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Abstract

This thesis is divided in to  tw o parts. The firs t part consisting o f the firs t four chapters. 

We study m ain ly  the properties o f complex function /  when some conditions are imposed on the 

Schwarzian derivative o f /.

In  Chapter 1, we define the notions o f quasiconformal mappings and investigate 

conditions tha t allow /  to  have a quasiconformal extension outside the u n it disc A  to  the 

extended complex plane. We used the method o f Ah lfors to  obta in and extend the criteria, 

invo lv ing  Schwarzian derivatives, obtained earlier by Ahlfors, Krzyz and Lewandowski etc. In  

Chapter 2 we shall look a t the domain constant f2(A) introduced by Lehto w ith  the norm  o f the 

Schwarzian and logarithm ic derivatives.

In  Chapter 3, we consider the Schwarzian S(f,z) alone and show th a t i f  i t  is su ffic iently 

small and the second coefficient is also small (depending on S(f,z)), then /  is a o-strong ly 

starlike function for one such constant, and convex for a smaller constant. O ther properties o f /  

when S(f,z) is small are also investigated. The method used depends heavily on the second order 

d ifferentia l equations.

Chapter 4 considers the same problems as in  Chapter 3, bu t solved by the use o f the 

Clunie-Jack princip le. The advantage o f th is princip le is tha t i t  enables us to  consider a more 

restricted class o f functions. The results obtained complement th a t o f Chapter 3. W ith  the 

Clunie-Jack princip le, we give a lternative proofs o f results, in  one case w ith  an extension, 

obtained previously by M ille r and Mocanu.

Chapter 5 is our second part. Here we consider the d is tribu tion  o f the zero sequences o f 

the solutions o f a second order d ifferentia l equation, w ith  the given coefficient being an entire 

transcendental function o f fin ite  order. This has been considered by Bank, Laine, Langley and 

Rossi etc.



‘ The great end o f learning is nothing else 

but to seek fo r  the lost mind.'

— Mencins 

(A n  ancient Chinese philosopher.)
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Preface

This thesis is largely concern, as the t it le  suggests, w ith  the Schwarzian derivative and 

second order d ifferentia l equations. I t  is d ivided in to  tw o parts. The firs t part consists o f the 

firs t four chapters dealing w ith  topics in  geometric function theory, and the second part, 

consisting o f Chapter 5 dealing w ith  the value d is tribu tion  theory o f d ifferentia l equations. 

However the theory and techniques used in  the firs t part are closely related to  the second part. 

In  fact many proofs o f theorems in part one are based on second order d ifferen tia l equations.

In  Chapter 1, we introduce the notion o f quasiconformal mappings, a k ind  o f rather 

general mappings when compared to conformal mappings. We use quasiconformal mappings to  

construct some univalence crite ria  and crite ria  fo r quasiconformal extensions th a t involve 

quantities like /, /  and f \  where /  is defined in  the u n it disc. I t  is here we firs t meet the 

Schwarzian derivative and i t  together w ith  the logarithm ic derivative / * / /  often appears in  

many such criteria. The modern treatm ent o f the Schwarzian derivative w ill be discussed in 

Chapters 2 and 3. We m ain ly  concentrate on a method o f obta in ing univalence crite ria  and 

crite ria  for quasiconformal extension. Th is method th a t we used was due to  Ahlfors and i t  is 

based on a topological result which asserts th a t a local homeomorphism o f C onto itse lf is a 

global homeomorphism. Th is elegant method allows us to  obta in and generalize m any well- 

known crite ria  due to  Lewandowski, Stankiewicz and Krzyz. Several other results are also 

obtained. We also compare our results w ith  those obtained by Anderson and Hinkkanen.

In  Chapter 2, the Schwarzian w ill be introduced together w ith  some historica l remarks 

and its  recent development. However, despite its  importence in  classical theory o f conformal 

mappings, i t  has been found recently tha t i t  has a relation w ith  T e ichm iille r theory. We w ill not 

discuss anyth ing about the Te ichm iille r theory here, bu t th is has some close connections w ith  

univalent function theory and quasiconformal mappings. In  one aspect, Lehto has introduced the 

notion o f Dom ain Constant o f a s im ply connected domain th a t depends on the size o f the 

Schwarzian derivative. This seems more or less a modern way o f expressing classical ideas, bu t i t  

has m any elegant properties th a t f i t  perfectly w ith  the T e ichm iille r theory. We consider domains



th a t are images o f strongly starlike functions defined in  the u n it disc. An upper bound o f the 

Dom ain Constant o f strongly starlike domains has been found. We also find  a corresponding 

upper bound for the logarithm ic derivative for strongly starlike functions. In  fact, i t  is very often 

the case th a t when one theorem is true for the Schwarzian derivative then i t  is also true fo r the 

logarithm ic  derivative. I t  is known tha t i f  the domain constant is sm all enough then i t  must be 

a quasidisc, tha t is a image o f a un it disc under a quasiconformal m apping o f C. We show th a t 

the ir exist domains whose Domain Constant can be made a rb itra ry  sm all and they are not 

starlike. S im ilar results are also obtained fo r the logarithm ic derivative. We prove these by 

provid ing exp lic it counter examples. The techniques used are based on second order d ifferentia l 

equations.

