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Abstract

The effect of a layer of an adsorbed monomolecular surfactant film of fluid covering 

the free surface of a finite or semi-infinite volume of substrate fluid, has been inves

tigated for motion within both surfactant and substrate fluids caused by the slow 

rotation of a partially submerged solid body of revolution. The resulting bound

ary value problem is solved for varying depths of partial submersion of the solid 

body by a method in which the equations governing the motion in the substrate 

and the surfactant boundary condition are satisfied exactly. The error in satisfy

ing the boundary condition on the solid body surface is minimized according to a 

least-squares technique. A comparison is made with data available from (a) exact so

lution and (b) experiment when possible. Illustrations include the sphere, concentric 

spheres and prolate and oblate ellipsoids.

Methods are presented for obtaining exact solutions in analytic form of the equa

tions of asymmetric Stokes flow when an axisymmetric body is at rest or in motion 

in homogeneous viscous fluid. One method shows how the difficulty of determining 

three coupled quasi-harmonic functions simultaneously, which is the general problem 

encounted in this type of flow, may be overcome by the superposition of solutions for 

flows involving only two quasi-harmonic functions, with each of these functions de

termined sequentially. Another method considers a class of asymmetric translation 

problems which involve only two quasi-harmonic functions and analytical expres

sions are determined for the drag on the body which are compared with numerical 

values of the drag already available in the literature for certain body shapes.
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C hapter 1

INTRODUCTION

1.1 Axisym m etric Stokes flow in the presence of a sur

factant layer

The fact that a fluid interface is often capable of offering resistance to flow greatly in 

excess of what may be expected from consideration of bulk phase properties has been 

known since the time of Plateau (1869). In fact, the interfacial region between two 

homogeneous phases is composed of m atter in a distinct physical state exhibiting 

properties different from those in the bulkgas, liquid or solid-phase states. Therefore 

new parameters such as interfacial surface tension enter into the thermodynamic and 

hydrodynamic description of systems when interfaces are present. In the equilibrium 

states, the effect of the interfaces often need not be considered explicitly unless the 

ratio of surface to volume is large, because the contribution from interfacial free 

energy to the total free energy is usually small. However, the dynamic behaviour 

of flow systems may be profoundly influenced by interfacial effects even though the 

material content of the interfacial region may be extremely small. At rest, the inter

facial region between two fluids behaves as if it were in a state of uniform tension and 

it is then usually satisfactory to regard the interface simply as a geometrical surface 

in tension. This simple view is often sufficient in many flows with free boundaries and 

indeed forms the basis of classical capillary theory where the effect of surface tension 

is to produce a discontinuity in the normal stress component across the interface if 

it has curvature. It is also recognized, in the context of the calming effect of a layer

12



CHAPTER 1. INTRODUCTION 13

of oil on water waves, that extension and contraction of the surface film produce 

longitudinal variations in the surface tension, the Plateau-Marangoni-Gibbs effect, 

and this in turn gives rise to discontinuities in the tangential components of fluid 

stress at the interface. This departure in the surface tension from its equilibrium 

state can be attributed to the existence of a surface dilational elasticity or surface- 

shear viscosity. The surface-shear viscosity is also recognized by physical chemists as 

playing a significant role in foam stability, as well as in the chemistry and dynamics 

of insoluble surface films of mono-molecular dimension, known as surfactants, which 

are often highly viscous.

The first attem pt to formally incorporate the concept of a surface viscosity into 

the equations of motion of a fluid interface was carried out by Boussinesq (1913). 

This and later work was reviewed by Scriven (1960) who provided a rational theory 

for the dynamics of a fluid interface and in particular established the equation of 

motion of a Newtonian fluid surface.

Theoretical and experimental work to measure the coefficient of shear viscosity 

77 was reported in a series of papers by Goodrich et al. (1969, 1970, 1971). These 

authors proposed a viscometer which consisted of a thin circular disk or annulus 

inserted into the plane interface between the surfactant film and the supporting 

substrate bulk phase. The disk was slowly rotated, and the torque required to 

maintain a steady rotation was measured. From a knowledge of this torque and a 

mathematical formula relating the torque to the shear viscosity, the value of 77 could 

then be determined. The theoretical analysis proceeded on the assumption tha t 

the Reynolds numbers for the flows of both surfactant and substrate are sufficiently 

small for the linearized Stokes equations to govern the motions generated in both 

the surfactant and substrate, and in such motions all fluid particles move in circles 

with centres along the axis of the disk or annulus perpendicular to its plane. Subject 

to such assumptions, Scriven’s analysis of the motion within of the surfactant layer 

leads to a boundary condition of the form

dv d2v , . . .
'*&  + ’7a ?  = 0 (2 =  0)l (1' 1 J )

where v is the rotational fluid velocity, 77 is the surface viscosity of the surfactant
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and (j, is the dynamic viscosity coefficient in the substrate fluid which occupies the 

half-space z < 0 .

The mathematical analysis of Goodrich (1969) was flawed and its shortcomings 

were exposed and discussed in detail by Shail (1978), who also presented a form 

of solution using the methods of generalized axially symmetric potential theory 

to formulate an integral equation for the rotational fluid velocity. Shail’s analysis 

provided both a complete set of numerical data for the torque acting on a disk of 

radius a, when A = 77/ [ia takes arbitrary values, and a comprehensive description of 

the asymptotic structure of the solution in the limits of very small and large values 

of A.

The surface viscometer proposed by Goodrich nevertheless provides an interest

ing mathematical boundary-value problem with the somewhat unusual boundary 

condition (1 .1.1), although there are considerable practical difficulties encountered 

in using such a viscometer. First, the disk is assumed to have zero thickness so 

that it lies within the surfactant layer which is assumed to be of zero thickness, 

but in reality, the thickness of the disk would exceed the mono-molecular dimension 

of the surfactant layer. Thus the placement of the disk in an experiment so as to 

minimize errors is crucial but very difficult, particularly since the contribution from 

the film or ring torque exerted on the disk by the surfactant layer is a very signifi

cant part of the total torque exerted on the disk. The results of Shail’s theoretical 

work further indicated that the rotating disk is not a particularly sensitive device 

for measuring small coefficients of shear viscosity and consequently errors associated 

with positioning the disk are further magnified.

A number of studies have sought to minimize the effect of critical positioning by 

taking the disk out of the surfactant layer. Shail (1979) considered the case when 

the disk is totally submerged in a semi-infinite substrate fluid and rotates about the 

normal axis through the centre of the disk which lies in a plane which is parallel to 

the unbounded surfactant layer. Shail et al. (1981, 1982) considered further related 

problems involving a submerged disk, including the effect of a bounded surfactant 

layer and when the disk performs torsional oscillations. Exact solutions were also 

given by Davis and O’Neill (1979) for a sphere totally submerged to any depth below
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the surfactant layer when it slowly rotates about a diameter perpendicular to the 

surfactant layer. All of these studies relate to configurations which eliminate the 

effect of placement error in Goodrich’s rotating-disk viscometer and, furthermore, 

there is no film torque arising from the stress within the surfactant layer. This 

means that the influence of the presence of the surfactant upon the value of the 

torque acting on the submerged body enters only in a secondary way through the 

stress distribution in the substrate fluid. This however has the disadvantage tha t 

the effect of the surfactant rapidly decays as the depth of the submerged body below 

the surfactant layer increases, as is reported in the aforementioned studies. Davis 

(1984) considered a half-submerged sphere in the limiting cases of very large or very 

small values of the ratio A = rf/pa, with a now denoting the sphere radius. His 

results provided a greater measurable contribution to the total torque arising from 

the presence of the surfactant layer in the limiting situations A < < 1  and A > >  

1 which in turn gives support to the view tha t a more effective viscometer would 

involve a rotating body which straddles the surfactant layer. Such a device clearly 

avoids the disadvantages of the rotating-disk viscometer proposed by Goodrich while 

at the same time it provides a mechanism whereby a significant contribution to the 

total torque due to the surfactant layer can arise from both the film and substrate 

torques.

O’Neill and Yano (1987) considered a sphere of radius a which straddles the 

surfactant layer and whose centre may be at any depth h below or above the layer, 

so that —a < h < a .  An exact solution to this problem when the surface viscosity rj 

is zero was presented by Schneider, O’Neill and Brenner (1973) assuming negligible 

effect of the meniscus where the free surface makes contact with the sphere. This 

enabled the boundary-value problem for the rotational velocity to be solved exactly 

using toroidal coordinates. A comprehensive set of data was provided for the torque 

acting on the sphere covering a wide range of values of h/a. A set of experimental 

results was subsequently published by Kunesh et al. (1985); these showed very close 

agreement between measured and theoretical values of the torque over the range 

— 1 < h/a  < 1, vindicating the assumption of negligible meniscus effect. The satis

fying agreement between theory and experiment for rj =  0 led to O’Neill and Yano
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(1987) presenting their theoretical model involving a partially submerged sphere 

when a surfactant layer of arbitrary shear viscosity is present so as to provide, like 

the analysis of Schneider et al. (1973), a sufficiently accurate theoretical model for 

use in conjunction with measured data for the torque acting on the sphere and thus 

enable accurate values of the coefficient of surface-shear viscosity to be determined.

In Chapter 3, a sphere which is partially submerged in the substrate fluid below 

the surfactant layer, rotates slowly about a diameter perpendicular to the plane of 

the surfactant layer. This problem, first solved by O’Neill and Yano (1987), is now 

solved by a different approach which leads to generalization for the solution to other 

geometries. In O’Neill and Yano’s work, neither the boundary condition on the 

rotating sphere nor the surfactant condition were satisfied exactly and the unknown 

coefficients in the series representation of the solution were determined by minimizing 

the combined error in the non-satisfaction of the conditions on the two surfaces. In 

that work the origin was always located at the centre of the sphere or its reflection in 

the surfactant layer. In this thesis, we fix the origin within the plane of the surfactant 

layer. This has the advantage of permitting the surfactant boundary condition to 

be satisfied exactly, and thereby eliminating one set of unknown coefficients. A 

feature of the O’Neill and Yano results was that there was a significant deviation 

between the computed surface velocity when A = oo and that derived analytically , 

as indicated in Fig. 10 of their paper. This was unusual since very close agreement 

between the numerical results and analytical results is reported elsewhere in the 

paper. We discovered that O’Neill and Yano had left out an eigen-solution in the 

representation for the velocity, which contributes only when X = oo. If this eigen- 

solution is included, it is shown that excellent agreement between analytical and 

numerical results is then achieved.

In Chapters 4 an(l 5 of this thesis, the effect of a layer of an adsorbed mono- 

molecular surfactant film of fluid covering the free surface of a finite or semi-infinite 

volume of substrate fluid has been investigated for motion within both surfactant 

and substrate fluids caused by the slow rotation of a partially submerged solid body. 

The resulting boundary value problem is considered for varying depths of partial 

submersion of the solid body by a method in which the equations of motion and
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continuity in the substrate, and the surfactant boundary condition are satisfied 

exactly. The boundary condition on the rotating body is satisfied approximately 

with the error minimized according to a least-squares criterion. A comparison is 

made with data available from (a) exact solution and (b) experiment where possible. 

Illustrations of the theory include concentric and eccentric spheres as well as prolate 

and oblate ellipsoids.

1.2 Asym m etric Stokes flow generated by axisym m etric 

bodies

A problem of fundamental importance in many engineering applications of the the

ory of suspensions in sedimentation or aerosols is the determination of the Stokes 

resistance of a small particle in motion in a fluid which is in general undergoing 

shear. An example would be the transport of solid particles in a pressure driven flow 

through a tube or channel. The theoretical problems which model these applications 

are problems of great mathematical complexity involving in general particle-particle 

and particle-wall interactions as well as the basic particle-fluid interaction.

For rotation of an axisymmetric body about its axis of symmetry in unbounded 

fluid the resulting axisymmetric flow problem was investigated by Jeffery (1915) 

who showed that the pressure field is constant and the fluid velocity consists of 

one component orthogonal to the azimuthal plane. The solution for this velocity 

component was found explicitly by Jefferyfor a number of body geometries. Chwang 

and Wu (1974) approached this problem from a different viewpoint and showed how 

exact solutions for rotating bodies can be constructed by considering suitably chosen 

distributions of rotlets along the axis of symmetry. Their work corroborates tha t 

of Jeffery for the torque coefficient for a prolate or oblate ellipsoid. Even when the 

body rotates about an axis of symmetry, there is a scarcity of exact solutions with 

a limitation being set by the coordinate systems in which Laplace’s equation has 

separable solutions. Slender body theory, applicable when the axial dimension of 

the body greatly exceeds any transverse dimension, provides approximate solutions 

for other axisymmetric bodies, as was demonstrated by Batchelor (1970) and Cox
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(1970) for example.

An exact solution was determined by Edwards (1892) for slow rotation of a gen

eral ellipsoid about a principal axis. The torque on an ellipsoid of revolution rotating 

about its axis of symmetry is found to agree with that of Jeffery if a numerical factor 

is replaced by the correct value 16/3. Brenner (1963) examined the limiting case of a 

circular disk and pointed out that the torque is invariant about any axis of rotation 

through the centre of the disk. This remarkable property is of course also possessed 

by the sphere. It was further shown by Brenner to be a property possessed by some 

other bodies such as a cube, but it is worth noting that no similar drag invariance 

property exists for the translating disk. Jeffery (1922) obtained an exact solution 

for a general ellipsoid in a linear shear flow and properties of this solution have been 

extensively studied by Hinch and Leal (1979).

The asymmetric rotation problem is evidently more complicated analytically 

because in addition to a non-vanishing pressure field there are three velocity com

ponents which must now be determined. As demonstrated for instance by Lamb 

(1932), the general solution of the Stokes equations involves the evaluation of three 

quasi-harmonic scalar functions. The purpose of Chapter 6 and 7 of this thesis is 

to formulate methods for obtaining solutions of the equations of asymmetric Stokes 

flow for an axisymmetric body which is at rest or in rotation in homogeneous viscous 

fluid.

In Chapter 6 it is shown how the difficulty of determining the three coupled quasi- 

harmonic functions simultaneously can be overcome by exploiting the linearity of the 

governing equations. Thus, by superposition, the solutions of various problems may 

be derived from a set of solutions which involve only two quasi-harmonic functions, 

and each of these pairs of functions may be determined sequentially.

In Chapter 7 the ideas of this chapter are further developed by noting tha t the 

solution of Oberbeck (1890) for the translation of a general ellipsoid involves only 

two quasi-harmonic scalar functions. It is clear that for the translation of a sphere, 

circular disk, or a spheroid - prolate or oblate - the solution for the asymmetric 

translation of these axisymmetric bodies perpendicular to their axis of symmetry 

involves at most two quasi-harmonic scalar functions. This leads us to conjecture
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whether there is a general class of axisymmetric bodies for which the solution of 

the Stokes equations for translation perpendicular to the axis of symmetry involves 

the determination of only two quasi-harmonic functions. In this chapter we explore 

the verification of this conjecture for some body shapes for which exact analytic 

solutions have not been obtained up to now.



C hapter 2

PHYSICAL AND 

MATHEMATICAL ASPECTS

2.1 Introduction

This chapter is concerned with the mathematical and physical aspects of fluid flow 

at low Reynolds Number, VLa2/v ,  where v  denote the kinematic viscosity of the fluid, 

a some length scale associated with the body and ft a constant angular velocity.

2.2 M athem atical aspects

In this section a number of results are established which will be of use in subsequent 

work.

2.2.1 L egendre functions of th e  First Kind

For t = cosd, we find in Morse and Feshbach (1953),

II-tooo 1, (2 .2 .1 )

= t, (2 .2 .2 )

J ? w  = \ ( 3 t2 -  1) (2.2.3)

and P™(t) =  (1 -  t2)m/ 2g ;P ° ( t ) ,  (to, n  > 0), giving

Pl(t)  = ( l - t 2)1/2, (2.2.4)

20
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P}(t) = 3 f ( l - t 2)1/2. (2.2.5)

In general, for integers n > 1,

(2 .2 .6 )

2.2.2 Integral representations

Consider a m>n defined by

r°
Q!m,n = J  i (m > 7 1 = 1 ,2 ,..)

Morse and Feshbach (1953) show that

(2.2.7)

2v{v A 1)
2z/+ 1

(2 .2 .8 )

Since an<̂  -̂ 2n - i ( 0  are even functions of t, equation (2.2.7) becomes

Qm,n j  i  ~  2  j  i

r 2m (2m — 1) 
[ (4m — 1)

Hence

a m,n
2m (2m — 1)

(4m — 1)

(2.2.9)

( 2 .2 . 10)

Next, consider /3m, defined by

P m  — J  {t A t 2) P'2rn{t)dt. 

We first note that from equation (2.2.6)

( 2 .2 . 11)

f ^ P L W d t  =
m

.{2m A 1). p U i m +
(m + 1) ‘

,(2m + 1).

and therefore

/:t2PL(t)dt =
m

,(2m + 1).
' (m  A 1) ' 
,(2m + 1).

£  P L - i ( t )d t

( 2 .2 .12 )

(2.2.13)
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Changing the suffix, (2 .2 .12) becomes

2m
.(4 m  + 1).

(2m + 1)
.(4m +  1).

= 1

[P2m-l ( C

(2.2.14)

since P2m+i(0) = P2m -i(0 ) = 0 and P2m+1( - 1) =  P2m- i ( - l )  =  - 1 ,  and thus 

(2.2.13) becomes

But (2.2.12) gives

J ^ m  =

2m
.(4 m  + 1)

(2m +  1)
,(4m + 1).

(2m +
(4m + 3)J [P2m+2(*)]°i +

(2m +  2)

J   ̂ ^ 2m -l {P)dt.

(2.2.15)

=  - 1  + ,(4m + 3).

(4m +  3).

[(2m +  l ) P 2m+2(0) +  (2m +  2 )P 2m(0)]

(2.2.16)

where

[(2rn + l)P 2m+2(0) +  (2rn +  2)P2m(0)] = [P2m(0) -  P2m+2(0)]

\  , (2m + j 0
(2m +  2).  

‘(4m + 3)

iW O )

P2m(0)

since

and

,(2m + 2 ).

(2m + 2)P2m+2(0) + (2m + l)P 2m(0) = 0 (m > 0)

(2.2.17)

P2m(0) = ( —l)m(2m — l) ! /22m -1m!(m -  1)! 

Therefore equation (2.2.16) becomes

J  ^P2m+i{t)dt — 1 + ,(2m + 2 ).

Likewise

.(2m). 
1

. (2m — 1).

P2m(0). 

P2m-2(0 )

P 2m(0).

(2.2.18)

(2.2.19)
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Thus, substituting equations (2.2.18) and (2.2.9) into (2.2.14),

’° r 2m 1 f°  . f(2m +  I ) 1 r0
J .i . t 2 p ^ d t  -  (4m + 1). f - t +

= —1 + ^ 771(0 )

-  - l - P a m ( O )

,(4m +  1). 
( —8m — 2)

/ > ■

(4m + l)(2m  + 2)(2m — 1). 
2

_(2m + 2 )(2m — 1).

Therefore

Pm =  J j t  +  t * ) P U t ) d t  

= ~P2m( 0)

where

P2m{ 0 ) =

,(2m + 2 )(2m — 1). 

P2m(0) P 2m—2(0) P 2(0)
- ^ 2 7 7 1 - 2 (0 )  ^ 2 7 7 1 -4  -P o (O )

( 2 m - 2 ) !

■Po(O)

=  ( - 1) (2 2m -1)(m)!(m — 1)!. 

for m > 1. The general expression for the (3m is accordingly

( 2 m -  2)!
Pm =  ( - 1)771+1

(22m-1)(m + l)!(m  — 1)!.

Using equations (2.2.10) and (2.2.23),

a.
P
771,771   ^  - j^ m + 1

= ( - l ) ^ 1

(22m~ i)(m +  l ) ! ( m -  1)!
( 2 m - 2 ) !  

(22m)(rn+  l)!m!

(2m -  l ) ( 2m )'
(4m — 1)

( 2 m -  2)!
(2m — 1)

,(4m — 1).

Hence

P r

a. = ( - 1)
771 +  1 (2 m - 2 ) !  (4 m - 1 )

,(22m) (m +  1)! m! (2m — 1).

for m > 1.

2 .2 .3  L egen d re fu n ction s o f th e  S econ d  K ind

With s =  cosh£ we have for s > 1 from Morse and Feshbach (1953),

=  HS)>

= \  (3 ** -  1) In ( j± y )
3 s
2

2(t)dt

(2 .2 .20 )

( 2 .2 .21 )

( 2 .2 .22 )

(2.2.23)

(2.2.24)

(2.2.25)

(2.2.26)

(2.2.27)

(2.2.28)
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and

for n > 0. In particular

Ql(-s) = V s 2 -  1 

Q] {s )  =  V s 2 -  1

and in general,

=

for n > 1.

5 1 /.S +  1 In
5 — 1 2 Vs -  1
3 s2 - 2  3 , [ s  + 1

— -  s m
s2 - l  2 Vs — 1

(2.2.29)

(2.2.30)

(2n + 1)  ̂Ql(s)  -  (n + . (2.2.31)

2 .2 .4  S p herica l p o lar co o rd in a tes  (r, 8, (j>)

The spherical polar coordinates (r, 9, (j>) are related to the cylindrical polar coordi

nates (p,(j),z) by the relations

p — r sin 9, z — r cos 9, (2.2.32)

with r > 0 and 0 < 9 < 7r. Thus, the Cartesian coordinates (x , y , z ) are expressible 

as

x = r sin 9 cos </>,

y = r sin 9 sin </>,

z — r cos 9. (2.2.33)

By restricting the ranges of these coordinates as follows

0 < r < o o ,  0 < 9 < tt, 0 < (f> < 27r (2.2.34)

each point in space is represented once and only once, with the exception of the 

points along the z axis, for which (f> is undetermined.
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Figure 2.1: Prolate spheroidal coordinates in a meridian plane.

2 .2 .5  P ro la te  sp h ero id a l co o rd in a tes  (£ ,t?,^)

The transformation of cylindrical polar coordinates given by

z +  i p — c cosh (£ + i tj) 

for c > 0 , leads to the relations

z — c cosh £ cos rj, 

p — c sinh £ sin rj,

(2.2.35)

(2.2.36)

Each point in space is obtained once and, with minor exceptions, only once by 

limiting the ranges of the prolate spheroidal coordinates (£, 77, 0 ) in following manner:

0 < £ < oo,

0 < 77 < 7T,

0 < (j) < 2 7T.

Eliminating rj from equation (2.2.36) results in

+ =  1 .

(2.2.37)

(2.2.38)
c2 cosh2 £ ' c2 sinh2 £

Since cosh£ > sinh £, the coordinate surface £ = constant is a member of a family 

of confocal prolate spheroids having their geometric centre at the origin. Spheroids
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of this type are generated by the rotation of an ellipse about its major axis -  in this 

instance along the z  axis -  as indicated in Figures. 2.1 and 2.2.

1= o (~  constant

Figure 2.2: Prolate spheroid.

The foci, and F2, of the confocal system are located on the z axis at the points 

{p = 0, z  = ±c} corresponding to the values {£ = 0,77 =  0 and 7r} respectively. The 

major and minor semi-axes, lengths ao and bo respectively, of a typical ellipsoid, 

£ =  a — constant, lie along the z axis and in the plane z — 0, respectively, and the 

lengths are given by

ao =  c cosh a, 

bo = c sinh a.

c — ac

(2.2.39)

(2.2.40)

, (2.2.41)
.ao -  o0J

which gives the parameters c and a in terms of the lengths of the semi-axes. It 

should be noted that the eccentricity eo of a typical prolate ellipsoid is

Thus,

and

a = -  In 
2

ao + bo

eo — 1 -

1/2

= (cosh a) - 1 (2.2.42)
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The value a  =  0 is a degenerate ellipsoid which reduces to the line segment — c < 

z < c along the z axis, connecting the foci.

2 .2 . 6  O b la te  sp h ero id a l co o rd in a tes  (£,?7,0)

Figure 2.3: Oblate spheroidal coordinates in a meridian plane.

The transformation

z + i p = c sinh(£ + i 77) (2.2.43)

for c > 0 , gives rise to the relations

z — c sinh £ cos 77,

p — c cosh £ sin 77 (2.2.44)

where again (p, z) are cylindrical polar coordinates. Every point in space is repre

sented at least once and only once by restricting the ranges of the oblate spheroidal 

coordinates (£, 77, <j>) as follows:

0 < £ < 00 ,

0 < 77 < 7T,

0 < (j) < 2tt. (2.2.45)
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Eliminating 77 from equation (2.2.46) yields

z 2 p2
-2- ' . 1 2 2 . 2 ~  1 (2.2.46)c2 smh £ c2 cosh £

from which it is readily established that the coordinate surface £ =  constant is now 

a member of a family of confocal oblate spheroids having their common centre at

the origin. Spheroids of this type are generated by the rotation of an ellipse about

its minor axis -  in this case along the z axis -  as indicated in Figures. 2.3 and 2.4.

l

Figure 2.4: Oblate spheroid.

The focal circle of the confocal family lies in the plane z = 0 and corresponds to 

the circle p — c. The major and minor axes of a typical oblate spheroid, £ =  a = 

constant, lie in the plane z = 0 and along the z axis, respectively. The ellipsoid 

given by a = 0 is degenerate and corresponds to that portion of the plane z — 0 

inside the focal circle, for which 0 < p < c. The lengths of the minor and m ajor 

semi-axes are ao =  csinh a , 60 =  ccosh a.

2.3 Axisymmetric Stokes flow

2 .3 .1  A  S p h ere ro ta tin g  w ith  a su rfactan t layer

Consider a partially submerged sphere of radius a slowly rotating with constant 

angular velocity in a semi-infinite incompressible fluid with dynamic viscosity p. .
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The axis of rotation is the diameter of the sphere perpendicular to the surface of the 

substrate fluid on which there is a layer of surfactant fluid. The depth of the centre 

C of the sphere below the surfactant layer is c, where — a < c < a. Thus c > 0 or 

c < 0 according as the sphere is more or less than half submerged, respectively.

In order to preserve the symmetry of later analytical work, the system of cylin

drical polar coordinates (p, </>, z) with the origin 0  lying in the plane of the interface 

between the surfactant and substrate fluid, will be used. Assuming that the Reynolds 

number,

* .  =  — , (2.3.1)
V

where v here denotes the kinematic viscosity of the substrate fluid, for the flow 

induced in the substrate fluid to be sufficiently small to permit the neglect of the 

inertia terms in the Navier-Stokes equations, then the flow in the substrate fluid is 

governed by the Stokes equation

^V 2v = Vp, (2.3.2)

together with the equation of continuity

V .v = 0, (2.3.3)

where v denotes the fluid velocity, p is the fluid pressure and p  is the coefficient of 

dynamic viscosity of the substrate fluid.

