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ABSTRACT

This thesis analyses the behaviour of traders in financial markets with various struc-

ture of traders, and presents how their actions are affected by uncertainty and informa-

tion asymmetry. In Chapter 2, a sequential trading model with ambiguity aversion is

studied. Traders with and without ambiguity trade an asset in sequence with a market

maker updating the expected value of the asset according to a history of actions and

their private signal. Ambiguity is only assumed on the precision of the private signal of

traders about the value of the asset. The ambiguity averse traders update the set of pre-

cision with the recursive multiple prior preference, while the traders without ambiguity

and the market maker update the distribution of the precision from uniform distribution

as a prior. We find that the behaviour of the ambiguity averse traders differs depending

on their updating rule on the set of precision. With the Full Bayesian Updating, herding

or contrarian behaviour never occurs while the traders choose no trade in equilibrium

even with the informative private signal asymptotically. With the Maximum Likelihood

Updating, herding can happen, while no trade is less likely to be chosen by the traders

in equilibrium, and they tend to act following their private signals like traders without

ambiguity as trade goes on in the limit.

In Chapter 3, a sequential trading model is introduced to estimate ambiguity aver-

sion in the financial market. As with the model in Chapter 2, it has traders with and

without ambiguity and they trade an asset with a market maker in sequence. Also, the

ambiguity is only on the precision of the private signal received by the traders, and the

ambiguity averse traders have recursive multiple prior preference. In addition to that,

there is an event uncertainty and the private signal of the traders is continuous. In the

model, traders choose not to trade with any signal, or show herding or contrarian be-

haviour depending on their updating rule on the set of priors about the precision. We

estimate the model with trading data on NYSE stocks. The estimation result shows that
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strict reevaluation generates more herding or contrarian, while loose reevaluation brings

no buying or selling more likely.

In Chapter 4, we consider a sequential trading market with potential manipulator.

As in the previous chapters, traders exchange an asset with a market maker. In the

market, there are three types of traders: noise traders, informed traders and a potential

manipulator. The manipulator receives private information on the asset value like other

informed traders, but she has the opportunity to trade twice in a trading day, while the

other traders trade only once. We show that, under some conditions, the manipulator

does not follow her signal in the first period of action in equilibrium. Instead, she trades

against her signal, suffering a loss to distort the expectation of other rational traders and

the market maker. The price path is manipulated with the distortion. The manipulator

then re-enters the market and makes profits by trading with the price. In this process,

the uncertainty is essential as it generates a gap in expectation between the informed

traders and the market maker and enables the distortion.
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IMPACT STATEMENT

This thesis explores the behaviour of traders in financial markets focusing on the

uncertainty and asymmetric information. In Chapter 2 and 3, interesting behaviours

such as herding, contrarian or choosing no trade are explained by augmenting ambi-

guity aversion on traders in the market. Ambiguity aversion is mostly used to explain

limited participation in literature. Based on the result of the thesis, ambiguity aversion

can also be considered as a possible factor to explain the behaviour of herding and con-

trarian. The method used to analyse the ambiguity aversion in dynamic setting also

can be applied in other areas that are related with agents’ decision making based on

information asymmetry such as labour market and industrial organisation.

The main idea of the market manipulation in Chapter 4 is that with an event un-

certainty, the manipulator has an incentive to distort the beliefs of others even with an

initial loss. It also can be applied in various settings with uncertainty to analyse strategic

actions of agents.

Outside of academia, the thesis has a potential to affect financial market partici-

pants and policy makers. The model with ambiguity aversion explains how the two

extreme behaviours of herding and abstaining from trade are generated from the choice

of ambiguity averse traders in equilibrium. It brings an insight for the financial mar-

ket participants to understand the behaviours of traders which are often thought to be

irrational, and how to interpret their actions as a meaningful information. Also, it will

help policy makers to contain market volatility by refining information structure in the

market.

Chapter 4 focuses on the market manipulation in relation with event uncertainty

of the market and precision of the private signal. It would help financial regulators to

devise policies on restricting market manipulation not only by imposing punishment

after it happened, but also by restricting the incentive of manipulation in advance.
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Chapter 1

Introduction

In financial markets, traders show intriguing behaviour such as herding, contrarian or

abstaining from trading. Also, we can observe the traders who tries to get profits by

manipulating the beliefs of others using uncertainty and information asymmetry. This

thesis explores the behaviour of traders in sequential trading markets with private in-

formation focusing on the uncertainty and information asymmetry and how these are

interpreted by the agents in the market. In Chapter 2 and 3, models including traders

with ambiguity aversion are presented and the behaviour of the traders are analysed

under information asymmetry, and Chapter 4 shows a model with a manipulator who

distorts the price of an asset by her action and achieves a profit from it using the event

uncertainty and information asymmetry.

Chapter 2 introduces a sequential trading model with ambiguity aversion. In the

model only with informed and noise traders, the traders act just following their signal.

When the ambiguity averse traders with recursive multiple prior preference are included

in the market, the traders can choose no trade or show herding or contrarian behaviour

in equilibrium. The ambiguity averse traders can choose no trade in equilibrium since

they consider the worst case payoff with a large set of ambiguous parameter using

the updating rule such as the Full Bayesian Updating. Also, if the ambiguity averse

traders update the set of ambiguous parameter strictly using the updating rule such as

the Maximum Likelihood Updating, herding or contrarian behaviour can happen. It is

caused by the gap between the precision taken into account by the ambiguity averse
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traders and the market maker. If all the informed traders in the market are ambiguity

averse traders, information cascade can occur with those behaviour in equilibrium.

In Chapter 3, financial market data are estimated by the sequential trading model

with ambiguity averse traders. The model is extended from that of Chapter 2 with event

uncertainty and continuous signal. It is shown that choosing no trade, or herding or

contrarian behaviours also can happen in equilibrium with the extended model. Cap-

turing these behaviours, the share of ambiguity averse traders in the market and their

way of updating on the set of the ambiguous parameter are estimated by trading data of

NYSE, such as Ashland Inc. and Capital One Financial Corp. The estimation results

show that strict updating of the traders with high re-evaluation parameter in the market

of Ashland Inc. generates more herding or contrarian, while loose updating of traders

in the market of Capital One Financial Corp. makes the traders choose no trade in the

equilibrium more likely.

The final chapter of this thesis considers a sequential trading financial market with

a manipulator. Similarly to other informed traders, the manipulator receives private

information on the asset value. However, she has an opportunity to trade twice in a

trading day, whereas other traders trade only once. We show that the manipulator can

achieve higher profit by going against her signal in the initial action rather than follow-

ing the signal. By acting against her signal in the initial period, she can manipulate the

other rational traders and the price path. When the manipulator enters the market in the

second period, she can make profit from the manipulated price. It is also shown that

the manipulation cannot be more profitable than the action following her signal without

event uncertainty.
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Chapter 2

Ambiguity Averse Traders in Sequential Trading Model

2.1 Introduction

Economic agents’ behaviour under ambiguity aversion is studied in many different set-

tings after Ellsberg (1961). Especially in finance literature, the behaviour such as ’lim-

ited participation’ has been a focus of interest since the ambiguity averse agents avoid

to be in a situation with ambiguity by taking part in investments. In this research, a

model is introduced to explain not only the behaviour of limited participation but also

the concentrated participation such as herding or contrarian with ambiguity aversion.

In the model, traders with and without ambiguity trade an asset with a market maker

in sequence. Ambiguity is only assumed in the precision of the private signal the in-

formed traders receive, and only the ambiguity averse traders perceives the ambiguity.

Ambiguity aversion is implemented by ’the recursive multiple prior’ preference fol-

lowing Epstein and Schneider (2007). The preference is based on the multiple prior

preference by Gilboa and Schmeidler (1989), which is also known as ’maxmin’ prefer-

ence, and recursive re-evaluation for the set of ambiguity parameter is augmented on it.

With the preference, the agents with ambiguity aversion consider the worst case payoff

from the set of ambiguous parameter. As the market maker does not have ambiguity,

there could happen a situation that the expected value of the ambiguity averse trader

with a good (bad) signal is lower (higher) than the ask (bid) price. It makes the traders

abstain from trading in equilibrium even though they have an informative private signal.
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It corresponds with limited participation in literature.

The the recursive multiple prior preference also enables herding or contrarian be-

haviour for the ambiguity averse traders in the model. Those are seemingly the opposite

behaviour to limited participation, because it is buying or selling whatever the private

signal is. Herding or contrarian occurs when the expected asset value of the traders with

a bad (good) signal is higher (lower) than the ask (bid) price. It is caused by the gap

between the precision used by the market maker and the ambiguity averse traders. With

the recursive multiple prior preference, the set of precision levels considered by the am-

biguity averse traders is updated, which is called ’re-evaluation’ following Epstein and

Schneider (2007). As the set is re-evaluated after history of actions, it could happen that

the precision considered by the market maker is out of the updated set by the ambiguity

averse traders, and herding or contrarian occurs.

The possibility of choosing no trade in equilibrium and herding or contrarian be-

haviour changes depending on the updating rule of the set of priors of the ambiguous pa-

rameter. With the Full Bayesian Updating, which is one extreme way of re-evaluating,

the set of priors is sustained as the whole domain of the precision parameter, so the

traders are more likely to choose no trade in equilibrium and herding or contrarian is

impossible to happen. With other updating rules such as Maximum Likelihood Up-

dating, the set shrinks compared to the Full Bayesian Updating. Hence, herding or

contrarian can occur and the traders choose no trade with lower probability.

In addition, there is possibility of informational cascade in the model. Informational

cascade is a situation in which agents do not learn from market outcomes in social

learning literature. If all the informed traders in the market are ambiguity averse, there

could be a situation that the traders choose no trade regardless of their signal, or herding

or contrarian behaviour occurs. In those cases, the action of the trader does not reveal

any information to the market. Therefore, there is no informational gain after the action,

which is informational cascade.

This research is related with literature that study ’limited participation’ or ’portfo-
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lio inertia’ of the agents with ambiguity aversion. Dow and Werlang (1992) presents

the non-participation of traders caused by ambiguity aversion using maxmin prefer-

ence. Epstein and Wang (1994) points out the portfolio inertia for general form of

portfolio with multiple assets. In empirical research, Campanale (2009) shows limited

participation in life-cycle portfolio allocation. Also, Bossaerts et al. (2010) presents the

behaviour of trader not to hold ambiguous asset in experiments.

The other strand of literature is on herding and contrarian behaviour. The seminal

papers of Banerjee (2004), Bikhchandani et al. (1992) and Welch (1992) started to ex-

plore the theoretical research on herd behaviour and informational cascade in an abstract

environment. In their research, it is shown that agents follow the predecessors’ action

regardless of their private information. The phenomenon is studied in financial market

model with sequential trading developed by Glosten and Milgrom (1985). Agents in

this type of model decide their action based on the updated beliefs on the state variable.

The sequential trading model has an advantage of analysing the behaviour of traders,

since it explicitly brings the equilibrium action of traders, which is one of ’buy’, ’sell’ or

’no trade’. Using these types of models, research such as Avery and Zemsky (1998) and

Cipriani and Guarino (2008) show the herding and contrarian behaviour of the traders

focused on uncertainty. Also, Dong et al. (2010), Ford et al. (2013) and Boortz (2016)

demonstrated those behaviours using ambiguity aversion as a factor to generate them.

The difference of this research from those considering ambiguity aversion is that the

recursive multiple prior preference is assumed for the ambiguity averse traders rather

than Choquet preferences. Choquet preference enables analytic explanation for the be-

haviour compared to the recursive multiple prior preference. With the recursive multiple

prior preference, however, the channel to incur herding or contrarian is explained more

explicitly.

This research also shares interest on market participation with other literature. Allen

and Gale (1994), Williamson (1994) and Veldkamp (2006) explain that externality of

participation generates changes in the agents’ participation decision in the financial
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market. If there is more participation, the agents get external benefits from it, so they

would like to participate more. These effects depend on transaction cost or information

cost. In this research, the difference in the precision of signal considered by the agents

causes changes in participation. If the precision considered by the market maker is

within the set of ambiguity averse traders, the traders are not likely to participate; if not,

they may participate and sometimes even show herd or contrarian behaviour. In this

process, re-evaluation parameter is one of the key factors to govern it.

The paper is organised as follows. After introduction, Section 2 describes the se-

quential trading model with ambiguity averse traders, and Section 3 presents the be-

haviour of traders of the model in equilibrium depending on their re-evaluation rule. In

Section 4, informational cascade is discussed. Section 5 concludes.

2.2 Model

The model is based on two state Glosten and Milgrom (1985) model with a binary

signal.

The market - A sequence of traders trade an asset interacting with a market maker

who sets ask and bid prices. At each time t = 1, 2, 3 · · · , a trader is randomly assigned

to trade, and she decides whether to buy, sell or not to trade one unit of asset. The action

space is, therefore,A = {buy, sell, no trade}. The action of a trader at time t is denoted

by Xt

The asset - The fundamental value of the asset, V , can be either 1 or 0. It is randomly

decided before the beginning of the market and it does not change till the end. True

value V is unknown to every agent but has a prior distribution of Pr(V = 1) = δ as a

common knowledge.

The market maker - The market maker sets ask and bid prices at each time taking

into account buy or sell action of traders who might have private information. Zero

expected profit for the market maker is assumed due to potential competition. The ask
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price at time t is denoted by at, and the bid price by bt.

at = E(V |Xt = buy, ht, at, bt) (2.1)

bt = E(V |Xt = sell, ht, at, bt) (2.2)

Note that the ask and bid price are equilibrium products as the strategy of traders is

assumed to compute those. at and bt in condition are omitted for notational simplicity

afterwards.

The information the market maker has is history of actions {ht} and price quotes

{at, bt}. The market maker is rational and update her belief by Bayesian updating. She

does not have ambiguity on the precision of the private signal, although she is not aware

of the true precision exactly. The meaning of having ambiguity or not will be discussed

in more detail below.

The traders - One trader out of countable number of traders is exogenously assigned

to act at time t. Each trader is chosen only once. The traders are categorised by two

groups: Informed and noise traders with share of µ and 1 − µ respectively with µ ∈

(0, 1). Informed traders are those who get a private signal St. Each informed trader

receives one signal St ∈ {0, 1} about the value of the asset with precision q, Pr(St =

1|V = 1) = Pr(St = 0|V = 0) = q. The traders do not know the true precision of

the signal which is qT , but they know about the domain of q, Q0 = {q : q ≤ q ≤ q̄},

which is a set of possible level of q. It is common knowledge and 0.5 < q < q < 1.

The noise traders choose their action randomly by the probability of ε/2, ε/2 and 1− ε

respectively to buy, sell or not to trade with 0 < ε < 1.

The informed traders are divided into two groups again. γ share of informed traders

who do not have ambiguity in the precision of private signal, and the other 1 − γ who

have ambiguity and aversion in it, where γ ∈ [0, 1]. In this research ambiguity is only

assumed to be on the precision of the private signal q. The agents without ambiguity
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such as informed traders without ambiguity and the market maker also do not know

the true level of q. They, however, have proper prior distribution for q to be updated

after looking at the history of actions. The prior distribution of q for the agents without

ambiguity is assumed to be uniform distribution on Q0, and it is updated by Bayes

updating after trades.

The traders without ambiguity choose their action based on their expectation on

payoff. The payoff function is defined as

U(V,Xt, at, bt) =



V − at if Xt = buy

0 if Xt = no trade

bt − V if Xt = sell

Xt is decided to maximize E(U(V,Xt, at, bt)|St, ht). Thus, the informed traders buy

when E(V |St, ht) > at, sell when E(V |St, ht) < bt, and do not trade otherwise.

Ambiguity averse traders, on the other hand, have the recursive multiple prior pref-

erence following Epstein and Schneider (2007). It is based on multiple prior preference

(also known as ’maxmin’ preference) by Gilboa and Schmeidler (1989) and Epstein

and Wang (1994) with the feature of re-evaluation on the set of parameters to consider.

They have a set of priors on the signal precision to re-evaluate at each time t and their

action is decided based on the re-evaluated set. The set of priors is assumed to be the

domain of the ambiguity parameter Q0, and Qt is the re-evaluated set at each time t.

The process of re-evaluation will be explained in the next section.

The payoff function of the ambiguity averse traders is same as those without ambi-

guity, but the conditional expectation of the payoff is different because of the ambiguity.

Since the agents are averse on ambiguity, they consider the worst case payoff among the

elements in the set of ambiguous parameter when they choose their action. It makes the

conditional expectation to be minq∈Qt E(U(V,Xt, at, bt)|St, q, ht). Hence, the action of

20



the ambiguity averse traders choose is as follows.

max
{buy,no trade,sell}

[min
q∈Qt
{E(V |St, q, ht)− at}, 0, min

q∈Qt
{bt − E(V |St, q, ht)}]

= max
{buy,no trade,sell}

[min
q∈Qt
{E(V |St, q, ht)} − at, 0, bt −max

q∈Qt
{E(V |St, q, ht)}] (2.3)

The ambiguity averse traders buy if minq∈Qt E(V |St, q, ht) is higher than the ask price,

and sell if maxq∈Qt E(V |St, q, ht) is lower than the bid. They do not trade otherwise.

2.2.1 Re-evaluating the set of priors of ambiguity averse traders

According to equation (2.3), the maximum or minimum value of the expected value

V is constrained by the set of ambiguous parameter q, which is Qt. Therefore, Qt is

important for the decision of the ambiguity averse traders.

Since the traders with ambiguity have the set Q0 as their prior, it is impossible for

them to derive a proper distribution on q to be integrated like those without ambiguity.

They, however, can re-evaluate1 the set. It is updating the the set of q to be considered

in their decision by eliminating less probable values after observing the history of ac-

tions. Following Epstein and Schneider (2007), the re-evaluation is assumed to take the

likelihood ratio form as in following equation.

Qt = {q :
Pr(ht|q)

maxq̂∈Q0 Pr(ht|q̂)
≥ ρ, q ∈ Q0} (2.4)

The parameter ρ, which is 0 ≤ ρ ≤ 1, governs how strictly the agents re-evaluate the

set to consider when they make decision. At time t, the set Qt includes the q in Q0

that makes the likelihood of the history ht to be higher than the maximum likelihood

multiplied by ρ. If the level of ρ is low, the threshold for the likelihood becomes low

andQt is large as a larger set of q satisfy the condition; if ρ is high, the threshold is high

and the Qt becomes small.

To understand how the re-evaluation works, let us consider the extreme cases first.
1The terminology of re-evaluating environment is from Epstein and Schneider (2007).
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When ρ = 0, the set Qt includes all the possible q in its domain as the likelihood of

the history is larger than zero for any q. Hence, Qt is constant at Q0 for any t. It is

the loosest re-evaluation of the traders, and the largest set Qt. It is the Full Bayesian

Updating (FBU) in Gilboa and Marinacci (2011) and De Filippis et al. (2017). The

traders update the expected value of the asset prior by prior in the whole set of priors

Q0 and decide their action based on the maxmin preference.

The strictest case is when ρ = 1. The set Qt only includes the q that makes the

likelihood of the history to be maximum, Qt = {q : arg maxq∈Q0 Pr(ht|q)}. The size

of the set is the smallest than any other ρ as Qt becomes singleton after a history of

actions. When the set Qt becomes singleton, the ambiguity disappears and the traders

do not need to choose the level q which minimize the payoff. It is like the traders are

using the Maximum Likelihood Updating (MLU) in Gilboa and Marinacci (2011) and

De Filippis et al. (2017).

In the case that ρ is in between zero and one, the re-evaluation process can be inter-

preted like maximum likelihood ratio test, as it follows the form of the test. The critical

value of χ2(1) distribution is −2 log ρ for rejecting the hypothesis q = q̂. It means that

the traders are excluding the level of q out of the confidence interval fromQ0 under the

certain significance level determined by ρ. For example, when ρ is 0.26, the significance

level for choosing set Qt is 10%. The level of q that has probability less than 10% to

generate the history ht are excluded from Q0 at each time t. Also, if ρ = 0.79, the q

that makes the probability of the history ht less than 50% are excluded at each time t.

The size of the set Qt is larger for ρ = 0.26 than ρ = 0.79.

2.3 Behaviour of Traders in Equilibrium

The equilibrium concept used here is Perfect Bayesian equilibrium. The equilibrium

is defined as the prices {at, bt}, and the optimal action of traders such that (i) the in-

formed traders without ambiguity maximizes E(U(V,Xt, at, bt)|St, ht), (ii) the traders

with ambiguity aversion maximizes their expected utility following equation (2.3), (iii)
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the market maker sets the ask and the bid price following equation (2.1) and (2.2), and

(iv) the beliefs of the agents on the market structure and the optimal action of the traders

are correct in equilibrium .

Let us look at the behaviour of the informed traders without ambiguity first.

Proposition 1. In equilibrium, the informed traders without ambiguity buy with a good

signal and sell with a bad signal at any period t.

The formal proofs for proposition 1 to 7 are in the appendix. The traders without

ambiguity always trade following their signal as the expected asset value with a good

signal(St = 1) is higher than the ask price and that with a bad signal(St = 1) is lower

than the bid price even though there exist ambiguity averse traders in the market.

The behaviour of the traders with ambiguity aversion, however, can be different

from that of the traders without ambiguity. The other behaviour to be considered is

choosing no trade even with an informative signal or buying or selling regardless of

their signals, which is herd or contrarian behaviour. To analyse the possibility of these

behaviour, let us define herd and contrarian behaviour precisely. It follows Avery and

Zemsky (1998) and Cipriani and Guarino (2014).

Definition 1. A trader with a private signal St engages in herd behaviour at time t if

she buys with any signal when E(V |ht) > E(V |h1) or if she sells with any signal when

E(V |ht) < E(V |h1).

Also, a trader with private signal St engages in contrarian behaviour at time t if

she buys with any signal when E(V |ht) < E(V |h1) or if she sells with any signal when

E(V |ht) > E(V |h1).

’Herd buying’ is a situation that an informed trader buys regardless of her signal and

the price itself is higher than the price of initial period since the history is dominated by

buy orders. ’Contrarian buying’ is that the trader is buying regardless of her signal after

a history which generates the price lower than the initial price since it is dominated by

sell orders. ’Herd selling’ and ’contrarian selling’ are symmetric to these.
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To begin with, we can consider the condition for the initial period to have the same

action with those without ambiguity.

Proposition 2. There exists a

q̃ =
µq̄/2 + (1− µ)ε/2

µ/2 + (1− µ)ε

such that with q > q̃, the ambiguity averse trader at t = 1 buys with a good signal and

sells with a bad signal in equilibrium.

Note that the condition is about the set Q0, because it is a relationship between q

and q. If the set is too large, the ambiguity averse traders can choose no trade even in

the initial period.

Starting from the initial period using proposition 2, the possibility of other behaviour

in equilibrium at t > 1 is analysed. The behaviour of the ambiguity averse traders after

t = 1 depends on their re-evaluation rule which is determined by ρ. To look at how the

behaviour changes depending on the re-evaluation, we start with two extreme cases of

the Full Bayesian Updating with ρ = 0 and the Maximum Likelihood Updating with

ρ = 1.

2.3.1 Case 1: Full Bayesian Updating (ρ = 0)

Let us consider the case that ambiguity averse traders are using the Full Bayesian Up-

dating since their re-evaluation parameter ρ = 0. In this case, there is positive probabil-

ity of choosing no trade for the ambiguity averse traders in equilibrium, while herd or

contrarian behaviour is not possible.

Proposition 3. Consider q̃ < q < q < 1. Suppose ρ = 0. In equilibrium, herd or

contrarian behaviour never occurs.