In  Chapter 3, we s till look at the re lation between the size o f the Schwarzian derivative 

and properties o f ana lytic functions defined in  the u n it disc. However, we shall use a more 

classical approach. I t  was Nehari who firs t obtained im portan t results about the Schwarzian 

derivatives and univalent functions. Again, the use o f second order d ifferentia l equations is 

crucial in  his proofs. Nehari showed tha t i f  the Schwarzian derivative  o f /, S(f,z) satisfies 

\S(f,z)\< 7t 2 / 2  fo r a ll z in the un it disc then / i s  univalent. Gabriel showed i f  |5 ( / ,^ ) |< c 0 for a ll z 

in  the u n it disc, where c0 is a fixed constant, then /  is starlike. We define the supremum o f the 

above upper bounds to  be Schwarzian rad ii o f univalence and starlikeness respectively. We 

a ttem pt to  find  the Schwarzian radius o f convexity and some related results are obtained. The 

m ain difference between the analysis o f Chapter 2 and 3 is to  replace the quan tity  

(1 — |z|2)2|S(/,2)| by |5(/,z)|. We find tha t the la tte r has some contro l o f the geometrical shape o f 

the image o f the u n it disc under /  whereas the former does not. Some examples are also given a t 

the end o f the Chapter.

Chapter 4 was in itia ted  by the private communications w ith  J.G . C lunie and T . Sheil- 

Small. We continue the study o f the problems in  Chapter 3. Both C lunie and Sheil-Small have 

given a method o f estimating the Schwarzian radius o f convexity fo r functions defined in  the 

u n it disc. Based on the method o f the Clunie-Jack princip le, we study and obta in  several results 

which were o rig ina lly  obtained by M ille r and Mocanu. We then investigate a subclass o f strongly



gamma starlike functions and show th a t they belong to  strongly starlike functions. Hence they 

have quasiconformal extensions.

Chapter 5 deals w ith  a different kind o f problems. We study the zero d is tribu tion  o f the 

solutions o f second order d ifferentia l equations o f the type yn  +  A y = 0. The basic too l here is the 

celebrated Nevanlinna theory. A  b rie f in troduction  o f the Nevanlinna theory is also included. 

The m ain result th a t we prove in  th is chapter is: le t / l t  / 2 be linearly independent solutions o f 

equation y,f +  A y = 0 where A is a transcendental entire functions o f fin ite  order w ith  6 (0 ,A )= 1 . 

Then the m axim um  o f the exponents o f convergence o f f x and f 2 is in fin ite . The proof is based 

on some well-known results o f Edrei and Fuchs.

F ina lly , a word about the references. We try  to  include a ll fu ll surnames for each o f the 

lite ra ture  tha t we cite. The reference is given a t the back o f th is thesis. Also a ‘ IT  sign is used to 

indicate the completion o f the proof o f a theorem.



Chapter One 

On Quasiconformal Extensions in the Unit disc 

and Schwarzian Derivatives

§ 1.1 Notations and Definitions

We shall firs t give a defin ition  o f quasiconformal mappings and some fundam ental facts 

about them.

To begin w ith , let C and C denote the complex plane and the extended complex plane 

respectively. A  one to  one mapping o f a set A  onto a set A* is called a homeomorphism i f  /  and 

its  inverse mapping f ' 1: A 1 —*■ A are both continuous; here we consider A as a subset o f C. A  

Jordan Curve C  is a set which is homeomorphic to  a circle and the Jordan curve theorem states 

th a t the complement o f the Jordan curve C  consists o f tw o d is jo in t domains, which both have C  

as the ir boundary.

We shall also need to c larify  the meaning o f orientation. The orienta tion o f a Jordan 

curve can be defined as follows : consider a ll homeomorphisms th a t m ap the u n it circle d A =  

{e%9\ O < 0 <  27r} onto C, and w ith  two such mappings / 1( / 2, the composition / 2_1° / i ( ^ )  is either 

increasing or decreasing as 9 increases. This divides the homeomorphisms in to  tw o classes. I f  C  

is a Jordan curve bounding the d is jo in t domains G^ and G2, we can find  a linear conformal 

mapping g which maps G^ onto a domain (/(G^) containing the orig in . Let /  : d A  —► C  be a 

fixed representation (o f an equivalent class) o f the orientations. As 9 increases from  0 to  2ir, the 

argument o f goj{9) changes by either 2ir or —27T . I f  i t  is the firs t case, we say C  has positive

1



Chapter 1

orienta tion w ith  respect to G1, negative otherwise. I t  is also easy to  see th a t i f  gof  is positive 

orientated w ith  respect to Gl then i t  must be negative orientated w ith  respect to  G2*

Let w : D  —► A  be a homeomorphism, where D  is a Jordan dom ain and w(D) =  D f .

Let /  be a representation o f the orientation d A  —*■ d D  , then w of  : d A  —► d D f induces an

orienta tion w ith  respect to dw(D). I f  the orientation is preserved under iu(positive or negative) , 

w is called sense-preserving. I f  w : A —► A \  where A  and A 1 are general po in t sets, then w is 

called sense-preserving homeomorphism i f  i t  preserves the orienta tion o f every Jordan domain D  

such th a t D C A.

