Gary Tse ORCID iD: 0000-0001-5510-1253

Interaction effects between angiotensin-converting enzyme inhibitors or angiotensin receptor blockers and steroid or anti-viral therapies in COVID-19: a population-based study

Jiandong Zhou MSc ¹, Gary Tse PhD FRCP FFPH * ², Sharen Lee ², Tong Liu MD PhD ³, Zhidong Cao PhD ⁴, Daniel Dajun Zeng PhD ⁴, Keith SK Leung BSc ⁵, Abraham KC Wai MBChB FRCEM FRCP ⁵, Ian Chi Kei Wong PhD FRCPCH ^{6,7}, Bernard Man Yung Cheung MB BChir PhD FRCP ⁸, Qingpeng Zhang PhD * ¹

School of Data Science, City University of Hong Kong, Hong Kong, Hong Kong, China
 Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease,
 Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin
 Medical University, Tianjin 300211, China

³ Cardiovascular Analytics Group, Laboratory of Cardiovascular Physiology, Li Ka Shing Institute of Health Sciences, Hong Kong, China

⁴ Institute of Automation, Chinese Academy of Sciences, Beijing, China

 5 Emergency Medicine Unit, University of Hong Kong, Pok
fulam, Hong Kong, China

⁶ Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong, China

Medicines Optimisation Research and Education (CMORE), UCL School of Pharmacy, London UK

⁸ Department of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China *Prof. Bernard MY Cheung, PhD, FRCP*

Department of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China

Email: mycheung@hku.hk Prof. Qingpeng Zhang, PhD

School of Data Science, City University of Hong Kong,

Hong Kong, China

Email: qingpeng.zhang@cityu.edu.hk

Phone: +852 3442-4727

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jmv.26904.

^{*} refers to joint first author and equal contributions between Jiandong Zhou and Gary Tse

To the Editor,

We read the recent article published in your journal on the predictors of mortality in patients with coronavirus 2019 (COVID-19) infection with great interest ¹. In that study, treatment with antibiotics, antifungals, antivirals, steroids, blood transfusion and intubation were associated with increased mortality. Indeed, whether steroids have beneficial effects on mortality in COVID-19 remains controversial ². There may also be interactions between steroids and the renin-angiotensin-aldosterone system as well as differential effects between angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) in COVID-19 outcomes ³. The benefit of ACEIs/ARBs have also been controversial ⁴⁻⁶ and the association with worse outcomes may partly be explained by the presence of comorbidities ^{7,8}. Therefore, using a local population-based administrative health record system, we examined the interaction effects between the use of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) with steroids or antiviral therapies on severe disease outcome in COVID-19 patients.

This study was approved by the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West Cluster. The patients were identified from the Clinical Data Analysis and Reporting System (CDARS), a territory-wide database that centralizes patient information from 43 local hospitals and their associated ambulatory and outpatient facilities to establish comprehensive medical data, including clinical characteristics, disease diagnosis, laboratory results, and drug treatment details. The system has been

previously used by both our team and other teams in Hong Kong, including COVID-19 research ^{9,10}. The list of ICD-9 codes for comorbidities and intubation procedures are detailed in the **Supplementary Tables 1 and 2**.

A total of 1281 patients who tested positive for COVID-19, and who were prescribed treatment for the infection with antiviral or steroid drugs between 1st January 2020 and 20th November 2020 in Hong Kong, China. were included. The primary outcome was a composite of need for intubation or all-cause mortality. 1:2 propensity score matching between ACEI users and non-users, and ARB users and non-users were performed.

On follow-up until 7th December 2020, a total of 73 patients (5.7%) met the primary outcome of need for intensive care unit (ICU) admission or intubation, or death in the unmatched cohort. The baseline clinical characteristics of patients in the unmatched cohort are shown in **Table 1**. Those for the cohort stratified by ACEI or ARB use before and after propensity score matching for baseline demographics, past medical comorbidities and medication history are shown in **Supplementary Tables 3 and 4**, respectively. The results of the univariate regression analysis on the matched cohorts are shown in **Supplementary Table 5**. Increasing age, higher Charlson comorbidity score and the use of medications such as steroids, diuretics for heart failure, anti-diabetic drugs, proton pump inhibitors, anticoagulants, low albumin, and the presence of acidosis were significantly associated with higher odds of meeting the primary outcome in both cohorts. Whilst ACEI and ARB use was significantly associated with higher odds of meeting the primary outcome, the application of

