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Abstract—In the real world it is common for agents to posit
arguments concerning an issue but not directly specify the attack
relations between them. Nonetheless the agent may have these
attacks in mind and instead they may provide a proxy indicator
through which one can infer the agent’s intended argument
graph (arguments and attacks). Consider online reviews, where
reviews are collections of arguments for and against the product
(positive and negative) under review and the rating indicates
whether the positive or negative arguments succeed ultimately.
In previous work [1] we have proposed a method that formalises
this intuition and uses the constellations approach to probabilistic
argumentation to construct a probability distribution over the set
of arguments graphs the agent may have had in mind. In this
paper we extend this proposal and provide a method, that uses
Bayesian inference, to update the initial probability distribution
using real data. We evaluate our proposal by conducting a
number of simulations using synthetic data.

Index Terms—abstract argumentation, probabilistic argumen-
tation

I. INTRODUCTION

A situation involving argumentation can be modelled at
a high-level by a directed graph. Each node denotes an
argument, and each arc denotes an attack by one argument on
another. Proposals have made for principled ways to identify
subsets of the arguments in the graph that can be regarded
as winning arguments [2]. These subsets are called extensions
and they constitute coalitions of arguments that are acceptable
together.

In this paper we use argumentation in a setting in which
agents propose a set of arguments but do not provide the
attacks between them. Instead they provide additional data
that can be used to infer these attacks and thus identify the
agent’s intended graph. To illustrate consider online product
reviews where each review can be thought of as a collec-
tion of arguments for (positive arguments) and against the
product (negative arguments). These reviews, in many cases,
are accompanied by ratings (numeric or graded). We interpret
these ratings as a proxy though which we can understand the
probability that a set of arguments (positive or negative) win;
thus if the rating is highly positive then we assume the positive
arguments are likely accepted and vice versa.

In our previous work [1] we have proposed a method for
identifying a probability distribution over the set of argument
graphs that the agent may have had in mind. The approach

uses the constellations approach to probabilistic argumentation
[10] [11] [6] which allows one to model uncertainty over the
topology over the graph; more precisely uncertainty over a
set (constellation) of argument graphs. This initial distribution
captures our belief that an agent intended a particular graph
based solely on the proxy indicator they have provided. It
represents the best informed inference we can make about an
agent’s intended graph in the absence of the the actual graph
or a human annotator to attempt to identify the graph for us.
In Bayesian terms this represents our prior distribution.

When data about what each agent intended is acquired, e.g.
through annotation, we can then update our initial distribution
using the data. For this we propose using Bayesian inference
which allows us to generate new beliefs (posterior distribution)
by incorporating observed/ real data into our prior belief.

This paper is structured as follows. In section II we in-
troduce argumentation in the context of reviews and give
an overview of how Bayesian inference can be applied in
this context. In sections III and IV we define the prior
and likelihood functions for Bayesian inference and finally
in section V we demonstrate our proposal by conducting a
number of simulations using synthetic data.

II. MODELLING VIEWS

An argument graph is a tuple G = (A,R) where A
denotes a set of arguments and R ⊆ A × A denotes a set
of binary attack relations between the arguments. Extension-
based semantics are semantics that can be used to identify sets
of collectively coherent arguments in an argument graph. At
the heart of these semantics is the property of conflict-freeness
which states that a set of arguments B ⊆ A is conflict-free iff
no two arguments a, b ∈ B exists s.t (a.b) ∈ R. An argument
b is defended by a set B ∈ A iff any argument a ∈ A attacks
b then ∃c ∈ B s.t. (c, a) ∈ R. A conflict-free set B ⊆ A is an
admissible extension iff each argument in B is defended by
B. An admissible extension B is an complete extension iff
each argument defended by B is in B. A complete extension
B is a grounded extension if it is minimal (w.r.t set inclusion).

In the context of this paper we use argument graphs to
model conflict between arguments in reviews. We define a
review as having two components; a textual component and



(a) product functions well (c) product is affordable

(b) product feels poorly built

Fig. 1: An example of an argument graph containing two
positive arguments (a,c) and one negative argument (b)

a numerical rating. The textual component is comprised of
arguments for the product (positive) and against it (negative).