Herd or contrarian behaviour, which is buying or selling regardless of the trader’s

signal, is impossible for the ambiguity averse traders using the Full Bayesian Updating.

To generate herd or contrarian behaviour, the traders buy or sell regardless of their
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signal. It means the traders in equilibrium buy with a bad signal or sell with a good

signal. Hence, the expected asset value of the ambiguity averse trader with a bad signal

should be higher than the ask price or the expected value with a good signal should be

lower than bid price. The re-evaluated set of q for the traders isQ0 at any t with the Full

Bayesian Updating, so the level of q used by the market maker is always within Q0.

It means that the minimum expected value of the traders with a bad signal cannot be

higher than the ask price, and the maximum expected asset value of the traders with a

good signal cannot be lower than the bid price. Therefore, herd or contrarian behaviour

is impossible with the Full Bayesian Updating, which has ρ = 0.

The other behaviour we can consider is choosing no trade even with an informative

private signal of the ambiguity averse trader.

Proposition 4. Consider q̃ < q < q < 1. Suppose ρ = 0. In equilibrium, as t goes

to infinity, the probability that the ambiguity averse trader chooses ’no trade’ for any

signal goes to 1 if q < qT < q where qT is true precision of the private signal.

If we assume that there is zero probability of choosing no trade regardless of their

signal by the traders, the ratio between the orders with a good signal and a bad signal

converges to the ratio of qT

1−qT where qT is true level of signal precision, since the private

signal is independently and identically distributed. Hence, E(q|ht) converges to qT .

Suppose V = 1. The difference between the number of orders with a good signal and

a bad signal increases as the total number of trades increases. It makes the precision

of the ambiguity averse traders considering buying become q and that of the traders

considering selling becomes q. As the number of trades increases, the relative expected

asset value of the traders evaluated at q to the ask price which is evaluated at E(q|ht)

decreases, and it eventually makes the traders choose no trade with a good signal. Also,

the maximum expected asset value with a bad signal is evaluated at q with sufficiently

large number of orders. With similar logic of the case with a good signal, the relative

expected asset value of the traders evaluated at q to the bid price increases. It makes the
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traders with a bad signal choose no trade in equilibrium and the assumption is violated.

Therefore, as t goes to infinity, the ambiguity averse traders choose no trade with any

signal in equilibrium with probability 1 under the Full Bayesian Updating. It implies

that after sufficiently many periods of trades, the only traders who explicitly trade in the

market are those without ambiguity and noise traders.

Example 1. Choosing no trade with the Full Bayesian Updating

Under the parameter values of γ = 0.5, δ = 0.5, µ = 0.5, q = 0.75, q̄ = 0.95, ε =

2/3 and a history of orders such as thirteen consecutive buys h14 = {buy1, buy2, · · · , buy13},

it can be shown that the ambiguity averse traders choose ’no trade’ in equilibrium with

the Full Bayesian Updating (ρ = 0).

Figure 2.1 The expected asset value and Qt
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Note: The upper panels are the ask and bid price and the expected value of the asset by the ambiguity
averse traders. The lower panel is bounds of Qt and E(q|ht). It is simulated with a history of 13
buys under the parameter values of γ = 0.5, δ = 0.5, µ = 0.5, q = 0.75, q = 0.95, ε = 2/3, and
ρ = 0.

Looking at the expected asset value of the ambiguity averse traders and the ask price

in upper left panel of Figure 2.1, in the case of the Full Bayesian Updating (ρ = 0), the

ask price is higher than minq∈Qt E(V |St = 1, ht, q) from t = 3. It implies that the

ambiguity averse traders with a good signal choose no trade in equilibrium. The bid
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price in the upper right panel becomes lower than maxq∈Qt E(V |St = 0, ht, q) from

t = 14, so the traders do not trade with a bad signal as well. Hence, they choose no

trade with any signal. As shown in the lower panel of Figure 2.1, the setQt stays atQ0

for any t because of ρ = 0. With this constant Qt, the ambiguity averse traders faced

with only buy orders evaluate their minimum expected asset value at the lower bound of

Q0, and it keeps their expectation on the asset value relatively lower than the ask price.

Also, the maximum expected asset value is evaluated at the upper bound of Q0 from

t = 12 after 11 buy orders. It makes the expectation higher than the bid price.

2.3.2 Case 2: Maximum Likelihood Updating (ρ = 1)

Herd or contrarian behaviour is impossible with the Full Bayesian Updating because

the updated level of q considered by the market maker is always in the set Qt. If the

traders use the Maximum Likelihood Updating,Qt shrinks even to a singleton. It opens

a possibility of herding or contrarian behaviour.

Proposition 5. Consider q̃ < q < q < 1. Suppose ρ = 1. In equilibrium, the ambiguity

averse traders herd with positive probability.

The logic of the proof for Proposition 5 is as follows. Suppose that there is no

herding. In a history only with buy orders, the expected q by the market maker increases

with the ask price, whileQt shrinks to q since there is a positive proportion of the traders

without ambiguity who would buy with a good signal at any t, although the ambiguity

averse traders sometimes choose no trade with a good signal. After this history, there

could happen a situation that the expected asset value of the trader with a bad signal

becomes higher than the ask price because the history is dominated with buy orders

and the expected asset value of the ambiguity averse traders is evaluated at q while the

market maker uses E(q|ht) < q. Also the price is higher than initial period price. It

violates the assumption of no herding. Therefore, herding occurs.

Similar to the Full Bayesian Updating, we also can consider the asymptotic property

of the traders’ behaviour.
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Proposition 6. Consider q̃ < q < q < 1. Suppose ρ = 1. In equilibrium, as t goes

to infinity, the probability the ambiguity averse traders buy with a good signal and sell

with a bad signal goes to 1 if γ > 0.

With a positive proportion of the traders without ambiguity, the information about

the private signal is always revealed with actions of the traders. It guarantees that both

of E(q|ht) and Qt converges to true value qT as t goes to infinity since the signal is

independently and identically distributed. When the level of precision the ambiguity

averse traders and the market maker take into account become close enough to each

other, the expected asset value of the traders with a good signal is higher than the ask

price and that with a bad signal is lower than the bid. Therefore the ambiguity averse

traders buy with a good signal and sell with a bad signal.

The condition for the contrarian behaviour is not straight forward as herding, but

we can check its existence with an example. Followings are examples of herding and

contrarian behaviour of the ambiguity averse traders with the Maximum Likelihood

Updating.

Example 2. Herding with the Maximum Likelihood Updating

Under the parameter values of γ = 0.5, δ = 0.5, µ = 0.5, q = 0.75, q̄ = 0.95, ε =

2/3 and the history of orders of sixteen consecutive buys h17 = {buy1, buy2, · · · , buy16},

’herd buying’ happens with the Maximum Likelihood Updating (ρ = 1), while ’no

trade’ occurs with the same parameter values and history of the previous example under

the Full Bayesian Updating.

In the case of the Maximum Likelihood Updating (ρ = 1), minq∈Qt E(V |St =

1, ht, q) is higher than the ask price for the entire periods. Hence, ambiguity averse

traders with a good signal choose to buy in equilibrium. They do not choose no trade

with a good signal in equilibrium as Example 1 in this case. Moreover, minq∈Qt E(V |St =

0, ht, q) is higher than the ask price from t = 17. It means that the ambiguity averse

traders even with a bad signal choose to buy. Looking at the bid price, the maximum
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Figure 2.2 The expected asset value and Qt
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Note: The upper panels are the ask and bid price and the expected value of the asset by the ambiguity
averse traders. The lower panel is bounds of Qt and E(q|ht). It is simulated with a history of 16
buys under the parameter values of γ = 0.5, δ = 0.5, µ = 0.5, q = 0.75, q = 0.95, ε = 2/3, and
ρ = 1.

expected value with a bad signal becomes higher than the bid at t = 17, so selling is

not chosen by the ambiguity averse traders. Therefore, buy herding happens at t = 17.

When ρ = 1, Qt shrinks to a singleton after trades as shown on the lower panel of

Figure 2.2. With the history of consecutive buys, Qt becomes the upper bound of Q0

and it makes the expected asset value of ambiguity averse traders increase further than

the ask price evaluated at the updated level of q by the market maker.

In the case of the Maximum Likelihood Updating, the contrarian behaviour also

occurs. It is caused by the shrunk Qt away from the expected q by the market maker,

E(q|ht). Their discrepancy generates the situation that the expected asset value of the

ambiguity averse trader with a good signal becomes lower than the bid price after the

history dominated by buy orders.

Example 3. Contrarian behaviour with the Maximum Likelihood Updating

Under the same parameter values of the previous example and the history of initial

20 buy orders and 14 sell orders after that, we can find that sell contrarian occurs in
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equilibrium with the Maximum Likelihood Updating (ρ = 1).

Figure 2.3 Expected asset value and Qt
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Note: The upper panels are the ask and bid price and expected asset values of the ambiguity averse
traders, and the lower panel isQt and E(q|ht). It is simulated with a history of 20 buys and 14 sells
after that under the parameter values of γ = 0.5, δ = 0.5, µ = 0.5, q = 0.75, q = 0.95, ε = 2/3,
and ρ = 1.

At period t = 34, bid price is 0.9992 while the maximum expected asset value

with a good signal is 0.9985, so the ambiguity averse traders even with a good signal

sells when the price is higher than 0.5. The expected q by the market maker when the

contrarian happens is 0.8418 and Q34 is 0.7749. As the q used by the ambiguity averse

trader is much lower than that of the market maker, the sell contrarian occurs.

We also can check the condition that choosing no trade for any signal is not possible

for the ambiguity averse traders with the Maximum Likelihood Updating.

Proposition 7. Consider q̃ < q < q < 1. Given γ = 0, in equilibrium the ambiguity

averse traders choosing no trade for any signal never occur if Qt is a singleton.

If ρ = 1, after some history of orders,Qt can become a singleton. WhenQt = {q̂},

the minimum expected asset value of the ambiguity averse traders with a good signal

is higher than that with a bad signal. If the traders are assumed to choose no trade for

any signal in equilibrium and there is only ambiguity averse traders who are informed,
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the ask and bid price are equivalent. It means that the ask price being higher than the

expected value with a good signal and the bid price being lower than that with a bad

signal is impossible. Hence, choosing no trade with any signal is impossible if Qt is a

singleton and there are only the ambiguity averse traders among the informed.

2.3.3 Case between the Full Bayesian Updating and the Maximum

Likelihood Updating

In the case between the Full Bayesian Updating and the Maximum Likelihood Updat-

ing with 0 < ρ < 1, the size of the set Qt becomes smaller as ρ increases. It means

minq∈Qt E(V |St, ht, q) becomes weakly larger and maxq∈Qt E(V |St, ht, q) weakly smaller

with higher ρ, given Pr(V = v|ht, q) is the same. Hence, the possibility of choosing

no trade of the ambiguity averse traders in equilibrium decreases, while that of herding

or contrarian increases with higher ρ. However, the behaviour of the ambiguity averse

traders at time before t changes as well if ρ changes. It also affects Pr(V = v|ht, q).

Therefore, the possibility of choosing no trade in equilibrium, or herding or contrarian

behaviour depends on both of the effects by the change in ρ.

The complexity of the updated beliefs and the set Qt hinders deriving analytic con-

dition for choosing no trade, or the behaviour of herding or contrarian of the ambiguity

averse traders in the case between the two extremes. To demonstrate how the behaviour

of the trader changes depending on the level of ρ, simulation results are presented. The

model is simulated with the true value of asset to be V = 1 and the prior probability of

the state is δ = 0.5. Half of the traders are informed (µ = 0.5), and half of the informed

traders are without ambiguity (γ = 0.5). True value of the precision q is set to be 0.75

if it is not noted specifically. The results are based on 1, 000 simulations of T = 100 for

each parameter.

The proportion of choosing no trade, herding and contrarian are presented in figures.

Figure 2.4 shows the probability of no trade depending on ρ changing the bounds ofQ0.

The left panel presents the proportion depending on ρ by changing the lower bound of
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Figure 2.4 Proportion of no trade depending on ρ and Q0
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Note: The proportion is computed by the number of periods that the ambiguity averse traders choose
no trade in equilibrium over 1, 000 simulations with T = 100 at each simulation. The numbers on
the figure are the proportion of the action (Higher proportion with yellow, lower proportion with blue
color). Choosing no trade includes no trade with any signal, buy with a good signal and no trade
with a bad signal, no trade with a good signal and sell with a bad signal, and mixed strategy of them.

Figure 2.5 Proportion of herding depending on ρ and Q0
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Note: The proportion is computed by the number of periods that herding happens in equilibrium over
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Figure 2.6 Proportion of Contrarian depending on ρ and Q0
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Q0, while the right panel by changing the upper bound. Both of the graphs display the

pattern that the proportion of no trade increases as ρ becomes smaller and the size of
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Q0 becomes larger. As discussed before, we can expect that smaller ρ keeps Qt not to

shrink a lot. It makes the expected asset value of the ambiguity averse traders with a

good private signal lower than the ask price or the expectation with a bad signal higher

than the bid price. It brings higher probability of choosing no trade by the traders.

In Figure 2.5, the proportion of herding is presented depending on ρ with changing

bounds of Q0 as in Figure 2.4. The proportion of herding increases with higher level

of ρ, smaller q, and larger q. It also can be understood by the cause of herding that the

private signal precision of the ambiguity averse traders updates rapidly while the market

maker updates conservatively. The proportion of the contrarian behaviour in Figure 2.6

shows that it occurs with high ρ, although the proportion itself is not large.

2.4 Informational Cascade

In this section, we show that the market can be in a situation that no more information

is flowed into the market and the prices remain at a level away from the fundamental

value. It is called informational cascade. The formal definition is from Cipriani and

Guarino (2008).

Definition 2. An informational cascade arises at time t when all informed traders act

independently of their own signal.

When the informational cascade happens, the informed trader in the market choose

the same action regardless of her private signal. No information on the signal is revealed

in the market with her action. That makes no change in the updated beliefs on the asset

value. Therefore, the prices are not updated as well by the market maker.

Since there exists herding or contrarian behaviour, it is shown that the action of the

ambiguity averse trader can be the same regardless of her signal. Also, choosing no

trade regardless of the signal is possible. If the ambiguity averse traders behave herd or

contrarian, or choose no trade regardless of their private signal, the action of the traders

does not expose any private information. Therefore, after the action of the ambigu-
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ity averse trader, there is no informational gain in the market, which is informational

cascade. If there are traders without ambiguity, however, informational cascade is not

possible because they always act following their signal according to proposition 1, and

it exposes their private information in the market.

If the informational cascade occurs, it lasts forever as in Cipriani and Guarino

(2008). The decision problem the agents in the market faces is the same at any time

t after the informational cascade happens. Therefore, all of the agents choose the same

action and the prices stay the same once the cascade starts.

According to Proposition 4, informational cascade occurs with probability one as t

goes to infinity if γ = 0 under the Full Bayesian Updating. The informational cascade

is the situation that informed traders choose no trade whatever signal they get, so no

one trades in the market when the informational cascade occurs as in Lee (1998), Chari

and Kehoe (2004) and Cipriani et al. (2019),.

In this model, however, the informational cascade can also happen with traders keep

trading. In the case of herding or contrarian behaviour, the traders continue buying or

selling, but the prices do not change as no information flows to the market with the

action as in the example below.

Example 4. Informational Cascade with herding

With the same parameter values of previous example of the Maximum Likelihood

Updating excluding γ = 0, we can observe informational cascade. After 16 consecutive

buys, buy herding occurs from t = 17. The minimum expected asset value with a good

and bad signal are higher than the ask price at t = 17. In this situation, no information

flows into the market after any action of traders. All the informed traders, who are

ambiguity averse, buy regardless of their signal, and other actions come from noise

traders. Hence, the prices and expected asset values stay the same after herding occurs

at t ≥ 17 even though buy order continues.
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Figure 2.7 Informational Cascade with buy herding
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Note: Simulation with a history of 20 buys under the parameter values of γ = 0, δ = 0.5, µ = 0.5,
q = 0.75, q̄ = 0.95, ε = 2/3.

2.5 Conclusion

We have analysed how the behaviour of traders changes in the sequential trading model

when there are ambiguity averse traders in the market. Given the ambiguity in the

precision of private signal, the set of priors on the precision is re-evaluated by the recur-

sive multiple prior preference of the ambiguity averse traders. There are two extreme

cases of the re-evaluation: the Full Bayesian Updating and the Maximum Likelihood

Updating depending on the re-evaluation parameter ρ.

We present that the behaviour of the ambiguity averse traders in equilibrium differs

depending on the updating rule. Herding or contrarian is impossible for the ambiguity

averse traders with the Full Bayesian Updating. On the other hand, herding is possible

with the Maximum Likelihood Updating. As the period goes to infinity, the ambigu-

ity averse traders with the Full Bayesian Updating tend to choose no trade even with

informative signals, and the traders with the Maximum Likelihood Updating trade fol-

lowing their signals. In the case between the two extremes, the probability of no trade

decreases with high ρ while that of herding or contrarian increases.
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Chapter 3

Estimating a Model of Ambiguity Aversion in Financial Markets

3.1 Introduction

Traders in the financial market show seemingly opposite behaviour such as limited par-

ticipation and herd or contrarian behaviour. From the empirical results by Mankiw

and Zeldes (1991) and Haliassos and Bertaut (1995), it is claimed that there is limited

participation of traders in the financial market. Even with the existence of high equity

premium, large proportion of households do not hold stock. On the other hand, we often

witness heightened volatility in the financial market caused by intensive participation

such as herding or contrarian behaviour (Brunnermeier (2001), Chamley (2004)). In

this research, it is presented that limited participation (choosing no trade in this con-

text) and herd or contrarian behaviour can occur by ambiguity averse traders and their

existence is estimated with trade data in financial market.

The ambiguity aversion is implemented by recursive multiple prior preference in

this research following Epstein and Schneider (2007). It is based on multiple prior pref-

erence (also known as ’maxmin’ preference) of Gilboa and Schmeidler (1989) with re-

evaluating1 set of priors. With the preference, the ambiguity averse traders can choose

no trade even with an informative private signal in equilibrium as shown in Dow and

Werlang (1992). The ambiguity averse traders, who do not have a proper unique prior

distribution for the ambiguous parameter, consider the worst case payoff evaluated prior

1The terminology of re-evaluation is from Epstein and Schneider (2007).
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by prior in a set of priors, while ask and bid prices are set by a market maker using Bayes

updating. Therefore, the traders’ expected value of an asset with a good signal can be

smaller than the ask price or the expectation with a bad signal can be higher than the

bid price. It makes them choose no trade in equilibrium.

In addition, if the traders with ambiguity aversion re-evaluate the possible set of

the ambiguous parameter, buying (selling) regardless of any signal can occur, which

is herd behaviour if the buying (selling) occurs after a history dominated by buy (sell)

orders or contrarian behaviour if the selling (buying) occurs after a history dominated

by buy (sell) orders. When the set of the ambiguous parameter is re-evaluated by the

traders, it may become different from the expected level of the parameter by the market

maker, who does not have ambiguity. If the difference between the parameter values

that ambiguity averse traders consider and that of the market maker is large enough,

the expected value of the asset even with a bad signal (a good signal) by the ambiguity

averse trader can be higher than the ask price (lower than bid price). Then, herding or

contrarian behaviour occurs.

We estimate the model by maximum likelihood estimation on trading data of two

NYSE stocks, Ashland Inc. and Capital One Financial Corp. in 1995. The method-

ology is based on Easley et al. (1997) and Cipriani and Guarino (2014) proposed to

estimate sequential trading models, and the traders with ambiguity aversion and their

re-evaluation on the ambiguous parameter are added on them. Using the method, the

proportion of the ambiguity averse traders, the size of the ambiguity in the private signal

precision, and the way of re-evaluation are estimated. The proportion of the ambiguity

averse traders is estimated to be larger for Capital One Financial Corp., and the preci-

sion of signal is re-evaluated more stringently for Ashland Inc. With the estimates, we

compute the proportion of not buying or selling with any signal, and herd or contrar-

ian behaviour in each sample. No buying or selling behaviour is occurred more likely

by the ambiguity averse traders in the market trading Capital One Financial Corp. and

herding or contrarian occurs more likely in the market of Ashland Inc.
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Limited participation of economic agents in stock market is documented in various

literature such as Mankiw and Zeldes (1991), Guiso et al. (2001) for the US and other

countries. The suggested explanation for the phenomena are participation cost (Vissing-

Jorgensen (2002)), loss aversion (Dimmock and Kouwenberg (2009), Ang et al. (2005))

and ambiguity aversion (Dow and Werlang (1992), Campanale (2009)). We will focus

on the ambiguity aversion as a factor to generate limited participation by considering

the situation that the traders do not buy or sell with any signal in equilibrium.

Herd or contrarian behaviour in financial market also has been a popular topic in

literature. Banerjee (2004), Bikhchandani et al. (1992) and Welch (1992) study herd

behaviour theoretically under abstract settings. Specifically, sequential trading model

has an advantage of showing the behaviour of traders directly by their action. Avery and

Zemsky (1998) and Cipriani and Guarino (2014) have presented that herd or contrarian

behaviour can happen with additional uncertainty such as informational event uncer-

tainty to the standard model of Glosten and Milgrom (1985). Dong et al. (2010), Ford

et al. (2013) and Boortz (2016) also show that herd or contrarian behaviour can occur in

equilibrium for the ambiguity averse traders within sequential trading model, although

they use Choquet preference instead of recursive multiple prior preference used in this

research.

The departure of this paper from the previous literature is that both of the behaviour,

choosing no buying or selling, and herd or contrarian trades, are explained with the am-

biguity aversion. Especially, it uses recursive multiple prior preference following Ep-

stein and Schneider (2007). With the preference, the direct interpretation of ambiguity

on the parameter of interest, which is the precision of private signal in this research, is

possible. Also, with the re-evaluation embedded in the preference, the reason for the

herding is explained explicitly by the gap between the traders and the market maker in

the level of the ambiguous parameter they take into account.

Estimation on ambiguity is mostly studied by experiments or surveys. Halevy

(2007), Ahn et al. (2014) and Gneezy et al. (2015) estimate ambiguity of individual
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decision makers in experiments. Dimmock and Kouwenberg (2009) uses survey on

US households. On the other hand, Ilut and Schneider (2014) and Jeong et al. (2015)

analyses ambiguity with data on macro variables. In this study, the transaction data on

individual stock is used for estimating ambiguity. It can show the behaviour of traders

more directly than macro data but not in the artificial environment as experiments.

The paper is organised as follows. After introduction, Section 2 explains the model.

In Section 3, the behaviour of the informed traders in equilibrium is presented. Section

4 shows empirical results with the presented model, and Section 5 concludes.

3.2 Model

The model is based on Glosten and Milgrom (1985) with continuous signal and event-

uncertainty following Cipriani and Guarino (2014). An asset is traded by traders and a

market maker for trading days indexed by d = 1, 2, 3 · · · . Within a day, trades occur at

discrete time indexed by t = 1, 2, 3 · · · .

3.2.1 The market

The market is composed of countable number of traders and a market maker. One trader

is randomly assigned to trade with the market maker at each time t. She decides her

action in a space of A = {buy, sell, no trade}. The action of the trader at time t of day

d is denoted by xdt

3.2.2 The asset

There is one risky asset to be traded. It has a fundamental value of Vd in day d. The value

stays the same during the day, but it can change in the next day. At the beginning of

each day d, every agent in the market knows the value of previous day vd−1. In the next

day, the value of the asset can change from the previous day with probability α where

α ∈ (0, 1]. Following Cipriani and Guarino (2014), the day when the fundamental

value does not change from the previous day, Vd = vd−1, is called ’no-event day’,

which occurs with probability of 1− α. With probability of α, the value changes and it
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is called ’informational event day’. In the informational event day, the value increases

to vdh = vd−1 +λh with probability δ and it decreases to vdl = vd−1−λl with probability

of 1 − δ where δ ∈ (0, 1). The former is a ’good event day’, and the latter is a ’bad

event day’. To guarantee the martingale property of the closing price, (1− δ)λl = δλh

is assumed.