propensity score matching analysis revealed greater comorbidity burden to be the likely explanation. Thus, before matching, the percentage of patients meeting the composite outcome were 19.78% for ACEI users and 4.62% for non-users (P<0.0001). The gap between these percentages were smaller after matching, to the extent that they were no longer statistically significantly different from each other (19.78% vs. 14.28%, P=0.4175). Similarly, for ARB users and non-users, these percentages were 10.57% and 5.26% before matching (P=0.0635), and the gap was reduced after matching to 10.57% and 16.82% (P=0.2678).

Interaction effects between ACEIs, ARBs and individual drugs in these classes with antiviral therapies or steroids were assessed in the unmatched cohort (**Table 2**). For ACEI, significant interactions with steroids (odds ratio [OR]: 8.64, 95% confidence interval [CI]: 4.55-16.42; P<0.001), ribavirin and interferon beta-1b combination (OR: 5.06, 95% CI: 1.98-12.96; P<0.001) and lopinavir/ritonavir and interferon beta-1b combination (OR: 4.67, 95% CI: 2.07-10.57; P<0.0001) for meeting the primary outcome. For ARB, only interaction with remdesivir was found (OR: 2.78, 95% CI: 1.53-47.08; P<0.05). On the ACEI/control matched cohort, interactions between ACEI and steroids acted to reduce their individual effects on the primary outcome (OR for ACEI: 1.48[0.76,2.87], P=0.2463; OR for steroids: 8.29[3.15,21.8], P<0.0001; OR for ACEI/steroids: 2.87, 95% CI: 1.42-5.82; P<0.01; **Supplementary Table 6**). For the ARB/control matched cohort, there was no significant interaction with remdesivir (OR: 2.98, 95% CI: 0.53-16.75; P>0.05; **Supplementary Table** 7).

However, some limitations of our study should be noted. Firstly, whilst all RT-PCR tests conducted in the public system were fully captured, those that were conducted privately were not. Secondly, the identification of comorbidities and outcomes relied on ICD coding. Whilst this capture is complete for outcomes such as mortality, those for certain comorbidities are under-coded, an example of which is obesity. This is because medical conditions that require treatment in the outpatient or inpatient settings are more likely to be coded. Therefore, we were unable to identify a significant relationship between obesity and severe outcomes. This issue has been addressed elsewhere. A noteworthy point is that the renin-angiotensin-aldosterone system may interact with the kallikrein-kinin-system (KKS) and coagulation cascade ¹¹. Therefore, at the very least, interactions aside, prevention of thromboembolic phenomena may improve outcomes in COVID-19 patients. More broadly, the maintenance of a healthy lifestyle can provide beneficial immune-modulatory affects and should be promoted at the public health level ¹².

Taken together, our population-based study found significant interaction effects between ACEI and steroids, which acted to reduce the risk of the primary outcome, but no significant interactions between ARB with any antiviral agent or steroids in the propensity-score matched cohorts. Therefore, ACEI use was protective of the severe disease outcome in COVID-19 patients receiving steroid therapy.

Author contributions

JZ, GT: data analysis, data interpretation, statistical analysis, manuscript drafting, critical revision of manuscript

SL, KSKL, AKCW: data acquisition and interpretation, critical revision of manuscript

TL, ZC, DDZ, ICKW, BMYC: project planning, data acquisition, data interpretation, critical revision of manuscript

QZ: study conception, study supervision, project planning, data interpretation, statistical analysis, manuscript drafting, critical revision of manuscript

Conflicts of Interest

None.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

- 1. Merugu GP, Neishwat Z, Balla M, et al. Predictors of Mortality in 217 COVID-19 Patients in Northwest Ohio, United States: A Retrospective Study. *J Med Virol*. 2020.
- 2. Cano EJ, Fuentes XF, Campioli CC, et al. Impact of Corticosteroids in Coronavirus Disease 2019 Outcomes: Systematic Review and Meta-analysis. *Chest*.
- 3. Wang Y, Tse G, Li G, Lip GYH, Liu T. ACE Inhibitors and Angiotensin II Receptor Blockers May Have Different Impact on Prognosis of COVID-19. *J Am Coll Cardiol*. 2020;76(17):2041.
- 4. Harky A, Chor CYT, Nixon H, Jeilani M. The controversy of using angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in COVID-19 patients. *Journal of the Renin-Angiotensin-Aldosterone System.* 2021;22(1):1470320320987118.
- 5. Khashkhusha TR, Chan JSK, Harky A. ACEi and ARB with COVID-19. *Journal of Cardiac Surgery*. 2020;35(6):1388-1388.