Definition 1. Let A+ be a set of positive arguments and A−

be a set of negative arguments s.t. A+ ∩ A− = ∅. Let the
minimum rating be bNegmin and the maximum be bPosmax. A view is
a tuple v = (A, b) where A ⊆ A+ ∪A− and b ∈ [bNegmin, b

Pos
max]

is a rating s.t bNegmin, b
Pos
max ∈ R and bNegmin < bPosmax .

Example 1. Consider the arguments depicted in Figure 1 and
rating . Some examples of views using the arguments {a, b, c}
with a rating scale R = {1..10} would be ({a, b, c}, 9) and
({a, b}, 10)

When considering the set of possible argument graphs that
can be attributed to a view we consider all the bipartite
graphs that can be constructed using the positive and negative
arguments in the view. We refer to this set as the graph space.
Formally we say that given disjoint sets A+, A− that the graph
space is the set returned by the function Space(A+, A−) =
{(A+∪A−, R)|R ∈ P((A+×A−)∪(A−×A+)}. An example
of a graph space given 2 positive and 1 negative argument is
provided in Table I.

In order to identify a probability distribution over the graph
space for a view we have previously proposed a method [1]
for this; underlying our approach is the assumption that the
rating indicates which set of arguments (positive/negative)
are acceptable/winning. In Bayesian terms this distribution
represents our prior as it captures our beliefs about the review
before accounting for any real data.

When real graphs concerning the reviews are acquired, e.g.
via annotation, then this distribution needs to be updated to
reflect the data. Such annotations we refer to as observations.
Formally we say that an observation is the assignment of an
argument graph to a view.

Definition 2. Let v = (A, b) be a view where A ⊆
A+ ∪ A−. An observation is a tuple t = (G, b) where
G ∈ Space(A+, A−).

Example 2. Continuing with the example in Figure 1 an
example observation would then be (({a, b, c}, {(a, b)}), 9)

Given a set of observations we then have the necessary
components for Bayesian inference.

Definition 3. Given a set of positive and negative arguments
A+ and A−, a view v = (A, b) s.t A ⊆ A+ ∪ A−, a graph
space S = Space(A+, A−) and a set of of observations T we
say that our updated belief is given by the function:

No Graph Agg P(G) for rating
10 7 4

G1 a → b ← c 2 0.16 0 0
G2 a b ← c 1.25 0.13 0.01 0.01

G3 a → b c 1.25 0.13 0.01 0.01
G4 a → b ↔ c 1.25 0.13 0.01 0.01
G5 a ↔ b ← c 1.25 0.13 0.01 0.01
G6 a → b → c 0.5 0.08 0.05 0.02
G7 a ← b ← c 0.5 0.08 0.05 0.02
G8 a b ↔ c -0.25 0.05 0.11 0.05
G9 a ↔ b c -0.25 0.05 0.11 0.05
G10 a b c -0.25 0.05 0.11 0.05
G11 a ↔ b ↔ c -1 0.02 0.15 0.08
G12 a b → c -1.75 0.01 0.08 0.13
G13 a ← b c -1.75 0.01 0.08 0.13
G14 a ↔ b → c -1.75 0.01 0.08 0.13
G15 a ← b ↔ c -1.75 0.01 0.08 0.13
G16 a ← b → c -2.5 0 0.03 0.19

TABLE I: Breakdown of probability distribution and aggregate
graded scores for each graph in a graph with 2 positive
arguments and one negative

P (G|T ) =
P (T |G)P (G)∑

G∈S P (T |G)P (G)
(1)

In the formula above the variable P (G) is the prior and
represents our initial belief that graph G ∈ S is the intended
graph for view v before considering the observations. The
term P (T |G) is referred to as the likelihood and tells us
that if we assume the intended graph for v is G what the
probability (likelihood) of observing the observations T is.
The multiple of the prior and the likelihood is proportional
to the updated belief P (G|T ) which is referred to as the
posterior. The denominator is called the normalising constant
and ensures the resultant posterior distribution is a probability
distribution; i.e.

∑
G∈S P (G|T ) = 1. In the next sections we

discuss our proposals for the prior and the likelihood functions.