Let f  =  u +  iv : G —* G1 be a homeomorphism o f plane domains. Let zQE G , we 

define the form al derivatives o f /  as

f z -  \ { f x ~ i f y) and /7 =  \ { f x  +  i  f y).

where the subscripts x and y are meant to  be the p a rtia l derivatives o f «(x,y) and v(x,y) w ith

respect to  x and y. f  is said to be differentiable at zQ} i f  we have at the po in t zQ the fo llow ing 

expression

f{z) =  j [ z Q) +  fz{z0) { z - z 0) +  M zqX z- Z q) +  o ( \ z - z 0\). ( 1.1.1)

Let z0 be an interior point o f G, then z0 is a regular point o f /  i f  /  is differentiable a t z0 and the

Jacobian J j ( z0) ^  0. I f  J j(z0) >  0 we have the fo llow ing simple result (Lehto &  V irtanen [1]

p .10):

I f  the homeomorphism f : G —► G1 possesses a regular point z0 where J j (z 0) >  0, then 

f  is sense-preserving in G. Conversely, the Jacobian o f a sense-preserving homeomorphism is 

positive at every regular point.

§ 1.2 Quasiconformal Mappings

The linear part o f (1.1.1) as \z— z0\ is small is interpreted as the d ifferentia l

dAzo) =  M * o) dz - f  f j i z o )  dz. 

We consider dj{z0) as a mapping from R2—»■ IR2 defined by
dx du
dy * dv

(1.2.1)

where d f  =  du +  i dv

2
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du
dv . Then / i s  differentiable a t (x0,y0) in  the sense o f function o f tw o variables, i f  there 

exists a m a tr ix  A  such tha t f { z Q) =  A  and

Km 1 I =  „ .
l<l-»o |(|

I t  turns out th a t the r ig h t hand side o f (1.2.1) can be w ritten  as / (z0) d ( where /( z q )  =
Ux  Uy  

VX Vy

evaluated at z0 = *0 f  — ’Cl'
y0 1 s — C2 And dJ{zQ) =

UX Uy dx
VX Vy dy

. Therefore the d iffe ren tiab ility

in  §1.1 coincides w ith  the d iffe ren tiab ility  o f functions o f tw o variables.

G eometrically (1.2.1) can be interpreted as an affine transform ation th a t maps the circle 

12r| =  r  in the plane dz=(dx,dy)  locally onto the ellipse in  the plane d£=(du,dv).  Now a t z0

“W zo K "'')  =  /<(zo) ( « ’ *) +  / t ( zo) ( r«"‘ *)i O <0 < 2t  . (1.2.1)

As 6 increases from  0 to 27T the circle in the rfz-plane becomes an ellipse in  rf£-plane w ith  m ajor

axis K IM  +  l / i l ) e5 ^ ^ w h e n  0 =  \a rg ( f1f z) and m inor axis ir( \ fz \ — \f j \ )e^  9̂ i i z  ̂ when

6 =  ̂ arg(f1fz) +  ̂  Hence the ra tio  between the length o f m ajor and m inor axis is defined

as
n  ( y \ _  \ f* (zo)\ +  \ h ( za)\

I t  is called the dilatation quotient o f /  a t z0, and i t  measures the d is to rtion  from  a conformal 

m apping locally. Conformal mapping maps a circle onto a circle locally. Thus we have 

established a measure o f quasiconformality a t a regular po int. Under a fu rther assumption on /, 

apart from  a homeomorphism, we shall see /  is in fact regular a t alm ost a ll z E G. Together 

w ith  the fact tha t D j  is un ifo rm ly bounded by a constant, th is gives a in it ia l p icture o f a 

quasiconformal mapping.

A  function g defined in  0 C R is absolutely continuous on I i f  fo r every e >  0, there 

exists a 8 >  0 such tha t E — <7(af ) |< e  for every fin ite  sequence o f d is jo in t intervals 

whenever E l^  — at- |< 6. The number o f intervals can also be in fin ite . A  function / i s  said
I

to  be absolutely continuous on lines in G i f  fo r every rectangle in  G, /  is absolutely continuous 

on almost a ll horizontal and vertical lines by varying one o f the variable and by keeping another 

variable fixed in  each case.

3



Chapter 1

We are now in the position to give the defin ition:

D e fin ition  1.2.1 (Analytic definit ion)

Let f  be a sense preserving homeomorphism in a domain G ( C  C ) satisfying the following

two conditions:

( i)  F  is absolutely continuous on lines in G (ACL),

( i i )  D j(z )  <  K  fo r  almost all z £ G.

Then f  is called a K-quasiconformal mapping o f G, or K-qc o f G.

Condition ( i)  asserts tha t /  is A CL on G and any homeomorphism which is A CL  on G 

possesses fin ite  partia l derivatives almost everywhere in  G  (Lehto k  V irtanen [1] p. 128). I t  is

also a consequence o f a theorem due to Lehto and Gehring (see Lehto k  V irtanen [1] p. 128)

tha t, i f  f  : G —► Gl is a homoemorphism and G, G1 are bounded, and i f  f  has a f in i te  part ia l  

derivatives a.e. in G, then f  must be differentiable almost everywhere in G. Hence the condition 

( ii)  makes sense and is well defined.

The Defin ition  1.2.1 is called the ana lytic de fin ition  o f a quasiconformal m apping, there 

is also an equivalent geometric defin ition, we refer th is to  the standard reference o f Lehto k  

V irtanen [1]. We shall only use the analytic defin ition  in  sequel.

