L(t) and M (t)  into the solution by removing 

the conditioning on them, and it appears th a t the only solution for which this 

is tractable is when pr = 0 and also vr (t; L(t),  M(t) )  = M(t) )  = aiL(t)  +

a mM(t)  for all r. This means there is one way disease progression with no recovery, 

and the effect of an individual parasite on disease progression remains constant
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throughout all disease states. This is neccesary because otherwise the contribution 

each parasite makes to the to tal history in each disease stage needs to  be calculated, 

and hence a track of when each transition between stages occurs is needed. W ith 

the same linear function (pnL(t) +  a mM(t))  for the disease progression rate across 

the disease states, only each parasite’s contribution to the history across all stages 

needs be tracked, as given v(L(t),  M(t)) ,  the disease progression is moving in a 

Markovian type way.

We consider the formation of the relevant probability generating function for 

this simple, irreversible disease progression in which, given fixed parasite levels, the 

rate  of progression through the disease states is constant.

Consider Z t as a general non-homogeneous immigration process. This means, 

conditional on L{t) and M(t)  and hence on z/(L(t), M (t)), Z t simply moves from 

state  n  to state  n +  1 at rate is(L(t), M ( t ) ) : for 0 < n < m,  but can still jum p 

from any state  to state m +  1 at rate Ph ^)- There is no recovery, i.e. Z t can only 

increase until it is absorbed in state m  +  1 (host death). If P (Zt = r) is w ritten as 

pr(t), then the forward differential difference equations conditional on the parasite 

loads L{t) and M (i), and therefore conditional on is(t) = aiL(t)  +  a mM ( t ), are

w ith initial conditions Pi(0) =  0 for i ^  0,po(0) =  1. The solution of these give the 

probability the host is in a particular disease state  r, (0 <  r  <  m), as

+  p H(t) ^2Pj{t )
m

(3.17)

and the probability the host is dead can be found using

m
P{Zt =  rn +  l)  =  l -  £  P (Z t = j) .

3 = 0

72



As v{u) = aiL(u)  +  a mM ( u ), the working required to solve this model and inves­

tigate the interrelations between disease stage and the distribution of parasites in 

the host follows similar lines as tha t in Section 3.2.2. We consider the generating 

function

Pr(x ,y , z ] t )  := ^ 2  x lymznP ( M  = m, L = I, N  = n, Z t = r)
l,m,n> 0

=  E (xLy Mz N0(aiL + a rnM \r ] t ) )  

and for notational convenience we define

Gr (x,y,z- , t)  :=  1 e  {xL^ y m ) z N{t)e - {a'Ai-t)+amm\ a lA{t)  +  a mB ( t ) ) r)

and

gr(x, y , z; w) :=  E (xLijy Mljz Nij9(aiAi:j +  otmBij\ r; w)\Ti =  t  -  w) =

— i x e ~ OLlW{oiiw)rF L( w ) + f  (e~aiV){aiv)rf L(v){ l  -  a(v )}dv+  (3.18)
r\ I Jo

rw  r w - V
/  f L(v)a(v)  /  e~{aiV+ami)(aiv + a m^)r7l(z]£,w -  v ) f M(£)d£dv +

J 0 J 0
r w  ^

J  y fL{v)o’(v)e~('aiV+c‘Tn̂w~v')\ a i v  +  a m(w — v))Tr}(z-,w — v, w — v)TM{w ~ v )dv j ,

analogous to the definitions in Section 3.2.2. By the same argum ent as in th a t 

section we have

Gr (x, y, z; t) = exp (j>{t -  w)[l -  h{gr(x ,y ,  z;*))]dw j .

By (3.17) we find tha t

Pr(x ,y , z - t )  = Gr ( x , y , z ; t ) e x p { -  [  p H(u)du}
Jo

so th a t the probability generating function of the parasite loads, conditional on the 

host being in disease state r, is

Qr(x , y , z - t )  := E(x y z \Zt = r) = Pr (x, y, z; t ) / P r(l,  1,1; t).

Unconditionally, the probability the host is in state r  is Pr(l,  1,1; t).

The survival probability of the host is S(t)  — YJiLo jF^(1, 1,1; t ) .
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3.5 M oment Closure Approximations

Although relatively simple, the model in Section 3.2 incorporating parasite induced

host m ortality has the nice property th a t exact results are obtainable despite its

nonlinearity. We can use this to investigate how closely the moment closure ap­

proxim ation technique for nonlinearities described in Section 2.2 matches the exact 

results. Grenfell, Dietz, and Roberts (1995a) and Grenfell, Wilson, Isham, Boyd, 

and Dietz (1995b) have used these moment closure approximations to  evaluate 

models of nematodes in ruminants. The additional non-linearity of an immune 

response was also included, but we have left its discussion to C hapter 4.

We consider only the Markov version of the above model, and investigate the 

moments of the process conditional on host survival. We cannot write down the 

moment equations for the conditional process directly from the specification of the 

model in the usual immediate way as this would involve conditioning on different 

events on either side of the forward equations, i.e. conditioning upon host survival 

at different times.

We can, however, proceed in the usual way if we consider Z(t) ,  the indicator 

of host survival, as another variable in the process, and initially ignore the condi­

tioning. To illustrate this, consider just the single variable Markov version of the 

above model, i.e. consider only m ature parasites, M(t).  We can write the Markov 

transitions for the model as being from M (t), Z(t)  to

M  +  c Z  a t rate (j){t)hc fo re  =  0 ,1 ,...

M  — 1 Z  a t rate /iM

M  Z  — 1 a t rate (qM  +  ^ ( f ) )  Z

w ith the im portant initial condition th a t Z ( 0) =  1, together with M (0) =  0. W hen 

considering just the conditional process, we could of course write the parasite death 

transitions rate as f i M Z  instead of f iM  w ithout altering the model, as we are not 

interested in the process after host death.
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The nonlinearity of the process can be seen in the transition rate  for Z, which 

is a M Z .  On considering up to second order moments, we obtain five ordinary 

differential equations. Any of the usual assumptions discussed in Section 2.2 th a t 

are made about the bivariate distribution of M (t)  and Z(t)  would be unlikely to 

be appropriate as Z  is simply an indicator variable.

The system can be reduced to two variables when we realise th a t E ( Z 2) = E(Z) 

and th a t the moments of E (M)  and E ( M 2) will be self contained and have no 

influence on the conditional process. The differential equation for E ( M 2Z)  needs to 

be added to obtain second order conditional properties. Using the result E (M r Z) =  

E (Z )E (M J) for r an integer, and the solution to  the equation for E (Z (t)) =  S ( t ) :

dE(Z(t))  = - a E(M (t)Z( t ) )  -  /j,H(t)E(Z(t)) ,  with E(Z(0)) =  1
at

which gives

S(t)  =  exp h  (amE(M c(w)) +  Hh(w)) d w J ,

we can write a set of differential equations purely in term s of the conditional mo­

ments. These will involve higher order moments and will not be closed, hence 

moment closure techniques can be used on the system. The results of using this 

m ethod are given in Section 3.7.

By following the algebra above it can be seen th a t if any process w ithout parasite 

induced host m ortality has moments equations

E ( Y )  =  s (E (Y ))

(where Y  a vector of the variables of interest, (M (t), M ( t ) 2)' in the example above) 

then the moments of the conditional process, E ( y c) follow the differential equations

E (Y C) =  g ( E ( Y c)) -  cov ( y c , h ( Y c))

where generally cov ( A , B )  is a vector with term  cov (A i ,B i )  and h ( Y )  is the 

excess death rate of the host as a function of the variables Y .  In the above model 

h ( Y )  = a M { t ) so h ( Y c) = a M c(t).
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An alternative but essentially equivalent method of deriving these conditional 

moments equations for the Markov model, used by Grenfell, Dietz, and Roberts 

(1995a), Grenfell, Wilson, Isham, Boyd, and Dietz (1995b) and Isham (1995), is via 

the partial differential equation for the probability generating function of the con­

ditional process. A general form th a t enables this differential equation for Markov 

models of this type to be immediately w ritten down can be easily found by a slight 

modification of the Palm result (2.5) of Section 2.1. We outline this in the following 

Section, 3.5.1.

3.5.1 Derivation of Forward M om ent Equations

We derive a general form for the partial differential equation of the probability 

generating function for Markov models with this additional feature concerning host 

death. The rate of host death depends on the state of the parasite population, and 

we are interested in not only time until host death, but results conditional on host 

survival (Grenfell, Dietz, and Roberts, 1995a).

The general set up we consider is a continuous time Markov process, W t with 

state  space x {0,1}. Let W t = ( X t Z t), where X t £ and Z t £ {0,1}. 

The interpretation of this is th a t Z t indicates whether the host is alive or dead, 

and X t represents the internal state of the host in some way, usually referring to 

the parasite population and the host’s immune defences. We call X t the internal 

process and Z t the indicator process. The set of states { W t : Z t = 0} £ X {0} 

are absorbing as they correspond to host death.

As in Section 2.1, we define the transition probabilities for the internal process

as

f c(x)5t  +  o(5t) = P ( A X t =  c  | X t = x )  for c £ C 

and in addition we define the transition rate for the indicator process as

f d(x)8t  +  o(St) -  P ( Z t+st =  0 | X t = x ,  Z t = 1)
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where fd(x)  is the death rate of the host, a function of the state  of the internal 

process. For example, in the univariate case of the Markov version of the model of 

Section 3.2, (Isham, 1995) we have f i(x)  =  hrf,  f - i ( x )  = fix and fd{x) = ax .

We consider the generating function,

P ( s - t ) : =  s xP ( X t = x , Z t =  1) 
xeNN

which is not a probability generating function because the probabilities P ( X t = 

x , Z t = 1) do not form a full probability distribution over x  G N 77. We use the 

convention th a t generally s x := n£Li sXi. If we define

K c(s -x i ] t )  :=
/  \

s ^ - ^ P ( X t+st =  * 2, Z t+St = l \  X t = x u Z t = l ) - l
W N "  /

lim
5 t—>0

we find tha t

K c(s] x; t) =  l ) / c(®) ~  fd(x).  (3.19)
c EC

Compare K c with the definition (2.4) of K , given in Section 2.1. Note th a t the c 

subscript in K c refers to the conditioning on the host survival and not the jum ps 

of the process.

Following along the lines of Section 2.1, we find th a t

^  (3.20)

We assume th a t initially Z {0) =  1. We have th a t P ( Z t = 1) =  P ( X t =

x ,  Z t =  1) =  P ( l , t ) .  If we define Q (s ; t) = P ( s ; t ) / P ( l ; t )  then

Q  =  £  s * P ( X t = x , Z t = l ) / P { Z t = l)
xzHN

=  ^  P { X t = x \ Z t = l ) s x
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and Q(s \ t )  is the probability generating function of X t , conditional on Z t =  1, 

i.e. the probability generating function for the internal process conditional on host 

survival. The partial differential equation for Q (s; t) is then

dQ(s;t )  _  1 \ d P { s - t )  , d P ( l ; t )
dt  P>(1;0  \  dt J '

W hereas equation (3.20) may be solved for some simple processes of this type, 

for example the process described in Section 3.2, equation (3.21) is not explicit 

for Q. However, by differentiating with respect to the appropriate arguments the 

differential equations for the moments of the internal process conditional on host 

survival can be found, as in Grenfell, Wilson, Isham, Boyd, and Dietz (1995b) and 

Isham  (1995).

(3.21)

3.6 The M ultivariate Negative Binom ial D istri­

bution

In the appendix of Grenfell, Wilson, Isham, Boyd, and Dietz (1995b) the use of 

normal approximations is discussed, and an approximation based on moment re­

lationships of a negative binomial distribution proposed, on the grounds th a t it 

often describes parasite loads closely. For the simple univariate model described in 

Isham (1995), Isham (private communication) has shown th a t the univariate neg­

ative binomial approximation can perform better than the normal approximation. 

Grenfell, Wilson, Isham, Boyd, and Dietz (1995b) stated

Ideally, we would explore here a multivariate negative binomial a p p ro x ­

imation to the joint distribution of I  (immunity), L, M  and E  (written 

as N  here). W hat is needed is a suitably broad class of joint distribu­

tions with negative binomial marginals and arbitrary covariances, but 

we have not yet found a satisfactory candidate for this.
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We discuss possible choices for moments relationships in m ultivariate systems based 

on the negative binomial distribution in this section.

There are many ways of describing a multivariate distribution which has marginal 

negative binomial distributions. A common form is the negative m ultinom ial dis­

tribution. An n  variable negative multinomial distribution can be thought of as the 

number of outcomes of each of n  types, before the A;*'*1 occurence of outcome 0 , say, 

occurs, in a sequence of independent trials in which outcome i occurs with proba­

bility pi (i = 1,..., n) and outcome 0 occurs with probability po = 1 — Y ^ - i  Pi- This 

gives the probability generating function as the negative multinom al expansion

with k > 0 and 0 < Pi < 1 for all i. The joint probability mass function is

A different way of formulating the univariate negative binomial distribution, 

first derived by Greenwood and Yule (1920), is as a m ixture of the Poisson and

distribution by mixing n  independent Poisson distributions means A^0 for i = 

1,..., n, with 0 ~ r(a, k).

Consider the multivariate Poisson distribution i.e. one derived, for example in 

the two variable case, by letting

where X i ,  X 2 and X 12 are independent Poissons. All m ultivariate distributions th a t 

have each marginal distribution as sums of independent Poissons have probability

where

G am m a distributions. This can also be used to derive the negative multinomial

y 1 = x 1 + x 12f v 2 = x 2 + x 12
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generating function of the form

exp j z s  A iZi +  E  ’52l<i<j<kAij ( ZiZ> -  !) +  ••• +  A 1 2 . . . n ( z i Z 2. . . Z n  -  1) j

(see Johnson, Kotz, and Balakrishnan (1997)). On multiplying the means by © 

and then letting © ~  T(a ,k ) ,  the resultant distribution has probability generating 

function of the form

1 ^  y PjZj ^  y PijZjZj Pl2...n^l^2-• '%n I • (3.22)
i=1 i<j J

The scale param eter of the gamma distribution, a , is superfluous as it simply 

rescales the original Poisson means, so th a t this distribution, referred to by Patil 

and Joshi (1968) as the m ultivariate negative binomial distribution, provides 2n 

param eters, 2n_1 from the multivariate Poisson distribution plus the k param eter. 

The negative multinomial distribution is a special case of this distribution.

We give a brief but interesting example comparing the two distributions de­

scribed. Diggle and Milne (1983) considered certain types of point processes th a t 

might produce negative binomial distribution in 2-D space. W hen a mixed sam­

ple process is produced by taking a univariate negative binomial distribution, and 

conditional on its value scattering th a t number of points randomly on a region in 

space, then the number of points in n subregions follows the n  variate negative 

binomial distribution described above. In particular, if the subregions are disjoint, 

then this simplifies to an n  variable negative m ultinom ial distribution.

If the systew of differential equations th a t we wish to evaluate has n  stochastic 

variables and includes moments up to order r, then there will be

E
i=i V i

equations, where
V

is the number of unordered ways of choosing r 

items from a set of n  distinct items, with replacement, i.e. the number of moments
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of order r in an n variable system. The negative m ultinom ial distribution has n  + 1  

param eters and so is not particularly useful for our purposes here as for n > 1 and 

r  >  1 there will never be sufficient parameters.

For r = 2 and n  <  3 there are less param eters in the m ultivariate negative 

binomial distribution than the \ n ( n  +  3) required for the system, and for r =  3 

and n  <  6 there are less than  the | n (6 +  (n +  l) (n  +  5)) required. Hence using this 

m ultivariate negative binomial distribution will rarely provide sufficient parameters, 

and even if it did, it wouldn’t provide the exact number, so some would have to be 

set to zero to give the correct number, and it is not imm ediately clear how best to 

do this.

Instead we derive a different distribution th a t has the correct number of pa­

ram eters when r — 2, for all values of n. It still has a negative binomial marginal 

distribution, and we still utilise a form of Poisson and G am m a mixing. The genesis 

is as follows.

Define Xij  for i  =  1,..., n, j  = 0, i  +  1,.., n  as independent standardised gamma 

distributions with param eters 6{j > 0, i.e.

f Xij(*) =  (r(fy))"1 and H Xij(s) :=  E(esXi’ ) =  (1 -  «)"*«.

Then let
i —l  n

Yi =  X io  +  'y " X k i  +  ^   ̂ X ik ,  i  1, . . . ,  tl
k —1 k = i + 1

and finally, independently for each i  given the Y i , let

Wi ~  Poisson(XiYj) A; >  0.

The joint probability generating function for the H^s is

e f n =  n ( ! + m i ~ s*)) 6 i°  n  s t ) + ^ ( i — sj)) 9 ij
\ i ~  1 J  i = 1 j = i + l

and marginally each has probability generating function



and therefore has a negative binomial distribution with param eters k = 9i0 +  

E}=i Oji +  E L z+ i @ik and p = Eor example, if r  =  2 and n  =  3, a case we

will need later on, then the third order moments expressed in term s of the first and 

second order moments are

E(W?) -  +  m a ^m a/m i  -  m* -  1)

E ( W ? W j )  =  m lm J -  m u r r i j  +  — 1)

E(VEiW2W3) =  m i2m3 +  m 1̂ m2 +  m23mi -  2m im 2m3

for z 7̂  j ,  where we have w ritten rrii :=  E(kU), :=  E(WibFj); i , j  =  1 ,2 ,3 , for 

notational convenience. Note th a t this last result is the same as the corresponding 

result for the relationship derived from the normal distribution. For r = 2 this 

distribution will always provide the correct number of param eters, as the p i  param ­

eters can be thought of as providing the same number as the means of the process, 

and OijS can be thought of as providing param eters to account for the second order 

moments.

Unfortunately, this is a fairly restrictive distribution as it necessarily requires 

th a t all variables are positively correlated. A more general distribution is still 

ideally required. However, we can apply this distribution to approxim ate the model 

of Section 3.2 as we would expect all correlations to be positive.

On a general note, notice th a t the derivation cannot be extended further by use 

of the m ultivariate Poisson distribution in the way the negative multinom ial could, 

as the marginals would then become the sum of negative binomials with different 

p  values, and hence would no longer be negative binomial.

3.7 Evaluation of Approximation Techniques

Numerical solutions to the integrals of Section 3.3.1 and Appendix A will provide 

exact results for the moments of this model, and we use these to  evaluate the 

norm al and negative binomial approximations for the Markov case of the model
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Figure 3.9: Mean and k Param eter of M c(t) with (f) =  7, m c =  500, a m = 2 x 10 5

of Section 3.2. We investigate the model with only L(t)  and M(t)  included for 

simplicity, bu t this still enables us to evaluate the performance of the m ultivariate 

approxim ation techniques discussed in the last two sections. The Markov model 

requires exponential parasite lifetimes so th a t +  7i)e“ ^ +7^®, T l {x ) —

e- 0*i+7z)*, a(u) = 7z/(7z +  /-0 >/m(z) =  A7ne-/ima: and T M(x) =  and addition­

ally we assume th a t (j) is constant throughout this section. The boundary conditions 

used to avoid singularities in all the m ulti-variate negative binomial approximations 

were E(M c(0)) =  E(Lc(0)) =  10" 10 and E(M c(0)2) =  E(Lc(0)2) =  1 0 '20.

Figure 3.9 uses the param eters of Grenfell, Dietz, and Roberts (1995a, Fig. 

6), which are, with time measured in weeks, fii = 1/1. 5 ,71 =  0.4, fim = 0.2, 4> = 

7, q.1 =  0, a m =  2 x 10_5,C  ~  Neg Bin(A; — l,m ean  =  500). We see th a t both 

m ethods provide almost perfect estimates for the mean of M (t) ,  and fairly good 

estim ates for kM(t)i the k param eter of the negative binomial distribution, where 

kM = (E (M ))2/(V ar(M ) — E(M )). The param eter governing the nonlinearity in 

the model is small (am = 0.00002), and we see th a t the figures using the nor­

mal approxim ation in Grenfell, Dietz, and Roberts (1995a) are fairly accurate. It 

is noticeable, however, th a t the negative binomial approximation provides better 

estim ates for the k param eter than the normal approximation.
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Figure 3.10: Mean and k Param eter of M c(t) with =  0.7, m c = 5000, a m =  

2 x 10~5

Increasing the extent to which the parasites enter the host in clumps, and 

hence the dependence between parasites in the host, reduces the accuracy of the 

approximations. This can be seen from Figure 3.10, in which the average input 

rate of parasites and all other parameters are as in Figure 3.9, except th a t the 

mean clump size is increased so th a t C  ~  Neg Bin(A; =  l,m ean  =  5000), (f) = 0.7. 

Both approximations perform less well, but the negative binomial approxim ation 

is shown to be more robust to these changes, both for estimates of the m ean and 

the k param eter of M(t) .  Notice tha t the exact mean decreases with increasing C  

as a result of the parasite induced m ortality interacting with the more aggregated 

input. This is the phenomenon seen in Section 3.3.2.