- 6. Khashkhusha TR, Chan JSK, Harky A. ACE inhibitors and COVID-19: We don't know yet. *J Card Surg.* 2020;35(6):1172-1173.
- 7. Li X, Guan B, Su T, et al. Impact of cardiovascular disease and cardiac injury on in-hospital mortality in patients with COVID-19: a systematic review and meta-analysis. *Heart.* 2020;106(15):1142-1147.
- 8. Wang Y, Roever L, Tse G, Liu T. 2019-Novel Coronavirus-Related Acute Cardiac Injury Cannot Be Ignored. *Curr Atheroscler Rep.* 2020;22(3):14.
- 9. Zhou J, Wang X, Lee S, et al. Proton pump inhibitor or famotidine use and severe COVID-19 disease: a propensity score-matched territory-wide study. *Gut.* 2020.
- 10. Zhou J, Lee S, Guo CL, et al. Anticoagulant or antiplatelet use and severe COVID-19 disease: A propensity score-matched territory-wide study. *Pharmacol Res.* 2021:105473.
- 11. Luzi L, Bucciarelli L, Ferrulli A, Terruzzi I, Massarini S. Obesity and COVID-19: 2 The ominous duet affecting the renin-angiotensin system. *Minerva Endocrinol.* 2021.
- 12. Codella R, Chirico A, Lucidi F, Ferrulli A, La Torre A, Luzi L. The immune-modulatory effects of exercise should be favorably harnessed against COVID-19. *J Endocrinol Invest.* 2020.

Table 1. Baseline clinical characteristics of COVID-19 patients treated with antiviral agents or steroids.

* SMD \geq 0.2, ** for p \leq 0.01, *** for p \leq 0.001.

indicates that the comparisons were made between patients meeting primary outcome vs. those that did not.

Characteristics	All (N=1281) Median (IQR);Max;N or Count(%)	Composite outcome (N=73) Median (IQR);Max;N or Count(%)	No composite outcome (N=1208) Median (IQR);Max;N or Count(%)	P value
Suboutcomes				
Mortality	38(2.96%)	38(52.05%)	0(0.00%)	<0.000 1***
Intubation	47(3.66%)	47(64.38%)	0(0.00%)	<0.000 1***
Male gender	649(50.66%)	41(56.16%)	608(50.33%)	0.6581
Baseline age, years	52.34(35.18-64.62);99 .71;n=1281	770.34(62.3-81.13);98.6 6;n=73	51.1(33.9-63.11);99.71 ;n=1208	<0.000 1***
<60	816(63.70%)	11(15.06%)	805(66.63%)	<0.000 1***
[60,64]	129(10.07%)	10(13.69%)	119(9.85%)	0.4544
[65,69]	84(6.55%)	9(12.32%)	75(6.20%)	0.1016
[70,75]	84(6.55%)	11(15.06%)	73(6.04%)	0.0125
>75	121(9.44%)	27(36.98%)	94(7.78%)	<0.000 1***