The fluid motion is caused solely by the rotation of the surface, and because of 

the axisymmetric nature of the problem, it follows that the velocity v  has only one

component which is in the azimuthal direction of a system with z - axis along the

axis of rotation of the surface and pointing out of the substrate fluid. Thus (2.3.2) 

and (2.3.3) possess a solution of the form

v =  v (f) (2.3.4)

and

p = constant (2.3.5)

provided that

V 2d - 4  =  0. (2.3.6)
P2
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z

8 1

0 2

Figure 2.5: Free surface of substrate fluid with a surface film.

2 .3 .2  B o u n d a ry  co n d itio n s

For the problem of a solid body rotating with a surfactant layer, there are two 

boundary conditions to be satisfied. One on the surface Ti of the body and the 

other on the surfactant film 1?2.

To satisfy the non-slip boundary condition on the body surface Vi requires that

v = p (2.3.7)

where (p, (J>, z ) are cylindrical polar coordinates and for rest of this section all physical 

quantities will be referred to cylindrical polar coordinates.

In the absence of the surfactant layer, when Tg forms the interface between the 

substrate fluid and a fluid, such as air, imposing negligible shear stress on z = 0 , 

then
dv . .

Vpz — =  0 at z  =  0. (2.3.8)

In order to discuss the effect in the presence of the surfactant layer, a thin fluid

layer (1) of thickness 8 covering the substrate fluid (2), will be considered. It is

assumed that a fluid with negligible shear viscosity (for example air) now bounds 

the upper surface z = 8 of the surfactant layer, as depicted in Figure 2.5.

Letting suffices 1 and 2 denote quantities pertaining to the fluids (1) and (2) 

respectively, the boundary conditions to be satisfied are

1. continuity of velocity and stress on z =  0 ,



CHAPTER 2. PHYSICAL AND MATHEMATICAL ASPECTS 31

2 . zero tangential stress on z = 8. 

Thus

dz dz

and

vi =  v2, (z =  0)

M i** W * *  (z =  Q) (2 3 9)

^ ■  = 0 (z = S). (2.3.10)

Equation (2.3.9) and use of the Taylor series expansion

dvi, dv\ f 52Di.
"  a 7 '2=0 +  +  -  (2 .3 .11)

means that equation (2.3.10) implies that

Ml (̂ r) I=0 + M ( ^ ) 2=0 + 0  = °' ( 2 ' 3 ' 1 2 )

However, assuming that equation (2.3.6) holds fluids 1 and 2, we see tha t on z = 0,

d2Vi _  d2vi 1 dvi
dz2 0p2 p d p + p2' (2.3.13)

and
d2̂  d2v2 _  l d v 2 ^2 ,0 „ - .
d z 2 dp2 p d p + p2' ^2 .0 .14J

Equations (2.3.13) and (2.3.14) together with the first part of equations (2.3.9) give

(& L -(& L
Which implies that, as £ —> 0, with the surface viscosity 77 defined by

tj = Hm(pi6) ( 5 —* 0, /xi —> 00), (2.3.16)

equation (2.3.10) reduces to

dv d 2v , . . .
f tr z + v dz* = 0 (z =  0)- (2-3-17)

In equation (2.3.17) the suffix 2 is now being suppressed, and p  denoting the coef

ficient of dynamic viscosity in the substrate fluid which occupies the region z < 0. 

The equation (2.3.17) is precisely that given by Scriven (1960) when the flow is
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a swirling motion, but has been obtained here by a more direct approach for this 

problem. Equation (2.3.17) can be written in dimensionless form as

dv d2v
^  + A ^  = 0 (2.3.18)

on r 2 , where \  = rj/fi.

2 .3 .3  G en era l so lu tio n  in sp herica l p o lar  co o rd in a tes  for th e  v e lo c 

ity  field

In this section, a systematic method of approach to the problem of solving the 

differential equation of axisymmetric creeping flow in spherical polar coordinates 

(r, 9, (f)) is provided. The Cartesian coordinates which been described in Section

2.2.4 are

x r sin 6 cos

y = r sin# sin^>,

r cos 9, (2.3.19)

where r > 0, 0 < <p < 27r, 0 < 9 < 7r.

In spherical polar coordinates, (2.3.6) together with (2.3.4) becomes

(2.3.20)

For brevity, put t = cos 9, then

1 d _  d_
sin 9 89 dt

(2.3.21)

Therefore, (2.3.20) becomes

(2.3.22)

The homogeneous equation (2.3.22) may be solved by separation of variables as 

follows:

v =  f { r ) g( t ) (2.3.23)
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which, upon substitution in equation (2.3.22), yields

dr
d f( r ) 

dr 5(0  + dt
( i  -  t2)1/ 2

dg(t)
dt

s i t )
( i  - t 2)1/ 2]

f { r )  =  0. (2.3.24)

Dividing through equation (2.3.24), by f(r) and g(t), the resulting expression can 

only be satisfied if
4f

dr V dr

and
' ±  ( 1 _ t2)M t ) \  _ 5(0
dt v  } dt )  ( 1  -t< + j ( j  +  1)5 ( 0  =  o5

with j  an integer or zero. The equation (2.3.25) implies that

r2f " { r ) +  2 r f ( r )  -  j ( j  +  l ) / ( r )  =  0.

(2.3.25)

(2.3.26)

(2.3.27)

Assuming a solution of the form f ( r )  = ra exists for the above equation, then

a (a  — 1) +  2a — j ( j  +  1) = 0

a2 + a -  j ( j  -f 1) =  0

giving

a = j  or — ( j +  1). (2.3.28)

Thus equation (2.3.23) has as its solution

/ ( r )  =  AjrJ + 5 i 7’~(i+1) (2.3.29)

with Aj  and Bj  arbitrary constants, and equation (2.3.26) is Legendre’s equation,

and has the Legendre functions of the first and second kind, Pj{t)  and Q j( t ), as its

independent solutions. The functions P j(0  and Q}(t) can be written as

Pj(t)  =  (1 -  «2)1/2^ ( i )  (j  > 1) (2.3.30)

and

Q){t)  =  (1 -  t2 )1/2Q'(i) ( j  > 0), (2.3.31)

with the ' denoting differentiation with respect to the argument. The functions

Q j( t ) are singular at both t = 1 and t — —1.,
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The solutions of (2.3.20), for j  > 1, which are bounded for — 1 < t < 0 are 

therefore

rj Pj ( t)  , r~(j+1>>P}(t), (2.3.32)

In the degenerate case j  = 0, then / ( r )  =  A  +  B / r ,  where A, B are constants, and 

equation (2.3.26) becomes

d_
dt

( i  - t 2)
dg(t)

dt
9(t)

A solution is

since

(1 -*2)1/2

a-*2)

=

=  o.

Q0(t) =  -  log
(1 + 1)

U - i ) J
To find a second independent solution, let

g(t) =
G(t)

It then follows that
dg(t) _  G'{t) t G(t)

dt (1 - t 2)V2 ^  (1 -  * 2 ) 3 /2 '

Multiplying both sides of equation (2.3.37) by (1 — t2) gives

dg(t)

Hence

d_
dt

( i  - e )2 t d9{t)
dt

+

(1 - t 2)1/2G"{t)

( 1 t 2

But

1 t2
+\  ( 1  -  ^2)1/2 T  ( 1  _  ^2)3/2

Hence equation (2.3.39) becomes

(1 - t 2)3/ 2’

d_
dt

( i  - < 2)2 \ d9 W  
dt

(2.3.33)

(2.3.34)

(2.3.35)

(2.3.36)

(2.3.37)

(2.3.38)

(1 _ *2)i/2 + ( I -  *2)3/2 j  G W* (2-3.39)

(2.3.40)

= (1 -  t2y l 2G"(t) +  (1 -  t2)~3/2G(t). (2.3.41)
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Noting that equation (2.3.33) can be satisfied if and only if

Therefore

and it follows that

G"{t) = 0 .

G(t) = C.t + D, 

g( t )= ° t + D

(2.3.42)

(2.3.43)

(2.3.44)
(1 -<2)1/2*

where C, D are constants. The solution of the equation (2.3.20), such th a t v is 

bounded for — 1 < t < 0 and v —► 0 as r —► oo, has the general solution in spherical 

coordinates of the form

v =  Be 1 + t'
1 -  t

1/2  oo 

3 =1

3+ 1
(2.3.45)

If there is an outer boundary, so that r does not extend to infinity, then the appro

priate general solution for the velocity field is then

v = ■<4o H------r

+ y . \ a ^  + b ,
3=1 *<

1 -  t
n '

1 / 2

3 + 1

P j W (2.3.46)

2 .3 .4  G en era l so lu tio n  in ellip so id a l co o rd in a tes  for th e  v e lo c ity  

field

In this section, as in Section 2.3.2, a systematic method of approach to the problem 

of solving the differential equation of axisymmetric creeping flow in ellipsoidal coor

dinates is provided. In order to solve the general problem set out in Section 2.3.1, 

it is useful to reintroduce prolate spheroidal coordinates (£, 77, cj>) defined by

z +  i p =  c cosh (£ T i vi) (2.3.47)

with c > 0 , giving

z — c cosh £ cos 77, 

p = c sinh £ sin 77 (2.3.48)
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for the cylindrical polar coordinates.

In ellipsoidal coordinates, (2.3.6) together with (2.3.48) becomes

d /  d v \  d /  d v \  f F 2\
m ( Fi m ) + ̂ (%M*r = 0’ ( 2 ' 3 ' 4 9 )

where

Fl = sinh £ sin 77 (2.3.50)

and

F2 = (cosh2 £ — cos2 77). (2.3.51)

The homogeneous equation (2.3.49) may be solved by separation of variables as 

follows:

v = f( s )  g(t) (2.3.52)

For brevity, put

t = cos 77 (2.3.53)

and

s = cosh £. (2.3.54)

Hence

and

A  = - f i - t f L
dr, ( ’ dt

A  = _ 1
d(  1 Jd s '

Therefore, (2.3.49) becomes

d f(-2 ^
Ts V(i “  “  ( ^ i ) j

+
d_
dt ( i - n2 dt

9{t)

9(t)

f ( s )

= 0.

(2.3.55)

(2.3.56)

(2.3.57)
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Dividing through equation (2.3.57), by / ( r )  and g(t), the resulting expression 

only be satisfied if

can

Ts ( (a* - 1}^ )  “  i ^ r , ]  ~ n{n + 1 ) / w  = 0 (2-3'58)

and

£
dt

( i  - t 2)2

dt

-  i) j

+  n(n + 1 )g(t) =  0,

with n  an integer or zero. Then

£ f ( s )

and

d_
ds

d_
dt

(•S -  1) ds

2 \ d9(t)
dt

_ t i £ L  = _ n (n + i ) / ( 5)

= ~ n {n + l )g { t ) .

(2.3.59)

(2.3.60)

(2.3.61)

Using the results from the previous section, when n — 0 the solution of equation 

(2.3.60) is

™  ( 2 ' 3 ' 6 2 )

where C \ ,D \  are constants. Similarly, when n — 0 the solution of equation (2.3.61) 

is
C2 t +  D 2

9(t) = (2.3.63)( l - f 2)1̂ ’

where C2 1 D 2 are constants.

The solution of the equation (2.3.49), such that v is bounded when t = — 1 and 

v —► 0 as s —► 00 requires C\ — 0 and C2 — D 2 =  -So, say. Thus the general solution 

for the velocity in prolate spheroidal coordinates is of the form

r 1 i n  4- / 11/ 2 00
v = Bo [(J» - 1)»/»] [rnj + £  W i W i W -  (2 .3 .64)

In a similar way, it can be shown that the solution corresponding for v in oblate 

spheroidal coordinates is

v =  B0
1 1 + 1

L(^2 +  i ) 1/ 2] .1 - 1.

1/2 00
+ ' £ B j q}(s)P}(t),  (2.3.65)

i - 1

where

? j(5) = (2.3.66)
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2.4 Non-axisym m etric Stokes flow

2 .4 .1  T h e  gov ern in g  eq u a tio n s

The equations governing the motion of an incompressible fluid are the Navier-Stokes 

equations

^  + (q .V )q =  - i v P + J /V2q (2.4.1)

and the equation of continuity

V.q = 0 (2.4.2)

When the Reynolds number for the flows is very small the terms on the left hand 

side of equation (2.4.1) are then negligible compared with the terms on the right 

hand side and the Navier-Stokes equations simplify to the Stokes equation

Vp = pV 2q (2.4.3)

where q denotes the fluid velocity, p the fluid pressure and p  is the coefficient of

dynamic viscosity of the fluid.

If the divergence of both sides of equation (2.4.3) is taken, then by virtue of 

equation (2.4.2), it follows that

V2p = 0 (2.4.4)

and similarly if the curl of both sides of equation (2.4.3) is taken, since cur lVp  = 0, 

it follows that

V 2ui =  0 (2.4.5)

with lj =  curl q, the vorticity vector. Equations (2.4.4) and (2.4.5) imply th a t for 

any Stokes flow the pressure and vorticity are harmonic functions. A consequence

of equation (2.4.4) is that the Stokes equation (2.4.3) posses the particular integral

given by

q =  T r p ,  (2.4.6)

and the general solution of (2.4.3) is accordingly

1q = —rp +  v, 2.4.7)

where

V2v = 0. (2.4.8)
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The form of solution (2.4.7) expresses the velocity in terms of four scalar harmonic 

functions, but to ensure satisfaction of the equation of continuity, the following 

equation

3p + (r.V )p +  2/^V.v = 0 (2.4.9)

must be satisfied at all points of the fluid. Equations (2.4.7), (2.4.8) and (2.4.9) 

therefore imply that for any  Stokes flow, the velocity is expressible in terms of 

no more  than three independent scalar harmonic functions of the space variables.

There are various representations of the general solution of the Stokes equa

tions and it is usual to combine the three independent harmonic functions so tha t 

the equation of continuity is identically satisfied. For instance, Lamb’s general solu

tion [see Lamb (1932)] utilizes the fact that the pressure is a harmonic function by 

expanding it as a series of spherical harmonics in the form

OO

P =  J 2  Pn (2.4.10)
n= —oo

where pn is the spherical harmonic of order n. Lamb further shows tha t a general 

solution of (2.4.3) which also satisfies (2.4.2) can be written as

q = £  [V x  (rX„) + V($„)]

(n +  3)
7 1 =  — OO 

OO

+ E
71= —C 

OO

- E

.2 fi(n +  l)(2n  + 3). 

n

r V Pn

r pn (2.4.11)_p(n + l)(2n  + 3).

where Xn and $ n are both spherical harmonics of order n. It is clear that

V 2 [ V x ( r Xn)] =  V 2 [V $n] =  0, (2.4.12)

so that the velocity fields arising from the Xn and $ n functions are each solutions of 

the Stokes equations for which the pressure is at most a constant, tha t is, they are 

isobaric flows.

An interesting result which can be derived from Lamb’s general solution is set 

out in Happel and Brenner (1973), where a formula is derived for the force F  acting 

on a general body in motion within a fluid which in turn has a velocity field qoo far
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away from the body. The expression for the force is

F = —4-7T V (r3p_2) (2.4.13)

This result shows that the force can be determined in principle once the pressure 

in the fluid is known. It is then only necessary to identify the component part of p 

corresponding to a spherical harmonic of order —2.

A similar expression is derived for the torque To acting on the body when mo

ments of surface stresses are taken about the origin. This formula is given in Happel

and Brenner (1973) as

T 0 = - 8x/iV (r3X -2 ) (2.4.14)

In practice it is easier to determine the force and torque acting on a body by look

ing at the far field structure of the velocity and pressure fields, since it is usually 

extremely difficult to solve a problem using Lamb’s general solution. If a body is in 

motion in a fluid, then the body imposes a force —F and torque —T on the fluid. 

These are equal and opposite to the force and torque exerted by the fluid on the 

body. Let S  be the surface of the body. The force F  and torque T  are then given 

by

F = J  R ndS  (2.4.15)

T  = J[rxRn]dS (2.4.16)

where Rn is the stress vector associated with the normal direction to S  and in 

equation (2.4.16) moments of the surface stress vector are taken about the origin. 

The direction of the unit normal n is tha t drawn out of the body. If V  is the 

volume of the region bounded by S and any surface E enclosing 5, it follows from 

the divergence theorem that

df  Rnd S -  f  RndS = f  T r - H j d V  (2.4.17)
t/E J S J v

[  [r x R J d S  -  /  [ r x  R J  AS =  [  A [ r x R , ] d F  (2.4.18)
J E J S  J V  OX j

since R„ = IjTLj with R 7 the stress vector when n is coincident with xy, the C arte

sian unit vector and n = IjXj and n is again directed out of the surface E. However

dKj
dxj

= — Vp + /iV q =  0, (2.4.19)
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by virtue of equation (2.4.3). Furthermore since the stress tensor is symmetric

X j  X R , =  0, (2.4.20)

where the convention of summation over the suffices 1,2,3 is assumed. Thus equation 

(2.4.17) and equation (2.4.18) yield

F = J f t n d S  

T  = ^ [ r x R , ] dS

(2.4.21)

(2.4.22)

The surface E may be taken to be a sphere, centre at the origin and radius R  

arbitrarily large. Thus the force and torque can be determined from the far field 

asymptotic structure of the velocity and pressure fields. In fact it is the Stokeslet 

and rotlet contributions to the asymptotic expansions of q and p for large |r | which 

give rise to the force and torque, since at a large distance the body will appear to 

the fluid as if it were a Stokeslet and rotlet located at the centre of mass of the body.

2 .4 .2  V e lo c ity  a n d  p re s s u re  fie ld s d u e  to  a  s to k e s le t a n d  r o t l e t

The three-dimensional Stokeslet represents physically an isolated concentration of 

force acting on the fluid at a point. Let this force be F  = FT.  If a local system of 

cylindrical polar coordinates (//, </>', z'), is chosen with origin at the location of the 

point force, and the z' axis along the direction of F , then the components of velocity 

are, according to Lamb (1932),

F
Ip'

Iz>

87rp
= 0 ,

F

p V

and the pressure is

87rp

L ( r ' ) 3 J

( P ?
M 3

(2.4.23)

L M 3 J
(2.4.24)

In particular, with a given Cartesian frame of reference and cylindrical polar coordi

nates (p, 4>, z ) related to (z, y, z ) in the usual way, then if F  =  F k, equation (2.4.23)
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gives

Ip

1$

I z

8lTfi L' 
0,
 F_

8ir/j,

pz
7*3

(2.4.25)

and equation (2.4.24) gives

(2.4.26)

For a point force F  = F i, the corresponding velocity components and pressure are

Ip = 

I<t> =

87Tfl
F

p~  + -  T* T
COS 0 ,

87r/z 
F

I z  =  -

sin (j)

pz cos (j)

and

V — —47r
pcos (f)

(2.4.27)

(2.4.28)

Likewise the three-dimensional rotlet represents physically a point concentration of 

couple applied to the fluid. If the origin is the point of application of a couple 

G = GG  then the velocity distribution of the rotlet is

G x rGq = 87T/Z

Since equation (2.4.29) may be written as

q =   curl
8irp.

G
»>3

(2.4.29)

(2.4.30)

it is evident that V2q = 0, indicating that the pressure associated with a rotlet is 

at most a constant. If G = Gk, then

I p

l4>

I z

=  0 ,

8t p

0,

P_
«*3

(2.4.31)
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and if G = Gj =  G{p sin cp +  0cos (p), then

I p

I<t>

Iz

G
Stt fi 

G

-ZCOS (p

8  TTfJ,

G
8-7T/X

zsin (p
t

p COS (p
(2.4.32)

Using the integral relations (2.4.21) and (2.4.22), it may be verified tha t the Stokeslet 

and rotlet gives accordingly F  for the force and G for the torque.

2 .4 .3  Solution  of the Stokes equations

As pointed out above, the solution of any Stokes flow problem involves the determi

nation of up to three independent harmonic functions. For the case of axisymmetric 

flow, the equations for determining the three functions uncouple the problem for 

translation along the axis of symmetry of the body from that for rotation about the 

axis of symmetry. The solution of the rotational problem involves only one harmonic 

function, since there is only one component of velocity -  in the azimuthal direction 

-  and the pressure is constant. For the translational problem, the two non-zero 

velocity components are expressible in terms of a stream function ip. Thus, with 

q  = qpp  +  q^(p +  qz k, it follows that

T

U  =  °>

dtp 
dz  ’

Iz  =
1

VP\

dip
w

(2.4.33)

to satisfy the equation of continuity identically. The vorticity u  is given by

u  - =
d lP
dz

dg
d p \

d2ip 1 dtp d2ip
dp2 p dp ^  d z2 <i>

L-iiP
01 (2.4.34)

where the operator is defined by
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with m = —1. It follows that

curl u) = (£-iV 0 + - ~ ( £ _ i 0 )p dz pop

and

curl u  =  — £ 2- i 0
4>•

(2.4.36)

(2.4.37)

Thus in satisfying of equation (2.4.5) and noting that div cur lu  = 0, the equation 

satisfied by 0  is

L 2_, 0  =
a 2 _  1 _d_

dp2 p dp ^  dz2
'0 =  0. (2.4.38)

The solution of L \ f  — 0 is an axisymmetric harmonic and this solution of L - i f  =  0 

will be referred to as a quasi-harmonic function. Solutions of Lmf  =  0 are often 

referred to as generalized axisymmetric potential functions. The stream function 0  

may be thought of as a quasi-biharmonic function. A harmonic function can be 

easily constructed from a quasi-harmonic function and vice versa, since if f (p ,  z) 

satisfies £ _ i /  =  0, then

7(p>*)
COS 0 = 0 (2.4.39)

The stream function for axisymmetric flow can be constructed from two generalized 

axisymmetric potential functions in the form

0  = z f  1 + g

= P2 f 1 +

L\ i f 1) = ^ ( r 1) 

=

=  0 .

- i

or

where

(2.4.40)

(2.4.41)

(2.4.42)

Therefore, the determination of the stream function effectively involves the deter

mination of two harmonic functions. The representation of the stream function for 

axisymmetric flow has been discussed at some length by Payne and Pell (1960).



C hapter 3

THE SINGLE SPHERE 

PROBLEM

3.1 Introduction

The effect of a layer of an adsorbed monomolecular surfactant film of fluid covering 

the free surface of a semi-infinite volume of substrate fluid is considered for motion 

within both surfactant and substrate fluids caused by the slow rotation of a sphere 

body which is partially submerged in the substrate fluid. The end result of this 

study will be a theoretical model for determining the surface viscosity of the sur

factant. The approach taken involves the use of a variational-least squares criterion 

for determining the fluid velocity if the motion is considered to be Stokes flow. The 

theoretical model relates the surface viscosity to the torque acting on the partially 

submerged sphere in the surfactant and substrate fluids. This work could be appro

priate as the basis of a viscometer for measuring surface viscosity with a high degree 

of accuracy.

In this chapter a sphere, which is partially submerged in the substrate fluid be

low the surfactant layer, rotates slowly about a diameter perpendicular to the plane 

of the surfactant layer. It is felt that the choice of a spherical body is particularly 

advantageous, because this type of geometry ensures that a mathematical formula

tion of the boundary value problem can be established for all depths of the sphere 

below the surfactant layer. This has enabled the values of film and substrate torque

45
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acting on the partially submerged sphere to be determined for a wide range of values 

of the depth of the sphere and values of the surface viscosity parameter extending 

from zero to infinity. Also considered in detail are the limiting cases: (a) when the 

surface viscosity is zero and the surfactant layer becomes a simple stress free surface, 

and (b) when the shear viscosity is infinite.

3.2 Sphere rotating with a surfactant layer

Consider a partially submerged sphere of radius a slowly rotating in a semi-infinite 

incompressible fluid with dynamic viscosity /z . The axis of rotation is the diameter 

of the sphere perpendicular to the surface of the substrate fluid on which there is 

a film of an adsorbed monomolecular layer of surfactant fluid possessing surface 

viscosity 77 . The depth of the sphere centre C  below the surfactant film is c, where 

c takes values in the range —a < c < a and the sphere rotates with constant angular 

velocity Cl. Note that the surfactant film is unbounded apart from its intersection 

with the sphere.

3 .2 .1  E q u ation s govern in g  th e  m o tio n

In order to preserve continuity with later analytical work, a system of spherical polar 

coordinates (r, 9, (j>) with origin 0  lying in the plane of the interface, as illustrated in 

Figure 3.1, will be used. All distances are now regarded as dimensionless relative to 

the radius of the sphere. Now consider the problem when the centre C of the sphere 

is below the origin 0  as shown in Figure 3.1. On the submerged spherical cap

1 = t 2 -f c2 + 2 ret, (3.2.1)

where t =  cos 9 . Therefore,

r = - c t ± [  1 — c2(l -  t2)](1/2\  (3.2.2)

The solution with the minus sign can be ignored, since r > 0. Hence,

r = r 3(t) = [1 — c2( l  — t2)]^1/ 2) — ct, (3.2.3)

with — 1 < t < 0 . Assuming that the Reynolds number, which is defined in equation



CHAPTER 3. SINGLE SPHERE 47

z

z = 0

Figure 3.1: The geometry of the single sphere problem.

(2.3.1), for the flows induced in both the substrate fluid and surfactant film are 

sufficiently small to permit the neglect of the inertia terms in the Navier-Stokes 

equations, the flows in both the substrate fluid and surfactant film are governed by 

the Stokes equation (2.3.2) together with the equation of continuity (2.3.3).

The fluid motion is caused solely by the rotation of the sphere, and because

of the axisymmetric nature of the problem, it follows that the velocity v has only 

one component, which is in the azimuthal direction of a system of spherical polar 

coordinates with 0 = 0 along the axis of rotation of the sphere and pointing out of 

the substrate fluid. The surfactant layer lies in the plane z = 0 or 9 = x /2 . Thus

(2.3.2) and (2.3.3) possess a solution of the form

v = (O,O,v(r,0)) (3.2.4)

and

p = constant (3.2.5)

provided that

V2” -  i 2 =  ° ' (3.2.6)[rz sm 9)

The solution of (3.2.6) which is sought, such that, v —>0 as r —>oo and is bounded



CHAPTER 3. SINGLE SPHERE 48

for 7r /2  < 9 < 7r. In (r, t) variables equation (3.2.6) can be written as

V ’V ~  (7-2(1 -  *»)) =  ° ‘

3 .2 .2  B o u n d a ry  co n d itio n s

For this problem there are two boundary conditions to be satisfied, one on the surface 

Ti of the sphere and the other on of the surfactant film I^ , as indicated in Figure 

3.1.

