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Abstract  

In obstacle-filled media, such as extracellular or intracellular lumen of brain tissue, effective 

ion diffusion permeability is a key determinant of electrogenic reactions. Although this 

diffusion permeability is thought to depend entirely on structural features of the medium, 

such as porosity and tortuosity, brain tissue shows prominent non-ohmic properties, the 

origins of which remain poorly understood. Here, we explore Monte Carlo simulations of ion 

diffusion in a space filled with overlapping spheres, to predict that diffusion permeability of 

such media decreases with stronger external electric fields. This dependence increases with 

lower medium porosity while decreasing with radial (2D or 3D) compared to homogenous 

(1D) fields. We test our predictions empirically in an electrolyte chamber filled with 

microscopic glass spheres and find good correspondence with our predictions. A theoretical 

insight relates this phenomenon to a disproportionately increased dwell time of diffusing ions 

at potential barriers (or traps) representing geometric obstacles, when the field strength 

increases. The dependence of medium ion-diffusion permeability on electric field could be 

important for understanding conductivity properties of porous materials, in particular for the 

accurate interpretation of electric activity recordings in brain tissue.   
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SIGNIFICANCE STATEMENT 

From nanomaterials to animal tissues, diffusion permeability of porous media has been 

attributed entirely to their structure, which is often summarised as porosity and tortuosity. 

Here we simulate a sphere-filled space to find that its conductance decreases with stronger 

electric fields, and confirmed this in a physical experiment, with a theoretical treatment 

highlighting its key parameters.  This finding has some potentially fundamental implications 

for our understanding of electricity in porous media. For instance, it suggests that routinely 

recorded brain field potentials may not necessarily scale linearly with the strength of current 

sources inside the brain tissue. On the microscopic scale, it predicts retarded diffusion of 

charged molecules, heterogeneous charge accumulation, and possibly supra-linear heat 

dissipation with increased electrical activity. 
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INTRODUCTION 

Physiological signalling in animal tissue relies on rapid diffusion of electrolyte ions in the 

extracellular (or intracellular) space filled with relatively immobile obstacles, from 

macromolecules to microscopic cellular structures. Compared to a free medium, diffusion in 

obstacle-filled, or porous, media is retarded. According to the classical Nernst–Einstein 

equation, electrolyte conductivity G scales with ion diffusivity so that  

2
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=
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n n n
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RT
         (1) 

where qn, Cn, and Dn are respectively, the valence, concentration, and diffusivity of the nth 

ion species, F is Faraday's constant, R is gas constant, and T is absolute temperature (Table 

1).  Thus, at constant ion concentrations, G is proportional to diffusivity (which may not be 

the case when ion concentrations vary or are spatially non-uniform). Generally, retardation of 

ion diffusion by obstacles corresponds to increased electrical resistance, which in turn affects 

the scale and dynamics of electric events critical for cell function, particularly in the brain, 

both on the scale of tissue (1) and the nanoscale (2). Numerous studies have focused on the 

brain extracellular space to establish that its net diffusion retardation effect is determined by 

the medium porosity α (space volume fraction available for diffusion) and tortuosity λ, which 

corresponds to the apparent diffusion coefficient Dapp = Dfree / λ
2 (Dfree is free-medium 

diffusivity) (1, 3), or otherwise diffusion permeability θ = Dapp / Dfree = λ−2 (4). The values of 

α, λ, or θ in brain tissue have been evaluated on the scale of several microns and above (3, 5, 

6). Recently, advances in live super-resolution imaging has extended this quest to the 

nanoscale (7, 8), whereas molecular mobility in the extracellular and intracellular lumen on 

the nanoscale has been evaluated using time-resolved anisotropy-FLIM (9). In this context, it 

has routinely been assumed that the architectural features of porous media (such as λ, θ, α, or 

more complex shape variables) principally define their effective conductivity (10, 11).  

When electric field is present, ion movement follows the classical Nernst-Plank relationship 

( )= −∇ +D E

dC
J J

dt
          (2) 
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where C is ion concentration, = − ∇DJ D C  and = − ∇E

F
J Dq C V

RT
are, respectively, 

diffusion and electric drift (migration) components, V is field potential (gradient ∇V is 

equivalent to field strength E). Eqs. 1-2 are key to the traditional interpretation of 

electrophysiological recordings: it assumes constant electrolyte conductivity G which 

depends simply on the bulk concentration of ions. Indeed, in the case of the mammalian 

brain, the common assumption has been that the Nernst-Plank formulism of electrodiffusion 

applies to the tortuous extracellular space with diffusivity corrected for θ (12-14).  

More recently, however, it has been shown that brain tissue shows prominent non-ohmic 

properties that might affect interpretation of local field potentials (15-18) whereas physical 

tests in porous ceramics indicated that permittivity of such media could depend on the electric 

field strength (19). There has been a significant progress in advancing theoretical work that 

focuses on electrodiffusion in porous media (e.g., discussed in (20, 21), including brain tissue 

(22). On the nanoscale, anomalous diffusion arising due to diffusion obstacles and electric 

field interactions in cell membranes and neuronal dendrites has also been explored (23, 24). 

However, the influence of external electric fields on ion diffusion permeability of such 

obstacle-filled media remains poorly understood.  

Here, we focus on this particular issue as a first principle, without attempting to address or 

generalise evaluation of apparent diffusivity or permittivity for porous media of various 

types. To understand the basic phenomenon, we therefore explore Monte Carlo (MC) 

simulations mimicking electrodiffusion of charged particles across the space filled, to a 

varied degree, with inert, partly overlapped spherical obstacles. While not critical for 

establishing theoretical principles, our simulation parameters were chosen to roughly 

replicate the movement of small ions, on the microscopic scale, in the interstitial (or 

intracellular) brain tissue lumen filled with macromolecules and other nanoscopic obstacles. 