Charlson score	1.0(0.0-2.0);35.0;n=1 281	3.0(2.0-4.0);12.0;n=73	1.0(0.0-2.0);35.0;n=12 08	<0.000 1***
Diabetes mellitus	48(3.74%)	11(15.06%)	37(3.06%)	<0.000 1***
Systemic embolism	4(0.31%)	0(0.00%)	4(0.33%)	0.5551
Hypertension	262(20.45%)	40(54.79%)	222(18.37%)	<0.000 1***
Heart failure	7(0.54%)	0(0.00%)	7(0.57%)	0.8656
Atrial fibrillation	23(1.79%)	3(4.10%)	20(1.65%)	0.2978
Chronic renal failure	3(0.23%)	0(0.00%)	3(0.24%)	0.4109
Liver diseases	6 6 (0.46%)	1(1.36%)	5(0.41%)	0.7853
Ventricular tachycardia/fi brillation	9(0.70%)	3(4.10%)	6(0.49%)	0.0051
Dementia and Alzheimer	5(0.39%)	0(0.00%)	5(0.41%)	0.6755
AMI	15(1.17%)	3(4.10%)	12(0.99%)	0.0733
COPD	12(0.93%)	0(0.00%)	12(0.99%)	0.8235
IHD	50(3.90%)	7(9.58%)	43(3.55%)	0.0340
PVD	7(0.54%)	2(2.73%)	5(0.41%)	0.0771
Stroke/TIA	30(2.34%)	7(9.58%)	23(1.90%)	0.0003 ***
Gastrointestin al bleeding	22(1.71%)	4(5.47%)	18(1.49%)	0.0448
Cancer	35(2.73%)	8(10.95%)	27(2.23%)	0.0001 ***
Obesity	6(0.46%)	1(1.36%)	5(0.41%)	0.7853
ACEI	91(7.10%)	18(24.65%)	73(6.04%)	<0.000 1***
ARB	104(8.11%)	11(15.06%)	93(7.69%)	0.0733
Captopril	2(0.15%)	1(1.36%)	1(0.08%)	0.243
Enalapril	11(0.85%)	3(4.10%)	8(0.66%)	0.0171
Lisinopril	61(4.76%)	11(15.06%)	50(4.13%)	0.0003 ***

Ramipril	4(0.31%)	0(0.00%)	4(0.33%)	0.5551
Perindopril	18(1.40%)	3(4.10%)	15(1.24%)	0.1434
Candesartan	1(0.07%)	0(0.00%)	1(0.08%)	0.0558
Entresto	1(0.07%)	1(1.36%)	0(0.00%)	0.0578
Irbesartan	1(0.07%)	0(0.00%)	1(0.08%)	0.0558
Losartan	99(7.72%)	9(12.32%)	90(7.45%)	0.2481
Telmisartan	2(0.15%)	0(0.00%)	2(0.16%)	0.2381
Steroid	565(44.10%)	62(84.93%)	503(41.63%)	<0.000 1***
Remdesivir	51(3.98%)	9(12.32%)	42(3.47%)	0.0015 **
Lopinavir/rito navir	65(5.07%)	2(2.73%)	63(5.21%)	0.5341
Interferon beta-1B	70(5.46%)	10(13.69%)	60(4.96%)	0.0079 **
Lopinavir/rito navir AND Ribavarin	417(32.55%)	15(20.54%)	402(33.27%)	0.1201
Ribavirin AND Interferon beta-1B	460(35.90%)	22(30.13%)	438(36.25%)	0.5337
Lopinavir/rito navir AND Interferon beta-1B	582(45.43%)	38(52.05%)	544(45.03%)	0.551
Lopinavir/rito navir AND Ribavarin AND Interferon beta-1B	236(18.42%)	10(13.69%)	226(18.70%)	0.4524
Calcium channel blockers	277(21.62%)	43(58.90%)	234(19.37%)	<0.000 1***
Beta blockers	140(10.92%)	22(30.13%)	118(9.76%)	<0.000 1***
Diuretics for hypertension	51(3.98%)	6(8.21%)	45(3.72%)	0.1346