To satisfy the non-slip boundary condition on the sphere surface Ti requires tha t

v = r,(t)( 1 -  t2)1/2 (3.2.7)

with — l< t< 0  and rs(t) is defined in equation (3.2.3).

In the presence of the surfactant layer, following the analysis of Section 2.3.2, 

the boundary condition to be satisfied is

dv d2v
T ,  + X a *  = a (3 '2'8)

on r  2 , where

A = 7i/fi. (3.2.9)

Here denotes the coefficient of the dynamic viscosity in the substrate fluid which 

occupies the region z < 0 and 77 denotes the surface viscosity.

3.3 Solution of the problem

The general form of solution for v which satisfies (3.2.6) and decays to zero as r —»■ 00 

can be written as

v = Be
r ii
r 1 -  t

7+1
+  Z B;  ;  -p/W  (3-3-1)

7=1

following the analysis set out in Chapter 2.

Here r is dimensionless relative to a and v is dimensionless relative to Cla. In 

equation (3.3.1), Pj (t) is the associated Legendre function of the first kind of order j 

and degree unity. For a partially submerged sphere with — 1 < c < 1 , the param eter 

t lies in the range — 1 < t < 0, so that, in general, the Legendre functions Pj( t)  do not
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form a complete set over this range of values of t. In equation (3.3.1) the unknown 

coefficients B j  have to be determined, so as to satisfy the boundary conditions on 

Ti and IV

The boundary residual ei associated with the boundary condition given in equa

tion (3.2.8) is defined as

d  = v3 -  r3(t)( l  -  t2)1/2, (3.3.2)

with v3 the velocity on the body is given by equation (3.3.1), and r =  rs[t) on the 

body. Thus

—  Bo 1 + t
.1 -  t + E ^

j=i

1 ^
Lr̂ yJ pl{t) “r*(t)(1 “t ] ■ (3-3-3)

Consider now the boundary condition (3.2.8), the derivatives on the right hand side 

can be expressed in terms of the spherical polar coordinates by

dv
dz

. d sin 9 dcos 0—----
dr r d6 .

(3.3.4)

d2v
~dz?

j d2 sin 29 (1  d d2
+

sin2 0 f  d 1 d2 \
d r ^ r  dO2 jL r yr  dO drdO/  7J

W ith the velocity given by equation (3.3.1) and 0 = 7r/2, or equivalently t = 0, i 

can be shown that equation (3.2.8) reduces to

v. (3.3.5) 

it

Bo + T , Bi
3=1 J+2 (I'*’w- 7 ((i + = °> (3-3-6)t- 0

with r > r-a(0) = (1 — c2)1/ 2. The recurrence formulae relating the Legendre func

tions, given for instance by Morse and Feshbach (1956), enable the derivatives in 

(3.3.6) to be written as

dp}(t) __
dt = (1 -  i2) - 1 { (j +  1 ) tPj( t)  -  jP /+1(i)} (3.3.7)

and

dt2

+

dt {(1 -  t2) +  ^  7Pj+ iW ) }

^^2)2 [O' + 1)tJj(0 - jPj+li1)
( I T * )  {o  + + 0 + 1)t p M  -  7 % ^ }  -(3.3.8)
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Equation (3.3.7) gives

and equation (3.3.8) gives

(^r1)\  / t=o

(  = ( j + 1)p l ( 0 ) + j { j +V / 1—0

(3.3.9)

(3.3.10)

Therefore, the equation (3.3.6) becomes

Br + E B>
j=i

3+ 2
= 0.

t=o

(3.3.11)

Changing the dummy variable of the second term of equation (3.3.11), the following 

can be obtained

Bo
00 p i  (O')

+ £  W O ' + l )Bi -  U  +  l ) S i+ i] = 0. (3.3.12)
7 =  1

If j  = 2m — 1 , where m  = 1 , 2 , . . . ,  then since P2m(0) = 0, it follows tha t (3.3.12) 

reduces to

Bo
1

+  I ]  M 2 m  -  l ) ( 2 m ) P 2r n - l  -  ( 2 m ) P 2rn]  ^ 2 m + l ( ° )  ( “ )
771=1

 ̂\ 2m+2

=  0 .

Since P2m+i(0) 7̂  0 and r  > t\,(0) is arbitrary, this implies that

If A 7̂  00 then

B 2m =  A(2m -  l ) P 2m -i, (m = 1, 2 ,..). 

Bo — 0,

B2m = A(2m -  l ) P 2m -i, (m = 1 , 2 ,..).

(3.3.13)

(3.3.14)

(3.3.15)

The general solution for v(r , t) which identically satisfies the surfactant condition 

(3.2.9) is therefore

* =  £  *> »-• ( [ j ^ r ]  pL - ! ( t )  +  a [ ^ p r r ]  * L ( o )  (3 .3 .ie)
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or

OO

v = B<2rn
771 — 1

when A ^  oo, or

|yj2m+l P L ( t )  + j

v = B 0 (1 +  <)i 1/2+ E B 2m
L U -O J m=1

* L - l W )  (3-3.17)

P L ( t ) ,  (3.3.18)

when A =  oo, since i?2m -i = 0 for m  — 1 ,2 ,...

3*4 Determ ination of the coefficients Bj

3 .4 .1  C a se  w h e n  A ^  oo

From (3.3.16), the value of v on the partial sphere is

OO

^ =  ^ ' -®2t71—1/?7l(c, A, t)

where

771=1

/m(c, A,i) =
-.(012771

(2m — 1)

L M 0 ] 2 m + 1 J

(3.4.1)

(3.4.2)

Although the surfactant boundary condition is satisfied identically, there remains 

the boundary condition on the partial sphere to be satisfied. This requires

5 2m -i/m (c, A, t) -  r a(*)(l -  t2)1/2
771=1

for — 1 < t < 0, where

,(t) =  [1 -  c2( 1 -  i2)]1' 2 -  ct

(3.4.3)

(3.4.4)

with -1  < c < 1.

In the particular case when A = c = 0, equation (3.4.1) reduces to

* =  ' E , B* n - l PL - M
m= 1

To satisfy the boundary condition on sphere, requires in this case

OO

E B 2m_1P2Im_1(<) =  ( l - * 2)1/ 2

(3.4.5)

(3.4.6)
m= 1
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for — 1 < t < 0, since rs(t) = 1. To find the unknown coefficients Bzm-i ,  multiply 

equation (3.4.6) by Pln-ii^)  an(  ̂ integrate with respect to t from -1 to 0 to give

00 y-0 />0
£  52m_! J PL- i ( t )PL-Mdt  = J ( 1  -  t2f l 2P ^ ( t ) d t

m —1

=  J ^ P l W L - i m  (3.4.7)

since

p i ( t )  = ( i  - t 2f 12.

Now, from Section 2.2.2,

rOJ_t p L - i ( t ) p L - i m  = 2n(2n — 1)
(4n — 1)

and using results from Morse and Fershbach (1953), gives

/_° PUt)PL-i(t)dt =  |  «i,„.

Hence

Therefore

B 2 n-1
2n(2n — 1)

(4n — 1)

Bi =  1

and

Bz ~  B$ =  .. =  0. 

Since A = 0, the even coefficients are accordingly

Bo = B a =  .. =  0.

(3.4.8)

(3.4.9)

(3.4.10)

(3.4.11)

(3.4.12)

(3.4.13)

(3.4.14)

For all other values of c or A, r3(t) is no longer a constant, and the orthogonal 

property of P^m-ift)  over ~ -*■ —  ̂  ̂ cannot be invoked. For this general case, it is

necessary to determine the unknown coefficients i?2m -i numerically. Consider the 

function I given by

I  = J  [ v - r , ( t ) ( l - t ) ^ 2]2dt. (3.4.15)
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We shall determine B 2m-i,  so that I  is minimized. A necessary set of conditions for 

minimizing I is

— = 0; n  =  (3.4.16)
O.D2n-l

which leads to the infinite system of linear equations,
OO

B2m-i5m,n =  Tn; (n > 1). (3.4.17)
771=1

The numerical method employed here to solve the boundary value problem for

v is one of a general class of least-squares boundary residual methods which was

reviewed by Finlayson (1972). The basic idea of this technique was originally applied 

by Rayleigh (1896) to solve a sound-diffraction problem. In the field of electrical 

engineering, the technique is known as the mode-matching method.

To solve the equations numerically a finite number Jmax of equations is fixed and 

it is assumed that B 2m -i—>0 as m —>oo. Thus, setting I?2m -i = 0 for m  > Jmax, 

equation (3.4.17) becomes

771=1

where

and

'm a *

^   ̂ -^ 2 m —l  ^771,71 — T n , 1 < 71 < Jmax,
=  1

,°
Sm,n = J  J m ( c , X , t ) f n(c , \ , t )d t ,

(3.4.18)

(3.4.19)

Tn = J  r a(*)(l -  t2)1/2f n{c, (3.4.20)

Similarly, if we eliminate B2m-i  in favour of B 2m using equation (3.3.17) instead of 

equation(3.3.16), equations (3.4.18) to (3.4.20), can be replaced by
Jmax
' y  ' B 2 r n S rTi Jn  —  T n , 1 ^ < J m a x

m = l

with
,°

S m , n  = J  i /m(c, A ,f)/n(c, A,t)dt

and

Tn = J  J s ( t ) ( l - t 2)l/2fn ( c , \ , t ) d t  

where now, provided that A ^  0,
OO

/ n(c, A,f) =  ^ B 2m

(3.4.21)

(3.4.22)

(3.4.23)

771—  1
.[ra]2m+1. p L W  + j .(2m  -  l ) [ r j 2m.

(3.4.24)
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3 .4 .2  C ase w h en  A =  oo

For A = oo, to satisfy the surfactant boundary condition, the velocity field is given 

by

v = B 0
T '1 + f
T . .1 -  t.

1 / 2  oo

+ ^2 B2m
771=1

2771 +  1

p L W - (3.4.25)

There remains the boundary condition on the partial sphere to be satisfied. This 

requires
OO

X  B 2mfm(c,O0 , t) = ra(t)( 1 -  t2)l/2
m —0

where

and

/o(c, oo,t) =  

/ m(c,oo,t) =

r i  i i  + 1

. i  - 1 .

1 / 2

■ 2m+l

WJ

(3.4.26)

(3.4.27a)

(3.4.27b)

for — 1 < t < 0 and rs(t) is defined by equation (3.4.4). In the case of a half

submerged partial sphere, c =  0, r3(t) = 1 and equation (3.4.26) then gives

1 +  t(1 - t 2)1/2 = Bo
1 -  t

(1 / 2) ~

+ J2B2mPL(t)'
771 =  1

(3.4.28)

Since /^ ( O )  = 0 for m  > 1 and t =  0, equation (3.4.28) gives, on setting t =  0,

Bn — 1.

When t ^  0 then equation (3.4.28) implies that

( 1 - t 2)1/ 2 -
1 -  t

1 / 2  oo

.+  ^ 5 2mP21m(i).
771=1

(3.4.29)

(3.4.30)

Thus

( l - ; 2)1' 2
1 +  t
1 -  t

1 / 2  oo

771=1

or

( i  -  t2y / 2 i  + 1

Hence

L(l — f2 )1/2J 

(:t + t2)

771 =  1

( 1 - 4 2 ) 1 / 2 = E  B2mPLW-

(3.4.31)

(3.4.32)

(3.4.33)
771 =  1
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Therefore

P m  — & m  [^2m] (3.4.34)

in which, using results from Section2.2.2, resulting from the orthogonality of P^mi*) 

over — 1 < t < 0,

am — J   ̂B2Tn{t)P2Tn{t)dt
'2m(2m — 1)'

(4m — 1)

P m  =  J \ t  +  t2)Plm{t)dt

( 2 m - 2 ) !
= ( - 1)

m+1

Hence

PB 2m = - —  = ( - 1)OCrn

(2 2m_1)(m + l) ! (m — 1)!. 

(2m — 2)! (4m — 1)
,(22m) (m + 1)! ml (2m — 1).

(3.4.35)

(3.4.36)

(3.4.37)

for m > 1.

For c /  0 and t = 0, equation (3.4.26) reduces to

m / m ( c ,  oo, 0 )  =  ( 1  -  C2 ) 1 / 2 . (3.4.38)
m —0

Thus, one can obtain

B0 = ( l - c 2), (3.4.39)

since / o ( c ,  oo, 0) = (1 — c2)~1'2 and / m(c, oo, 0) =  0 (m > 1 ) .  Unlike the case when 

A = 0 the other coefficients B 2m (m > 1)? cannot now be expressed in a closed form. 

To determine the unknown coefficients B 2m numerically, consider the function J, 

given by

I  = J  v0 4- vi -  r 3(t)( l -  <2)1/2] dt , (3.4.40)

where

v0 = [ ( 1 " c 2 ) l
'1 + f
.1 -

1 / 2

Vl = Y2 S 2mfm(c,QO,t)

(3.4.41)

(3.4.42)
m = l
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and fm(c,oo,t) is defined by equations (3.4.27a) and (3.4.27b). We determine i?2m 

so that I  is minimized. Accordingly

d l
dB = 0 , j  = 0,1,..

2m

Again we solve a finite number Jmax +  1 of equations, which are
Jmax
^  ] B*277i S m ,n  — -fni 0 ^  ^  ^  J m a x  

m=0

where

and

,o
Sm,n — J  fmfei OO, f ) /n(c, OO, t}dt

(3.4.43)

(3.4.44)

(3.4.45)

Tn = J   ̂ v0 -  rs( t)( l -  t2)1/2] / n (c,oo,t)df. (3.4.46)

The linear algebraic system, which is described by the sets of equations [(3.4.18)

to (3.4.20)], [(3.4.21) to (3.4.23)] and [(3.4.44) to (3.4.46)], can be solved to give the

coefficients B j  for j  = 1 ,2 ,.. after making the following choices:

1. the depth c of the centre of the sphere body, below the surfactant layer,

2. the number Jmax in the expression (3.4.18) or (3.4.21) or (3.4.44). This number 

is determined so that Bm is effectively zero for m  > Jmax-

3 .4 .3  C onvergen ce  analysis  for th e  case w hen  A ^  oo

For the convergence of the numerical method, consider the error factor

E — V i  (3.4.47)

where I  is defined in equation (3.4.15). Thus, using the representation (3.4.1) for v,

I X 52m-l/m(c, A,t) - r3(f)(l - t2)l/2
0

-1

.771=1

oo

dt

X  5 2m -l/m (c, A,t)
.771=1

dt + J  r2(t)(l -  t2)dt
^  ] -®2m—l/m (c , A, t)-  2 / \ aW(i - < r 2

OO OO OO .Q

— X  2̂171—1 X-^2w-l«Sm,n ~ + / T2(t)(l  — t2)dt,
m—1 n= 1 n=l —

(3.4.48)
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where 5m)7l and Tn are defined in (3.4.19) and (3.4.20) respectively. The value of 

Jmax is chosen large enough to ensure that B z , B s , ... converges to zero. The order 

of convergence of the numerical method is Jmax if B 2j max is the first non-vanishing 

constant to a prescribed degree of accuracy. On having solved for the coefficients 

the value of E  represents a measure of how accurately the boundary 

condition on the partially submerged sphere is satisfied. A similar calculation for E  

can also be carried out, using the other representation for v given by (3.3.17).

3 .4 .4  C on vergen ce  analysis  for th e  case  w h e n  A =  oo

Similarly, for the convergence of the numerical method, we consider

E  = VI,  (3.4.49)

where I  is defined by equation (3.4.40). The convergence of the numerical method is 

achieved by first defining the velocity field, which satisfies the surfactant condition, 

as
OO

V = B 2mfm{c,  oo,t) (3.4.50)
m=0

where / m(c,oo,f) is defined by equations (3.4.27a) and (3.4.27b). Therefore, the 

boundary condition on r =  rs{t) is satisfied if

OO

V0 + B 2mfm(c, OO,*) = 7*5 ( t ) ( l  -  C2 ) 1 / 2  (3.4.51)
m=l

where — 1 < t < 0 and Vo is defined by (3.4.41). The function I  is then given by

I  = J  vQ + vi -  r a( t)( l -  c2)1/2] dt

OO OO OO - 0

E B2™Ê »5m,„ - 2E-B2„T„ + J _ [r.W(l - C2)1/2 -
771 =  1 71=1 71=1

Vo
2

dt.

(3.4.52)

where and Tn are defined in (3.4.45) and (3.4.46) respectively and vo, vi are 

defined by (3.4.41) and (3.4.42), respectively. Again E  represents a measure of how 

accurately the boundary condition on the partially submerged sphere is satisfied.
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z

Figure 3.2: The geometry of a partially submerged sphere.

3.5 Expression for the torque acting on a general axi- 

sym m etrical body

There are two contributions to the total torque which acts on the body, the substrate 

torque Xa and the film torque T j .  The substrate torque arises from the action of 

the stresses in the substrate fluid and the film torque arises from the action of the 

stresses in surfactant. The sum of these two torques gives the total torque Tt acting 

on the body, which is the quantity that would be measured in an experiment.

3 .5 .1  T h e  s u b s tra te  torq u e

A body which has the equation

r = rs(t) (3.5.1)

where — 1 < t < 0 with t = cos 6 is considered. Letting n be the general outward 

drawn unit normal to the surface, the substrate torque T a arising from the action 

of the stresses in the substrate fluid will be

T a =  Tak, (3.5.2)
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where

- T a =  L j  [r x R n]dS. (3.5.3)

In equation (3.5.3)

Rn = (n .r)R r + (n.^)Rg +  (n.^)R ^, (3.5.4)

and r  is the position vector of a general point of the surface S of the body, dS is

the areal element of surface orientated in the direction of n. In order to simplify

equation (3.5.4), we first write

Rr = prrr + pre6 + pr<f>cj),

in which pij is the stress tensor, which for a Newtonian fluid is given by

dvi dv ,

Thus

and

giving

Similarly,

and

Now, writing

equation (3.5.3) becomes

[ r x R r ]  = rpre(j) -  rpr(t>9, 

k = r  cos 9 — 9 sin 9, 

k.[r X Rr] = rpr(p sin 9. 

k.[r x R$] = rpe<j> sin 9 

k.[r x R^] = 0.

/ = (n .r), m  =  (n.0),

Ta = J  j  [lprtt> + Tripe#] sin 9dS.

(3.5.5)

(3.5.6)

(3.5.7)

(3.5.8)

(3.5.9)

(3.5.10)

(3.5.11)

(3.5.12)

(3.5.13)

Before proceeding any further, note that the stress components in equation (3.5.13) 

are

Pr<fi =  P
dv v 
dr r

= pr d ( v 
dr

(3.5.14)
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and

Pe<t> =

=

v n 1 dv'
— cot 9 -  —
r r 69
v t

+
( 1 - t 2)1/ 2 5 im

a i r
(3.5.15)r ( l - t 2)!/2

where /x is the coefficient of viscosity, and using equations (3.5.14) and (3.5.15), it

follows that

and

tv +  (1 — t )
dt

(3.5.16)

(3.5.17)

To simplify / and m, which are defined in (3.5.12), the equation of the body 

surface needs to be considered. Suppose the equation of the body surface is r — 

r 3{t) = 0, it then follows that

9 dr3{t)
V{r  -  , .( ( ) )  =  t  +  ^  ^  .

From equation (3.5.18), the normal vector to the surface can be written as

(3.5.18)

n =
T

t +  9(1 -  t2)1/ 2
1 drs(t)

where

Hence

and

1 +
(1 ~ t ) / dra(t) 

r23(t) V dt

rs(t) dt 

1 / 2

I = n .f  =  T - l

m = i i i  =  T - ! ( l  -  < 2 )1 /2  1 ^ 1 .
v ' T,(t) dt

Therefore, equation (3.5.13) can also be written in the form

r°
Ta =  2TTfiCla3J  [r3(t)]3.F(f) dt

(3.5.19)

(3.5.20)

(3.5.21)

(3.5.22)

(3.5.23)

with r =  rs(t) dimensionless relative to some body dimension a. Hence, it can be 

shown that

Ts =  —8 7 r/xfia3  t3 (3.5.24)
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with

where

(3.5.25)

= (1 -  t2)V2

V drs(t) rs(t) [ra(t)]2 dt
1 dr3(t)

dt
dv

,drs(t) ra(t)m [rs(t)]2 dt
/h 0, ^

(3.5.26)

In the above fi is the constant angular velocity of the rotating body, and a a typical 

length scale for the body.

In order to be able to apply equation (3.5.25) to a partially submerged sphere, 

we need the equation of the body surface r = rs(t), with

ra(t) =  [1 -  c2( l  -  t2)]1/2 -  ct,

where c is the depth of the submerged centre of the sphere. Thus,

drs(t) c2t
-  c,

dt [1 -  C2 ( l  -  t 2 ) ] 1 / 2

cr3(t)
[ra(t) + ct]'

Noting that the general solution for v = v(r , 9), has the form

Hence,

v = Bq

dv

.(*)
1 + t
1 -  t

1! / 2 00 
+ E fli

j=i

j ' + i

.dr3(t) r3(t) =  - 2 B 0
l  +  t l 1/2

and

rj(t)
dr,(t)

dt

-  E o  + 2)^
j=i

1 -  t 
1 3 + 2

PHt)

ra(t) +  ct
{ l - t ) B 0

' 1 ' 2 1 + t 1/2

.1 ~ t.

+ ra(t) + ct fr iE  Bi 3 + 2

(3.5.27)

(3.5.28)

( j  + 2 ) t P } ( t ) - j P } +1(t)].  (3.5.29)
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It therefore follows that 

dv v
drs rs(t)_ 

cB0

1 drs(t) 
[r3(i)]2 dt

+ E

rs(t) +  ct 
B ,

f r [ { r a{t) + Ct)

(2 rs(t) +  c +  ct)

( U + 2)

' 1 ' (1 + 1)
J . L ( l - 0 J

osdv

1 / 2

1 1J+1 
1  d 1

[rs(t)\ W ) J

3 + 2

P}+1 «

Therefore, the expression for torque coefficient r3 may be written as

r3 =  +  r3(1)

(3.5.30)

(3.5.31)

where

r<°> = - f ° r[r3(t)]2( l  +  t)l
\ B ° ]

4 J _ ! (r3(t) +  ct) ra(t).
{r3(t) +  c) df

+ - J  ^B0 r3(t) (1 +  t) dt

and

with

1 00
r *(1) =  l J 2 Bj IW +  2)XJ + 3cL3+^

> ' L

3 = 1

0 ( 1  _  ( 2 ) 1 / 2  p l ( t )

Ln [rs(t)}i~2(r3(t) + ct) dt‘

(3.5.32)

(3.5.33)

(3.5.34)

3 .5 .2  T h e  film  to rq u e

The film torque T f  is apphed by the action of surfactant stresses along the ring of 

intersection with the body with the surfactant layer. The film torque T f  of a general 

axisymmetric body can be written as

f ( v'or \ r

with the quantity inside the square bracket evaluated on the ring of intersection 

r =  r 3(0), if the body with the surfactant layer . It is convenient to define a 

dimensionless film torque coefficient Tf = Tf  / 87r/iCtrj . Thus

-= r,(0 )
(3.5.35)
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where A is defined in terms of and 77 by equation (3.2.10).

It should be noted that the general solution for v with r = rs(t) is

v = B 0

where t =  cos 9. Thus, 

=  -B o

1 + i
1 -  t

1/2 00

+  E * i
3=1

1 13+1
pH*),

,r3{t) 

from which

a r .  ( r . ( i ) . 1 2B°

r,(i)J
1 +  i l 1/ 2
1 -  t - E Bi

i=i

3+ 2
Pj(t) .  (3.5.37)

r 1 1 3
r i  +  t i

.1 - 1.

1/2 00

- E 0 ' +  2) ^
j=i W * )J

J+3
Pj{t)  (3.5.38)

and

d (  v
rs(t)3^ -  [ - 4 - r  ) = ~ 2 B cdrs \ ts(t)

1 + t
1 -  t

1/2
- E 0 '  +  2 )Bi z  ( 3 -5 -3 9 )

3=1
Hence

1 1
I t , ( 0 )J

(3.5.40)Tf -  -  ^2i?0 + (i +  2)Bj

Now -Pj(O) = 0 if j  is even so the film torque is then, for a partial sphere of

radius a, is given by
A (  °q 2 —1 A

Tf  = -  ( 2B0 +  E  (2™ + l ) S 2m- i  [ ( 1  -  c2)— +1/2] m-  P i ^ O ) )  , (3.5.41)

since r a(0 ) =  (1 — c2)1/ 2.

In the case when A = 00, the boundary condition given in (3.2.20) reduces to

(3.5.42)
d2v
d ?  = 0' (z =  0)

=  0 , (z =  0 )

which, together with (3.2.8), implies that

d_ 
dr

and therefore, the velocity distribution on the free surface is given by

(1 -  c2)

1 d.
r T r { n )

V —

(3.5.43)

(3.5.44)

to satisfy both the boundary condition on the sphere and decay to zero at r  =  00 . 

Thus for the case in which A = 00,

2  =  \ b 0 =  1(1 -  c2). (3.5.45)

When c = 0, which corresponds to a half-submerged sphere, the result (3.5.45) agrees 

with Davis’s (1979) asymptotic result when A =  00.
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1 . o

0.0
1 . 5 2.01 .0 2 . 5

Figure 3.3: The surface velocity distribution when c = 0. -  exact values and 0  

numerical values.

3.6 Numerical results

3 .6 .1  T h e  surface v e lo c ity  d istr ib u tion

The surface velocity distribution when c = 0 is considered for the two cases A =  0 

and A = oo. The corresponding exact solutions for the velocity profile at z  =  0, are 

given by

v =
(1 - c 2)3/ 2

,2  .

when A = 0 and
( 1 - c 2)

(3.6.1)

(3.6.2)
r

when A = oo. These results are shown with the approximate solution in Figure 

3.3. and clearly demonstrate that the approximate solution agrees very well with 

the exact solution both when A = 0 and A = oo. The velocity distribution on the 

surface for all other values of A will he between the two solid curves in Figure 3.3.
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c Exact r a Numerical r a

1.00 0.90154 ----

0.90 0.87872 0.87872

0.80 0.85185 0.85185

0.70 0.82089 0.82089

0.60 0.78584 0.78584

0.50 0.74683 0.74683

0.40 0.70399 0.70399

0.30 0.65756 0.65756

0.20 0.60783 0.60783

0.10 0.55517 0.55516

0.00 0.50000 0.50000

Table 3.1: Numerical data of r a at A = 0.