Our simulations predict that increasing the external field strength lowers porous medium 

diffusion permeability, thus deviating from the classical Nernst-Plank theory. We test this 

prediction by using voltammetry measurements in electrolyte filled with non-polarizing 

dielectric (glass), microscopic spheres, and suggest a first-approximation theoretical insight 

into the underlying principles.  
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MATERIALS AND METHODS 

Monte Carlo simulations: Electrodiffusion  

MC simulation algorithms were designed and run using MATLAB, based on the classical 

Nernst-Plank relationship (Equation 2), as detailed and tested against experimental recordings 

earlier (25, 26). The standard random walk procedure for individual particles (ions) was thus 

implemented, in which the electric field drift (migration) was calculated from the particle 

speed as µ= −d

dt

r
E where mobility  µ = F

Dq
RT

, vector = ∇VE is the field strength, and r 

is the coordinate vector (r is radial co-ordinate). Thus, ion particles positioned at time t at 

point ( , , )x y zr  were moved to point 1 1 1 1( , , )x y zr over time increment ∆t so that, in the case 

of 1D field, 1 * δ= + ∆ + ∆ eED
x tx x

x

kT r
 , with E = 0 for particle displacement into y and z 

directions, ∆x corresponds to the mean square displacement in the Einstein's diffusion 

equation for 1D Brownian motion 2 2∆ = ∆x D t , δ denotes a 'delta-correlated' (independently 

seeded, uncorrelated) uniform random number from the (-1, 1) range to reflect that Brownian 

particles are equally likely to move into either direction, e is elementary charge, and k is the 

Boltzmann constant (Table 1). In the case of the 2D radial field (inside a flat and narrow 2D 

slab), this expression had E = 0 for z direction; in the 3D radial field (3D open space), all 

directions had the field term. As the drift component was added at every diffusion step, the 

diffusion coefficient calculation was dealing with time and distance in a fixed co-ordinate 

system.  

To avoid occasional numerical deadlocks for particles trapped near the space dead-ends 

formed by aggregated overlapped spheres (Fig. S1B), we implemented the duty-cycle 

translational movements in a contiguous 3D space, over all directions, rather than over the 

rectangular 3D-lattice vertices used by us and many others previously. The duty cycle time 

step ∆t (usually < 0.1 µs) was set to be small enough to prevent particles from 'tunnelling' 

through the smallest, 6 nm wide obstacles.  

The basic 'reference value' field strength E0 was set at 104 V/m, which roughly corresponds to 

the field generated by a synaptic current of 10-50 pA towards the centre of the 10-15 nm 

thick, 0.5 µm wide synaptic cleft, with the medium resistance of ~100 Ohm cm (9, 27, 28). 

Accordingly, for stronger electric fields (E > 2E0) we adopted ∆t < 0.01 µs. For the sake of 
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simplicity, and to separate the effect of field geometry per se, we have assumed constant field 

strength E for both uniform (1D) and radial (2D and 3D) fields whereas under the common 

2D and 3D scenarios, field is attenuated with a factor of r-1 and r-2, respectively where r is the 

distance to the infinitesimal central source. Instead of incorporating these factors in our 

calculations, we considered the 1D case as the first-principles scenario, and addressed the 

effect of weakening the field separately, by exploring E values over an order of magnitude.  

The particle-wall interaction was simulated as an elastic collision, and electrostatic 

interactions with the obstacle surfaces were ignored, on the assumption that the dimensions of 

the free diffusion space were much larger than the electrolyte double-layer.  

The initial conditions routinely included 2000 particles injected instantaneously in the arena 

centre (within a 10 nm sphere at the coordinate origin, outside any obstacle). This reflected 

the case when ions flowing through the open channel generate the field in which they and 

other ions diffuse, such as inside the synaptic cleft (28). We also ran arena-size trials for each 

new condition using 200 diffusing particles (see below). Ten full trials with 2000 particles 

each were carried out for the statistical estimates of average diffusion permeability values, 

with the sphere distributions generated anew every trial. In addition, we systematically ran 

single control trials involving 2000 particles, to verify the computational stability for the 

diffusion steps, sphere distributions, and the interactions between particles and obstacles.  

 

Monte Carlo simulations: Sphere-filled space  

The main parameter controlling the distribution of spheres is the volume fraction β occupied 

by them. The β value was calculated by (a) scattering 105 test points uniformly randomly 

across the entire space, and (b) calculating the proportion of the point falling outside the 

spheres. We verified that increasing the number of such test points to 106 altered β by <1%, 

suggesting asymptotic accuracy. The space (arena) dimensions were set large enough to reach 

a stationary value for the apparent diffusion coefficient under the strongest electrical field 

(fluctuation was less than ±1% for the last 20% of the simulated diffusion time). As noted 

above, the arena size was routinely trialled and established using ad hoc simulations with 200 

particles, under the strongest tested electric field, without spheres.   
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To fill the space with overlapping spheres that have a distributed size, the following 

algorithm was adopted. First, we prohibited spheres to occupy a 3 nm wide space around the 

co-ordinate origin where the particles start their random walk. Second, in each duty cycle, we 

generated a random sphere location (set of co-ordinates) with the arena space, and the 

random radius value (distributed in accord with the designated density function) for the 

sphere. Third, we repeated the cycle until β approaches the required value with ~5% 

accuracy.  

To replicate our empirical arrangement with glass spheres, we attempted an algorithm filling 

the space with equally sized non-overlapping spheres. Random packing of equal spheres has 

a theoretical density maximum of ~64%, assuming that the arena size is much larger than that 

of spheres (29). In computational practice, however, as the volume fraction β occupied by the 

simulated spheres reaches ~50%, it becomes progressively difficult to insert further spheres. 