As a m is increased, the approximations also become less accurate. This corre­

sponds to the nonlinearity in the model increasing, and so is perhaps not a suprising 

result. For example, in Figure 3.11 (page 85) a m is increased thirty-fold from its 

value in Figure 3.9, so th a t a m = 0.0006 and we see th a t the normal approxim a­

tion provides negative means, the problem we found in normal approxim ations to 

the density dependent process in Section 2.4. Higher values of a m give still worse 

norm al approximations for the mean, and in Figure 3.11 the variance of M( t )  also
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Figure 3.15: Correlation of L c(t) and M c(t)

gives bad predictions. The negative binomial approximations still performs well 

a t these higher values of a m, but it is noticeable th a t they are not as accurate 

as in Figure 3.9. W hen a m is increased still further to  the implausible value of 

a m =  20, the negative binomial approximation still provides estim ates in the right 

area, and does not appear to suffer the problem of giving negative means th a t the 

normal approximation suffers (see Figure 3.12, page 85). Notice th a t a t such high 

values of a m the moments are conditional on events with very small probabilities 

(host survival) and so are not especially useful for interpretation purposes. They 

do, however, indicate the success of the negative binomial approxim ation in models 

with high levels of nonlinearity.

Figures 3.13 - 3.15 on pages 86 - 87 use param eters fii =  20,71 = 30,/xm =  

10,0  =  6 , a/ =  0, a m = 0.2, C  ~  Neg Bin(A: =  l,m ean  — 50), chosen only to 

illustrate the approximation techniques for all the moments a t lower parasite levels. 

They show th a t the approximations will capture the moments of L(t)  with much 

more success than  those of M(t) .  This can be thought of as a consequence of 

the approxim ating moment equations for M(t )  involving more estim ated moments, 

as the equations involve moments of L(t) as well as those of M(t) .  Thus any
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inaccuracies in the moments of L( t ) will carry over into the estim ates of those of 

M(t) .  As a consequence of this we would expect approximations of moments of 

N( t )  to be still less accurate.

Again Figures 3.13 - 3.15 show th a t the negative binomial approxim ation pro­

vides significantly better results than the normal approximation. However, the 

norm al approximations do not have the restriction of always providing positive 

correlations, and so there is still a need to find a more flexible version of the m ulti­

variate negative binomial distribution. The normal approximations are investigated 

further in sections 4.2 and 4.3 with respect to a more complicated nonlinearity 

aimed at modelling the immune response of the host.

3.8 Random Environmental Param eters

In th is section we explain how to adapt the moment closure equations to incor­

porate the situation in which a param eter of the system is considered as being 

drawn randomly from a population of parameters. This m ethod can be applied 

to a general discrete valued stochastic population process of the type discussed in 

Section 2.1, bu t should not be confused with populations evolving in a random  en­

vironm ent in which the param eters vary stochastically over time. If our “random ” 

param eters are varying over time, each param eter in the population of param eters 

is varying deterministically over time. Effectively we are considering the moment 

properties and equations described above and in Section 2.2 as being conditional on 

the param eter concerned. We have already seen an example of this in Section 3.3.4. 

Processes of this type are im portant in parasite dynamics because of the inherent 

differences between hosts, and the potential effects this has on the distribution of 

parasites amongst the host population.

Specifically, suppose we have a system conditional on a vector of param eters, 

0. Consider the moments we are interested in expressed in a vector X ( t ), with 

the higher order moments th a t we do not want as the vector Y  (t) . The random



param eters are given by 0 , and the fixed param eters by 77. W rite X c{t\ 0) and 

Y c(t\ 0) for the moments conditional on 0. Suppose we have the moment ordinary 

differential equations

X c(t) = ~g(Xc( t ) , Y c(t)-0,rj).  (3.23)

Assuming some relationship between the conditional  moments, i.e. Y c(t , 0) =  

we can write these as

X c(t) = g ( X c(t); 0 , 77). (3.24)

The marginal probability distribution of 0 will be specified in the model and is 

given as f e (u )  say, for the range u  G S.  The unconditional moments, X ,  are then 

simply

X ( t )  = J  f e ( u ) X c(t ; u) ) du  (3.25)

where X c(t; u ) is the moments conditional on 0 =  it. If (3.24) can be solved 

explicitly then the problem reduces to one of numerically solving the integral of 

(3.25), otherwise (3.24) and (3.25) need to be solved numerically in unison. This 

enables us to calculate unconditional moments.

It may be more reasonable to  assume an approxim ating relationship between 

unconditional  moments, so th a t we have some relationship Y ( t )  = A ( X ( t ) ) .  This 

causes some complications. The equations th a t require solving are then (3.23) with

A  ( j  f e ( u ) X c( t , u ) d u \  =  A ( X ( t ) )  = Y ( t )  = J  f e ( u ) Y c( t , u ) du .  (3.26)

If (3.23) can be expressed in the form

Y c = z u ( X c; X c; 0 , 77)

then we have

A ( X )  = j e f e ( 0 ) w ( X c-, X c■ 9, T))d0.
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If further we can write

m ( X c\ X c\ 0 ,77) =  tJ7i(0,f) +  zu2{ X c- X c\ 77)

then this yields

A ( X )  =  E (w1(0)) +  zu2( X ; X ;  77)

which may be solved.

The first of these two requirements, i.e. writing (3.23) in the form Y c = 

zu {xc,x,0,n), will be possible if Y "c may be separated from X. c and X . c in (3.23). 

This will certainly be possible if the transition probabilities are simply nonlinear 

multinom ials in the variables, which is often likely to be the case. However the 

second requirement of separating this further into

Y  = z u i ( X c, X , 77) +  w 2(0 ,77)

is less likely to be possible as it requires the environmental param eters to  have no 

interaction with any of the variables in the transition probabilities. W hen thinking 

in term s of parasite-host dynamics this means th a t the “random ” param eters are 

external environmental parameters, rather than “internal param eters” directly af­

fecting individual parasites such as parasite death rates. (For example, the former 

applied when we varyed the infection rate, 6, in Section 3.3.4).

Chan and Isham (1998) have used these types of random environmental param ­

eters in analysis of a schistosomiasis model, and solved the moment equations by 

assuming a moment relationship for the joint distribution between the variables and 

the param eters. The m ethod outlined in this section would enable more natural 

assum ptions th a t only concern relationships between the moments of the variables 

to  be made in this, and other similar cases. In Section 4.5 we discuss a further 

application in which this m ethod would be useful.

90



Chapter 4 

Acquired Im m unity

4.1 Introduction

The immune response to a m acroparasite is highly complicated and knowledge of 

its specific dynamics, particularly in wild host populations, is not always clear. 

However, its im portance in affecting a parasite-host relationship at the population 

level is now well established (Anderson and May, 1991). A host’s immune response 

to a particular parasite, and in turn  the parasites’s defences against the response, 

will have co-evolved throughout the host-parasite relationship as both  host and 

parasite adapt to selection pressures. The particular mechanisms involved for each 

relationship will vary enormously and so any model trying to  capture the general 

aspects of the immune system is always going to suffer from a lack of biological 

detail and often accuracy. However, in this chapter we restrict our a tten tion  to 

a small number of aspects of modelling the acquired immune system, and discuss 

the possible effects of various general immune mechanisms on properties of the 

parasite population, such as parasite aggregation, age intensity curves and para­

site prevalence. The approach is aimed at gaining insight into how host immune 

systems can affect parasite distributions a t the host population level. We discuss 

and analyse further the immunological aspects of the model introduced by Grenfell,
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Dietz, and Roberts (1995a), and propose and investigate two more models aimed at 

capturing particular aspects of immune mechanisms th a t operate in m acroparasitic 

infections. For a brief introduction to the biology of the acquired immune response 

to  m acroparasites we refer back to Section 1.2.

Due to the difficulties of specifying the dynamics of the complex interactions 

between helper cells, regulation cells, antigens and other cells involved in the im­

mune mechanism, we take the approach of considering only one variable to repre­

sent a host’s specific immune capability against a specific parasite. This enables 

us to  study the effect of general immune processes w ithout becoming involved in 

analysing systems with large numbers of variables th a t are often difficult to gain 

insight from. However, see Austin and Anderson (1996) for more detailed deter­

m inistic modelling of m acroparasite immune systems, and Burroughs and Rand 

(1998), Schweitzer, Swinton, and Anderson (1993) and Anderson and May (1991), 

and references contained therein, for models for microparasites.

The main assumption th a t is commonly used in modelling the acquired immune 

system (almost implicit in its name) is th a t host acquired im m unity is related to 

the individual host’s past experience of the infection. This could be in a number 

of forms, such as to tal time burden of m ature worms, exposure to infection, larval 

challenge or to ta l offspring seen. We study two mechanisms, exposure to infection 

in sections 4.3 and 4.4, and exposure to  parasite burden in Section 4.2.

The immune response can have an effect on parasite survival, establishm ent 

or fecundity (ability to produce offspring). In some situations it can also have 

pathological effects on the host, bu t we do not investigate these. The two effects 

we specifically consider are on the parasite death rate  (sections 4.2 and 4.3) and 

establishm ent (Section 4.4).

We discuss the use of the normal approximations in the study of immune re­

sponses and parasite dynamics, as proposed in Grenfell, Dietz, and Roberts (1995a), 

and assess its performance in th a t model (Section 4.2) and a further model pro­

posed here (Section 4.3). The discussions are also relevant for other nonlinear
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effects th a t may be incorporated into parasite dynamic models. Heterogeneities 

in host immune responses are often given as explanations for aggregated parasite 

levels (Anderson and May, 1991), and the incorporation of this into the models is 

briefly discussed in Section 4.5.

4.2 Immune Response Stim ulated by Larval Bur­

den

Grenfell, Dietz, and Roberts (1995a) introduced a stochastic model for studying the 

im pact of immunity on w ithin host m acroparasite dynamics, focusing particularly 

on directly transm itted  gastrointestinal nem atode parasites of ungulates. W hereas 

the earlier stochastic models of Tallis and Leyton (1966) and Tallis and Leyton 

(1969) included ‘antigenic inform ation’ in their models, this had no feedback to  the 

parasite population. The model of Grenfell, Dietz, and Roberts (1995a) has direct 

interaction between an acquired immune variable and parasite level variables, as 

well as including parasite induced host mortality, as discussed in C hapter 3. We 

focus only on the immunological aspect of the model in this section.

As discussed in Section 3.1, the underlying assumption of the Grenfell, Dietz, 

and Roberts (1995a) model is th a t the age distribution of parasites within hosts 

is in equilibrium with respect to time, so th a t input of parasites into the host 

is independent of any parasite levels. In this section we describe the other main 

features of the model and add some further discussion, in particular assessing the 

suitability of the normal approxim ation used in the paper.

The authors state  th a t

The general consensus is th a t host immunity in ungulate gut nem atode 

interactions accumulates with the accretion of new infections, (Grenfell, 

Smith, and Anderson, 1987a; Grenfell, Smith, and Anderson, 1987b).

In principle, this could be modelled in term s of a specific point in the
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establishm ent of larvae (for example, the entry of L3 larva) or the av­

erage larval burden. For m athem atical simplicity we use average larval 

density.

In fact they used actual larva numbers, not averages, so th a t the transitions of 

the model, ignoring parasite induced host m ortality (ai = a m =  0), were from 

L ( t ) , M { t ) , I ( t )  to

L  T  c M I at rate (j)hc for c =  0 ,1 ,.. (parasite ingestion)

L -  1 Af +  1 I at rate 7iL (larval m aturation)

L M 1 +  1 at rate vL (immunity increase)

L -  1 M I at rate (W +  /?/)L (larval death)

L M -  1 I at rate (m ature worm death)

L M I -  1 at rate Pil (im munity decrease)

with the experience of infection, / ( t ) ,  acting to increase the larval death rate. We 

consider the other situation described above (in which the experience of infection 

(acquired immunity) increases with the establishment of larvae) in Section 4.3. We 

have used the argument t instead of a, but this should still be considered as host 

age, or tim e from exposure to  an infected area. During this chapter we shall refer 

to this Grenfell, Dietz, and Roberts (1995a) model as model 1. A system of nine 

ordinary differential equations was w ritten down by Grenfell, Dietz, and Roberts 

(1995a) for moments up to order two, and normal approximations were used to 

obtain their numerical solution. Note th a t the term  simulation is used in their 

paper to mean numerical solution of these normal approximations, ra ther than 

Monte Carlo simulations of the actual stochastic process.

The approxim ate solutions are able to generate the peak and following decline 

in the parasite load versus age graphs th a t are often observed in the field, as in 

Anderson and May (1985). The paper also considered between-host heterogeneities 

in immune ability, and their effect on parasite aggregation, which we discuss briefly
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in Section 4.5.

The only other point made in (Grenfell, Dietz, and Roberts, 1995a) concerned 

the im pact of homogeneous host immunity and was tha t, for high levels of immunity 

(P) the correlation between M  and I  becomes negative. This is due to  the feedback 

effect of I  increasing the death rate of larval parasites and so decreasing the rate 

of form ation of m ature parasites.

In a follow up paper, (Grenfell, Wilson, Isham, Boyd, and Dietz, 1995b) it is 

stated  th a t

... we consider (moment closure) a useful approach compared to  studies 

based on stochastic simulation alone because analytical results can be 

derived from special cases of the Moment Closure Equation (MCE) 

model.

Often the special cases they refer to th a t provide easily workable analytical results 

seem to  be the linear simplifications, as is the case with the results given in Grenfell, 

Dietz, and Roberts (1995a) and Grenfell, Wilson, Isham, Boyd, and Dietz (1995b). 

In these cases, of course, neither moment closure or simulations are needed. How­

ever, results are much quicker to evaluate than  through Monte Carlo simulation, 

and are easier to fit to data. Additionally, some insight into the mechanisms mod­

elled may be possible using the moment closure equations even for the nonlinear 

system.

4.2.1 U se of the Norm al Approxim ations

The m ultivariate negative binomial approximations for the moments, described in 

Section 3.6, are not considered in this chapter due to the possibility of obtaining 

negative correlations in this system. It is possible th a t they still provide sensible 

approxim ations in some areas of the param eter space, but we do not investigate 

this here.
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The moment closure equations with normal approximations used in Grenfell, 

Dietz, and Roberts (1995a), and analysed further in this section, are given in Ap­

pendix B. Unfortunately, even using normal approximations for this model and 

considering only the steady state solutions, we obtain a quartic in the value of 

E (LI)  a t equilibrium, with most other steady state  moments in term s of this, and 

transient solutions are even harder to analyse. It is difficult to gain insight from 

these equations. However, in the context of the process and approxim ations under 

discussion, it is interesting to consider the following model, w ith transitions from 

L(t)  to

L + c at rate (f)hc fo re  =  0 ,1 ,...

L  — 1 at rate D L

where D  is an unspecified, positively valued stochastic process th a t is not neces­

sarily independent of L. For example, in the case of simple linear death D  would 

be ju st fii, and in the density dependent process described in C hapter 2, D  would 

be fiiL. In the immunity model above D  is fii +  p i .  We consider hc to be the 

probability th a t the clump random  variable C  takes the value c, as in previous 

models.

The first two moments of L(t),  with L(0) =  0 with probability 1, satisfy

=  a - e  m)m
dE l̂ t  =  d +  2AE(L W) +  E (-D (*)i ( 0 ) - 2 E  (D( t )L( t )2)

where A =  0E(C ) =  <t>Y.%ahcc, d = tpE(C2) =  <t>Y.7=(lhc<? and E(L(0)) =  

E (L(0)2) =  0. Assuming a steady state solution exists, we have a t equilibrium

E (LD)  =  A 

E ( D L 2) =  i(A  +  d) +  AE(L)

where E(-) indicates the equilibrium expectation. If the normal approximations are 

introduced to this system, by assuming higher order moments of D  and L  follow
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the relationships of those of a bivariate normal distribution, we are assuming

E ( DL2) = 2E(L)E(DL)  -  2E(D)(E(L)2) +  E( D) E( L2)

and hence obtain at equilibrium

Ea(L2)Ea{D) =  2(E0(L))2Ea(£>) -  AEa(L) +  i(A  +  d)

where the subscript a indicates a value under the normal approximation. Notice 

th a t this moment relationship assumes the appropriateness of moment approxi­

m ations from a m ultivariate normal for L  and D , and is equivalent to  the nor­

mal approxim ation used by Grenfell, Dietz, and Roberts (1995a). W riting r for 

the covariance between L  and D  so th a t f a =  Ea(DL) — Ea(D)Ea(L),  we obtain 

E a(D)  =  (A -  f 0) /E 0(L) and hence

!a(L) :=  Ea(L2)/E „(L ) -  E0(L) =  r ^ - E „ ( L )  +  \  ,
ra -  A 2(A — ra)

for the approxim ating index of dispersion of L  a t equilibrium. Under the linear 

death model of Section 3.3.5 (i.e. (5 = 0 in Grenfell, Dietz, and Roberts (1995a) or 

D = fii here) we obtain

U l ) =  1( l ) =

=  1 ( I ( C ) +  E(C)  +  1 ) : = ! o, (4-1)

as previously given in Section 3.3.5 (or by pu tting  D = Hh hence f  =  0), where 

1(C) and E(C) are respectively the index of dispersion and mean of the clump 

distribution, C.  To evaluate the effect of the nonlinear death rate  of D  on the 

index of dispersion, we consider whether Ia(L) increases or decreases from this null 

value, Io.

By considering I0(L )—Io we find tha t, a t equilibrium, the approxim ating process 

has a decreased index of dispersion if and only if

^ - ( E a( L ) - I 0 ) < 0
T a A
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with the inequality reversed for an increase, and set to equality for no change. 

Using the fact th a t Ea(LD) = A so th a t we can assume f a <  A (provided all 

approxim ating processes have positive means - something th a t is not guaranteed as 

we saw in Section 2.4, but clearly the approximation would be immediately thrown 

out if this was not the case), Ia(T) is increased or decreased from !q according to 

the following scenarios;

(1) W hen E a(L) >  Io, we have Ia(L) increased when fa < 0

decreased when f a > 0

(2) W hen Ea(L) < Io, we have Ia(T) decreased when f a < 0

increased when f a > 0.

Result (1) above, given by the approximations, is perhaps what we might expect 

for the exact moments. W hen there is a negative correlation between L  and D , 

realisations with higher levels of L  have lower per capita death  rates due to  lower 

levels of D , and hence still higher levels of larvae are encouraged. This leads to 

an increase in the variance of the process relative to the m ean when correlations

are negative. The reverse effect is expected w ith positive correlation, so th a t the

overall dispersion is decreased in this case.

Result (2), however, is perhaps a little more suprising as it seems to indicate 

the opposite effect to the situation described above. If we expect th a t the index 

of dispersion will decrease when the nonlinearity is added and the true stochastic 

correlation is positive, then result (2) indicates th a t the norm al approxim ation 

either provides misleading information about the sign of the correlation (through 

f a), or about the qualitative change in I(T). E ither way, as result (2) occurs when 

E a(L) < Io, this may give evidence of the approxim ation breaking down a t low 

levels of Ea(L) and high levels of intrinsic (linear) dispersion. We saw an example 

of this in Section 2.4 (the density dependent immigration death process in which 

D = HiL)- In th a t model, for the param eters A =  1.7,/i =  1, E a(L) <  Io was 

satisfied, and so the approximations predicted an increase in the index of dispersion,



whilst the simulations showed a decrease.

It appears th a t some qualitative results break down in the norm al approxim a­

tions for immigration death models when Ea(L) <  I q . The kind of models under 

discussion here (density dependent and immunity models) will have E(L) decreas­

ing as we move from the linear to nonlinear case. Therefore if the linear equilibrium 

mean E(L)o satisfies E(T)o <  Io? we are likely to have E (L)a <  I q . In term s of the 

Grenfell, Dietz, and Roberts (1995a) model parameters, E(L)o < Io requires

1 2  2(f) , N
k ^  + E(C) > r t  +  7i ~  ( 4 ' 2 )

if C  follows a negative binomial distribution with kc  :=  (E (C ))2/  (var(C) — E(C )) 

as the k param eter.

W hilst this is by no means a rigorous result, it does give a rough indication 

of the kind of area of the param eter space th a t may give unreliable estim ates for 

Ia(L). For example, it shows th a t in general, the smaller kc  is, i.e. the higher the 

aggregation of the input distribution, the less reliable the normal approxim ation. 

This corresponds to the intuitevely appealing idea th a t the normal approxim ation

is more likely to break down for highly aggregated processes, as there is more

dependence between the parasites. By this we mean the indicator functions for 

whether or not each particle in the host is alive have high correlations (see Ball and 

Donnelly (1988) for further discussions on this topic). Similarly, higher (/> relative 

to fii +  7; may make the approximations more reliable, a result similar to th a t found 

in Section 2.4. This means th a t there are likely to be both more parasites present 

and also a lower proportion of those present will have been ingested in the same 

clump.