3 .6 .2  T h e  su b stra te  and film torq u es

The case when A = 0 and the surfactant is effectively absent provides a situation 

when the exact solution for r3 is available. The exact solution to the problem 

was obtained by Schneider et al. (1973). Comparison of the values of r a obtained 

by the exact solution (note that Tf = 0 ) provides an opportunity to examine the 

performance and accuracy of the general numerical method. Practically, this means 

tha t the computational parameter Jmax can be determined to produce acceptable 

accuracy for the torque acting on the partially submerged sphere for the case of 

A =  0 . The actual value for Jmax was 10, which was found to be satisfactory 

in this case. It was also found convenient to subdivide Ti into equal subintervals 

for numerical integration. The computations were effected using, the number of 

subdivisions np1 = 25 in the range 0 < f < — l o n T i .

The Table 3.1 shows the result for the dimensionless substrate torque r3 when 

A = 0. The comparative values of r3 when A =  0 given by the exact solution of 

Schneider et al. (1973) is also included in the Table 3.1.

Figure 3.4 shows the computed values of r a plotted against c when A =  0 and
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c Exact Tf /X Numerical 77/  A

1.00 0.00000 ----

0.90 0.09500 0.10000

0.80 0.18000 0.18000

0.70 0.26000 0.26000

0.60 0.32000 0.32000

0.50 0.37000 0.37000

0.40 0.42000 0.42000

0.30 0.46000 0.46000

0.20 0.48000 0.48000

0.10 0.49500 0.49500

0.00 0.50000 0.50000

e 3.2: Numerical data of Tf /X at A = oo

A Numerical E

0.00000 1.1

00101—1 X

0.10000 8.7 xlO " 8

0.20000 8.7 xlO " 8

0.30000 8.5 xlO -8

0.40000 8.3 xlO -8

0.50000 8.3 xlO " 8

0.60000 8.2 xlO " 8

0.70000 8.1 xlO -8

0.80000 8.1

0010t-HX

0.90000 8.1 xlO " 8

1.00000 8.0 xlO ’ 8

Table 3.3: Numerical data for Error — f  actorE when c =  0.
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1 .o

0 . 9

0.8
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0.2
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0.0 O. 1 0.2 0 . 3 0 . 5 0.6 0.8 0 . 90.0 1 .0
c

Figure 3.4: The numerical and exact values of substrate torque when A = 0 . ----

exact values and 0  numerical values

compared with the exact value of r3 by the exact solution of Schneider et al. (1973). 

The numerical calculations were carried out with Jmax = 10. As demonstrated in 

Table 3.1 and Figure 3.4, the numerical method gives a high degree of accuracy 

when compared with the exact solution over all values of c considered (apart from 

c =  1.0). It should be noted that c =  1.0 corresponds to the sphere being just fully 

submerged in the substrate fluid and the origin becomes part of the fluid. Hence 

the representation for v breaks down.

The Table 3.2 shows the result for the dimensionless film torque T f / X  when 

A = oo.

Figure 3.5 is a graph of the numerical value of rs when A = oo , plotted against 

c. For this case there is a check available against the exact solution r 3 = 1.2021, 

which was obtained by Davis and O’Neill (1979).

Figure 3.6 shows the computed and exact values of T f / X , which are plotted 

against c when A = oo. As may be seen from the graph, the computed values of 

T f / X  agree very closely with the exact values determined from (3.5.45) over the 

entire range of c apart from c = 1.0 .
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Figure 3.5: The numerical value of substrate torque ra when A = oo.
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Figure 3.6: The numerical and exact values of film torque Tf /X when A =  oo
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The formulations and the computational technique presented in this chapter can 

be generalized, for example, to permit consideration of bounded fluids, all tha t is 

necessary is to consider the boundary condition on the appropriate container wall. 

The problems of a sphere and spherically bounded fluid will be examined in chapter



C hapter 4

CONCENTRIC AND 

ECCENTRIC SPHERICAL 

BOUNDARIES

4.1 Introduction

The axisymmetric problem considered in Chapter 3 is now formulated for a slowly 

rotating solid sphere in a spherical container partially filled with viscous fluid, the 

plane fluid surface of which is covered with a surfactant film. The geometrical config

uration considered now is as follows. A spherical container, contains incompressible 

viscous fluid on whose plane horizontal surface is a thin layer of immiscible sur

factant of typically monomolecular thickness. The wetted surface of the container 

is denoted by and the surfactant layer by IV  The partially-submerged sphere 

rotates slowly about a vertical axis through its centre with angular velocity fi. The 

wetted surface of the inner sphere is Ti, and V  is the bulk fluid volume bounded by 

Ti, Y2 and IV

In this chapter, the values of film and substrate torque acting on the partially 

submerged inner sphere was investigated, and some numerical and graphical results 

are presented in Section 4-4-3- These results are computed for varying values of the 

ratio of the coefficient of surface shear viscosity to the coefficient of viscosity of the

70
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z

Figure 4.1: A partially submerged inner sphere and half filled outer sphere.

substrate fluid and the depth c of the centre of the inner sphere body below the 

surfactant film.

4.2 Equations governing the motion

In the treatment presented here, two spherical boundaries are considered. The 

radii of the inner and the outer boundaries are a and 6, respectively, and the outer 

spherical boundary is assumed to remain at rest and has its centre at the origin 0  

while the inner sphere rotates about the z-axis with constant angular velocity fL The 

inner sphere may or may not be concentric with the outer boundary. The boundary 

value problem to be solved involves satisfying the creeping motion equations with 

appropriate boundary conditions. Apart from the presence of the outer boundary 

condition, and the finiteness of 1?2 the problem is similar to that of Chapter 3.

Letting (r,Q,(j>) be spherical polar coordinates , discussed in as Chapter 3, then 

the velocity field v in the substrate fluid satisfies the linearized Navier-Stokes (2.3.2) 

and equation of continuity (2.3.3).

In the swirling flow under consideration it is clear that equations (2.3.2) and

(2.3.3) are satisfied by

v =  (O,O,v(r,0)) (4.2.1)
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and

provided that

p = constant

V2u - = 0 .

(4.2.2)

(4.2.3)(r 2sin2Q)

The boundary conditions imposed on v are the usual (a) no-slip conditions on Ti 

and T3, and (b) the condition on the surfactant region T2 that the substrate stresses 

and the internal film stresses are in balance. Hence, at r = a,

v = a( 1 — t2)1/ 2

with t =  cos 9 and — 1 < i < 0. At r = b the boundary condition is

(4.2.4)

On the surfactant film, I^,

v = 0 .

dv d2v

(4.2.5)

(4.2.6)

where rj is the coefficient of surface shear viscosity of the adsorbed film, and \i is the 

coefficient of viscosity of the substrate fluid. On writing X = rj/p, equation (4.2.6) 

becomes

(4.2.7)
dv d2v
J ~ Z +

on 1?2. Thus A = 0 corresponds to a uncontaminated surface, and when A —► 00 , 

equation (4.2.7) reduces to d2v / d z 2 = 0 on ]?2.

4.3 Solution of the problem

The non-dimensionalized general form of solution which satisfies (4.2.3) is

[ v +*gr;\ A 1 0V = ( Aq H------
r

r ( i + o i l/2  +  £
( i - O J

(4.3.1)

following the analysis set out in Chapter 2 . In (4.3.1) the radial coordinate r is 

now dimensionless relative to the radius of the inner sphere, Pj(t)  is the associated 

Legendre function of the first kind with — 1 < t < 0.
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The boundary residual ei corresponding to the boundary condition (4.2.4) is 

defined as

£l = v - ( l - t 2)1/2, (4.3.2)

with the velocity on the sphere v given by equation (4.3.1) with r = ra(t). Hence

A ^  + b J - Y +1 P / ( i ) - ( l - < 3)1/J, (4-3.3)— I A l Bo— ( -Ao H ~
L(i — t)J J=1

with r = ra(t). Consider now the boundary condition on the surfactant film. The 

derivatives on the right hand side of equation (4.2.7) can be expressed in terms of 

spherical polar coordinates as
1

(4.3.4)
dv
dz

1 dv 
r d6 ’

and
d2v 1 dv 1 d2v

(4.3.5)dz2 r dr r 2 dO2 ’ 

with z =  0, or equivalently 6 =  7r / 2 . Hence, using equation (4.3.1), when 0 =  7r /2

i y + 2
^ " ( 0), (4.3.6)

Furthermore, on 9 = 7r / 2 , or t = 0,

d2v v d2v 1 dv
d z 2 r2 dr2 r dr ’

(4.3.7)

since V2u = v / r 2, when t = 0.

On making use of P^O ) = ( j  + 1)PJ-_1(0 ) together with the boundary condition 

(4.2.7), it follows that substitution of v from equation (4.3.1) gives, when t = 0,

dv d2v 
dz ^  d z2

Ao f  Bq +  AAo
r V r2

+ I] [(■? + 2)Aj+irJ -  A(i - 1){3 + 
j=i

1 \  7+3

- 2
3 ( ° )

+ E
j=i

0 ,

( j + 2)Bj+1 ( I ) '  - A j ( j  +  2 )5 3. ( 1
i y +3

P '(  0 )

(4.3.8)

to satisfy boundary condition (4.2.7).
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4.4 Case A ^ oo

If j  = 2m, where m = 0 , 1 , then -P^mW = anc  ̂ ^  ls therefore necessary to 

consider only j  =  2m + 1 for m > 0. Thus equation (4.3.8) becomes

dv \ ^ 2y
dz d z2

Ao /  Bo +  AAo
r \ r

+ [(2m + 3)A2m+2r2rn+1 -  A2m (2m + 2)A2m+ir2m *j P2m+ i W
7 7 1 = 0  

oo ,  ̂v 2m+4
+ ^ 2  f - J  [(2m + 3 )5 2 m+2 — A(2m + l)(2m  +  3 )5 2m-(-i] P 2m+i(0 )

7 7 1 = 0  A 7* /

0. (4.4.1)

Since -P2m+i(0 ) 7̂  0? anc  ̂ r — arbitrary, the above boundary condition is then 

satisfied provided that

B 2m+2 — A(2m + l ) P 2m+i = 0 (m > 0) (4.4.2)

and

(2m + 3 ).4.2m+2-f2m+i(0) — A(2m + 2)(2m + 4 )A2m+3P2m+3 = 0- (4.4.3)

Now, from Morse and Feshbach (1953),

(4m +  2)tP2m+i{t) = (2m +  2)P2m+2(t) +  (2m + 1 )P2m(t), (4.4.4)

which gives

(2m + 2)P2m+2(0) + (2m + l)P 2m(0) =  0 . (4.4.5)

Morse and Feshbach (1953) also gives

(1 -  t2)P2m+1{t) =  (2m + 2)tP2m+i(*) -  (2m + 2 )P2m+2(f). (4.4.6)

Thus

P L +1(0 ) =  -  (2rn+2)P2m+2(0)

( 2 m + l ) P 2m(0), (4.4.7)
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and

^2m+3(0) —

using equation (4.4.5). Hence

(2m + 3)P2m+2(0) 
(2m + 3)(2m + 1)

(2m +  2) P2m{ 0), (4.4.8)

^ 2m+2 +  A(2m + 4).A2771+3 — 0, (m > 0). (4.4.9)

Therefore, equation (4.3.1), gives as the velocity field identically satisfying the sur

factant boundary condition

v = £  ^ 2m+i k 2ra+1P L +i(«) -  A (! -  4».o) (2m + 2)r*"P}m(t)
m = 0 

oo

+ ^ 2  #2771+1
771=0

/  1 \  2 m + 2  / 1  \  2 m + 3

( - )  P L + i  + A(2m +  1) ( ^ J  Plm+2{t)

in which

( T̂7i,o) —
1 i f  771=0 

0 i f  m  7̂  0

(4.4.10)

(4.4.11)

Equation (4.4.10) may be written as

OO

V — ^ ' {-̂ 2771+1/771 (71 ? 0  "I" ^2m+l9m{^': ^)}

where

(4.4.12)
771 =  0

and

/o (r,i)  =  rP}{t ) ,  (4.4.13a)

U r , t )  = r2m+1P^m+l( t ) - \ ( 2 r n  + 2)r2mP U t )  (™ > 1) (4.4.13b)

/ 1  \  2 ttx+ 2  / I  \  2771+3

gm(r,t) = l^-J P}m+i(t) + A(2m +  1) ( - J  P21m+2(t), (4.4.14)

for m > 0 .
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4 .4 .1  D e te r m in a t io n  o f  th e  coeffic ients  A j  and B j

In (4.4.12), although the surfactant boundary condition is satisfied identically, there 

remains the boundary conditions on the spherical boundaries to be satisfied. The 

condition on the inner boundary requires

(ra, t) +  B 2m+1gm(ra, t)} = ra{ 1 -  f2)1/2, (4.4.15)
77 1 = 0

for — 1 < t < 0 , where r =  r(t) takes the value ra(t) and Tb(t) given by

ra(t) = [1 -  c2( l  -  f2)]1/2 -  ct,

with — 1 < c < 1 . The condition on the outer boundary requires

OO

'y  ̂ { - ^ - 2 7 7 1 + 1  fmi'b) t) - ( -  .0 2 7 7 1  +  1 @7Tl ( ̂  5 t)} — 0. 
77 1 = 0

(4.4.16)

In the particular case when A = 0 and c =  0, then ra(t) =  1. Using equations 

(4.4.15) and (4.4.16) and proceeding in the same manner as the analysis in page 51, 

Chapter 3, the exact solution for the coefficients is obtained as

- 1
A q —

B 0 =

(,b3 - 1) 
b3

(63 -  1)

A 2m+i — B 2rn+i — 0 (771 — 0 ,1 ,..). (4.4.17)

For all other values of c, ra(t) is no longer a constant, and the orthogonal property 

° f P2m+lM over — 1 < t < 0 cannot be invoked.

For the general case, it is necessary to determine the unknown coefficients A 2m+i 

and B2m+i numerically. Consider the function I  given by

I -  f  \v(ra,t) -  ra(l  -  f2)1/2| . d t+  [  [v(b,t)]2dt. (4.4.18)
J - 1 L J r = r a (t)

This is

r° r 00 /
I =  { A 2m+1 fm{ra, t) + B 2m+1 ^m(ra, t)} -  ra(t)( 1 -  f2)1/2

J - 1  n

+

_m=0 
00

dt

y   ̂ {-̂ 2t7i+1 0  “I" 02 tti+1 9m{p7
.7 7 1 = 0

dt

(4.4.19)
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We shall determine A-2m+i and # 2m+1? so that I  is minimized. A necessary set of 

conditions for minimizing I  is

d l  d l
(4.4.20)

<9-4.271+1 0 i?2n+i

which lead to the infinite system of linear equations,

^  ^ J  [-'4-2m+l )̂ T # 2m+l )̂] <0 ̂  dt

+ Xrf |y  [^2m+l fm(b, t) +  -02771+1 <7m(&j 0] /n(&j dt
7 7 1 = 0

= J  -  t2)1/2f n (ra,t),  n > 0 (4.4.21)

and

^  ^ J  [-'4-2771+1 )̂ 4“ # 2 t 7 1 + 1  Qmij'at )̂] ^n(^a) )̂ ̂  ^
7 7 1 = 0

+ S  (  /  [^ 2m+l /m (M ) + # 2m+l 0m (M )]0n(M )}<ft
771 =  0  U  - 1 j

= J  ^ a(t)(l -  t2)1/2gn(ra,t), n > 0 . (4.4.22)

numerical method employed here to solve the boundary value problem for vThe

which is one of a general class of least-squares boundary residual methods.

To solve the equations numerically a finite number Jmax equations is used and it

  .   _ #2771+1 = 0

for m  >

X U  u U l V C  u i l C  C l^ U C L t lU llu  11 L L l i iC i  i  v  (XXL jr CL i l lL L l C  l i L L i l l U C i  U YftCXX ID  U u C L l d l .

is assumed that A.2m+i, # 2m+i —► 0 as m —> oo. Thus, setting A2m+i = # 2m+i 

J-max, equations (4.4.21) and (4.4.22) gives in m atrix form

f  f ( m,  n) g f ( m,  n) • A tf{n)

i gg{m,n)  _ B _ tg(n) _

(4.4.23)

where

f°f f { m , n )  = j  [fm(rait ) fn(ratt) +  fm{b,t ) fn(b,t)\dt,

,o
fg{m, n) = J  [fm{ra,t)gn{ra,t)  +  fm(b,t)gn(b,t)\ dt,

,o
g f ( m, n )  = j  [ f n ( r a , t ) g m ( r a , t )  +  f n { b , t ) g m ( b , t ) ]  d t ,

f°gg(m,n) = J  J_gm(ra, t)gn(ra, t) + 9 m { b ,  t)gn(b, t)] dt (4.4.24)
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and

t f { n ) =  J  [ra(t)(l -  t2)1/2fn(ra,t)]dt,
tg{n) = J  [ra( i) ( l -  t2)1/2gn{ra,t)\ dt. (4.4.25)

and A = (Ai, A3, ..., A r )' and B = (Bi ,  B 3, ..., B k )' with K  = 2Jmax +  1 . The

solutions of these equations determines the values of the coefficients.

4 .4 .2  C o n v erg en ce  analysis

For the convergence of the numerical method, consider the error factor

E  =  y / l (4.4.26)

where I  is defined in equation (4.4.18), Thus, using the representation (4.3.1) for v ,

r° r °° /I  = {A2m+1 fm(ra,t) + B 2m+ 1 gm{ra,t)} -  ra(t)(l  -  t 2)1/2
J - i  n.771= 0 

OO

dt

r0 °°
“t" I  ^ , {-'̂ •2771+1 /m(^5^)d* -^2m+l 0 }

J  - 1 .m = 0

dt

=  Y  Z )  [^2m+iA2n+i f f ( m, n ) ]
771 =  0  7 1 = 0  

OO OO

+ Z  Z  [A 2m+iB2n+i fg{rn,n)]
771 =  0  7 1 = 0  

OO OO

+  Z  Z  [^2n+1^2m+l p /(m , 7l)]
771 =  0  7 1 = 0  

OO OO

+  Z  Z  [5 2m +i52n+i gg{m,n)]
7 7 1 = 0  7 1 = 0  

OO

- 2  Y  [A 2n+i t f {n)  + jB2„+i<^(n)] 
n=0

+ J  i [’,a(0]2(1 ~ *2) dt> (4.4.27)

where the functions / / ,  fg ,  gf ,  gg and t f ,  tg are defined in equations (4.4.24) and

(4.4.25) respectively. The value of Jma® is chosen large enough to ensure that 

Ai, A3, ..Bi, B 3 , .. converges to zero. The value of E  represents a measure of how 

accurately the boundary conditions on the spherical boundaries are satisfied.
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4.5 Case A =  oo

The condition A =  oo implies that the boundary condition (4.2.7) reduces to

d2v / d z 2 =  0

on r 2. It follows that equation (4.3.8) becomes

A °° r 7?
^ r - E  ( i - i ) ( i  + W “ 2 + i ( i  +  2 ) - j ^  p / ( o) =  o
T  3 = 1  L

Again if j  — 2m, then -P2m(0) = f°r m = 0 ,1 ,2 ,.. . Hence

Aq
TPI

(4.5.1)

- E
m=0

2m(2m + 2)A2m+i r 2m 1 + (2m + l)(2m  + 3)H2m+i

=  0 (4.5.2)

since .P^+^O ) ^  0 for m > 0. Thus, the above equation reduces to

A q — 0 ,

A2m+i =  0 (m > 1) (4.5.3)

and

B 2m+1 =  0 (m  > 0). (4.5.4)

Therefore

=  A \r ( l  — t2)1/ 2 + — (1 +  t)
L (i- 0

1 / 2

+ E
m= 1

A2mr 2m + B 2m 2m+l pL(*) (4.5.5)

which satisfies the boundary conditions.
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4.5 .1  D e te r m in a t io n  o f  th e  coeffic ients  A j  and B j

For A = oo, in satisfying the surfactant boundary condition, the velocity field is 

given in equation (4.5.5). There remains the boundary condition on the inner partial 

sphere and spherical boundary to be satisfied. This requires

r ( t ) ( l  -  t 2)1/ 2 =  A xt {1 -  i 2 ) 1/2 +  —
r

oo

+ E

(1 +  t) 1/2

771 =  1
^ 2m7,2m +  •®2m -2m + l (4.5.6)

for — 1 < t  < 0, r a (t)  is defined by equation (4.4.16), and the boundary condition 

on the outer spherical boundary is

v  — 0 , (4.5.7)

on r = b, for — 1 < t < 0, and v  is defined in equation (4.5.5). In the case of a 

half-submerged partial inner sphere, c = 0 , r a(t)  = 1 and on the spherical boundary 

r = 6, then using equations (4.5.6) and (4.5.7), since -PjmCO) = 0? we obtain

and

giving

1 — B q A ]

0 =  ^ -  + A l b,

A i  =  -

(4.5.8)

b2 -  1

(4.5.9)

(4.5.10)

and

B0 =
b2

b2 -  1

When t  ^  0, then equation (4.5.6) implies that

1

(4.5.11)

( i _ i 2 ) i / 2 =  _ (1 - i 2 )1/2 +
L(f>2 -  1)J

OO

+  " b  ^ 2 7 7 l ]  B 2Tn( t ) ,

b2 1 +  t
.1 - 1.

1 /2

(4.5.12)
m=l
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with r = 1, and equation (4.5.7) implies that

b
0 =  -

L(&2 -  i ) J
( l  -  i 2)1/2 +

• b 1 r i  +  t]
.1 - 1.

+ E m&2m + B 2rn
1

m —1
£ 2 m + l -PjU O .

with r = b. Therefore, equation (4.5.12) gives

b2

(b2 ~  1)

and equation (4.5.13) gives

b2

P m  — £*771 [ ^ 2 m  “I" j

{b2 ~  1)
P m  — Oir

A u*m+l i 2mA 2mb T H--------h
b2m

where

OC-m — J ^ p L M P L m

2m(2m + 1)
(4m + 1)

and

=  ( - i )
m+l ( 2 m -  2)!

(22m-1)(m + l)!(m  — 1)!. 

following the analysis from Chapter 2, and m > 1. Hence
( &2 m + l  _  ^

B 2rn  — m b 2™ (b2rn -  1)
(m > 1).

Thus

and

^2m —
b2 (62m+1 -  1)'

L (b2 - l ) \ (&4m+l -  1)

b2 b2 m ( b 2 m + l  _  ^
P m

(b2 -  1) (&4m+l _  1 ) £*m
B 2m  —

where m > 1. It should be noted that as b —> oo then B 2rn —► (—/5m/ a T 

and ^4i,A2m —► 0. Hence, from above,

B 2m — P r

a, = (-1 )
m + l (2m — 2)! (4m + 1)

,(22m) (m -f 1)! m! (2m + 1).

for m > 1.

(4.5.13)

(4.5.14)

(4.5.15)

(4.5.16)

(4.5.17)

(4.5.18)

(4.5.19)

(4.5.20) 

), So -  1

(4.5.21)
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4 .5 .2  C o n vergen ce  an alysis

Similarly, for the convergence of the numerical method, we consider the error factor

E  = V l ,

where the function I  is given by

1  =  ~

= J  v $ - 2 v i E ( t )  + [H(t)]‘

dt

dt

and

= A i r {\ -  t2)1/2 + ^

Vi

(1 + 1)
1 /2

= E
m=l

A2mr 2m + B

L ( i - t ) J

1
2m r 2m+l

and

Vo

(4.5.22)

(4.5.23)

(4.5.24)

(4.5.25)

with — 1 < t < 0. Again E  represents a measure of how accurately the boundary 

condition on the partially submerged sphere is satisfied.

4.6 Expression for the torque acting on the spheres

4 .6 .1  T h e  su b stra te  torq u e

An inner sphere which has surface equation

r = ra(t) (4.6.1)

and the outer boundary surface equation

r =  rb(t), (4.6.2)

where t = cos# and — 1 < t < 0, is considered.
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Using the analysis from Chapter 3, it can be shown that

f°
Ta = 2xyuf2a3y [ra(t)]3 F(t)dt  (4.6.3)

with r = ra(t) dimensionless relative to the radius of the inner sphere a, and Q its 

angular velocity. Defining the non-dimensional torque coefficient

Tg
T, = — ■

it follows that

where

87r/xfia3 

r5 = ^ [ r a W f F W d t

1 dra(t)

dv v
(t ) \ r a(t)J ra(t)2 dt 

1 dra(t)
dra{t) ra(t). r a(t)2 dt

dv
*  + (

(4.6.4)

(4.6.5)

^  ^ r = r a (t)  

r = r a (t)

(4.6.6)

In order to be able to apply the above equation to a partially submerged inner 

sphere with spherical outer boundary, we need the equation of the inner sphere 

surface r  =  ra(t), with

r3(t) = [1 -  c2( l  -  f2)]1/2 -  ct,

where c is the depth of the partially submerged inner sphere. Thus,

dra(t) c2t
-  c.

dt [ l - C 2 ( l - t 2 ) ] 1 / 2

which can also be written as

dra{t) cra(t)
dt M O  +  ct]' 

Noting that the general expression for the velocity is

v =  v0 +  Vi +  v2

(4.6.7)

(4.6.8)

(4.6.9)

(4.6.10)

where

vq — ( 4̂q +
Be r ( i  +  t )

L ( i - < ) J

1 /2

= E  P}{t)
j=l

(4.6.11)
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a n d

Hence,

= E
j=i

1 V + i
r 0(t) *?(*)•

d ra(t) ra(t) 

5 1

a n d

dra(t) ra(t)

d
dra(t) r a(t) 

It therefore follows that,

—  —  ( +
2B0

* 2(0
( l  +  <)

L(1 - 0 J

1/2

oo

= ^ [ ( i - i ) v r 1( o ] ^ w

(4.6.12)

(4.6.13)

(4.6.14)
j =i

= - E
3 - 1 ^ +2(0J

/
I ^Ta{

Vo ‘ 1 ' dra(t)
ra(t) ■r 2M. dt

2sdv0

(1 +  t )
1 /2 1

L a - o J T a ( 0 ( r o ( 0  +  C t ) .
^ o ( 7 * a ( 0  +  c )  +  ^ y ( 2 r a ( t )  +  C +  c t ) ^  ,

(4.6.16)

u s in g  th e  e x p r e s s io n  fo r  vq, a n d

Vl ' 1 ‘ dra(t)
r a ( t ) IrJW J dt tvi +  (1 -  t )2 \ dv\

dt

= E ^ r ' t o
i=i

1
-W O  + ct). W  It? +  2 ) C* -  ( i  -  1 ) ( 7’a ( 0  +  Ct)] 

1
- J ^ AJr3a \ i ) j c

J=1
3 + i ( 0

=  E A2r a ' ( 0
i=i .(T’a(i) +  Ct).