III. PRIOR DISTRIBUTION

In this section we summarise our previous proposal [1]
for the prior distribution. Underpinning our approach is the
assumption that the rating of a review can be used to identify
the winning arguments in that review. Hence a high rating
indicates the positive arguments are more likely win and vice
versa. We formalise this intuition in threes parts.

The first component involves constructing a function, which
we refer to as Agg(G), that scores each graph G ∈ S in a
graphs space, i.e Agg : S → R. This score provides a measure
of positivity based on an assessment of the graph’s grounded
extension and topology. This function enables us to score and
rank the graphs in the graph space in terms of their positivity.
The second component involves learning a function that maps
between the rating of a review and this positivity domain. The
third is to compute the mapped value for the rating in a review
and compare this value to the positivity scores of the graphs
in the graph space. These computed distances then serve as
the basis for the identified probability distribution. For specific
details of our implementation of the prior distribution please
refer to our previous paper.



IV. LIKELIHOOD DISTRIBUTION

In this section we detail our proposal for the likelihood func-
tion. This function allows us to update our prior distribution
using data that captures the attacks between the arguments
in the reviews we are analysing. Such data can be acquired
for example using annotators where each annotator would be
presented with a review and its constituent arguments and
asked to identify the argument graph for that review based
on their reading of the it. Using Bayesian terminology we
refer these annotations as observations, T , and we recall that
an observation t ∈ T is a tuple (G, b) and G = (A,R) is an
argument graph.

In updating the probability distribution for a view we do not
limit ourselves to using observations directly related to that
view (i.e. annotations regarding that particular view). It may
be the case that arguments present in that particular review
are also present in others and so we would like to learn
from annotations related to those reviews too. We therefore
distinguish between these two types of observations.

The first is a matching observation in which the observa-
tion contains the exact same set of arguments as the ones in
the view we are analysing. Formally we say given a view
v = (Av, bv) and an observation t = ((A,R), b), t is a
matching observation iff A = Av . The second is a similar
observation which contains a subset of arguments from the
review we are considering. We say that an observation t is a
similar observation iff it is not matching and the number of
shared arguments is greater than or equal to 2; given that two
arguments are required to have have attacks in the argument
graph that can be used for learning, i.e |{A ∩Av}| ≥ 2.

Example 3. Consider a view ({a, b, c}, 10) and two obser-
vations t1 = (({a, b, c}, {}), 10) and t2 = (({a, b}, {}), 10).
In this case t1 is a matching observation and t2 is a similar
observation.

Since a matching observation is contains an argument graph
that can be found in the corresponding graph space for the
view we are considering we can use the aggregate measure
Agg as the basis for our likelihood function. However for a
similar observation the aggregate measure cannot be used and
so we will propose a modified likelihood function. In both
cases we expect our resulting posterior distribution to adhere
to certain rationality postulates which we discuss below.

(RPR) Rating Proportionality: Given two observations
t1 = (G, b1) and t2 = (G, b2) and a view (Args(G), b)
s.t |b − b1| > |b − b2| then it should follow that∑

G∈S (P (G|t1)− P (G))2 >
∑

G∈S (P (G|t2)− P (G))2.
RPR states that for two observations that have the same graph
but different ratings, the one that has the rating most similar
to the rating of the view will impact the posterior most.

(APR) Argument proportionality: Given two observations
t1 = (G1, b1) and t2 = (G2, b2) s.t |Args(G1) ∩ Args(G)| ≥
|Args(G2) ∩ Args(G)| and b1 = b2 it should follows that∑

G∈S (P (G|t1)− P (G))2 ≥
∑

G∈S (P (G|t2)− P (G))2.
APR states that for two observations, the observation that

shares most arguments in common with the view will alter
the posterior distribution most.

A. Updates with Matching Observations

We recall that the set of graphs that can be assigned to
a view v = (Av, bv) is Space(A+ ∩ Av, A

− ∩ Av). For a
matching observation t = (G, b) we find that graph in the
observation exists in this graph space, i.e. G ∈ Space(A+ ∩
Av, A

− ∩ Av). What this means is that we can make use
of the aggregate score defined in the previous section when
determining the likelihood distribution.

