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Therapy-related myeloid neoplasms (TMN) constitute one of the most challenging 

complications of cancer treatment.1 Whilst understanding of TMN pathogenesis remains 

fragmentary, genomic studies in adults have thus far refuted the notion that TMN simply result from 

cytotoxin-induced DNA damage.2–4 Analysis of the preclinical evolution of a limited number of adult 

TMN have retraced the majority of cases to clonal haematopoiesis (CH) that predates cytotoxic 

treatment and lacks the mutational footprint of genotoxic therapies.2–6 Balanced translocations, 

generally attributed to treatment with topoisomerase II inhibitors, are implicated in a minority of 

TMN.1 TMN is a leading cause of premature death in childhood cancer survivors, and affects 7-11% 

of children treated for high-risk neuroblastoma and sarcoma.7,8 However, the origin of pediatric TMN 

remains unclear. Targeted sequencing of known cancer genes detects CH in ~4% of children 

following cytotoxic treatment,6,9 whereas CH is vanishingly rare in young individuals in the general 

population.10,11 Moreover, to our knowledge, no cases of childhood TMN have been retraced to 

pretreatment CH. In light of these observations, we asked whether a broader driver landscape had 

eluded targeted CH screens in pediatric cancer patients and/or whether therapy-induced 

mutagenesis may be an under-recognised catalyst of CH and TMN in this patient group.  

As proof of concept, we first applied whole genome and deep targeted sequencing of serial 

bone marrow and blood samples to investigate the pathogenesis of TMN arising in two children 

following high-risk neuroblastoma treatment. This study was approved by the National NHS 

Research Ethics Service (reference 16/EE/0394). Patient guardians provided written informed 

consent. DNA extracted from blood, bone marrow and tumors (Table S1) underwent whole genome 

and/or targeted sequencing of hematological cancer genes (Table S2). Mapping to the human 

reference genome GRCh37 and somatic variants calling were performed using an extensively 

validated pipeline.12 From somatic mutations, we reconstructed phylogenetic relationships between 

samples using methods described previously.12 We assessed signatures of base substitutions, as 

defined by their trinucleotide context, to search for evidence of therapy-related mutagenesis. 

https://paperpile.com/c/tLC6ZZ/8HZwH
https://paperpile.com/c/tLC6ZZ/bTyVM+IFBvl+kxsNZ
https://paperpile.com/c/tLC6ZZ/bTyVM+IFBvl+kxsNZ+mcYVK+tnetc
https://paperpile.com/c/tLC6ZZ/8HZwH
https://paperpile.com/c/tLC6ZZ/XRodv+ZYoVG
https://paperpile.com/c/tLC6ZZ/dNfn1+tnetc
https://paperpile.com/c/tLC6ZZ/6XdBj+eaZ0G
https://paperpile.com/c/tLC6ZZ/OIS7l
https://paperpile.com/c/tLC6ZZ/OIS7l
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Sequencing data is accessible at the European Genome Archive (EGAD00001006423, 

EGAD00001006424).  

Patient 1 (PD31013), a seven-year-old girl, developed therapy-related myelodysplastic 

syndrome (t-MDS) ten months after completing treatment for high-risk neuroblastoma (Figure 1A), 

which included induction (seven agents including cisplatin and carboplatin) followed by 

myeloablative chemotherapy and autologous hematopoietic stem cell transplant (HSCT).13  

Persistent thrombocytopenia developed six months after treatment completion. Bone marrow 

examination revealed t-MDS with del(7q) and monosomy 7 in 4/20 and 11/20 metaphases, 

respectively, and leukemogenic PTPN11 G503E and SETBP1 D868G variants. Repeat bone marrow 

assessment four months later identified a stable blast percentage alongside neuroblastoma relapse, 

to which the child succumbed.  

To reconstruct TMN development, we interrogated blood or bone marrow samples from 

seven time points, including neuroblastoma-infiltrated marrow taken before treatment, from which 

we microdissected hematopoietic islands. The TMN was characterised by an increased burden of 

point mutations (2284) compared to de novo paediatric AML (median 600)(Supplemental Figure 

1).14 Most TMN mutations (88%) were attributed to single base substitution (SBS) signatures 31 and 

35, which have been closely linked to platinum chemotherapy exposure (Figure 1B).15–17  Similarly, 

doublet-base substitutions (DBS) clearly exhibited the imprint of platinum agents (DBS5; 

Supplemental Figure 2A).  