= E v i ”l(0
J=l

. W * )  +  Ct).

[(2j + l)c tP /( t)  -  jc P /+1(t) +  (j -  l ) r a( t)P /( t)  

1 1 \ j  +  lJcP jL ^t) +  (j -  l ) r a( t)P /( t)
, ( r a (<) +  c t ) .

(4.6.17)

u s in g  e x p r e s s io n  for  Vi, a n d

dv2 v2 
dra(t) r a(t)

1

' 1 ' dra(t)

l -i p 
to c-f
. dt tv2 + (1 -  t  )2 ^ 2  

<9t

= E * >
J = 1 ra(t)(ra(t) +  c t ) .

( i +  2)ra(t)P /(t)  +  ;c P /+1(t)]

(4.6.18)
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Therefore, the expression for the substrate torque coefficient rs can be expressed

as

t, =  t 3(0) + r a(1) + r f 2) (4.6.19)

where

- ( o ) M 0 ] 2(i + 01 f °

1 f °
4 7 -i [ (ra(t) +  ct)

+ ^ J  ^Bo[ ra(t ) ]2( l  +  t )dt ,

[A0(ra(f) +  c) +  B0(2ra(t) + c + ct)] dt 

[(A0 + B 0)(ra(t) +  c)]dt

(4.6.20)

and

1 00
Ti 1) = l E ^ t y  +  ^ i  +  J 'e ^ + i ] ,  (4-6.21)

J = 1

and 

r (2) =
1 00 r o

- l E /  ^ M < ) F +2( i - < 2)1/2 

=  - z E / V ' M * ) F +2( i - < 2)1/2

.(r «(<) + ct). 

1

J=
OO

(ra(f) +  ct).

1 ^
7 AJ -  ( j -  1 )^ - ]

(j +  ij 

[(i -  l ) ra(t)P} (t)] dt 

(4.6.22)
j = i

where

and

( i -  i2)1/ 2

r a(t)]''- 2(»-a( 0  +  Ct) 

ra(t)p'+3(l - t2)1/2

(4.6.23)

(4.6.24)
(ra(t) +  ct)

It should be noted that as b —> oo then r a agrees with Chapter 3.

4.6.2 T he film torque

A film torque T f is applied to each boundary by the action of surfactant along the 

ring of intersection with the boundary. The film torque Tf acting on a of a general
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axisymmetrical body can be written as

T f  =  —27rQrj
d ( v

dr \ r
(4.6.25)

where r is the spherical polar coordinate, the equation of the body is r  =  ra(t) 

and — 1 < t < 0. It is convenient to define a dimensionless film torque coefficient 

Tf = Tf  /S ttfiCla3. Thus

T f  =  — A
}  4

d ( v
dr \ r -= ra(0)

(4.6.26)

The velocity field v(r, t ),  has the general solution given by

v  =  ( A 0 +
Bp

ra{t)
l  + t]
1 -  t

1 /2  oo

+ E
3 = 1

A 7 B j
+ - j d PKt)- (4.6.27)

Thus

d (  v
dr \ r a(t) = - i ^ +  2Bora(ty 1 - 1

1 / 2

1 = 1

The film torque coefficient is therefore given by

Tf  =  - \ ( A 0r  +  2 B 0 )

- zAE
j = l

O'-l)A3rJ+1(0)-(j + 2)̂ B .

m
P^(0). (4.6.29)

When t — 0 and j  is even then Pj'(O) = 0. Therefore it is necessary only to consider 

j  odd. Hence

Tf  = -A ( A o r  + 2.Bq)

- zAE
m=1

(2m -  2)A2m_ir^m(0) -  (2m + 1) B2m—1
r im- \ 0) ^ m - l (O ) .

(4.6.30)

For a partial inner sphere, the equation of surface when t =  0 becomes

r.(0) = (1 -  c2)1/2 (4.6.31)
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then

4 ~ = (4>r«(0) + 2B0)

-  E
m=1

(2m -  2)A2m_ iro(0)2m -  (2m + 1)
r o(0)2— 1

with

( —l) m (2m — 1)!

•̂ 2m -l(0 )

(4.6.32)

(4.6.33)
22m~2m!(m — 2 )!

In particular case when ra(t) =  1, a half-submerged sphere, the film torque 

coefficient is

Since -P̂ mCO) = 0, and

Therefore

since

Tf  = - - A
; 4

d ( v

d /  v 
dr \ r r = 1

dr r Jr.-
= - 2 5 0

r = l

621/  ________
A 2(62 — 1)’

Bo =  (  ^  ^

from (4.5.11). In the case when b —*■ oo, equation (4.6.37) reduces to

A 2'

(4.6.34)

(4.6.35)

(4.6.36)

(4.6.37)

(4.6.38)

4 .6 .3  N u m er ica l resu lts

The Table 4.1 shows the result for the dimensionless substrate torque when A =  0

and outer sphere is half submerged with b = 100 and 2, and varying c.

The Table 4.2 shows the result for the dimensionless film torque ry/A when 

A = oo with b = 100 and 2, and varying c.

The Table 4.3 shows the result for r a for various values of c with A = 1.

The table 4.4 shows the numerical data for Error-factor E when A = 1 with

b = 2.
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c b =  100 6 =  2

1.00   ------

0.90 0.8787 1.1879

0.80 0.8519 1.1311

0.70 0.8209 1.0722

0.60 0.7858 0.9998

0.50 0.7468 0.9292

0.40 0.7040 0.8592

0.30 0.6577 0.7887

0.20 0.6078 0.7172

0.10 0.5552 0.6447

0.00 0.5000 0.5714

Table 4.1: The computed values of of r3 at A =  0 with 6 =  100 and 2.

Figure 4.2 shows the computed values of r a at A = 0 and 1, and Figure 4.3 shows 

the computed values of T f / X  at A = oo.
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c 6 =  100 6 = 2

1.00

0.90 0.1000 0.2064

0.80 0.1800 0.2842

0.70 0.2600 0.3537

0.60 0.3200 0.4245

0.50 0.3700 0.4838

0.40 0.4200 0.5322

0.30 0.4600 0.5726

0.20 0.4800 0.6043

0.10 0.4950 0.6254

0.00 0.5000 0.6666

Table 4.2: The computed values of t//A  when A =  oo with 6 =  100 and 2.

c Ta

1.00

0.90 0.9619

0.80 0.9115

0.70 0.8676

0.60 0.8076

0.50 0.7395

0.40 0.6556

0.30 0.5911

0.20 0.5153

0.10 0.4406

0.00 0.3779

Table 4.3: The computed values of ra at A =  1 when 6 = 2 .
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c Numerical E  

0.00000 4.8 xlO -8 

0.50000 4.6 xlO -8 

0.80000 3.8 xlO -8

Table 4.4: Numerical data for Error — factor E when A =  1 with 6 = 2.

5

o

. 5

o
o.o o .  1 0 . 2 0 . 3 0 . 4 0 . 5 0. 6 0 . 7 0 . 8 0 . 9 1 . 0

C

Figure 4.2: The numerical values of substrate torque r3 at A = 0 and 1.

o

-o.5

0
0 .1 0 . 2 0 . 4 0 . 50.0 0 . 60 . 3 0 . 7 0 . 8 0 . 9 1 . 0

C

Figure 4.3: The numerical values of film torque ry/A when A =  oo.



C hapter 5

THE PROLATE AND 

OBLATE ELLIPSOIDS

5.1 Introduction

In this chapter the axisymmetric problem of an ellipsoid is considered. The ellipsoid 

is partially submerged in a substrate fluid below a surfactant layer and rotates slowly 

about its axis of symmetry which is perpendicular to the plane of the surfactant layer. 

For an ellipsoidal body the use of ellipsoidal coordinates is particularly advantageous 

and ensures that a mathematical formulation of the boundary value problem is 

possible for all depths of the centre ellipsoid below the surfactant layer. This has 

enabled us to consider in detail the limiting case when the surface viscosity is zero 

and the surfactant layer becomes a simple stress free surface.

5.2 Prolate ellipsoid

The specific geometry is shown in Figure 5.1. Consider an ellipsoid l?i with the 

major axis parallel to the z axis. The lengths of the major and minor semi-axes are 

taken to be ao and &o respectively. The ellipsoid is partially submerged and slowly 

rotates with constant angular velocity Q, in a semi-infinite incompressible fluid with 

dynamic viscosity fj. . The axis of rotation is the major axis of the ellipsoid which 

is perpendicular to the surface 1?2 of the substrate fluid on which there is a film

91
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2  ^

Figure 5.1: The geometry of the prolate ellipsoid.

of an adsorbed monomolecular surfactant fluid possessing surface viscosity 77*. The 

depth of the ellipsoid centre C below the surfactant film is ho, which takes values in

the range — c l q  < < ^o- Note that ho > 0 or ho < 0 according as the ellipsoid is

more or less than half submerged. The surfactant film is unbounded apart from its 

intersection with the ellipsoid.

5 .2 .1  E q u a tio n s govern in g  th e  m otio n

All physical quantities will be referred to the prolate ellipsoidal coordinates (£, </>, 77) 

related to cylindrical polar coordinates {/?,</>, z},  by the formula

z -f ip = ccosh(£ +  irf) (5.2.1)

or equivalently

z = c cosh £ cos 77,

p = c s in h £ s in 77. (5.2.2)

The origin of coordinates is at the intersection of the major axis of the ellipsoid T1 

and the plane containing the surfactant fluid, and c is a constant length which we 

shall identify with half the distance between the foci of IV
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The surfaces £ = constant are a set of confocal prolate ellipsoids of revolution,

while the surfaces 77 =  constant are a set of confocal hyperboloids of revolution. The

foci in each case are at z =  ± c, p =  0 .

Now letting the coordinates {/?, cf), z } be dimensionless relative to c, equations 

(5.2.2) can be written as

z  =  st, (5.2.3)

p = (s2 -  1)1/2(1 - f 2)1/2, (5.2.4)

with s =  cosh£ and t =  cos 7 7 . When h =  =  0, the centre of the ellipsoid Ti

coincides with the origin 0  and s = constant =  cosh £0, say, on IV  Thus

a — —  = cosh £0,
c

b = — =  sinh £0 =  (a2 — 1)1//2. (5.2.5)
c

For h 7̂  0, the parameter s is no longer a constant on Ti and now s = so =  -so(t). 

The equation of the ellipsoid Ti is accordingly

(M  + fc)a . W - l X l - i 2) .
+  (a2 — 1) = 1 > (5’2'6)

where — 1 < t < 0 and —a < h < a. Thus so satisfies the quadratic equation

a s l + P s 0 + 7  =  0, (5.2.7)

where

a  = (a2 - 12), (5.2.8)

P = 2ht(a2 -  1) (5.2.9)

and

7 =  (a2 — l )h2 — (a2 — t2)a2. (5.2.10)

The physically meaningful solution of (5.2.7) is

^  - P  +  \ / P 2 -  4 cry  / C o n \
s°(f) =  ----------^ ---------- ' (5.2.11)

Assuming that the Reynolds Number for the flow induced in the substrate fluid 

is sufficiently small to permit the neglect of the inertia terms in the Navier-Stokes
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equations, the flow produced is governed by the Stokes equation (2.3.2) and the 

equation of continuity (2.3.3).

The fluid motion is caused solely by the rotation of the ellipsoid, and because of 

the axisymmetric nature of the flow the velocity v  has only one component which 

is in the azimuthal direction of a system of cylindrical polar coordinates with the 

z-axis along the axis of rotation of the ellipsoid and pointing out of the fluids. The 

plane z = 0 coincides with that of the surfactant layer.

In this problem, it follows that (2.3.2) and (2.3.3) possess a solution of the form

v = (0, 0, u(s, £)) (5.2.12)

with

provided that

p = constant (5.2.13)

The general solution of (5.2.14), which is bounded in prolate ellipsoidal coordinates, 

for — 1 < t < 0 and 5 > 1, is of the form

v = B 0
1 ' i  +  *'

[ (s2 -  i ) 1/2] .i  - 1. + Y , Bi Q 1A s )p ' W ’ (5-2-15)
j= 1

with Pj(t)  and <5](s) the associated Legendre functions of the first kind and the 

second kind, respectively, of order j and degree unity, as described in Chapter 2.

5 .2 .2  B o u n d a ry  con d ition s

As for the partially submerged single sphere problem, there are two boundary con

ditions to be satisfied, one on the wetted surface Ti of the prolate ellipsoid and the 

other on of the surfactant film IV

To satisfy the non-slip boundary condition on the surface V\ requires tha t

u =  ( s £ - l ) 1/2( l - t 2)1/2 (5. 2 . 16)

with 5 — so(t) on Ti and — 1 < t < 0.
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In the presence of the surfactant layer, see Section 2.3.2, the boundary condition 

to be satisfied is
dv d2v
T z +  ^  =  0 (5.2.17)

on r 2 , with

A = 77 7 /i ,  (5.2.18)

where p. denotes the coefficient of dynamic viscosity in the substrate fluid and rj* 

denotes the surface viscosity of the surfactant layer.

5 .2 .3  E x p re s s io n s  fo r d / d p  a n d  d / d z  

For the following analysis it should be noted that

p = (s2 - l ) 1/2 ( 1 - t 2)1/ 2,

z = st.

Partially differentiating these equations with respect to p gives

_  dp ds dp dt 
~dlYp + J t d p '  
dz  ds dz dt 
ds dp ^  dt dp ’

g iv in g

1 = 5 [(1  -  i2)l 1/2 a ,
—  t

(s2 -  1) dP

1/ 2
dt_
dp'

ds dt 
0 =  %  + % -

Eliminating and in turn givesd s

ds
dp

—  5
( s 2 — 1 ) 1/ 2( 1  — t 2 ) 1/ 2

and

dt
~d~P ~  _ t

(.s 2 - t 2 )

(52 — 1)1/ 2(1 — t2)1/ 2

Therefore
d_

dp

(.s 2 - t 2 )

( 5 2 - l ) 1 / 2 ( l - t 2 ) 1 / 2

{s2 - t 2)
f d d \  

t d t )

(5.2.19)

(5.2.20)

(5.2.21)

(5.2.22)

(5.2.23)

(5.2.24)

(5.2.25)

(5.2.26)

(5.2.27)
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Now, partially differentiating (5.2.20) and (5.2.19) with respect to z  gives

_  dz ds dz dt
ds dz  ^  dt d z ’

_  dp ds dp dt
ds dz ^  dt d z ’

and therefore

ds dt
1 =  t Y  + sY z ’

0 = s

Similarly, eliminating J |  and ^  in turn, leads to

' (1 - t 2)2 ' ds IT to 1

(s2 -  l ) 1/ 2 dz L ( i - * 2)J

1 1/2 dt
dz '

d s

ds
Yz =  1

and

Therefore

and

dt
dz

= s

(,s2 - t 2) 

( l  -  t 2 ) '

dz
= t

(s2 -  1)
(s2 -  t2)

(s2 -  t2)

d
ds + 5

( i  - 12) a

d z 2

(s2 — t2) dt

{t('2 - 1)i +,(1 - ‘J)S}l (s2 - t 2) 
t(s2 -  1) d 5(1 — t2) d
(s2 — t2) ds (s2 — t2) dt

(5.2.28)

(5.2.29)

(5.2.30)

(5.2.31)

(5.2.32)

(5.2.33)

(5.2.34)

(5.2.35)

5 .2 .4  E x p re s s io n  fo r s'0(t)

The equation of the body is given by

5 =  50(f) =  ^  _ ig7  ( _ i  < t < 0 ) (5.2.36)

which satisfies

2a

asl  + (3s0 +  7  = 0 , (5.2.37)

and and 7  are defined in equations (5.2.8)-(5.2.10), respectively. Hence, differ

entiating (5.2.37) with respect to t,

(2a5o + P)s'o{t) ~  2t5g + 2(a2 — l)/i50 + 2a2t = 0. (5.2.38)
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Therefore

* i(o  = -
[—tsl  +  (a2 — 1)Hsq +  a2t]

(5.2.39)

[(a2 — t2)so +  (a2 — 1 )ht\ 
_  [(3p -  a2)t -  (a2 -  1)/mq]

[(a2 — t2)so + (a2 — l)ht\

5.3 Solution of the problem

The form of the general solution which exactly satisfies (5.2.14) can be w ritten as
1/2

V = v(s, t ) =  Bq
1 1 +  t

[(*2 _ .1 - 1. + (5-3-1)
j= 1

with v dimensionless relative to fie. This solution is bounded for —1 < t < 0 and 

s > 1, but in general the Legendre functions Pj  (<) do not form an orthogonal set 

over this range of values of t.

On the partially submerged prolate ellipsoid Ti, the parameter s =  So(t) with 

— 1 <  t < 0. For so(0 > 1 for all such t requires a + h > 1. This condition ensures 

exclusion of the line segment | z ) < 1, p — 0 , on which s = 1, from the flow region. 

The condition is satisfied for all h > 0, but for h < 0 it is necessary for h > 1 — a.

The boundary residual ei associated with the boundary condition given in equa

tion (5.2.16) is defined as

6! =  v(s0, t) -  (si -  1)1/2(1 -  t2)1/2
1 / 2

= B o ....................................
1 1 +  t

I k - i H .1 -  t.

+ £  B . Q ^ P j i t )  -  ( , 2 -  l ) 1̂ !  -  t2)1/ 2. 
j=i

The boundary residual eg associated with the boundary (5.2.17) is

( dv d2v \
€2 ~  ( dz + dz* ' ’

(5.3.2)

(5.3.3)

(5.3.4)
t= 0

with the derivatives on the right hand side expressed in terms of the prolate ellip

soidal coordinates as in Section 5.2.3. Using (5.2.34), (5.2.35), (5.3.1), it can be 

shown that (5.2.17) reduces to
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Now

d v \
ds  J  t=0

dv

= Be
ds

( .5 2  -  I ) " 1 / 2

OO r  Q

+ E 5 i pm >
j = i

s i )  = E 3 i < t i w<nJt=o J=1
+

Be
t=O (s2 — l ) 1/ 2 ’

(5.3.6)

(5.3.7)

and

'd V
d t2 = E

t - 0  j = 1
+ 2Br

(5.3.8)

Again the recurrence formulae relating the Legendre functions, given for instance 

by Morse and Feshbach (1953), can be written as

for P}(t),  and

d „i,
O 2 -  =  i Q j + i M  -  ( i  +  i-)5< 2 j ( 5 )

for <2}(.s). Using results from Chapter 3,

dt2
p]  M  = U  + i)Pj(o)  + j ( j  + i)P j+2(o).

(5.3.9)

(5.3.10)

(5.3.11)
t - 0

Thus the equation (5.3.4), with the velocity given by equation (5.3.1) and t  = 0, 

becomes

Be

3 = 1
OO

s(s2 -  l )1/ 2

/  \  \  00

+  ( e f )  B j Q ) ( 5 ) U  + + j { j  + ^-)Pj+ 2 (0 ) ]
v J 3=1
/  \  \  00

+  ( 7 )  J 2 5 i p j ( ° )  [ i ^ i + i ( 5 ) -  ( j  +

A
+ i 4

2 £ 0 (5.3.12)
,(52 - 1 )3/ 2J V-s2/  (52 - 1)1/ 2’

If j  = 2m -f 1 where m  = 0 ,1 ,... then, since = ^  follows tha t the above

equation reduces to

Bo
e2 — ~ Q )  E  B 2<nQL(s) [(2m )/>2m+l(0)] +

m=1 s(s2 -  l ) 1/ 2
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+ ( ^ 2)  S  ^ m + l^ m + lM
77 1 = 0

(2m +  2)i>2lm+1(0) +  (2m +  l)(2m  +  2)P21m+3(°)]

/  A \  00
( 7 3 ) ^  -̂ 2771+1-̂ 2771+1 (Q) (^m + l)Q2m+2(,S) ~ (^m + 2)5^277i+l('S)
'  '  77 1 = 0

(5.3.13)
7 ] B o ( 5 2 _  1 ) 3 / 2 J 1 \ s 2 j  L(>S2 ~  i ) l / 2 .

The surfactant condition is satisfied if 62 = 0. For A =  0, this condition implies tha t 

f?2m = 0, where m  = 0 , 1 , 2 , , . . ,  in which case

OO

V — ^ 2  ^ 2m+ l ^ 277l+l('S)^ 2Tn+l(0- (5.3.14)
771=0

For other values of A, it is not possible to use equation (5.3.13) to express explicitly 

the odd suffixed coefficients in terms of the even suffixed coefficients or vice versa, 

as for the partially submerged sphere. We therefore in subsequent analysis consider 

only the case A = 0.

5.4 Determ ination of the coefficients Bj when A =  0

The velocity field is
OO

V = ^ 2 B 2jn+ifm(so, t),  (5.4.1)
771=0

where

fm (s0,t) — ^?27n+l(So)F2m+i(t). (5.4.2)

There remains the boundary condition to be satisfied on the ellipsoid, which requires

OO

£  S2m+l/m(^0, *) =  ( 4  -  1)1/2(1 -  <2)1/2 (5-4.3)
771 =  0

for — 1 < t  < 0. The unknown coeffients # 2771+1 are to be determined so th a t the 

function I  given by

/  = / V ( 4  -  1)1/2(1 -  <2)1/2]2^  (5.4.4)

is minimized. Clearly a necessary set of conditions for minimizing I  is

—^ - —  =  0 ; m = 0 ,1 ,.. (5.4.5)
0.02771 + 1
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which leads to the infinite system of linear equations

OO
^  ] -®2m+l Srn,n — Tn J 72 > 0.

where

(5.4.6)
m—0

and

Sm,n — (5.4.7)

Tn =  j ° . y °  "  1)1/ 3<?l>+i(«o) (1 -  <2)1/ 2^ 2n+iW * ,  (5-4.8)

with m > 0 ,n  > 0. To solve the equations (5.4.6) numerically, a finite number of 

equations is used and it is assumed that i?2m+1—>0 as m —► oo. Consider the (Jmax +  l)  

equations

^ 'j P2m+l^m,n — Tn | 0 < 72 < (Imai)- (5.4.9)
m = 0

A measure of the accuracy of the numerical method, as in chapter 5, is the error 

factor E  defined as

E =  VT, (5.4.10)

with I  given by (5.4.4). Thus, using the representation (5.4.1) for v, this gives

■  /". 
- L

B 2m+lfm(s0,t)  -  (Sq -  l ) 1/2(l -  f2)1/2
jm—0 

oo

dt

^   ̂ B 2m+1 fm (*̂0? f )
_ m = 0

dt

- 2 j °  ( 4  -  i ) ' / 2( i  -  i2)1/ 2

+ J  (4 - iX1 - t2)dt
OO

^   ̂ -®2m+l fm^SQ 7 0  dt 
m=0

oo oo oo .0
=  ^ 2 m + l  y i # 2 n + l ‘S'm.n ~  2 y ^ l ? 2 7 i + l T n  +  /  (<Sq — l ) ( l  — t2)dt,

771 =  0  7 1 = 0  7 1 = 0

(5.4.11)

where 5miTl and Tn are defined in (5.4.7) and (5.4.8) respectively. The value of Jmax 

is chosen to be large enough to ensure that i?2m+i is effectively zero for m  > Jmax- 

Having solved equations (5.4.9) for the coefficients l?2m+i, the value of E  produces 

a measure of how accurately the boundary condition on the partially submerged 

prolate ellipsoid is satisfied.



CHAPTER 5. PROLATE AND OBLATE ELLIPSOIDS 101

5.5 Expression for the torque acting on the prolate el

lipsoid

namely the substrate torque and film torque. When A =  0, the film torque is 

identically zero.

5 .5 .1  T h e  su b str a te  torq u e

The substrate torque Ta arises from the action of the stresses in the substrate fluid. 

The torque acting on a body, when moments of the surface stresses are taken about 

the origin, is given by

in which r  is the position vector of a general point of the surface S of the body, and

There are two types of torque which act on the ellipsoid, as in the sphere problem,

(5.5.1)

dS=dS n is the areal element of surface orientated in the direction of the outward 

drawn normal n. Since v =  v(p , z)(j), the only non-zero component of the torque 

acts along the z-axis. Let the surface of the body have equation

P = Ps{z) (5.5.2)

for — { h  +  c l )  < z < 0. Now

Rn = (n.p)Rp + (n.k)RjB + (fi.^)R^ (5.5.3)

with (p, cf), z) cylindrical polar coordinates. 

Letting

771

(n.p),
(n.k), (5.5.4)

we then obtain

(5.5.5)

Now

r = pp +  zk (5.5.6)
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and thus

Hence

where

and

Now

k x r = p4>-

Ta =  pDc3 j  ̂ p[lPp<j> +  mPfa^dS,

Pp(f> —
dv v 
dp P.

p*,  = dz

I dS = pa d(f)dz,

where ps is the value of p on the body, and

m d S  — —pa d(f) dp a

-  -pa d(f) dz.
dz

Therefore

Ts = 27T/if2c3 / p 
J -(a+h)

dv v 
Idp p\

dv dp a \  
dz dz J p=pa

dz.