Grenfell, Dietz, and Roberts (1995a) report an estim ated field value of kc  = 1, 

obtained from examining infected pasture. This gives 1(C) =  1 +  E(C ), and hence 

we have E(T)o < Io5 indicating th a t we should m istrust the approxim ations if

(p ^ 1

W+7 i  < E(C)’
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when C  takes a negative binomial distribution. However, this condition does not 

hold for the param eters assumed in Grenfell, Dietz, and Roberts (1995a). For the 

param eters used in their paper the larval numbers are high because the size of 

each ingestion is large (E(C) =  500). This means th a t stochastic simulations are 

extremely lengthy to run and very variable between simulations, so th a t many runs 

are required to obtain accurate equilibrium moment estimates.

Instead, we consider some properties of the process a t equilibrium under dif­

ferent param eter assumptions in Tables 4.1, 4.2 and 4.3, for which simulations are 

less tim e consuming to run. This provides the opportunity to assess some qualita­

tive aspects of the model and how the approximations perform. In the simulation 

results given throughout this chapter, twice the estim ated standard  error is given 

in brackets after each simulation estimate, as in C hapter 2. These standard  erors 

are calculated from the results given in Bickel and Doksum (1977, C hapter 4) and 

in S tuart and Ord (1994, C hapter 10). The time at which the equilibrium results 

should be taken was decided by the ad hoc method of running each sim ulation long 

enough so th a t the property of interest had settled down to a roughly constant 

value, and then taking the result at double this time. This m ethod is adm ittedly 

rough, but as the processes studied in this chapter are all versions of immigration- 

death  processes, it is likely th a t equilibrium is obtained in a fairly straightforward 

m anner i.e. w ithout the process getting trapped in a quasi-equilibrium before reach­

ing the true equilibrium. The param eters not stated  in Tables 4.1, 4.2 and 4.3 are 

Hi + h  — 5 , Hi — 4, v =  2, and C  follows a negative binomial distribution with 

k c  = 1 and mean as given in the tables. For notational convenience we write m c 

for the expectation of C.

The param eter values chosen and the results given in the tables illustrate the 

point made earlier concerning the change in equilibrium index of dispersion from 

the  linear to the nonlinear model. In all three simulated processes, the nonlinearity 

of the immune mechanism causes a drop in I(L) from the linear model. However, 

all three (normal) approxim ating correlations are positive, and so according to  the
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Table 4.1: Immunity Model 1 Equilibrium Results with 0  =  5, m c =  5

oII^X 0  =  1

Simulation (2 s.e.) Normal Apx D eterm inistic

E(L)

'l(L)

cor(L, I)

5.00

6.00 

1

0.50

3.35 (0.04) 3.31 3.66

5.36 (0.15) 6.36 n /a  

0.72 (0.07) 0.62 n /a  

0.31 (0.01) 0.37 n /a

Table 4.2: Immunity Model 1 Equilibrium Results with 0 =  20, m c =  5

oII p  = l

Simulation (2 s.e.) Normal Apx Determ inistic

E (L) 

1(L)

cor(L, I)

20.00

6.00

4

0.50

9.80 (0.08) 9.76 10.00 

5.55 (0.12) 5.86 n /a  

2.15 (0.24) 2.00 n /a  

0.17 (0.00) 0.18 n /a

above result the normal approximation will give a decrease (increase) in the index 

of dispersion when immunity is added to  the model if Ea(L) >  (<)Io- The results 

from Tables 4.1 - 4.3 do indeed follow this rule, and hence, as can be seen from the 

simulations, the normal approximations in Tables 4.1 and 4.3 provide misleading 

qualitative results, by giving increases in the index of dispersion when im m unity is 

added to the model. In these cases the ratio 0 /(/ij +  71) is relatively low (compare 

with the result (4.2)).

W hen considering only the mean of the process in Table 4.1 (in which 0 =  

5? m c = 5) we find the equilibrium mean is approximated well, whereas in Table 

4.3 (in which 0 =  5, m c = 20) the approximations do not do so well, despite the
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Table 4.3: Immunity Model 1 Equilibrium Results with 0  =  5, m c =  20

■c
* II o 0  =  1

Simulation (2 s.e.) Normal Apx Determ inistic

E (L)

m

cor(L, I)

20.00

21.00

1

0.61

8.98 (0.08) 8.48 10.00 

19.59 (0.64) 24.47 n /a  

0.48 (0.06) 0.36 n /a  

0.32 (0.01) 0.39 n /a

process having a higher equilibrium mean. This is because with 0 =  5, E (C ) =  20 

(Table 4.3) a higher proportion of parasites enter the host in large clumps. Overall, 

the norm al approximations do well at capturing the equilibrium means in Tables 

4.1 - 4.3 despite their small size, and improve significantly on the determ inistic 

results. However, as we show below, the approximations do not estim ate the means 

successfully over the whole param eter space.

Consider now the transient behaviour of the model. Figures 4a and 5a in Gren­

fell, Dietz, and Roberts (1995a) show th a t the normal approxim ation of the mean 

of L(t)  rises and then gradually declines to an equilibrium. However, a different 

behaviour is possible in other parts of the param eter space. W hen the im m u­

nity (and hence nonlinearity) has a large enough effect (/3 and v large enough) 

and an aggregated C  dominates the parasite input sufficiently, the norm al ap­

proxim ation mean can decline after its peak before rising again to its equilbrium 

(see Figure 4.1 on page 103). Param eter values used in Figures 4.1 and 4.2 are 

(3 =  2, Hi +  7/ =  5 , Hi =  4, v — 2 and 0 =  5, and C  follows a negative binomial 

distribution with kc  = 1. The simulated mean value (after 1.2 x 105 runs) shows 

th a t this predicted phenomenon is misleading, and in this case the determ inistic 

result provides a far better qualitative approximation. As is often the case in pop­

ulation models, the deterministic approximation overestimates the true stochastic
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Figure 4.1: Mean of L(t)  for Imm unity Model 1 with m c =  32

mean, but unlike the normal approximation the graph does provide the right shape 

in this case. A small increase in the mean of C  from E(C) =  32 to E(C) =  35 

(increasing the dependence between parasites in the host) produces results for the 

norm al approxim ation th a t would obviously be discarded (Figure 4.2) due to the 

negative means.

To summarise, we see th a t the normal approximation is most effective when 

the mean of the input process A =  4>mc is dom inated by </> so th a t there is little  

dependence between the parasites in the host. It is perhaps worth a reminder th a t 

we are not considering the possible norm ality of the distribution of L, only the 

suitability of the moment relationships derived from the normal distribution.

4.2.2 Further M odel Analysis

In assessing the effect of the immune mechanism on the aggregation of L  we need to 

compare nonlinear cases with linear versions th a t have equal means. For example, 

looking at Table 4.1 again we see th a t when comparing the simulated cases of j3 =  0 

and (5 =  1, with all other param eters kept constant, both I(L) and kL are lower for 

the nonlinear model, providing apparently conflicting information about the effect
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Figure 4.2: Mean of L(t)  for Imm unity Model 1 w ith m c = 35

of the immunity on the aggregation of larvae. However, in general both  the index 

of dispersion and the k param eter depend on the mean, which itself drops when 

im m unity is added, so this comparison is not especially revealing on this issue.

We choose param eters for a linear model th a t provide the same value of E(L) 

a t equilibrium as the simulated nonlinear models in Tables 4.1 - 4.3. There is more 

than  one way of choosing these parameters. We shall assume th a t the only variation 

is in the larval death rate  (so 4> and C  are fixed), so th a t we are comparing two 

processes w ith equal equilibrium means, one of which has only linear larval death 

whilst the other additionally has larval death from immunity. For the linear model, 

l (L)  at equilibrium is only dependent on C, and so will not depend on fii +  71 (see 

Section 3.3.5). Thus Tables 4.1 - 4.3 are sufficient to show th a t I(L) is reduced when 

im m unity is added, for the param eters shown. Table 4.4 shows the results for £7, 

a t equilibrium for the linear process with fii +  71 adjusted so th a t the equilibrium 

means are equal to those of the simulated nonlinear process in Tables 4.1 - 4.3. 

These sim ulated values are used for the (3 = 1 case. We see th a t kL is in fact 

increased when the immune mechanism is added. This, and the result concerning 

I(L), correspond to the intuitive idea th a t a homogeneous immune mechanism will

“I------r~

 N. Apx
■ ■ ■ ■ Deterministic

_l___________ I___________ I___________ I___________ L_ _l________L-
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tend to reduce aggregation of parasites.

Table 4.4: Immunity Model 1 Equilibrium Results for At,, with /r + 7/ adjusted

<t> = 5, 

p  =  0

m c = 5 

/3 = 1 II 
II

0 
to CD m c =  5 

/3 = 1

(j) = 5, 

0  = 0

m c =  20 

0 =  1

E (L) 3.32 3.32 9.80 9.80 8.98 8.98

kL 0.66 0.72 1.96 2.15 0.45 0.48

1—
ii

6.00 5.36 6.00 5.55 21.00 19.59

Vi +  71 7.53 5.00 10.20 5.00 11.14 5.00

We have only concentrated on the effect of imm unity on the larval population 

so far in this section. There is still much room for work studying the structure of 

this model, in particular in relation to how the nonlinear effects carry through to 

the distribution of the m ature parasite population. We mention briefly here one 

result in relation to the m ature parasite load.

If we consider the variable for m ature parasites, the moment equations obtained 

from the model transition rates are 

dE(Af(*))
dt

d E( M( t )2)

=  7E(L(f)) -

= 27 E (L{t )M(t))  +  7 E (L(t)) -  2/imE
dt

At equilibrium  we have

I(M ) =  1 +  2 L — j h M } and g (M ) =  — E (L)
H m  E ( M )  v Mm V '

from which we note th a t M  is overdispersed a t equilibrium if cov(L, M )  >  0 and

underdispersed if c6v(L, M ) <  0, where these are now the moments of the moments

of the true stochastic variables a t equilibrium, not the approxim ating ones. From

an intuitive sense we would expect higher /? to result in lower correlation between L

and M , and we can see this occuring in the approxim ations of Grenfell, Dietz, and
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Roberts (1995a, Figures 4c and 5c). However, it seems unlikely th a t this correlation 

could become negative and hence cause underdispersion, as the im m igration ra te  

into the m ature parasites com partm ent depends entirely on the level of L.

4.2.3 Assessing Disease Prevalence

‘Moment closure’ techniques for examining the nonlinear im m igration type models 

we are discussing have the disadvantage of not producing any results for individual 

probabilities, in addition to  the uncertainty of their accuracy for moments. This 

means th a t results for prevalence of infection (i.e. 1 — P ( M( t )  = 0 ) )  for example 

are not immediate. These are often results th a t are measured in the field. To quote 

Grenfell, Wilson, Isham, Boyd, and Dietz (1995b)

...in term s of future qualitative epidemiological work on m acroparasite 

infections of wildlife hosts, we suggest th a t the next priority is to  de­

velop models which track both the prevalence and intensity of infections 

simultaneously... (which) would provide another variable for com pari­

son with field d a ta .”

To this end, we consider the deterministic rate approxim ation (as described in 

Section 2.3.2) to the process under discussion. We consider only larval parasites 

for simplicity, though of course the m ethod can be extended, and to ease notation 

we take 7/ =  0. The approximation leads to  the set of differential equations for the 
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with 7/(0) =  0 and 7(0) =  0. Again we have w ritten A =  (f)E(C). There exists one 

(stable) equilibrium solution to this system,

L* _  1 +  V I +  4 vpe 
2e

r = VJL
Vi

where we have writen e =  A//xj and p = (3/pi. Our transitions for the determ inistic 

ra te  approxim ating process are now from L( t ) , I ( t )  to

L  +  c I  a t rate (j)hc c — 0 ,1 ,2 ,...

L — 1 7 a t rate d{t)L

L I  +  1 a t rate vL

7 / 7  — 1 a t rate /i/7

where the per capita death rate of the larval parasites is inhomogeneous in time 

and is simply d(t) = pi +  (3E(I(t)).  Here, E(7(t)) simply corresponds to  the deter­

m inistic 7(t) of (4.3) as this (approximating) system is a linear one. The m arginal 

d istribution of L(t)  is independent of I(t),  (of course this is one of the weaknesses 

of this m ethod) and is simply a batch arrival immigration and tim e inhomogeneous 

death rate process (call this a BUD process). If Pd(x, z\ t) :=  E ( x Ltz It) is the joint 

probability generating function for this deterministic rate approxim ation process, 

the m arginal probability generating function for L(t)  is

Pd{ x , l mjt) =  e x p j ^ y  (h( l  -1- (x — l ) e ~ ^ t,u )̂ -  l )  d u j

where /c(t, w) =  f*d(s)ds  = pLm{t — u) + 7  f *E(I ( s ) )ds  which can be calculated from 

I( t )  in (4.3).

The only real benefit of considering the deterministic ra te  approxim ation is 

th a t we are able to  obtain approximations for P(L( t )  = 0) to accompany the 

determ inistic means. This is

P (L(t) =  0) =  Pd(0,1; t) =  exp J  (h(  1 -  e~K̂ u)) -  l )  d n j  . (4.4)
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The only other option open to a determ inistic modeller wishing to  estim ate 

P{L(t )  =  0) would be to assume a distributional form for L(t).  For example, 

the Poisson distribution would give an approximation e~L^ \  whilst the negative 

binomial distribution with specified k values would give {k / (k  +  L(t ) ) )k . W ith mo­

ment closure equations encompassing second order moments for the fully stochastic 

model, the k param eter would not have to be specified for the negative binomial 

distribution. We call this approach the general negative binomial approxim ation 

(general NB), though it should be noted th a t it uses mean and variances taken 

from the normal approximation, and so has two approxim ating stages to  it. Note 

th a t we have not considered the m ultivariate negative binomial approxim ations for 

the moments in this chapter due to the possibility of negative correlations in the 

process.

Notice th a t this assumption of a  distributional form is in effect what the de­

term inistic rate approximation does. We have essentially assumed the d istribution 

th a t arises from a batch arrival im m igration and time inhomogeneous death rate 

(BIID) process. For a given path  of the mean of L(t),  we need only specify (f) and 

the distribution of C  to obtain the prevalence. The form of the time inhomoge­

neous death rate  is then implicit. The distribution arising from this approxim ating 

BIID process is still not th a t of the original stochastic process modelled, but is an 

alternative to the negative binomial and Poisson approximations.

In Tables 4.5 and 4.6 we compare some of these approxim ating m ethods w ith 

the simulated value for 1 — P(L( t )  = 0) a t equilibrium. The param eters of Grenfell, 

Dietz, and Roberts (1995a) yield almost 100% prevalence of the disease, so in Table 

4.5 we consider param eters as in Table 4.1 for various values of /?, i.e. fi\ =  5, /i» =  

4, v =  2, </) =  5 and C  follows a negative binomial distribution w ith kc  =  1 and 

m c = 5. In Table 4.6 we consider the same parameters, except w ith pure Poisson 

input so th a t ( 7 = 1  and <j> = 25. The number of runs used for each sim ulation was 

5 x 104, and all standard errors are zero to two decimal places.
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Table 4.5: Approximations of the Prevalence in Immunity Model 1, with <j) =

5, m c =  5

p E (L)d Poisson NB. k —1 General NB. Det. Rate Simulation (2 s.e.)

0.1 4.77 0.99 0.83 0.81 0.82 0.82 (0.00)

1.0 3.66 0.97 0.78 0.68 0.73 0.73 (0.00)

2.0 3.09 0.95 0.75 0.60 0.67 0.67 (0.00)

Table 4.6: Approximations of the Prevalence in Immunity Model 1, with (j> = 

25, ( 7 = 1

P E (L)d Poisson NB. k = 1 General NB. Det. Rate Sim ulation (2 s.e.)

0.1 4.77 0.99 0.83 0.99 0.99 0.99 (0.00)

1.0 3.66 0.97 0.78 0.97 0.97 0.98 (0.00)

2.0 3.09 0.95 0.75 0.95 0.95 0.95 (0.00)

The ad-hoc m ethods of using Poisson and Negative Binomial w ith fixed k value 

to  derive P(L( t )  =  0) are not robust to changes in the input process. W hereas the 

Poisson approxim ation gives reasonably good estim ates for prevalence when the in­

pu t process is itself Poisson (Table 4.6), the fixed negative binomial approxim ation 

performs badly as it assumes an inappropriate level of dispersion. W hen the input 

process is compounded with a variable clump size distribution the estim ates are 

dram atically wrong for the Poisson distribution (Table 4.5), bu t much better for 

the fixed negative binomial approximation. Both process give equivalent results for 

the two cases as they are only based upon the deterministic means, which are the 

same for each case.
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The two m ethods th a t use more param eters (general negative binomial and de­

term inistic rate) are more flexible and not suprisingly give much better results. It 

is noticeable, however, th a t for the param eters used, the determ inistic ra te  approx­

im ation achieves more accuracy than  the general negative binomial, and in fact 

achieves near perfect accuracy to two decimal places. This implies th a t for these 

param eters, the distribution given by a BIID process provides a better estim ate of 

the probability of zero for the true distribution of the nonlinear process than  simply 

using a negative binomial distribution. The general negative binomial approxim a­

tion performs badly when j3 is higher and the input distribution is aggregated 

(see Table 4.5). For future work, further comparisons of these two approxim ation 

m ethods would be interesting.

4.3 Immune Response Stim ulated by Parasite Chal­

lenge

In this section we propose and investigate a model similar to the one discussed in the 

previous section, but with the difference th a t the experience of infection increases 

w ith the ingestion of larvae, as opposed to increasing a t a ra te  proportional to the 

larval load. We envisage this as representing the triggering of the immune system 

when larvae pass through a specific stage of its cycle. As before, the immunity 

level undergoes constant per capita decay, and the larval per capita death rate  is 

proportional to  the immune level. Thus we have the transitions from L( t ) , I ( t )  to

L +  c I  + c a t rate 4>hc f o r e  =  0 ,1 ,...

L  — 1 I  a t rate (/// +  /3I)L

L I  — 1 a t rate

so th a t the immune level jum ps up at the entrance of a larva into the host. We will 

only consider larval stages of the parasite, and so subsume the larva m aturation
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Figure 4.3: Deterministic L(t)  for Immunity Model 2 w ith (5 =  1,/Zj =  20

rate  7/ into the death rate fii- The model can of course be extended to incorporate 

other stages, including m ature parasites. In this chapter we shall call this im m unity 

model 2.

This process yields simpler moment equations than  the last because the evolu­

tion of I( t )  does not directly depend on L(t).  We can solve for the whole m arginal 

d istribution of I( t)  directly, as it is itself ju st an M / M /  00 queue w ith batch arrivals, 

bu t this is not particularly useful in isolation as it is the affect of the im m unity on 

the parasite load we are interested in.

A determ inistic equivalent of this model is

^  =  A -  m L -  (3LI
at
d I X T
I t  =

w ith L(0) =  0 and 1(0) = 0 , which has solution 

A
J(t) =

L(t) =  A r e x p ( Mm/Xi +  /?A 
Jo { Hi

. Xf3(e~^w -  e -* * )  ] , 
(w — t) H-------------- o------------> dw.
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Figure 4.4: Deterministic L(t) for Immunity Model 2 with ft =  0.1,//* =  2

Again we have w ritten A =  </>E(C). Some paths of this are shown in Figures 4.3 

and 4.4 using A =  160 and fii = 5. As in immunity model 1, the larval load can 

either rise directly to an equilibrium level (Figure 4.3) or peak and then fall to 

an equilibrium (Figure 4.4). This deterministic version of model 2 shows similar 

behaviour to th a t of immunity model 1.

In equilibrium, we have the stable solution

L* = — (4. 5) 
1 +  ep

r = P

where we have w ritten e = 4>mc/pi  and p =  The determ inistic rate ap­

proxim ation results in L(t)  simply becoming an inhomogenous im m igration death 

process, with death rate pi +  ^^-(1 — e_wi). We lose the dependence between L(t)  

and I( t)  which we expect to  keep a check on those realistions w ith unusually high 

uptakes of parasites. We do not consider this further, bu t as in the previous section 

it could be used to obtain prevalence estimates.

We next analyse the linear case of this model to investigate the correlations 

between L  and I  th a t the process generate w ithout imm unity effecting the larval
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death  rate. If P2(t;x , z )  is defined as the joint probability generating function for 

the nonlinear version of immunity model 2, the Palm  relation gives

Setting p  =  0 for the linear case gives the solution 

P2{ t \x , z )  =

exp i(j) f  h — l ){z  — 1) +  e~IJ'l t̂~w\ x  — 1) +  e~tJ'i t̂~w\ z  — 1) +  l )  dw
I Jo

W ith  pure Poisson input, i.e. C  =  1, h(x) = x, this gives a bivariate Poisson 

distribution. Generally, we have

with var(/(£)) given in a similar fashion, so th a t a t equilibrium the correlation is

which is independent of the encounter rate, (j>. As a function of /i^, the correlation 

will in general be a t a maximum when Hi is equal to  Hi. If C  =  1 then the 

correlation will be y/fiiiii/(fii +  /Xi), and this has a maximum of 1/2. Generally we 

see th a t the equilibrium correlation increases with var(C ). The joint probability 

generating function for the linear case of immunity model 1 can be obtained by 

making the appropriate param eter choice in the model of Section 3.2. We compare 

the equilibrium correlations generated by the two models under discussion in Table 

4.7 by setting v = Hi so th a t the equilibrium means are the same for bo th  models. 