3.2.3 The market maker

The asset is traded at ask or bid price that the market maker sets at each time t of day

d. The prices are equilibrium products as they are set by the market maker taking into

account the strategy of traders. Depending on the action of the traders who have a

private information, the probability of buying or selling changes with the ask and bid

price. The market maker is assumed to be constrained by zero expected profit condition

due to a potential competition. The ask and bid price at time t of day d are denoted by

adt and bdt respectively.

adt = E(V |xdt = buy, hdt , a
d
t , b

d
t )

= vd−1 + λhPr(Vd = vdh|xdt = buy, hdt )− λlPr(Vd = vdl |xdt = buy, hdt ) (3.1)

bdt = E(V |xdt = sell, hdt , a
d
t , b

d
t )

= vd−1 + λhPr(Vd = vdh|xdt = sell, hdt )− λlPr(Vd = vdl |xdt = sell, hdt ) (3.2)

adt and bdt in expectation condition are omitted for notational simplicity afterwards.

In addition, the expected asset value of the market maker without assuming buying

or selling at t of day d, E(V |hdt ) is referred to be the asset price.

3.2.4 The traders

The traders are divided into two groups: Informed traders and noise traders. The in-

formed traders again are grouped by two: Informed with ambiguity aversion and in-
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formed without ambiguity. The type of the traders is their private information.

One trader is randomly assigned to trade at time t, and the trader is chosen only once.

In the no-event day, there are only noise traders in the market. In the informational event

day, there are informed traders with proportion of µ and noise traders with 1− µ where

µ ∈ (0, 1). The traders without ambiguity take γ proportion of informed traders, while

the ambiguity averse traders are 1− γ where γ ∈ [0, 1]. One trader is chosen out of the

three groups at each time t with probability of their proportions.

The informed traders with ambiguity aversion

The informed traders with ambiguity aversion receive a private signal which is

distributed by the value-contingent densities below2 following Cipriani and Guarino

(2014).

gh(sdt |vdh, τ) = 1 + τ(2sdt − 1)

gl(sdt |vdl , τ) = 1− τ(2sdt − 1) (3.3)

where τ ∈ [τ , τ ] with 0 < τ < τ < 1 and the support of sdt is [0, 1].

τ is a parameter represents the precision of the private signal that the informed

traders receive. With high level of τ , the traders are more likely to receive high sdt if the

asset value is high, and vice versa following the conditional density.

In the model, the only parameter considered to be ambiguous is τ . Ambiguity is

implemented by recursive multiple prior preference following Epstein and Schneider

(2007). The recursive multiple prior preference has a feature of updating the set of pri-

ors3, added on the multiple prior preference model suggested by Gilboa and Schmeidler

(1989). The agents with ambiguity have multiple prior on the ambiguous parameter τ ,

and they are open to update the set of priors after a history of actions. The initial set the

ambiguity averse traders consider is assumed to be T d0 = {τ : τ ≤ τ ≤ τ}. This set is

2For simplicity’s sake Vd = vdi where i ∈ {h, l} is expressed as vdi where i ∈ {h, l} in the condition-
ing in probabilities and densities afterwards.

3It is named as re-evaluation in Epstein and Schneider (2007)
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re-evaluated after history of actions following equation (3.4) according to Epstein and

Schneider (2007).

T dt = {τ :
Pr(hdt |τ)

maxτ̂∈T d0 Pr(h
d
t |τ̂)
≥ ρ, τ ∈ T d0 } (3.4)

The parameter ρ ∈ [0, 1] decides how stringently the agents re-evaluate the set to

consider. In the extreme case of ρ = 0, the condition in equation (3.4) is satisfied for

all the τ in T d0 . Therefore, T dt = T d0 at any time t of day d. It is the Full Bayesian

Updating in Gilboa and Marinacci (2011) and De Filippis et al. (2017). The expected

value of the asset is updated prior by prior in the whole set of priors T d0 and the action

is chosen based on the maxmin preference.

In the opposite case of ρ = 1, the set would be T dt = {τ : arg maxτ∈T0 Pr(h
d
t |τ)},

only the τ that has maximum probability of generating the history hdt becomes the

element of the set. It is like the Maximum Likelihood Updating in Gilboa and Marinacci

(2011) and De Filippis et al. (2017). In this case, the set Tt may become a singleton

after some history of actions, and ambiguity disappears.

If ρ is in between zero and one, the interpretation of the parameter ρ follows the

likelihood ratio test. −2 log ρ is the critical value of χ2(1) distribution for rejecting the

hypothesis that τ = τ̂ . It means that the traders are excluding the level of τ out of the

confidence interval with critical value −2 log ρ from T dt . For example, when ρ is 0.26,

the significance level for choosing set T dt is 10%, so only the τ which are thought to

have a probability more than 10% to generate the history hdt survive. If ρ = 0.79, the τ

that makes the probability of the history hdt less than 50% are excluded at each time t.

The size of the set T dt is larger for ρ = 0.26 than ρ = 0.79.

The ambiguity averse traders also update their beliefs on the probability of each

state in Vd by Bayes updating. The updated belief itself, however, is a function of τ

since it needs to be evaluated at each level of τ in set T dt . From the set, the ambiguity

averse traders consider the τ which brings the worst outcome when they make their
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decision, because they are averse on the ambiguity. This is why it is also called maxmin

preference. Following this property, their likelihood ratio of a good and bad event day is

a function of τ and they consider minimum value of the ratio if they buy, and maximum

value if they sell with τ in T dt ⊂ {τ : τ ≤ τ ≤ τ}.


minτ∈T dt

Pr(vdh|s
d
t ,h

d
t ,τ)

Pr(vdl |s
d
t ,h

d
t ,τ)

= minτ∈T dt
gh(sdt |vdh,τ)Pr(v

d
h|h

d
t ,τ)

gl(sdt |vdl ,τ)Pr(v
d
l |h

d
t ,τ)

for buying

maxτ∈T dt
Pr(vdh|s

d
t ,h

d
t ,τ)

Pr(vdl |s
d
t ,h

d
t ,τ)

= maxτ∈T dt
gh(sdt |vdh,τ)Pr(v

d
h|h

d
t ,τ)

gl(sdt |vdl ,τ)Pr(v
d
l |h

d
t ,τ)

for selling

Monotonic Likelihood Ratio Property (MLRP) satisfies for each case of considering

buying or selling. Thus, we can define the signal higher than 0.5 is a good signal and

lower than that is a bad signal.

The payoff function of the ambiguity averse traders is as follows.

U(Vd, x
d
t , a

d
t , b

d
t ) =



Vd − adt if xdt = buy

0 if xdt = no trade

bdt − Vd if xdt = sell

According to maxmin property, the traders are maximizing minτ∈T dt E[U(Vd, X
d
t , a

d
t , b

d
t )|sdt , hdt , τ ].

Hence, the ambiguity averse trader chooses her action as follows.

max
{buy,sell,no trade}

[min
τ∈T dt
{E(Vd|hdt , sdt , τ)− adt }, min

τ∈T dt
{bdt − E(Vd|hdt , sdt , τ)}, 0]

= max
{buy,sell,no trade}

[min
τ∈T dt
{E(Vd|hdt , sdt , τ)} − adt , bdt −max

τ∈T dt
{E(Vd|hdt , sdt , τ)}, 0]

From these, the trading decision can be summarized to two thresholds βd2,t and σd2,t.

min
τ∈T dt

[E(Vd|hdt , βd2,t, τ)] = adt

max
τ∈T dt

[E(Vd|hdt , σd2,t, τ)] = bdt
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The trader with ambiguity aversion buys if she receives a signal higher than βd2,t, and

sells if the signal is lower than σd2,t. If the signal is between βd2,t and σd2,t, she does not

trade.

The informed traders without ambiguity

Informed traders without ambiguity, which comprises µγ share of all the traders

in the informational event day, receive a private signal sdt . It follows value-contingent

densities as that of the traders with ambiguity in equation (3.3).

The traders, like the market maker, are not assumed to have ambiguity, although

they do not know the true value of τ . They are assumed to have a uniform distribution

on domain of τ , T d0 , as a prior for τ , and update their beliefs on τ by Bayesian updating.

The probability of the asset value vd is updated by Bayesian updating as well. The

ratio of a good and bad event day satisfies MLRP, as in the case of the ambiguity averse

traders. From this property, the signal sdt > 0.5 is defined as a good signal and sdt < 0.5

as a bad signal for the traders without ambiguity as well.

Pr(vdh|hdt , sdt )
Pr(vdl |hdt , sdt )

=

∫ τ
τ
gh(sdt |vdh, τ)f(τ |ht)dτPr(vdh|hdt )∫ τ

τ
gl(sdt |vdl , τ)f(τ |ht)dτPr(vdl |hdt )

The payoff function of the informed trader without ambiguity is the same as the am-

biguity averse traders. The traders decide their action by maximizing the expected pay-

off, E[U(Vd, x
d
t , a

d
t , b

d
t )|sdt , hdt ]. Hence, the informed traders buy when E(Vd|sdt , hdt ) >

adt , sell when E(Vd|sdt , hdt ) < bdt , and do not trade otherwise.

From the decision rule of the informed traders given above, the trading decision

is summarised as the thresholds of the signal for buying and selling as βd1,t and σd1,t

respectively.

E(Vd|βd1,t, hdt ) = adt

E(Vd|σd1,t, hdt ) = bdt
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The informed traders without ambiguity will buy if their private signal sdt is higher than

βd1,t and sell if sdt is lower than σd1,t.

The noise traders

The noise traders are assigned randomly by the probability of ε/2, ε/2 and 1 − ε

respectively to buy, sell and no trade, with ε ∈ (0, 1). As there are only noise traders

in no-event day, the buy, sell or no trade occurs according to the probabilities. On the

informational event day, 1 − µ share of noise traders are in the market. Therefore, the

proportion of each order from noise traders is (1−µ)ε/2, (1−µ)ε/2 and (1−µ)(1−ε).

3.3 Behaviour of Informed Traders in Equilibrium

The action of the informed traders in equilibrium is a fixed point problem about the set

of four thresholds {βd1,t, βd2,t,σd1,t,σd2,t} which satisfies the following equations.

E(Vd|βd1,t, hdt ) = min
τ∈Tt

E(V |βd2,t, hdt , τ) = adt (3.5)

E(Vd|σd1,t, hdt ) = max
τ∈Tt

E(V |σd2,t, hdt , τ) = bdt (3.6)

βd1,t and σd1,t are for the traders without ambiguity, and βd2,t and σd2,t for those with am-

biguity aversion. The thresholds are decided by the updated beliefs on the fundamental

value Vd by the traders and the market maker.

First of all, the behaviour of the traders without ambiguity is analysed.

Proposition 8. Suppose α = 1. In equilibrium, 0.5 ≤ βd1,t < 1 and 0 < σd1,t ≤ 0.5 at

any period t.

Proofs for all of the propositions in this chapter are in the appendix. Proposition 8 is

proven by showing that βd1,t cannot be smaller than 0.5. It uses the property that βd1,t is

increasing function in βd2,t and the lower bound of β1,t with βd2,t = 0 is 0.5. Proposition

8 is, in other words, that the traders without ambiguity buy with a good signal and sell

with a bad signal when there is no event uncertainty (α = 1) since the traders buy with

45



the signals higher than βd1,t and sell with a signal lower than σd1,t.

Herd or contrarian behaviour of traders with event-uncertainty is well established in

Avery and Zemsky (1998) and Cipriani and Guarino (2014). Without the uncertainty,

the traders without ambiguity trade follow their signals. In the case with ambiguity

aversion, however, it can be shown that the behaviour of herding or contrarian can

occur. Also, the behaviour of not buying or selling with an informative signal.

To analyse the behaviour of the traders, ’herd’ and ’contrarian’ behaviour are de-

fined following Cipriani and Guarino (2014).

Definition 3. There is herd behaviour at time t of day d when there is a positive measure

of signal realisations for which an informed trader either herd buys or herd sells, that

is when

βdi,t < 0.5 with E(Vd|hdt ) > E(Vd|hd1) or

σdi,t > 0.5 with E(Vd|hdt ) < E(Vd|hd1) for any i ∈ {1, 2}

Also, there is contrarian behaviour at time t of day d when there is a positive mea-

sure of signal realisations for which an informed trader either contrarian buys or con-

trarian sells, that is when

βdi,t < 0.5 with E(Vd|hdt ) < E(Vd|hd1) or

σdi,t > 0.5 with E(Vd|hdt ) > E(Vd|hd1) for any i ∈ {1, 2}

Herd buy is a behaviour that the informed traders buy even with a bad signal after a

history which makes the price higher than the initial price since the buy orders dominate

the history. Contrarian buy, on the other hand, is also the behaviour that the informed

traders buy even with a bad signal, although the history is dominated by sell orders to

reduce the price lower than the initial price.

In addition, we can define ’no buying’, ’no selling’ or ’no trading’ behaviour which
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is the informed traders do not buy or sell with any signal realisation.

Definition 4. There is no buying behaviour at time t of day d when

βdi,t = 1 with 0 < σdi,t ≤ 0.5

and there is no selling behaviour at time t of day d when

σdi,t = 0 with 0.5 ≤ βdi,t < 1 for any i ∈ {1, 2}

Also, there is no trading behaviour at time t of day d when

βdi,t = 1 and σdi,t = 0 for any i ∈ {1, 2}

The support for the thresholds βdi,t and σdi,t and the private signal sdt are [0, 1]. Hence,

when βi,t is one, there is no probability of getting a signal higher than βdi,t. It makes that

there is zero probability of an informed trader choosing to buy with βdi,t = 1. The case

for no selling is symmetric. With σdi,t = 0, no informed trader chooses to sell.

Having the definition of the behaviours, let us start to consider the condition for

initial period that the ambiguity averse traders trade following their signal.

Proposition 9. Suppose α = 1. There exists a

τ̃ = τ
µγ + 2(1− µ)ε− 4

√
(1− µ)ε{µγ + (1− µ)ε/2}/2

µγ − 4(1− µ)ε

such that with τ > τ̃ , 0.5 ≤ βd2,1 < 1 and 0 < σd2,1 ≤ 0.5 in equilibrium.

The ambiguity averse traders show different behaviour depending on their re-evaluation

rule ρ after the initial period. By looking at the two extreme cases of the Full Bayesian

Updating and the Maximum Likelihood Updating, the effect of the re-evaluation is

analysed.
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3.3.1 The Full Bayesian Updating ρ = 0

Let us consider the case with the Full Bayesian Updating with ρ = 0 first. Under the

Full Bayesian Updating, the set Tt is constant at T0 for any t. In this case, herd or

contrarian behaviour does not occur without the event uncertainty (α = 1).

Proposition 10. Consider τ̃ < τ < τ < 1. Suppose α = 1 and ρ = 0. In equilibrium,

herd or contrarian behaviour never occur.

If ρ is zero, T dt is always same as T d0 . It makes the set include the expected τ by the

market maker all the time. If the informed trader and the market maker use the same

precision τ , the expectation of a trader with a bad signal is always lower than the ask

price. It implies that the minimum expected value with a bad signal can never be higher

than the ask price as the τ considered by the market maker is always in the set T d0 .

Therefore, herding or contrarian behaviour cannot happen with ρ = 0.

Also, we can check the possibility of no buying or no selling behaviour of the am-

biguity averse traders with the Full Bayesian Updating.

Proposition 11. Consider τ̃ < τ < τ < 1. Suppose α = 1, γ = 0 and ρ = 0. In

equilibrium, no buying or no selling behaviour occurs with positive probability for any

τ and τ .

The sketch for the proof is as follows. If we suppose that βd2,t < 1 for any t and

all the informed traders are ambiguity averse, βd2,t keeps increasing after a consecutive

buys. Since the minimum asset value is evaluated at τ by the traders, the expected τ

used by the market maker is always higher than that. It makes βd2,t higher to satisfy

Equation (3.5). βd2,t increases until βd2,t = 1, and this contradicts the assumption of zero

possibility of choosing no buying with any signal. Hence, with a positive probability,

no buying with any signal occurs. For the case of no selling, it is symmetric to this.
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3.3.2 The Maximum Likelihood Updating ρ = 1

In the case of the Maximum Likelihood Updating with ρ = 1, the probability of herding

is positive since T dt shrinks from T d0 .

Proposition 12. Consider τ̃ < τ < τ < 1. Suppose α = 1, γ = 0 and ρ = 1. In

equilibrium, herd behaviour occurs with positive probability.

After a history of only buys, Tt becomes a singleton {τ}, and E(τ |hdt ) < τ for any

finite t. If there is sufficient number of buy orders, there happens a situation that, even

with a signal lower than 0.5, the expected asset value of the ambiguity averse trader

becomes higher than the ask price since the value is evaluated at τ by the ambiguity

averse traders, while the market maker uses E(τ |hdt ). In addition, the price becomes

higher than the initial price. Therefore, herding occurs.

When the set Tt shrinks to a singleton {τ̂} after a history of trades with the Maxi-

mum Likelihood Updating, the probability of no trading becomes zero.

Proposition 13. Consider τ̃ < τ < τ < 1. Suppose α = 1, γ = 0 and ρ = 1. In

equilibrium, no trading behaviour never occurs if Tt is a singleton.

In the case that the only informed traders are the ambiguity averse traders (γ = 0),

suppose that no trading behaviour happen (βd2,t = 1, σd2,t = 0), then the ask and bid price

are the same since no informed trader will trade. If Tt is a singleton {τ̂}, the expected

asset value of the trader is evaluated at τ̂ regardless of the considered action. The

thresholds βd2,t and σd2,t, which satisfy Equation (3.5) and (3.6), are 0.5. It is different

from the assumed level of thresholds βd2,t = 1 and σd2,t = 0. Therefore, no trading

behaviour cannot occur in equilibrium.

The main driver of the behaviour such as no buying or no selling, herd or contrarian

behaviour is the difference in the level of τ considered by the ambiguity averse traders

and the market maker. No buying or no selling behaviour occurs when E(τ |hdt ) stays

inside the Tt, and herding or contrarian happens when E(τ |hdt ) is away from Tt. Hence,
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in the case between the Full Bayesian Updating and the Maximum Likelihood Updat-

ing, the level of ρ determines the probability of these behaviours. If ρ is higher, T dt

shrinks with increased lower bound, and the possibility of choosing no trade in equi-

librium becomes smaller. As for herding or contrarian, there is more possibility of the

set becoming away from the expected τ of the market maker with higher ρ. Therefore,

herding or contrarian is more likely to occur.

3.4 Empirical Analysis

Using the trading model with ambiguity aversion, financial market data are estimated

structurally by the maximum likelihood method. The estimation results show the pro-

portion of ambiguity averse traders in the market and how they re-evaluate the set of

ambiguous parameter.

3.4.1 Likelihood Function

To estimate the model with maximum likelihood method, the likelihood function is

specified. The derivation of the function follows Cipriani and Guarino (2014). The

likelihood function is written by the history of orders. In this model, there is a one-

to-one mapping from history of trades to ask and bid prices, so adding prices in the

likelihood function is redundant.

Denoting the history of actions at the end of a day by hd, the likelihood function is

written as

L(Φ; {hd}Dd=1) = Pr({hd}Dd=1|Φ) (3.7)

where Φ = {α, δ, µ, γ, τT , τ , τ , ε, ρ} is a vector of parameters, where τT is the true

level of precision of the private signal. If we remind that all the agents in the market are

aware of the value of the asset on the previous day, vd−1, the sequence of trades on day

d only depends on Vd. It makes the likelihood function (3.7) as a product of each day’s
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trading history

L(Φ; {hd}Dd=1) = Pr({hd}Dd=1|Φ) =
D∏
d=1

Pr(hd|Φ) (3.8)

Looking at the probability of a day of trading, the probability of an action at time

t depends on the path of history. Not only the number of each buy, sell and no trade

actions in history hdt but also the sequence of them affect the equilibrium, and it de-

cides the probability of actions at time t. Thus, the probability of history of actions is

calculated recursively.

Pr(hdt+1|Φ) = Pr(xdt |hdt ,Φ)Pr(hdt |Φ) (3.9)

The probability of action xdt at time t of day d, Pr(xdt |hdt ,Φ), is decided by the propor-

tion of traders who choose each action xdt ∈ {buydt , selldt , no tradedt } after history of

actions hdt . It can be expressed as follows using the law of total probability.

Pr(xdt |hdt ,Φ) =Pr(xdt |vdh, hdt ,Φ)Pr(vdh|hdt ,Φ)

+ Pr(xdt |vdl , hdt ,Φ)Pr(vdl |hdt ,Φ)

+ Pr(xdt |vdd−1, hdt ,Φ)Pr(vdd−1|hdt ,Φ) (3.10)

Let us consider a case of xdt = buydt to see how the probabilities in equation (3.10)

are calculated. After a history of actions hdt , ask price at time t is derived satisfying the

following condition from equation (3.5).

adt = E(Vd|buydt , hdt , adt , bdt )

= E(Vd|βd1,t, hdt ) = min
τ∈T dt

E(Vd|βd2,t, hdt , τ)

The thresholds βd1,t and βd2,t are equilibrium products derived at t. With these at hand,
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the probability of buying at time t can be calculated as below.

Pr(buydt |vdh, hdt ,Φ) =µγ

∫ 1

βd1,t

gh(sdt |vh, τT )dsdtPr(v
d
h|ht,Φ)

+ µ(1− γ)

∫ 1

βd2,t

gh(sdt |vh, τT )dsdtPr(v
d
h|ht,Φ) + (1− µ)

ε

2

=µγ(1− βd1,t)(1− τTβd1,t) + µ(1− γ)(1− βd2,t)(1− τTβd2,t)

+ (1− µ)
ε

2

Note that true level of τT is used to calculate Pr(buydt |vdh, hdt ,Φ) here instead ofE(τ |hdt )

used for the market maker to calculate Pr(buydt |vdh, hdt ) in ask price in equation (3.1).

The probability of selling is calculated following the same procedure.

Pr(selldt |vdh, hdt ,Φ) =µγ

∫ σd1,t

0

gh(sdt |vh, τT )dsdtPr(v
d
h|ht,Φ)

+ µ(1− γ)

∫ σd2,t

0

gh(sdt |vh, τT )dsdtPr(v
d
h|ht,Φ) + (1− µ)

ε

2

=µγσd1,t{1− τT (1− σd1,t)}+ µγσd2,t{1− τT (1− σd2,t)}

+ (1− µ)
ε

2

Also, the probability of no trade is

Pr(no tradedt |vdh, hdt ,Φ) = 1− Pr(buydt |vdh, hdt ,Φ)− Pr(selldt |vdh, hdt ,Φ)

The case of a bad event day (Vd = vdl ) can be calculated in similar way. In the no

informational event day (Vd = vd−1), it is simple to compute these probabilities since

there are only noise traders in the market. The probability of buy, sell or no trade in the

no event day is ε/2, ε/2 or 1−ε respectively. The last term to compute in equation (3.10)

is the probability of each state at time t of day d, Pr(Vd|hdt ,Φ). It is also computed

recursively from the history of actions using Bayes theorem.

From the model presented here, we can think of how each parameter is estimated
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intuitively, although the likelihood is determined with all parameters combined. The

informational uncertainty α decides the ratio between informational event day and no-

event day. In no-event day, the traders’ action is only governed by ε mechanically.