771 =  1

7 7 1 = 1

it follows (5.3.13) that

dv v d
dp p Pdp \ p

=
d < r  00

Sds l dt ^  y 2m+l
m=0

(5.5.7)

(5.5.8)

(5.5.9)

(5.5.10)

(5.5.11)

(5.5.12)

(5.5.13)

Using the solution for v(p,z) ,  or equivalently v — v(s,t ) ,  when A = 0 :

OO

V =  ^ 2 m + l  Q 2m-l-l(*^)~^2m-l-l ( 0

= - $ ( M ) £ i W  { * G L +i M * L +i(*) -  ,

(5.5.14)
m = 0
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where

(*2 - l ) ( l - * 2)
{s2 -  t2)

(5.5.15)

and

dv
dz

d ( v
dz \ p  

1
{s2 - t 2)

d d 1 00
y !  ^ 2 m + l  Q  2 m + l

m = 0

1 °°

{ ( • S 2 — l ) ^ ? 2 m + l ( 5 ) - ^ 2 m + l ( * )  +  U  ~  O ^ ^ m + l C - O ^ m + l W }

(5.5.16)

also

dPa
dz

(s0t + h)(a2 -  1)
{s2 -  1)V2(1 -  *2) l /2a2 

On the body, s =  so(t) and therefore

(5.5.17)

’dv v' dv 'dpa'
dp p. dz [ d z \

= E
OO n

-P2m+1 / 2 1W1 j2'
=o (4 -  <2)

[5oQ2m+l(5o)-^2m+l(^) ^ 2 m + l  (5o)-f2m+l (0]
V~̂  ^ 2m+l (fl2 ~ 1) ( , . ,s
S , ( 50 - * 2) “ 2 50

(50 — l ) ^ 2m+l('S°)-^2m+l( 0  + 5o(l — t )Q2m+l(5o)-P2m+l(^)]
oo Q 

_  ^  -°2m+l

(50 ~ l )^2m + l(5o)-f2m+l(0

OO T )
h2m+l

k ( 4 - * ) x

(1 — t2)Q2m+i{so)P2m+l(.t)

OO TJ 
_  y '  -02771 + 1

s0( l  -  t2) + +  h)t

(a2 -  1)
(sot 4- h)so — f(s2 — 1)
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=0 (50 ~ i2)

(1 — i2)<52m+l(So)-f2m+l(^)
OO

E

s0 +  h t  r-(s0< + ht)
a*

s0h + t -  \ ( s l t  +  s0h)
oo n

-D 2m + 1 { L I  ( so,  t)  +  L 2 ( sq, t ) } , (5.5.18)

in which

L l ( s o , t ) =  (s0 — l)Q 2m+l (5o)-f2m+l( 0  

L2(so, t) = (1 — t )Q2m+l('So)-f>2m+l(0

(5.5.19)

t ( 1 -  - f  ] +  f 1 -  “T ) h£0

(5.5.20)

Throughout the above so = so(t) .  Defining the non-dimensional torque coefficient

r,  by

r.  =  - ■

9 8-7TflCtc3 ’

it follows that for a prolate ellipsoid rs is given by

1 0 0  r °= 4 Z B*™+\ J~  n J “ 1
(s[jt + So) { L l ( s 0,t) +  L2(s0, t)} dt, (5.5.21)

where Ll(so , t ) ,  L2(so , t ) are as defined in (5.5.19) and (5.5.20) respectively, and 

s'0(t) is defined in Section 5.2.4-

5.6 Oblate ellipsoid

Consider now an oblate ellipsoid Ti with its minor axis parallel to the z  axis, as shown 

in Figure 5.2. The ellipsoid is partially submerged and slowly rotates with constant 

angular velocity Q in a semi-infinite incompressible fluid with dynamic viscosity fi . 

The axis of rotation is the 2 axis which is perpendicular to the horizontal surface ^  

of the substrate fluid. There is a film of an adsorbed monomolecular surfactant fluid 

possessing surface viscosity 77* on the surface T2- The depth of the ellipsoid centre 

C below the surfactant film is ho, where ho take values in the range —ao < ho < ao, 

with a0 the length of the minor semi-axis. Note that ho > 0 or ho < 0 according as
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Figure 5.2: The geometry of the oblate ellipsoid.

the ellipsoid is more or less than half submerged. The surfactant film is unbounded 

apart from its intersection with the ellipsoid.

5 .6 .1  E q u ation s govern in g  th e  m otio n

As before, all physical quantities will be referred to the oblate ellipsoidal coordinates 

(£j 4>i 7])i related to cylindrical polar coordinates {/?, <j>, z } by the formula

z + ip — c sinh(£ -f irj), (5.6.1)

or equivalently

2 =  c s i nh£cos 77,

p — c cosh £ sin 77. (5.6.2)

The surfaces £ =  constant are confocal oblate ellipsoids. The foci in any azimuthal 

section are such that p = c, z = 0 .

Letting coordinates {p, z]  be dimensionless relative to the focal half distance c, 

equations (5.6.2) can be written as

z = st (5.6.3)

p  = (52 + l ) 1/2( l - t 2)1/2, (5.6.4)



CHAPTER 5. PROLATE AND OBLATE ELLIPSOIDS 106

with s = sinh£ and t = cos 77. When h = ^  =  0, the centre of the ellipsoid Ti 

coincides with the origin 0  and s = constant =  sinh£o> say? the dimensionless 

minor and major semi-axes a and b are

a — — = sinh £o>
/»c

b = — = cosh£o =  (a2 +  l ) 1/2. (5.6.5)

The equation of the oblate ellipsoid Ti is

(s0t +  h)2 (sq + 1)(1 -  f2) .
a* +  (fl> +  1) =  1j (5-6'6)

with — l < t < 0 ,  s = sq (0  on the body, and —a < h < a. Thus (5.6.6) gives

asg 4- j3so + 7  =  0 (5.6.7)

where

a = (a2 -M2), (5.6.8)

(3 = 2ht(a2 +  1) (5.6.9)

and

j  = (a2 + l)h 2 -  (a2 +  t2)a2. (5.6.10)

The physically possible solution is

, = , o W = - g + y f f - i g ? . . (s 6 n )l a
Also

[(sg-a2)t + (a2 + l)/is0] rsfil'M
S°(t) = - [(«» + t2)so + («» + 1)«] (5'6'12)

using similar analysis to Section 5.2.4-

Similarly, in this problem, equations (2.3.2) and (2.3.3) possess a solution of the 

form

v = (0,0, v(s, t)) (5.6.13)

with

p — constant (5.6.14)

provided that

v2* - (^ + i ) ( i - t* r 0- (5'6'15)
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5 .6 .2  B o u n d a ry  con d itio n s

As for the prolate ellipsoid, in this problem there are two boundary conditions to 

be satisfied. One on the wetted surface Ti of the oblate ellipsoid and the other on 

of the surfactant film IV

To satisfy the non-slip boundary condition on the surface Ti requires tha t

v = (s2 + 1)1/ 2(1 -  t2f / 2 (5.6.16)

with — 1 < t < 0 .

To satisfy the surfactant boundary condition, in dimensionless form as in Section 

2.3.2, requires that on T2
dv  ̂d2v . .
Tz + X8 ?  = ° ’ (5-6 -17>

where A = Tf j\l, with fi denoting the coefficient of dynamic viscosity in the substrate

fluid which occupies the region z < 0, and rj* denoting the surface viscosity of the

surfactant.

5.7 Solution of the problem

The dimensionless general form of solution for v which exactly satisfies (5.6.15) is
1 /2

v — v(s, t) = Bo
1 1 +  t

l (s2 +  l ) 1/ 2] .1 - 1. j=i
(5.7.1)

as given in Chapter 2 with s > 0 and — 1 < t < 0. In general the Legendre functions 

Pj ( t )  do not form an orthogonal set over this range of values of t.

On the partially submerged oblate ellipsoid Ti, the parameter s = so(t) with 

— 1 < t < 0. For 5o(i) > 0 for all such t and the exclusion of points on the 

disk z =  0 , p < 1, on which 5 =  0 , from the flow region, it is necessary th a t 

| h | < a2/{a2 +  l ) 1/*.

The boundary residual 6\, associated with the boundary condition (5.6.16) is

e1 = v(s, t) -  (sg + 1)1/2(1 -  t2)1/2
1/ 2

= B e ......................................
1 1 + t

[w + l)1/2J .1 - 1.

+ £  B3q}(s0)Pj(t)  -  (52 + 1)1/ 2(1 -  i2)1/2.
j=l

(5.7.2)

(5.7.3)
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The boundary residual 62? associated with the surfactant boundary condition is

(5.7.4)
f d v  d2v

€2 = [ d i  + * d ? t=0

with derivatives on the right hand side expressed in terms of oblate ellipsoidal coor

dinates as in section 5.2.3. Using similar expressions to (5.2.34) and (5.2.35) together 

with (5.7.1), when t =  0, it can be shown that

‘2 =  -  +  +  1)i /2

(\  \  _ ° ° _

J f )  E  [Ci +  1) ^ ( 0) +  j ( j  +  l ) P / + 2( 0)]
7 — 1

\  00
^3 )  BJPj ( ° )  [jQj+1(5) -  U +

7 |B o + .4 2 Bo
[(52 +  l ) 3/2j \ S2J (52 + 1)l/2- 

Since P21m(0) — 0, it follows that the above equation reduces to

( 1 \  ^  p

- )  E  s 2 m « L W  [(2m )i>2lm+1(0)] +  + °1)1/2

+ (7 7 ) E 52m+l?2m+l(5).
V '  m = 0

(2m + 2)P21m+1(0) +  (2m + l)(2m  + 2)P21m+3(0)

/  A \  00 r+ 3  E •B2m+lP2m+l(0) (2m + 1)«L+2(S) ~ (2m + 2W2m+lW

(5.7.5)

m — 0
A

L ( i 2 +  i ) 3/ 2 J
+ i4 2B0

(5.7.6)s2J (,s2 +  I)2/2 '

The surfactant condition is satisfied if e2 =  0. For A = 0, this condition implies tha t 

P 2m = 0, where m = 0,1, 2 , , . . ,  in which case

v =  E  B2 m + l?L + lM ^ 2m+lW ' (5.7.7)
771 =  0

For other values of A, it is not possible to use equation (5.7.13) to express explicitly 

the odd suffixed coefficients in terms of the even suffixed coefficients or vice versa, 

as for the partially submerged sphere. We therefore in subsequent analysis consider 

only the case A = 0 .
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5.8 Determ ination of the coefficients B j when A =  0

The velocity field is
OO

V = Y l B 2m+lfm(so,t) (5.8.1)
m = 0

where

fm(s0,t) — 92m+l(5o)-f2m+l(0- (5.8.2)

There remains the boundary condition to be satisfied on the body, which requires

OO

]T  t) =  +  1)1/2(1 -  t2)1' 2 (5.8.3)
m = 0

for — 1 <  t  <  0. The unknown coefficients i?2m+i are to be determined so th a t the 

function I  given by

I  = J° [v -  (s20 + 1)1/2(1 -  t 2 ) 1/ 2}2^  (5.8.4)

is minimized. Clearly a necessary set of conditions for minimizing I  is

-  0 ; m = 0 , l , . .  (5.8.5)
0&2m+1

which leads to the infinite system of linear equations

OO

X  B 2 m + lS m ,n  =  T n  j 71 >  0, (5.8.6)
m=0

where

and

Sm,n — / i W l W W l W P 2m+l ( ^ +l ( ^  (5.8.7)

Tn = J j so + ^ 1/2qL +1( ^ ) ( T - - t 2)1/2P ^ +1(t)dtt (5.8.8)

with m  > 0 ,n  > 0. To solve the equations numerically a finite number of equations 

is used and it is assumed that J?2m+i —*0 as m —*• oo. Consider the equations

J m a x

^S 2 m + l5 m ,n  = r„ ; (0 < fl < Jmax) (5.8.9)
m—0

A measure of the accuracy of the numerical method, as in chapter 5, is the error 

factor E  defined

E =  s / l , (5.8.10)



CHAPTER 5. PROLATE AND OBLATE ELLIPSOIDS 1 1 0

with I  given by (5.8.4). Thus, using the representation (5.8.1) for v, this gives

=  /:, 5 2m+l/m(s0, t) ~  (s§ +  l ) l/2( l  -  t 2)1/2
.771=0

cx>

dt

t + J °  (s§ + 1)(1 — i2)df

r0 f oo
— 2 j  (5q +  l ) l t 2{l  — t2)1/ 2 ^ 2  B2m+lfm{s0,t)

J  - 1 L = 0
oo oo oo -0

=  ^ -S g m + l ^B 2n+ l«5 ,Tn,n — 2 ^ B 2 n+iT'n +  /  (-Sq +  1)(1 — t 2)dt,
m—0 n=0 n=0 ~^

(5.8.11)

where Sm,n and Tn are defined in (5.8.7) and (5.8.8) respectively. The value of Jmax 

is chosen to be large enough to ensure that -02tti+i is effectively zero for m > Jmax- 

Having solved the equations (5.8.9) for the coefficients i?2m+i, the value of E  provides 

a measure of how accurately the boundary condition on the partially submerged 

oblate ellipsoid is satisfied.

5.9 Expression for the torque acting on the oblate el

lipsoid

As before, there are two types of torque which act on the oblate ellipsoid, namely, 

the substrate torque and film torque. The film torque is zero when A =  0.

5.9.1 T he substrate torque

The substrate torque Ts arising from the action of the stresses in the substrate fluid. 

The torque acting on the oblate, when moments of the surface stresses are taken 

about the origin, is given by

dv v 
dp P.

dv dps \ 
dz dz ) p=pa Z

(5.9.1)/u
p]

- ( a+h )

following the analysis of Section 5.5. Using the general solution for v (s ,t),
OO

^ = Y , . B 2m+iqlm+l(S)P2m+l(t )
7 7 1 = 0

OO

— ~P y i  ^ 2 7 7 1 + 1  g277i4-l(3)-^2m+l(0 (5.9.2)
7 7 1 = 0
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gives

dv v 
dp p = Pdp \ p

= - * ( M )
g  g  n OO

5 ds * dt El - ® 2 m + l ^ r2 m + l ( 'So ) - f >2 T 7 i+ l(^ )
771— 0

~ ^ ( ’S? 0  E  -#2771+1 {592m+l(5)^2m +l(0 ~  ^2 ra+ l(s )^2m+l W }

(5.9.3)
7 7 1 = 0

where

Also

dz

$ (M ) =
(*2 + l ) ( l - * 2) 

(.s2 + i 2)
(5.9.4)

= P
d ( v

dz \ p  
1

(s2 +  t2) E  -#2m+l*Z2m+l (^)-#2m+l(0
m = 0

1 °°

~ W + ^ ) S o B2n,+1 X

{(s2 + l^gam +lC^J^m +l^) -  (! -  O s92m+lW^2m+lW } •

(5.9.5)

and

dz
(•Sô  + h)(a2 + 1)

(3g + l ) 1/ 2 ( l _ i2)l/2a2-

On the body, s = so(t) and therefore

(5.9.6)

dv v 
[dp p\

dv f  dps
dz  V dz P=Ps

OO R

=  E  + 1 ) ( 1  -  i2) [ ^ W ' ( * > ) * L +iW  -  t q ^ m + 1 ( s 0 ) p ^ + 1 ( t ) }
m=0 ' 5° >

#2m+l (a2 + 1) / f ■ m

£>(^+<2) °2 
( 5 0  "I" l ) ^ 2 m + l ( 5 o ) ^ 2 7 7 i + l  ( 0  +  5 o ( l  ~  ^ 2 ) 9 2 7 7 i + l ( 5 o ) - f 2 7 7 i + l ( ^ ) ]

-  E
B 2m+l

=0(*o + i2)
[ 4  + l )<l2m+l(So ) P2 m + l ( t ) s0( l  - t 2) +

(a2 + 1)
(s0t +  k)t
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OO D

+ E 7 ^ T ± k (1 - ‘2)92m+i(^o)PL+iW
m=0 ' 0 >

oo td

=  E  7 3 T ^ ( * o  +  l ) 9 L + i ( * o ) ^ m+l(i)
ra=ol30 +  t )

(“2 +  1)
(Sot +  h)-So — i(sg  “b 1)

5o 4~ ht H j(sq£^ "f ht)

OO n
tJ2m+l n  +2\J

+ t2) 1 

m+1 /  r  1 (

+ E 7 ^ T 7 k ( l - < 2)«L+i N ) P L +iW
1=0 ' o +  1 )
OO J3

=  E / i’T ^ ^ K O  +  ^ K O }

a‘

1
a2S 0 / l  -  t + - t ( ’So* + 5o^)

in which now

LI — (s2 +  l)92m+l(5o)^2m+l(^)

L2  — (1 —  ̂ )?2m+l('S°)-^2m+l(0

4o(1+̂ j + ( 1 + ̂ )W 
4 " X) + (: + h )  hs°

Defining the non-dimensional torque coefficient

T3
T .  =  — ■

8 7 r ^ D c 3 ’

it follows that r3 for a partially submerged oblate ellipsoid is

•» ( 4 +  1)(1

(5.9.7)

(5.9.8)

(5.9.9)

{s0t 4- 5q) {LI (so,t) +  L2(sq, i)} di, (5.9.10)
m=0 (50 + i2)

where Ll(so, t) ,  L2(so , t ) are defined in (5.9.8) and (5.9.9), and sfQ(t) is defined in

(5.6.12).

5.10 Numerical results

Table 5.1 and Table 5.2 show the results for r3 when A = 0 and h — 0 for the 

prolate and oblate ellipsoids. These are compared with calculations derived from 

the exact solution of Jeffery (1916) for a rotationally symmetric ellipsoid rotating 

about its axis of symmetry in infinite fluid. For this problem the velocity v is an 

even function of z and therefore the boundary condition d v /d z  = 0 on z =  0 is 

automatically satisfied. Thus the comparative value of the torque is one half the 

value of the torque acting on the ellipsoid if rotating in infinite fluid.

We note that k used in Jeffery’s analysis is related to a by the formulae: k = 

a/(a2 — l ) 1/2 for a prolate ellipsoid and k = a / (a 2 + l ) 1/2 for an oblate ellipsoid. We
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further note that in defining the approximate and exact values of r 3, the dimension

less torque coefficients, c has been used as the length scale.

In calculating r 3, using the approximate theory, the value of Jmax was taken 

to be 20, giving 21 equations to solve for the coefficients. It was found th a t only 

the first coefficient was non-zero, in accordance with the exact solution, and the 

value of the Error-factor E  was less than 1.11 X 10-9 for all values of a considered. 

When h = 0, the approximate theory effectively reproduces the exact solution to the 

problem since there is only one term  in either series expression for v. This is further 

confirmed by Tables 5.1 and 5.2 which indicate that the values of r s obtained by 

both the approximate theory and the exact solutions agree to four decimal places 

throughout the ranges of values of a considered. In fact, agreement to eight decimal 

places is achieved over these ranges of values of a.

For the prolate ellipsoid, the exact formula for the dimensionless torque r s is, 

using Jeffery’s result, given by

that r fl ~  a3/ 2. For a = 100 we find that the approximate value of r 3/ a 3 is 0.50002. 

As a —► 1, equation (5.10.1) gives r 5 —> 0.

For the oblate ellipsoid, the exact formula for the dimensionless torque r 5 is 

found, using Jeffery’s result, to be

As a —> 0, the ellipsoid becomes a circular disc of radius c and r 3 —► 2/37T, which

in infinite fluid about its axis of rotational symmetry. The approximate analysis 

cannot be used when a = 0 but for a = 0.00001, we find that r 3 = 0.21221 which 

agrees with 2/37T to five decimal places.

corresponds to an ellipsoid with ratio of major to minor semi-axes equal to 1.3416.

(5.10.1)

As a —> oo, the prolate ellipsoid becomes spherical and we find from (5.10.1)

(5.10.2)

Again we find that as a —> oo, the ellipsoid becomes a sphere and r 3 ~  a3/ 2.

is one half of the dimensionless torque acting on a circular disc of radius c rotating

Table 5.3 shows results for r 3 and the numerical data for the Error-factor E  for a 

prolate ellipsoid with varying values of h when A = 0 and a = 1.50. This choice of a
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The largest value of the Error-factor E  is 5#<f»«tx 10~6 which occurs when h =  1.45. 

We are therefore confident that all values of r a are correct to four decimal places.

Table 5.4 shows results for r 3 and the numerical data for the Error-factor E  for 

an oblate ellipsoid with varying values of h when A = 0 and a = 0.90. This choice 

of a corresponds to an ellipsoid with ratio of minor to major semi-axes equal to 

0.6670. The largest value of the Error-factor E  is 3 ‘£3X 10-7 which occurs when 

h =-0.60. Again we are confident that all values of r a are correct to four decimal 

places. For the choices of parameters considered for Tables 5.3 and 5.4, the value 

of Jmax did not exceed 20 to obtain the stated accuracy. In Table 5.5, we list the 

values of the coefficients I?2m+i, (m  — 0 ,1 ,..., 9* ) for the prolate ellipsoid with 

a =  1.50, h =  1.45.

The calculations for the prolate and oblate ellipsoids may be repeated for other 

choices of the parameters a and h for which the theory presented in this chapter 

is applicable. For those values of the parameters for which the theory cannot be 

applied, the choice of the length constant c, as the half focal distance of Ti, in the 

spheroidal coordinate systems is not appropriate. In such cases, by choosing, for 

instance, c = &o(ao ~ ^oY^2/ ^ ao for the oblate ellipsoid or c = \{ao +  -̂o) when 

ho < 0 for the prolate ellipsoid, the solutions of the problems may be found by 

following a procedure similar to that set out in this chapter. The velocity is again 

expressed by (5.3.14) or (5.7.7) and expressions for r a are similar. However, for such 

choices of c, the parameter s is then generally not a constant on Ti when ho =  0.
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a r3 Exact

2.00 2.8403 2.8403

1.90 2.3321 2.3321

1.80 1.8812 1.8812

1.70 1.4847 1.4847

1.60 1.1397 1.1397

1.50 0.8433 0.8433

1.40 0.5926 0.5926

1.30 0.3851 0.3851

1.20 0.2181 0.2181

1.10 0.0897 0.0897

Table 5.1: The approximate and exact values of r3 when A = 0 and h =  0 for the 

prolate ellipsoid.
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a Ta Exact

2.00 5.2372 5.2372

1.90 4.6085 4.6085

1.80 4.0370 4.0370

1.70 3.5197 3.5197

1.60 3.0536 3.0536

1.50 2.6358 2.6358

1.40 2.2633 2.2633

1.30 1.9332 1.9332

1.20 1.6426 1.6426

1.10 1.3884 1.3884

1.00 1.1680 1.1680

0.90 0.9783 0.9783

0.80 0.8165 0.8165

0.70 0.6799 0.6799

0.60 0.5657 0.5657

0.50 0.4714 0.4714

0.40 0.3943 0.3943

0.30 0.3320, 0.3320

0.20 0.2822 0.2822

0.10 0.2429 0.2429

0.00001 0.2122 0.2122

Table 5.2: The approximate and exact values of ra when A = 0 and h =  0 for the 

oblate ellipsoid.
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h r3 E

1.45 1.9994 5.64 xlO-6

1.40 1.9840 4.52 X h-* o 1

1.30 1.7972 3.57 xlO"8

1.20 1.7155 3.24 xlO-8

1.10 1.5857 3.13 xlO-8

1.00 1.5085 2.98 xlO-8

0.90 1.4774 2.93 x lO '8

0.80 1.4486 2.81 X o 1 00
0.70 1.4095 2.65 xlO"8

0.60 1.3638 2.43 x lO '8

0.50 1.3049 2.25 xlO-8

0.40 1.2317 2.10

oo1o
 

1—1X

0.30 1.1479 1.95 xlO-8

0.20 1.0525 1.74 xlO-8

0.10 0.9501 1.58 x l 0 ‘ 8

0.00 0.8433 1.11 xlO"9

-0.10 0.7345 1.64 x l 0 ~ 8

-0.20 0.6106 L81

OO1Oi—1X

-0.30 0.5253 2.25 x l 0 “8

-0.40 0.4271 3.77 xlO-8

Table 5.3: The computed values of r 9 for the prolate ellipsoid at A 

a = 1.50 and a/6 = 1.34.

= 0, when
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h t3 E

0.60 3.3143 1.81 xlO-7

0.50 2.8380 1.60 x lO '8

0.40 2.2932 1.53 xlO-8

0.30 1.8703 1.44 xlO-8

0.20 1.5207 1.38 xlO"8

0.10 1.2263 1.43 xlO"8

0.00 0.9783 1.11 xlO-9

-0.10 0.7709 1.81 x lO '8

-0.20 0.5993 1.85 xlO-8

-0.30 0.4616 1.97 xlO-8

-0.40 0.3566 2.33 xlO"8

-0.50 0.2854 2.56 xlO-8

-0.60 0.2777 3.53 xlO-7

Table 5.4: The computed values of r s for the oblate ellipsoid at A = 0 when a =  0.90 

and a/b = 0.67.

®2m+l

2.8031120109651 

-1.2994279729302 

-2.1588634933057 xlO"2 

8.8681696371099' x l 0 “5 

-4.6233949807681 xlO"7 

-1.4860945830394 xlO"7 

1.1343838320007 xlO"8 

-4.3401900630235 xlO"10 

8.8711061978190 XlO"12 

-7.6583246340209 XlO"14

Table 5.5: The computed values of 52m+i> = 0 ,1 ,..., ) for the prolate

ellipsoid with a = 1.50 and h = 1.45.
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NON-AXISYMMETRIC 

STOKES FLOW

6.1 Introduction

For non-axisymmetric Stokes flow, as pointed out in Chapter Two, one is forced to 

accept that the solution will in general involve the determination of three indepen

dent harmonic functions. These three functions are inter-related in a complicated 

way through the boundary conditions and asymptotic conditions, if the fluid is un

bounded externally. If there were only two quasi-harmonic functions to be found 

then there is the possibility of finding these functions sequentially. In this chapter 

it will be shown that it is possible to determine the solutions for some basic Stokes 

flows by seeking solutions involving two harmonic functions which can be deter

mined sequentially. The solutions of more complicated flow can then be obtained 

by superposition since the Stokes equations are linear. Although it may seem tha t 

the solutions then determined by superposition involve more than three independent 

quasi-harmonic functions, this cannot of course be true. In like manner, the solutions 

obtained by O’Neill (1993) to asymmetric Stokes flow problems appeared to involve 

four harmonic functions, but through the equation of continuity, the linear depen

dence of these solutions is established, and although it would be a m atter of some 

complexity to identify the three independent harmonic functions within O’Neill’s 

solutions, this must evidently be possible in principle.
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6.2 Streaming flow past an axisymmetric body

Consider an axisymmetric body whose axis of symmetry lies along the z-axis and 

has fore-aft symmetry about the plane z = 0, such as a sphere or ellipsoid.

If the body is at rest and the fluid streams past the body with velocity U i at 

infinity, then the fluid motion will not be axisymmetric but will be such th a t the 

dependence of the velocity components and pressure on the azimuthal angle 0 of a 

system of cylindrical polar coordinates (/?, p, z ) is as follows

qp = u cos (f),

q# = v sin p,

qz = w cos p,

p = p  cos p  (6.2.1)

where u , v ,w  and p depend only on the coordinates p and z.

A solution of equations (2.4.2) and (2.4.3) is given by

q = - x V F  + F i ,  (6.2.2)
dF

V -  — 2^-^—, (6.2.3)

provided that

r „  d2F  1 dF  d2F  n .
L lF  ~ d f + ~ P ^  + ~ M ~  1 ]

This solution is evidently of the correct form to give u ,v ,w ,  and p as in (6.2.1) and 

therefore
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If we now regard p and z  as dimensionless with respect to some length scale a associ

ated with the body and u ,v ,w  dimensionless with respect to U , and p  dimensionless 

with respect to pTJ/ a, the boundary conditions require that

u = v =  w = 0, (on the body) (6.2.9)

and the asymptotic condition as r —» oo requires that

14 — 1, v = —1, w = 0. (r —> oo) (6.2.10)

Let us assume tha t the equation of the body is given by the conformal mapping

z + ip = /(£  + irj) (6.2.11)

with / '(£  ^  0 in the flow region and £ =  constant = a defines a meridian curve

T of the body.