Diuretics for heart failure	81(6.32%)	41(56.16%)	40(3.31%)	<0.000 1***
Nitrates	40(3.12%)	5(6.84%)	35(2.89%)	0.1453
Antihypertens ive drugs	66(5.15%)	10(13.69%)	56(4.63%)	0.0043
Antidiabetic drugs	205(16.00%)	47(64.38%)	158(13.07%)	<0.000 1***
Statins and fibrates	247(19.28%)	34(46.57%)	213(17.63%)	<0.000 1***
Lipid-lowering drugs	239(18.65%)	32(43.83%)	207(17.13%)	<0.000 1***
Sodium-gluco se cotransporter 2 inhibitors	21(1.63%)	4(5.47%)	17(1.40%)	0.0352
Dipeptidyl peptidase-4 inhibitors	38(2.96%)	5(6.84%)	33(2.73%)	0.1159
Proton pump inhibitors	280(21.85%)	59(80.82%)	221(18.29%)	<0.000 1***
Famotidine	258(20.14%)	26(35.61%)	232(19.20%)	0.0133
Anticoagulant s	154(12.02%)	53(72.60%)	101(8.36%)	<0.000 1***
Antiplatelets	118(9.21%)	18(24.65%)	100(8.27%)	0.0001
Mean corpuscular volume, fL	87.7(84.0-90.79);104. 5;n=565	89.3(85.5-92.2);99.2;n=	87.6(84.0-90.7);104.5; n=521	0.1005
Basophil, x10^9/L	0.01(0.0-0.02);0.2;n= 885	0.0(0.0-0.02);0.13;n=48	0.01(0.0-0.02);0.2;n=8 37	0.1063
Eosinophil, x10^9/L	0.01(0.0-0.07);1.91;n =913	0.0(0.0-0.02);0.17;n=51	0.01(0.0-0.08);1.91;n= 862	0.0011 **
Lymphocyte, x10^9/L	1.23(0.89-1.66);6.1;n =913	1.0(0.68-1.5);3.44;n=51	1.25(0.9-1.67);6.1;n=8 62	0.0059 **
Metamyelocy e, x10^9/L	t 0.23(0.18-0.46);0.7;n =3	0.7(0.7-0.7);0.7;n=1	0.18(0.18-0.18);0.23;n =2	0.5403
Monocyte, x10^9/L	0.49(0.36-0.62);3.15; n=913	0.49(0.36-0.62);1.2;n=5	0.48(0.36-0.62);3.15;n =862	0.8536

U/L

Neutrophil, x10^9/L	3.2(2.4-4.37);23.16;n =913	4.76(3.79-9.25);18.63;n =51	3.14(2.39-4.22);23.16; n=862	<0.000 1***
White cell count, x10^9/L	5.2(4.18-6.6);25.58;n =922	6.65(5.3-11.38);21.19;n =51	5.1(4.14-6.46);25.58;n =871	<0.000 1***
Mean cell haemoglobin, pg	30.2(28.75-31.6);37.0 ;n=922	31.3(29.3-32.85);36.2;n =51	30.2(28.7-31.5);37.0;n =871	0.0425
Myelocyte, x10^9/L	0.35(0.15-0.42);1.29; n=15	0.44(0.36-0.64);1.29;n=7	0.15(0.1-0.29);0.41;n=	0.0128
Platelet, x10^9/L	205.0(169.0-251.0);77 8.0;n=921	7 179.0(142.5-220.5);637 .0;n=51	205.55(170.0-253.0);7 78.0;n=870	0.0029
Red blood count, x10^12/L	4.63(4.31-5.05);7.18; n=922	4.42(3.82-4.74);6.79;n=51	4.64(4.34-5.06);7.18;n =871	0.0004
Hematocrit, L/L	0.4(0.38-0.43);0.498; n=229	0.4(0.35-0.42);0.424;n=	0.4(0.38-0.43);0.498;n =221	0.3255
K/Potassium, mmol/L	3.81(3.6-4.11);6.8;n= 831	3.94(3.66-4.22);6.8;n=4	3.8(3.6-4.11);5.59;n=7 85	0.1614
Urate, mmol/L	0.29(0.23-0.43);0.58; n=30	0.26(0.14-0.31);0.32;n=	0.31(0.24-0.44);0.58;n =26	0.2589
Albumin, g/L	41.0(37.0-44.0);118.2 ;n=836	34.0(27.85-38.0);44.9;n =46	41.0(37.5-44.25);118.2 ;n=790	<0.000 1***
Na/Sodium, mmol/L	138.62(136.41-140.0): 146.0;n=832	;137.0(133.0-139.0);144 .1;n=46	138.91(136.7-140.0);1 46.0;n=786	0.0016
Urea, mmol/L		6.2(4.65-7.82);59.3;n=4	* * * * * * * * * * * * * * * * * * * *	<0.000 1***
Protein, g/L	74.3(70.7-78.0);92.7; n=709	70.7(66.5-75.0);87.0;n=	74.6(71.0-78.02);92.7; n=673	0.001*
Creatinine, umol/L	72.0(60.0-87.0);1248. 0;n=834	82.5(70.55-113.5);1248 .0;n=46	71.8(59.4-85.05);321.0 ;n=788	0.0002
Alkaline phosphatase, U/L	65.0(54.0-77.0);350.0 ;n=833	66.0(55.0-99.0);166.0;n =45	65.0(54.0-77.0);350.0; n=788	0.1875
Aspartate transaminase, U/L	29.0(22.0-46.0);202.0 ;n=317	42.0(24.65-63.5);201.0; n=23	29.0(22.0-42.0);202.0; n=294	0.028*
Alanine transaminase, U/L	24.0(16.0-38.0);173.0 ;n=697	28.0(16.8-38.0);150.0;n =39	24.0(16.0-37.2);173.0; n=658	0.7424