Let us define the function n j  =  j -  , which is called the complex dilatation  o f /. I t  has an 

obvious relation to  the d ila ta tion  quotient in  the fo llow ing way, namely

D A zq) =  ;Z—Ij-  =  <  K , and th is  is equivalent to
7 l / * ( * o ) H 6 (*o)l M a v I  “

K I  =  TFB jf * - J r f  =  i < 1 -

A  homeomorphism satisfying the D efin ition  1.2.1 is called a K-qc mapping, a l -qc  

mapping is ju s t a conformal mapping. The composition o f a K ^ q c  mapping and a K 2-qc 

mapping is a K 1K 2-qc mapping. I t  can also be shown th a t the complex d ila ta tio n  is inva rian t 

w ith  respect to  any conformal mapping and tha t the inverse m apping has the same complex 

d ila ta tion  at the corresponding points. A  K-qc mapping also satisfies the fo llow ing fundam ental 

theorem. A lthough we w ill not use it, we shall include i t  here fo r completeness.

4



Chapter 1

Theorem 1.2.1 ( Lehto k  Virtanen [1] p.185) A homeomorphism f  is K-quasiconformal i f  and 

only i f  f  is a L 2- solution o f an equation f - j— p fz , (1.2.2)

where p satisfies

M  <  T + k '  =  k <

fo r  almost all z.

Equation (1.2.2) is called the Beltrami equation.

§ 1.3 Compactness Property

A  fam ily  o f functions W  which is defined in  G is called normal  i f  every in fin ite  sequence 

o f elements o f W  contains a subsequence which converges un ifo rm ly  in  any compact subset o f G. 

We say th a t a normal fam ily  to  be compact i f  the l im it  o f any subsequence converges locally 

un ifo rm ly  also belongs to the fam ily . We have the fo llow ing crite rion  fo r no rm a lity  :

Theorem 1.3.1 (Lehto k  Virtanen [1] p.73) A fam ily  W  o f K-qc mappings o f the domain G is 

normal i f  there exists a d> 0 such that, fo r  every mapping w C W  belonging to the fam ily  takes 

values at three different fixed points zlt  z2» z3 such ^ a* distance d(tu(5:| ),ty(zJ) ) > d > 0, 

i j =  1,2,3 , i ^ j .

Quasiconformal mappings also possess the compactness property:

Theorem 1.3.2 (Lehto k  Virtanen [1] p.74) The l im it  function w o f a sequence wn o f K-qc 

mappings convergent in G is either a constant, or a mapping o f G onto two points, or a K-qc 

mapping o f G.

§ 1.4 Quasiconformal Extensions

Given a function /  which is A-quasiconformal mapping in  a region G ( t^C ), we 

investigate conditions on /  such th a t /  adm its a K*-quasiconformal extension outside the region 

G to  C. In  th is direction a fundam ental result is

5



i//» a p ier  i

Theorem 1.4.1 (Lehto k  Virtanen  [1] p .% ) Let f Q : G —»• Gl be a K-quasiconformal mapping

and F  a compact subset o f G. Then there exists a quasiconformal mapping o f the whole plane 

which coincides with f 0 in F  and whose maximal dilatation is bounded by a number depending 

only on K , G and F.

For reasons o f s im p lic ity , we consider /  to  be ana lytic  in  A , and find  conditions so th a t /

adm its a A-quasiconformal extension to  C for some K >  1. If, in  add ition, /  is locally univalent,

th a t is /  ̂  0 in  A  , then the existence o f a quasiconformal extension im plies th a t the extension /

and /  together form  a local homeomorphism on the whole Riemann sphere C. By a well-known

theorem in  Topology (see Gordon W .B . [1]) which states tha t a local homeomorphism o f  C onto

C is actually a global homeomorphism. We shall refer th is as the Topology theorem in  th is

chapter. The fact tha t has been used by Ahlfors, Anderson-Hinkkanen and many others to

conclude tha t /  is univalent in A . Hence the quasiconformal extension crite ria  tha t we are

seeking also give rise to  univalency criteria  o f /. To be more explic it: let /  be locally univalent in

A  =  |^ |<  1. We find g in A *  =  {z: |^ |> 1 } so tha t /  w ill have a continuous extension to  |z| =  l ,  

when /  satisfies some additional criteria. The extension is given by the fo llow ing  function:

F(z) =  \  * »
\  *(* )  z€ A *

and J[z) =  g(z) on |z| =  l .  The modulus o f the complex d ila ta tion  o f F  satisfies \ f ip \ =  \ F j / F z\ 

<  k <  1 for almost a ll zE A *  and /x^ = 0 for zE A . I f  F  is also loca lly homeomorphic on d A ,  

then i t  is locally homeomorphic and hence globally homeomorphic on C. Since d A  is a 

removable set o f plane measure zero, and F  is Jif-quasiconformal in  A *  and ana lytic in  A , i t  

fo llows th a t i t  is K-qc in  C (see Lehto k  V irtanen [1]). C learly /  is conformal in  A  by the 

Topology theorem. Note tha t the function g chosen must be suffic iently smooth so th a t i t  is 

A C L  in  A . e.g. ^ E C ^ A )  (the class o f functions th a t have continuous firs t order pa rtia l 

derivatives in  A ).

There are many methods to produce a quasiconformal extension, fo r a given locally 

univalent function in  A . The whole area o f th is research was firs t in itia ted  by the famous paper 

o f Ah lfors and W e ill [1], in  which they gave the firs t sufficient crite rion  for quasiconformal
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i s n a p i e r  i

extension, by constructing exp lic itly  the extension:

Theorem 1.4.2 (Ahlfors and Weill [1]) Let f  be locally univalent in A , i f

(1 —|z|2)2|S(/,z)| < 2 Jfc V z € A  (1.4.1)

where k <  1 and S ( f  z) is the Schwarzian derivative defined as

s (f ’ z) = { j ) ' ’

then f  has a K-quasiconformal extension to C with |  ̂ ^ .