A solution of (6.2.5) to (6.2.8) satisfying (6.2.10) is clearly F  — 1. However to 

satisfy the boundary condition (6.2.9) require

dF dF
J? =  0’ = a 7  = 0 (f  =  a ) ' (6 '2 -12)

The last two equations are equivalent to

d F  dF
-  = -  = 0 = (6.2.13)

Now, on writing F = 1 +  Fi , the boundary and asymptotic conditions will be 

satisfied if

Fx = -1, (f = a),
d F

= 0, (f =  a ), (6.2.14)

Fi = o(l), (r -* oo). (6.2.15)

Conditions (6.2.14) and (6.2.15) impose three conditions on the axisymmetric 

harmonic function Fi(p,z)  which, in general, cannot be satisfied since Fi will be 

completely determined either by equations (6.2.14) or one of (6.2.14) together with 

(6.2.15). This is to be expected since, so far, we have only considered a representation 

of the solution of the Stokes equations involving one harmonic function.
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If we choose to solve for F\ so that the first of (6.2.14) and (6.2.15) are satisfied, 

then the solution F\ represents the fundamental axisymmetric harmonic function 

which has a constant value on £ = a and decays to zero at infinity. Physically it can 

be identified with the electrostatic potential field produced by a conducting body 

£ = a  which has potential equal to —1.

We next find another solution of the Stokes equations which when superposed 

with that derived from F  will satisfy all boundary conditions. We observe th a t 

the flow associated with the solution involving F  gives rise to a pressure. Thus,

in accord with equation (2.4.7) or Lamb’s general solution, we may expect tha t

the complementary solution to that involving F  will be isobaric, or having at most 

constant pressure. Consider

q = V ^ ^ -c o s 0 ^  (6.2.16)

This is a solution of the Stokes equations and the equation of continuity which gives 

rise to at most a constant pressure if

L ^ i H  = 0. (6.2.17)

From equation (6.2.16), the velocity components are

u = 4 :  > (6.2.18)

(6.2.19)

d p \ p  J 
H

V  =  ' 2  
, P2

1/5/7

* = p (6'2-2°)
To obtain u = v = w = 0 o n (  = a requires

r 5 H

H = ~d7' i i  = a)  (6-2 -21)

and the asymptotic condition of zero velocity as r  —► oo, if (6.2.18) to (6.2.20) were to 

be the complementary velocity field to (6.2.5) to (6.2.7) with F  already determined 

as described above, would require

H  = o { t 2 )  (r —► oo) (6.2.22)

However, as with the function F , the function H  is uniquely determined by both 

of equations (6.2.21), that is H  = 0, which is unacceptable, or by one of (6.2.21)
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taken with (6.2.22). Therefore we proceed as follows: (1) determine F{p,z)  and (2) 

sequentially determine H(p,z )  so as to achieve zero velocity on the body £ =  a. 

The velocity which is produced at infinity cannot then be prescribed. The velocity 

will be zero on £ =  a, when the solutions given by (6.2.5) to (6.2.7) and (6.2.18) to

(6 .2 .20) are combined to give

F = H = 0 (£ = a) (6.2.23)

(6.2.24)
d(  r d i

Furthermore, we note that L - \ ( p 2) = 0 and the solution H  = kp2, where k is a 

constant, gives rise to the velocity field

u — k, v = — k, w =  0, (6.2.25)

which is the uniform stream q =  k i. Thus by writing H  = k(p2 +  Hi), the problem 

is solved for a uniform stream (k + 1) i flowing past the body at rest if

- - - 2 (6.2.26)

k

Fi = -1 ,  Hi = - p 2 (£ =  a) 
dHi

(6.2.27)

where

L\F\ — 0

L - i H i  =  0 (6.2.28)

provided that H\  =  o(r2) as r —► oo. we note also that if Hi = p2H3,  then

=  p 2
d2 H 3 3 dH 3 d 2 H 3

dp2 p dp dz 2

— p2 L 3 H3 — 0,

provided that L 3 H 3 = 0. For such a solution # 3,

H = kp2(l  + H3),

and equations (6.2.26) and (6.2.27) reduce to

FX = HZ = -1 ,  (f  =  a) 
dF3 , dH 3 n , t  ,
~ d T ~ k ^ r  = ’ u = a )

and H$ = o(l) as r —> oo. Thus the boundary and asymptotic condition on and 

Hz are the same.

(6.2.29)

(6.2.30)

(6.2.31)

(6.2.32)
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6.3 Examples of solutions

6.3.1 Sphere

The appropriate solutions are

- r

H 3 = - I
T

(6.3.1)

and, to satisfy (6.2.32), require k = 1/3. Thus the velocity field derived from

F = 1-1,  H = P-
r 3

(6.3.2)

satisfies the boundary conditions on the sphere and is consistent with a uniform 

stream (4/3)i flowing at infinity. Thus the composite velocity field arising from 

(3 /4 )F  and (1 /4 )H,  with F  and H  defined by (6.3.2), gives a uniform stream  i at 

infinity.

The pressure in the fluid is accordingly

p = — 2/x-r— cos 0
dp
LJ

= —2p—  cos 4>

= — 2/X-3 . (6.3.3)

6.3.2 Stokeslet

Consider the Stokeslet ki located at the origin. Prom (2.4.25)

k
u =

Sirp, 
k

£  + !  r* r

87Tfi 
k

and

87T p,
(6.3.4)

(6.3.5)

The combination of flows of types (6.2.2) and (6.2.16) would accordingly be
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to produce the velocity and pressure given by (6.3.4) and (6.3.5). The solution given 

by (6 .3 .6 ) is particularly im portant because it shows that if H$ =  o(l) as r —*■ oo, 

then the force exerted on a general body £ =  a will be 67r // /i  when placed in a 

uniform stream i at infinity if the asymptotic structure of Fi as r  —*■ oo is

(1 +  * ) - > * - - ? / !  +  „ ( ! )  (6.3.7)

This follows immediately from (2.4.21) when it is remembered that the uniform 

stream, being a rigid body motion, exerts no net force on the body or a sphere E of 

arbitrary radius enclosing the body.

In the case of the sphere, whose solution is given above, /  =  1, giving 67rp. as 

the force acting on the sphere. The force may of course be obtained by integration 

but identification of the Stokeslet term in the far field asymptotic structure of the 

function F\ produces the answer far more rapidly. In fact, from equation (6.3.7), it 

can be seen that

t F\
- f  = -  lim4 r—too (6.3.8).(1 + *)J

which is a formula analogous to that derived by Payne and Pell (1960) for axisym- 

metric streaming past an axisymmetric body. Their formula is

7 / =  Um4  r —►oo

rip 1
(6.3.9)L(i + fc)J

where (1/ 2 )p2 — is the stream function for a uniform stream k at infinity, and 

since the stream function for the Stokeslet Qnpk at the origin is

X T ’ (6-3-10)4 r

equation (6.3.9) evidently identifies the strength of the Stokeslet term  in "01 as 

r —>■ 00 .

6 .3 .3  P r o la te  e llip so id

Prolate ellipsoidal coordinates are defined by the conformal transformation

z + ip =  c cosh(£ -(- 277) (6.3.11)
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or equivalently

z = cst,

P = c(s2 — 1 ) 1/ 2(1  — t 2 ) l / 2 (6.3.12)

where c is a constant and s = cosh £, t = cos rj with s > 1, \t\ < 1. The surface 

s = A corresponds to the ellipsoid

+c2A2 c2(A2 -  1) = 1, (6.3.13)

with the lengths of the semi-axes being c A and c \/A2 — 1 respectively, and since

A > \ /X2 — 1, the ellipsoid is clearly prolate.

The appropriate solutions for F\ and Hz in prolate ellipsoidal coordinates satis 

fying equation (6.2.31) are

Qo(s)
Fi = 

Hz =

and to satisfy (6.2.32), we find that

k =

As r —► oo then s —*■ oo and

L<?o( A) J
GoM

Q'M

IQ'oW 

Q 'M
L< ?o( A) J I Q i W i

(6.3.14)

(6.3.15)

(6.3.16)

Thus

Qn(s) = o(s~(n+1l)

H3 = o ( l )

(6.3.17)

(6.3.18)

as r —> oo. Accordingly, since Q o(s) ~  s 1 ~  r  1 as 7* —» oo, equation (6.3.8) gives

«?(A)I f  =  _____
4 7  [ G o ( A ) Q i ( A )  +  G o ( A ) Q l ' ( A ) ] (6.3.19)

However

Qo(A) = - i n ( A  +  1 )
L(A-1)J
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Q'oW

Q i W

Q'i W

Q'lW

L(a* - i ).
(A + 1)

-A In 
2

^ln

-  1,

(A + 1) ' A
L(A — 1 ) J L(A2 — 1)1

L(A2 - 1 ) 2J

and it follows that

f  =
16

2A + (3 -  A2) In
(A +  1) - l

(6.3.20)

(6.3.21)

The force acting on the ellipsoid is accordingly 6ttfiaiX*1 f i  , with a\ the m ajor 

semi-axis of the ellipsoid, which agrees with the result of Oberbeck (1890) when 

the general ellipsoid becomes a prolate ellipsoid of revolution. By letting A —► oo, 

the result can then be recovered for the sphere since the ratio of major and minor 

semi-axes tends to unity, in this case equation (6.3.21) gives

A’ 1 /  = | |  <| 2A + (3 -  A2)
2 2 / I
\  + 3 V + °{> S

-1

= 1 + o(A~2)

giving the correct result for the force in the limit A —► oo.

6.3.4 Oblate ellipsoid

Oblate ellipoidal coordinates are defined by

z +  ip =  c sinh(£ +  irj)

which gives

z — cst,

p = c(52 +  l ) 1/2( l - t 2)1/2,

(6.3.22)

(6.3.23)

(6.3.24)

where c is a constant, and s =  sinh f , t = cos77 with s > 0, |t| < 7r. The surface 

5 = A now corresponds to the ellipsoid
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with the lengths of the semi-axes being c A and c y / \ 2 — 1 respectively, and since 

A > y / \ 2 — 1, the ellipsoid is now oblate.

The appropriate solutions for Fi and Hz in oblate ellipsoidal coordinates satis

fying equation (6.2.31) are

'qo(s)
F i =  -

H 3 =  -

. 7 o ( A ) .
VoW
L « i ( A )

(6.3.26)

(6.3.27)

with £ n ( s )  = i(n+1}Qn (is) and the prime denoting differentiation with respect to 5 .  

To satisfy (6.2.32), we find that

However

k — '7 o W
-7o (A)

7lW

—2s 2 ~  —2r- 2

as r  —> oo, or 3 —> oo, and it follows that as r —► oo,

H 3 =  o ( l )

and, since qo(s) ~  s ' 1 ~  r~l as r —*■ oo, equation (6.3.8) gives

3  ,  t f ( A )
[?J(A)?;(A) +  9o(A)9('(A)]

However

?0(A)

7o(A)

7 i ( A )  

71(A) 

7i  (A)

tan - 1

L(a» +  i )

1 — A tan -1

— — tan ’

1'
A.

+ (A )

L(A2 + 1)J ’

L(A2 + l ) 2

so it follows from equation (6.3.31) that

/  = y  <j 3(1 + A2)tan 1
■}

(6.3.28)

(6.3.29)

(6.3.30)

(6.3.31)

(6.3.32)

(6.3.33)
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The force acting on the oblate ellipsoid is therefore 67r/iai(A2 + l ) -1/2/ i  , with a\ the 

major semi-axis of the ellipsoid, which agrees with the result of Oberbeck when the 

general ellipsoid is an oblate ellipsoid of revolution. By letting A —> oo, the result 

can again be recovered for the sphere since the ratio of major and minor semi-axes 

tends to unity. From equation (6.3.33),

(A2 + 1)-1/V  = “ {2A + (3_A»)g + ^  + 0(^ ) ]} -1

= 1 + o(A"2) (6.3.34)

Letting A —> 0 means the ellipsoid becomes a circular disk of radius a. \ . The limiting 

result for the force is now (32/xai/3) along i, which is the well known result.

For the case of a body translating with velocity — i in fluid at rest at infinity, 

the solution can be found simply by subtracting the solutions for a uniform stream  

i and ki from the F  and H  functions found above. Thus for this problem, we have

F  =  Flt 

H --- k p 2 H3 (6.3.35)
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Asymmetric Translation of an 

Axisymmetric Body

7.1 Introduction

In Chapter 6 we investigated how the solution of the problem of the non-axisymmetic 

Stokes flow about an axisymmetric body, although involving three independent quasi

harmonic functions, could be solved by the superposition of solutions determined 

sequentially and each involving only two quasi-harmonic functions. There is of course 

one axisymmetric body, namely the ellipsoid of revolution, for which it is known tha t 

if the body translates perpendicular to its axis of symmetry then the velocity and 

pressure fields are expressible in terms of just two quasi-harmonic functions. This 

follows from the work of Oberbeck (1890) who solved the problem of the translation 

of a general ellipsoid. This remarkable solution uses specific geometrical properties 

of the general ellipsoid, which has prevented a generic type of solution to be found 

for a general body shape by adaptation and generalization of Oberbeck’s analysis.

However, the fact that Oberbeck’s solution will give, as special cases, the solution 

for such specific axisymmetric body shapes as the sphere, spheroid and disk in terms 

of two quasi-harmonic functions leads one to conjecture whether the problem of the 

translation of a general body of revolution along an axis perpendicular to its axis of 

symmetry is soluble in terms of just two quasi-harmonic functions. In this Chapter 

we consider this conjecture for the class of axisymmetric bodies possessing fore-aft

130
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symmetry about a plane perpendicular to the axis of symmetry. Such bodies include 

the sphere, spheroid, disk and symmetric lens.

7.2 Non-axisym m etric Stokes Flow

The equations governing the flow are

Vp = /iV2q, (7.2.1)

where q denotes the fluid velocity, p is the fluid pressure and p  is the coefficient of

dynamic viscosity of the fluid; and the equation of continuity is

V.q =  0. (7.2.2)

These equations are satisfied identically if

q = —x V F  +  V cos 0^ + Fi, (7.2.3)

where L \F  = 0, L - i H  = 0 and the pressure is given by

« 9Fp = —2p—----b constant
ox
dF

— —2p—— cos (f> +  constant. (7.2.4)
dp

If we consider q to be of the form

q = u cos (f> p +  v sin </> 0 + w cos 0 k, (7.2.5)

with u ,v  and w independent of 0, the solution (7.2.3) is evidently of the correct 

form to give u ,v ,w ,  and therefore the components of (7.2.3) are
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w —

P‘

~P

_ l d _  
p dz

p2 F ~ H  - 2 F, 

dF  l d H
dz ^  p dz

p2F - H

(7.2.7)

(7.2.8)

Since

LyF  = L ^ H  = 0, (7.2.9)

it follows that

If we write

L \  p2 F - H = 0. (7.2.10)

$  = p2F  -  JT, (7.2.11)

and

(7.2.12)

then u , v ,w  and p are expressible as

1 d §  $
u = ---- -T- +  “ a +  ^

P  op P *

-  -£(!)**
* /V = ~2 -  V,

P

d_ / $
V/?

W  =  —  —  —

and

p = —p-7— cos q) +  constant.
dp

(7.2.13)

(7.2.14)

(7.2.15)

(7.2.16)

Thus all three velocity components can be expressed in terms of two scalar functions 

$ and if) which satisfy

L 2_1^  = Liip =  0. (7.2.17)
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7.2.1 B o d y  translating w ith velocity  i

The boundary conditions are

u = 1,

v = - 1,

w = 0 (7.2.18)

on the body and u , v, w —> 0 as r —► oo. Thus on the body

d
s p \ Pj  = * ~ x' ( 7 '2 -1 9 )

| ( £ )  = 0, (7.2.20)

4  =  i > - l .  (7.2.21)
P

If the cyhndrical polar coordinates are expressible as

z + ip -  /(£  +  117) (7.2.22)

with £ = a defining the body, equations (7.2.19), (7.2.20) and (7.2.21) are equivalent 

to

m  -  ? ! ■

*(?) ■ 7 %

72 = i p - I .  (£ = a) (7.2.23)
P*

We therefore note that the boundary value problem for $  is uncoupled from tha t 

for ip. Thus if the solution for $  can be found, then ip can be determined by solving 

L\ip — 0 with the third of the conditions given in equation (7.2.23) the boundary 

condition on £ = a , since the value of $  on the boundary would be known.

The force is determined very simply from the coefficient of the Stokeslet term  in 

the velocity field at infinity. For a Stokeslet applying a force 87r/xi/i to the fluid, the 

velocity field is given by

u = v p- + l-  ^  1
7"* V
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v — —1/

W  =  V (7.2.24)

This velocity is produced when

F  — v 

H  = 0. (7.2.25)

Therefore

4> = v

ip = 2v

p =  2^/i, cos (f). (7.2.26)

Note tha t the $ function for the Stokeslet 87T/ii/i is the same as the stream function 

for an axisymmetric Stokeslet 8Trpuk . Thus as r  —> oo, we expect the leading terms 

in $  and ip to be such that

2u

r_
T

1
r

(7.2.27)

This method of determining the force is a generalisation of the celebrated method 

of Payne and Pell (1960) for determining the force on a body in an axisymmetric 

stream.

7.2.2 Solution for $

We have to solve

L i^  =  0 (7.2.28)

with the boundary conditions
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d / § \  $  dp <9 /  $  ,
^  T “ 3 ^  =  ^  h ?  = °- (7-2-30)

The second equation gives 

—  (d r j \ p j  p2 dr] r dr] \p  

Therefore

$  =  Cp2 (f =  a) (7.2.31)

where C is a constant.

The boundary conditions on $  are therefore

$ = Cp2, (( = a) 
d$  dp
~di =  2CpW  = a) (7-2 '32)

with the asymptotic condition

P2 . ( r -*  oo) (7.2.33)

The solution to this boundary value problem is simply the stream function for ax

isymmetric translation of the body with velocity 2 C k and consequently C is ex

pressible in terms of v.

7 .2 .3  S o lu tio n  fo r ip

We now have to solve

L-Lip =  0 (7.2.34)

such that

$Ip = 1 + - J
P2

ip ~  2u

1 + C ,  (£ =  a) 
1

(r oo) (7.2.35)

This solution will give rise to a second relation between C and v which, together 

with the relation obtained from the solution of (7.2.32), will yield the value of v and 

hence the drag on the body.

The solution of (7.2.32) and (7.2.35) provides the exact solution of the asym m et

ric translation problem for an axisymmetric body.
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7.3 Examples of asymmetric translation

7.3.1 P ro la te  ellipsoid

We need to solve

so that

L 2_ ^  =  0

$
?  = C, (- =  A) 

m  - »■ < • -» >

and

. (r —> oo)$  ~  u

Here prolate ellipsoidal coordinates

p = (s2 - l ) ' l \ l  - t2)1/2,
z — St,

are used, where 1 < s and — 1 < t < 1. A suitable solution is

$ = <v [Ag0W + B«;(j)]

(7.3.1)

(7.3.2)

(7.3.3)

(7.3.4)

(7.3.5)

where Qo and Q[ are defined in the Chapter 6. The boundary conditions are satisfied 

if

AQ0( \)  + BQ'1( \ ) = l ,  

AQ(,(A) +  BQ'{( A) =  0,

and noting that r —► oo corresponds to s —► oo and

Q o M  ~  5 _ 1  ~  r _ 1 ,

Qi(-s) ~  5~2 ~  r~2, 

the far field asymptotic condition requires

(7.3.6)

(7.3.7)

v = C A (7 .3 .8 )
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The solution for A  accordingly is

A = Q"W

The ip function must satisfy

and the conditions

Li'fp = 0

tf =  l +  C, (s = A)

and

. (r —> oo)

The appropriate solution is

il> =  (1 + C)Qq(3 ) /Q oW .

The asymptotic condition gives

2Qo(A)i/ — 1 + C.

Thus

However

v — 2Co(A) -  i ]

« ? ( A )
[ « o ( A ) « i ( A )  +  Q o(A )Q "(A )]

Q o ( A )

Q'oW

Q iW

Q iW

Q iW

i l o g
(A + 1)

L ( A -  1 ) J  
1

L(A2 -  1) J 5 
(A + 1)jAlog

^Alog

L ( A - 1 ) J
(A + 1)

- 1,

L ( A - i ) J L( A2 -  1 ) J

=  2
. (A2 - l ) 2.
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(7.3.9)

(7.3.10)

(7.3.11)

(7.3.12)

(7.3.13)

(7.3.14)

(7.3.15)

(7.3.16)

(7.3.17)

(7.3.18)

(7.3.19)
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and it follows that 

v = 2
1 [ 1 (

1

1 zl
[(A2 -  l ) 2j 1 L(A2 -  1 ) J VL(A2 -  1)J l(A2 — 1) J

- l

(7.3.20)

with L =  ln[(A + l)/(A  — 1)]. This expression simplifies to

" = 4{ -(3- ^ [ ^ i r
which agrees with Oberbeck for the case of a prolate ellipsoid translating perpen

dicular to its major axis.

7.3.2 Oblate ellipsoid

For an oblate ellipsoid, we need to solve

so that

L 2_ ^  = 0

$
7  = c , (, = A)

and

(r —► oo)$ ~  v

Here oblate ellipsoidal coordinates are used

p = (s2 + 1)1/2(1 -  t2)1/2, 

z = st,

where 1 < 5 and — 1 < t < 1. A suitable solution is

$  =  CV2 +

where qn{s) - i^n+1^Qn{ is). The boundary conditions are satisfied if

Aq0(X) + Bq [ ( X ) = l ,

Aq'0( A) +  Bq![( A) =  0,

(7.3.21)

(7.3.22)

(7.3.23)

(7.3.24)

(7.3.25)

(7.3.26)



CHAPTER 7. ASYM M ETRIC  TRANSLATION

and noting that r —> oo corresponds to s —> oo and

50 (5 )  ~  s _1 ~  r - 1 , 

qi(s) ~  s 2 ~  r -2 ,

the far field asymptotic condition requires that

i/ =  C A.

Again, the solution for A  accordingly is

«f(A)

The ”0 function, must satisfy

L ^  =  0

and the conditions

— 1 4- C, (s — A)

together with the asymptotic condition

ip ~  2v . (t —► 0 0 )

The appropriate solution is

if> = (1 +  C)q0{s)/q0(X).

The asymptotic condition therefore requires that

2<7o (A) v — 1 + C.

Thus

v —
-1 - 1

29o(A) -  -

tf(A)
te(A)9i(A) +  9o(AM'(A)]

(7.3.27)

(7.3.28)

(7.3.29)

(7.3.30)

(7.3.31)

(7.3.32)

(7.3.33)

(7.3.34)

(7.3.35)
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However,

®>(A)

io W

? i (A)

?UA)

9i ( a )

= tan - l t
A

L(a» + i)J
1 — A tan -1

= — tan

=  2

- l

1
A

+ L(A2 +  1)J
1

L( A2 +  i ) 2 J
so it follows from equation (7.3.36) that

(7.3.36)

(7.3.37)

(7.3.38)

(7.3.39)

(7.3.40)

v = 2

+ 2

1 f 1 ■
L(A2 +  1)2J I [(A2 +  1 ) J

1 ! 1
[(A2 +  1)2J 1[(A2 +  1)J

tan - l ’ I ' ■ A '
.A. i(A2 +  l ) J

- l

= 2 < (3 +  A2) tan 1

tan

- l

- l
- l

-  A (7.3.41)

which again agrees with Oberbeck’s formula for the drag when an oblate ellipsoid 

translates along a major axis.

7.3 .3  Spherical lens

We assume that the lens has symmetry about the plane z — 0 and translates without 

rotation with velocity i in fluid at rest at infinity. The geometry is depicted in figure 

7.1.

We now make use of toroidal coordinates (£, (j), rj), which are related to cylindrical 

polar coordinates (p, (f>, z), by

c sin rj

and

where

z =

P =

cosh £ — cos rj

c sinh £ 
cosh £ — cos 77’

(7.3.42)

(7.3.43)

0 < £ <  00,

-7 T < VI

0 < < 2 7T (7.3.44)
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Figure 7.1: Spherical lens.

Tjo =  ^7r lens becomes a sphere of radius a

7]o = 7r lens becomes a disk of radius c

0 < t)o < r lens is larger than a sphere of radius c

^ 7 r  <  r j o  <  tv  lens is smaller than a sphere of radius c

Table 7.1: Particular lens configurations.

The surface 77 =  770 with 0 < 770 < 7r is a spherical cap which intersects the plane 

z =  0 in the circle p =  c and lies above the plane z — 0. The surface 77 =  — 770 is the 

reflection of the cap 77 =  770 in the plane z = 0. We note that c = a sin 770, with a 

the radius of the sphere of which the cap is part.

We further note that p2 + z2 > >  1 or r > >  1 corresponds to £ = 77 =  0, and 

p —» c+ as £ —► + 00. Particular lens configurations are set out in Table 7.1.

The solution to the problem

With

$  =  p2F - H , 

i> =  2 F, (7.3.45)
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then

u =
d

( -

u =

dp
$

\P

w =

P2
d

( -dz \p .

+

and

(7.3.46)

(7.3.47)

Q'lj)
p = —u-z— cos 6  -f constant, (7.3.48)

op

where

q — u cos cf) p + v sin (f><j> + w cos (f> k, (7.3.49)

and the functions $ and satisfy the equations

Z l i S  = L ii;  = 0. (7.3.50)

B o u n d a ry  conditions

The non-slip conditions on the lens requires

u = 1,

v = - 1,

w = 0 (7.3.51)

on 77 =  ± 770. Therefore

9 , = i\)
dP {b)
9 ;

=  0 ,dz (b)
$
p2

= tJj . ( v = ± V o )  (7.3.52)

Combining the first and third equations gives

'£ (?)= (J) = °- {v = ±Vo)  (T -3 '5 3 )

The boundary value problem for 4> is uncoupled from that for Vb so the functions $  

and V7 can be determined sequentially.
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The asymptotic conditions on $  and 'ip are such that u ,v ,w  —► 0 as r  —> oo, thus 

<£ -  o (r2), 'ip = o(l) as r —> oo.