In informational event day, the action of traders is different from that of no-event day

since only 1 − µ share of traders are noise traders. The ratio between a good event

day and a bad event day is decided by δ, so if the proportion of a day dominated by

buy action is higher, δ is more likely to be high. High level of τT , in combination

with τ and τ , generates more precise signals, so the action of informed traders will

be in the right direction. If there are more traders with ambiguity aversion, γ is low,

and it brings more no trade or herding and contrarian behaviour relative to the case

dominated by traders without ambiguity together with larger gap between τ and τ . The

re-evaluation parameter ρ determines the proportion between herding or contrarian and

no trade. With low level of ρ, no trade is chosen more likely and with high ρ herding or

contrarian behaviour happens more likely as explained in the previous section.

3.4.2 Data

Following Easley et al. (1997) and Cipriani and Guarino (2014), TAQ (Trades and

Quotes) dataset is used to estimate the model. The data we need to compute the like-

lihood are history of orders, which are sequences of buy, sell or no trade action. The

TAQ dataset is composed of Quotes and Trades. Quotes data provide ask and bid prices

with their time to be quoted, and trades data contain records of occurred trades with its

transaction prices and time. By matching the quotes and trades, the action at each time

can be determined following Lee and Ready (1991) and Cipriani and Guarino (2014)4.

The trade data itself does not have the sign of trade, such as buying or selling of

traders. Therefore, a trade is denoted as buying if the trade price is higher than the

mid-point of ask and bid at that time. If the price is lower than the mid-point, it is

4As there is a delay in reporting transaction prices, each quote is moved ahead by five seconds fol-
lowing Lee and Ready (1991). Also, the opening trades are excluded as the mechanism of the trade is
different from the trades during the day.
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denoted to be selling. When the price is just same as the mid-point of ask and bid,

it is compared with the previous price. If the price has risen, it is thought to be buy

order; if it has fallen, the order is selling. There is no direct information on no trade

in the TAQ dataset. Hence, the methodology of inserting no-trade if the time elapsed

between explicit trades is longer than a predetermined time interval is used following

Easley et al. (1997). The unit of time interval considered to be no trade is calculated by

the average time elapsed between the explicit trades.

Using the methods explained above, the data on Ashland Inc. and Capital One

Financial Corp. in 1995 are estimated. There were 252 days of trading in 1995. The

average number of explicit trades per day on Ashland Inc. is 90 in 1995. It makes the

unit of interval to be 259 seconds. Thus, if the interval between two explicit trades is

longer than 259 seconds, one ’no trade’ is assigned and if it is longer than 518 seconds,

two ’no trades’ are assigned and so on. Including the no trade, the average trades per

day is 149 for Ashland Inc. Following the same methodology, the average trade per day

for Capital One Financial Corp. in 1995 is 206 for the same 252 days.

Table 3.1 Trading data

Stock buys sells no trades total buy/sell ratio

Ashland Inc.
44.7 45.8 58.8 149.2 1.03
(42) (44) (60) (146.5) (0.96)

Capital One Financial Corp.
68.9 56.4 81.2 206.5 1.48
(60) (55) (82) (200.5) (1.18)

Note: Average of 252 days in 1995. Numbers in paretheses are median.

The trade data on Ashland Inc. are used by previous literature such as Easley et

al. (1997) and Cipriani and Guarino (2014), so the estimation results can be compared

with them. Capital One Financial Corp. in 1995 has similar features with Ashland Inc.

such as listed on NYSE, similar level of asset value and number of trading, except the

year they entered the market. Ashland Inc. was founded in 1924 while Capital One

Financial Corp. was in 1994. The gap between them is expected to bring a difference

in the ambiguity on signal.
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3.4.3 Estimation results

The vector of parameters Φ = {α, δ, µ, γ, τT , τ , τ , ε, ρ} is estimated by maximum like-

lihood estimator using the likelihood function explained in the previous section. Look-

ing at the results for Ashland Inc. first, estimates and standard deviations of the nine

parameters are in Table 3.2. The informational event probability α is estimated to be

0.28 meaning the fundamental value of the asset changes with a probability a little less

than one third. The probability of good event among informational event days, δ, is

0.55 slightly larger than a half. The proportion of informed traders µ is estimated to

be 0.46. The estimate for the share of traders without ambiguity γ is 0.79. We can say

that around 20% of the informed traders are estimated to be ambiguity averse in this

market. It is around 10% among the all traders, including noise traders. The set of T0

is not small as τ = 0.22 and τ = 0.73. The re-evaluation parameter ρ, however, is

high at 0.99. It means that the ambiguity averse traders only consider the values of τ

which have more than 90% of probability to generate the history. Also, it implements

that the traders re-evaluate the set T dt so strictly that the τ considered in their decision

making is almost close to the Maximum Likelihood Updating. The parameter for the

probability of noise trader to buy or sell (ε) is estimated to be 0.57, which is, among the

noise traders, 57% explicitly buy or sell while 43% choose not to trade.

Table 3.2 Estimation results for Ashland Inc.

Parameter
Ambiguity model CG model EKO model
Estimate SD Estimate SD Estimate SD

α 0.28 0.03 0.28 0.03 0.33 0.04
δ 0.55 0.08 0.62 0.06 0.60 0.06
µ 0.46 0.03 0.42 0.01 0.17 0.01
γ 0.79 0.02 - - - -
τT 0.28 0.06 0.45 0.02 - -
τ 0.22 0.02 - - - -
τ 0.73 0.02 - - - -
ρ 0.99 0.02 - - - -
ε 0.57 0.009 0.57 0.002 0.58 0.002

Note: The estimates for Cipriani and Guarino (2014) (CG) and Easley et al.
(1997) (EKO) models are from Cipriani and Guarino (2014)
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We can compare the result with literature which used similar sequential trading

models, such as Easley et al. (1997) (EKO model) and Cipriani and Guarino (2014)

(CG model). The estimates for informational event probability α, good event probabil-

ity δ, and share of active noise traders ε are similar to the previous literature, and δ is

insignificantly lower with large standard deviation. The proportion of informed traders

µ in the ambiguity model is slightly larger than the other two models. It can be inter-

preted that the actions considered as coming from noise traders in the previous models

are explained by the ambiguity averse traders such as no trade.

With the estimated parameters, the model is simulated again with the trading data.

It generates the series of prices and thresholds of each day, and with these the frequency

of ’no trading’ and ’herd’ or ’contrarian’ behaviour are computed as in Table 3.3 and

3.4. The frequencies are calculated by the proportion of the periods that satisfy the

definitions of each behaviour in equilibrium on the informational event days. The in-

formational event days are defined as the days when Pr(vdh|hT ) or Pr(vdl |hT ) at last

period T is larger than 0.9.

Looking at the frequency of ’no trading’ (βd2,t = 1, σd2,t = 0)’, ’no buying (βd2,t =

1, 0 < σd2,t ≤ 0.5)’ and ’no selling (σd2,t = 0, 0.5 ≤ βd2,t < 1)’ of ambiguity averse

traders, they are not common, as 2 or 3%. This can be explained by the high re-

evaluation parameter ρ in this case. With high ρ, the set T dt shrinks a lot as time goes

by. It makes ’no trading’ harder to occur in equilibrium.

Table 3.3 Frequency of ’no trading’ for Ashland
Inc.

Behaviour Without ambiguity Ambiguity averse
No trading 0 (0) 0.021 (0)
No buying 0 (0) 0.035 (0.019)
No selling 0 (0) 0.036 (0.016)

Note: Frequency is the average proportion of periods
each behaviour occurs in the informational event days.
Numbers in parenthesis are median. No trading as well
as no buying and no selling do not happen for the traders
without ambiguity in this case.

Looking at the frequency of herd or contrarian behaviour, it occurs with high pro-
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portion in Ashland’s trading data. Herding happens for the traders without ambiguity

more than 15% and for the ambiguity averse traders more than 20% in the informational

event days. Herding of the traders without ambiguity mostly comes from the informa-

tional asymmetry on event uncertainty between the traders and the market maker as

noted in Cipriani and Guarino (2014). For the ambiguity averse traders, herding hap-

pens because of the difference between the set T dt and expected τ by the market maker

on top of the event uncertainty. With a sizable initial set T d0 , and high ρ, the high pro-

portion of herding is expected as in the result. The contrarian behaviour does not occur

as frequently as herding, but it still takes a larger proportion compared to Capital One

Financial Corp. which will be presented later.

Table 3.4 Frequency of ’herd’ and ’contrarian’ be-
haviour for Ashland Inc.

Behaviour Without ambiguity Ambiguity averse
Herd buy 0.154 (0.105) 0.255 (0.137)
Herd sell 0.189 (0.102) 0.206 (0.068)

Contrarian buy 0.0003 (0) 0.080 (0.007)
Contrarian sell 0 (0) 0.112 (0.048)

Note: Frequency is the average proportion of the periods each
behaviour occurs in the informational event days. Numbers in
parenthesis are median.

We also can check how likely an informed trader chooses the action of ’no trade’

as a part of the behaviour of no buying or no selling (no trading is included as well),

and ’buying’ or ’selling’ as herd or contrarian behaviour. The probability is decided by

the signal distributed to the traders at each time. The probability of an informed trader

choose no trade as an action of the no buying or no selling behaviour is the probability

of getting a signal between σdi,t and βdi,t with βdi,t = 1 or σdi,t = 0. It is computed by∫ βdi,t
σdi,t

gj(sdt |vdj , τ)dsdt at time t of a day d if βdi,t = 1 or σdi,t = 0, where i ∈ {1, 2} and

j ∈ {h, l}. The probability of the trader to buy as the herd behaviour is a probability of

getting a signal between βdi,t and 0.5 when βdi,t < 0.5 and E(Vd|hdt ) > E(Vd|hd1). This

probability is computed by
∫ 0.5

βdi,t
gh(sdt |vdh, τ)dsdt if βdi,t < 0.5 and E(Vd|hdt ) > E(Vd|hd1).

Calculation of the probability of the informed trader to sell in the herd behaviour or buy
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or sell in the contrarian behaviour are similar to the case of buy herding.

Table 3.5 Probability of the action by informed traders for Ashland Inc.

Action Without ambiguity Ambiguity averse
No trade in

0 (0) 0.123 (0.126)
no buying or no selling behaviour

Buy in herd behaviour 0.012 (0.005) 0.088 (0.036)
Sell in herd behaviour 0.019 (0.006) 0.074 (0.001)

Buy in contrarian behaviour 0 (0) 0.021 (0)
Sell in contrarian behaviour 0 (0) 0.031 (0.009)

Note: Probabilities are computed by the average proportion of traders getting the
signal sdt on the informational event days. Numbers in parentheses are median.

Table 3.5 shows the average probability of each action on all the informational event

days. No trade would be chosen only by informed traders with ambiguity aversion

around 12%. Buy or sell as an action under herd behaviour of the traders without ambi-

guity occurs less than 2%, while it happens for the ambiguity averse traders around 8%.

Considering the proportion of each trader in the market, an informed trader, regardless

of the ambiguity, chooses to buy under herding with 2.8% and sell with 3.1% while

choosing no trade under no buying or selling behaviour with 2.4% on average. As for

the actions in contrarian behaviour, the probability for the ambiguity averse traders is

small as 2 or 3%, with zero probability of the traders without ambiguity.

To illustrate how these behaviours occur, one day of trading data for Ashland Inc.

is presented in Figure 3.1. The upper panel is the ask and bid prices and accumulated

orders which is denoted as 1 for buy, −1 for sell, and 0 for no trade. The middle panel

is about the four thresholds βd1,t, β
d
2,t, σ

d
1,t and σd2,t. Depending on the thresholds and the

prices in the upper panel, the behaviour is decided. The lower panel is about the upper

and lower bound for T dt and E(τ |hdt ).

The day starts with selling orders that make the ask and bid price decrease with

elevated thresholds βdi,t and σdi,t. After a few fluctuations, the trade is eventually domi-

nated by buy orders and the prices subsequently converge to vh. We can check that T dt

shrinks quickly and those two bounds fluctuate a lot with changes in the history of or-

ders, compared to the expected level of τ by the agents without ambiguity,E(τ |hdt ). The
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shrinkage and fluctuations are caused by high level of ρ. The fluctuation in T dt makes

the thresholds for the ambiguity averse traders, βd2,t and σd2,t, volatile and generates the

herd behaviour.

Figure 3.1 One day of trading: Ashland Inc.
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Note: In the upper panel, ask and bid prices are measured on the left axis. Accumulated order,
measured on the right axis, is the accumulated sum of history of orders represented by 1 for buying,
−1 for selling and 0 for no trade. In the middle panel, herd buying occurs when βi,t is lower than
0.5 with price is higher than 0 and herd selling when σi,t is higher than 0.5 and price is lower than
0. In the lower panel, the two red lines are bounds for Tt.

The estimates for the market of the other stock, Capital One Financial Corp., is also

presented. The data are about trades in 1995, like Ashland Inc. The company is also

listed on NYSE and the level of total asset of the company in 1995 was around 5 billion
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dollars which is not very different from Ashland of 7 billion. The average number of

trading per day for Capital One Financial Corp. is similar to Ashland as well. One thing

to note for this stock is that the company was founded in 1994. Compared to Ashland

Inc., founded in 1920s, Capital One Financial Corp. is a new company that traders do

not seem to have a lot of precise information on it.

The estimates for Capital One Financial Corp. are in Table 3.6. Compared to Ash-

land data, it shows similar estimates in the probability of good event day (δ = 0.53),

and T d0 with τ = 0.22, τ = 0.75. On the other hand, the probability of informational

event (α = 0.7), informed traders (µ = 0.63) and the proportion of noise traders to

buy or sell (ε = 0.69) are higher than those from Ashland Inc. More interesting esti-

mates are the share of traders without ambiguity (γ), and re-evaluation parameter (ρ).

γ is relatively low as it is 0.22. It means that there are more share of ambiguity averse

traders (78%) in this marekt than in Ashland’s. Also, ρ is 0.44, which is low compared

to Ashland’s 0.99. The ambiguity averse traders in this market do not re-evaluate the

set T dt as strictly as those in the market trading Ashland’s stock.

Table 3.6 Estimation results
for Capital One Financial
Corp.

Parameter Estimate SD
α 0.70 0.02
δ 0.53 0.02
µ 0.63 0.007
γ 0.22 0.03
τT 0.49 0.08
τ 0.22 0.03
τ 0.75 0.02
ρ 0.44 0.03
ε 0.69 0.01

Since the re-evaluation is not conducted strictly with low level of ρ, the set T dt does

not shrink as much as the case of Ashland. It makes the behaviour of no buying or no

selling occur more likely. In Table 3.7, we can find the frequency of the behaviours of

no trading, no buying and no selling. In 20% of periods on the informational event days,
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’no trading (βd2,t = 1, σd2,t = 0)’ happens for the ambiguity averse traders. ’No buying’

or ’no selling’ also takes a significant proportion, such as 24 and 27%. Those are much

higher relative to Ashland’s result at around 3%.

Table 3.7 Frequency of ’no trading’ for Capital
One Financial Corp.

Behaviour Without ambiguity Ambiguity averse
No trading 0 (0) 0.197 (0.154)
No buying 0 (0) 0.243 (0.196)
No selling 0 (0) 0.274 (0.279)

Note: Frequency is the average proportion of periods
each behaviour occurs in informational event days. Num-
bers in parenthesis are median.

The frequency of herding shows the opposite pattern. The proportions of herd buy

and herd sell of traders in the informational event days are much lower than those of

Ashland data, as those behaviours happen with 11 and 4% for the traders without am-

biguity and 8 and 0.2% for those with ambiguity aversion5. It can be explained by the

high α and low level of ρ. High α means low informational event uncertainty. The

low uncertainty makes the frequency of herding lower for all of the traders with and

without ambiguity. As for the ambiguity averse traders, low level of ρ affects them as

well. Since the set T dt does not shrink much after re-evaluation, the expected τ of the

market maker more likely stays within the set. Therefore, herding becomes harder to

occur for the ambiguity averse traders. Also, the proportion of contrarian behaviour is

almost zero.

Table 3.8 Frequency of ’herd’ and ’contrarian’ be-
haviour for Capital One Financial Corp.

Behaviour Without ambiguity Ambiguity averse
Herd buy 0.111 (0.058) 0.080 (0)
Herd sell 0.044 (0) 0.002 (0)

Contrarian buy 0.0003 (0) 0.0004 (0)
Contrarian sell 0 (0) 0 (0)

Note: Frequency is the average proportion of periods the
behaviour occurs in informational event days. Numbers in
parenthesis are median.

5There are a few days dominated by buy orders with long period of trading T . It generates the
asymmetry between the frequencies of buy herding and sell herding
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The probability of the informed traders to choose each action is also computed for

Capital One Financial in Table 3.9. The probability of the traders without ambiguity is

not significantly different from that of Ashland. The results for the ambiguity averse

traders, however, is different from it, in line with the frequency results. No trade under

no buying or selling behaviour occurs much more likely of 67% than 12% of Ashland,

and buy is chosen under herding around 2% compared to around 8% of Ashland. For all

the informed traders considering the proportion γ, no trade under no buying or selling

behaviour is selected with probability of more than 53%, and buy and sell under herding

is chosen with 2% and 0.2%, respectively. The probability of contrarian behaviour is

almost zero here.

Table 3.9 Probability of the action by informed traders for Capital One
Financial Corp.

Action Without ambiguity Ambiguity averse
No trade in

0.002 (0) 0.675 (0.735)
no buying or no selling behaviour

Buy in herd behaviour 0.023 (0.003) 0.023 (0)
Sell in herd behaviour 0.007 (0) 0.0003 (0)

Note: Probabilities are computed by the average proportion of traders getting the
signal sdt in informational event days. Numbers in parentheses are median. There
is zero probability of contrarian behaviour.

One day of trading for Capital One Financial Corp. is also plotted in Figure 3.2. We

can see that Tt stays at T d0 up to t = 86. It makes ’no buying or selling’ behaviour occur

for the ambiguity averse traders by generating βd2,t = 1 and σd2,t = 0. After that, a series

of buy orders finally induce the re-evaluation to shrink Tt substantially after t = 94.

3.5 Conclusion

In this research, it is shown that ambiguity aversion implemented by the recursive mul-

tiple prior can generate not only the behaviour of ’no buying’ or ’no selling’ for any

signal but also ’herd’ or ’contrarian’ behaviour of informed traders. The preference of

ambiguity averse traders considering the worst case payoff enables no trade to be chosen

even with an informative signal in equilibrium, and the gap between the re-evaluated set
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Figure 3.2 One day of trading: Capital One Financial Corp.
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Note: In the upper panel, ask and bid prices are measured on the left axis. Accumulated order,
measured on the right axis, is the accumulated sum of history of orders represented by 1 for buying,
−1 for selling and 0 for no trade. In the middle panel, herd buying occurs when βi,t is lower than
0.5 with price is higher than 0 and herd selling when σi,t is higher than 0.5 and price is lower than
0. In the lower panel, the two red lines are bounds for Tt.

of the signal precision τ by ambiguity averse traders and expected level of it by market

maker induces herd or contrarian behaviour.

Using this model, trading data of two stocks listed on NYSE are estimated. The

market trading Ashland Inc. is estimated to have high re-evaluation parameter ρ, and

Capital One Financial Corp. has low ρ. Their results show that, depending on the level

of the re-evaluation parameter, frequency of those behaviours differs. High ρ generates

herding and contrarian behaviour more likely while low ρ generates the behaviour of no
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trading more.
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Chapter 4

Market Manipulation in Financial Markets

4.1 Introduction

Market manipulation describes a deliberate attempt to interfere with the free and fair op-

eration of the market and create artificial, false or misleading appearances with respect

to the price of, or market for, a security, commodity or currency1. This phenomenon

holds the interest of Financial Institutions, that regulate the behaviour of market par-

ticipants, in order to guarantee the integrity of financial markets and avoid conducts

that undermine the general principle for which all investors must be placed on the same

footing. This is the reason why every behaviour that can be identified as market manipu-

lation is banned and, generally, condemned. Notwithstanding, the description of market

manipulation is not always clearly specified among regulations about financial markets

and, often, examples are provided by laws and Financial Institutions in order to detect

cases of market abuse in concrete terms. In the past years also some academic research

has been interested in explaining the possibility of “artificially influencing” asset prices

and analysing the mechanisms through which it could happen. Among other things,

researchers have studied the relationship between this behaviour and specific features

of financial markets (e.g., efficiency). A classification of market manipulation schemes

can be found in Allen and Gale (1992), who define three types of manipulation:

• action-based manipulation, that is manipulation based on actions that change the

1This is the definition provided by a supervisory authority on financial markets: http://www.
asx.com.au/supervision/participants/market_manipulation.htm
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actual or perceived value of the assets;

• information-based manipulation, that is manipulation based on releasing false

information or spreading false rumors;

• trade-based manipulation, that “occurs when a trader attempts to manipulate a

stock simply by buying and then selling, without taking any publicly observable

actions to alter the value of the firm or releasing false information to change the

price

Nevertheless, an unambiguous definition of market manipulation cannot be found.

More recently, Kyle and Viswanathan (2008) declared that the term manipulation is

not always used in a precise manner in economic literature and proposed that a trading

strategy is classified as ”illegal price manipulation” when the ”violator’s intent is to pur-

sue a scheme that undermines economic efficiency both by making prices less accurate

as signals for efficient resources allocation and by making markets less liquid for risk

transfer”.

In the present paper, following the Allen and Gale classification scheme, we focus

on trade based manipulation and we investigate the mechanisms through which manip-

ulation arises as the optimal behaviour of a rational trader.

We consider a sequential trading financial market with noise traders and two kinds

of rational traders: informed traders and a potential manipulator. All types of traders

interact and exchange one unit of an asset with a market maker. We show that there are

situations in which the potential manipulator disregards her belief in order to manipulate

the following rational traders’ behaviour. In these cases she is able to affect the pattern

of the prices and, through a later trade, she recoups the losses and also gains higher

total profits than those taken if she behaved according to her beliefs on both periods.

The result is strictly connected to the effects of the manipulator’s choice in the first

period she trades on the behaviour of the informed traders who enter the market in

the next period. In particular, it holds when the behaviour that the rational traders do
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not follow their signals such as herding arises after the manipulator’s action. With the

term “herding” we refer to situations in which there is conformity of actions. In these

cases, rational traders decide to disregard their private information and to follow the

manipulator’s behaviour2.

It is the first time, as far as we know, that a model describes profitable trade based

manipulation as the case in which the manipulator, through causing behaviours like

herding among the other rational agents, finds it optimal to make the other market par-

ticipants do what she wants them to do, in order to affect the pattern of the asset prices.

The phenomenon can be identified as ”momentum ignition”, that, technically, is

the entry of orders or a series of orders intended to start or exacerbate a trend, and

to encourage other participants to accelerate or extend the trend in order to create an

opportunity to unwind or open a position at a favorable price. 3

Finally, we point out that, in our paper, there are a few similarities with previous

research about trade based manipulation studied in a sequential trading financial mar-

ket’s framework. However, it is the first time that the contemporary presence of various

classes of traders is analysed and that the interaction among them is evaluated; previous

literature, in fact, mainly focuses on the interaction between the manipulator and the

market maker.

Review of the literature

Allen and Gale (1992), in the same paper mentioned above, proposed a rational

expectations’ model in which some equilibria involve manipulation. They defined three

types of agents: rational small investors, a large trader, who enters the market only if she

has a private information, and a manipulator. Under certain conditions the manipulator

can mimic the informed trader’s actions and pretend to be informed: therefore investors

become uncertain whether the trade is from an informed trader or a manipulator and the

2We underline that manipulated traders are rational informed traders, but we study the conditions
under which they disregard their private information and imitate the manipulator’s action.