Definition 4. Given a view v = (Av, bv) and a match-
ing observation t = (Gt, rt) we define the relative attack
distance between a graph G ∈ S and observed graph Gt

as distAtt(G,Gt) = 1 iff Gt = G and distAtt(G,Gt) =
1

2+|Agg(G)−Agg(Gt)| otherwise. We then say that the normalised

distance is normdistAtt(G,Go) = distAtt(G,Go)∑
F∈S distAtt(F,Go)

.

We now consider how the rating of an observation in-
fluences the resulting likelihood distribution. The basic idea
is that observations that have ratings similar to the view
should produce a likelihood distribution that influences the
posterior more than those that are less similar. To illustrate
consider a view (A, 10) and two observations t1 = (G, 9) and
t2 = (G, 1). In this case we would give greater priority to t1 as
the observation is very similar to the view’s rating. In order
to determine the degree to which an observation influences
the posterior distribution we define a likelihood distribution
which when used in Bayes’ formulae has no effect whatsoever
on the posterior, i.e. P (G|T ) = P (G). This uninformative
distribution we know be the uniform distribution which we
define as a P (T |G) = 1

|S| .
We use the uninformative distribution as the likelihood

distribution when difference in ratings between the observation
and the view are maximally dissimilar. As the ratings become
more and more similar we then gradually move towards just
using the normdist. We therefore say that given the rating
difference is ∆b =

b+max−b
−
min−|b−bt|

b+max−b−min

. The update is then:

P (T |G) =
1

|S|
−∆b(

1

|S|
− normdistAtt(G,Gt)) (2)

Proposition 1. The function we have defined for P (T |G) in
Equation 2 satisfies RPR.

Proof. Let t1 = (G, b1) and t2 = (G, b2) be observations and
(Args(G), b)) a view s.t |b1 − r| > |b2 − b|. In both cases
normdistAtt(G,Gt) is a constant term and the only differing
term in the likelihood would be ∆b. When ∆b is high, i.e t1,
then the likelihood tends to 1

|S| which in turn means the pos-
terior tends to P (G) and thus

∑
G∈S (P (G|t2)− P (G))2 >∑

G∈S (P (G|t1)− P (G))2

As can be seen the likelihood function is equal to normdist
when ∆b = 1, i.e. the view and the observations have the
same rating, and equal to uniform distribution when ∆b = 0.
The likelihood distribution exhibits linear behaviour between



these two extremes. We note that the likelihood function for
matching observations trivially satisfies APR as all observa-
tions using this likelihood function always have the same set
of arguments as the view in consideration.

B. Updates with Similar Observations

We recall that a similar observation is a relevant observation
that does not have the exact same set of arguments as the
view in consideration. In this case we are concerned with
learning from the portion of arguments in the observation that
overlap with the arguments in the view. In order to make this
comparison we propose a similarity measure that compares
the overlapping portion of the observed graph with the graphs
in the graph space for the view based on topological structure
as well as similarities in grounded extension. Measuring topo-
logical structure ensures that we are able to identify similarly
structured graphs and measuring the similarity in grounded
extension allows us to see how similar the conclusions are
that both graphs reach. Further to this we enforce an addi-
tional measure which ensures that observations that have more
arguments in common with the view’s graph space contribute
more to the update than observations that don’t.

We begin by defining a similarity measure based on topo-
logical structure. We start by assessing the similarity between
the four possible types of relations (attack types) between two
arguments. For ease of notation we refer to the four possible
attack types between any two arguments a, b given a set of
attacks R as follows: we say attackType((a, b), R) = a → b
when (a, b) ∈ R& (b, a) 6∈ R, attackType((a, b), R) = a← b
when (b, a) ∈ R& (a, b) 6∈ R, attackType((a, b), R) = a↔ b
when (a, b) ∈ R & (b, a) ∈ R, attackType((a, b), R) = a− b
when (a, b) 6∈ R & (b, a) 6∈ R. Where there is no confu-
sion we also say that given an attack ∈ {a ← b, a →
b, a ↔ b, a − b} and a graph G = (A,R), attack ∈ G iff
attackType((a, b), R) = attack. With these attack types we
build a similarity measure to be able to measure the degree of
similarity between two graphs in terms of their attacks.