Bilirubin, umol/L	7.4(5.2-10.4);60.4;n= 833	10.4(6.9-14.0);30.3;n=4 5	7.2(5.2-10.15);60.4;n= 788	0.0005 ***
Triglyceride, mmol/L	1.53(1.04-2.11);9.35; n=128	1.85(1.27-2.14);3.77;n= 18	1.5(1.04-2.09);9.35;n= 110	0.2624
Low-density lipoprotein, mmol/L	2.39(1.9-2.95);6.8719 ;n=117	1.62(1.36-2.11);3.3778; n=17	2.54(2.04-3.07);6.8719 ;n=100	0.0001
High-density lipoprotein, mmol/L	1.1(0.94-1.29);1.87;n =120	1.0(0.59-1.13);1.86;n=1 7	1.12(0.97-1.29);1.87;n =103	0.0685
Cholesterol, mmol/L	4.26(3.68-5.09);7.319 ;n=121	3.41(2.68-4.7);5.1;n=17	4.3(3.79-5.16);7.319;n =104	0.0029
Clearance, mL/min	188.6749(14.72%)	188.6749(258.45%)	0.0(0.00%)	<0.000 1***
HbA1c, g/dL	13.7(12.7-14.7);94.1; n=927	13.6(11.4-14.9);60.8;n=53	13.7(12.8-14.7);94.1;n =874	0.1949
Glucose, mmol/L	5.8(5.14-7.0);25.17;n =594	7.1(5.98-9.24);17.69;n=42	5.73(5.1-6.85);25.17;n =552	<0.000 1***
D-dimer, ng/mL	363.6(190.0-680.62);4 340.0;n=214	848.5(474.11-1052.15); 2596.65;n=18	349.84(190.0-597.98); 4340.0;n=196	0.0062 **
High sensitive troponin-I,	3.45(2.16-6.78);373.6	10.73(5.93-29.9);108.8	3.3(2.08-6.12);373.6;n	< 0.000
ng/L	;n=505	7;n=29	=476	1***
=	201 0(166 3-251 75):8	7;n=29 3250.5(211.5-345.0);716 .0;n=40		-
ng/L Lactate dehydrogenas	201.0(166.3-251.75);8 13.0;n=620 30.6(27.7-34.6):120.0	250.5(211.5-345.0);716	198.0(164.5-247.5);81 3.0;n=580	<0.000 1***
ng/L Lactate dehydrogenas e, U/L	201.0(166.3-251.75);8 13.0;n=620 1 30.6(27.7-34.6);120.0 1 ;n=526	32.9(29.25-36.9);120.0;	198.0(164.5-247.5);81 3.0;n=580 30.4(27.5-34.25);54.5; n=480	<0.000 1*** 0.003*
ng/L Lactate dehydrogenas e, U/L APTT, second Prothrombin time/INR,	201.0(166.3-251.75);8 13.0;n=620 1 30.6(27.7-34.6);120.0 1;n=526 11.9(11.4-12.5);43.4; n=373	32.9(29.25-36.9);120.0; n=46 12.5(11.7-13.3);27.0;n=	198.0(164.5-247.5);81 3.0;n=580 30.4(27.5-34.25);54.5; n=480 11.9(11.4-12.5);43.4;n =337	<0.000 1*** 0.003* * 0.0067 **
ng/L Lactate dehydrogenas e, U/L APTT, second Prothrombin time/INR, second C-reactive protein,	201.0(166.3-251.75);8 13.0;n=620 1 30.6(27.7-34.6);120.0 ;n=526 11.9(11.4-12.5);43.4; n=373 0.52(0.23-1.9);33.99; n=780	32.9(29.25-36.9);120.0; n=46 12.5(11.7-13.3);27.0;n= 36 6.57(1.83-9.29);32.529;	198.0(164.5-247.5);81 3.0;n=580 30.4(27.5-34.25);54.5; n=480 11.9(11.4-12.5);43.4;n =337 0.46(0.22-1.5);33.99;n =730	<0.000 1*** 0.003* * 0.0067 ** <0.000 1***
ng/L Lactate dehydrogenas e, U/L APTT, second Prothrombin time/INR, second C-reactive protein, mg/dL Calcium, mmol/L	201.0(166.3-251.75);8 13.0;n=620 1 30.6(27.7-34.6);120.0 1;n=526 11.9(11.4-12.5);43.4; n=373 0.52(0.23-1.9);33.99; n=780 1.16(1.14-1.17);1.19; n=10 24.1(20.7-26.2);32.5;	2250.5(211.5-345.0);716 .0;n=40 32.9(29.25-36.9);120.0; n=46 12.5(11.7-13.3);27.0;n= 36 6.57(1.83-9.29);32.529; n=50 1.16(1.14-1.17);1.19;n=	198.0(164.5-247.5);81 3.0;n=580 30.4(27.5-34.25);54.5; n=480 11.9(11.4-12.5);43.4;n =337 0.46(0.22-1.5);33.99;n =730 1.18(1.18-1.18);1.18;n =1	<0.000 1*** 0.003* * 0.0067 ** <0.000 1*** 0.4822