In the majority of cases, the algorithm stalls due to the lack of available space. It turns out 

that a similar deadlock occurs when the spheres have a pre-defined distribution of their size, 

at least in the case of even distribution. Therefore, we asked whether the cases of overlapping 

versus non-overlapping spheres differ significantly in terms of the apparent diffusion 

coefficient, and found little difference, at least for β < 0.5 (see Fig. S1D). This was consistent 

with the observation that the overlaps occupied only a small fraction (<4% for β = 0.5) of the 

arena volume, thus suggesting little effect overall, which also applies to enhanced trapping 

due to the electric field.  

The overall size (cut-off distance) of the diffusion arena was determined by the condition that 

it should be large enough to contain >99% particles during at least 0.5 ms post-release in the 

strongest-field case E = 5E0 and with β = 0 (free space, no obstacles). At the same time, the 

arena had to be sufficiently small to allow technically feasible computation times, which 

increased supra-linearly with greater β or with the number of spheres introduced as obstacles.  

Computing environment 

Simulations were carried out on a dedicated, ad hoc-built 8-node BEOWULF-style diskless 

PC cluster running under the Gentoo LINUX operating system (kernel 4.12.12), an upgraded 

version of the cluster described earlier (5). Individual nodes comprised an HP ProLiant 

DL120 G6 Server containing a quad-core Intel Xeon X3430 processor and 8GB of DDR3 

RAM. Nodes were connected through a NetGear Gigabit Ethernet switch to a master 
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computer that distributes programs and collects the results on its hard disk. Optimization and 

parallelization routines were implemented by AMC Bridge LLC (Waltham, MA).  

Calculating the apparent diffusion coefficient 

The apparent diffusion coefficient for the particle cohort, averaged over time t, in any of the 

three directions, was calculated as 2

1

1
( / )

2 =
= ∑

N

x i
i

D x t
N

 (similar for y and z) where N is the 

number of diffusing particles, and xi
2 reports the particle's mean square displacement over 

time t. The diffusion coefficient values were calculated continuously during simulation runs, 

as long as all original diffusing particles remained within the simulation arena. Normally, 

once a single particle has left the open boundary of the simulation area, computations 

stopped.  

Analytical solutions of the Nernst Planck electrodiffusion equations  

In analytical estimates of the particle concentration profiles, we solved the Nernst-Plank 

equation using the built-in MATLAB function pdepe. This function enables solving initial-

boundary value problems for the parabolic-elliptic type of partial differential equations.   

Conductance measurements 

Electrolyte conductance was measured using a classical shunt resistor method (e.g., p. 175 in 

(30)).  Various voltages supplied by a constant voltage source with maximum current limited 

to 2A (TTi EX4210R 42V 10A model) were applied to a pre-sterilised, industry-standard 

electroporation chamber (Molecular BioProducts, MBP #5520; WxLxH: 2 mm x 10 mm x 25 

mm; Fig. 4A).  Because of large current passing through the circuit at high voltage steps, a 

shunt resistor of 10 A/V (RS257-391) was connected in series to the chamber, from which a 

small voltage drop across the resistor was measured using a national instrument analogue to 

digital converter (NI BNC-2090).  To deal with any resistive heating effects in the chamber 

under high currents, we applied short (10 ms) voltage pulses, with a high current reed relay 

(Cynergy3 S8-0504) connected in series prior to the chamber. The short 10 ms pulse applied 

to the circuit had no resistive heating effect: the monitored solution temperature in the 

chamber was 23-24°C throughout tests. Signal timing was gated by a pulse generator (AMPI 

Master 8), which was triggered from the same national instrument board using acquisition 

control software WinWCP (University of Strathclyde). 
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Three different solutions were made: deionised water (H2O, Elgar Purelab machine, 

resistivity 15 MOhm / cm at 25°C), sodium chloride (NaCl, Sigma S7653, 153 mM solution 

in deionised water solution), and ACSF. The ACSF solution composition was as follows: 

NaCl (Sigma S7653) 126mM, KCl (Sigma P9333) 2.5mM, MgSO4·7H2O (Sigma M1880) 

1.3mM, NaH2PO4 (Sigma S0751) 1.25mM, glucose (Sigma G8270) 10mM, NaHCO3 

(Sigma S6014) 26mM, CaCl2·2H2O (Sigma C3881) 2mM. The electrolyte strength was thus 

chosen to be in the physiological range, below the levels (>0.2M) at which, classically, ion-

ion interactions could affect conductivity (31).   

DC Voltages were applied to the opposite electrodes in the chamber (Fig. 4A), and small 

voltages across the shunt resistor were measured and converted to currents.  The procedure 

was carried out in a free solution and then repeated with 13-45 µm lime soda glass spherical 

microbeads (MO-SCI Speciality Products 201-002-003). The beads were slowly (to avoid 

void formations) loaded into a ~150 µL freshly prepared solution until the chamber was full 

(Fig. 4B). The electrolyte volume required to fill the chamber volume occupied by the 

spheres provided an estimated valued of β = 30 ± 2%.  

Because electrical conductance depends on the temperature it was also important to avoid 

temperature rises. This was achieved by using short 10 ms voltage steps, with 60 s resting 

periods: the solution temperature thus held at 23-24ºC. The short electrical pulse also 

minimises electrode polarisation, which might in principle lead to an accumulation of ionic 

species near the surface hence unwarranted chemical reactions. Special care was taken to 

avoid bubble formation and accumulation in the solution during electric pulses: tests were 

terminated upon detection of any microscopic bubbles (usually after several trials). To avoid 

such and further time-dependent concomitants of the pulse application, we used only the first 

3 ms of the pulse, and no more than five trials per cuvette.  

Data availability  

The datasets generated during and/or analysed during the current study are available from the 

corresponding authors upon request. 