Definition 5. Let a, b be two arguments and let X,Y ∈ {a←
b, a → b, a ↔ b, , a − b, } be two attack types for a, b. Let
|arcs(X)| represent the number of attacks in X . We define
distatt(X,Y ) as:

distatt(X,Y ) =


0 if X = Y

1 if |arcs(X)| 6= |arcs(Y )|
2 if |arcs(X)| = |arcs(Y )| & X 6= Y

The measure captures the degree of dissimilarity between
the attack types. We note that this measure is the same as the
Hamming distance except in the case of distatt(a↔ b, a− b).
The reason we give special treatment to these attack types
is because we want to ensure that they are treated dissimilar
to distatt(a ↔ b, a ← b) or distatt(a ↔ b, a → b). This is
because they have the same grounded extension and so in this
sense are more similar.

To compute the overall similarity between two graphs we
simply add the similarity scores for each pair of overlapping
arguments as follows:

Definition 6. Given graphs G1 = (A1, R1) and G2 =
(A2, R2) the shared positive arguments are A+

1,2 =
A1 ∩ A2 ∩ A+ and the shared negative arguments are
A−1,2 = A1 ∩ A2 ∩ A−. The set of possible conflicts
as C = A+

1,2 × A−1,2. For a given possible conflict
c ∈ C we define a distance diff(c,R1, R2) = 2 −
distatt(attackType(c,R1), attackType(c,R2)). The degree of
similarity between both graphs is then given by the function
similarity(G1, G2) =

∑
c∈C diff(c,R1, R2).

Example 4. Consider a graph G1 = ({a, b}, {(a, b)}) and
a larger graph G2 = ({a, b, c}, {(a, b), (b, a), (b, c)}). The
set of possible conflicts is {(a, b)}. From G1 we find the
attackType((a, b), {(a, b)}) = a → b and from G2 we
find attackType((a, b), {(a, b), (b, a), (b, c)}) = a ↔ b. The
similarity(G1, G2) = 1.

Next we consider the degree to which two graphs are related
in terms of their grounded extensions.

Definition 7. Given two graphs G1 = (A1, R1) and
G2 = (A2, R2) the overlap in the grounded extensions is
distgr(G1, G2) = |(gr(G1) \ gr(G2))∪ (gr(G2) \ gr(G1))| and
that distgraph(G1, G2) = similarity(G1, G2) + distgr(G1, G2).
We then define the total distance between graphs as:

disttotal(G1, G2) =
distgraph(G1, G2)∑
G∈S distgraph(G,G2)

We finally want to ensure that the difference in rating
between view and observation influences the final likelihood
distribution. We also add an additional constraint which is
that we want to make sure that an observation which is
most similar to the graph space (proportion of overlapping
arguments) contribute more to the update than those are less
similar.

Definition 8. Given an view (A, r) and a similar observation
t = (Gt, rt). We say that ∆Args = |A∩Args(G)|

max(|A|,|Args(G)|) . We then
say that the likelihood function is this given by:

P (T |G) =
1

|S|
−∆Args∆b(

1

|S|
− disttotal(G,Gt)) (3)

Example 5. Let a, b be positive arguments, c be a neg-
ative argument, v = ({a, c}, 10) a view and t =
(({a, b, c}, (a, c)), 10). In this case ∆Args = 2/3, ∆b = 1.

Proposition 2. The function P (T |G) defined in Equation 3
satisfies APR

Proof. Let t1 = (G1, b), t2 = (G2, b) be observations where
G1 = (A1, R1) and G2 = (A2, R2) s.t G1 v G2 and let
v = (A, b′) be a view. ∆b is a constant and ∆Args is larger
for t1 than for t2. Therefore

∑
G∈S P (t1|G) tends to 1

|S|
as ∆Args decreases and likewise

∑
G∈S P (t1|G) tends to

disttotal(G1, G) as ∆Args grows.



(a) noise = 0.75 (b) noise = 0.5 (c) noise = 0.25

(d) noise = 0.75 (e) noise = 0.5 (f) noise = 0.25

Fig. 2: Plots showing P (G|T ) against number of observations. The central blue lines Figures (a), (b), (c) show the average
posterior probabilities for all G ∈ Space({a, b}, {c}) and (d), (e), (f) show them for all G ∈ Space({a, b, c}, {d, e}). The blue
bands represent the 95% confidence intervals.