We found the first evidence of a premalignant expansion during induction chemotherapy: a 

clone sharing 128 mutations with the TMN at a median variant allele frequency (VAF) of 1.5%. The 

majority (78%) of these mutations exhibited platinum signatures (Figure 1B). Targeted sequencing 

first detected the PTPN11 G503E variant in the autograft, whilst there was no evidence of the 

SETBP1 D868G mutation until t-MDS diagnosis (Supplemental Figure 3A). Of note, the sequence 

context of the founding PTPN11 driver mutation confers a 99% probability of this lesion arising due 

https://paperpile.com/c/tLC6ZZ/22nnI
https://paperpile.com/c/tLC6ZZ/RxG4h
https://paperpile.com/c/tLC6ZZ/aVuWh+OLm8y+aOF9X


4 

to platinum mutagenesis (Supplemental Methods). However, due to the sensitivity limits of copy 

number variant calling (Supplemental methods), we cannot conclusively rule out the presence of 

del(7q) or monosomy 7 in the autograft.18 In addition to interrogating loci of TMN mutations, we 

called somatic mutations independently in each sample. This analysis revealed a second clone, 

separate from the TMN lineage, within the mid-induction bone marrow (Figure 1A). The second 

clone comprised 225 substitutions with a remarkable median VAF of 7.7%, again predominantly 

attributed to platinum agent exposure (Figure 1B). This clone regressed after induction treatment. 

Patient 2 (PD42747), a nearly four-year-old girl, developed therapy-related acute myeloid 

leukemia (t-AML) six months after completing treatment for metastatic neuroblastoma (similar 

protocol to Patient 1; Figure 1C). The t-AML harbored a balanced KMT2A-MLLT1 translocation 

(Supplemental Figure 3B), commonly attributed to topoisomerase II inhibitors, including etoposide, 

which she had received during induction.1 She remains in remission eight years after allogeneic 

HSCT.  

Samples from three time points were available for Patient 2: autograft harvest, t-AML 

diagnosis and t-AML remission. The t-AML harboured an elevated number of substitutions (1264) 

compared to de novo childhood AML,14 93% of which exhibited platinum signatures (Figure 1D, 

Supplemental Figure 2B). We detected t-AML variants, though not the KMT2A fusion, in both 

autograft and remission bone marrow at median VAFs of 0.9% and 1.4%, respectively. There were no 

other clones in the autograft or t-AML remission sample.  

As aforementioned, targeted sequencing of known cancer genes identifies CH in ~4% of 

children following cytotoxic treatment.6,9 The finding that both patients harboured at least one clone 

without a recognised driver event prompted us to extend our unbiased sequencing approach to 18 

further pediatric solid tumor patients for whom blood, parental blood (to assess inherited and de 

novo germline variants), and detailed clinical information were available.  For 17 patients we were 

also able to sequence tumor samples (Table S1). Included was the sister (PD31012) of Patient 1. She 

https://paperpile.com/c/tLC6ZZ/kVgCG
https://paperpile.com/c/tLC6ZZ/8HZwH
https://paperpile.com/c/tLC6ZZ/RxG4h
https://paperpile.com/c/tLC6ZZ/dNfn1+tnetc
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had undergone treatment for low-risk infant neuroblastoma (three cycles of etoposide and 

carboplatin only) and did not have CH. Germline analysis revealed that the sisters’ cancer 

predisposition may be attributable to an inherited germline pathogenic variant in BARD1 

(c.1935_1954dup, p.Glu652Valfs*69),19 though neither had an exceptional burden of de novo 

germline mutations (Figure 2A). 

Analysis of the extension cohort revealed one instance of CH, again lacking a recognised 

oncogenic mutation, in a 4-year old girl (Patient 3, PD34954) treated for relapsed bilateral 

neuroblastoma (which ultimately proved fatal).  This clone  was defined by 810 substitutions 

(median VAF 6.5%), 85% of which exhibited platinum signatures. Neither the two tumors from this 

child, nor Patient 1’s tumor, bore evidence of platinum mutagenesis, despite prior exposure (Figure 

2B). We did not detect any further cases of CH, including in the 6 other children exposed to platinum 

chemotherapy.  

Collectively, our results reveal that the imprint of platinum agent mutagenesis dominated all 

clones in the three children with detectable CH, in marked contrast to CH observed in adults treated 

with these drugs.5,6  The reasons for this disparity are unclear. It is conceivable that haematopoietic 

stem cell age impacts susceptibility to mutagenesis or capacity to survive it and continue replicating. 

Furthermore, all three patients with CH harboured at least one clone without a known driver 

mutation, corroborating evidence that knowledge of the somatic events under selective pressure is 

incomplete, and that ‘driverless’ CH cannot be accounted for by neutral drift alone.11,20,21  

In the two TMN patients, the preponderance of platinum signatures in nascent pre-

malignant clones, high TMN mutation burdens and 99% probability that Patient 1's founding driver 

mutation arose due to therapy-related mutagenesis contrast sharply with findings in adult TMN.2–6  