The case when k =  1 was obtained by Z. Nehari in  1949 [1] as a univalence criterion. We 

shall also consider th is case in  Chapters 2 and 3, in  which we shall look at the Schwarzian 

derivative more closely.

Other methods, like the Lowner d ifferentia l equation used by Becker [1, 2] to  obta in 

uni valence crite ria  are extremely powerful. He gave an extension o f Theorem 1.4.2 and many 

others. More recently Gehring and Pommerenke [1] gave a refined version o f Theorem 1.4.2. We 

refer the readers to Becker’s survey paper in  1980 [2] which contains an excellent account o f 

m any aspects o f qc extensions. J.G. Krzyz also obtained many interesting criteria , among them 

we m ention the follow ing:

oo
D efin ition  1.4.1 Let j{z) =  z+'52anzn be an analytic function defined in  A , f o r  some 0 < o < l

2
such that f  satisfies

ara / ( * ) <  e g  V z € A ,

then f  is said to be a strongly starlike function o f order-a. The fam ily  o f  such functions is 

denoted by S *(a ).

Note th a t when a  =  l ,  S * (1 )= S * , the class o f o rd inary starlike functions.

F a it, Krzyz and Zygm unt [1] proved

Theorem 1.4.3 Let f  6 S * (a ) fo r  0 < a < l ,  then the mapping F  defined by the formula

F(z) _ /  A*)
*  ) - W ) l ’ /7 (4 - )

where (  satisfies the conditions: |C| =  1» o,rg f ( Q  =  arg is K-qc mapping o f C with

k < s i n { a l m o s t  everywhere.
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o / ia p ie r  i

In  1973 Ahlfors [1] published a short paper in  which he proved:

Theorem 1.4.4 (Ahlfors L.V. [1]) Lei f  be locally univalent in  A  (i.e. / ^ 0 )  and suppose that f  

satisfies either
_

<  k V i€ A ,  (1.4.2)

or

( l - \ z \ 2)2S ( f z ) - 2 c ( l - c )  z ‘ <  2A:j 1 — c| V z£  A , (1.4.3)

f o r  some constant c G C with |c |< fc < l.  Then there exists a K-qc extension to C.

Note tha t (1.4.2) is a generalization o f an earlier result due to  Becker [1] when c = 0  and

(1.4.3) also generalizes Ah lfors ’ own result (1.3.1). The method o f producing crite ria  (1.4.2) and

(1.4.3) were suprisingly simple when compared to, for example, the method o f Lowner 

d ifferentia l equations used by Becker. F irs tly  one need to produce an extension and then use a 

norm al fa m ily  argument. A long this direction, Anderson and Hinkkanen have recently general­

ized Ah lfors ’ method completely to  the case o f domains o f the most general nature i.e. a general 

K-quasidisc th a t is the homeomorphic image o f A  under a K -qc m apping on the plane. I f  A  =  A , 

then the ir results not only give alternative proofs bu t also generalize earlier results o f C.L. 

Epstein [1] and Ch. Pommerenke [2],

Theorem 1.4.5 (Anderson and Hinkkanen [1]) Let f  be locally univalent in  A . Suppose that 

( ! - M 2)2{9 * (z ) -9 {z )2- \ S { f z j )  ~  2*(1 —1* |2) g(z)

  . . c - W o  1s ‘  (U'*)
fo r  all z£  A , where g e C ^ A )  is a complex-valued function such that i t  satisfies either

( i)  that g j is real-valued and limsup |0(z ) |( l — \z\2) < k < l
U l—*•!

1 +  ( 1 - | z |2)20 i(2 ) >  0 V z £ A ,

or

( i i )  g7 is complex-valued and limsup \g(z)\( l  — \z\2)2 < r  and
Id - 4 !

/imsap |? j(z ) |( l —|z |2)2 <  \ ( l -  v  * e A > 0 < * + 2t < 1. (1.4.5)

Then f  is univalent in A  and has a K-qc extension h(z) to C given by



* w = x 4 - ) +  (* *  ]! { \ ) >  *eA *-

The above is equivalent to

- i  i f ,  ■ '  -g(z) =  — 1 - )  +  } f j ( z )  +  f ( z )  X ^ ) )  V * € A .  (1.4.6)

§ 1.5 Ahlfors' Method

Let us now discuss Ahlfors ’ method. We consider /  to  be locally univalent in  A , bu t we

shall assume /  to  be actually locally univalent in  the neighbourhood o f A  and remove th is  extra 

assumption later. We define an extension o f /a s  follows:

- {
F(z) =  {  & * )  * e A  (1.5.J)

'  5 (1 /5 )  z g A *

where g (z )= j{z )  +  u(z) is chosen to be suffic iently smooth in  A . Also «(z) =  0 on |^| =  1 so tha t 

f(z) =  g(z) there. F  is A-qc in  |^ |> 1  i f  and only i f  g is a sense preserving A”-qc in  |^ |< 1 . Hence to 

ensure F  is K-qc in  1*1 >1 , we need to show, through direct com putation and (1.2.2), th a t

\ 9 i i z) I <  k \9z{z)\ V zGA  , (1.5.2)

T ha t is \ f ( z )  +  uz(z)\ <  k | ( 2r)| V zGA , (1.5.3)

so i t  is necessary tha t u7( z ) ^ 0  V zGA . F ina lly , we require F  to  be loca lly homeomorphic on 

d A  in  order to  apply the Topology theorem.