3The description of “momentum ignition” as a particular type of manipulative behaviour is provided
by the European Securities and Markets Authority (ESMA) in one of its official documents: http:
//www.esma.europa.eu/system/files/esma_2012_122_en.pdf.
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latter makes profits from this situation.

In a later paper, Aggarwal and Wu (2006) illustrate both a theoretical model and an

empirical analysis of the manipulation phenomenon. In the theoretical part they refer

to the model of Allen and Gale, adding symmetric information seekers (traders who try

to “ferret out information about the firm’s prospects”). The latter traders observe what

happens in the market and behave according to it and, in general, contribute to improve

market efficiency. The authors prove that it does not happen when manipulators are in

the market. Other contributions on trade based manipulation are mainly related, as in

our case, to one model of market microstructure, either the model by Kyle (1985) or

Glosten and Milgrom (1985). Allen and Gale (1992) show that uninformed trade based

manipulation can arise in Kyle and Glosten and Milgrom frameworks, when some as-

sumptions are replaced by more natural ones: the authors assert that liquidity traders

cannot be treated as symmetric, that is they are equally likely to be buyers as sellers.

Moreover, Glosten and Milgrom and Kyle consider sellers and buyers equally likely to

be informed, but there are factors such as short sale constraints which imply a differ-

ent probability of a buyer being informed than a seller. Given the new assumptions,

the effects of purchases and sales on prices are “asymmetric” and lead to manipula-

tion opportunities. The authors show that a manipulative strategy “buy-sell” adopted

by the trader is, in any case, unprofitable, but they provide an example in which a

manipulative strategy “buy-buy-sell-sell” is possible and also profitable. Chakraborty

and Yilmaz (2004) use a Glosten and Milgrom setup (but the result is also proved in a

Kyle model) to show that, when the market maker is uncertain about the presence of

informed traders in the market and the number of trading periods is sufficiently high,

informed traders manipulate in every equilibrium. The authors refer to Kyle’s result,

according to which an informed trader knows that trading reveals her knowledge and

chooses a less aggressive strategy in a situation where her trading affects the market

price than in a situation where it does not, in order to hide her information as much as

possible. Nevertheless, Kyle also demonstrates that there exists a unique equilibrium
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in the market where the insider trades in the direction of her information. Chakraborty

and Yilmaz, on the other hand, show that the informed trader might also find it in her

interest to confuse the market maker by trading in the ‘wrong’ direction with respect

to her information, undertaking short-term losses, and then recoup them and make long

term profits, if there is a sufficiently large number of periods to do it. In another pa-

per Chakraborty and Yilmaz (2008) again define manipulation as the strategy in which

a dynamic informed trader undertakes short term losses to increase noise in the mar-

ket maker’s learning process and makes profits in later trades. In this case the authors

consider again rational informed traders and noise traders. Moreover, they introduce

rational traders called followers, who do not know the nature of the information of the

other traders (who are the ‘leaders’), but try to infer it from the first period order flow.

As a result, the existence of followers creates incentives for the leader, when she acts in

the first period, to trade against her information in order to create noise in the inference

problem of the followers (who, otherwise, would compete away all the profits in the

second period) and, then, of the market maker.

As already stated, in the papers mentioned above trade based manipulation is never

related to herding behaviour. Nevertheless, even if herd behaviour cannot arise in the

Glosten and Milgrom set up, the latter is also a basic framework for some models which

explain herding in financial markets. In particular, Cipriani and Guarino (2014) develop

and estimate a model of informational herding, inspired by the paper by Avery and

Zemsky (1998) and based on models by Glosten and Milgrom (1985) and Easley and

O’Hara (1987)4.

Also previous papers about herding in financial markets (among others, Avery and

Zemsky (1998), Lee (1998) and Cipriani and Guarino (2008)) analyse a market where

informed and uninformed traders sequentially trade a security of unknown value with a

market maker. Herding behaviour arises in these cases when there is ‘multidimensional

4The authors generalize Glosten and Milgrom’s model to an economy where trading happens over
many days.
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uncertainty’, that is uncertainty not only about the value of the asset but also about one

or more of the other features of the model. For instance, in Avery and Zemsky (1998),

as well as in Cipriani and Guarino (2014), there is uncertainty about the occurrence of

an information event that affects the value of the asset.

The remainder of this paper is organized as follows: Section 2 presents the model

set up; Section 3 describes market manipulation and its properties. In Section 4, the

profitable manipulation is examined in various cases. Section 5 shows the conditions

for the profitable manipulation; finally, Section 6 offers some conclusions about the

model and possible future developments of research about manipulation.

4.2 The Model

The model is based on Glosten and Milgrom (1985). It is modified to have a binary

signal on the value of the traded asset, and a potential manipulator is added as a new

type of informed trader.

The market

An asset is traded by a sequence of traders who interact with a market maker. Time

is represented by a set of trading time indexed by t = 1, 2, 3, .... At each time t, a trader

can exchange the asset with the market maker. The trader can buy, sell or decide not to

trade. Each trade consists of the exchange of one unit of the asset for cash. We denote

the action of the trader at time t byxt. Moreover, we denote the history of trades and

prices until time t− 1 by ht.

At any time t, the market maker sets the prices at which a trader can buy or sell the

asset. When posting these prices, she must take into account the possibility of trading

with agents who (as we see below) have some private information on the asset value.

Therefore, she sets different prices at which she is willing to sell and to buy the asset;

that is, there will be a bid-ask spread. We denote the ask price (i.e., the price at which a

trader can buy) at time t by at and the bid price (i.e., the price at which she can sell) by
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bt.

The asset value

The asset value V is δ with probability 1−α, which is thought to be the value which

stays at the previous day’s value, and δ guarantees that the closing price is martingale.

With probability α, the asset value changes. In the latter case, since as we will see, there

are informed traders in the market, we say that an information event has occurred. If

an information event occurs, with probability 1− δ the asset value decreases to 0 (“bad

informational event”), and with probability δ it increases to 1 (“good informational

event”).

The market maker

Unmodeled potential (Bertrand) competition forces the market maker to set prices

so as to make zero expected profits in each period t. The market maker observes the

history of traders’ decisions and prices until time t − 1, ht. When setting the prices,

the market maker takes into account not only the information conveyed by ht, but also

the information conveyed by the time t decision to buy, to sell or not to trade the asset.

Bertrand competition implies that the equilibrium bid (ask) will be the highest (lowest)

price satisfying the zero expected profit condition.

Hence, the equilibrium bid and ask prices at time t have to satisfy the following

conditions:

bt = E(V |ht, xt = sell, at, bt), (4.1)

at = E(V |ht, xt = buy, at, bt). (4.2)

Finally, we denote the expected value of asset V at time t, before the trader in t has

traded, by pt, that is,

pt = E(V |ht). (4.3)
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We will refer to pt as the “price” of the asset.

The traders

Traders act in an exogenously determined sequential order. Each trader is chosen to

take an action only once, at time t. Traders are of two types, informed and uninformed

(or noise). The trader’s type is not known publicly, that is, it is her private information.

When there is an informational event, at each time t with probability µ the trader is

informed. If there is no event, at any t the trader is noise.

Noise traders

Uninformed (or noise) traders trade for unmodeled (e.g., liquidity) reasons: they

buy, sell or do not trade the asset with exogenously given probabilities. We assume that

in each period in which they are called to trade, they buy with probability εb, sell with

probability εs, and do not trade with probability 1− εb − εs.

Informed traders

Informed traders know their own private component and have private information on

the asset value’s common component. If at time t an informed trader is chosen to trade,

she observes a private signal st on the realization of V . st is a symmetric binary signal,

taking values 0 and 1 with precision q > 1
2
; that is, Pr(st = 0|V = 0) = Pr(st = 1|V =

1) = q. In addition to her signal, an informed trader at time t observes the history of

trades and prices. Therefore, her expected value of the asset is E(V |ht, st).

The informed traders’ payoff function is

U(v, xt, at, bt) =


v − at if xt = buy,

0 if xt = no trade,

bt − v if xt = sell.

(4.4)

Informed traders choose xt to maximize E(U(·)|ht, st), and they are assumed not to

trade when they are indifferent between trading and no trade.
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4.3 Market Manipulation

To study market manipulation, we need to allow one informed trader to trade twice who

is called a manipulator.

Definition 5. A trade at time t, xt, is manipulative if the trader suffers an expected loss

at that time: E(U(V, xt, at, bt)|ht, st) < 0.

The trader suffers an immediate loss (in expectation) to gain a higher payoff (in

expectation) in the future. Let us assume that other agents (traders and market maker)

think manipulation does not occur (e.g., it is a zero probability event). Our aim is to

find cases in which in this set up manipulation is optimal. To make our life easier, let

us assume that the manipulator has a signal of different precision, qM . The manipulator

trades twice, at times t is τ and τ ′.

Let us also explicitly define the standard (non manipulative) trading activity:

Definition 6. A trade at time t, xt, is standard if xt ∈ arg maxE(U(V, xt, at, bt)|ht, st).

In words, a standard trade maximizes the expected utility obtained at time t only. If

the manipulator chooses the standard trade, denoted by x∗t then her expected profit at

time t = τ is:

Π∗τ,τ ′ = E(U(V, x∗τ , aτ , bτ )|hτ , sτ ) + E (E(U(V, x∗τ ′ , a
∗
τ ′ , b

∗
τ ′)|h∗τ ′ , sτ )|hτ , sτ )

If she chooses the manipulative trade xMt then her expected profit at time t is:

ΠM
τ,τ ′ = E(U(V, xMτ , aτ , bτ )|hτ , sτ ) + E

(
E(U(V, xMτ ′ , a

M
τ ′ , b

M
τ ′ )|hMτ ′ , sτ )|hτ , sτ

)

where the superscript M and ∗ in history hτ ′ , prices aτ ′ , bτ ′ and actions xτ ′ means those

under the manipulative and standard strategy respectively.

To make the manipulative strategy more profitable than the standard strategy, there

requires a factor which inflates or deflates the price by the action of the manipulator. The
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factor we focus in is the herd behaviour. If there is a herd behaviour, the other informed

traders ignore their private signal and just follow the dominated action of others. It

can boost or plunge the price regardless of the true value. According to Avery and

Zemsky (1998) and Cipriani and Guarino (2014), herding behaviour of the informed

traders can occur in the sequential trading model with event uncertainty. The profitable

manipulation can happen in relation with it. Following Cipriani and Guarino (2014),

we define herding as below.

Definition 7. A trader with private signal st engages in ’herding’ at time t if she buys

with any signal when E(V |ht) > p1 or if she sells with any signal when E(V |ht) < p1.

4.3.1 No event uncertainty

Herding is not possible in this sequential trading model based on Glosten and Milgrom

(1985) without event uncertainty according to Avery and Zemsky (1998) and Cipriani

and Guarino (2014). In this section we will look at the relationship between the event

uncertainty and the manipulative strategy.

Proposition 14. For a manipulator who can trade at time t is τ and τ ′, the manipulative

strategy is not optimal when there is no event uncertainty.

When α = 1, which implies that there is no event uncertainty, informed traders buy

with a signal st = 1 and sell with a signal st = 0, and only the number of buys and

sells matters for prices and expectations as in the model like the Glosten and Milgrom

model without event uncertainty. Suppose the manipulator receives a signal sMτ = 0 at

t = τ . If she could only act at time τ , she would sell as other informed traders. If she

can act twice, at time τ and at a future time τ ′ > τ , she finds it optimal to manipulate

if the expected sum of the profit at time τ and τ ′ of the manipulative strategy, ΠM
τ,τ ′ , is

larger than that of the standard strategy, Π∗τ,τ ′ . We know that the profit of the standard

strategy at each time is always not negative as the trader can choose not to trade if the

other actions would bring a negative profit. The sum of the profit of the manipulative
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strategy is as follows.

ΠM = E(V |hτ , sMτ = 0)− aτ

+ E[E(U(V, xMτ ′ , a
M
τ ′ , b

M
τ ′ )|hMτ ′ \ {buyτ}, sMτ = 0)|hτ , sMτ = 0]

= E(V |hτ , sMτ = 0)− aτ

+ E[E(V |hMτ ′ \ {buyτ}, sMτ = 0)− aMτ ′ |hτ , sMτ = 0, E(V |hMτ ′ \ {buyτ}, sτ = 0) > aMt′ ]

× Pr(E(V |hMτ ′ \ {buyτ}, sMτ = 0) > aMτ ′ |hτ , sMτ = 0)

+ E[bMτ ′ − E(V |hMτ ′ \ {buyτ}, sMτ = 0)|hτ , sMτ = 0, E(V |hMτ ′ \ {buyτ}, sMτ = 0) < bMτ ′ ]

× Pr(E(V |hMτ ′ \ {buyτ}, sMτ = 0) < bMτ ′ |hτ , sMτ = 0)

+ 0× Pr(aMτ ′ |hτ , sMτ = 0, aMτ ′ ≥ E(V |hMτ ′ \ {buyτ}, sMτ = 0) ≥ bMτ ′ |hτ , sMτ = 0)

where the superscript M and ∗ in history hτ ′ , prices aτ ′ , bτ ′ and actions sellτ ′ , buyτ ′

means those under the manipulative and standard strategy respectively. The profit at

time τ is E(V |hτ , sMτ = 0) − aτ as the manipulator buys even with the bad signal

sMτ = 0. The future profit at τ ′ depends on the history after t = τ . {buyτ} is excluded

from the history as the buy action at t = τ is chosen by the manipulative motive, so it

is not used as an information for the expected asset value. If the expected asset value of

the manipulator becomes higher than the ask price at time τ ′, the manipulator will buy,

so she gets the profit E(V |hMτ ′ \{buyτ}, sMτ = 0)−aMτ ′ . If the expectation is lower than

the bid price, the profit becomes bMτ ′ − E(V |hMτ ′ \ {buyτ}, sMτ = 0) since she chooses

to sell. Otherwise, the profit is zero with no trade. The only possible case to happen

is selling at t = τ ′. For any history after time t = τ , the expected asset value of the

manipulator is

E(V |hMτ ′ \ {buyτ}, sMτ = 0)

< E(V |hMτ ′ \ {buyτ}) = E(V |hMτ ′ , sellτ ′) = bMτ ′

< E(V |hMτ ′ ) < E(V |hMτ ′ , buyτ ′) = aMτ ′

75



The bid price at τ ′ is always higher than the asset value expected by the manipulator.

Therefore, with any history after τ , the manipulator sells at τ ′ and the probability of

other actions are zero. The sum of the expected profits can be rewritten as

ΠM
τ,τ ′ = E(V |hτ , sMτ = 0)− aτ + E[bMτ ′ − E(V |hMτ ′ \ {buyτ}, sMτ = 0)|hτ , sMτ = 0]

= E[bMτ ′ |hτ , sMτ = 0]− aτ (4.5)

Also, the expected bid price at t = τ ′ by the manipulator is smaller than ask price at

t = τ because

E[bMτ ′ |hτ , sMτ = 0] = E[E(V |hMτ ′ , sellτ ′)|hτ , sMτ = 0]

< E[E(V |hMτ ′ )|hτ , sMτ = 0] < E[E(V |hMτ ′ )|hτ ]

= E(V |hτ , buyτ ) = aτ

It implies that the sum of expected profit of the manipulative strategy ΠM
τ,τ ′ < 0. Since

the sum of profit of the standard strategy Π∗τ,τ ′ is not negative, the manipulator does not

choose the manipulative strategy. The case with a good signal is symmetric to this.

4.3.2 A trader without signal in the event uncertainty model

We can also think of an environment that the potential manipulator does not have her

private signal, although there is event uncertainty. The possibility of manipulation of

this case is analysed in this section.

Proposition 15. The manipulative strategy is not profitable for a trader without a pri-

vate signal when there is an event uncertainty.

The market price of the asset is between the ask and bid, at > E(V |ht) > bt in any

state even with the event uncertainty. For a manipulator who can trade at t is τ and τ ′

but does not have any signal, the optimal action is no-trade at time t = τ , NTτ , under

the standard strategy as at > E(V |ht) > bt at any t. It means that the expected profit
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of the standard strategy at time t = τ is zero. Also, the expected profit of the standard

strategy at time τ ′ would be non-negative as the trader can choose her action among

{buyτ ′ , NTτ ′ , sellτ ′} depending on aτ ′ and bτ ′ . Therefore, the manipulative strategy is

profitable only if

ΠM
τ,τ ′ = E(V |hτ )− aτ + E(E(U(V, xMτ ′ , a

M
τ ′ , b

M
τ ′ )|hMτ ′ )|hτ ) > 0 (4.6)

when the manipulator choose to buy at t = τ as a manipulative strategy. The third term

of the equation (4.6) can be re-written as

E(E(U(V, xMτ ′ , a
M
τ ′ , b

M
τ ′ )|hMτ ′ )|hτ )

= E[bMτ ′ − E(V |hMτ ′ \ {buyτ})|hτ , bMτ ′ > E(V |hMτ ′ \ {buyτ})]

× Pr(bMτ ′ > E(V |hMτ ′ \ {buyτ})|hτ )

+ E[E(V |hMτ ′ \ {buyτ})− aMτ ′ |hτ , E(V |hMτ ′ \ {buyτ}) > aMτ ′ ]

× Pr(E(V |hMτ ′ \ {buyτ}) > aMτ ′ |hτ ) (4.7)

For any history hτ ′ , aMτ ′ = E(V |hMτ ′ , buyτ ′) ≥ E(V |hMτ ′ ) ≥ E(V |hMτ ′ \ {buyτ}). It

ensures the non-positivity of the second term of the equation (4.7). Also, E(V |hτ ) <

aτ , E(V |hτ ) = E[E(V |hMτ ′ \ {buyτ})|hτ ], aτ = E(V |hτ , buyτ ) = E[E(V |hMτ ′ )|hτ ],

and for any history after t = τ , E(V |hMτ ′ \ {buyτ}) < E(V |hMτ ′ ). Using these, the

expected profit of the manipulative strategy is
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ΠM
τ,τ ′ = E(V |hτ )− aτ + E(E(U(V, xMτ ′ , a

M
τ ′ , b

M
τ ′ )|hMτ ′ )|hτ )

≤ E(V |hτ )− aτ + E[bMτ ′ − E(V |hMτ ′ \ {buyτ})|hτ , bMτ ′ > E(V |hMτ ′ \ {buyτ})]

× Pr(bMτ ′ > E(V |hMτ ′ \ {buyτ})|hτ )

≤ {E(V |hτ )− aτ + E[bMτ ′ − E(V |hMτ ′ \ {buyτ})|hτ , bMτ ′ > E(V |hMτ ′ \ {buyτ})]}

× Pr(bMτ ′ > E(V |hMτ ′ \ {buyτ})|hτ )

≤ E[E(V |hMτ ′ \ {buyτ})− E(V |hMτ ′ )

+ E(V |hMτ ′ , sellτ ′)− E(V |hMτ ′ \ {buyτ})|hτ , bMτ ′ > E(V |hMτ ′ \ {buyτ}]

× Pr(bMτ ′ > E(V |hMτ ′ \ {buyτ})|hτ )

= E[E(V |hMτ ′ , sellτ ′)− E(V |hMτ ′ )|hτ , bMτ ′ > E(V |hMτ ′ \ {buyτ})]

× Pr(bMτ ′ > E(V |hMτ ′ \ {buyτ})|hτ )

≤ 0

It means that the manipulative strategy is not profitable for the trader without a private

signal. In the case of selling at t as a manipulative strategy, the same logic is applicable.

Therefore, the manipulative strategy is not profitable without private information in any

way.

4.4 Profitable Manipulation

We have shown the conditions that the manipulative strategy cannot be an optimal strat-

egy. Without the event uncertainty or private signal for the manipulator, it is impossible

for the manipulative strategy to get a positive profit. In this section, we can show the

cases that the manipulative strategy is more profitable than the standard strategy, so the

manipulative strategy is optimal.
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4.4.1 Case 1: Fixed τ and τ ′ with µ = 1

The first case to analyse is that the time of the action τ and τ ′ are fixed. In the example

presented, the times are fixed at τ = 2 and τ ′ = 7. We also focus on the case with

µ = 1 in which all traders get a signal on the event day. It helps us restrict the possible

histories as there will be no noise traders on the event day. The other parameter values

of the example are as follows; α = 0.01, δ = 0.5, q = qM = 0.6, and εb = εs = 0.2.

The history of action at t = τ = 2 is buying and the manipulator is assumed to get a

bad signal sM2 = 0.

The optimal choice of an ordinary informed trader at t = 2 is buy with a good signal

and no trade with a bad signal for a2 = 0.5118 and b2 = 0.55. As the precision of the

private signal is the same for the ordinary informed trader and the manipulator with

q = qM , the optimal action of the manipulator with the standard strategy is not to trade.

Therefore, the profit the manipulator would get is zero at t = τ = 2. If the manipulator

choose the manipulative strategy, she will buy in order to inflate the price and the profit

becomes E(V |h2, sM2 = 0)− a2 = −0.0118.

Table 4.1 Expected profit of Case 1

Expected profit
Standard strategy (Π∗τ,τ ′) Manipulative strategy (ΠM

τ,τ ′)

τ = 2 0 −0.0118
τ ′ = 3 0 −0.0118

4 0.0777 −0.0118
5 0.0618 0.0382
6 0.0557 0.0294
7 0.0340 0.0469

Note: the parameter values used in the example are α = 0.01, δ = 0.5, µ =
1, q = qM = 0.6, and εb = εs = 0.2.

The path after time t = 2 differs depending on the strategy. Looking at the standard

strategy where the action at t = τ = 2 is no trade, the optimal action at t = 3 is buy with

a good signal and sell with a bad signal with the ask and bid prices are a3 = 0.5048

5Note that the bid bt = δ = 0.5 if a trader with any signal does not sell and µ = 1 as a selling makes
the market maker think that it is a no-event day.
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and b3 = 0.4952. If we think about a case that the period of the second action of

the manipulator τ ′ is set to be 3, the expected value of the manipulator is E(V |h∗3 \

{NT2}, sM2 = 0) = 0.5. From these, the optimal action of the manipulator is no trade,

and the expected profit is Π∗2,3 = 0.

At t = 4, there are two possible histories: buying or selling because of the optimal

actions depending on the signal at t = 3. The probability of each history in the ma-

nipulator’s point of view is Pr(buy3|h∗3 \ {NT2}, sM2 = 0) = 0.5 and Pr(sell3|h∗3 \

{NT2}, sM2 = 0) = 0.5.

After the history of buying at t = 3, the optimal action of the informed traders

is buy with a good signal and no trade with a bad signal; the ask and bid prices are

a4 = 0.5223 and b4 = 0.5. If τ ′ = 4, the optimal action of the manipulator is buying

because E(V |h∗4 \ {NT2}, sM2 = 0) = 0.6. It brings profit of 0.0777.

If the action chosen by the ordinary informed trader is selling at t = 3, the optimal

action of them becomes no trade with a good signal and sell with a bad signal given

a4 = 0.5 and b4 = 0.4777. The expected value of the manipulator after this history

is E(V |h∗4 \ {NT2}, sell3, sM2 = 0) = 0.4. From these the optimal action of the ma-

nipulator is selling, which brings profit of 0.0777. Therefore, the expected profit of the

standard strategy for τ ′ = 4 is Π∗2,4 = 0.0777.