We set iii = 5, so the equilibrium means are E(L) =  20 and E (J) =  5 and in the 

first two cases C  follows a negative binomial distribution w ith kc-

cov (L ( t ) , I ( t ) )  = -  e-Ov+rtt)

2 ^ i W i  1 (C )+  E(C)
ALi +  Mi +  E(C) +  1
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Table 4.7: Correlations for Linear Immunity Models 1 and 2 (hi =  5)

Model Hi 1

oCM 
LO 

^

II 
II 

II Hi -  20 Hi = 1

m c = 5 

</> = 20 

Hi = 5 £ II to o

One

Two

0.397

0.820

0.676

0.976

0.804

0.781

0.373

0.873

0.612

0.917

0.667

0.733

Model

C  =  1 

(f)= 100 

Hi = 1 Hi = 5 Hi = 20

One

Two

0.275 0.408 0.365 

0.447 0.500 0.400

We can see th a t of the two linear processes immunity model 2, in which the 

im m unity increases directly as larvae enter the system, tends to generate more 

correlation between the immunity and the larval level. This is not universal across 

the param eter space, however. As the larval and immunity death rates move apart 

the correlation will always reduce in immunity model 2, but, depending on the 

level of input aggregation, may increase for immunity model 1, so th a t for some 

param eters model 1 will have a higher correlation level than  model 2. In both  

models, higher input aggregation generates higher correlation.

The differential equations for the moments of the stochastic imm unity model 2
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=  <j)E{C) -  mE(L)  -  PE(IL)

= <t>E(C) - /mE(I)

= 4>E(C2) + (2<j>E{C) +  rt)E (L ) -  2/i,E (L2) -  2/3E(L27) +  /JE(L7)

=  </>E(C2) +  (2^E(C) +  f t )E (/)  -  2r t E(72)

=  ^ E (C 2) +  0E(C )(E(7) +  E ( L ) ) - ( r t  +  r t ) E ( / L ) - ^ E ( 7 2L). (4.6)

are

dE(L)
dt 

dE{I)
dt 

dE(L2)
dt 

d E ( I2)
dt 

dE(IL)
dt

Explicit dependence on t has been dropped for notational convenience. In this 

system the two equations for E(7) and E ( I2) are self contained so we are able 

to  make more progress than in the previous section. If we introduce the norm al 

approxim ation results,

E(7T,2) =  2Ea(L)Ea(IL)  -  2Ea(7)(E„(L))2 +  Ea(T,2)E„(7)

and

E(72L) =  2Ea(7)E0(7L) -  2Ea(L)(E„(7))2 +  E a(72)E a(L),

then, writing E„(-) for expectation under the norm al approxim ations, equations

(4.6) become 

dEa(L)
=  <pE{C) -  m E a(L) -  PEa(IL)

= 4>E(C) -  HiEa(I)

=  4>E(C2) +  (2c/>E(C) +  W)E0(L) -  2WE a(L2) +  PEa(LI)  -

dt 
dEa(I)

dt
dEa(L2) _  AT, /ri2, , i t2

dt
2ft(2Ea(L)Ea(IL)  -  2Ea(I)(Ea(L))2 + E a{L2)Ea(I))  

=  4>E(C2) + (2<f>E(C) + li i)Ea( I ) - 2 li iEa( I 2)
at

^  =  <f>E(C2) + c/>E(C)(E„(7) +  Ea{L)) -  ( ^  +  W)E a(IL)
dEa{IL)

dt
/9(2E0(7)Eo(7L) -  2Ea(L)(E„(7))2 +  E a(72)E a(L)). (4.7)

The steady state solutions are now obtainable in closed form after some algebraic 

m anipulations. We could, in theory, investigate the effect of this immune response
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on the approxim ate dispersion, correlation and other properties a t equilibrium by 

investigating the full param eter space for these solutions, bu t in practice the results 

are too complicated to provide any general conclusions. However, from equations

(4.7) we can write

^ L ) a =  ( K ( L ) r - ^ E a(L) +  ^ ^

where again E(-) and var(-) indicate expectations and variance a t equilibrium, d = 

<;f)E(C2), A =  </>E(C), p = (3/^  and e =  X/pi.  The approxim ating index of dispersion 

can now be written

ia(L) =  E„(L) -  L iet + 10 : Ldet
E „(L)

where Io is the eqilibrium index of dispersion of L  for the linear model, as described 

in Section 4.1, and Ldet = e / (1 +  pe) is the determ inistic equilibrium mean of the 

process as given in (4.5). We can also find from equations (4.7) th a t

cova(L, I)  =  A IP  -  E a i m p t / P  +  E (/))  

which is greater than  zero if

EJ L )  <  L   =  Ldet. 
M ; r t  +  /3E(/)

(Remember th a t Ea(J) =  E (/)) . Hence we find th a t cova(L, I)  > 0 if E a(L) <  Ldet> 

i.e. if the normal approxim ation mean is less than  the determ inistic approxim ation 

mean. This, together with the results of the last section mean the approxim at­

ing equilibrium index of dispersion is reduced from the linear model if E a(L) lies 

between Iq and L^et, and increased otherwise.

Tables 4.8 - 4.10 show simulated, determ inistic and normal approxim ation values 

for moments at the equilibrium of model 2 for various sets of param eter values. 

The remaining param eter is fixed as pi = 5, and C  is taken as a negative binomial 

distribution with kc  = 1.
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Table 4.8: Immunity Model 2 Equilibrium Results with <j> =  5, m c =  5

II
§II t: 

o
 

II to

P =
Sim. (2se)

=  20 

N. Apx.

/? =  0.1, ^  =  2 

Sim. (2se) N. Apx. Det.

E(L) 5.00 5.00 2.88 (0.04) 2.44 3.59 (0.06) 3.52 4.00

I (L) 6.00 6.00 3.66 (0.10) 8.29 5.27 (0.16) 6.34 n /a

k l 1.00 1.00 1.08 (0 .11) 0.33 0.84 (0.12) 0.66 n /a

cor(L, I) 0.73 0.83 0.79 (0.01) 0.80 0.70 (0.01) 0.74 n /a

Table 4.9: Im m unity Model 2 Equilibrium Results w ith <f) =  20, m c =  5

II
§II=£ £ 

°
II to

/? =  

Sim. (2se)

=  20 

N. Apx.

P = o.i,
Sim. (2se)

Pi — 2

N. Apx. Det.

E(L) 20.00 20.00 7.87 (0.07) 7.04 9.40 (0.08) 9.32 10.00

I (L) 6.00 6.00 3.20 (0.08) 5.56 5.18 (0.12) 5.76 n /a

k L 4.00 4.00 3.58 (0.65) 1.54 2.25 (0.40) 1.96 n /a

cor(L, I) 0.73 0.83 0.78 (0.00) 0.87 0.51 (0.01) 0.54 n /a

In Table 4.8, for both  sets of values of (3 and fi^ Ea(L) does not lie between 

I0 =  6 and Ldet =  4, hence the normal approximations incorrectly estim ate I(L) as 

increasing when immunity is added.

It is difficult to make direct numerical comparisons between model 1 and model 2 

due to  their different structures. However, in Tables 4.8 - 4.10 we have kept 0, C and 

Hi as in Tables 4.1 - 4.3 so th a t the linear cases of the two processes are equivalent, 

and kept p =  P/pi  constant a t 0.05 for each of the cases shown. In Tables 4.8 

and 4.9 we see th a t the normal approximation for the means does not reach the 

accuracy of th a t for immunity model 1 (Tables 4.1 and 4.2) for either pair of values
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Table 4.10: Immunity Model 2 Equilibrium Results with </> =  5 ,m c =  20

II<30. 
§

 II =£

°
II to

(3 = I, in = 20 

Sim. (2 s.e.)

(3 = ^.1, Hi =  2

Sim. (2 s.e.) Deterministic

E (L) 20.00 20.00 10.34 (0.11) 8.23 (0.14) 10.00

I (L) 21.00 21.00 11.42 (0.31) 16.66 (0.60) n /a

k l 1.00 1.00 0.99 (0.19) 0.51 (0.62) n /a

cor(L, I) 0.78 0.88 0.65 (0.01) 0.53 (0.01) n /a

of {{3, fa}, bu t not suprisingly the lower the value of /? (the param eter governing 

the only nonlinear transition) the better the normal approxim ation performs.

The param eters in Table 4.10 result in the normal approxim ation producing 

means th a t become negative so the approximation is completely inappropriate. 

The moments of immunity model 2 may be harder to capture using the normal 

approxim ation when C  is dom inating 4>, due to the clumped input affecting immune 

levels as well as the larval levels.

Notice from Tables 4.8 - 4.10 th a t the correlation between I  and L  can either 

be reduced or increased when immunity is added to the model. This is in con­

tra s t to model 1 in which the correlation always decreased for the param eter space 

considered (see Tables 4.1 - 4.3).

4.4 Im m unity Preventing Parasite Establishm ent

In the model investigated in this section we again view the acquired immune re­

sponse as being suddenly triggered. However, unlike the model of Section 4.3 we 

consider it as having just two states, on or off. We assume th a t when the im m unity 

is on, it has the strong effect of successfully killing all larval entering the host, so 

th a t none can become established.
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This is similar to the assumption made by Roberts (1997) in his determ inistic 

model in which the immune response is an indicator variable th a t can be considered 

as ‘shutting the gate’ on incoming larva when switched on. The m otivation comes 

from modelling nematodes in farmed sheep. As sheep are moved to different pas­

tures a t the end of each season we may only be interested in one season of parasite 

dynamics, so we can consider the immunity as only increasing. For this reason, the 

parasite level is observed as rising and then declining as the new lambs establish 

immunity, and there is insufficient tim e for the immunity loss to  play a part.

The model described here is a first step towards a stochastic model for the 

complete parasite dynamics of this farmed system. In completing the parasite life 

cycle loop, Roberts (1997) makes the assumption th a t at the s ta rt of each season 

the level of eggs on the pasture (giving the rate of uptake of larvae) is related to 

the egg output at the close of the last season. A new flock of lambs is introduced 

each year th a t are naive and so have no initial immune level.

The case we describe below is a model for ju st a single ‘typical’ host acquiring 

parasites from eggs already on the pasture.

The host acquires single parasites according to a Poisson process. We do not 

allow for parasite clumping in the input process. The experience of infection (or 

im m unity level) is modelled as a random variable I t th a t increases with each in­

gested larva, and its effect on parasite level of the host is such th a t, once I t > r any 

larval challenge to the host is unsuccessful (i.e. the immune response is switched 

on ). Once again parasites have exponential lifetimes (though this is not neccessary 

for analysis of the model) so th a t the possible transitions are from L , I  to

L  +  1 /  +  1 at rate (f) for I  < r (4-8)

L  — 1 I  at rate /iL (4.9)

The system is simply an M / M / o o  queue in which only the first r  arrivals contribute. 

Eventually the host will become parasite free permanently, though in practice this

may well be beyond the one season time lim it we are interested in. We refer to  this
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model as immunity model 3.

A possible determ inistic version of this model is as follows. The im m unity level, 

It grows w ithout decay so th a t I t = 4> and hence I t =  (f)t. It reaches the threshold 

value, r  at tim e r /0 ,  which is when parasites can no longer enter the host. The 

parasite level, L t initially undergoes imm igration and death  so th a t L = 4> — fiLt 

until the threshold time. After tim e r/</>, the parasite population suffers only death, 

i.e. L t = —fiLt . This gives the solution for L t as

^  f ^  for 0 < t < r/(j)

\  ĵ eTlLi{elLr̂  — 1) for t  >  r/(j).

We now proceed to derive the probability generating function for the parasite load 

L t under the assumptions of the stochastic model. In the stochastic model the 

im m unity switches on at the tim e of the r ^  arrival, Tr say. This random  time 

is simply the sum of r exponential distributions, with param eter </>, and so has a 

gam m a distribution,

Tr ~ T ( r » .

Its mean is of course the deterministic result for the threshold time, r/<j). Its prob­

ability density, f r r {x )> is (t>rx r~l e~^x/T(r)  and the cumulative distribution function 

is FTr(x) = f 0x f Tr(u)du.

Let X t be the number of arrivals into the host, regardless of whether they 

become established or not. By standard queueing results, (see for example K arlin 

and Taylor (1975)) X t ~Poisson(<^t). We have,

P ( X t = x\ Tr > t )  = P ( X t = x \ X t < r )
P ( X t = x , X t < r )

P ( X t < r)
m x for x  < r. 1 (<t>t)1

0 i!

0 otherwise

so th a t

G Xt\x,<Au) :=  E(uXt\X t < r) =
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Given the number of parasites arriving in (0, t], the times of arrival are indepen­

dently, uniformly distributed on (0 , t], and so have probability density functions 

f ( x )  = 1 / t  for x  G (0, £], and 0 otherwise. In addition, a parasite ingested a t time 

r  has probability of still being alive at t. Combining these results, we find

th a t given Tr > t, a randomly chosen parasite arriving in [0, t] has probability 9(t) 

of being alive a t t , where

1 -  e~^e(t)= f  =
JO t fj,t

Therefore, given th a t x  parasites have arrived in (0,t], the num ber alive a t t has 

binomial distibution with a probability generating function of z of (l +  (z — l)6( t) )x . 

We then have

H i (s; t) := E(s l"\Tr > t ) 

=  E (E (sL,| r r > t , X t))

=  E ((l +  (s -  1 )9(t))Xt I Tr > t )

—  G x ,  |X,<r(l +  (s — 1)®(*))
T7'T.7=l m i  + 6t{s -  l ) ) j / j'-

The derivation of E (sL*|Tr < t) follows similar lines, bu t note th a t we are no longer 

interested in the to tal number of arrivals, X t. This is because we are conditioning 

on the fact th a t X t > r, and so we are not interested in any arrivals after the first 

r as they do not become established. We have

H 2(s -,UTt ) := E(sL‘\Tr : Tr < t) =  (1 +  (s -  l)iP(t,Tr))r- l {l + (s -

where e~l‘(t~Tr) is the probability the 7 parasite to arrive (at tim e Tr) survives to 

tim e t, and ip(t,Tr) is the probability a random ly chosen parasite of the first r — 1 

to  arrive survives to time t, conditional on Tr.

Conditional on Tr , we know there are r — 1 arrivals in ( 0 ,^ ) ,  so the arrival
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times are independent and uniform on (0,Tr). Therefore we find th a t

r - T rri T 1J
ip(t,Tr) =  /  — =;----dr

JO l r
-fit

=  “ I)liTr
=  0(Tr)e/i(t_Tr).

Removing the conditioning on Tr we now obtain

P(s-,t) :=  E (sL<)

=  H i(s - t ) ( l  -  FTr(t)) +  [  H 2{s - t ]x ) fTr(x)dx ,
Jo

the probability generating function for the parasite load a t tim e t.

(4.10)

(4.11)

4.4.1 Properties

The m ean of L t is

E (L () =  (1 — FTt (t))
ds

+
S = 1 I1 d H 2(s \ t \x )

ds
f Tr(x)dx

s — l

T rr l (6 tV  IV rt
=  -  FTr(t)) +  e ~M j0 e"X((r ~  + 7 S r T(x)dx

where fj>r and F tt are the probability distribution function and cumulative d istri­

bution function of the r(</>, r) distribution, as given above.

Similarly, we also have

E(L2) - E ( L t) =  ( l - F Tr{t))
d2H t
ds2

+
S =  1 

zn (4.\ \ /—'3

‘ d2H ,
o ds2

Ei=o P/H

s = l

+

f Tr(x )dx  (4.12) 

(4.13)=  ( ^ y e ( t y ( i - F Tr(t))

e-2/xt(r — 1) [  9(x)e2fiX(2 +  (r — 2)9(x))fTr {x)dx.  
Jo

We show some plots of the means and index of dispersion compared with the 

determ inistic model in Figures 4.5 and 4.6 on page 123. We see th a t as the mean 

approaches its peak the variance starts to decline so th a t the process becomes
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Figure 4.5: Mean and Variance of L(t)  for Im m unity Model 3
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Figure 4.6: Index of Dispersion for Imm unity Model 3
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underdispersed. During the m ean’s descent, the variance s tarts  to increase again 

so the process becomes overdispersed (Figure 4.5).

An explanation for this is as follows. Close to the tim e of the peak of the mean, 

the realisations w ith parasite levels above the mean will be more likely to have 

reached the threshold level of the number of parasites ingested (r), and so will have 

started  a decline of parasites numbers in the absence of further imm igration. This 

will bring the parasite number back down towards the mean level of all realisations, 

and so reduce the variance. Similarly, just after the time at which the mean reaches 

its peak, those realisations th a t have not yet reached the threshold will be closer 

to  the mean than  they would be without the immune mechanism. After most 

realisations have reached the immunity threshold, the variance increases because 

there is now a large discrepancy between those realisations th a t have undergone 

pure death for a while, and those th a t have only ju st reached the threshold. If r  is 

increased the mean curve will be flatter.

Of course w ithout the immune mechanism (r =  oo) the index of dispersion 

would be a constant value of one. Figure 4.6 shows its decline and then increase, 

followed by a slow decline back down to one as parasite levels decline towards zero. 

This corresponds to  the changes in the variance discussed above.

This model does not involve any loss of in immunity, and is designed to consider 

short term  effects of the immunity in farmed animals. However, it does indicate 

th a t immunity th a t affects the parasite establishment can cause an initial decline 

in dispersion, followed by an increase once parasite levels s ta rt to  drop. This is in 

contrast to the immune processes discussed in Sections 4.2 and 4.3 which affect the 

larval death rate ra ther than  establishment. Those models did not appear to  be 

able to increase dispersion levels.

The probability the host is parasite free is P(0; t) and the probability the host 

has never acquired any parasites is e- ^4. If a host is observed to  be parasite free, 

it may be of interest to find the probability th a t it has acquired full imm unity
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assuming this model. This will be

P(Tr < t \ L t = 0) = P ( L t = 0 \ T r < t ) ^ 2 tl -

The expressions P (T r < t) and P ( L t = 0) can be obtained from the results given 

above, and P ( L t =  0 | Tr < t) can be expressed as =  (e(t, Tr ))r-1 ( l  — 

where e(t, Tr) is the probability a parasite chosen a t random  from the first r — 1 

has died by t,

e(t ,Tr) = f T' 1 , (1  -  e - ^ ) d r
Jo l r 

p-pt

= l  + w p - e t , ) -

Thus we have

P ( T r < t \ L t = 0) = FTr(t) /*  e(t, ^)r - 1(l -  t ^ - ^ ) f Tr(x)dx / P ( L t = 0).
Jo

There is no reason why this model cannot be extended to  include general para­

site lifetimes, clumped parasite input (so long as the im m unity still rises w ith each 

encounter, rather than  each parasite entering) and parasite m aturation  and egg 

production. The analysis would proceed along similar lines.

4.5 Variable Immune Response

As previously mentioned, in many parasite-host systems a variation in host’s im­

mune capabilities is often given as a cause for high levels of parasite aggrega­

tion. Wassom, Dick, Arnason, Strickland, and Grundm ann (1986) showed th a t in 

a species of mice the immune response th a t expels a parasitic tapeworm is genet­

ically determined and argued th a t in the absence of all other ecological variables, 

host genetics contributes to parasite overdispersion. However, Munger, Karasov, 

and Chang (1989) subsequently found th a t in a very similar system, when mice 

infected in the laboratory were introduced into the field, prevalence rose dram ati­

cally. They argued th a t mice immune systems alone could not account for the level
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of prevalence observed in the wild, and hence host differences in parasite expulsion 

could not play a large role in causing overdispersion.

The extent to which host genetics and variable acquired immune reponses are 

the cause of parasite overdispersion is still the subject of debate. In modelling 

term s, it can be clearly dem onstrated th a t they can cause the aggregated effects 

observed (Grenfell, Dietz, and Roberts, 1995a; Grenfell, Wilson, Isham, Boyd, and 

Dietz, 1995b).

Grenfell, Wilson, Isham, Boyd, and Dietz (1995b) use two levels of immune 

response (/3) to generate the extra aggregation not accounted for by estim ated 

variability in the input distribution. A certain proportion of the host population is 

allocated to each level. This makes the approxim ate moments equations very easy 

to  adapt, but in some cases such a model may not give a gradual enough variation 

between hosts’ immune capabilities.