Since /  is locally univalent and the extension / +  u is su ffic iently smooth i t  is 

continuously differentiable. Hence the weaker condition

\ 9 i i z)\ <  \9z{z) | V zG A ,  (1.5.4)

w ill im p ly  the Jacobian is not equal to  zero in  A . Thus by the inverse function theorem (see W . 

Rudin  [1] p.221), F  is locally homeomorphic everywhere in  C and so homeomorphic in  C. Hence 

/ i s  un iva lent in  A .

§ 1.6 Application to the Logarithmic Derivative - r
f

We prove the follow ing:
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L /n a p ic r  i

Theorem 1.6.1 Let f  be locally univalent in  A  and suppose that 0<A :<1, l / 2 < a < l  and

1 -I- hr
p(z) be analytic in  A  such that i t  is subordinate to the function ^ _ j cz *n A . I f  f  satisfies the 

inequality
I n  H 2a x r i - f l  , 1( zp ' ( z) , Z/ ' ( Z) ) } <  k < 1  V z€  A ,

<p(z) +  lJ  v" ' I  a ' aV l+ p (z )  / ( * )  

then f  has a K-qc extension to C, I f  k— 1 then f  is univalent in  A .

Theorem 1.6.1 is equivalent to  the fo llow ing statement:

Theorem 1.6.1* Let f  be locally univalent in  A  and suppose that 0 < Ar< 1 and l / 2 < a < l  and 

w(z) be analytic in  A  such that | t f l(z ) |< & < l, u>(0)=0. I f  f  satisfies the inequality

■I t i l  ( \  l - l 2 a ^ l - f l  I 1 (  ZW' ( Z)  i Z/ ' ( Z) X \ <  k < 1  V z e A , (1.6.1)

— 1 | L
then f  has a K-qc extension to C, K =  ^~_^. I f  k =  1 and |w (;? )|< l, then f  is univalent in  A .

The case fc = l and |t<;(2) | < l ,  i u ^ l  was in  fact proved by Z. Lewandowski [2] as a 

univalency criterion by using the Lowner chain under a more general setting and with a >  1 /2 . 

(see also §1.8). Our theorem does not cover th is case and our assumption |u ;(z ) |< l being 

stronger. The case when a = l ,  tha t is
zw \z)  z f \ z \i _i2 , 1  , zf K z) \\z\ w(z) -  { l - \ z \  )(J _ R  +  - ^ - j <  *  < 1  V ze A , (1.6.2)

has been obtained by J. Miazga and A. Wesolowski [1] using A h lfors ’ method. In  fact (1.6.2) is 

also a generalization o f an earlier univalency criterion o f Z. Lewandowski [1] when k = l ,  

H * ) |< 1 ,  1 proved by the Lowner chain method, as was (1.6.1). I f  we now let w S c =

constant, then (1.6.1) reduces to  (1.4.2), and i f  w =0  then i t  reduces to

a—1—(1 —|z|2a) / M
/(*)

<  ka V z £ A , (1.6.3)

w ith  the condition |a— l|< fca . When k =  1, i t  can also be found in  Lewandowski [2]. (1.6.4)

As pointed out by Lewandowski in [1], the function J [z )= z - f  does not satisfy (1.4.2) 

w ith  c = 0  (Becker’s criterion), but i t  satisfies (1.6.2) w ith  w (z )=  — z, k =  1.

Based on the method o f Ahlfors and Miazga-Wesolowski, w ith  fu rthe r m odifications, we 

shall now prove Theorem 1.6.1.

Proof o f Theorem 1.6.1’ : (a) Follow ing Ahlfors, we assume /  to  be loca lly univalent in  A  and

we define an extension F as  in (1.5.1) and set g(z)=j{z)-\-u{z). Choose u(z) to  be
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“ (2) = < r ^ w ) (< (z)- 2 ) ) / ( z ) -

where w is analytic in  A  and |iw(2) |< fc < l.  Here £ is a reflection in  ĵ r| =  1 and we define the 

reflection £ to  be £(z) =  z1~a(z )~ a. Note £ is a reflection in  |2| =  1 i f  and only i f  a >  1 /2 . Thus

We need to  show th a t (1.5.3) is satisfied, and th is is equivalent to  proving

f { z )  ! - « < * )

G M / M

<  k |< ,(* ) |,  (1.6.5)

and V j i 2)'- a ( l - w ( z ) )

Now (z (z )= ^ jk%  , ( j ( z) =  r r t  ~T~ and hence (1.6.5) becomes, after rearranging the
\z\ \z\ z

terms,

< k < 1  V ze A . (1.6.6)

The case when a = l  is contained in Miazga-Wesolowski [1]. In  order to  show tha t F  is the 

required K-qc mapping we need to verify tha t Wj(z) ^ 0 in  (1.5.3). F irs t we consider those points 

z so tha t g(z )^oo  (th is is clear from  g defined above except a t 2= 0). B u t

% ^  =  a (l-t<>(2)) | * | ^  0 V z e A '

since / * 0 ,  so th is is satisfied. Next we consider those z such th a t 0( 2)= o o  (i.e. when 2= 0). 