Source code availability  

The datasets source codes used in the current study are available from the corresponding 

authors. 
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RESULTS 

Electrodiffusion in uniform 1D electric field  

We first asked to what extent geometric obstacles would affect ion movements along a 

narrow long cylinder (diameter << length), a basic case of 1D diffusion. We note that, 

although in this case the overall diffusion flux is 1D, on the scale compatible with cylinder 

diameter diffusion trajectories and obstacle geometries are essentially 3D. For the sake of 

simplicity, we set the free-medium diffusion coefficient at Dfree = 1 µm2/ms, which is typical 

for small ions in aqueous solutions, and the cylinder diameter at 0.1 µm, to roughly represent 

extra- or intracellular lumen of brain tissue. Zero-size diffusing particles were released in the 

cylinder centroid and allowed to move freely (Materials and Methods, Fig. 1A, Fig. S1A), 

with the cylinder walls providing a reflecting boundary. To mimic macromolecular 

hindrance, small spheres with an evenly distributed diameter over the 3-33 nm range, were 

scattered uniformly, with overlap, throughout the space (Materials and Methods). 

Overlapping spheres could sometimes form dead-ends for diffusing particles (Fig. S1B) 

reflecting non-convex geometries of real microscopic obstacles. The Monte-Carlo algorithm 

incorporating Brownian movement and electric field drift (Materials and Methods) 

stochastically directed the particle flow around obstacles, roughly following the field lines 

around dielectric spheres (Fig. S1C). Although our simulations adopted a uniform field 

throughout the space, and thus ignored its distortion near dielectric spheres, the comparison 

of limiting cases (uniform versus zero-field near spheres) indicated that the related diffusivity 

error was fairly negligible (~6% at the strongest field, Fig. S1D). We have also found that 

changing the non-overlapping to overlapping sphere pattern altered Dapp values only within 

~7% at β ~ 0.4, and within ~4% at β ~0.3 (Fig. S1E), thus projecting a smaller still effect at 

smaller β.  

Equipped with these settings, we sought to test fours scenarios, for β taking four values 

between 0-0.5, to reflect diffusion retardation on the nanoscale assessed with time-resolved 

fluorescence anisotropy imaging (9). The time-averaged apparent diffusion coefficient Dapp 

showed significant variability in the initial stages of the test, reflecting anomalous diffusion 

(Fig. 1B, zero-field), as discussed previously (32).  Reassuringly, in a free medium (β =0) 

Dapp was converging to Dfree (Fig. 1B, black dotted line; Fig. S1B). Simulations also showed 
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that Dapp decreased monotonously with greater β (Fig. 1B), consistent with earlier 

assessments of macroscopic diffusion in porous brain tissue (4, 33, 34).  

We next introduced uniform electric field that was collinear with the cylinder axis (Materials 

and Methods). To mimic the case of an ion channel current that generates voltage gradient for 

the current-carrying and other ions in the nearby lumen, we considered the outward field 

direction that would force particles away from the diffusion source (Fig. 1A, arrows). We 

explored a range of field strength E centred around E0 = 104 V/m, which roughly represents 

the field generated by a synaptic current carried mainly by Na+ ions towards the synaptic cleft 

centre at small excitatory synapses (Materials and Methods). The simulation outcome was 

somewhat unexpected. Introducing geometric hindrance retarded particle diffusion to a 

greater degree under electric field if compared with the zero-field scenario in the same setting 

(Fig. 1B and Fig. 1C). The effect depended monotonously on both E and β (single-run 

simulation examples in Fig. 1C-D, further detail in Fig. S2A-E).  

Repeating simulations runs 10 times with 2000 particles each, for each scenario, provided a 

robust summary (Fig. 1E and Fig. S2F), suggesting that in obstacle-filled media the 

relationship between field strength and ion transfer (current) is sub-linear. It appears therefore 

that the obstacles decelerate ion movement to a disproportionately greater degree in stronger 

fields. Reassuringly, in these simulations the Dapp / Dfree ratios representing diffusion 

diffusion permeability θ were, under E = 0, in good correspondence with the Maxwell's 

relationship for porous media (35)
2

3

α
α

=
−

free
app

D
D  where porosity 1α β= −  (Fig. 1E, open 

circles).  However, under E > 0, our data suggest that porous-medium electric resistance, or 

ion diffusion permeability, depends on the field strength, rather than on the medium 

properties alone, thus deviating from the Ohm's law.    

 

Electrodiffusion in radial 2D and 3D electric fields  

Molecular diffusion inside narrow 2D clefts with a local current point-source is a common 

scenario in the brain neuropil where inter-cellular signal exchange occurs in an electrolyte 

medium between the opposing cell membranes populated with ion channels. Our next test 

was therefore to release diffusing particles in the 20 nm wide (characteristic interstitial width) 
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flat cleft, with an accelerating radial field (Fig. 2A-B). For simplicity, field strength E was 

maintained uniform: we have previously shown that in the 2D synaptic cleft, with a spatially 

uniform distribution of postsynaptic channels, the field is closer to uniform than to the 

classical r-1 decay for radial field with cylindrical symmetry (r is the distance from the 

centre). Furthermore, when the diffusion distance of interest is much smaller than the 

distance from the field source, uniform field provides canonical linear approximation. An 

additional reason for keeping uniform E was to try and separate the effects of field geometry 

and field strength on diffusion permeability.  Other simulation parameters were similar to the 

1D case shown above (Fig. 1). Again, the simulation outcome suggested that the electric 

fields, while accelerating overall diffusion escape of charged molecules compared to the 

zero-field case, reduced medium diffusion permeability θ for ions, as reported by the 

decreased Dapp / Dfree ratios in stronger fields (Fig. 2C; Fig. S3).  