The expected profit of the standard strategy with τ ′ > 4 are calculated following the

same way. With τ ′ = 7, there are 14 possible histories6, which are composed of two

buys, five sells, and seven no trades as an optimal action of the manipulator at t = 7.

As with the optimal action of the manipulator at t = τ ′, buys are chosen from the cases

with increases in the expectation higher than the ask prices and sells are from cases with

decreases in the expectation lower than the bid prices. The total expected profit of the

standard strategy when τ ′ = 7 is Π∗2,7 = 0.0340.

Looking at the manipulative strategy, from t = 3 the optimal action of the informed

trader is buying with any signal. In other words, herding occurs. The ask and bid price

6Details on the histories of the standard and the manipulative strategy are in the appendix
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are a3 = 0.5475 and b3 = 0.5. If we consider a case that τ ′ = 3, the subjective asset

value of the manipulator isE(V |hM3 \{buy2}, sM2 = 0) = 0.5. Hence, the optimal action

of the manipulator is not to trade and the expected profit becomes ΠM
2,3 = −0.0118+0 =

−0.0118.

At t = 4, there is only one possible history under the manipulative strategy, which is

buying because a herd buying occurs at t = 3. After observing a buy order, the optimal

action of the other traders at t = 4 is buying with a good signal and do not trade with a

bad signal given a4 = 0.6 and b4 = 0.5. Again, we can think of a case with τ ′ = 4. The

expectation of the manipulator is E(V |hM4 \{buy2}, sM2 = 0) = 0.5 because buy3 is not

informative as it is the only possible history. The optimal action for the manipulator is

not to trade and ΠM
2,4 = −0.0118 + 0 = −0.0118.

The expected profits of τ ′ > 4 under the manipulative strategy is computed in a

similar way. With τ ′ = 7, there are eight possible histories under the manipulative

strategy. Among them, the manipulator gets positive profit from four histories and

negative profit from the other four histories. In the cases of getting positive profit, the

optimal actions of the manipulator at τ ′ are not to trade. In these cases, there are many

buy orders in the history, so the expected values of the manipulator become high at

t = τ ′. The ask prices after the histories, however, are even higher than those. It makes

the optimal action of the manipulator at t = τ ′ = 7 to be no trade. The manipulator

bought the asset at time t = τ = 2 with ask price a2 under the manipulative strategy.

The expected total profit is E(V |h7 \ {buy2}, sM2 = 0) − a2 and it is higher than the

probable profit of executing an additional action of buying or selling at t = τ ′ = 7. It

can be interpreted as keeping the asset which would bring higher value even though it

was bought at a slightly high price in the past.

Interesting actions happen in the negative profit cases as well. The optimal action of

the manipulator is selling in these cases. Contrary to the positive profit cases, there are

fewer buy orders in the history which drives the expected value of the manipulator to

decrease. The bid prices, however, do not decline as much as the expected value of the
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manipulator. Thus, the optimal action of the manipulator is selling although b7 < a2 and

the total profits of these cases are negative. It can be thought to be an action minimizing

loss when the bad history occurs. Considering both cases of positive and negative profit,

the total expected profit of the manipulative strategy is ΠM
τ,τ ′ = 0.0469 with τ ′ = 7.

The expected profit of each strategy assuming τ ′ = 3 to 7 is shown in Table 4.1. We

can find that the manipulative strategy gives higher expected profit than the standard

one when τ ′ = 7.

4.4.2 Case 2: Fixed τ and τ ′ with µ < 1

The second example is more general than the first one. With µ < 1, there are noise

traders on the event day. We can find an example that the manipulative strategy is

profitable with µ = 0.9 and other parameters are the same.

Time τ and τ ′ are also fixed at 2 and 7 as before and the manipulator takes action

in the asset market at t = τ = 2 with a bad signal ( sM2 = 0) after observing a buy in

the initial period. Different from the previous case, the optimal action of the informed

traders depending on their signal at t = 2 is buying with a good signal and selling

with a bad signal. It is because there are not only traders with a good signal but also

noise traders who would buy in the previous period, so the bid and ask prices and

the expectation of the traders are different from the first case. The optimal action of the

manipulator with the standard strategy is selling at t = τ = 2 sinceE(V |h2, sM2 = 0) =

0.4956. The profit from the standard strategy is b2 − E(V |h2, sM2 = 0) = 0.0044. The

manipulative strategy in this case is inflating the price by buying even with a negative

profit at t = 2, which is E(V |h2, sM2 = 0)− a2 = −0.01452.

As before, the histories are different depending on the strategy. After the standard

strategy of selling at t = 2, the optimal action of the other traders at t = 3 is buying

with a good signal and selling with a bad signal. The ask and bid price are a3 = 0.5107

and b3 = 0.4893. Given these, the optimal action of the manipulator is no trade since

E(V |h∗3 \ {sell2}, sM2 = 0) = 0.4956. The expected profit is Π∗2,3 = 0.0044 + 0 =
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Table 4.2 Expected profit of Case 2

Expected profit
Standard strategy (Π∗τ,τ ′) Manipulative strategy (ΠM

τ,τ ′)

τ = 2 0.0044 −0.0145
τ ′ = 3 0.0044 −0.0090

4 0.0538 −0.0057
5 0.0469 0.0304
6 0.0332 0.0274
7 0.0299 0.0404

Note: the parameter values used in the example are α = 0.01, δ = 0.5, µ =
0.9, q = qM = 0.6, and εb = εs = 0.2.

0.0044.

At t = 4, three histories are possible: buy, sell or no trade. The probability of each

history from the manipulator’s perspective is Pr(buy3|h∗3 \ {sell2}, sM2 = 0) = 0.4692,

Pr(NT3|h∗3 \ {sell2}, sM2 = 0) = 0.06 and Pr(sell3|h∗3 \ {sell2}, sM2 = 0) = 0.4708.

The optimal action of the informed traders at t = 4 is the same for the three different

histories as buying with a good signal and selling with a bad signal. Assuming τ ′ = 4,

the optimal action of the manipulator is buying after observing a buy order at t = 3

and it is selling after not to trade or selling at t = 3. With the optimal actions of the

manipulator, the expected profit becomes Π∗2,4 = 0.0538.

The expected profit of the manipulator under the standard strategy can be calculated

with τ ′ > 4 accordingly. If τ ′ = 7, there are 81 possible histories and the optimal

action of the manipulator is selling in 42 histories, buying in 29 and not to trade in 10

histories. Similar to the first case, buys are chosen from the cases with the expectation

of the manipulator increased higher than the ask prices and sells are from the cases with

the expectations decreased lower than the bids. From these, the expected total profit is

Π∗2,7 = 0.0299.

Looking at the histories under the manipulative strategy, herd buying occurs at t = 3

after the manipulative buying at t = 2. The optimal action of the informed traders is

buying with any signal, and the ask and bid price are a3 = 0.5388 and b3 = 0.5011. If

τ ′ = 3, the expected asset value of the manipulator is E(V |hM3 \ {buy2}, sM2 = 0) =
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0.4956. Therefore, the optimal action of the manipulator is selling and the expected

total profit is ΠM
2,3 = b3 − a2 = −0.0090.

Even though the previous period is herd buying of the informed traders, there are

three possible histories, buy, sell, or no trade, because of the noise traders. Since the

action of selling or not to trade comes from the noise traders only, the probability of

each history is Pr(buy3|hM3 \ {buy2}, sM2 = 0) = 0.92, Pr(NT3|hM3 \ {buy2}, sM2 =

0) = 0.06 and Pr(sell3|hM3 \ {buy2}, sM2 = 0) = 0.02. The expected value of traders

with signals are identical after the three histories as no information is added after the

action.

In the history of buy order at t = 3, the optimal action of informed traders is buying

with a good signal and no trade with a bad signal. After observing no trade or sell

order at t = 3, herd buying occurs again. If we assume τ ′ = 4, the expected asset

value of the manipulator after the three possible histories are the same as E(V |hM3 \

{buy2}, buy3, sM2 = 0) = 0.4956, and the optimal action of the manipulator is buying

for the history of buy order at t = 3 and selling for the other histories. The expected

total profit of the manipulator is ΠM
2,4 = −0.0057.

The expected profit of the manipulator when τ ′ > 4 can be calculated in a similar

way. If τ ′ = 7, there are 81 possible histories; selling is optimal for the manipulator

after 70 histories, not to trade after 8 and buying after 3 histories. As in the first example,

the manipulator chooses not to trade when her expected value of the asset is high after

histories like 6 buys. This is because keeping the asset is more profitable than closing

the position by selling even though it was bought with slightly high price in the past.

Also, selling is chosen after histories like 4 sells after initial 2 buys out of the motive to

minimize the loss. From these, the expected profit is ΠM
2,7 = 0.0404. As shown in Table

4.2, the manipulative strategy brings more profit than the standard strategy with τ ′ = 7.
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4.4.3 Case 3: Without herding

In the previous section, we have shown that the event uncertainty is essential for prof-

itable manipulation. Although the herding is generated by the event uncertainty, it does

not guarantee that herding is necessary for the profitable manipulation.

In the previous cases, there are herding behaviours of traders after the manipulative

action, and the manipulative strategy becomes profitable. The herding, however, is not

necessary to make the manipulative strategy profitable. There exists a case showing

this with µ = 1. The other parameter values are α = 0.04, δ = 0.5, q = qM = 0.6,

εb = εs = 0.2, and the timing is τ = 2 and τ ′ = 6 with a buy order at t = 1 and a bad

signal for the manipulator sM2 = 0.

After observing a buy order at t = 1, the optimal action of the traders with a good

signal is buying; with a bad signal, it is no trade. Under the standard strategy, the

manipulator chooses no trade. After the no trade at t = τ = 2, there are 8 possible

histories to t = τ ′ = 6. The expected profit is Π∗2,6 = 0.0008.

The action of the manipulative strategy at t = τ = 2 is buying and it brings a loss

of 0.0410. In the previous cases, the herd buying occurs for the other informed traders

at t = 3 after a manipulative buy. However, the optimal action of ordinary informed

traders in this case is buying with a good signal and no trade with a bad signal. In all

possible 8 histories up to t = 6, the herd buying or herd selling does not appear, but the

expected profit of the manipulative strategy is higher than that of the standard strategy,

ΠM
2,6 = 0.0190 > Π∗2,6 = 0.0008 with τ ′ = 6.

From this, we can say that profitable manipulation is possible without herding. Al-

though there is no herding behaviour, the manipulative action which increases the prob-

ability of the action by the other informed traders to inflate the price can make the

manipulative strategy profitable. It happens by the gap between the expected value of

the traders and the market maker caused by the event uncertainty.
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Table 4.3 Expected profit of Case 3

Expected profit
Standard strategy (Π∗τ,τ ′) Manipulative strategy (ΠM

τ,τ ′)

t = 2 0 −0.0410
t′ = 3 0 −0.0410

4 0.0324 0.0090
5 0.0163 0.0014
6 0.0008 0.0190

Note: the parameter values used in the example are α = 0.04, δ = 0.5, µ =
1, q = qM = 0.6, εb = εs = 0.2.

4.4.4 Case 4: τ ′ is not fixed with µ = 1

We also can think about a case in which the time of the second action of the manipu-

lator, τ ′ is not fixed. The manipulator can choose τ ′ which makes the expected profit

maximum at the point of the first action τ . To make the manipulative strategy prof-

itable the largest expected profit should be higher for the manipulative strategy than the

standard one. It can be shown in the example of α = 0.01, δ = 0.5, q = qM = 0.55,

and εb = εs = 0.1. The first point of action is τ = 2 after a buy at t = 1, and the

manipulator gets a bad signal, sM2 = 0.

The optimal action of an informed trader at t = 2 is buying with a good signal and no

trade with a bad signal. Since the precision of the signal is the same for the manipulator

and other traders, the optimal action of the manipulator under the standard strategy is

no trade as well. Considering all the possible histories, the maximum expected profit

the manipulator can obtain under the standard strategy is 0.0063 at τ ′ = 4.7

Under the manipulator strategy, the manipulator would buy at t = τ = 2. It brings a

negative profit of −0.0201. The expected maximum profit taking into account the loss

is obtained with τ ′ = 6 to be 0.0082.
7The expected profits under both of the strategies up to t′ = 8 are calculated, and those after t′ = 9

are checked by simulations of 10,000 times.
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Table 4.4 Expected profit of Case 4

Expected profit
Standard strategy (Π∗τ,τ ′) Manipulative strategy (ΠM

τ,τ ′)

t = 2 0 −0.0201
t′ = 3 0 −0.0201

4 0.0063 0.0049
5 0 0.0008
6 0 0.0082
7 0 0.0008

Note: the parameter values used in the example are α = 0.01, δ = 0.5,
q = qM = 0.55, and εb = εs = 0.1.

4.4.5 Case 5: τ ′ is not fixed with µ < 1

With µ < 1, there exist cases that the maximum profit of the manipulative strategy is

more profitable than the standard strategy as well. To analyse this, we rely on simula-

tions of 10, 000 times to calculate the expected profit of each strategy.8

In this example, the time of the first action τ is set to be 3, and the manipulator with

a bad signal (sM3 = 0) takes part in after observing two buy orders. Other parameters

are α = 0.01, δ = 0.5, µ = 0.3, q = qM = 0.6 and εb = εs = 0.2.

The optimal action of an informed traders at t = 3 is buying with a good signal and

no trade with a bad signal given the ask and bid price of a3 = 0.5046 and b3 = 0.5015.

The expected asset value of the manipulator with a bad signal is E(V |h3, sM3 = 0) =

0.5025. Hence, the optimal action of the manipulator under the standard strategy is not

to trade, and the expected profit is zero. With the manipulative strategy, she buys the

asset to inflate the price. It would bring the loss of E(V |h3, sM3 = 0)− a3 = −0.0022.

After the action of not to trade under the standard strategy, buy, sell or no trade

orders are followed in each period. As shown in Figure 4.1, the maximum profit from

the standard strategy can be achieved by τ ′ = 15 and the profit is Π∗3,15 = 0.0563.

Under the manipulative strategy, the maximum profit can be attained with τ ′ = 80

and it is ΠM
3,80 = 0.0665. Therefore, the manipulative strategy is more profitable than

8The differences between the analytic computation and the simulation up to t = 9 are less than
0.0005.
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Figure 4.1 Expected profit of Case 5

Note: The profits are calculated based on the average of 10,000 simulations of α = 0.01, δ = 0.5,
µ = 0.3, q = qM = 0.6 and εb = εs = 0.2 and τ = 3. The manipulator gets a bad signal (sM3 = 0)
and the history of orders before t = 3 is two buys.

the standard strategy for the manipulator who can choose τ ′.

4.5 Conditions for the Profitable Manipulation

We have checked the possibility of the profitable manipulation in different cases. In

this section, we analyse the conditions for the profitable manipulation depending on

key parameter values. The excess profit of the manipulative strategy is computed by the

expected profit of the manipulative strategy deduced by that of the standard strategy. If

the excess profit is positive, the manipulative strategy is profitable.

4.5.1 Case with µ = 1

All the examples below are of µ = 1, τ = 2 with h2 = {buy1}, and τ ′ = 10 or where

the expected profit is maximum. The action of noise traders is set to be εb = εs = 0.2

if it is not noted specifically. The manipulator has a bad signal (sM2 = 0), and buys at

t = 2 as a manipulative strategy. The standard strategy at t = 2 is decided depending on

the parameters. The yellow region is where the optimal action of the standard strategy is

buying as well, and the green region is where the manipulative strategy is not profitable

(excess profit is negative). The expected profit is calculated based on simulations of

1,000 times.
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Figure 4.2 Excess profit with µ = 1 keeping qM = 0.6
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Note: Excess profit is the expected profit of the manipulative strategy minus that of the standard
strategy. Numbers on the graph is excess profit of the manipulative strategy with parameters µ = 1,
qM = 0.6, εb = εs = 0.2, τ = 2 with h2 = {buy1}, and sM2 = 0. The left panel is the case
that τ ′ = 10 and the right panel is that τ ′ is set to make the excess profit maximum. The green
area is where the excess profit is negative; the yellow area is where the optimal action at τ under the
standard strategy is buying as well.

Figure 4.2 presents the excess profit of the manipulative strategy when α and q

changes keeping qM = 0.69. The left panel shows the results that the second period of

action is τ ′ = 10 and the right panel is that the manipulator can choose τ ′ at the time

of first action τ . Both of the graph show that the profitable manipulation occurs with

the combination of small α and small q or large α and large q. It can be interpreted

as the influence of the manipulative action to other agents. Small α means high event

uncertainty, and it generates herding more likely as the gap in the expected asset value

between the informed traders and the market maker is large. Also, with a low q, the

informed traders do not rely on their signal that much because of the low precision

of their signals. Therefore, with low α and low q, the manipulative action at time t

changes the optimal action of the other informed traders and inflate the price to make

the manipulation profitable. With large α, there is less possibility of herding, but large q

causes the market maker and the other traders to think that the traders’ actions are more

informative. As the market maker is not aware of the existence of the manipulator, the

manipulative action affects prices a lot with high q. Hence, it inflates the price and

enables the manipulative strategy to be profitable.

We also can check the excess profit of the manipulative strategy depending on qM .

9The simulation results for the cases changing other parameter values are in appendix such as q and
qM or εb and εs simultaneously
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Figure 4.3 Excess profit with µ = 1 keeping q = 0.6
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Note: Excess profit is the expected profit of the manipulative strategy minus that of the standard
strategy. Numbers on the graph is excess profit of the manipulative strategy with parameters µ = 1,
q = 0.6, εb = εs = 0.2, τ = 2 with h2 = {buy1}, and sM2 = 0. The left panel is the case that
τ ′ = 10 and the right panel is that τ ′ is set to make the excess profit maximum. The green area
is where the excess profit is negative; the yellow area is where the optimal action at τ under the
standard strategy is buying as well.

The excess profit of manipulative strategy is presented in Figure 4.3 keeping q = 0.6.

The first thing to note is that the manipulative strategy is profitable only with low qM .

The manipulative strategy is basically going against the manipulator’s private signal. If

the precision of the manipulator’s private signal is high, she would rely on it and it is

hard to get a profit by the action opposite to the signal. As for the event uncertainty,

the manipulative strategy is profitable with low α as before. However, the precision

of the manipulator’s private signal qM works in the opposite direction to q. As the

event uncertainty becomes smaller with higher α, the level of qM which enables the

manipulative strategy to be profitable is smaller. It also can be interpreted that even

though the possibility of herding decreases, the manipulative strategy that going against

her signal can be profitable if the manipulator’s signal becomes less informative.

4.5.2 Case with µ = 0.5

The previous section is about the case that all the traders are informed on the infor-

mational event day. In this section, the conditions for the profitable manipulation with

µ < 1 are analysed. All the examples below are of µ = 0.5, τ = 3, and τ ′ = 20 or

where the expected profit is maximum after 2 buys in history. The parameter for the

noise traders is set to be εb = εs = 0.2 if it is not noted specifically. The manipulator
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has a bad signal (sM3 = 0) as before, and buys at t = 3 with a manipulative strategy.

The standard strategy at t = 3 is decided depending on the parameters. The regions and

the number of simulation are the same as before.

Figure 4.4 Excess profit with µ = 0.5 keeping qM = 0.6
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Note: Excess profit is the expected profit of the manipulative strategy minus that of the standard
strategy. Numbers on the graph are excess profit of the manipulative strategy with parameters µ =
0.5, qM = 0.6, εb = εs = 0.2, τ = 3 with h3 = {buy1, buy2}, and sM3 = 0. The left panel is the
case that τ ′ = 20 and the right panel is that τ ′ is set to make the excess profit maximum. The green
area is where the excess profit is negative; the yellow area is where the optimal action at τ under the
standard strategy is buying as well.

The excess profit of the manipulative strategy keeping qM is analysed first in Figure

4.4. Similar to the case with µ = 1, the manipulative strategy is profitable with a

combination of smaller α and low q, or larger α and high q. As before this property can

be explained by the influence of the manipulator’s action to other agents.

The difference from the case with µ = 1 is that the profitable region is larger. It can

be understood that, with the inclusion of the noise traders, there is more probability of

herding because it makes the market maker harder to exclude no event day after looking

at the history of orders. Consequently, it causes the profitable manipulation region to

become larger.

Figure 4.5 presents the excess profit with µ = 0.5 keeping q = 0.6. Again, the

profitable region is larger than the case with µ = 1. The level of qM which enables the

manipulation profitable is mostly lower than q = 0.6. Also, as α is higher, qM becomes

smaller similar to the case with µ = 1.
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Figure 4.5 Excess profit with µ = 0.5 keeping q = 0.6
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Note: Excess profit is the expected profit of the manipulative strategy minus that of the standard
strategy. Numbers on the graph are excess profit of the manipulative strategy with parameters µ =
0.5, q = 0.6, εb = εs = 0.2, τ = 3 with h3 = {buy1, buy2}, and sM3 = 0. The left panel is the case
that τ ′ = 20 and the right panel is that τ ′ is set to make the excess profit maximum. The green area
is where the excess profit is negative; the yellow area is where the optimal action under the standard
strategy is buying as well.

4.6 Conclusion

Manipulation can be defined as a behaviour according to which one or more market

operators try to distort the regular pattern of the prices. Financial institutions and aca-

demic research have been studying the phenomenon and trying to provide an exhaus-

tive definition of its features. However, different behaviours, as also detected during

the supervision activity of the financial surveillance authorities, can be included in this

category.

In this paper, we studied trade based market manipulation and analysed one of the

mechanisms through which this phenomenon arises. We considered a sequential trading

financial market in which rational informed traders and noise traders exchange an asset

with a market maker. Also, we defined a potential manipulator, that is an informed

trader who is allowed to trade twice. We showed that there exist cases in which the

potential manipulator chooses a manipulative strategy, that is she prefers not to follow

her signal in the first period she is allowed to trade.

We also observed that the result is strictly connected to event uncertainty. The be-

haviour caused by it, such as herding, can arise after the manipulator’s first action. In

fact, we formally proved that manipulation is never chosen in equilibrium, because it is
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never profitable, in situations in which there is no event uncertainty. On the other hand,

we verified through simulated data that, under given assumptions about the model pa-

rameters and for a set of second trades’ periods, the potential manipulator prefers the

manipulative strategy in equilibrium, because it is more profitable than the strategy

in which she always behaved according to her beliefs. Through causing periods like

herding, in fact, the manipulator affects the other rational traders’ behaviour and the

following pattern of the price of the asset and also delays the informational learning

process of the market maker. These effects allow her to trade later against the market

and take profits from it.
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Appendix A

Appendix to Chapter 2

A.1 Expected values and updating beliefs

The expected value of the asset when the trader without ambiguity has a good (St = 1)

and bad (St = 0) signal, and the ask and bid prices of the market maker are calculated

as follows.

E(V |St = 1, ht) = Pr(V = 1|St = 1, ht)

=

∫ q
q
qf(q|ht)dqPr(V = 1|ht)∫ q

q
qf(q|ht)dqPr(V = 1|ht) +

∫ q
q

(1− q)f(q|ht)dqPr(V = 0|ht)
(A.1)

E(V |St = 0, ht) = Pr(V = 1|St = 0, ht)

=

∫ q
q

(1− q)f(q|ht)dqPr(V = 1|ht)∫ q
q

(1− q)f(q|ht)dqPr(V = 1|ht) +
∫ q
q
qf(q|ht)dqPr(V = 0|ht)

at = E(V |buyt, ht) = Pr(V = 1|buyt, ht)

=

∫ q
q
Pr(buyt|V = 1, q, ht)f(q|ht)dqPr(V = 1|ht)∑1

v=0

∫ q
q
Pr(buyt|V = v, q, ht)f(q|ht)dqPr(V = v|ht)

(A.2)
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bt = E(V |sellt, ht) = Pr(V = 1|sellt, ht)

=

∫ q
q
Pr(sellt|V = 1, q, ht)f(q|ht)dqPr(V = 1|ht)∑1

v=0

∫ q
q
Pr(sellt|V = v, q, ht)f(q|ht)dqPr(V = v|ht)

where Xt = buy, Xt = sell or Xt = no trade are expressed as buyt, sellt or NTt for

simplicity in notation.