Together, these results suggest that the role of therapy-related mutagenesis in pediatric TMN may 

extend beyond the rare generation of balanced translocations linked to topoisomerase II 

inhibitors.1,22,23  

https://paperpile.com/c/tLC6ZZ/8cOPH
https://paperpile.com/c/tLC6ZZ/mcYVK+tnetc
https://paperpile.com/c/tLC6ZZ/eaZ0G+IU8sr+Hf8hK
https://paperpile.com/c/tLC6ZZ/bTyVM+IFBvl+kxsNZ+tnetc+mcYVK
https://paperpile.com/c/tLC6ZZ/o6PhZ+fyuNd+8HZwH
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The overall survival benefit of high-dose chemotherapy with autologous HSCT is unclear for 

several pediatric cancers, including neuroblastoma,24 and TMN is a leading cause of non-relapse 

mortality for these patients.7,8 The only factor clearly associated with improved survival in childhood 

TMN is a shorter time between diagnosis and allogeneic HSCT.25 In both our TMN patients, pre-

leukemic clones predated myeloablative treatment and pervaded the autograft. Pre-transplant CH is 

emerging as a biomarker of TMN and non-relapse mortality risk in adult autograft patients.26 This 

raises the possibility that early detection of pediatric CH, with or without known leukemogenic 

drivers, may inform personalised autograft decisions, enable earlier TMN diagnosis and improve 

outcomes. Unbiased, systematic evaluation of the true frequency and prognostic implications of 

pediatric therapy-related CH is needed to determine any role for screening in clinical practice. 
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Figure Legends 
 

Figure 1. Development of clonal hematopoiesis and therapy-related myeloid neoplasms in Patients 1 and 2. 

(A) Patient 1's neuroblastoma treatment course in parallel with the emergence of clonal hematopoiesis (clones 

1 and 2 denoted in blue and grey, respectively) and the progression of clone 1 to therapy-related 

myelodysplastic syndrome (t-MDS, denoted in orange and red). Sequencing coverage (X) is indicated for whole 

genome (WGS) and targeted sequencing (TS). For Patient 1 (panel A), targeted sequencing coverage is 

reported at the PTPN11 G503E locus. The median variant allele frequency (VAF) of mutations defining each 

clone is indicated as a percentage value next to their respective circle. Black circles indicate that no evidence 

(i.e. no significant enrichment of mutant reads) of the clone in question was found at that time point. (B) The 

mutational spectra defining Patient 1's clone 2 (light blue and dark blue circles), clone 2 (grey circle)  and  t-

MDS (red and orange circles) is defined by the number of single base substitutions (SBS, y-axis) per 

trinucleotide context (x-axis). SBS spectra characteristic of platinum agent-induced mutagenesis are shaded 

yellow. The pie charts to the right of each mutational spectra plot indicate that the majority of the SBS at all 

time points are accounted for by platinum agent-associated mutational signatures (SBS31 and SBS35), with the 

small remainder of mutations attributed to clock-like mutational processes associated with ageing (SBS1 and 

SBS5) and oxidative stress (SBS18). (C) Patient 2's neuroblastoma treatment timeline in parallel with the 

progression of clonal hematopoiesis (light blue circle) to acute myeloid leukemia (AML, red circle), with 

persistence of residual clonal hematopoiesis after t-AML remission (dark blue circle). As in panel A, the median 

VAF of mutations defining each clone is indicated as a percentage value. *t-AML treatment, prior to allogeneic 

transplant, comprised “ADE” (cytarabine, daunorubicin, etoposide) and “FLAG-IDA” (fludarabine, high dose 

cytarabine, idarubicin, granulocyte-colony stimulating factor) chemotherapy. (D) The mutational spectra 

defining Patient 2's clonal hematopoiesis and t-AML is shown in the same manner as for Patient 1 in panel B. 

 

Figure 2. De novo germline and somatic mutations in clonal hematopoiesis, therapy-related myeloid 

neoplasms and solid tumors in childhood cancer patients. (A) The VAF distribution (upper plot) and single 

nucleotide variant burden (lower plot) of de novo germline mutations, solid tumours, clonal hematopoiesis 

(CH) and  therapy-related myeloid neoplasms (TMN)  in 20 pediatric oncology patients. Samples are grouped 

by individual. The patient’s solid tumor diagnosis is indicated in the upper left corner of the respective bar plot. 

Asterisks denote patients who had been exposed to platinum chemotherapy at the time of sampling. (B) 

Mutational signature profile of de novo germline, CH, TMN and solid tumor mutation for the three individuals 

with clonal hematopoiesis, demonstrating the preponderance of platinum-agent mutational signatures SBS31 
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and SBS35 in CH and TMN. SNV, single nucleotide variant; DNM, de novo germline mutation; CH, clonal 

hematopoiesis; TMN, therapy-related neoplasm; NB, neuroblastoma; OS, osteosarcoma; WT, Wilms tumor; ES, 

Ewing sarcoma; IFS, infantile fibrosarcoma; RMS, rhabdomyosarcoma; URT, unclassifiable renal tumor.  

* indicates prior exposure to platinum chemotherapy at the time of sampling.  
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