Equations (7.3.53) are equivalent to

|(J) = ̂ (J) = 0- (7-3-54)
Determ ination of

The velocity components u and v are symmetric about the plane z — 0 and the com

ponent w is anti-symmetric. Thus $  and ip are even functions of z  and consequently 

77. The first of equations (7.3.54) shows that $  = Cp2 on the boundaries 77 =  ± 770. 

The appropriate solution of L 2_x§  = 0 which is even in 77 is

*  _  c  2 ( cosl1 £ ~  cos v) 112
^ (cosh £ + cos 77)1/ 2 

+ Cp2(cosh £ — cos 77)1/ 2 /  [-A(s) cos 77cosh 577]if'(cosh £)ds,

+ Cp2(cosh £ — cos 77)1/ 2 [  [#(s) sin 77sinh 577] if'(cosh £)d.s, ([77I < 770),
Jo

(7.3.55)

where K s = P _ i+is is the Mehler conal function. Since

z sin 77
c cosh £ — cos 77 ’ 
p sinh £

it follows that

c cosh £ — cos 77 ’

(p2 +  z2) sinh2 £ + sin2 77
(cosh £ - cos to

cosh2 £ - COS to C3

(cosh £ - COS 7j)2
cosh £ + COS 1

(cosh £ — cos 77)
(7.3.56)

Therefore
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As £, 77 —► 0

2£
£2 + ?72 ’

2*7
P + T /2’

2

K 2 +  f/2)1/ 2>

hence

$  ~  C p1
/* f* r 00-+V2- /
r r J 0

with A's(l) =  — |(4 s  + 1 ). Therefore

$  ~  C— a sin rjo 
r

1 -

1 r°°
v f / „  ( ^ 2 +  i m w ^

Thus

$  =  o ( r 2 ) ,  ( r  —> 00)

(7.3.58)

(7.3.59)

(7.3.60)

(7.3.61)

with the representation given by equations (7.3.56). The boundary conditions re

quire

$

d_ /$_  
dr] VP2

C, (77 =  ± 770) 

0 , (77 =  ± 770).

(7.3.62)

(7.3.63)

Equation (7.3.62) gives 

1
(cosh £ — cos 770)1/ 2 (cosh £ + cos 770)1/ 2

poo
= / [A(s)cos 770 cosh 5770 + B(s)  sin 77osinh 5770] K's{ cosh £)ds, ((77) < 770).

Jo
(7.3.64)

Now, using formulae given by Schneider et al. (1973),

(cosh £ + cos 77) 1/2 = y/2
cosh 577
COsh 57T

i f 5(cosh £) ds, (I77I < 7r),

(7.3.65)

and

— ̂  (cosh £ + cos 77) 3^2 = \/2
cosh 577'
COsh 57T

if'(cosh £) d s ,  ( | 7 7 | < 7 r ) .

(7.3.66)
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Hence, multiplying equation (7 .3 .66) by sin 77 and integrating with respect to  77 from  

772 to 771, we obtain

(cosh £ +  cos 771 )-1 / 2 — (cosh £ +  cos 772)-1 / 2

= V2
'cosh 577' '^ (c o s h £ ) '
.cosh 57T L (*2 +  i )  J

/1 («, 771,2) ds

(I771I <  tt) and (|t72| <  nr) (7.3.67)

with

A («S, 771,2) = cos 77! cosh 577!

— 5 sin 771 sinh S771

— cos 772 cosh 5772 

+ s sin 772 sinh 5772

Setting 771 = 7r -  770 and rj2 = 770, we get

(cosh £ — cos 77o)_1/2 — (cosh £ +  cos 770)-1 / 2

(7.3.68)

=  V 2
J o

c o s h  STJ

COSh 57T

-ftr;(cosh?)
(*> + 1)

{ — cos 770 cosh s(7T — 770) — 5 sin 770 sinh s( ir  —  770)} 

{ — cos 770 cosh srjo +  s sin 770 sinh 5770} ds

= 2V2
cosh | 57T K 'a (cosh £)'
cosh 57T L (*2 +  i )  J

A ( 5 , T 7 o )  d 5 (7.3.69)

where

A(5,77o) =  ^5 sin 770 sinh 5 Q tt -  770̂  -  cos 770 cosh 5 Q tt -  770̂  j

(7.3.70)

Equation (7 .3 .63) gives, using equation ( 7 .3 .62),

•°° d 
J o  drjo
(cosh£ -  cos 770)1/ 2

/•oo Q
/ - — {A  cos 770 cosh 5770 +  B  sin 770 sinh 5770} K'3 (cosh £) ds

Jo drtQ

+  -
1 sin 770 1
2 ,(cosh£ — cos 770)1 / 2. ,(cosh£ — cos 770)1 / 2.

+ (cosh£ -  cos 77o)1/2

=  0 ,

s m  770

.2 (cosh£ + cos 770)3/2

(7.3.71)
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giving

rJ o drjo
{A  cos 770 cosh 5770 +  B  sin 770 sinh 5770} K'a (cosh £) ds

sm 770 +. (cosh £ — cos 770)3/ 2 (cosh £ + cos 770)3/ 2.

It follows on using equation (7.3.66) that 

df°° 0
/ - — {A  cos 770 cosh 5770 +  B  sin 770 sinh 5770} K's (cosh £) ds

Jo OT)o
p  C

= \/2 sm  770
J o
roc

= 2 \/2  sin 770
J o

(cosh 5770 +  cosh (7T — 770))
cosh S7T 

cosh |s 7 T  cosh s ( |7 T  — T)q )

cosh 57T

if'(cosh  £) ds 

iif'(cosh £) ds.

Equations (7.3.64) and (7.3.73) give

{A  cos 770 cosh 5770 +  B  sin 770 sinh 5770}

= 2V2
cosh | s 7T

(s2 +  1) cosh 57T 

5 sin 770 sinh s ( ^ 7T — 770 J — cos 770 cosh s — 770

and

(7.3.72)

(7.3.73)

(7.3.74)

A [—sin 770 cosh 5770+.5 cos 770 sinh 5770] 

+ B  [cos 770 sinh srjo + s sin 770 cosh 770]

=  2 y / 2
cosh |s7T
cosh 57T

sin 7)0 cosh s ^ - 7r — 770

The solutions of equation (7.3.74) and equation (7.3.75) are

A [sinh 5770 cosh srjo -f s sin 770 cos 770]

=  - 2 V 2
cosh | s 7T 

(s2 +  1) cosh S7T
/ 3 ( - S ,  7 7 o )

(7.3.75)

(7.3.76)
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with

/3(s,77o) = sinh stj0 cosh s Q x  -  rj0 ĵ

T. 1+ 5 Sin 7)0 COS 7)0 cosh -S7T 

+ s2 sin2 7)o sinh -57T, (7.3.77)

and

where

B [sinh st)o cosh stjq +  s sin t)q cos 770]

=  2V 2
cosh |s7T

(s2 + 1) cosh S7T
74(5, 770),

74(5 , 770) =  sinh 2770 cosh stjq cosh s — 770̂

+ s sin 7)0 sinh ( - s x

— s sinh S170 cosh s y - r  — 7)0

— s2 sin 7)q cos 7)0 cosh s ^ 7 r  — 770̂

Determination of the function ip

We seek a solution of

(7.3.78)

(7.3.79)

L\tp = 0 (7.3.80)

which satisfies the boundary conditions

ip — 1 + C, (7.3.81)

with 77 =  ±770 and the asymptotic condition Tp =  0(1) as r —> 00 . Since Tp must be 

even in 77, the appropriate solution is

ip = (cosh £ — cosh T7)1/2( 1 -f C) [  E(s) cosh 577 i f a(cosh £) ds,
Jo

(M < ^0)

(7.3.82)
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where K s = P - 1/ 2+13 is the Mehler conal function. As £,77 —» 0 this solution is such 

that

 ̂ ~ ^f^2 + 77̂ 1/2/  E(s) ds
~  ( ^ ) c / o E (s)ds, (7.3.83)

and the asymptotic condition at infinity is satisfied. The condition on 77 =  ±770

requires

(cosh £ -  cosh 77o)-1 ^2 =  /  E(s) cosh srjo isT3(cosh £) d s ,
J o

(M  < Vo) (7.3.84)

with

(cosh f  -  cosh Vo) ~ 1 / 2  = V5
J o COsh 57T

iif3(cosh £) ds.

(hoi < ?r)

Equation (7.3.79) is satisfied if

E(i) = COsh s(7T — 770)

(7.3.85)

(7.3.86)
COsh 57T

The functions $  and are thus determined apart from the constant C. As r  —>■ 00 , 

the velocity field and pressure must be that of a Stokeslet of strength ui located at 

the origin with — S^fiui the drag acting on the lens. Thus

u ~  v
r 3 r

n nv ~  —u

w  ~  V

(7.3.87)

Therefore
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Thus

Tp ~  2v

These asymptotic conditions yield the following equations

v — Casin tjq 1 -

i ^ r i 4 s 2 + m s ) d s .

= (1 + C)a sin tj0
Jo

cosh s(tt — 770) 
cosh ST

ds.

Thus

v — Ca sin 770 [1 + J] 

=  (1 +  C)a sin 770I,

where

and

with

=  /J o
COSh s(7T — 7/o)

cosh st  cosh srjo
ds

= yJ o

4s2 + 1 cosh |ST 1

+CN<0» cosh 3X .sinh 23770 +  ssin 2770.
F(s,r)0)ds,

F(s, 770) =  sinh 5770 cosh 5 Q x  -  770̂

+ s sin 770 cos 770 cosh ^ s t 'J 

+  s2 sin2 770 sinh •

Therefore

g i v i n g

C =
I

u = a sm 770

(1 +  J - I )

1(1 + J)
(1 +  J - I )

and

H
where — 6Tfia.fi is the drag on the body.

(7.3.89)

(7.3.90)

(7.3.91)

(7.3.92)

(7.3.93)

(7.3.94)

(7.3.95)

(7.3.96)

(7.3.97)
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7.4 Special cases 

7 .4 .1  S p h e re  r)0 = |7r

F(s, rjo) = (1 +  s2) sinh - s ' K .

Therefore

= fJo
sech sirds

1
2 ’

and

poo
J = /  (4s2 + 1)

Jo
cosh \ sk sinh |s7r
cosh S'K sinh sr]o

ds,

1 f°°
-  / (452 +  l)sech S7r ds.
2 Jo

Using result from Appendix I to give

J =  2
1
2

Therefore C = u = | a  and /  = 1.

7 .4 .2  D isk  rj0 = ir :

Since

c = a sin 770,

(7.4.1)

(7.4.2)

(7.4.3)

(7.4.4)

(7.4.5)

then c is the radius of the disk if a —> 00 , 770 —̂► tt such that a sin 770 remains finite

I == fJo
sech2 S'K ds

= -  =  0.3183.
7T

(7.4.6)
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and

J = L
1
4 Jo

= - f
4 Jo

po o

Jo

4 7o

’4s2 + 1 cosh |s7T ’ sinh s k  ‘

s2 + 1 cosh SK .sinh 2s7r.
cosh - stt ds, 

2 5

4s2 + 1
S2 +  1

4s2 + 1

(cosh S7T + l)
d s ,

s 2 +  1

sech 57r + sech2 sir 

sech2 s t t

cosh2 SK 

sech s'K + sech2 S7rj d s ,

d s

sech s'K "

( i  +  *2)
d s

4 Jo L ( i -m 2)J
d s ,

Now / 0°° sech s ir d s  = 1/2, / 0°° sech2 s r d s  = 1/7T, and the other integrals 

evaluated by the residue theorem (as shown in Appendix I) to give

■°° f sech s k

(7.4.7) 

may be

Ii == / 'Jo

2 -  -  

2

=  fJo

( i  +  *»)j 

0
sech2 s k

d s

(1 + s2) 
4
K

ds

(7.4.8)

Hence

J =
1 1 3 7k 4
2 k  4 \2  k

i - i
K

4 V 2

= 0.2732 (7.4.9)

Therefore C = v — |^ . Hence the force acting on the disk is along i,

which is the well known result.

7 .4 .3  T w o  e q u a l to u c h in g  s p h e re s  7]0 -h► 0

Now we must evaluate lim Vô ,o(sin 770I) and /im T70_>o(sin 770J) •

p o o
sin 770 I = sin 770 / [1 — tanh s k  tanh 5770] ds

J o
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sin 770 

V o fJo
{ x ir \

1 — tanh —  tanh x 
\  Vo J

dx

with x =  7]qS.

(xir \
—  ) —*■ 1 as 770 —> 0 (x /  0 ) 
V o  J

(7.4.10)

(7.4.11)

Therefore sin rjol —> Io implies
roo

Io = / [1 — tanh x] dx
Jo

J =
sm 7]p 

V o

= In 2 .

(4 + V2o /* 2)

(7.4.12)

(1 +  v l l* 2) 
1

cosh | ( z 7r / 77o)

.sinh 2x77o +  (xsin 2r)o)/r]o_

cosh (x7r / 770) 

F(s, 770)^5 , (7.4.13)

with

F (s ,77o) = sinh x [cosh (7rx/2r]o) cosh x — sinh(7rx/277o) sinh x]

+ x ^ ) cosr,° c o s h ( S )V o
2 ( sin 2 770 

Vo .
sinh

7TX

2770

It follows that

Therefore

sin 770 J —> Jo = / 'Jo

— 2x

sinh 2x +  2x 

Io

dx

and

(Jo -  Io) ’ 

IqJo

(7.4.14)

(7.4.15)

(7.4.16)

(7.4.17)
a (Jo — Io)

Numerical evaluation of the integrals yields Iq =  In 2 =  0.6931 and Jo = 1.9354. 

These values give | /  =  0.7199 which compares with the calculation of | /  =  0.7243 

given by M. E. O’Neill (1969) for the drag on each of two equal touching spheres, 

solving the problem directly using tangent sphere coordinates. The relative error of 

the two calculations for /  is 0 .6%.
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k I J /

0 1.4399

1 2.2191 5.6122 1.3762

2 1.1288 2.4803 1.3093

3 0.7730 1.3227 1.2497

4 0.6002 0.7827 1.1473

5 0.5000 0.5000 1.0000

6 0.4357 0.3539 0.8148

7 0.3917 0.2881 0.6071

8 0.3600 0.2676 0.3940

9 0.3364 0.2677 0.1887

10 0.3183 0.2732 0.0000

Table 7.2: The computed values of I, J and /  for tjq = k7r / 10, where k = 0 , 1 , 1 0  .

7

6

6

4

3

2

1

0

kir /1 0

Figure 7.2: The graphs of I, J and f.



Bibliography

W. H. H. BANKS (1964), The boundary layer on a rotating sphere. Quart. Jl. 

Mech. and Applied Math. Vol. X V III  p t .  4, 443-454.

J. BOUSSINESQ (1913), Ann. Chim. Phys. (8 ) 29, 349.

H. BRENNER (1963), The Stokes resistance of an arbitrary particle. Chem. 

engng. Sci. 18, 1-26.

A. CHAKRABARTI, D. K. GOODEN and R. SHAIL (1982), The harmonic 

torsional oscillations of a thin disk submerged in a fluid with a surfactant layer. 

J. Colloid Int. Sci. 88  N o. 2 , 407-419.

S. CHANDRASEKHAR (1961), Hydrodynamic and hydromagnetic stability 

(Clarendon Press,Oxford).

A. T. CHWANG and T. Y. T. WU (1974), Hydromechanics of low-Reynolds 

number flow. Part 1. Rotation of axisymmetric prolate bodies. J. Fluid Mech. 

63, 607-622.

S. CONTE and C DE BOOR (1983), Elementary numerical analysis. 3rd Edi

tion (McGraw-Hill Int. Book Company).

R. G. COX (1970), The motion of long slender bodies in a viscous fluid. Part

I . General Theory. J. Fluid Mech. 44, 791-810.

A. M. J. DAVIS (1980), The torque on a rotating body in a liquid with a 

surfactant layer and its relation to the virtual mass of a heaving body. Q. Jl 

Mech. Al. Math. 33, 337-355.

154



BIBLIOGRAPHY 155

A. M. J. DAVIS and M. E. O’NEILL (1979), The slow rotation of a sphere 

submerged in a fluid with a surfactant surface layer. Int. Jl Multiphase flow. 5, 

413-425.

R. C. DIPRIMA (1966), Nonlinear partial differential equations (Academic 

Press, New York).

D. EDWARDES (1892), Steady motion of a viscous liquid in which an ellipsoid 

is constrained to rotate about a principal axis. Q. J. Math. 26, 70-78.

B. A. FINLAYSON (1972), The Method of Weighted Residuals and Variational 

Princciples (Acdemic Press, New York).

C. A. J. FLETCHER (1991), Computational techniques for fluid dynamics, Vol 

I and II (Springer-Verlag, Berlin).

L. FOX (1962), Numerical solutions of ordinary and partial differential equa

tions (Pergamon Press, Oxford).

F. C. GOODRICH (1969), The theory of absolute surface shear viscosity. I. 

Proc. Roy. Soc. A310, 359-372.

F. C. GOODRICH and A. K. CHATTERJEE (1970), The rotating disk prob

lem. Colloid Int. Sci. 34, 36-42.

F. C. GOODRICH, L. H. ALLEN and A. K. CHATTERJEE (1971), Proc. Roy. 

Soc. A320, 537.

J. HAPPEL and BRENNER (1973), Low Reynolds Number Hydrodynamics 

(NoordhofF, Leyden).

E. J. HINCH and L. G. LEAL (1979), Rotation of small non-axisymmetric 

particles in a simple shear flow. J. Fluid Mech. 92, 591-607.

M. HOLT (1984), Numerical methods in fluid dynamics (Springer-Verlag, 

Berlin).

G. B. JEFFERY (1916), On the steady rotation of a solid of revolution in a 

viscous fluid. Proc. London Math. Soc. 14, 327-338.



BIBLIOGRAPHY 156

G. B. JEFFERY (1922), The motion of ellipsoidal particles immersed in a 

viscous fluid. Proc. Roy. Soc. A 1 0 2 , 161-179.

I. M. KHABAZA (1966), Numerical analysis (Pergamon Press).

J. G. KUNESH, H. BRENNER, M. E. O’NEILL and A. FALADE (1985), 

Torque measurements on a stationary axially positioned sphere partially and 

fully submerged beneath the free surface of a slowly rotating viscous fluid. J. 

Fluid Mech. 154, 29-42.

H. LAMB (1932), Hydrodynamics. (Cambridge University Press).

P. M. MORSE and H. FESHBACH (1953), Methods of Theoretical Physics I  

(McGraw-Hill, New York).

P. M. MORSE and H. FESHBACH (1953), Methods of Theoretical Physics I I  

(McGraw-Hill, New York).

A. OBERBECK (1879), Ueber dei warmleitung der flussigkeiten bei berucksich- 

tigung der stromungeninfolge von temperatur-differenzen. Ann. Phys. Chem. 1 , 

271-292.

M. E. O’NEILL (1964), A slow motion of viscous liquid caused by a slowly 

moving solid sphere. Mathematika 1 1 , 67-74.

M. E. O’NEILL (1967), A slow motion of viscous liquid caused by a slowly 

moving solid sphere: an addendum. Mathematika 14, 170-172.

M. E. O’NEILL (1969), On asymmetrical slow viscous flows caused by the 

motion of two equal spheres almost in contact. Proc. Camb. Phil. Soc. 65, 

543-555.

M. E. O’NEILL and K. B. RANGER (1979), On the rotation of a rotlet or 

sphere in the presence of an interface. J. Multiphase Flow. 5, 143-148.

M. E. O’NEILL and H. YANO (1988), The slow rotation of a sphere straddling 

a free surface with a surfactant layer. Q. Jl Mech. al. Math. 41, pt. 4, 479-501.



BIBLIOGRAPHY 157

L. E. PAYNE and W. H. PELL (1960), The Stokes flow problem for a class of 

axially symmetric bodies. J. Fluid Mech. 7, 529-549.

J. A. F. PLATEAU (1869), Phil Mag. (4), 38, 445.

K. B. RANGER and M. E. O’NEILL (1993), The torque on an axisymmetric 

body in asymmetric rotational flow. J. Engng. Math. 28, 365-377.

LORD RAYLEIGH (1896), The theory of sound (Macmillan, London).

J. C. SCHNEIDER, M.E. O’NEILL and H. BRENNER (1973), On the slow 

viscous rotation of a body straddling the interface between two immiscible semi

infinite fluids Mathematika 2 0 , 175-196.

L. E. SCRIVEN (1960), Dynamics of a fluid interface. Chem. Engng Sci. 1 2 , 

98-108.

R. SHAIL (1978), The torque on a rotating disk in the surface of a liquid with 

an adsorbed film. J. Engng Maths. 1 2 , 59-76.

R. SHAIL (1979), The slow rotation of an axisymmetric solid submerged in a

fluid with a surfactant surface layer-I. Int. Jl Multiphase flow. 5, 169-183.

R. SHAIL and D. K. GOODEN (1981), ibid. 7, 245.

R. SHAIL and D. K. GOODEN (1982), ibid. 8 , 627.

H. B. SQUIRE (1955), Rotating fluids. Article in Surveys in Mechanics (ed. 

Batchelor and Davies). Cambridge University Press.

N. D. WATERS and D. K. GOODEN (1980), The couple on a rotating oblate 

spheroid in an elastico-viscous liquid. Q. Jl. Mech. Al. Math. X X X III  p t .  2 , 

189-209.

A. WEINSTEIN (1955), On a class of partial differential equations of even 

order. Ann. Mat. Pura Al. 39, 245-254.

F. M. WHITE (1974), Viscous fluid flow (McGraw-Hill, New York).



Appendix I

Evaluation of Integrals on page 155

- R

Figure 7.3: Figure I.

Let

consider

Ii 1
Jo (x2 +  1) cosh7ra: 

1

dx

_ 1 r  2 J - t ( X 2 +  1 )  C O sh  7TX
dx

/(*) =
1

(z =  x + iy), (1.1.2 )
(z2 +  1) cosh 7Tz ’

f ( z ) has simple poles at z = ± i  and z  =  ± | ( 2n +  l)i, (n =  0 , 1, 2 ..).

Let C = {—R, R} +  C r with C r a semi-circle radius R  > 1 not passing through 

zn drawn in y > 0, that is when R  > 1, the singular points of /  in the upper
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half plane lie in the interior of the semicircular region bounded by the segment 

z = x( — R < x < R)  of the real axis and the upper half C r  of the circle | z  |=  R  

from z = R  to z = —R.  (Figure I). Integrating /  counterclockwise around the 

boundary of this semicircular region, using residue theorem, we see that

<f f ( z )dz  = f  + f  f ( z ) d z ,
J  C  J - R  J c R

[  f ( x )  d x +  f  f ( z )  dz 
J - R  J c R

= 2'Ki{B1 + B 2) (1.1.3)

where B\ is the residue of /  at the point z  = i and B 2 is the residue of /  at the 

point z = |( 2 n +  1 )i. It can be shown tha t the value of the integral

I /  f { z )dz  |—>0 
J c R

as R  tends to oo. Therefore, we need only write

/OO

f ( x )dx  = 2xi(B \ + B 2) (1-1-4)
-OO

The point z — i is a simple pole of /  and that B\ =  l / ( 2ico s7r) =  —1/(2 i). The

point z = | ( 2n +  l) i  = zn , where n = 0 , 1, 2 , is also a simple pole, so

Bn  = 1 , •
[1 + 4 ]  COsh 7TZ

Hence

2'Ki(B1 + B2) — —ir -  8 Y ,

[4 — (2n +  l ) 2] 7r sinh(izn7r)
4 ( ~ l) n

[4 — (2 n +  l ) 2] 7r i 
4z'( —l)n 

7t (2 n — l)(2n  + 3)

( - i ) n

(1.1.5)

n=0
= —7T + 4

Therefore 2Ii =  —7r + 4. It thus follows tha t
/•oo -|

11 = /J o

^ 0 ( 2n ~  l)(2n  +  3) 

1
.(2 n — 1) (2n + 3).

(1.1.6)

[(1 +  x 2) cosh xx]
dx

7T
= 2 -  -

2
(1.1.7)
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Now consider

/ (* )  = (1 -f z2) cosh2 7rz 

Thus

r°° 1
I2 = /     dx

J o  ( 1  +  X2) C O sh  7TX

= (L1-8)

As before, 2 I2 = 27T2 [ sum of residues at poles of /(z )  in the upper half plane].

Let 2 I2 = 2xi(B i + B 2 ), where B\  is the residue of /  at the point z — i and B 2

is the residue of /  at z = zn with n = 0 ,1,... The point z = i, which lies above the 

x axis, is a simple pole of / ,  with residue

B l  =  2 j ( c o s x ) 2 =  2 i '  ^L :L ' 9 ^

Now /(z )  has a double pole at z = zn, (n = 0 ,1,2...). To find the residue of /(z )  

at z = zn, it is simplest to expand /(z )  in a Laurent series about zn and pick out 

the coefficient of (z — zn)-1 . Thus

(z2 + l)  = (z2 + 1) +  2zn(z -  Zn) +  0 (z  -  zn)2 (1.1.10)

and

C O sh  7TZ = cosh 7TZn + 7r(z — Zn) sinh 7TZn + 0 (z  — zn)3

= Z7r(-l)n(z -  zn) + 0 (z  -  zn)3 (1.1.11)

and so

cosh2 7rz = —7r2(z — zn)2 +  0 (z  — zn)4, (1.1.12)

and it follows that

/ w  = [(z2 +  1) + 2Zn(z -  Z n )  + 0 ( z  -  Z „ ) 2] [~*2(z -  Zn )2 +  0 { z  -  Zn ) 4 ]

Zx ■ [l + 0 { z - z „ ) %  (1.1.13)1 ("I) * r 1 , n,. . \2i
(z2 +  l)  x 2( z - z „ ) 2 

where

2zn(z — zn) 2n_1
= (1.1.14)
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Since coefficient of (z — zn ) 1 is

2 Zn 16i 
7r2 .(2n -  l ) 2(2n +  3)2.(z2 + 1)tt2

thus /  has a double pole at z = zn , with residue

16i ^  f (2n +  1)
Bn = E

7 1 = 0
,(2n — 1)2(2ti +  3):

Hence

2x i(B \ + B 2 ) =  27ri 

=  2

_1_ 16»A
2i 7T2

7 1 = 0

(2n +  1)

x 16 ^
2 _  ^  n7 1 = 0

.(271- l ) 2(2n +  3) 

(271+ 1)
L (271 — 1)2(2 ti+  3)2.

We know that 2I2 =  2xi[B \ B 2 ), therefore

o 00
12 = £ - ! e2 7T

7 1 = 0

= .2
2 x 
x 4
2 “  x ’

(271- l )2 (271 + 3)2.

and so

= / 'Jo (1 +  x2) cosh2 xx
dx

x 4 
2 x

(1.1.15)

(1.1.16)

(1.1.17)

(1.1.18)

(1.1.19)