The expected asset value of the ambiguity averse traders has q as an argument. If

the trader has got a good or bad signal, the expected value of V is as follows.

E(V |St = 1, ht, q) = Pr(V = 1|St = 1, ht, q)

=
qPr(V = 1|ht, q)

qPr(V = 1|ht, q) + (1− q)Pr(V = 0|ht, q)

E(V |St = 0, ht, q) = Pr(V = 1|St = 0, ht, q)

=
(1− q)Pr(V = 1|ht, q)

(1− q)Pr(V = 1|ht, q) + qPr(V = 0|ht, q)

A.2 Proof of Proposition 1

Proposition 1 is proven by comparing the expectation of the trader with a good signal

and the ask price. If the expected asset value of the traders without ambiguity with

a good signal is higher than the ask price, the trader buys with a good signal; if the

expected value with a bad signal is lower than the bid price, the trader sells with a bad

signal.

At period t, the expected value of the asset by the trader without ambiguity and

the ask price are as in equation (A.1) and (A.2). Comparing these two values can be
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simplified to be comparing those two followings.

∫ q
q
qf(q|ht)dq∫ q

q
(1− q)f(q|ht)dq

and

∫ q
q
Pr(buyt|V = 1, q, ht)f(q|ht)dq∫ q

q
Pr(buyt|V = 0, q, ht)f(q|ht)dq

Depending on the assumed action of the traders, Pr(buyt|V = v, q, ht) changes. The

action of traders that maximise
∫ q
q Pr(buyt|V=1,q,ht)f(q|ht)dq∫ q
q Pr(buyt|V=0,q,ht)f(q|ht)dq

for a given f(q|ht) is that all

the informed traders with a good signal buy regardless of their ambiguity.

∫ q
q
Pr(buyt|V = 1, q, ht)f(q|ht)dq∫ q

q
Pr(buyt|V = 0, q, ht)f(q|ht)dq

≤

∫ q
q
{µq + (1− µ)ε/2}f(q|ht)dq∫ q

q
{µ(1− q) + (1− µ)ε/2}f(q|ht)dq

(A.3)

Also, q > 0.5 implies that

∫ q
q
{µq + (1− µ)ε/2}f(q|ht)dq∫ q

q
{µ(1− q) + (1− µ)ε/2}f(q|ht)dq

<

∫ q
q
qf(q|ht)dq∫ q

q
(1− q)f(q|ht)dq

(A.4)

with µ > 0. From the condition (A.3) and (A.4),
∫ q
q Pr(buyt|V=1,q,ht)f(q|ht)dq∫ q
q Pr(buyt|V=0,q,ht)f(q|ht)dq

<

∫ q
q qf(q|ht)dq∫ q

q (1−q)f(q|ht)dq
,

so at < E(V |St = 1, ht). It implies that the traders without ambiguity always buy with

a good signal. The case with a bad signal (S = 0) is symmetric to this.

A.3 Proof of Proposition 2

The condition for the ambiguity averse trader to buy with a good signal and sell with a

bad signal at t = 1 is minq∈Q0 E(V |S1 = 1, q) > at and maxq∈Q0 E(V |S1 = 0, q) < bt.
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These are simplified to the followings.

min
q∈Q0

q

1− q
δ

1− δ
>

µ(q + q)/2 + (1− µ)ε/2

µ{1− (q + q)/2}+ (1− µ)ε/2

δ

1− δ

max
q∈Q0

1− q
q

δ

1− δ
>
µ{1− (q + q)/2}+ (1− µ)ε/2

µ(q + q)/2 + (1− µ)ε/2

δ

1− δ

Those conditions are derived to the one below.

q >
µq/2 + (1− µ)ε/2

µ/2 + (1− µ)ε
= q̃

Therefore, with q > q̃ the action of the ambiguity averse traders at t = 1 becomes ’buy

with a good signal and sell with a bad signal’.

A.4 Proof of Proposition 3

Herd buying or contrarian buying is the behaviour of the traders choosing buy regardless

of their signals. The condition for the ambiguity averse trader to buy with any signal

can be simplified as follows.

min
q∈Qt

(1− q)Pr(V = 1|ht, q)
qPr(V = 0|ht, q)

>
{µγE(q|ht) + µ(1− γ) + (1− µ)ε/2}Pr(V = 1|ht)

{µγ(1− E(q|ht)) + µ(1− γ) + (1− µ)ε/2}Pr(V = 0|ht)
(A.5)

Since Pr(V = 0|ht, q) = 1−Pr(V = 1|ht, q), minq∈Qt
Pr(V=1|ht,q)
Pr(V=0|ht,q) =

minq∈Qt Pr(V=1|ht,q)
maxq∈Qt Pr(V=0|ht,q) .

If ρ = 0, Qt = Q0 = {q : q ≤ q ≤ q} for any t. Under this Qt, minq∈Qt
Pr(V=1|ht,q)
Pr(V=0|ht,q) ≤

Pr(V=1|ht)
Pr(V=0|ht) by the mean-value theorem. Pr(V = v|ht) =

∫ q
q
Pr(V = v|ht, q)f(q|ht)dq

andQt is support for q. If we define a functionG(x; v, ht) =
∫ x
−∞ Pr(V = v|ht, q)f(q|ht)dq,

g(q; v, ht) = dG(q;v,ht)
dq

, Pr(V = v|ht) =
∫ q
q
Pr(V = v|ht, q)f(q|ht)dq = G(q|v, ht)−

G(q|v, ht). From the mean-value theorem, there exists a q′ ∈ {q : q ≤ q ≤ q}

such that G(q;v,ht)−G(q;v,ht)

q−q = g(q′; v, ht). Using this property, minq∈Qt
Pr(V=1|ht,q)
Pr(V=0|ht,q) =
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minq∈Qt Pr(V=1|ht,q)
maxq∈Qt Pr(V=0|ht,q) ≤

Pr(V=1|ht)
Pr(V=0|ht) . It guarantees the following condition.

min
q∈Qt

(1− q)Pr(V = 1|ht, q)
qPr(V = 0|ht, q)

< min
q∈Qt

Pr(V = 1|ht, q)
Pr(V = 0|ht, q)

≤ Pr(V = 1|ht)
Pr(V = 0|ht)

<
{µγE(q|ht) + µ(1− γ) + (1− µ)ε/2}Pr(V = 1|ht)

{µγ(1− E(q|ht)) + µ(1− γ) + (1− µ)ε/2}Pr(V = 0|ht)
(A.6)

Condition (A.6) implies that minq∈Q0 E(V |St = 0, ht, q) < at, so it is impossible

for the ambiguity averse traders to buy with a bad signal in equilibrium if ρ = 0.

Therefore, herd buying or contrarian buying never occur. The case of herd selling or

contrarian selling is symmetric to this.

A.5 Proof of Proposition 4

Look at the case with γ = 0 first. With ρ = 0, herding or contrarian for the ambiguity

averse traders is impossible following Proposition 3. Suppose that there is zero possibil-

ity of choosing no trade with any signal for the ambiguity averse traders in equilibrium.

Then, after the history of N orders, we can defined n1 be the number of orders with

a good signal, n2 be the number of orders with a bad signal, and N − n1 − n2 be the

number of orders with pure noise.

Since it is assumed that the possibility of choosing no trade with any signal is zero.

As N goes to infinity, n1

n2
→ qT

1−qT where qT is true precision of the private signal since

the private signal St is i.i.d. Therefore, E(q|ht) converges to qT .

The condition for the ambiguity averse traders with a good signal do not trade in

equilibrium can be simplified as follows.

min
q∈Qt

q

1− q
Pr(V = 1|hN , q)

1− Pr(V = 1|hN , q)

<
Pr(buyt|V = 1, hN)Pr(V = 1|hN)

Pr(buyt|V = 0, hN){1− Pr(V = 1|hN)}

=
Pr(V = 1|hN)

1− Pr(V = 1|hN)
(A.7)
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Suppose V = 1, then m = n1 − n2 increases as N increases. With a sufficiently

large m, argminq∈Qt
q

1−q
Pr(V=1|hN ,q)

1−Pr(V=1|hN ,q)
becomes q. Then, the previous condition can

be log transformed as follows.

log
q

1− q

≤ log
Pr(V = 1|hN)

1− Pr(V = 1|hN)
− log

Pr(V = 1|hN , q)
1− Pr(V = 1|hN , q)

= log
Pr(hN |V = 1)δ

Pr(hN |V = 0)(1− δ)
− log

Pr(hN |V = 1, q)δ

Pr(hN |V = 0, q)(1− δ)

= log
Pr(âN |V = 1)Pr(hN−1|V = 1)δ

Pr(âN |V = 0)Pr(hN−1|V = 0)(1− δ)
− log

Pr(âN |V = 1, q)Pr(hN−1|V = 1, q)δ

Pr(âN |V = 0, q)Pr(hN−1|V = 0, q)(1− δ)

(A.8)

E(q|ht) > q. Thus, the last line of condition (A.8) increases as m increases since

Pr(âN |V=1)
Pr(âN |V=0)

>
Pr(âN |V=1,q)

Pr(âN |V=0,q)
where âN is an action with a good signal at t = N in equi-

librium with.

The left hand side of condition (A.8) is set to log
q

1−q while the last line keeps in-

creasing. Hence, with sufficiently large N , condition (A.8) holds and the ambiguity

averse traders with a good signal choose no trade in equilibrium.

Looking at the case with a bad signal, the condition for the ambiguity averse traders

choose no trade with a bad signal is as follows.

max
q∈Qt

1− q
q

Pr(V = 1|hN , q)
1− Pr(V = 1|hN , q)

>
Pr(V = 1|hN)

1− Pr(V = 1|hN)
(A.9)

As m increases, the influence of the first term in the first line of the previous con-

dition diminishes, so argmaxq∈Qt
1−q
q

Pr(V=1|hN ,q)
1−Pr(V=1|hN ,q)

becomes q. Then, the previous

condition can be log transformed as follows.
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log
1− q
q

≥ log
Pr(V = 1|hN)

1− Pr(V = 1|hN)
− log

Pr(V = 1|hN , q)
1− Pr(V = 1|hN , q)

= log
Pr(hN |V = 1)δ

Pr(hN |V = 0)(1− δ)
− log

Pr(hN |V = 1, q)δ

Pr(hN |V = 0, q)(1− δ)

= log
Pr(âN |V = 1)Pr(hN−1|V = 1)δ

Pr(âN |V = 1)Pr(hN−1|V = 0)(1− δ)
− log

Pr(âN |V = 1, q)Pr(hN−1|V = 1, q)δ

Pr(âN |V = 0, q)Pr(hN−1|V = 0, q)(1− δ)

(A.10)

The last term of condition (A.10) decreases as m increases since Pr(âN |V=1)
Pr(âN |V=0)

<

Pr(âN |V=1,q)
Pr(âN |V=0,q)

where âN an action with a good signal at t = N in equilibrium.

The first line of condition (A.10) is set to log 1−q
q

while the last line keeps decreas-

ing. Hence, with sufficiently large N , condition (A.10) holds and the ambiguity averse

traders with a bad signal choose no trade in equilibrium.

Therefore, the ambiguity averse traders with any signal choose no trade. It contra-

dicts that there is zero possibility of the ambiguity averse traders choose no trade with

any signal. Once the ambiguity averse traders start to choose no trade with any signal,

there is no informational gain as N increases because all the informed traders choose

no trade and other trades are just noise traders. The informed traders keep choosing no

trade for any signal for any t ≥ N .

Let us look at the case with γ > 0. With a positive proportion of the traders without

ambiguity, every buy or sell orders in history reveals the information on the private

signal. Since herding or contrarian is impossible with ρ = 0, for a history of N trades,

we can define n1 be the number of trades with a good signal, n2 be the number of trades

with a bad signal. Then N − n1 − n2 is the number of trades by noise traders. As N

goes to infinity, n1

n2
→ qT

1−qT where qT is true precision of the private signal since the

private signal St is i.i.d.

The condition for the ambiguity averse traders with a good signal do not trade in
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equilibrium can be simplified as follows.

min
q∈Qt

q

1− q
Pr(V = 1|hN , q)

1− Pr(V = 1|hN , q)

<
µγE(q|hN) + (1− µ)ε/2

µγ(1− E(q|hN)) + (1− µ)ε/2

Pr(V = 1|hN)

1− Pr(V = 1|hN)
(A.11)

Suppose V = 1, then m = n1 − n2 increases as N increases. With a sufficiently

large m, argminq∈Qt
q

1−q
Pr(V=1|hN ,q)

1−Pr(V=1|hN ,q)
becomes q. Then, the previous condition can

be log transformed as follows.

log
q

1− q
− log

µγE(q|hN) + (1− µ)ε/2

µγ(1− E(q|hN)) + (1− µ)ε/2

≤ log
Pr(V = 1|hN)

1− Pr(V = 1|hN)
− log

Pr(V = 1|hN , q)
1− Pr(V = 1|hN , q)

= log
Pr(hN |V = 1)δ

Pr(hN |V = 0)(1− δ)
− log

Pr(hN |V = 1, q)δ

Pr(hN |V = 0, q)(1− δ)

= log
Pr(âN |V = 1)Pr(hN−1|V = 1)δ

Pr(ân|V = 0)Pr(hN |V = 0)(1− δ)
− log

Pr(âN |V = 1, q)Pr(hN−1|V = 1, q)δ

Pr(ân|V = 0, q)Pr(hN−1|V = 0, q)(1− δ)

(A.12)

The last line of condition (A.12) increases asm increases since Pr(âN |V=1)
Pr(âN |V=0)

>
Pr(âN |V=1,q)

Pr(âN |V=0,q)

where âN an action with a good signal at t = N in equilibrium whenm is large enough.

As N goes to infinity the left hand side of condition (A.12) converges to log
q

1−q −

log µγqT+(1−µ)ε/2
µγ(1−qT )+(1−µ)ε/2 according to Doob (1949) while the last line keeps increasing.

Hence, with sufficiently large N , condition (A.12) holds and the ambiguity averse

traders with a good signal choose no trade in equilibrium.

Looking at the case with a bad signal, the condition for the ambiguity averse traders
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choose no trade with a bad signal is as follows.

max
q∈Qt

1− q
q

Pr(V = 1|hN , q)
1− Pr(V = 1|hN , q)

>
µγ(1− E(q|hN)) + (1− µ)ε/2

µγE(q|hN) + (1− µ)ε/2

Pr(V = 1|hN)

1− Pr(V = 1|hN)
(A.13)

As m increases, the influence of the first term in the left hand side of the previous

condition diminishes, so argmaxq∈Qt
1−q
q

Pr(V=1|hN ,q)
1−Pr(V=1|hN ,q)

becomes q. Then, the previous

condition can be log transformed as follows.

log
1− q
q
− log

µγ(1− E(q|hN)) + (1− µ)ε/2

µγE(q|hN) + (1− µ)ε/2

≥ log
Pr(V = 1|hN)

1− Pr(V = 1|hN)
− log

Pr(V = 1|hN , q)
1− Pr(V = 1|hN , q)

= log
Pr(hN |V = 1)δ

Pr(hN |V = 0)(1− δ)
− log

Pr(hN |V = 1, q)δ

Pr(hN |V = 0, q)(1− δ)

= log
Pr(âN |V = 1)Pr(hN−1|V = 1)δ

Pr(âN |V = 0)Pr(hN−1|V = 0)(1− δ)
− log

Pr(âN |V = 1, q)Pr(hN−1|V = 1, q)δ

Pr(âN |V = 0, q)Pr(hN−1|V = 0, q)(1− δ)

(A.14)

The last line of condition (A.14) decreases asm increases since Pr(âN |V=1)
Pr(âN |V=0)

< Pr(âN |V=1,q)
Pr(âN |V=0,q)

where âN an action with a good signal at t = N in equilibrium whenm is large enough.

As N goes to infinity the left hand side of condition (A.14) converges to log 1−q
q
−

log µγ(1−qT )+(1−µ)ε/2
µγqT+(1−µ)ε/2 while the last line keeps decreasing. Hence, with sufficiently large

N , condition (A.14) holds and the ambiguity averse traders with a bad signal choose no

trade in equilibrium.

Therefore, the ambiguity averse traders choose no trade with any signal with prob-

ability of 1 as t goes to infinity. The case for V = 0 is symmetric to this.
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A.6 Proof of Proposition 5

Suppose that there is probability 0 of herding for the ambiguity averse traders. With a

positive probability, there could be a history that there are only n buys. Since there is

positive proportion of the traders without ambiguity, the buy orders reveal information

on the true value and the signal at each time t, although the ambiguity averse traders

sometimes choose no trade with a good signal in equilibrium.

Herding behaviour is composed of two conditions. One is the traders buying (sell-

ing) even with a bad (good) signal, and the other is the price is higher (lower) than that

of the initial period. The condition for the ambiguity averse traders with a bad signal

buy at t = n+ 1 is as follows.

min
q∈Qn+1

E(V |Sn+1 = 0, q, hn+1) > an+1 = E(V |hn+1, Xn+1 = buy)

The number of buys n is divided into n1 and n2 such that n1 is number of buys under

the situation that the informed traders including the traders without ambiguity and the

ambiguity averse traders buy with a good signal in equilibrium, and n2 is number of

buys that only the traders without ambiguity buys with a good signal while the am-

biguity averse traders would choose no trade with a good signal in equilibrium, and

n = n1 + n2. Then, the condition can be log transformed and simplified as follows.

min
q∈Qn+1

{log
1− q
q

+ n1 log
µq + (1− µ)ε/2

µ(1− q) + (1− µ)ε/2
+ n2 log

µγq + (1− µ)ε/2

µγ(1− q) + (1− µ)ε/2
}

> log
µγE(q|hn+1) + (1− µ)ε/2

µγ{1− E(q|hn+1)}+ (1− µ)ε/2

+
n∑
t=1

log
µ{γ + (1− γ)I(minq∈Qt E(V |St = 1, ht, q) > at)}E(q|ht) + (1− µ)ε/2

µ[1− {γ + (1− γ)I(minq∈Qt E(V |St = 1, ht, q) > at)}E(q|ht)] + (1− µ)ε/2}

(A.15)

where I(c) is an indicator function that gives 1 if condition c holds or gives 0 otherwise.

Since there are only buys in the history, the Qt becomes q, so the minimum expected
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asset value is evaluated at q, while E(q|ht) < q and E(q|ht) ≥ E(q|ht−1) for any finite

t. We can find n1 and n2 such that ε1 = log µq+(1−µ)ε/2
µ(1−q)+(1−µ)ε/2 − log µE(q|hn)+(1−µ)ε/2

µ{1−E(q|hn)}+(1−µ)ε/2 ,

ε2 = log µγq+(1−µ)ε/2
µγ(1−q)+(1−µ)ε/2 − log µγE(q|hn)+(1−µ)ε/2

µγ{1−E(q|hn)}+(1−µ)ε/2 and n1ε1 + n2ε2 > log q
1−q +

log µγE(q|hn+1)+(1−µ)ε/2
µγ{1−E(q|hn+1)}+(1−µ)ε/2 . Hence, equation (A.15) holds at t = n. Also, the price

increases from the initial price since there are n buys in history. Therefore, it contra-

dicts the assumption that there is 0 probability of herding. The case for sell herding is

symmetric to this.

A.7 Proof of Proposition 6

The condition for the ambiguity averse traders buy with a good signal is as follows.

q̂

1− q̂
P r(V = 1|ht, q̂t)

1− Pr(V = 1|ht, q̂t)
>

µE(q|ht) + (1− µ)ε/2

µ{1− E(q|ht)}+ (1− µ)ε/2

Pr(V = 1|ht)
1− Pr(V = 1|ht)

(A.16)

where q̂t is the element of Qt. We can rewrite this condition as follows.

q̂
1−q̂

µE(q|ht)+(1−µ)ε/2
µ{1−E(q|ht)}+(1−µ)ε/2

>

Pr(V=1|ht)
1−Pr(V=1|ht)
Pr(V=1|ht,q̂t)

1−Pr(V=1|ht,q̂t)

(A.17)

With γ > 0, the action of the trader reveals the private information the trader gets

since in equilibrium the traders without ambiguity buys with a good signal and sells

with a bad signal at any t. Following Doob (1949) and Cramer (1978), E(q|ht) and Qt

converges to the true value qT as t goes to infinity since the signal St is i.i.d. It implies

that the right hand side of equation (A.17) Pr(V=1|ht)
Pr(V=1|ht,q̂t) → 1.

Also the left hand side of equation (A.17) converges to
qT

1−qT
µqT+(1−µ)ε/2

µ{1−qT }+(1−µ)ε/2

> 1. There-

fore, as t goes to infinity, equation (A.17) satisfies, so the ambiguity averse traders buy

with a good signal. The case for selling is symmetric to this.
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A.8 Proof of Proposition 7

When Qt = {q̂} which is a singleton, and there are only ambiguity averse traders who

are informed (γ = 0), the expected asset value with a good signal is higher than that

with a bad signal since

q̂

1− q̂
P r(V = 1|ht, q̂)

1− Pr(V = 1|ht, q̂)
>

1− q̂
q̂

P r(V = 1|ht, q̂)
1− Pr(V = 1|ht, q̂)

If we assume that the optimal action of the informed traders at t is no trade with any

signal, the ask and bid price is the same. Hence, the expected asset value with a good

signal is lower than the ask price and that with a bad signal is higher than the bid price

is not possible.

A.9 Simulation results with γ = 0.5

The model is simulated with the true value of asset to be V = 1 and the prior probability

of the state is δ = 0.5. Half of the traders are informed (µ = 0.5), and half of the

informed traders are without ambiguity (γ = 0.5). True value of the precision q is set

to be 0.75 if it is not noted specifically. The results are based on 1, 000 simulations of

T = 100 for each parameter.

Figure A.1 Proportion of no trade with the Full Bayesian Updating (ρ = 0)
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Note: The proportion is computed by the number of periods that the ambiguity averse traders choose
no trade in equilibrium over 1, 000 simulations with T = 100 at each simulation. The numbers on
the figure are the proportion of the behaviour (Higher proportion with yellow, lower proportion with
blue color). Choosing no trade includes no trade with any signal, buy with a good signal and no trade
with a bad signal, no trade with a good signal and sell with a bad signal, and mixed strategy of them.
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First of all, we start to look at the case of the Full Bayesian Updating with ρ = 0.

Figure A.1 shows the proportion of choosing no trade for the ambiguity averse traders

depending on the lower and upper bound of Q0, which are q and q. The proportion is

calculated by the number of periods that the ambiguity averse traders choose no trade

in equilibrium during 1, 000 simulations. Choosing no trade includes three cases such

as no trade with any signal, no trade with a good signal and sell with a bad signal, buy

with a good signal and no trade with a bad signal, and mixed strategy of them. Note

that herding or contrarian behaviour never happens with the Full Bayesian Updating.

In the case with the Full Bayesian updating, the proportion of no trade increases as

the size ofQ0 enlarges by decreasing q and increasing q. As discussed in Chapter 2, we

can expect that smaller q makes the expected asset value of the ambiguity averse traders

with a good private signal lower than the ask price or larger q makes the expectation

with a bad signal higher than the bid price after buy dominated history. It brings higher

probability of choosing no trade by the traders.