Here we consider 1 / g(z) instead, since Hg(z) =  fjil / g(z) a t those z. Now

(« (*))»  (X z) + “ (2))» W z) + “(z))2

=  =  - K / * 2) =  , ,  fi 7,

W z)+“ (z» 2 ( 4 4 + i ) 2 ( 4 4 + i ) 2 '\u(z) )  \« (2) /

Hence i t  is equivalent to  show ( l / u ) _ ^ 0  a t those points.

(  i  \  = _  K f ) !  _  / ( * )  fl2( i~ M * ) ) 2M 4a =  Q2( i - M * ) ) M 2a~2 , 0
\u (z ) )7 u j(z)  |2|2a( l - u ; ( 2)) * z2( l - \ z \ 2a) / ( z ) 2 ( l - \ z\2a)2/ ( z )  *

fo r a ll ze A , since f  ̂ 0 and 2a—2 <0 . Note tha t i t  is precisely here the condition a < l  is used.
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Hence U j^ O  V z£ A . This shows tha t g(z) is a qc mapping in  A , and hence

F(z) =  (  , &*)  z e A  (1.6.7®)
U ( 4 - )  = / ( i / 2 ) + « ( i / * )

is K-qc in C \A  and locally univalent in A .

(b) We need to ensure tha t F  is also locally homeomorphic on d A .  For etB e d A  and tj 

sufficiently small, F(e*9+ r ] ) = f ( e te) +  r] f ( c tB) + 0 ( r j 2)

i f  e'* +  77G A; while i f  et0 +  r )E C \A ,  we consider g a t etB +  6 e A  instead, where 6 is small. A fte r 

some calculations we obtain the expansion

j(e i# +  5)===Aei#)+ /(e i#) | ^ ^ ± ^ ^ |  +  C(52). (1.6.7b)

Since / ( e ,fi) ^ 0  and | t/;(e** +  6) | < £ < l ,  i t  follows tha t F  is locally homeomorphic on d A .  By the

Topology Theorem F  is therefore homeomorphic and hence i t  is K  qc in  C \A  and conformal in 

A . Note tha t J. Miazga and A. Wesolowski [1] d id not show th a t the ir extension is locally 

homeomorphic on d A .

(c) To complete the proof o f the Theorem when 0 < fc < l,  we consider the functions f ( rz )

and w(rz) where 0 < r < l ,  now j { rz )  and g(rz) are ana lytic  in  A . We a im  to  show th a t they also

satisfy ( 1.6.6) and so by what we have proved in the part (a) and (b ) we conclude th a t j { rz )  also

has a K-qc extension to  C. Since /  is conformal in A  and so we can choose a constant rf> 0  and

three d istinct points zlf z2 and z3 belonging to  A  such th a t the m utua l distances between them

satisfy d(j{zi ), f ( z j ) ) > d > 0 ,  a ,j=  1,2,3 , i ^ j .  Let us choose a sequence { r n}  such th a t 0 < r n < l ,

r n -*■ 1 as n —► oo and d (j{ rn2t-) ,/( rnzj ) ) > d > 0  a,/ =  1,2,3 i ^ j .  Define f n ( z ) = j ( r nz), 

wn(z) =  w (rnz), and

* ■ "«  =  (  /n ( f ,  , (1-6-8)
1 9 n ( l / z ) =  y(z ) + _ f ( L - i ± )  / ( , )

a (l — wn{z))\z\

We see tha t the {F n} is a fam ily  o f A-qc mapping in  C which is conform al in  A  and A"-qc in

C \A .  Moreover the fam ily  is normal by the choice o f the sequence { r n}  and the Theorem 1.3.1.

We can thus choose a suitable subsequence such tha t F n converges locally un ifo rm ly  to  a l im it

function, F0 say. By the compactness Theorem 1.3.2, F0 is also a A'-qc m apping in  C since i t  is 

not a constant or a mapping of two points. C learly
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Az) ze a
j { l / z ) + u ( l / z )  ze a *

Hence /  being locally homeomorphic in A  and has a K-qc extension to  C. We have completed 

our proof once we show f n and wn also satisfy ( 1.6.6).

(d) Now let us replace z by r nz in (1.6.6), and we obtain

— a I  / rnzw^rnz)  rn z / '( r n * ) \  _  \ rnz\2a w {rnz) 
a a U - w ( r „ 2) f ( r nz) )  l - | r „ 2|2a- w ( r nz) / ( rn2) 

I f  f n and wn also satisfy (1.6.6), then we have

1 — |rn2|2 a •

1 — a 1 f r „ z v / ( r nz) r n z / f ( r nz)\  _  \z\2aw(rnz) 
a + H i - WM +  / ( rnZ) )  i _ | z|2« 1 - 1*1

2a

Set

and

 ̂ _  I - a  , 1 (rnzw ’ irnz)  , r nz f \ r nz) \
-  —  +  a U - u , ( r n* ) +  f {rnz) )  ’

n M  _  \r nz\ aw{rnz) _  \z\ aw{rnz)

(1.6.9)

(1.6.10)

So inequalities (1.6.9) and (1.6.10) can be w ritten  as

| An (z )  -  Bn(z )  I <

and | A n(z) — Cn(z) | <

l - | r „ z | 2a ’ 

k

1 - 1 *1
2a

(1.6.9)’