We note that our proposal can be adapted to settings in
which ratings are not used, i.e where a view is simply a set of
arguments and observations are argument graphs. In this case
we can specify the uniform distribution as the prior distribution
for the view and adapt our proposals for the likelihood function
by making ∆r = 1 as by doing so we remove the influence of
the rating. Thus for a matching observation we would have a
likelihood of P (T |G) = normdistAtt(G,Gt) and for a similar
observation we would have P (T |G) = 1

|S| − ∆Args( 1
|S| −

disttotal(G,Gt)) .

V. SIMULATIONS

In this section we investigate the performance of our ap-
proach. Our primary motivation in these simulations is to
demonstrate that our approach produces reasonable posterior
probabilities under different circumstances. Firstly we expect
that, for a given graph G, the posterior probability assigned
P (G|T ), to be proportional to the frequency with which it
appears in the observations. We refer to this as noise in
observations w.r.t a graph of interest G and define it as follows.

noise(G,T ) = 1− |{t ∈ T |G v t}|
|T |

Where for two graph G = (A,R) and t = (At, Rt), G v t
iff A ⊆ At and R = {(a, b) ∈ Rt|a, b ∈ A}.

Example 6. Let T = {t1, t2} be a set of observations where
t1 = {({a, b, c}, ({a, b, c}, {(a, b), (b, c)}), 10) and t2 =
{({a, b}, ({a, b}, {(a, b)}), 10). We find that consistency(a→
b, t) = 1 because a→ b is in both observations.

Another outcome we investigate is the effect that the number
of observations (N ) has on our model. In general we expect
that as more observations are added the posterior probability
should in general increase.

A. Synthetic Data

We created multiple synthetic datasets by using combina-
tions of noise and number of observations. We started by
specifying a set of positive arguments {a, b, c} and negative
arguments {d, e}. We experimented with 3 levels of noise
(0.25, 0.5, 0.75) and various numbers of observations in the
range 5 ≤ N ≤ 25. For each possible combination of noise
and N we then created 150 synthetic datasets (T1, .., T150)
for G where each graph in the set is randomly generated
until we achieved the required level of noise and N . To
simplify the simulations we the fixed the rating of every
observation to 10. We then summarised the posterior prob-
ability for that combination of noise and N by computing
an average posterior probability using all of the datasets i.e.
P (G|T ) =

∑150
i=1 P (G|Ti)/150.

B. Results

Figures 2a, 2b and 2c show how the posterior probability of
all graphs in Space({a, b}, {d}) change with different levels
of noise and dataset size. Instead of plotting the posterior
probability for each individual graph in the graph space we
plot the average of all the graphs in that graph space along with
the 95% confidence interval bands denoted by the surrounding
blue bands. Figures 2d, 2e and 2f show a similar picture but
for a larger graph space of Space({a, b, c}, {d, e}). Note that



Fig. 3: Simulations showing the effect of ratings on the
posterior probability

for all of the figures when the number of observation is 0 we
report the prior probability for the graph.

As can be seen in all cases there is a general trend for
the model to assign a higher posterior probability as more
observations are added. Furthermore as noise decreases this
learning is much faster. As can be seen clearly in Figures
2a, 2b, a larger starting prior noticeably influences the rate at
which the posterior probability grows when noise is high. This
is also noticeable in Figure 2d even though the graphs start
with a prior probabilities that are all very small.

Figure 3 shows how using observations with different rat-
ings effects the posterior probability. The purple lines show the
average posterior probability for graphs in Space({a, b}, {d})
when the rating for the view is 10. Each of the three lines
use observations with average ratings of 2, 5 and 8 respec-
tively. The red lines show a similar picture but for graphs in
Space({a, b}, {d, e}). What can be seen is that observations
that use ratings very different to that of the view cause
the posterior probability to grow slower than when they are
similar; this demonstrates the effect of ∆b on the posterior.
For more detailed analysis of these simulations please refer to
our supplementary results and analysis 1.