Finally, we explored a similar scenario in three dimensions. For the sake of generality, we 

expanded the simulation arena to 10 µm and increased the diameter of diffusion-hindering 

spheres to the range of 0.1-1 µm (uniformly distributed; snapshot in Fig. 2D, Fig. S4A) and 

time step ∆t = 0.1 µs. Similar to the cases considered above, here we found a clear, albeit less 

strong, reduction in the Dapp / Dfree ratios, hence diffusion permeability θ, either with stronger 

electric fields or with greater values of β (Fig. 2E, Fig. S4B-F).  

We note that in these simulations the actual dimensions are mainly for illustration purposes: 

the dependence between field strength and medium diffusion permeability remains 

unchanged when the arena geometry, diffusion coefficient, and electric field are scaled by the 

same time and space factor. Our data also suggest that the effect of field on medium diffusion 

permeability is progressively weaker under radial fields with higher dimensions, at least in 

the vicinity of the source, as modelled here (Fig. 3A), even when the field strength is kept the 

same throughout the space. As mentioned above, at large distances from the source one 

would expect the local field to be well approximated by the 1D case.  

 

Geometric obstacles and classical electrodiffusion theory  

It was important to assess how our MC simulation results are related to the classical Nernst-

Plank (NP) theory. First, for the sake of generality, we tested whether positioning the field 
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source near the diffusion source, or away from it produced the same time-averaged apparent 

diffusion coefficient in our settings. Control MC runs confirmed that this was the case: 

particles showed a characteristic wave-like scatter away from the field source, showing the 

convergence of Dapp for varied distance between the field and the diffusion sources (Fig. 3B).  

Next, we systematically compared the particle concentration profiles computed using MC 

simulations with those obtained using analytical solutions of the canonical NP equation 

(Equation 2) which could be written in the form: 

1 C e
C C

D t kT

∂  = ∇ ⋅ ∇ − ∂  
E          (3)  

where e is elementary unit charge, and k is the Boltzmann constant. For several cases of β > 0 

and E values, we thus calculated an analytical solution of the NP equation at certain time 

point (t = 100 µs), first for diffusivity DE=0 estimated by MC simulations under E = 0. This 

solution was compared with the analytical solution calculated for diffusivity Dapp estimated 

from MC simulations under the corresponding E > 0 value. These cases were also compared 

with the concentration profile obtained directly by MC simulations under the same 

conditions.  

As expected, in all cases under E > 0 the concentration profiles showed a characteristic wave 

that was spreading away from the diffusion source (Fig. 3C-F). Reassuringly, in a free 

medium (β = 0), MC simulations provided an excellent match with the analytical NP solution 

for a given E (Fig. 3C and 3E). In contrast, in an obstacle-filled medium (β > 0), the classical 

NP theory overestimated the effective diffusivity values, with the discrepancy increasing with 

stronger fields (Fig. 3D and 3F). In other words, the outcome of MC simulations could be 

satisfactorily described using the analytical NP theory, but with a diffusion coefficient 

corrected for the field-dependent transfer retardation.  

 

Physical testing of electrodiffusion in a porous medium 

To test our theoretical prediction that the ion conductance of porous media is field-dependent, 

we designed and implemented a simple physical experiment. We measured electrolyte 

currents between the opposite sides (flat parallel walls serving as electrodes) of a narrow 
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rectangular chamber filled with microscopic glass spheres (Fig. 4A-B; Methods), a design 

somewhat similar to that explored previously (36). The space fraction β occupied by the 

spheres was evaluated by monitoring electrolyte displacement in the chamber upon sphere 

filling, β = 0.30 ± 0.02.  We used 10 ms square voltage pulses over a range of voltages that 

would generate inside the chamber electric fields compatible with those in the brain tissue 

(Fig. 4C; Materials and Methods). The three solutions tested were water, NaCl (153 mM), 

and standard artificial cerebrospinal fluid (ACSF, Materials and Methods).  

As expected, these measurements showed monotonic, quasi-linear dependencies between 

voltage (electric field) and electrolyte current in either free-space or sphere-filled chambers 

(Fig. 5A; water provided control measurements). However, because physical properties of 

electrolytes could be affected by electric field, it was important to compare these 

measurements directly between free and obstacle-filled cases under the same field strength:  

the ratio between the corresponding current density values (porous-to-free) should represent θ 

= Dapp / Dfree. We thus found that θ decreased with greater strengths of the electric field, both 

for ACSF and NaCl solutions (Fig. 5B, data points). This dependence was similar to that 

obtained in MC simulations of 1D electrodiffusion for β values roughly between 0.3 and 0.4 

(Fig. 5B, dotted lines), which was a remarkable correspondence given that the volume 

fraction occupied by glass spheres in these experiments was β ~ 0.3. The slight shift of 

theoretical curves towards higher values of β (Fig. 5B) was likely because simulated spheres 

were allowed to overlap thus leading to somewhat higher space tortuosity. It appeared 

therefore that the electrical resistance of tested electrolytes in a porous space depended on the 

external electric field, in good correspondence with our theoretical predictions.   