We point out here th a t the methods outlined in Section 3.8 on random  pa­

ram eters can be used to allocate a random variable to the level of im m unity (/?) 

throughout the host population, rather than  simply splitting it up into two levels. 

This could also be used for any other param eter of the model th a t m ight be con­

sidered to vary across hosts such as parasite ingestion rate (</>), as in Section 3.3.4, 

or parasite death rate fii.
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C hapter 5 

Parasite D ynam ics in a Static  

H ost Population

5.1 Introduction

In the study of parasite dynamics, areas such as parasite regulation of a host popu­

lation or the evolution of parasite virulence require the inclusion of host births and 

deaths into any model or hypothesis formulated. The host population needs to be 

considered as a dynamic process, as this is relevant to  the questions being studied. 

However, there is considerable interest in studying parasite populations where these 

questions are less im portant, and other properties such as the spread, d istribution 

and persistence of the parasite are relevant. There are many hum an diseases where 

host m ortality is a small factor on the evolution of disease as compared w ith host 

immunity, susceptibility and other factors.

In this chapter we discuss some models th a t simply describe a parasite popu­

lation reproducing on a fixed number of hosts th a t are imm ortal. In particular we 

study possible causes of parasite aggregation.

Often parasite aggregation is simply ascribed to host heterogeneities, whether 

they be heterogeneities in infection rates, behavioural patterns, immunities or o th­
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ers (Anderson and May, 1991; Esch and Fernandez, 1993). However in this chapter 

we explore the possibility th a t a large am ount of aggregation may simply be caused 

by biological processes, for example the nature of the parasite life cycle could be 

identical for all hosts and yet parasites could be overdispersed amongst the hosts 

due to  chance effects in the transmission of parasites.

B arbour and Kafetzaki (1993) have shown th a t with a simple immune mecha­

nism, equal in all hosts, the probabilistic nature of a model incorporating the full 

cycle of transmission can itself cause aggregation. In this chapter we go a step 

further back. W ithout considering anything other than  linear parasite b irth  and 

death, we focus on how the transmission mechanism itself can cause aggregation. 

We do not consider any density dependent or other regulatory effects on the para­

site population which will act to reduce the growth of aggregation, and hence we 

are able to  isolate and compare the natural tendencies of different biological trans­

mission mechanisms to cause aggregation. Additionally, this allows more detailed 

consideration of possible working hypothesises used for the disease transm ission 

mechanisms, something th a t is often missing in m acroparasite modelling a t the 

host population level. In particular, we suggest th a t the process of transm ission 

itself can have a large effect on the level of aggregation due simply to demographic 

stochasticity.

The models considered are not meant to be a true representation of endemic 

parasite populations. In fact, in these initial, simple models we have exponential 

growth for the mean of the parasite distribution which is clearly not realistic. In­

stead they are designed for consideration of the growth of dispersion whilst the 

mean itself is growing, and hence to provide possible explanations for how aggrega­

tion could arise in an expanding parasite population. The extension of the models 

to incorporate density dependence is discussed, but not analysed here.

We model the evolution of parasite loads of the definitive hosts in a spreading 

parasite population. The unit we are modelling is taken to  be the m ature stage 

of the parasite w ithin the definitive host. The main assum ption made is th a t any
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intake of parasites th a t a host receives comes directly from another infected host in 

the population. This is a vast simplifying assumption. In practice, an infection will 

occur after each parasite has been through a complicated life cycle, part of which 

is outside the host. As a result the dynamics of any vector host population or of 

free living parasite stages will affect the progression of the disease in the definitive 

host, something we do not investigate here.

Essentially, the assumption means th a t any individual host’s ingestion of para­

sites a t a particular tim e point can only involve offspring from parasites from one 

other host. There is no mixing of parasite offspring in the phase outside the host, 

though mixing within the host is not precluded. Thus we are assuming infecting 

hosts leave parasite offspring in the environment or in vector hosts, which are then 

picked up by receiving hosts, independently from parasite offspring of other infec­

tive hosts. This assumption and some alternatives to it are discussed further in 

Section 5.5.

The other main assumption in these types of models is th a t the tim e delay 

between parasites reproducing in one host and an infection occuring in the next is 

ignored. This tim e delay will include the development of parasites through their 

life cycle into m ature parasites, including time spent as free living stages in some 

parasitic diseases, for example during arrested development of the L2 stage of some 

nem atode parasites (Esch and Fernandez, 1993, C hapter 5). This tim e delay will 

be relatively small in some diseases and is often ignored for modelling purposes, bu t 

in a fluctuating parasite population it may be im portant, particlarly where issues 

such as persistence are concerned, as some parasites can survive for long periods in 

the environment.

One possible scenario for parasite transmission is th a t there is complete mixing 

of offspring from different parasites within a host when an infectious contact occurs, 

so th a t each parasite within the infecting host contributes offspring to  the receiving 

host at exactly the same time. As this accentuates any variation in the infecting 

host from the population mean, it is a source of variability in parasite loads. We
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refer to this mechanism as parasite proliferation dependence.

The other extreme is when offspring from each parasite are transm itted  sepa­

rately from other parasites’ offspring. This case (no parasite proliferation depen­

dence a t all) is perhaps less common biologically, bu t we model it in Section 5.2 

for com parative purposes, and discuss how it might arise.

The other mechanism we investigate explicitly is th a t offspring will be trans­

ferred in clumps, i.e. more than  one offspring from any individual parasite may enter 

the receiving host upon a single infection contact. This is something th a t is im­

plicitly ignored in most determ inistic models (see however Damaggio and Pugliese 

(1996)). There are some infections where the chance of a larva becoming estab­

lished is so small th a t it is very rare th a t more than  one parasite will result from 

any one infection contact e.g. schistosomiasis, bu t for many parasitic infections it 

is an im portan t feature e.g. nem atode infections in sheep.

In this chapter we consider how these two mechanisms (parasite proliferation 

dependence and clustered reproduction) exaggerate demographic stochasticity to 

affect the dispersion of the parasites.

5.2 A Branching M odel

As a reference point for later work we s ta rt with an extremely simple model. Es­

sentially the only variability in it comes from demographic stochasticity, and so 

we can see the extent to which this effect alone causes overdispersion. The main 

assum ption is th a t parasites infect a host one at a time, and independently of each 

other. Taking schistosomiasis as an example, if we assume th a t after leaving the 

snail vector host, free living cercarie spread sufficiently in the water before entering 

a hum an host so th a t they become independent of each other (adm ittedly a big 

assum ption), then, together with various other assumptions concerning the density 

of the vector host population and parasite reproductive density dependence within 

vector hosts (all of which can be considered as general transmission regulatory ef-
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fects), the transmission of the disease can be roughly described by the model of 

this section. We acknowledge, though, th a t these are big assumptions, so the prime 

m otivation for using this model is to use as a comparison with later models.

We have N  identical, im m ortal hosts m ixing homogenously and we model the 

parasite load in each. Parasites give rise to parasites in another random ly selected 

host, one at a time, at a constant rate, but independently of other parasites inside 

their host. This is making the assumption th a t a  host only picks up one parasite at 

a time, and th a t the to ta l rate a t which a host’s parasites generate further parasites 

is proportional to the host’s parasite load. Each infection is equally likely to  occur 

in each host, so th a t self infection is possible.

The per capita death rate of the parasites is fi and the parasite burden of the 

host population is given by M ( t )  =

The result of these assumptions is tha t all parasites behave independently, and 

in fact we have an N-type Markov branching process and in particular an N  di­

mensional linear birth and death process. Infections occur according to a Poisson 

process, rate  <f>Ŷ =1 Mi(t)  i.e. with a rate proportional to the to ta l number of par­

asites in the population.

The possible changes in the state  of the system are, from Mi(t)  to

(5.1)

for i = 1,..., N.

5.2.1 M odel Analysis

Let
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be the joint probability generating function of the M*(t)s. From result (2.5) in 

Section 2.1, we have

d P  "  d P  (  . <f> "  ,
^ = £  ̂  r 1 ~ x k ) + N  g  M x i  - i } ) -  (5-2)

The general boundary condition is P( l ' , t )  =  1 together with

P{x-  0) = g(xu ...xN) (5.3)

where g(x)  is some arbitrary  joint probability generating function. The auxiliary

equations for the characteristics of (5.2) are

~^jT = ~  (^L(1 ~ x k) + j j Y l x k(x i ~  for k =  1 ,...,7V. (5.4)

Summ ing over fc, we obtain an equation in term s of a  :=

—  =  —Nfj ,  +  (/i +  (j))a -  j j V 2 - (5.5)

The solution of this is

A = e^ }tW ^ j  (5-6)

for (j> ^  n, where A  is a constant of integration. Using this in the form

_  N  f  fi -  ( f> Ae^-^ \

we can write N  — 1 of the N  equations of (5.4) as

dxk , ( A e ' t - r t  -  4>l»\
(  Aei^ )t _  1 )  

for k =  1 ,..., TV — 1. These each solve to give

Ci = Ae~tJ,t(xi -  1) -  e~<t>t(xi -  ^ )  for i =  1,..., N  -  I (5.7)

for constants of integration C*, so th a t a solution to all N  of equations (5.4) can

be w ritten  as
Ae-"* -  + Q

Xi =  A e - J _  e -*t   for i =  l , A T  — 1, (5.8)
N - 1

x N =  a  -  ^ 2  Xi
i=1

A p - t f  _  _  y'W-i n .
=  Ae * e  ^ j= i .

y^g — l i t _ g — <j>t '
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The general solution of (5.2) is

P (x ; t) = ^ ( C i , ..., Cn - i , A)  (5.10)

for an arb itrary  function T. We use the boundary condition (5.3) and equations

(5.8) and (5.9) evaluated a t t = 0 to find th a t

T / + /b  + qN- i  — £ \  (b  -  Z jL l1 qj -  M
V f a . - . t o - u b )  =  g - -  ( 6- i  * )  • (  t r ~

so th a t, substitu ting the constants from (5.6) and (5.7) into this we have

P (x ;£) =  g (y i , . . , yN)

where 

Vi =

-  1) +  0(e- ^ -/i)t -  e- 4̂)) E^Li xj ~  N  (/i(e~^“^ 4 -  1) +  e~4>t(fi -  <j>)x2)

-  1) E jL i x j  +  N { ( f )  -  n e - i t - r i t )  •

W ith the particular set of initial conditions P ( x ; 0) =  n^Li corresponding 

to  fixed initial levels for each Mi, Adke (1964) has arrived a t this result by using 

a slightly different route to solving (5.2), and incorporating im m igration into the 

process. The application there was a study of the change in numbers of various 

genotypes in a population, extending work done by Mode (1962). Note the dif­

ferent param eterisation; </> was w ritten in the form AN  so the assum ption used is 

analogous in our application to  hosts mixing in a fixed area, so th a t the infection 

ra te  increases with host population size. We have chosen infections to  occur a t a 

ra te  (<f>/N) ^  Mi(t)  rather than  so tha t hosts come into contact with

potential infections at a constant rate, regardless of the host population size. The 

hosts can be considered as having a fixed density, which is analogous to  a mass 

action assumption rather than  pseudo mass action. For further discussion on this 

subject see De Jong, Diekmann, and Heesterbeek (1995).

Of course, with N  =  1, the process reduces to a classical birth and death  process 

(Kendall, 1948), and results simplify correspondingly.
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5.2.2 M odel Results

We consider some of the many results th a t may be derived from the jo in t proba­

bility generating function to illustrate some properties of the parasite population. 

Q ualitative results are given under the assumption th a t (f) > /i so th a t the m ean of 

the parasite population is growing.

The marginal probability generating function for the number of parasites in an 

a rb itrary  host, Mi(t),  is

Ri(xi]t)  :=  P ( l , . . . , x u 1 ;t)

and the mean of Mi(t) is

E = a e ^ - A 1 +  (a* -  a )e " ^  (5.11)

where di =  E(M j(0)) and a = (1 /N)  X/jLi E(M j(0)) are respectively the initial 

m ean of host i and the average initial mean over the whole host population . The 

second term  in (5.11) represents the decay of the host’s mean parasite level from 

above or below the population mean, so th a t if host i starts w ith the average 

num ber of parasites in the population, then its mean follows the usual exponential

growth d e ^ ~ ^ 1. An uninfected host (i say, with di = 0) placed into an infected

environment will have mean — eMt) where a = (1 / ( N  — 1)) E (M j(i))

is the mean in the population excluding host i.

For other results we need to be more specific about the initial conditions. We 

first assume the boundary conditions

P(x;  0) = g ( x  1}. . . ,xN) =  J J  eai{xi~l) (5.12)
i=1

so th a t initially host parasite levels follow independent Poisson distributions w ith 

di the m ean of host i. A  consequence of this is th a t all Mi have an initial index 

of dispersion of one so there is no initial overdispersion. The m arginal probability 

generating function for an arbitrary M*(£) is then



where = yj — 1 and Ui = yi — 1, bo th  evaluated a t Xf~ =  1 V k ^  i, and where 

j  ^  z, so th a t

(xi -  l)((f) -  l - e - ^ )
V i  - [xi — l)(e  ^  — 1) +  N((f> — (i)e~(cl>~v)t

(xi -  !)((/> -  n ) ( l  +  ( N  ~  1 )e~(pt)
4 > ( x i  —  —  l )  +  N((f) —  / i ) e ~ ( <̂ ) _ / i ) <  ’

If di = a we find th a t the variance is

V ar(M ,(i)) =  a_  ((2<f: +  iV(0 -  n ) ) e ^  +  (5.14)

so th a t the index of dispersion is

I (M i(t)) :=  Var(M i(t))/E (M i (t)) (5.15)

=  1 +  A ^ ) (1 +  eW_,‘)t)- (5 '16)

Notice th a t this result is invariant to the initial mean mean, a. This index of 

dispersion is always greater than  1 for t > 0, so the parasite level will always be 

overdispersed. We see th a t the overdispersion grows at the same ra te  as the mean, 

(f> — /i. The larger the host population size, the less the parasites are overdispersed 

as any large deviations from the mean will feed back on themselves more noticeably 

in smaller populations, the extreme case being just one host reinfecting itself. In 

the lim it, for finite t,

lim I = 1,
N —i oo

i.e. the lim iting case as the host population size increases provides no overdispersion 

a t all.

If we consider just the marginal probability generating function of M i( t ), given 

in (5.13), and take the limit as N  —> oo whilst keeping the average initial m ean in 

all other hosts (a) fixed (so we write Y,k^iak = {N — 1 )a), we find

\im Ri(x\ t) = exp | ( x  -  1) +  (a* — a)e-M<)}  (5-17)

where a and a are now equivalent due to the infinite host population size. By the 

continuity theorem we see th a t Mi(t)  tends to a Poisson distribution w ith mean
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given by (5.11). This result is a consequence of Mi(t)  being made up from those 

initial parasites in host i th a t have survived to  t, together with a contribution from 

the superposition of an infinite number of independent marked point processes. To 

see this, consider the contributions made by all ancestors of the initial parasites in 

each host to the parasite load of the arbitrary  host i (at an arb itrary  tim e). By the 

branching property, these processes will all be independent of each other, and can 

be considered as independent marked point process, w ith the marks representing 

types of events, namely parasite deaths and births into each host. Thus we can 

view the parasite load in an arbitrary  host as the superposition of independent 

m arked point process, the number of processes tending to  infinity as TV —> oo.

If we consider the limit of R i (x ; t ) as N  —>• oo in the separate case where the 

initial conditions are

P (* ;0 )  =  n « ?  (5-18)
3 = 1

corresponding to host j  having a fixed level of initial parasites, ? then we obtain

^lim Ri(x; t )  =  exp {(x — l) a ( e ^ _Aî  — e-/if) j  {xe~ ^  +  1 — 1 (5.19)

so th a t the marginal distribution becomes the sum of a Poisson and a binomial 

distribution. Whereas with initial Poisson distributions (5.12) the num ber of sur­

viving initial parasites in host i follows a Poisson distribution th a t is thinned by 

parasite deaths (providing another Poisson distribution), w ith fixed initial levels 

the decay of parasites in host i provides a binomial d istribution w ith each initial 

parasite having probability e ~ ^  of surviving.

The mean of the Poisson part in (5.19), also present in (5.17), comes from the 

exponential growth term , together with the decay in the im m igration of

offspring from initial parasites in the other hosts, ae-/ib The initial parasites in host 

i effectively never contribute any parasites back into the host due to  the infinite 

host population size.
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If we take a; =  0 in initial conditions (5.18) so th a t we consider a host initially 

parasite free but placed into an infected population, the variance is

V a r (e>*{NUi -  4>) + 2 f l )  -  e « (»  +  p) +  /x -  <f>)

so th a t the index of dispersion is

I =  1 +  ({<!> +  +  (0 -  t i e - *  -  20) (5.20)

which again does not involve the initial parasite levels of the other hosts. This is 

of course only defined for t  > 0 as the initial mean is zero, however the  lim it as 

t  —»• 0 from above is 1. Again the parasite level will always be overdispersed, and 

for finite t, linpv_>oo =  1, which of course follows from M*(£) being purely

Poisson (5.19 with no binomial part as a; =  0).

If all hosts start with an identical number of parasites, a, we have cii = a = a 

and then the variance of Mi(t)  is

V ar(M ;(t)) =  ( <b t H e2i4-rit + ( n -  -  (JV -  l ) e- 2"‘)  (5.21)
N  \(f) — fi \  <f>- f i j  J

and the index of dispersion is

I (Mi(t)) =  1 + -  l ) ( 0 - / r ) e - ^ > t -2 0 )(5 .2 2 )

which again does not involve the initial parasite levels. We have lim^-^oo I(M i(t)) =  

1 — e ~ ^ ~ ^  so th a t in time the dispersion tends towards 1 from below. This initial 

underdispersion is simply a consequence of the initial variance being set a t 0 in 

(5.18), whilst the initial mean is nonzero. Notice th a t this result is (5.20) w ith 

e-{<t>+n)t subtracted. This difference decays to  zero with tim e as it is the change in 

index of dispersion from adding the nonzero number of parasites to  host % a t t  =  0 

(by setting M*(0) =  a).

The coefficient of variation,

CV(M i(t)) :=  ^Vax(Mi( t) )/E{Mi( t) )  =  ^/l(Afj( t) ) /E (M i(t))
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may be considered as a more useful measure of variation in the population as it is 

dimensionless, but it is not as easily used by ecologists to  determ ine the  extent of 

over dispersion in a parasite population. However if the coefficient of variation is 

greater than  or equal to one, we know th a t the index of dispersion is an increasing 

function in the mean. Using (5.22), we find

(CV(JMi(t)))2 =  efr-** +  N y _ ~  < ((»  +  M) ~  (AT -  1)(0 -  f a - #  -  2 ^ " ^ )  .

If 4> > fJ> (so the mean is growing) all exponents in this expression are non positive 

so th a t the coefficient of variation does not grow indefinitely, unlike the  index of 

dispersion, and is in fact likely to decay.

In reality, there will be many factors preventing the indefinite growth of the 

mean of the parasite loads th a t this model provides. This model is useful, however, 

as it shows us th a t even with homogenous mixing in identical hosts, and parasites 

entering hosts one at a time, the index of dispersion grows at the same ra te  as the 

mean, 4> ~  The conclusion we can draw from this model is th a t this type of 

demographic stochasticity alone can cause over dispersion in a parasite population, 

w ith the degree of overdispersion growing at the same rate as the mean. The effect, 

however can be ignored in large host populations.

We do not study the prevalence and extinction probabilities of this model as it 

is designed to compare the growth of dispersion under certain transm ission mech­

anisms and does not claim to represent the true transmission process. The models 

discussed in the following sections do not allow prevalence and extinction to  be 

easily calculated so no comparison is possible. However a comparison of extinction 

probabilities will be made when heterogeneous host susceptibilities are added to 

this model in Section 5.4.2.