Blood pCO2,	4.8(4.15-5.76);10.15;	4.6(4.01-5.14);7.94;n=4	5.05(4.28-5.86);10.15;	0.050
kPa	n=130	3	n=87	
Dlood nU	7.43(7.39-7.46);7.6;n	7.42(7.34-7.46);7.55;n=	7.44(7.39-7.47);7.6;n=	0.1229
Blood pH	=129	43	86	0.1238

AMI: acute myocardial infarction; COPD: chronic obstructive pulmonary disease; IHD: ischemic heart disease; PVD: peripheral vascular disease; TIA: transient ischemic attack; ACEI: angiotensinogen converting enzyme inhibitor; ARB: angiotensin receptor blocker; APTT: activated partial thromboplastin time.

Table 2. Significant drug interaction effects for severe COVID-19 treatments before propensity score matching

* for $p \le 0.05$, ** for $p \le 0.01$, *** for $p \le 0.001$

	Steroid		Lopinavir /ritonavir	Interfer on beta-1B	Lopinavir /ritonavir AND Ribavarin		Interferon	AND Ribavarin
ACEI			2.38[0.29, 19.63]		2.78[0.33,		4.67[2.07, 10.57]***	-
ARB	_	8.48[1.53	2.38[0.29,	-	=	-	3.18[1.44,	2.08[0.26, 16.88]
Capto pril	130.65[0,I nf]*	-	-	-	-	1207.5[0, Inf]**	-	-
	12.9[2.83, 58.76]**	-	1307.65[0, Inf]*	-	-	4.18[0.46, 37.89]	5.58[0.57, 54.3]	-
Lisino pril	7.51[3.46, 16.32]**	=	; -	_	3.34[0.39, 28.98]	3.66[1.03, 13.02]**		-
Rami pril	-	-	-	-	-	-	-	-
opril	3.37[0.73, 15.69]	-	-	-	-	8.37[0.75, 93.45]	3.07[0.67, 14.09]	-
Cande sartan	-	-	-	-	-	-	-	-
Entres to	1307.65[0, Inf]*	-	-	-	-	1207.6[0, Inf]*	-	-
Irbesa rtan	-	-	-	-	-	-	-	-
Losart an	2.87[1.24, 6.63]*	-	2.78[0.33, 23.42]	-	1.51[0.19, 11.87]	0.56[0.08, 4.2]	2.81[1.22, 6.47]**	2.38[0.29, 19.63]