 

Theoretical insight 

Given the unlimited variety of porous medium geometries, it would not seem feasible to 

generalise our findings as a fully-fledged electrodiffusion theory. However, we sought to 

explore the first principles, by considering geometric obstacles as barriers in the field 

potential profile that drives ion diffusion transfer. For one-dimensional diffusion (which is 

3D diffusion in a long narrow cylinder), the mean-square displacement of a free Brownian 

particle increases linearly with time t, 2x t∼ , plus an additional drift when electric field is 

present (Fig. 5C, i-ii; red lines illustrate potential profiles for stronger and weaker field). 
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When the diffusing particle encounters an obstacle or a trap, it takes additional time τ to 

escape it, so that particle displacement over time t is reduced to 2 ~x tα τ( )  where 0 < α(τ) < 

1. The obstacle-imposed additional dwell time τ depends on the characteristic height of the 

potential barrier (or trap) H (Fig. 5C, iii ). Generally, for diffusion under electric field 

(electrodiffusion), H scales with field strength E (Fig. 5C, iii ; red lines illustrate how the 

potential barrier scales with the field strength).  It has long been established that 1D 

stochastic diffusion in field E can be described by the canonical Dynkin's operator 

2

2

qDFE d d
D

RT dx dx
Ψ = +

 (p. 241 in (37)) in which the first and second terms define electric 

drift and free diffusion, respectively; R is the gas constant, T is the temperature, F is the 

Faraday constant. When field E is directed against particle's escape over a certain barrier, the 

mean exit (dwell) time τ is given by the boundary value problem 1τ−Ψ =  with the Dirichlet 

boundary condition.  This leads to the steady-state equation (38):  

2

2
( ) 1

τ τ∂ ∂+ = −
∂ ∂

qFE
D

x RT x
         (4) 

with the boundary conditions  

( 0) 0,  ( ) 0x x H
x

ττ ∂= = = =
∂

  

where x in this case denotes the initial particle's coordinate (between 0 and H). Its solution for 

τ is 

 
( )

2

(1 )
( )

( )

κ κ κ κτ
κ

− − +=
EH Ex EHe e e Ex

x
E D

        (5) 

where κ = RT/F.  For x = H (displacement to the edge of the barrier H), Eq. 5 becomes   

( )

2

1
( )

( )

κκτ
κ

−

−
− +=

EHEH e
H

E D
         (6) 

Eq. 6 thus describes the average barrier-imposed dwell time τ− (Fig. 5C, iii ). This time 

defines diffusion deceleration (time delay) when a particle faces an obstacle so that field E 

hinders its diffusion escape. In this case, particle displacement is reduced compared to free 

diffusion. On the same space-time scale, when the particle is behind the trap in the direction 
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of E, or otherwise if the field is reversed (to -E), it gains an additional drift along E, because 

any stochastic movement in the opposite direction is prevented by the barrier (Fig. 5C, iv). 

This increase in drift, when compared to free-medium diffusion, translates into time gain:  

( )

2

1
( )

( )

κκτ
κ+

− − +=
EHEH e

H
E D

         (7) 

Then, relative medium conductivity estimate θ under field E could be estimated by the 

expression 

( )

0 0 ( )

( ) 1
( )

( ) 1

κτ κθ θ θ
τ κ

−
−

+

− += =
− − +

EH

kEH

H EH e
H

H EH e
       (8) 

where θ0 is the relative medium conductance (porous versus obstacle-free) under zero-field 

(E = 0).  In our experimental settings (Fig. 4), the θ0 value is estimated between 0.4 and 0.5 

(Fig. 5B), so that Eq. 8 has one free parameter H. It turns out that, with the H values set 

between 5 and 10 µm, Eq. 8 provides a reasonably close prediction of the experimental 

dependence between relative conductivity θ and field strength (Fig. 5D).  

What could be the meaning of H values in our experimental test (Fig. 4)? Several studies 

suggest that the space tortuosity for a sphere-packed medium with β = 0.3-0.4 ranges between 

1.3-1.5 (39-41). This implies a 30-50% increase in the particle's diffusing path compared to 

an obstacle-free medium. With the characteristic sphere radius in our tests of ~15 µm (Fig. 

4C), this increase corresponds to ~5-7 µm additional path per obstacle, which falls within the 

range of 'best-fit' H values of 5 and 10 µm. Whether Eq. 8, and the meaning of H, hold in 

more general cases remains an open and intriguing question.  

 

 

DISCUSSION  

The main finding of the present study is that diffusion permeability of porous (obstacle-filled) 

media for charged particles could depend on the macroscopic electric field. MC simulations 

predicted that the apparent diffusion coefficient, or electrical conductivity, in such media 

decreases with stronger electric fields which otherwise accelerate diffusion transfer. This 
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dependence is enhanced with increased geometric hindrance, or decreased porosity. Our data 

also suggest that the additional diffusion hindrance due to the electric field effect is weaker in 

radial compared to uniform field, even when the field strength remains the same throughout 

the space. The latter observation might help explain conclusions of an earlier study (42), in 

which geometric considerations suggested a longer diffusion path for '1D diffusion' compared 

to point-source diffusion in 2D or 3D: in fact, these conclusions should have referred to ion 

diffusion in a strong uniform (1D) field compared to radial fields. One could also consider a 

limiting case when the electric field drift dwarfs any stochastic Brownian effects: in that case, 

space dead-ends in the porous media (4, 43, 44) could entirely prevent particle transfer.  

 

Modelling electrodiffusion 

The MC algorithms for diffusion and electrodiffusion employed here have previously been 

tested and validated systematically against experimental recordings, including sub-

millisecond fast-exchange receptor probing in outside-out and nucleated (whole-cell) 

membrane patches (25, 26). In the present study, we compared the MC simulation outcome 

with the analytical solutions of the Nernst-Planck equation, in several key settings, and found 

good correspondence. Throughout our analyses, we assumed no interactions between 

diffusing particles and the spherical obstacles, such as any electrostatic or electroosmotic 

influence: we tried to focus on the case of small ions diffusing, on the microscopic scale, in 

the weak (fully-dissociated) electrolyte filled with macromolecules and other inert 

nanoscopic obstacles. This may not necessarily be the case when particles diffuse in 

sufficiently narrow clefts between charged surfaces, which may give rise to further 

interference with their transfer (20, 22). In this context, our MC algorithms enabled diffusing 

particles to navigate individual obstacles, roughly in correspondence with the distortions of 

electric field near the surface of dielectric (low permittivity) spheres. Whilst it would be 

important to have a more rigorous assessment of particle behaviour in the vicinity of 

obstacles, the particle concentration profiles generated by our MC simulations appeared in 

good agreement with the Nernst-Planck solutions incorporating the apparent diffusion 

coefficient.  