5.2.3 Branching M odel w ith Clustered R eproduction

The model considered above was a multitype Markov branching process w ith all 

offspring distributions identically one. We now briefly consider the m om ents of this
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branching model with a general offspring distribution C , where C  has probability  

generating function =  h(x) := E(xc ) = Z ^ o  and mean and variance E (C ) =  0 

and Var(C) =  a2. We term  this clustered parasite reproduction as in general a 

parasite produces more than  one offspring at any infection point. The transitions 

are from M ( t )  to

4> NMi + c a t rate —-h c ^  Mj  for c =  0 ,1 ,...
N  3 = 1

Mi — 1 a t rate fiMi (5.23)

for i =  1, . . . ,  N.  The moment equations satisfy

rfE(^ ’(t)) =  ~  (5.24)

-  -  2uE(Mt{ t f )  + - (”- jye2)) E  E +
3 =  1

(5.25)

=  ^ ^ { E (M j(t)M k (t))+ E (M  (t)M k(t))} _
dt N  k=1

2/iE(Mi(t )Mj (t)) (5.26)

for z 7̂  y. The initial conditions we use are E(Mj(0)) =  a, E(M ?(0)) =  (3 for 

i =  and E(M i(0)M ?-(0)) =  7 for z 7̂  j .  If the initial d istributions are

independent then 7 — a2. As we have made all the hosts’ moments identical a t t  =  0

they will evolve identically and we can use symmetry in equations (5.27), (5.28) and 

(5.29), i.e. E (Mi( t)Mk(t)) =  E (M ,(t)M ,(t)) for all j , h  + z, E ( M ^ ) 2) =  E {M3(t)2)

and E(M j(t)) =  E f o r  all z, j ,  = 1,..., N.  The moment equations then  become

= (<j,e -  u)E(Mi(t))  (5.27)

= {tl + ^  + P) )E(Mi( t ) )  +  ( ^  -  2 /i) E(M i( t )2) +

N  -  1
2<t>e~ j r (5-28)

dE(Mi( t)Mj( t) )  =  2 ^ E (M .W 2) +  2 ^ 7 ^ i _ ^ E(M i(t )M .(t)) . (5 .2 9 )
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Using the notation \  =  <j>6 and 5 =  <f>(<72 +  92), the solutions are 

E (Mi(t)) =

E (M,( t )2) = ^ ^ ^ { i ^ r x + N ^ elX~l‘)t ~ ( N  - l ) e _2,,i)  +

\ N ( \  -  /i) ^  N  ) e + N

( T e2(A-«)t , l ^ A e- ^ t
N  j  N

so th a t if the initial loads are independent Poisson variables, then p  = a(a +  1), 

7 =  a2 and the index of dispersion is

l ( M  (t)) =  1 A +At f  ...2A + n ] +  15+  A- e<A- ^ -  (JV ~ 1 ) g ~ Ae-(A+rti 
1 ,W ) N \  + i i \ i i - \ + J + N ( \ - ij.) N  A +  /i

We then have

.(«(«)). 1+( *(7 7 a>) (i -

so th a t the dispersion grows from 1 to a maximum level of (5 + /i) /(A + /i)  as t —>■ oo. 

If clusters are identically of size one (i.e. C  =  1 a.s.) so th a t <r =  0 and 0 =  1, then 

5 =  A and of course we obtain the results of the simple branching model.

It is interesting to note th a t if (3 =  7 =  a2 so th a t all hosts s ta rt w ith a fixed 

level of a parasites, then the variance is

Var(M ;(i)) =  + N (X 7  ?) _  (jy — l ) e - 2'“ )
v w /  N  \  +  fi \ \  — n \ - n  '  ’ J

(5.30)

and hence (compare with (5.21)) incorporating parasite offspring clusters into the 

simple branching model whilst m aintaning the same mean simply multiplies the 

variance, and hence the index of dispersion, by a factor of

8 +  // 0(<72 +  02) +  M
A T  )jl (f)Q T  fi
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We see th a t the clustered reproduction together w ith demographic stochasticity 

is able to produce overdispersion even in large host populations. It does not increase 

the ra te  of growth of overdispersion but has what we shall term  a scaling effect, 

so th a t in (infinitely) large host populations the index of dispersion reaches an 

equilibrium , despite an exponentially growing mean.

5.3 Parasite Proliferation D ependence

As discussed in the introduction to this chapter, we model the transm ission process 

by considering the parasites ingested by a host a t any one tim e as all being the 

offspring of parasites in only one other host. This way the number of parasites a 

receiving host gains at an infection point is related to the load of the giving host, 

bu t no other hosts.

In the branching model of the previous section each infection point resulted 

in ju s t one parasite from the giving host transm itting  offspring to the receiving 

host. In this section we assume every parasite in a host must pass on its offspring 

a t tim es identical to those of all other parasites in the same host i.e. a t infection 

points. This assumption can be considered as a form of mixing of offspring w ithin 

the host and gives the parasite proliferation dependence introduced in Section 5.1. 

We still do not allow mixing of offspring from different hosts.

Essentially we consider the hosts with higher loads, not as transm itting  more 

often, as is the case in simple model outlined above, but as transm itting  larger 

numbers of parasites. We now have the transm ission rates between hosts fixed 

(they depended on the giving host’s load in the branching model), bu t the number 

of parasites transm itted  depending on the giving host’s load.

Contacts between hosts, or infection points as we alternatively call them , occur 

according to a Poisson process of rate Ncf), with giving and receiving hosts being 

equally likely to be any of the N  hosts. (Again, a particular host could be both  the 

giving and receiving host, so th a t self infection is possible). As a result each host
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individually picks up infections a t rate <p, and so receives a transm ission of parasites 

from a particular host a t rate <p/N. We write the probability th a t a host w ith i 

parasites transm its j  parasites at an infection point as F ( i , j ) .  The transitions are 

from A f(t) to

6  N
Mi + c a t rate — ^ F ( M j , c )  fo re  =  0 ,1 ,... (5.31)

N  3 = 1

Mi — 1 a t rate f iMi  (5.32)

for i = 1,..., IV.

These assumptions made about the transmission of parasites are sim ilar to 

those used by Barbour (Barbour and Kafetzaki, 1993; Barbour, Heesterbeek, and 

Luchsinger, 1996). The main difference is th a t B arbour’s model does not allow 

currently infected hosts to acquire parasites, an assum ption made to represent the 

h o s t’s immune system. Here we obtain explicit solutions for the moments of the 

parasite load in each host.

Let f ( i )  be a random variable w ith probabilities P ( f ( i )  = j )  = F ( i , j ) so th a t

upon each contact made, the number of parasites transm itted  is if M j(i)

is the load of the giving host.

The moments of the process can be shown to follow the system of equations

d E ^ i{t) =  ^ f ) E ( / ( i ^ ( i ) ) - / i E ( i M i ( 0 )  (5.33)
3 = 1

d E ( M i ( t f ) =  _  a^E fiW ^ )2) +  (5.34)
at

iV j = 1 iV 3 =1

d E( Mi ( t ) M j ( t ) )  =  _ 2 /tE (M .M ,w )  +  l g E (M .( i) /(M fcW )) (5 .3 5 )

i V  k = l

The initial conditions we use are E(M*(0)) =  a, E(M ^(0)) =  j3 for i = 1 

and E(M i(0)M j(0)) =  7 for i 7  ̂ j , so tha t, as in Section 5.2.3, we are able to use
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sym m etry in equations (5.33), (5.34) and (5.35). These equations thus simplify to

=  0 E ( /(M f(t)) -  AiE(Mj(t)) (5.36)

dE(j^ (<)2) = l i S . -  2/j,E(Mi(t)2) + 2 j jE(Mi ( t ) f (Mi ( t ) ) )  +
TV -  1

2<t>^r E{Mi{t)}{Mi m  +  ^E (/(JM i(t))2) (5.37)

dE (jkf,(jf)M jW ) =  - 2 fiE( Mi (t )Mj (t)) + 2 ^ ]^ E ( M i ( t ) f ( M j m  +

2 ^ E ( M i( t ) f (M, ( t ) ) )  (5-38)

for arb itrary  i and j ,  and where i ^  j .

The next simplifying assumption is to let

F ( i , j )  =  P ( E A * =  j )  (5 -39)
k=1

or, in other notation,

/ ( * )  =  £ > ,
i=1

where A i  are all i.i.d. copies of a random variable A .  This essentially means th a t 

upon each contact the number of offspring transm itted  by each parasite is indepen­

dent of all other parasites and drawn from the random  variable A .  However, the 

parasites in a host still have to transm it to  another host a t identical times, so we

do not have a branching process as in Section 5.2, in which there was no parasite

proliferation dependence. This assumption about the independence of offspring 

levels from each parasite inside the giving host is also made in the Barbour model 

(Barbour and Kafetzaki, 1993).

It is likely th a t in reality there will be some saturation  in the num ber of parasites 

th a t can be transm itted  a t one infection point, and f ( X )  will be a complicated 

m apping from the random variable X  to a further random  variable. Even if f { X ) 

is assumed to be a constant conditional on the value of X ,  a nonlinear form would 

probably be desirable and so equations (5.36), (5.37) and (5.38) are not likely to 

be closed due to term s such as E (Mi(t) f  (Mi(t ))) . O ther m ethods of analysis (such 

as approximations) are then needed. We do not investigate these here.
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W riting E (A)  =  9 and Var (A) =  cr2, we have

E ( /(X ))  =  OE(X)

E ( / ( X ) 2) =  6>2E (X 2) +  cr2E(X )

E ( X f ( Y ) )  = 9 E ( X Y ) .

For notational ease we write A =  <1)6 as the average rate of reproduction of each 

parasite.

Equations (5.36), (5.37) and (5.38) become

rfE(^ ,W ) =  ( \ - n ) E M t ) )  (5.40)

— =  (^  +  <pu2)E(Mi(t))  +  ( —  +  AO — 2/Xj E (M i(i)2) +

2 A ^ ^ E  (M ,(f)V ,(0 ) (5.41)

dEi(Mi(t)Mj(t))  2A . 2 , /  N  — 1
dt

= +  (5.42)

The m ean of the process behaves in the conventional exponential growth m anner, 

bu t it is interesting to study how the index of dispersion grows.

Notice the similarity of this system to equations (5.27),(5.28) and (5.29) for the 

branching model with clusters (transitions given by (5.23)). The only change is the 

term  in the differential of E (Mi(t)2) which is X6 E(Mi(t))  in the branching model 

(see 5.28) and becomes X6 E(Mi( t )2) in (5.41). As E (Mi(t)2) > E ( f o r  t  > 0) 

we can im mediately see th a t as the mean grows, the variance, and hence the index 

of dispersion, grows faster when parasite proliferation dependence is present.

If we write the linear system (5.40), (5.41) and (5.42) as

Y  =  A Y

w ith

Y  =  (E(M ;(t)) E (Mi( t )2) E(M i(l)M i (t)))'
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then  we have

/ A — fi 0 0

A =  fj, -f- (per2 2 (X / N  -  fi) +  X6  2 X { N - 1 ) / N

0 2 X / N  2(A( N  -  1 ) / N  -  fj)

The eigenvalues of this m atrix  are

V

a\  = X — fi

a 2 =  A +  X9/2 -  2/x +  A ^ l +  6(0/4 + 2 / N  -  1) 

a 3 =  A +  AO/ 2  - 2 j x -  A \ j \  + 0(0/4 + 2 / N  -  1) (5.43)

and the solution of (5.40), (5.41) and (5.42) w ith the initial conditions is given by 

E(M(t ) )  = ae(x- ^  (5.44)

1  ( P ~ k 2 

Q {  2
1 ( P ~ k 2 

Q \  2

( A ( 0~ 2 +4 / N)  + Q ) + 2 A ( j - k 1) ( N - l ) / N )  e“2t -

(A{6 -  2 + i / N )  -  Q) + 2  A (7 -  fci) ( N  -  1) /JV )) east

(5.45)

E(Mi( t )Mj( t ) )  = fc1e(A' ,‘>t +

h  (Q - x(-9 ~ 2 + + 2X^  -  k2^ N )  e“2t +

1 ^  (Q +  A(0 -  2 +  4/IV)) -  2A(/3 -  k 2) / N j  e“3(
Q

where

Q =  2Av/ l  +  0(0/4: + 2 / N - 1 )
2aX(fi +  4>(j2)

ki =

h>2 — 1 +

( N ( / j l  -  A) +  2A)(A + f i -  2 X / N  -  X0) -  4A2(7V -  1 ) / N  
N(j a -  A) A

2A

It is interesting to note th a t the variance of the offspring distribution for each 

parasite, a 2, only affects the variability of the parasite load levels through the
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coefficients of the exponentials, it does not come into the exponents themselves. 

This shows th a t it is more of a scaling factor than  a growth param eter, and is 

less im portant than  the structure of the transm ission process to the growth of 

variability.

The index of dispersion of Mi(t)  is I(M ;(t)) = E(Mi( t ) 2) /E(Mi( t ) )  — E(M*(t)), 

so we can see th a t the dom inant exponent in I(M j(t)) is (012 — A + p) t  =  f t  say. 

From (5.43) we have

The comparison w ith the branching model w ithout clustered reproduction (tran­

sition probabilities given by (5.1)) can be made by setting 0 = 1 (and a 2 =  0, 

though this makes no difference to  f). This shows the effect of the dependence 

in parasite proliferation alone by taking out the effect of parasites reproducing 

more than  one parasite at a time (clustered reproduction). If 6  =  1 then f  =  

\ 4> 1 +  yj  1 +  8 /N^j — fi. Comparing this with the corresponding value 4> — p  for 

the branching model of Section 5.2 (see (5.22)), we see th a t the model w ith pro­

liferation dependence always has larger f  by an am ount \<f (^J1 +  S / N  — l ) .  This 

difference will be more marked for higher values of </>, (faster rate  of infections 

points) but will decrease as N , the host population size, increases. In the lim it as 

N  —>• 0 0 , the twTo models have equal values of f . (Note from (5.44) and (5.45) th a t 

the coefficient of e& is always positive and tends to a constant as TV —>■ 0 0 . If 0 = 2 

then in the lim it as N  —> 0 0 , A  has repeated eigenvalues, which we do not consider 

further.)

We can conclude th a t for large host populations, and in the absence of  parasite 

offspring clumps, the effect of parasite proliferation dependence on the growth rate 

of the index of dispersion can be ignored.

We found in Section 5.2 th a t the effect of the parasites transm itting  in clusters 

when there was no parasite proliferation dependence was to m ultiply the index of 

dispersion by a scaling factor th a t increased as both the mean and variance of the

£ (5.46)
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cluster size increased. The effect remained in large host populations.

We now investigate the effect of the parasites transm itting  in clusters in the 

presence of parasite proliferation dependence by considering two versions of the 

model described in this section. Let model C have param eters </> = <j>c and 6  = 6 C 

as described above, so th a t A =  (f)c6 c. Consider another model, model T, in which 

exactly one offspring is produced by each parasite in a host a t infection times. Let 

(j) =  A =  <fic9c and 9 =  1 for model T, so th a t both  models provide the same mean 

levels. In words, parasites in model T  transm it one parasite a t frequent intervals, 

while in model C parasites transm it in larger clumps, but less often (assuming 

9C > 1). We have

fc  =  (ec + V(<9c -  2)2 +  80C/AO) -  V.

6r =  j 7'  ( l  \ / l  +  8 / ^  — A1-

The difference between the dom inant exponent of each model is

A :=  f c  — £r — 2 ^ c^c c —  ̂ \A^($c — 4 +  8 /A ”) +  4 — yj 1 +  8/N^j

which is strictly  positive if 9C > 1. We have th a t A is a decreasing function in N  so

th a t the clustered parasite reproduction effect of increasing the growth rate  of the 

index of dispersion (in the presence of parasite proliferation dependence) reduces 

as the population size increases.

If 9C < 1 then > £c so th a t the model T  has the larger dom inant growth rate 

in dispersion. This is because 9C is the mean of the distribution of offspring each 

parasite in a host produces at an infection time, and if 9C is less than  1 we have the 

reverse of the situation described above, with model T  resulting in more parasites 

transfered less often (as 4>t  = 9c<fc < </>c). Notice th a t A  does not include pi.
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We have the following results for large populations;

•  If 0 <  9C < 1 then A E [A(0 — 1), 0) so th a t A —> 0 from below as N  —> oo

•  If 1 <  9C < 2 then A E [0, A( 6  — 1)) so th a t A —y 0 from above as N  —> oo

•  If 9C >  2 then A E [A(0 — 1), A( 6  — 2)) so th a t A —> (j)c9c{9c — 2) from above.

In summary, when comparing two models having equivalent parasite load means, 

one with parasite offspring clusters with mean 6 , the other w ith a single offspring 

transm itted  from each parasite (no clusters), the highest, dom inant growth ra te  in 

dispersion, £, satisfies the following as host populations become large;

0 <  9C <  1 Model w ithout offspring clusters (T) has higher £

- the two models becoming equal as N  —>• oo

1 <  9C < 2 Model with offspring clusters (C) has higher £

- the two models becoming equal as TV —> oo

9C> 2 Model with offspring clusters (C) has higher £

- difference tends to 4>c9c{9c — 2) from above as N  oo.

We can conclude th a t for large populations, and when we already have parasite 

proliferation dependence, the effect of parasites producing more than  one offspring 

a t any infection point on the growth of the index of dispersion can be ignored if 

the mean of each offspring clump is less than  two. However, for higher values of 6  

the effect could be quite significant, even in large populations.

As we have not included any larval parasitic stage in these models, the offspring 

from a parasite is only the number of succesfully transmitting parasites. Imagine 

the scenario in which m ature parasites produce high numbers of offspring, but very
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Figure 5.1: Log Index of Dispersion of M(t )  for Four Transmission Processes, 

TV =  10

few become m ature worms after entering the receiving host. In such cases it is 

quite possible to imagine having 9 < 2, but a  > 1. Notice th a t it is the transfer 

of offspring from each parasite at identical times th a t produces the higher growth 

ra te  of index of dispersion, not the variabilities in the num ber of offspring each 

parasite produces. The clump size could be a constant w ith no random  variation 

(a  =  0) and we would obtain the same results concerning the growth of the ra te  of 

I (M, ( t ) ) .

We can see th a t clustered reproduction has a greater effect when combined w ith 

parasite proliferation dependence. In the branching model it was merely a scaling 

type effect, whilst here it increases the growth rate of the overdipersion.

Figures 5.2 and 5.1 on the following page show a comparison of the log indices 

of dispersion of the load of an arbitrary host. Plots are given for the two transm is­

sion mechanisms, each with and without clustered reproduction, for populations of 

different sizes. For each of the two transmission mechanisms, the process w ith clus­

tered reproduction is the higher of the two lines. All the plots tend to  fixed slopes 

eventually, giving the dom inant, underlying growth rate  of the indices of dispersion.
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Figure 5.2: Log Index of Dispersion of M(t )  for Four Transmission Processes, 

N  =  1000

The mean is included in the graphs for comparison, and the param eters used are 

(j) =  5, 0  =  5, a 2 = 3 and fi = 5 for the processes with clustered reproduction, and 

4> = 25, n = 5 for those without.

Intitially  in Figure 5.1 we see th a t the index of dispersion for the  clustered 

reproduction branching model has faster growth than  th a t for the model w ith par­

asite proliferation w ithout clustered reproduction. However, the effect of parasite 

proliferation quickly becomes more im portant as the underlying growth ra te  for 

each model starts  to  dominate, and so the proliferation dependence model w ithout 

clustered reproduction has higher index of dispersion growth. It is noticeable in 

bo th  Figure 5.2 and Figure 5.1 how large the difference is between the growth of 

I (M(t ) )  for the clustered, proliferation dependence model and the other three m od­

els. This underlines how the effect on I (M(t))  of these two mechanisms together is 

in some sense greater than  the sum of the two effects on their own.

In Figure 5.2 we see th a t the branching model w ith no clustered reproduction 

spends some time with index of dispersion around 1 (and hence log(I(M (t))) a t 

zero) due to the high host population level, but eventually the growth ra te  will
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dom inate, so the dispersion starts to increase exponentially. W ith a relatively small 

host population size of 10 in Figure 5.1 the proliferation dependence model w ithout 

clusters has higher dispersion growth than  the mean, whilst the clustered branching 

model has closely following the mean after sufficient time. W ith  a larger

host population size of 1000 in Figure 5.2, we see th a t the proliferation dependence 

model w ithout clusters has dispersion growing identically with the m ean (the line 

is partially  hidden inder the mean p lo t), whilst the clustered branching model now 

has lower than  the mean. This illustrates the results already presented

algebraically in this chapter concering the reduction of the dispersion in larger host 

populations.

We briefly consider the coefficient of variation. The dom inant exponent in the 

square of CV(M j(t)) is et where

e =  I a  (e -  2 +  <J(9 -  2)2 +  88/N\  .

For the branching model w ithout clusters, this was zero. Again, to  consider 

the effect of parasite proliferation dependence alone we let 6  = 1, giving e = 

\4> 1 +  8 / N  — l ) .  We can see th a t parasite proliferation dependence is enough

to make the coefficient of variation grow for values of N  th a t are not too large. This 

ra te  of growth of the square of CV is always less than  <j> for N  > 1 (equals (f) when 

N  = 1). We have th a t e tends to the value of the branching model when N  —» oo 

so th a t, as with the index of dispersion, for large populations, and in the absence 

of parasite offspring clumps, the parasite proliferation dependence does not affect 

the  coefficient of variation.

It is interesting to  note th a t e does not involve /i, so th a t in relatively small host 

populations it is possible to have small growth in the mean {<j> — fi small) whilst 

having large growth in the coefficient of variation, purely as a result of parasite 

proliferation dependence. However, this will occur when <f> is close to /i so th a t <\> — \i 

is small relative to y/4>. This will result in an increased chance of extinction, and 

so care must be taken in interpreting these results. W hen there is a high chance of
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extinction, moments can be highly unrepresentative of actual realisations, and other 

properties such as distributions conditional on non extinction might be considered. 

Most of the results given in this section apply when the parasite population is 

flourishing and concern the effect of different factors on the aggregation when the 

population is growing.