VI. RELATED WORK

Learning in the context of abstract argumentation has been
studied before. Proposals to learn argument frameworks from
data in which the acceptability status of the arguments is
known in advance have previously been made [5]. Many of
these proposals also use probabilistic approaches [14] [7] [3]
but ours differs fundamentally from all of these in that we do
not assume access to such labels and instead we start from
the assumption that we only have access to a proxy indicator
(rating) through which we infer these acceptability statuses.

Proposals for the use of argumentation in analysing online
reviews have been made in [4] which provides a method for
extracting bipolar argument frameworks from film reviews

1https://github.com/robienoor/bayesianframeworklearningargumentation

where each reviewer provides labels the films as good or bad
(binary choice). The approach differs from ours in that we
provide a probabilistic output.

Lastly there have been proposals for instantiating argument
graphs from online reviews [15]. Most related to our work is
[9] which proposes a rule-based approach to build argument
graphs from drug reviews. The proposal also assumes a rela-
tionship between ratings and acceptability status of arguments.
However our approach is probabilistic and is able to learn from
observations.

VII. DISCUSSION

In this paper we have proposed a method for identifying
a prior distribution for a view in the absence of the agent’s
intended graph for that view and we have proposed a Bayesian
inference framework that enables us to update the probability
distribution for the view using data and therefore learn from
the data.

We note that a current limitation of this approach exists in
handling large numbers of arguments as this means generating
and dealing with many arguments graphs in the graph space
but we do intend to investigate combinatorial techniques to
improve on this going forward [13]. Because positive/negative
arguments are commonplace in the real world we have made
this the focus in this paper however in future we intend to
generalise our approach to handle k-partite graphs.

REFERENCES

[1] Noor, Kawsar, and Anthony Hunter. “Analysing Product Reviews Using
Probabilistic Argumentation”. Proceedings of COMMA ‘20.

[2] Dung, Phan Minh. “On the acceptability of arguments and its fundamen-
tal role in nonmonotonic reasoning, logic programming and n-person
games.” Artificial intelligence 77.2 (1995): 321-357.

[3] Hunter, Anthony, and Kawsar Noor. “Aggregation of Perspectives Using
the Constellations Approach to Probabilistic Argumentation.” Proceed-
ings of the AAAI ‘20.

[4] Cocarascu, Oana, Antonio Rago, and Francesca Toni. “Extracting dialog-
ical explanations for review aggregations with argumentative dialogical
agents.” Proceedings of AAMAS ‘19.

[5] Riveret, Régis, and Guido Governatori. “On learning attacks in proba-
bilistic abstract argumentation.” Proceedings of AAMAS ‘16.

[6] Haenni, Rolf. Probabilistic argumentation.” Journal of Applied Logic 7,
no. 2 (2009): 155-176.

[7] Kido, Hiroyuki, and Keishi Okamoto. “A Bayesian Approach to
Argument-Based Reasoning for Attack Estimation.” Proceedings of
IJCAI ‘17.

[8] Leite, Joao, and Joao Martins. “Social abstract argumentation.” Proceed-
ings of IJCAI ‘11.

[9] Noor, Kawsar, Anthony Hunter, and Astrid Mayer. “Analysis of medical
arguments from patient experiences expressed on the social web.”
Proceedings of IEA/AIE ‘17.

[10] Li, Hengfei, Nir Oren, and Timothy J. Norman. “Probabilistic argumen-
tation frameworks.” Proceedings of TAFA ‘11.

[11] Hunter, Anthony. “Some foundations for probabilistic abstract argumen-
tation.” Proceedings of COMMA ‘12.

[12] Bonzon, Elise, et al. “A comparative study of ranking-based semantics
for abstract argumentation.” Proceeding of AAAI ‘16.

[13] Fazzinga, Bettina, Sergio Flesca, and Francesco Parisi. “Efficiently
estimating the probability of extensions in abstract argumentation.”
Proceedings of SUM ‘13.

[14] Riveret, Régis et al. “A labelling framework for probabilistic argumen-
tation”. Annals of mathematics and artificial intelligence. Vol 83, No 1,
Pages 21-71, 2018

[15] Schneider, Jodi, Tudor Groza, and Alexandre Passant. “A review of
argumentation for the social semantic web.” Semantic Web 4, no. 2
(2013): 159-218.