We tested our theoretical predictions using a simple physical experiment in which the 

relationship between electric current and external field was measured in controlled conditions 
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involving glass sphere-filled electrolyte solutions. The electrolyte strength was sufficiently 

low (much below 0.2 M) to assume free ion mobility (full dissociation) without ion-ion 

interactions whereas and the porosity value was high enough (~0.7) to ignore electrostatic 

interactions with the sphere walls. The shape and the material of obstacles can also affect 

interpretation of the results. In our tests, soda glass microbeads were selected for the several 

reasons. First, we aimed to match the geometry (if not size) of obstacles in our MC 

simulations. Second, solid glass material has high crush strength which makes it suitable for 

high-density packing. Third, soda glass helped to avoid polarisation effects in the spheres if 

compared with other materials like polystyrene or coated metals. Although the experiment 

did not replicate the dimensions of the MC simulation settings, we considered it suitable 

enough to address the underlying principle. In addition, our control MC simulations 

suggested that having either overlapping spheres (as we did throughout our tests) or non-

overlapping spheres (in the experiment) had indistinguishably similar effects on the apparent 

diffusion coefficient, at least for β < 0.5.  

 

Potential implications for electrophysiology 

Across the areas of biology (and other sciences), porous media come with highly variable 

geometries and electrodiffusion scenarios. This makes it difficult to suggest a generalised 

theory, although significant progress has been made in the description of ion flows in media 

consisting of tightly packed obstacles separated by narrow pores (such as porous rocks, 

sediments, ceramics, etc.) (20, 21). Recently, an elegant study has introduced a Kirchhoff-

Nernst-Planck formulism, in order to model macroscopic electrodiffusion in the interstitial 

space surrounding nerve cells (22). On the nanoscale in the brain, a better understanding of 

electrodiffusion phenomena is beginning to emerge (23, 45), reflecting a present gap in our 

knowledge (2, 46). In this context, much less attention has been paid to the potential 

influence of electric fields on the conductive properties of obstacle-filled electrolytes in 

biological tissues. The potential importance of this issue stems from the clear dependence 

between extracellular ion current (both diffusive and resistive components) and the external 

field frequency in brain tissue (15, 17). Such non-ohmic properties of the brain extracellular 

medium can be related to the local structural inhomogeneities, so that the time scale of 

changes in the field strength and/or direction affects local ion flow differently, depending on 
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the size of local obstacles (16). This appears consistent, in principle, with our present 

conclusions that relate field strength (and β) to medium diffusion permeability.  

One potentially important consequence of having local non-ohmic properties of the brain 

tissue is the quantitative interpretation of electrocorticography of field-potential recordings. 

Such recordings reflect the strength, spatial distribution, and preferred orientation of local 

current sources and sinks inside the tissue volume conductor: estimating these parameters 

from the (multi-point) field-potential readout constitutes the classical inverse problem of 

brain electrophysiology (18). Introducing non-ohmic tissue properties that might arise from 

our present findings might therefore lead to somewhat differing estimates pertaining to the 

arrangement and strength of active current sources across the frequency spectrum (16, 18). 

This could in turn affect our understanding of electrical neural network activity based on the 

current-source reconstruction from electrophysiological recordings. 

Here, we have attempted a first-principle theoretical treatment in which geometrical obstacles 

are considered potential barriers in the homogenous electric field. It appears that, under 

plausible assumptions, and within the tested range of experimental parameters, the theory 

provides a reasonable prediction of the dependence between electric field strength and 

relative reduction in conductivity observed experimentally. Clearly, further tests should 

answer the question how general these theoretical findings are.  
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FIGURE LEGEND 

Figure 1.  Ion diffusion permeability of obstacle-filled media in uniform electric field 
depends on field strength.  

(A)  MC simulations: snapshot of the scatter of diffusing particles (blue dots) in a 0.1 µm 
wide - 10 µm long cylinder (fragment; two different scales as shown; actual simulation data 
rendered by OriginPro), at 0.1 ms post-release from the centroid (dotted line), with β = 0.2 
volume fraction occupied by obstacles (yellow spheres, 3-33 nm diameter), and electric field 
strength E = 0; blue arrows, field direction.  

(B) Example of a MC simulation run: time course of apparent diffusivity Dapp (along the 
cylinder as in A) for different values of β as indicated.  

(C) Example of a MC simulation run: time course of diffusion permeability θ = Dapp / Dfree, 
under electric field E = E0 (104 V/m), over the range of β values as shown; see Materials and 
Methods for model parameters.  

(D) Example of a MC simulation run: time course of θ for a medium with for β = 0.5, over 
the range of E as indicated.  

(E) Statistical summary of simulation experiments depicted in B-D (additional examples of 
individual MC runs are shown in Fig. S2); dots ± error bars, diffusion permeability θ = Dapp / 
Dfree (mean ± s.e.m.) values for n = 10 runs completed for each set of β and E values, as 
indicated; the overall effect of either factor E (four levels) or β (four levels) on θ is at p < 
0.001, two-way ANOVA (FE = 79.0, Fβ = 1366).      

 

 

Figure 2. Ion diffusion permeability of obstacle-filled media in radial electric fields.. 

(A)  Simulation example: a scatter of diffusing particles (blue dots) in a 20 nm flat cleft 
extending 6 µm wide (fragment; two different scales as shown; actual simulation data 
rendered by OriginPro); snapshot at 0.1 ms post-release at the central point (dotted line), with 
β = 0.2 and E = 0; blue arrows, radial field.  