As an addition to this work, it would be interesting to consider how the cor­

relation between hosts is affected by the different transm ission mechanisms. A 

sum m ary of the results of this section is given in the conclusion to this chapter, 

Section 5.5

5.4 Host H eterogeneities

Heterogeneities are often cited as the source of high variability in parasite loads 

(Anderson and May, 1991; Wassom, Dick, Arnason, Strickland, and G rundm ann, 

1986). In this section we incorporate heterogeneities into the models of the previous 

two sections. Specifically we consider heterogeneities in host behaviour (Section

5.4.1), susceptibility (Section 5.4.2) and ability to expel parasites (Section 5.4.3), 

and look at the effect these will have on a selection of properties of the distribution 

of parasites among hosts.

5.4.1 H eterogeneities In Host Behaviour

Hosts may vary in their behavioural patterns, and so affect the transm ission of 

parasites through the host population. For example, if the infection from the 

parasite life cycle outside host is via a river, as in schistosomiasis, the frequency of 

visiting the river will alter a host’s ability both to  pick up and to transm it infections. 

Similarly, dwelling location for humans may result in this type of heterogenous 

behaviour in mosquito transm itted  diseases.

We represent these differences in the branching model of Section 5.2 by saying
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th a t the rate  a t which a parasite in host i gives rise to  a parasite in host j  is 

assumed to be Kikj</)/N, and w ithout loss of generality, E £ i  h  = E*Li ki =  N.  

For the equivalent model used to  study parasite proliferation dependence (5.3) we 

assume th a t this rate, Kikj</>/N, is the rate a t which host i makes infectious contacts 

with host j .

We have an iV x iV mixing m atrix for the contact between hosts w ith ele­

ments a,ij representing the relative contact rate from host i to host j , being Kikj. 

In the branching model framework, the average infection rate for a parasite in a 

random ly chosen host a t any time is thus kept the same as in our previous m od­

els, j j  E i l i  E jL i kiKj(j)/N = ^ 2  ( E i i i  &») (e£L  1 « i) =  <t>- This is also the average 

rate a t which contacts between hosts occur in the equivalent model for parasite 

proliferation dependence.

The param eter represents a host’s ability to transm it the disease, and k{ its 

ability to pick up an infection, relative to the rest of the population. If behavioural 

heterogeneities (as opposed to heterogeneities in host susceptibilities) are the only 

ones being considered, as in the two examples above, it would be expected th a t 

m = k{ for all i. Then the mixing m atrix is symmetric and we have =  kikj.

W ith these heterogeneities the branching model considered in Section 5.2 has 

transitions from M*(t) to

AMi  +  1 at rate — 2_, f yMj
N  3 =  1

Mi  — 1 a t rate (iMi

for i =  l ,...,iV , so the equivalent to equation (5.2) for the probability generating 

function P ( x ; t) := E ( n £ i  is

8 P  N d P  ( 6 N \
- f t  =  E  - f a .  ( M 1 -  Xi )  +  E  k i ( Xi -  ! ) )  ( 5 -4 7 )

and the auxiliary equations become

H nr ■ k • d) ^
- M  = / i ( x j - l )  + - j j - Y ^ k i ( l - X i )  for j  = 1 , . . . ,TV. (5.48)
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These appear difficult to solve in a useful form (see however the special case in the 

next section) and so we restrict ourselves to considering moments of this model. 

The moment equations for this simple model with heterogeneous host behaviour

are

(5.49)
3 =1

^  E  K i W M j )  +  ^ k £  E (Mi) +  l & m  -  2 n E ( M ? )

(5.50)

d E ( M i M } ) =  t  E (M .M r) +  k . £  KrE ( M , M r) )  -  2/ j ,E(MiMj) .
dt N  \ i ,\  r = l  r= l

(5.51)

If we m ultiply equation (5.49) by /c», and then sum over z, we obtain an equation 

in term s of C(t) := E £ i  «*E(Mj(i)). This is

dC{t) (  T . l ^ , k  \
d t~  ~  (  N --------

and w ith the initial conditions (7(0) =  N a  we obtain

C(t)  =  a N exp |  - f i ) tS '! !  Kik

— a N  exp { ( ( f ) ( l V )  — fj,) t }

where we have w ritten

y  =  Y . t i ^ i k  _  x (5 52)

We can think of V  as being a measure of the covariance of the distribution of the
Kiki k- k■

hi and k;s across the population (V  is equivalently i=̂  ^  * P  ' ) • The

solution of (5.49) with initial condition E(Mi(0)) =  a for all z is then

E(M ,(i)) =  ■ ^ y ( k ie ^ 1+v^ t + ( l - k i + V) e - ' ‘t) (5.53)

Not surprisingly the host’s ability to pick up infections, A;*, is in this expression 

directly, whilst the host’s transmission ability («*) is only involved as part of the
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population expression V.  If all k{S are equal so th a t hosts pick up infections a t the 

same rate, then V  = 0 so th a t all the means are identical and are the same value as 

in the homogeneous host model, despite any differences there may be in the hosts’ 

transm ission abilities, /c*s. In this situation the second order moments for this 

branching model, the clustered reproduction model and the parasite proliferation 

dependence model are solvable, though we do not provide solutions here. One 

biological explanation for this scenario of equal fas but different /c*s is when hosts 

have varying abilities at lim iting parasites’ production of offspring w ithin hosts, and 

hence the transmission of parasites varies among hosts, but the uptake of parasites 

does not.

For a host th a t has a contact rate  th a t is the average of the whole population 

contact rate, we have ki =  1. Using this value will also give us the mean of the 

parasite loads across the whole host population as

E (M(t ) )  =  +  V e- " ')  .

U V  > 0 then there is a positive covariance between hosts’ relative transm ission and 

uptake rates, and so the more heavily infected hosts transm it faster, and the overall 

mean is increased in comparison with the identical host models (5.44). W hen this 

covariance is negative the heterogenous model produces a lower overall m ean for 

the reverse reason, though this scenario is less likely biologically.

If this system were modelled deterministically, with only these means being 

considered, some variability would still be obtained across the host population. 

Considering this variance of the means, we have

DVar,(E(M i(t))) :=  1  | j ( E ( M M ) ) 2 ~  ( £  E ( Mf (t))J

= ,, a2. rt,  Var(JiT) (eW+v)-i*)t  -  e - " 1) 2 (5.54)(i + vy  v *

where Var(i^) := YliLi ~  ( j f  X)£i &*) is th e variance of the hosts’ relative 

rates of contact w ith infection across the population. Notice th a t the variability
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in the hosts’ transm ission abilities, the aĉ s, enters to expression (5.54) through the 

covariance of the two types of heterogeneities, V.  W hen k,* =  ki for all z,Var(iC) —

The fully stochastic variance of the M j(t)s for this branching model is not so 

easily found as we no longer have the symmetry used in the previous section. The 

equations can of course be w ritten as a linear system of ^ N ( N  +  1) equations 

and solved for specific values of ^ s , but we shall not pursue this here. The same 

problem occurs in the parasite proliferation dependence model (which of course has 

the same means as described for the branching model). Thus it is hard to  see the 

general effect of the combination of host heterogeneities and the structure of the 

transm ission process on the variability of the process. A possible way to  do this, 

not pursued here, is to  consider two subpopulations with mixing a t different rates 

within each and between subpopulations. This will lead to  a system of seven linear 

differential equations for the first two moments of the process. It may, however, 

still be difficult to gain any insight from the solutions to these. This approach is 

used to consider the m ean values in Section 5.4.3.

5.4.2 H eterogeneities in Host Susceptibilities

Consider the special case of the model of the previous section in which hosts behave 

identically in term s of their infectivity (so «* =  1 Vi) , but their exposures are differ­

ent, representing varying susceptibility to infection across the host population. For 

example this scenario is appropriate if some hosts have a be tte r genetic disposition 

to the prevention of parasite establishment than  others (Wassom, Dick, Arnason, 

Strickland, and Grundm ann, 1986).

The join t probability generating function for the branching model w ith these 

host heterogeneities, P ( x \ t ), then satisfies

V.

(5.55)
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obtained by setting =  1 Vz in (5.47). The auxiliary equations (5.48) reduce to

(Ht ■ ch
=  n ( x j - l )  + —  J 2 k i { l - X i )  for j  =  1,...,7V. (5.56)

Z=1

If we define crH =  J2iLi kix i then the analysis proceeds along similar lines to  th a t 

in Section 5.2. The constants of integration, A, C i , ..., C n  for the solutions of 

crjiyXi, are the same as A ,C\ ,  . . . ,Cn  (see (5.6) and (5.7)), bu t w ith <r#

replacing a  . We then have

l (  \
Xn  = ~r- \ aH ~  V  Xi]

kN V fe i /
A e - #  -  ±e - * 1 -  J -  E f--!1 kjC;  0  K t f  — J j

Ae~flt — e- ^  

and hence using the general initial conditions

P(® ;0) = g(x i , . . . , xN)

we have

P ( x \ t )  = g (yu . . . , yN) (5.57)

where

Vi =
-  e"**)) E f= i -  0 ) ^ ) '

-  l)  E j l ,  kjXj + N(<j> -  ne-M-ri*)

Shanbhag (1972) has derived a form for the tim e inhomogeneous version of this 

process by use of the backward equations, as an extension of the work of Mode 

(1962).

From this result we can see th a t if a host (i say) has an average susceptibility, 

(so ki = 1), then its parasite load is not affected in any way by whether the other 

hosts in the population have identical or heterogeneous susceptibilities. W ithout 

heterogeneous transmission rates the effect of heterogeneous susceptibilities on the
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parasite population is much weaker. This is because hosts with higher loads still 

transm it parasites a t the same ra te  and hence the to ta l being transm itted  remains 

the same. The parasites are distributed amoung the hosts in a different way, but 

the distribution of the to ta l population number (X)£i Mi(t))  does not change. This 

can be seen algebraically by evaluating (5.57) a t Xi =  x  Vz to  obtain  a probability 

generating funtion for the to ta l parasite population, and noticing th a t the fcjS do 

not appear in th is expression.

As Ki = 1 Vz, V  = 0 (i.e. there is zero covariance between ^ s  and A^s), and so 

w ith initial conditions of Mj(t)  = a Vj, (5.53) gives

E (Mi(t))  =  o (fcie'*-")* +  (1 -  fcije""4)

which can be verified from (5.57) evaluated with g(x)  = YljLiX*.  The average 

across the whole population is thus and so as a consequence of the point

m ade above concerning to ta l parasite numbers, there is no change from the homo­

geneous host result in Section 5.2.2 in which all hosts have identical susceptibilities.

If we look at the variability th a t a deterministic system would exhibit, we find 

equation (5.54) becomes

DVarj(E(M j(t))) =  a2Var(K)  -  e“ ',‘) 2

and so the determ inistic result for the index of dispersion is

I det(M (t)) =  aVar(K)(e' jd — 1)(1 — e~<l>t)e~>‘t .

If we change the initial conditions to ai = 0 and aj =  a for all j  ^  z so an 

uninfected host is introduced into an infected area, then the mean of Mi(t)  is

E 1)

(this is simply ki times the value with homogeneous hosts) and the variance of 

obtained from (5.57), is

V ar(M ,(i)) =  ^  +  M 24*!*-(<t>+n)e-«j) .
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I

The index of dispersion then becomes

I =  1 +  ((</> -  + (0 + -  20) ■ (5.58)

Com paring this to the case with homogeneous susceptibilities and the same initial 

conditions, (5.20), we see th a t the amount by which M;(t) is overdispersed is simply 

m ultiplied by ki. This means th a t the within host overdispersion of a host w ith 

below average susceptibilities (k values less than  one) will be less than  if all hosts 

had homogeneous susceptibilities. This is because the index of dispersion is related 

to  the mean, which will also be reduced.

The probability generating functions (5.10) and (5.57) can be used to investigate 

how heterogeneous susceptibilies affect prevalence and extinction of the parasite 

population. For example, the extinction probability is given by evaluating P ( x ; t) 

in (5.57) a t x  = 0, and we find th a t the &jS all vanish and so heterogeneous 

susceptibilities alone do not affect extinction. This is a consequence of the to ta l 

parasite  population distribution being unchanged, as it is this population th a t must 

go to  zero for extinction to occur.

5.4.3 H eterogeneities in Parasite Expulsion A bilities

In this section we consider heterogeneities in the hosts’ abilities to  expel parasites, 

which can be considered as a measure of their resistance to the parasites. We 

provide only a brief introduction to this scenario with the purpose of outlining a 

framework for the study of these heterogeneities in m acroparasite infections.

We allow the param eter fi to vary across the hosts. If we let host i have internal 

parasite death rate Hi then in general we will have separate ordinary differential 

equations for the moments for each host ( N ( N  +  3)/2  of them  if second order 

m oments are included) as we are not able to use any sym m etry in host parasite 

levels. This is because the param eters Hi act directly on the evolution of the 

parasites inside each host rather than  simply being a scaling type param eter, as 

the ki and Ki were.
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We restrict a ttention to the case where there are ju s t two host death  rates so 

the first n\  of the hosts have internal parasite expulsion rates p\  and the rem aining

n 2 =  N  — n\  have rate p 2. The ordering is of course arbitrary. Then Mi(t)  has

transitions to

N
Mi(t) + c a t rate <p/N ^  F(Mj( t ) ,  c) fo re  =  0 ,1 ,...

j=i
Mi(t) — 1 a t rate piMi ( t )

for i =  1 ,..., Ar, where pi =  p\  if i =  1,..., n i and pi =  p 2 if i = n-i +  1 ,..., N .  The 

m eans satisfy

dE(Afi(t))
dt

dE{M2 {t))

= (pX — +  qXE(M2 (t))

= pXE(Mi( t ))  +  (qX — p 2) E ( M 2 (t)) (5.59)
dt

where p = n i / N  is the proportion of hosts in subpopulation 1, and q =  1 —p  =  n 2/ N  

is the proportion of hosts in subpopulation 2. There are five more equations to 

consider if we want the second order moments, giving a linear system of seven 

ordinary differential equations. We do not consider these further. The solution to 

(5.59) with the boundary conditions E(M i(0)) =  E(M 2(0)) = a is

E = a ( A + f e ~ ^ 1 + ^ cfA— K2+,W2 I A + ^ c( * - w - w - w d

E ( M 2 (t)) =  a ( A+ ^  2 +  +  W ~  A +

where

xjj = yjA2 +  (p2 -  Mi)2 -  2A(p -  q){pi -  p 2).

The average parasite level throughout the host population, pE (M i(t)) +  gE(M 2(£)), 

is

/ Ip +  A — ^  ^  ~  {X — XU) ^x-ip-(ni+n2))t/2 \
V 2 xp 2 ip J

where

^  ( p -  g)(pi -  p 2).
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Figure 5.3: Mean Parasite Levels with Heterogeneous Host Parasite Expulsion 

Rates

If the two subpopulations are in equal proportions (p = q =  1/2) then w  =  0 and, 

assuming th a t the average expulsion rate is fi, we have /xi +  /x2 =  2// so th a t the 

m ean parasite level throughout the host population is now

/ Ip +  A (A+^-2/*)t/2 , ^  ~  A
\ 2 4 > + 2 4 , )■

By considering fi as fixed, we see th a t this will be an increasing function in ip, and 

hence in the size of the disparity between the two parasite death rates (p,i — H2)2, 

if

which is always true for
2A

A2 +  (Hi — II2 ) 2

This means th a t after sufficient time, a host population w ith two equal subpopula­

tions of hosts w ith differing parasite expulsion rates will certainly have larger mean 

than  an equivalent homogeneous host population.

Figure 5.3 shows the mean parasite level across all hosts for fixed levels of 

A =  30, fi = 20 and fi\ =  25. The proportion of hosts with the higher than  average



level of parasite expulsion rates is p , and is varied across the three plots. We see 

th a t the larger the proportion of hosts with high resistance, (p), the faster the m ean 

increases. This will correspond to  a bigger disparity between the levels of expulsion 

rates in the two host populations. Thus the case of homogeneous expulsion rates 

corresponds to the lowest possible growth of the mean. We conjecture th a t this 

will be the case for all param eters values. This is also the general situation w ith 

heterogeneous host behaviour in which there are heterogeneous contact rates, and 

the homogeneous case provides the smallest growth of the mean.

5.5 Conclusions

To summarise the results of this chapter, we have highlighted two possible mech­

anisms for the transmission process tha t, together with demographic stochasticity 

can cause the parasite population to become overdispersed even among identical, 

homogeneously mixing hosts.

Demographic stochasticity alone can cause the index of dispersion to grow at 

the same rate as the mean, though as the host population size becomes large the 

am ount of the overdispersion tends to zero. The effect of individual parasites 

transm itting  more than  one offspring at a time acts to increase the overdispersion 

in a scaling way, so th a t as the host population size increases, overdispersion is still 

possible, but it will reach an equlibrium value in time.

The effect of parasites in a host transm itting  their offspring simultaneously 

however causes the growth ra te  of the index of dispersion to increase. Further, 

the effect of offspring from individual parasites being transm itted  simultaneously 

is magnified, so th a t it also increases the growth rate of the index of dispersion, 

though for large population sizes the mean of each clump size m ust be greater than  

two for this increase to remain.

The dom inant growth rates in the index of dispersion, i.e. the highest expo­

nents w ith positive coefficients under the transmission mechanisms discussed can
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be summarised as follows;

PARASITE PROLIFERATION D EPEN D EN CE 

YES NO

YES p (e + ^ ( e - 2 f  + &0 / N)  - n A — fi

CLUSTERED

REPRODUCTION

NO p  ^1 +  ^ 1  +  8/iV) — [a A — /i

In the lim it as the host population size N  ^  oo these become

PARASITE PROLIFERATION D EPEN D EN CE

YES NO

YES 0 > 2  : \ ( 0  -  1) -  / i 0

CLUSTERED 0 < 2  : X -  fj,

REPRODUCTION

NO \  — n 0

The reason why we see the highest exponent with positive coefficient drop from 

A — /i to  zero as N  —> oo is th a t the coefficient of the relevant exponent tends to  

zero. Thus, as described in Section 5.2, in the lim it of N , the index of dispersion 

will not grow indefinitely in the absence of parasite proliferation dependence.

For a particular parasitic disease, information on the life cycle and transm ission 

processes of the parasites can be evaluated to  see which of the mechanisms discussed 

in this chapter are likely to be present, and hence an idea of the intrinsic aggregation
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due to the biology of  the parasite transmission process alone can be gained.

The two effects we have considered in this chapter (parasite proliferation de­

pendence and clustered reproduction) are in fact very similar in concept. Clustered 

reproduction demands identical transmission tim e for clumps of offspring from in­

dividual parasites, whilst parasite proliferation dependence requires identical trans­

mission times for offspring from parasites in the same host. Both mechanisms re­

sult in added dependence between parasites and hence higher variability in parasite 

loads.

Parasite proliferation dependence represents homogeneous m ixing of offspring 

within a host, so th a t upon an infection point all parasites in the host transm it. 

The next level of offspring mixing, not investigated in the models of th is chapter, is 

between hosts. Biologically this will occur during a phase of the parasites’ lifecycle 

th a t is outside the definitive host. Free living larvae coming originally from different 

hosts may be picked up together by a receiving host, so th a t there may now be 

more than  one giving host. For example if larvae are transm itted  via host faeces 

spread in the environment, the mixing of faeces from different hosts will result in 

the mixing of offspring from different hosts a t an infection point.

The general model for this transmission mechanism would have transitions from 

M ( t )  to

N
Mi(t)  +  a t rate (f)G(M(t), c) Vc G

3=i
Mi(t)  — 1 a t rate /iM^(t)

for i= l,...,N . This means th a t a t an infection point host j  contributes Cj parasites

(for j  =  1,..., N )  with a probability th a t is some function G of the sta te  of hosts,

iVf(t), and the CjS.

A further assumption th a t could be made (analogous to  assum ption (5.39) made 

in Section 5.3 concerning independence of reproduction at the different mixing
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levels) is to let

3 = 1

which is to assume th a t the number of offspring contributed by the parasites in host 

j  a t each infection point is independent of the number contributed by all other host 

and depends only on the load of host j , This means th a t the to ta l num ber

of offspring acquired at an infection point is the sum of N  random  variables, each 

depending upon the load of one of the N  hosts. The transition  ra te  from M i ( t ) to 

Mi  (t ) +  c can then be w ritten as

*  e  n e w w . c , )
cs.t .\c\=c j = 1

where | c  |=  Y l j L i  cj

This models offspring mixing between hosts. For some biological systems we 

m ight expect the parasites ingested at an infection point to  come from a small 

sample of hosts, rather than  all hosts in the population. This could be achieved by 

m aking G ( M j ( t ) ,  0) relatively close to  one, so th a t the chance of a particu lar host 

contributing to  any one infection point is low, or equivalently by m aking only k  

random ly drawn hosts contribute, where k  will itself be independently drawn from 

a random  variable a t each infection point.