Next case is the Maximum Likelihood Updating. The upper panels of Figure A.2

presents the proportion of choosing no trade and herding. As for the proportion of no

trade in the upper left panel, we can find the similar trend of increasing the proportion

as Q0 enlarges, although it is only on the q between 0.63 and 0.75. When q becomes

lower than 0.63, the proportion of no trade decreases as the set expands with lower q. It

is because herding and contrarian behaviours take part of the region.

The proportion of herding increases as Q0 expands although the pattern with low

level of q is different. Following the explanation about herding in Chapter 2, the distri-

bution of q of the market maker updates marginally if its support Q0 is large, while Qt

for the ambiguity averse traders updates rapidly. It brings the trends of higher propor-

tion of herding with larger Q0.

When q is lower than 0.62 the proportion of herding start to decrease as the the

parameter decrease. The region is taken by the contrarian behaviour. The contrarian

behaviour occurs because the expected value of the trader with a bad signal is higher
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Figure A.2 Proportion of no trade, herding and contrarian with the Maximum Likeli-
hood Updating (ρ = 1)
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Note: The upper left panel is the proportion of no trade and the upper right panel is of herding.
The lower left panel is the proportion of buy contrarian and the lower right is sell contrarian. The
proportion is computed by the number of periods that the ambiguity averse traders choose no trade
in equilibrium or herding over 1, 000 simulations with T = 100 at each simulation. The numbers
on the figure are the proportion of the behaviour (Higher proportion with yellow, lower proportion
with blue color). Choosing no trade includes no trade with any signal, buy with a good signal and
no trade with a bad signal, no trade with a good signal and sell with a bad signal, and mixed strategy
of them.

than ask price in a history dominated by selling. We have shown that if q is low, the

expected asset value of the ambiguity averse trader with a bad signal can be higher

than bid price in the analysis on the proportion of no trade. With ρ = 1, this situa-

tion becomes more extreme that the expectation of the trader with a bad signal is even

higher than ask price after a history dominated by selling. We also can check that sell

contrarian occurs with a similar pattern.

The case with ρ to be in between these two extreme updating rules is presented in

Figure A.3. When ρ = 0.5, the patterns for the proportions of no trade and herding are

in the middle of those two extremes. No trade increases as Q0 increases similar to the

case with the Full Bayesian Updating. The proportion of herding increases with larger

Q0. The explanation for this trend is same as the Full Bayesian Updating except that
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Figure A.3 Proportion of no trade and herding with ρ = 0.5
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Note: The left panel is the proportion of no trade and the right panel is of herding. The proportion is
computed by the number of periods that the ambiguity averse traders choose no trade in equilibrium
or herding over 1, 000 simulations with T = 100 at each simulation. The numbers on the figure are
the proportion of the behaviour (Higher proportion with yellow, lower proportion with blue color).
Choosing no trade includes no trade with any signal, buy with a good signal and no trade with a bad
signal, no trade with a good signal and sell with a bad signal, and mixed strategy of them.

there is almost no contrarian behaviour in this case.

A.10 Simulation results with γ = 0

The parameter values used in the simulation is as follows. V = 1 and the prior prob-

ability of the state is δ = 0.5. Half of the traders are informed (µ = 0.5), and half of

the informed traders are without ambiguity (γ = 0). True value of the precision q is set

to be 0.75 if it is not noted specifically. The results are based on 1, 000 simulations of

T = 100 for each parameter.

Figure A.4 Proportion of no trade with the Full Bayesian Updating (ρ = 0)
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Note: The proportion is computed by the number of periods that the ambiguity averse traders choose
no trade in equilibrium over 1, 000 simulations with T = 100 at each simulation. The numbers on
the figure are the proportion of the behaviour (Higher proportion with yellow, lower proportion with
blue color). Choosing no trade includes no trade with any signal, buy with a good signal and no trade
with a bad signal, no trade with a good signal and sell with a bad signal, and mixed strategy of them.
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Figure A.5 Proportion of no trade, herding and contrarian with the Maximum Likeli-
hood Updating (ρ = 1)
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Note: The upper left panel is the proportion of no trade and the upper right panel is of herding.
The lower left panel is the proportion of buy contrarian and the lower right is sell contrarian. The
proportion is computed by the number of periods that the ambiguity averse traders choose no trade
in equilibrium or herding over 1, 000 simulations with T = 100 at each simulation. The numbers
on the figure are the proportion of the action (Higher proportion with yellow, lower proportion with
blue color). Choosing no trade includes no trade with any signal, buy with a good signal and no trade
with a bad signal, no trade with a good signal and sell with a bad signal, and mixed strategy of them.

Figure A.6 Proportion of no trade and herding with ρ = 0.5
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computed by the number of periods that the ambiguity averse traders choose no trade in equilibrium
or herding over 1, 000 simulations with T = 100 at each simulation. The numbers on the figure
are the proportion of the action (Higher proportion with yellow, lower proportion with blue color).
Choosing no trade includes no trade with any signal, buy with a good signal and no trade with a bad
signal, no trade with a good signal and sell with a bad signal, and mixed strategy of them.
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Figure A.7 Proportion of no trade depending on ρ and Q0
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Note: The proportion is computed by the number of periods that the ambiguity averse traders choose
no trade in equilibrium over 1, 000 simulations with T = 100 at each simulation. The numbers on
the figure are the proportion of the action (Higher proportion with yellow, lower proportion with blue
color). Choosing no trade includes no trade with any signal, buy with a good signal and no trade
with a bad signal, no trade with a good signal and sell with a bad signal, and mixed strategy of them.

Figure A.8 Proportion of herding depending on ρ and Q0
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Note: The proportion is computed by the number of periods that herding happens in equilibrium over
1, 000 simulations with T = 100 at each simulation. The numbers on the figure are the proportion
of herding (Higher proportion with yellow, lower proportion with blue color). Herding includes buy
herding and sell herding although the proportion of sell herding is virtually zero as V = 1.

Figure A.9 Proportion of Contrarian depending on ρ and Q0
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Note: The proportion is computed by the number of periods that herding happens in equilibrium over
1, 000 simulations with T = 100 at each simulation. The numbers on the figure are the proportion of
contrarian behaviour (Higher proportion with yellow, lower proportion with blue color). Contrarian
behaviour includes contrarian buying and contrarian selling.
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Appendix B

Appendix to Chapter 3

B.1 Proof of proposition 8

Given α = 1, the following two conditions are derived to satisfy equation (3.5).

Pr(vdh|βd1,t, hdt )
Pr(vdl |βd1,t, hdt )

= min
τ∈Tt

Pr(vdh|βd2,t, hdt , τ)

Pr(vdl |βd2,t, hdt , τ)
(B.1)

Pr(vdh|βd1,t, hdt )
Pr(vdl |βd1,t, hdt )

=
Pr(vdh|buydt , hdt )
Pr(vdl |buydt , hdt )

(B.2)

From equation (B.1), (B.2) and MLRP of both of the ratios in the equation, βd1,t is

increasing in βd2,t. Given α = 1 and keeping βd2,t at its lowest value 0, meaning that no

ambiguity averse traders buy, βd1,t derived from equation (B.2) is as follows.

µ+ (1− µ)ε/2

γµ
−

√{µ+ (1− µ)ε/2

γµ

}2

− µ+ (1− µ)ε/2

γµ

It can be transformed to be h1(y) = y −
√
y2 − y where y = µ+(1−µ)ε/2

γµ
. y > 1

with 0 < γ ≤ 1 and µ > 0. h1(1) = 1, and limy→∞ h1(y) = 0.5 from limy→∞ y −√
y2 − y = limy→∞

1

1+
√

1−1/y
= 1

2
. Therefore 0.5 ≤ βd1,t < 1 when α = 1. σd1,t is

symmetric to βd1,t.
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B.2 Proof of Proposition 9

Given α = 1, equation (B.1) at t = 1 can be simplified as follows.

{1 + (τ + τ)/2(2βd1,1 − 1)}δ
{1− (τ + τ)/2(2βd1,1 − 1)}(1− δ)

= min
τ

{1 + τ(2βd2,1 − 1)}δ
{1− τ(2βd2,1 − 1)}(1− δ)

(B.3)

From equation (B.2) and (B.3) with α = 1, setting βd2,1 = 1 gives the lower bound for τ

as τ is a decreasing function in βd2,1. τ̃ is the solution for τ that satisfies equation (B.2)

and (B.3) with α = 1 keeping βd2,1 = 1.

We also can check that β2, 1d ≥ 0.5. It is known that βd1,1 ≥ 0.5 from Proposition

8. If we suppose that βd2,1 is not lower than 0.5, βd2,1 is a decreasing function on τ given

τ from equation (B.3). With maximum level of τ , which is at τ = τ , βd2,1 is derived to

be

1− [
√
{(1− µ)ε/2}2 + µ(1− µ)ε/2− (1− µ)ε/2]/µ

If the function above is defined to be h2(µ, ε), it is not lower than 0.5 since h2(µ, ε) is a

increasing function in µ and limµ→0 h2 = 0.5. Therefore, βd2,1 ≥ 0.5.

Hence, when τ is higher than τ̃ , 0.5 ≤ β2,1 < 1. For the case of σd2,1 can be shown

in similar way.

B.3 Proof of Proposition 10

One of the condition for herd and contrarian buying of the ambiguity averse traders is

βd2,t < 0.5. The threshold βd2,t should satisfy the following equation which is simplified

from the last two terms of equation (3.5).

min
τ∈Tt

1 + τ(2βd2,t − 1)

1− τ(2βd2,t − 1)

Pr(vdh|hdt , τ)

Pr(vdl |hdt , τ)

=
µγ(1− βd1,t){1 + E(τ |hdt )βd1,t}+ µ(1− γ)(1− βd2,t){1 + E(τ |hdt )βd2,t}+ (1− µ)ε/2

µγ(1− βd1,t){1− E(τ |hdt )βd1,t}+ µ(1− γ)(1− βd2,t){1− E(τ |hdt )βd2,t}+ (1− µ)ε/2

× Pr(vdh|hdt )
Pr(vdl |hdt )

(B.4)
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When βd2,t < 0.5,
1+τ(2βd2,t−1)
1−τ(2βd2,t−1)

< 1 with any τ while

µγ(1− βd1,t){1 + E(τ |hdt )βd1,t}+ µ(1− γ)(1− βd2,t){1 + E(τ |hdt )βd2,t}+ (1− µ)ε/2

µγ(1− βd1,t){1− E(τ |hdt )βd1,t}+ µ(1− γ)(1− βd2,t){1− E(τ |hdt )βd2,t}+ (1− µ)ε/2

> 1

Also, minτ∈Tt
Pr(vdh|h

d
t ,τ)

Pr(vdl |h
d
t ,τ)

= minτ∈Tt
Pr(vdh|h

d
t ,τ)

1−Pr(vdh|h
d
t ,τ)

=
minτ∈Tt Pr(v

d
h|h

d
t ,τ)

maxτ∈Tt{1−Pr(v
d
h|h

d
t ,τ)}
≤

∫ τ
τ Pr(v

d
h|h

d
t ,τ)f(τ |hdt )dτ∫ τ

τ {1−Pr(v
d
h|h

d
t ,τ)}f(τ |hdt )dτ

=

Pr(vdh|h
d
t )

Pr(vdl |h
d
t )

by the mean-value theorem when Tt = {τ : τ ≤ τ ≤ τ̄} with ρ = 0. From

these,

min
τ∈Tt

{1 + τ(2βd2,t − 1)}Pr(vdh|hdt , τ)

{1− τ(2βd2,t − 1)}Pr(vdl |hdt , τ)
< min

τ∈Tt

Pr(vdh|hdt , τ)

Pr(vdl |hdt , τ)
≤ Pr(vdh|hdt )
Pr(vdl |hdt )

<
µγ(1− βd1,t){1 + E(τ |hdt )βd1,t}+ µ(1− γ)(1− βd2,t){1 + E(τ |hdt )βd2,t}+ (1− µ)ε/2

µγ(1− βd1,t){1− E(τ |hdt )βd1,t}+ µ(1− γ)(1− βd2,t){1− E(τ |hdt )βd2,t}+ (1− µ)ε/2

× Pr(vdh|hdt )
Pr(vdl |hdt )

Hence, condition (B.4) cannot be satisfied with ρ = 0. It means that herd buying or

contrarian buying never occurs with ρ = 0, given α = 1. The case for selling is

symmetric to this.

B.4 Proof of Proposition 11

Suppose that 0.5 < βd2,t < 1. Given ρ = 0 and γ = 0, there could be a history only with

buy orders. Equation (3.5) after a history of buys can be simplified as follows.
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min
τ∈[τ ,τ ]

[{1 + τ(2βd2,t − 1)}
{1− τ(2βd2,t − 1)}

×
t−1∏
i=1

µ(1− βd2,i)(1 + τβd2,i) + (1− µ)ε/2

µ(1− βd2,i)(1− τβd2,i) + (1− µ)ε/2

δ

1− δ
]

=
µ(1− βd2,t)(1 + E(τ |hdt )βd2,t) + (1− µ)ε/2

µ(1− βd2,t)(1− E(τ |hdt )βd2,t) + (1− µ)ε/2

×
t−1∏
i=1

µ(1− βd2,i)(1 + E(τ |hdi )βd2,i) + (1− µ)ε/2

µ(1− βd2,i)(1− E(τ |hdi )βd2,i) + (1− µ)ε/2

δ

1− δ
(B.5)

Since there are only buy orders in the history, the minimum value of the left hand side

of equation (B.5) is evaluated at τ . After a log transformation and some manipulation,

equation (B.5) can be transformed as follows.

log
{1 + τ(2βd2,t − 1)}
{1− τ(2βd2,t − 1)}

= log
µ(1− βd2,t)(1 + E(τ |hdt )βd2,t) + (1− µ)ε/2

µ(1− βd2,t)(1− E(τ |hdt )βd2,t) + (1− µ)ε/2

+
t−1∑
i=1

{
log

µ(1− βd2,i)(1 + E(τ |hdi )βd2,i) + (1− µ)ε/2

µ(1− βd2,i)(1− E(τ |hdi )βd2,i) + (1− µ)ε/2

− log
µ(1− βd2,i)(1 + τβd2,i) + (1− µ)ε/2

µ(1− βd2,i)(1− τβd2,i) + (1− µ)ε/2

}
(B.6)

As t increases, the right hand side of equation (B.6) increases since βd2,t is assumed

to be lower than one, and E(τ |hdt ) > τ for any finite t, and E(τ |hdt ) keeps increasing

to τ as t increases. To satisfy the equation, βd2,t should increase to one with sufficiently

large t. It contradict the assumption of βd2,t < 1. Hence, βd2,t becomes one with a positive

probability for any τ and τ . The case with σd2,t = 0 is symmetric to this.

B.5 Proof of Proposition 12

Suppose that there is zero probability of β2,t < 0.5. After consecutive n buys, Tt be-

comes a singleton {τ}, so equation (3.5) can be transformed and simplified as follows.
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log
1 + τ(2βd2,n+1 − 1)

1− τ(2βd2,n+1 − 1)

= log
µ(1− βd2,n+1){1 + βd2,n+1E(τ |hn+1)}+ (1− µ)ε/2

µ(1− βd2,n+1){1− βd2,n+1E(τ |hn+1)}+ (1− µ)ε/2

−
n∑
t=1

[
log

µ(1− βd2,t){1 + βd2,tτ}+ (1− µ)ε/2

µ(1− βd2,t){1− βd2,tτ}+ (1− µ)ε/2

− log
µ(1− βd2,t){1 + βd2,tE(τ |ht)}+ (1− µ)ε/2

µ(1− βd2,t){1− βd2,tE(τ |ht)}+ (1− µ)ε/2

]
(B.7)

For any finite t, E(τ |ht) < τ . Hence, we can find n such that the right hand side of

equation (B.7) becomes negative since log
µ(1−βd2,t){1+βd2,tτ}+(1−µ)ε/2
µ(1−βd2,t){1−βd2,tτ}+(1−µ)ε/2 > log

µ(1−βd2,t){1+βd2,tE(τ |ht)}+(1−µ)ε/2
µ(1−βd2,t){1−βd2,tE(τ |ht)}+(1−µ)ε/2

for any t. To satisfy the equation, βd2,n+1 should be lower than 0.5. It contradicts the

assumption. Therefore, herd buy can occur with positive probability. The case for herd

sell is symmetric to this.

B.6 Proof of Proposition 13

Suppose that no trading behavior occurs at t. It means that βd2,t = 1 and σd2,t = 0.

Equation (3.5) and (3.6) can be simplified as follows.

1 + τ̂(2βd2,t − 1)

1− τ̂(2βd2,t − 1)

Pr(Vh|hdt , τ̂)

Pr(Vl|hdt , τ̂)

=
µ(1− βd2,t){1 + βd2,tE(τ |hdt )}+ (1− µ)ε/2

µ(1− βd2,t){1− βd2,tE(τ |hdt )}+ (1− µ)ε/2

Pr(Vh|hdt )
Pr(Vl|hdt )

(B.8)

1 + τ̂(2σd2,t − 1)

1− τ̂(2σd2,t − 1)

Pr(Vh|hdt , τ̂)

Pr(Vl|hdt , τ̂)

=
µ{σd2,t − σd2,t(1− σd2,t)E(τ |hdt )}+ (1− µ)ε/2

µ{σd2,t + σd2,t(1− σd2,t)E(τ |hdt )}+ (1− µ)ε/2

Pr(Vh|hdt )
Pr(Vl|hdt )

(B.9)
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Since βd2,t = 1 and σd2,t = 0, the first term of the right hand side of equation (B.8)

and (B.9) are 1. It implies that the left hand side of those two equations should be the

same. It contradicts βd2,t = 1 and σd2,t = 0. Hence, no trading is not possible for the

ambiguity averse traders if Tt is a singleton.
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Appendix C

Appendix to Chapter 4

C.1 Example 1

Table C.1 Possible histories at t = 7 under the standard strategy

Possible histories under the standard strategy at t = 7

h7 \ h3 Pr(h7|h2, NT
M
2 , sM2 = 0) E(V |h7, s

M
2 = 0) a7 b7 Action Profit

1 {buy3, buy4, buy5, buy6} 0.14 0.7714 0.7783 0.5 no trade 0
2 {buy3, buy4, buy5, NT6} 0.12 0.6 0.6092 0.5 no trade 0
3 {buy3, NT4, buy5, buy6} 0.0624 0.6923 0.6124 0.5 buy 0.0799
4 {buy3, NT4, buy5, NT6} 0.0576 0.5 0.5168 0.4832 no trade 0
5 {buy3, NT4, sell5, NT6} 0.0576 0.5 0.5168 0.4832 no trade 0
6 {buy3, NT4, sell5, sell6} 0.0624 0.3077 0.5 0.3876 sell 0.0799
7 {sell3, NT4, buy5, buy6} 0.0624 0.6923 0.6124 0.5168 buy 0.0799
8 {sell3, NT4, buy5, NT6} 0.0576 0.5 0.5 0.4832 no trade 0
9 {sell3, NT4, sell5, NT6} 0.0576 0.5 0.5168 0.4832 no trade 0
10 {sell3, NT4, sell5, sell6} 0.0624 0.3077 0.5 0.3876 sell 0.0799
11 {sell3, sell4, NT5, NT6} 0.0576 0.5 0.5168 0.4832 no trade 0
12 {sell3, sell4, NT5, sell6} 0.0624 0.3077 0.5 0.3876 sell 0.0799
13 {sell3, sell4, sell5, NT6} 0.0624 0.3077 0.5 0.3876 sell 0.0799
14 {sell3, sell4, sell5, sell6} 0.0776 0.1695 0.5 0.2179 sell 0.0530

Total 1 0.0340

Note: the parameter values used in the example are α = 0.01, δ = 0.5, µ = 1, q = qM = 0.6, and εb = εs = 0.2.

Table C.2 Possible histories at t = 7 under the manipulative strategy

Possible histories under the manipulative strategy at t = 7

h7 \ h3 Pr(h7|h2, buy
M
2 , sM2 = 0) E(V |h7, s

M
2 = 0) a7 b7 Action Profit

1 {buy3, buy4, buy5, buy6} 0.14 0.7714 0.8994 0.5 no trade 0.2596
2 {buy3, buy4, buy5, NT6} 0.12 0.6 0.7783 0.5 no trade 0.0882
3 {buy3, buy4, NT5, buy6} 0.12 0.6 0.7783 0.5 no trade 0.0882
4 {buy3, buy4, NT5, NT6} 0.12 0.4 0.6092 0.5 sell −0.0119
5 {buy3, NT4, buy5, buy6} 0.12 0.6 0.7783 0.5 no trade 0.0882
6 {buy3, NT4, buy5, NT6} 0.12 0.4 0.6092 0.5 sell −0.0119
7 {buy3, NT4, NT5, buy6} 0.12 0.4 0.6092 0.5 sell −0.0119
8 {buy3, NT4, NT5, sell6} 0.14 0.2286 0.5 0.3908 sell −0.1210

Total 1 0.0469

Note: the parameter values used in the example are α = 0.01, δ = 0.5, µ = 1, q = qM = 0.6, and εb = εs = 0.2.

C.2 Conditions for the profitable manipulation
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Figure C.1 Excess profit in different α and q = qm with µ = 1

t`=10

0.14

0.14

0.14

0.1

0.1

0.1

0.08

0.08

0.08

0.04

0.04
0.04

0.02

0.02
0.02

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
q=qm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

max profit

0.14

0.14

0.1

0.1

0.1

0.08

0.08

0.04

0.04
0.02

0.02

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
q=qm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Note: Excess profit is the expected profit of the manipulative strategy minus that of the standard
strategy. Numbers on the graph is excess profit of the manipulative strategy with parameters µ = 1,
εb = εs = 0.2, τ = 2 with h2 = {buy1}, and sM2 = 0. The left panel is the case that t′ = 10 and the
right panel is that τ ′ is set to make the excess profit maximum. The green area is where the excess
profit is negative; the yellow area is where the standard strategy is buying as well.

Figure C.2 Excess profit in different α and εb = εs with µ = 1
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Note: Excess profit is the expected profit of the manipulative strategy minus that of the standard
strategy. Numbers on the graph is excess profit of the manipulative strategy with parameters µ = 1,
q = qM = 0.6, τ = 2 with h2 = {buy1}, and sM2 = 0. The left panel is the case that τ ′ = 10
and the right panel is that τ ′ is set to make the excess profit maximum. The green area is where the
excess profit is negative; the yellow area is where the standard strategy is buying as well.

Figure C.3 Excess profit in different α and q = qM with µ = 0.5
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Note: Excess profit is the expected profit of the manipulative strategy minus that of the standard
strategy. Numbers on the graph is excess profit of the manipulative strategy with parameters µ = 0.5,
εb = εs = 0.2, τ = 3 with h3 = {buy1, buy2}, and sM3 = 0. The left panel is the case that τ ′ = 20
and the right panel is that τ ′ is set to make the excess profit maximum. The green area is where the
excess profit is negative; the yellow area is where the standard strategy is buying as well.
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Figure C.4 Excess profit in different α and εb = εs with µ = 0.5
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Excess profit is the expected profit of the manipulative strategy minus that of the standard strategy.
Numbers on the graph is excess profit of the manipulative strategy with parameters µ = 0.5, q =
qM = 0.6, τ = 3 with h3 = {buy1, buy2}, and sM3 = 0. The left panel is the case that τ ′ = 20
and the right panel is that τ ′ is set to make the excess profit maximum. The green area is where the
excess profit is negative; the yellow area is where the standard strategy is buying as well.
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