(B) Snapshots of single-particle particle trajectories at three time points, as indicated, with β 
= 0 (red) and β = 0.2 (black), under no field (E = 0); blue dot, diffusion starting point.   

(C) Statistical summary of simulations in A-B (examples of individual MC runs are shown in 
Fig. S3); dots, diffusion permeability θ = Dapp / Dfree (mean ± s.e.m.) values for n = 10 runs 
completed for each set of β and E values, as indicated; the overall effect of either factor E 
(four levels) or β (four levels) on θ is at p < 0.001, two-way ANOVA (FE = 45.3, Fβ = 906).     

(D)  Simulation example: a scatter of diffusing particles (blue dots) in a three-dimensional 
space (fragment; actual simulation data rendered by OriginPro); snapshot at 0.1 ms post-
release at the central point (dotted line), with β = 0.2 of space occupied by spherical obstacles 
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(yellow spheres), electric field strength E = 0; radial electric field is centred at the co-ordinate 
origin.  

(E) Statistical summary of simulation experiments depicted in C (examples of individual MC 
runs are shown in Fig. S3); the overall effect of either factor E (four levels) or β (four levels) 
on θ is at p < 0.001, two-way ANOVA (FE = 24.4, Fβ = 31.3); other notation as in C.   

 

Figure 3. Classical electrodiffusion theory may overestimate apparent diffusivity when 
applied to a porous medium.   

(A) A summary of MC simulations (as in Figs. 1-2) showing the dependence between field 
strength and diffusion permeability θ = Dapp / Dfree (normalised to the value at E = 0), for two 
β values, in 1D uniform, and 2D and 3D radial electric fields, as indicated. The strongest 
dependence corresponds to 1D filed at the higher β.  

(B) Image panel: illustration of a MC test in which diffusing particles are released either at 
the field source (open circle, blue arrow, blue dots) or at a distance of 200 nm from it (red 
arrow, red dots), under E = E0 (104 V/m); a snapshot 100 µs post-release. Graph: tests 
showing the time course of Dapp / Dfree values for particle cohorts released at different 
distances from the field source, as indicated, in condition as above.  

(C) Black line, analytical solution of the NP equation showing a particle concentration profile 
(normalised to maximum) against distance to the diffusion source for 2D radial field with no 
obstacles (β = 0, D = Dfree), under E = E0, at time point t = 0.1 ms; red, outcome of MC 
simulations in similar conditions.  

(D)  Similar to C, but with β = 0.5; blue, analytical solution of the NP equation in which 
apparent diffusivity DE=0 is derived by MC simulations for E = 0 (β = 0.5); black, a similar 
solution but with Dapp calculated from MC simulations incorporating electric field E = E0 (as 
in Fig. 2C graph, for E = 1 x E0, β = 0.5); red, outcome of MC simulations, as indicated.    

(E) Similar to C, but for 3D radial field with β = 0.2 and E = 5E0, as indicated. Other 
notations are as in C.  

(F) Similar to D, but for 3D radial field with β = 0.2 and E = 5E0. Other notations as in D; 
blue, analytical solution of the NP equation in which DE=0 is derived by MC simulations for E 
= 0 (β = 0.2); black, a similar solution but with Dapp derived by MC simulations under E = 
5E0 (as in Fig. 2E data point at E = 1 x 5E0, β = 0.2).   

 

Figure 4. Experimental testing of obstacle-filled medium conductivity under varied electric 
fields.  

(A) Experiment schematic. The test solution, with or without glass beads, is placed in a 
cuvette equipped with flat side electrodes (Methods). Controlled application of ∆V voltage 
steps to the electrodes induces electric current measured digitally, as depicted.  
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(B) Electrolyte solution (NaCl) filled with densely packed microscopic glass beads, shown in 
transmitted light (800 nm) at the top layer (left; scale bar 50 µm), and as fluorescent image 
(right; solution containing Alexa Fluor 488, two-photon excitation 800 nm; scale bar 20 µm).  

(C)  Time course of voltage pulse application (an example, top), and the current response in a 
fee-medium (middle) and sphere-filled NaCl solution (bottom). Grey shade, sampled 
response area (first 3 ms after the pulse artefact). 

 

Figure 5. Electric conductivity of porous tissue decreases with stronger electric fields.    

(A) Recorded current density plotted against electric field in ACSF and NaCl solutions, with 
and without densely packed microscopic glass beads (as in Fig. 4), as indicated; control 
recordings with deionised water shown. 

(B) Relative porous-medium condictivity (ratio between porous- and free-medium 
conductivity values) for ACSF and NaCl electrolytes, plotted against electric field. Dotted 
lines, theoretical dependencies calculated for ions diffusing in 1D uniform electric field (as in 
Fig. 1), for β = 0.4 and β = 0.3 (experimental value in Fig. 4 tests), as indicated.  

(C) Schematic illustrating (not to scale) a theoretical approach (Equations 4-8); blue shade, 
probability density for particle occurrence (dot, starting point) under no electric field (i), 
under uniform field E (ii ; dotted arrow, average drift), facing the barrier of radius H (iii ; τ−, 
maximum dwell time 'lost' to navigate the barrier), and behind the barrier (iv; green dotted 
arrow, no-obstacle particle drift, as in ii ; black arrow, average drift increased because of the 
'gained' time  τ+); red lines illustrate profiles of field potential V(x) in 1D space, for weaker 
(E1) and stronger (E2) fields, with orange dots representing particles facing (iii ) or past (iv) 
the potential barrier.        

(D) Experimental data as in B, but with the theoretical dependencies (dashed and dotted-
dashed lines) calculated from the analytical solution (Eq. 8), for several values of H and θ0, as 
indicated.   
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Figure 3 
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Figure 4 
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Figure 5 
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