This further type of mixing assumption overcomes one of the main shortcomings 

of using the direct transmission assumption discussed in the introduction to  this 

chapter. The other im portant process this assumption implicitly ignores is the tim e 

delay and survival of parasite stages outside the definitive hosts. An obvious way 

of including this would be to add one or more variables to the system to  represent 

the num ber of parasites in stages outside the host. This will im m ediately require 

careful, detailed consideration of the transmission of parasites to  and from these 

environm ental stages, and in many cases it will not always be obvious how this 

should be modelled. A simple version of the branching model of Section 5.2 with 

an environm ental stage might have variables ..., M v(t) as before, and an
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additional variable E(t )  representing the number of parasites in the  environm ent. 

The transitions might be from M ( t ) , E ( t )  to

M  +  €i E  — 1 at rate  f aE f t )  for 2 =  1, N

M  — Si E  a t rate iiM , for i — 1, N
N

M  E  +  1 a t rate  </>i
j =i

M  E  — 1 a t rate  h e E

where e* is an N  length vector of zeros with unity in the position. This model 

is reasonably tractable to analysis and may give an idea of the effect of modelling 

the environmental stage explicitly.

Further ways of modelling the parasite transmission with an environm ental vari­

able include imagining E(t)  to represent the number of potential parasite  ‘clum ps’ 

in the environment, where each clump can release more than  one offspring into 

a host when an infection contact is made. For example, this could represent the 

num ber of infective mosquitoes, or number of patches of infective faeces in the en­

vironm ent. As well as being able to include parasites entering a host in clusters

ra ther than  individually, the other main difference from the transitions outlined 

above is th a t the E(t)  variable would not drop when an infection event takes place, 

as the  mosquito, for example, would remain in the environment, The transitions 

m ight be from M ( t ) , E ( t )  to

iVT H- ce. E  at rate (f)2 hcE(t) for i =  1,. .., N  and c =  0,1

M  e, E at rate liMi for 2 =  1,. N
N

M E  + l at rate 4>i £  m 3
n  —  "I

M E -  1 at rate
J — 1

He E

where as usual hc — P (C  =  c), the number of offspring picked up by a host 

a t each infection point. If this framework were used for more detailed models, 

the d istribution of C  would have to be specified from estim ates of the am ount of



parasite offspring a host picks up from an infective clump of grass, or an infective 

mosquito. This type of formulation is appropriate for parasites th a t have a large 

am ount of asexual reproduction inside a vector host so th a t the infection to  the 

definitive host involves large numbers of offspring being transm itted . Examples of 

this include filariasis.

It should be pointed out th a t th a t in most cases in this chapter the moments of 

parasite levels were given for individual hosts, and th a t the variability comes from 

different realisations of the stochastic process. These moments may not neccesarily 

be the same as the sampling moments th a t might be used from observations in the 

field. The general conclusions, however, are unlikely to be affected.

There may be some localised spatial effect in some biological systems so th a t 

hosts contributing to an infection point are more likely to be the neighbours of the 

receiving host. This would require us to lose the homogeneous mixing assum ption 

th a t we have used throughout this chapter (with the exception of Sections 5.4.1 and

5.4.2) and of course would add extra variablility and aggregation into the process. 

The nice thing about most results and models of this chapter is th a t they do not 

rely on heterogeneous mixing to provide overdispersion of parasites bu t show how 

other mechanisms can contribute even in the presence of homogeneous mixing. 

Heterogeneous mixing is perhaps an ‘obvious’ cause of aggregation.

As an extension of this work it is im portant to  see how the results of this chap­

ter are affected by using more realistic, nonlinear effects for the transm ission and 

survival of the parasites. U nfortunately this will quickly make the m athem atics 

less tractable. Density dependent effects, immune mechanisms or other regulatory 

factors are likely to  decrease the aggregation in the process, and work against the 

growth of dispersion th a t the transmission mechanisms provide. Considering the 

effects of various transmission mechanisms under linear growth does however pro­

vide an idea of their relative importance. One of the useful features of stochastically 

formulated models (such as those presented here) is th a t they force the modeller 

to th ink about the specific details of the mechanisms being modelled. Simplify-
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ing assum ptions will usually have to be made, but it is sometimes all too easy to 

write ‘the ra te  of parasite transmission is w ithout considering the process of 

transm ission in further detail.
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Chapter 6

D iscussion

6.1 Evolution of Parasite Virulence

In this section we briefly discuss how the model in Chapter 3 can be used for studies 

in the area of the evolution of parasite virulence. As parasites reduce their own 

transm ission capabilities the more they kill their hosts, the initial assum ption in 

this area is th a t parasites will naturally evolve to become more benign over time, 

through natural selection within the parasite species.

However, there are many well established parasite-host relationships in which 

this is not the case, and the parasite has remained highly virulent (see, for ex­

ample, Schall (1990)). There has been much speculation on the reason for this, 

though the testing of ideas through experiment is particularly difficult in this area. 

Perhaps the simplest explanation, and one th a t is currently popular, comes from a 

hypotheses th a t can be roughly thought of as a conservation of biomass. It involves 

the assum ption th a t parasites with higher virulence are able to  transm it offspring 

at higher rates than  those with lower virulence, as they use more nutrition from 

their hosts (Levin and Pimentel, 1981; Ewald, 1983). Thus there exists a trade off 

between virulence and transmissibility. This leads to leads to  much discussion and 

hypothesis on the com petition between parasites of different strains with differing
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virulence, and on which level of virulence survives under natural selection in various 

host population structures (Novack and May, 1994; May, 1994; Lipsitch and Novak, 

1995). Models by Anderson and May (1982a), May and Anderson (1983), Antia, 

Levin, and May (1994) give possible explanations for the evolution of strains with 

interm ediate levels of virulence. Ebert and Herre (1996), Bull (1994) and Levin 

(1990) provide reviews of this area.

The m ajority of theoretical work on the evolution of parasite virulence has 

been in the study of microparasites. Some exceptions, however, are the studies 

of Herre (1993) and Herre (1995). He investigated the evolution of virulence of 

nem atodes parasitising fig wasps. The fig wasps reproduced in fig fruits, each 

fruit containing a varied number of wasps. He showed th a t increased chances for 

horizontal transmission of parasites across host parents led to strains being more 

virulent than  those transm itted  from host parents to  offspring. This was because 

the reproductive success of these parasites was less tied to  th a t of the host. One of 

the aspects highlighted in the conclusion of Herre (1995) was th a t

Thus far wasps and fig fruits have been characterized as either ‘w ith ’ 

or ‘w ithout’ nematodes. However, this simplification neglects the fact 

th a t the densities of nematodes vary among fig fruits and worm burdens 

vary among individuals.

Hence we see th a t in this host-m acroparasite relationship the level of infection is 

again of im portance to the issue under study. There are advantages for aggregated 

parasites th a t are discussed in Section 1.2 and Poulin (1998, C hapter 6), including 

increased m ating probabilities for sexually reproducing parasites. In the rem ainder 

of th is section we consider briefly how the model for killing parasites in C hapter 

3 can be adapted to study the competition between different strains of parasites 

w ith different virulence levels, whilst also incorporating different levels of parasite 

aggregation. So far m athem atical models for the evolution of parasite virulence do 

not seem to have included this effect.
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For each parasite type we use a fitness measure of to ta l parasite reproductive 

success for the duration of the host’s lifetime. We represent this by the to ta l time 

spent by all m ature parasites in a host before it dies, times the reproductive ra te  of 

the  m ature parasites. Thus, for a one parasite type model, as we had in C hapter 3, 

we are interested in a measure of parasite fitness of p£l, where Q := / 0°° M (t)Z ( t )d t  

and p is the reproductive rate  of the m ature parasites. Recall th a t M (t)  is the 

m ature parasite load unconditional on survival of the host, and Z(t)  is an indicator 

th a t is 1 when the host is alive, and 0 once the host has died. We assume th a t only 

m ature parasites kill the host, so th a t ai =  0 and we can concentrate on ju st one 

measure of parasite virulence, a m.

We take p u  — 0 so th a t the host only dies as a result of its parasite burden, 

though results can be adapted to allow p n  /  0. We can see from the construction 

of the model th a t the Laplace transform  of the density of Q, is

of the density of £1. In this simple, one parasite type case, this can be shown to 

provide an exponential disribution distribution with param eter a m. This result can 

also be deduced from the way host death rate  is defined in the model. Thus the 

expected to ta l m ature parasite load until host death is l / a m, or the reciprocal of

L n (s) :=  E ( e - sn)
poo  ___  poo
I T  / e~swP (B (t)  =  w, M (t)  = m , Z{t-\-5t) = 0, Z{t) = l)dw  dt
0  m > 0m >  0

J0 J0

poo  _ _  poo
I ^ 2  e~swa mm P (B ( t)  =  w, M (t)  =  m, Z(t)  =  1 )dw dt

m >  0

where B (t)  \= / q M (u)du  as in Section 3.2.2. We can proceed by noting th a t

E ( M ( t ) e - sB(t)Z ( t) )  = E (M (t)e~ (am+s)B(t))

d
=  —  (<3(1,2/, 1,0, a m + s \t))

where G  is given in Section 3.2.2. This provides a result for the Laplace transform
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our measure of parasite virulence. If p is constant and independent of a m then this 

leads to the obvious conclusion th a t it is optim al in this case for the parasite not 

to  harm  its host, i.e. for a m = 0. However, p, the reproductive rate of the m ature 

parasites, will generally be modelled as being dependent on, and increasing in, the 

virulence a m. Thus in the one parasite type case the solution for optim al parasite 

fitness will depend on the relationship chosen for p and a m.

In this situation it is interesting to investigate com petition between different 

parasites types, and, in particular this can be used to investigate which parasite 

properties are optimal under different conditions. For example, the variations th a t 

may be of interest include the level of clustering for each parasite input process, the 

degree of parasite virulences or the amount of correlation between different parasites 

entering a host in one infection point. Below we illustrate how to  derive the initial 

results to investigate these effects for m ultiparasite models. Consider two types of 

parasites, with virulence an and a 2 and variables M \(t)  and M 2 (t) respectively for 

their m ature parasite loads. Define Bi(t)  \= /g M i( t) ,^ i  / 0°° M \{t)Z { t)d t  and 

B 2 {t) and Cl2 similarly. We find th a t

i ( s i ; s 2) := E (e“sini"S2t22)

=  J°° [cnE (M1(i)e“(,lBlW+>2i,2W)Z(*)) +

a 2 E (M2(t)e"(siBl(()+52B2(,))Z(i))] dt.

If we define 7"i. r 2; t) :=  E then

L ( s u s 2) =  /
Jo

d N
o t \ —— G 2(x i , x 2, s i  +  a n ,  s 2 +  ol2\ t) 

ox  i
+

X l  = 2 1 2  =  1

d  .
a 2—— G 2{ X i , X 2, s i +  Qfi, s 2 +  ol2 \ t )  

OX 2
dt.

X l = X 2  = l-

We can find G2 ( x i , x 2 :Ti,r2 ]t), given specific assumptions about the host uptake of 

the different parasite types, by using the method described in Section 3.2.2. These 

assum ptions could involve independent Poisson process of arrivals for the two types 

of parasites, or high levels of correlation between inputs of different parasite types.
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In theory means and other properties of and fl2 can be found from this general 

function. Notice th a t E =  E (M 1/C(t)) :=  E (M i(f) |

Z n(t) =  1) where Z n(t) is the indicator for host survival of an equivalent process 

with parasite virulence levels redefined as a q  + . ? i  and a : 2  +  s 2  instead of a q  and a 2 . 

The result of Section 3.5.1 provides equations for these conditional moments. This 

can be used to provide approximate results from moment closure equations when 

nonlinear effects such as host immunity are included.

The study of within host dynamics of competing parasites is further compli­

cated by the action of the immune system. This may be extremely specific to  the 

strain of parasite, or the presence of one type of parasite may in fact trigger the 

immune system against another type. Concom mitant immunity, in which the m a­

ture parasites trigger immune response against any incoming larvae, may also be 

present in some infections. It would be interesting to  study possible advantages for 

parasites entering hosts in clusters when concommitant imm unity is present.

In general, models of this type may be used to provide hypotheses on the possible 

effects of aggregation in relation to parasite virulence and evolutionary success.

6.2 Conclusions

This thesis has proposed, analysed and discussed m athem atical models, and in 

particular stochastic processes, th a t contribute to the study of parasite dynamics. 

The use of stochastic processes provides scope to  include the intrinsic variabilities 

inherent in the physical processes involved in parasite dynamics. Discrete models 

are clearly desirable as parasite numbers within hosts are often low, and stochastic 

models are more suited to discrete state space models than are determ inistic models.

Models for between-host parasite dynamic are useful for providing insight into 

the im portant processes th a t determine the spread and transmission of parasite 

infections. They are often able to provide initial hypotheses for causes and effects of 

properties th a t are observed in the field. In Chapter 5 we have presented some linear
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stochastic models th a t provide a framework for studying stochastically parasite 

population dynamics on static host populations (see Barbour and Kafetzaki (1993) 

for earlier, similar formulations). Generally, these illustrate the im portance of 

considering the details of the stochastic mechanisms when modelling populations, 

by showing a diverse range of results for extremely simple linear models th a t are 

identical deterministically. In term s of parasite dynamics, this shows how the 

specific details of parasite transmission mechanisms need careful consideration when 

models are formulated. The biological hypotheses th a t arises from these models is 

th a t the transmission mechanism of parasites may itself be able to  generate a large 

am ount of the parasite aggregation th a t is observed in hosts. This aggregation is 

often assumed to be caused prim arily by host heterogeneities (Anderson and May, 

1991). Of course, this is only a hypotheses, and the next step is to consider specific 

cases of parasite infections to test this. We have also begun to set up a framework 

in which host heterogeneities, and their dynamic effect on the parasite population, 

can be studied stochastically when the host population is static (Section 5.4).

The study of within-host parasite dynamics is im portant as it invariably pro­

vides the sexual stage of parasite reproduction. This is not only im portan t for 

the full cycle of transmission, but issues such as the evolution of drug resistant 

strains of parasites are becoming increasingly im portant (Saul, 1995). Clearly the 

development of models th a t capture the within-host parasite dynamics effectively 

is essential before further complications can be included in models. W ithin-host 

models are more able to be tested experimentally than  between-host models, as 

factors such as levels of parasite ingestion are easier to m onitor and control.

In C hapter 3 we have studied a within-host parasite dynamics model th a t in­

cludes parasite-induced excess host mortality, although without modelling directly 

differnt sexes of parasites, which can be incorporated relatively easily if required. 

We have derived results th a t are observable in the field and hence im portan t for 

model testing. The model was also shown to be able to  provide some insight into 

areas such as the differences between parasite loads observed in dead hosts and
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those in surviving hosts when parasite-induced m ortality is present, and the inter­

action between parasite induced host m ortality and types of statistical properties 

observed concerning parasite lifetimes and input distributions.

Including immune reponses in any parasite model is clearly fraught w ith diffi­

culties. These not only include difficulties associated w ith proposing the workings 

of an immune mechanism, but also with estim ating the rates of processes. This 

may often be harder than  for those processes in which events are more easily ob­

served, such as between host models and processes in which the immune response 

can be summarised more simply (as in many microparasite infections). The work 

presented in C hapter 4 provides two general contributions to  this area. The first 

is in the investigation of the suitability of the moment approximations to  models 

of this type. This helps the understanding of their use in any further models th a t 

may be developed in this area of immuno-epidemiology, and in parasite dynamics 

generally. There is much further work needed on this subject before this poten­

tially powerful tool can be routinely used with confidence. There still appears to be 

insufficient theoretical investigation into the approximations applied to the sorts of 

processes under discussion. In addition, the possible uses of the m ultivariate nega­

tive binomial approximations outlined in sections 2.2, 3.6, and 3.7 need to be looked 

a t further, though the univariate results presented in Section 2.4 are encouraging.

The second contribution made is towards the understanding of the general effect 

of various types of immune mechanisms on the within-host parasite distributions. 

This can be applied to particular results observed for parasite-host relationships, 

and may help both to propose and to rule out hypotheses concerning the immune 

system behind observed results, and even to give more insight into the immune 

mechanism at work. The studies in C hapter 4 are only an initial step towards this, 

and clearly there is a lot more work required both from the m athem atical and more 

applied side of the subject.
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A ppendix A

M om ents o f the M odel of the  

D ynam ics o f K illing Parasites

The second order moments not given in Section 3.3.1 for the conditional process of 

the parasite-induced host m ortality model of Section 3.2 are as follows;

*t
E (Lc(t)

E (N c(t) 

var (Lc(t) 

var (N c(t) 

co v (M c( t ) ,N c(t) 

co v (L c( t ) ,N c(t)

where

= f  <f)(t — w)h!(g(w))e aLWJrL{w) dw 
Jo

= <j){t- w )h \g (w ))gz(w) dw
Jo

= [  </>(t -  w)h"(g(w))e~2aLW(T L(w ) ) 2 dw +  E (L c(t))
Jo

= (  (f)(t -  w)((ti '(g(w))(gz (w ) ) 2 + t i (g (w ))g zz(w ))d w  + E (N c(t))
J 0

=  J  <j){t -  w) (h"{g{w))gz{w)gy{w) +  h'{g(w))gyz(w)) dw

-  [( /> (* -  w)h"(g(w))gz(w)e~aLWJrL(w)dw
Jo

+ e - ^ h i u )  
Jo

r w —u
1 -  (j{u) +  a(u){e~aM ŵ~u ĴFm(w — u ) +  e~aMVf M ( v ) d v }

0
du

gy(w) :=
dg( x ,  y , z , a L, a M; w)

d z
= e

x = y = z = 1 L
—  0  —  O l M W  /  o(aM
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9 z ( w )  : =
d g ( x , y , z , a L, a M\w)

dz x —y —z — 1

P W  P W — U

k'(  1) J e~aLUf L( u ) a ( u ) e~aM(w~u')JrM{w — u) j  p { r ) {JrN (w  — u — r ) ) d r  du

P W  P W  —  U  P V

+h' (  1) e~aLUf L(u)cr(u) e~aMVf M{v)  /  p ( r ) ( J :N (w -  u -  r ) ) d r  dv  du,  
Jo Jo Jo

9 y z ( w )
d 2g ( x ,y , z ,  a L, a M;w)

dydz x —y = z = 1
r w  r w —vJ  e~aLVf L ( v ) a ( v ) e ~ aM ŵ~v ĴrM{w  — v) J  k , { l ) p ( r ) J :N( w  — v — r ) d r d v

and

9 z z ( w )  '■=
d 2g ( x , y , z , a L, a M;w)

x = y = z = l

| e  aLUf L(u)cr(u)e au{w u)T M{w -  u)

r w —u 1J  p { t)T n {w  ~ u — r)(k '(  1) +  k ”(VjFjyfa — u — r ) )d r  >du

n r w —u
e - aLUf L(u)((j(u)) e~aMVf M(v)

J  p ( t )T n {w  — u — r)(k '(  1) +  k"(l)!FN(w  — u — r ) )d r d v | du
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A ppendix B 

M om ent Equations for Im m unity  

M odel 1

The moments for the stochastic model of Grenfell, Dietz, and Roberts (1995a), 

focusing only on immunity, as described in Section 4.2, are as follows.

dE(L(t))
= 0E(C ) -  mlE(L) -  j3E(IL) 

=  i/E (L) -  m E { I )  

=  0E (C 2) +  (20E(C) +  /xt)E(L) -  2A»t E (L2) -  2/3E(L2 I)  +  /?E(L7) 

,r =  2i/E(7L) +  i/E(L) +  /i/E(7) -  2 fj,iE(I2)

dt
d E ( m )

dt
dE (L2)

dt

dE (I L ) =  0E(C )E(7) +  i/E(L2) -  (/zr +  11L)E (IL )  -  0 E ( I 2L).
dt

W ith the use of the normal approximation,

E(7L2) =  2E (L)E (IL ) -  2 E ( I ) ( E ( L ) f  +  E(L 2 )E{I)

and

E ( I 2L) =  2 E (I)E (IL )  -  2 E (L )(E (/))2 +  E(72)E(L),
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this reduces to

dE(L(t))
dt

dE(I(t))  
dt 

dE (L2)
dt

d E (I2)
dt

dE (IL )
dt

<t>E{C) -  h lE(L) -  /3E(IL) 

vE(L) -  f i ,E (I)  

<pE(C2) +  (2<j>E(C) + iil )E(L) -  2h lE (L 2)

-2/3 [2E{L)E{IL) -  2 E (/)(E (L ))2 +  E(L2)E (/)] +  /3E(LI)

2vE (IL )  +  vE{L) + /j.i E (I) -  2 / j ,E ( /2)

<t>E(C)E(I) +  i/E(L2) -  (/i, +  /i l )E{IL)

~/3 [2E (/)E (/L ) -  2E(L)( E ( / ) ) 2 +  E ( /2)E(L)] .
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