(1.6.10)’

respectively. I f  we w rite  C$(c,r) =  {z: \z— c |< r }  and let ^(c,?1) to  be the closure o f ^ (c jr ) ,  then

(1.6.9)’ and (1.6.10)’ represent the discs ^ (B n ,
V ’ l - \ r nz\ 2 a and x_ k̂ 2a ) '  A ls°  f n

and wn w ill satisfy (1.6.6) i f  we can show th a t (1.6.9)’ =>• (1.6.10)’ . i.e. ^ ( B n ,   p —[2a- )  —

Cn,  TTSa”  )• This w ill be im plied by the fact tha t i f  the sum o f the distances between the
V 1 — \z\ I

centres o f the discs and the smaller radius is less than or equal to the larger radius. T ha t is 

equivalent to  proving | B n(z) — Cn(z) | +

or

B ut

| Bn(z )  ~  Cn {z) | <

l - \ r nz\2a -  1- M 2a ’

k k
1 - \ z 2 a 1 — \ rnz\ 2 a • (1.6.11)

S „ ( z ) - C „ ( , )  =  | , |2M r ^ ) ( r Z g p 3 - r ^ p ) = « < r „ ^ T : J 1
M 2a i - | * l 2a /

(1.6.12)
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since \z\2a( — y 2— -K------------------- = --------A — tot. -------, ,9/1 ,
11 V l - r „ z 2fl 1- U 2 /  1-  r, “ |2a 1 ' " |2°| r nz| 1- U | 2V  1 — |rnz| 1 - W ­

and |iun(z)| <  k. Th is proves (1.6.11) and also completes the p roo f o f the theorem when 

0 < i t < l .

(e) The case when fc = l can be proved by m odify ing the p roo f o f the case when 0 < & < 1

above. Let us assume tha t /  satisfies (1.6.1) w ith  k =  1 and define an extension g = f + u  as above

where /  is regular in  A . We note tha t the extension satisfies (1.6.1) w ith  i t = l  is precisely the

condition <  |0*(*)I V zE A , (1.6.13)

w ith  g2(z) ^ 0 VzE A . The proof o f the inequality is exactly the same as in  part (a) and |u>|<1 

in the expansion (1.6.7a) w ith  k =  1 in (b). Care must be taken as we a llow  equality to  happen in 

(1.6.13), hence we merely can say tha t i f  /sa tis fies  (1.6.1) w ith  k— 1 and /  is regular on |z |< l,  

then i t  only has a smooth extension to C, which is not necessarily loca lly homeomorphic 

everywhere. By defining f n and wn as in (c), we may choose the sequence satisfying 0 < r n < l ,  rn 

—► 1 as n —*■ oo w ithou t fu rther restriction. We show th a t they satisfy a stronger condition 

|(/«)_ | < | ( / n ) J  in A *(w e  remember as before tha t / „  also represents the extension o f / n). Since /  

satisfies (1.6.6) w ith  fc = l,  hence we have again (1.6.9) or (1.6.9)’ w ith  k— 1. We prove f n and

wn satisfy | A n(z) — Cn{z) | <  —— }
l - \ z \

° r 9 ( 5 " ’ )  C 1- | ^ °  )■ ie ' H 8 " '  l _ | r n ; | 2a )  is contained in  the

in te r io r  o f $ ( C n, -------r i W  r  i n^ ee^  the case by applying the rad ii  argument above since
V l - \ z \  /

we have (1.6.12) and |w |< l .  This shows tha t each f n regular in  A  has a locally homeomorphic 

extension to  C (see (1.5.4)) given by (1.6.8), thus each F n is g loba lly homeomorphic in  C and 

hence univalent in  A , Fn = fn  in  A . Now f n -+  / as n -+  oo, un ifo rm ly  on any compact subset 

o f A  and hence on A . By H urw itz ’s theorem (see Duren [1] p.4), we have th a t fo r  any sequence 

of univalent functions { f n} in a simply open connected set D  and f n —+ f  as n —► oo, uniform ly  

on any compact subset o f  D, then f  is either univalent o r constant in D. Here we have D =  A  and 

since /  is not a constant i t  must be univalent in A . Th is proves the case when k =  1 and also 

completes the proof o f the theorem. □
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§ 1 .7  Applications to the Schwarzian Derivative

Follow ing the above ideas, we shall apply the same method to  obta in:

1 ^ 1Theorem 1.7.1 Let f  be locally univalent in  A , and suppose 0 < & < 1 , | < ^ ^ < a < l  and that

p(z) is analytic and subordinate to in A  where p =  a~ ^ " ^ a > 0 . I f  f  satisfies the

inequality

“2h ^ ) k|2a+a(1_|z|2°K 1- a+ i f ^ ) + i± ^ (1" k|2a)2s(/’j ) l*|2' :!“ ^
zp \ z) \  , l + P (z), <  ka2

(1.7.1)
r _ l  +  kV zeA , then f  has a K-qc extension to C, where K = ^ _ ^ . I f  k = l ,  then f  is 

univalent in A .

Note tha t when k =  1 and o = l ,  th is is a univalency criterion obtained by Z.

Lewandowski and J. Stankiewicz [1] using the method o f Lowner chains. See also Miazga- 

Wesolowski [2]. Condition (1.7.1) reduces to :

^ P { z )  | „ | 2  . / 1 I „ | 2 \  , ZP  ( * )  , I _ | 2 \ 2  Z
t + m  h  + ( 1 _ i "1 ) + r + K 7 ) + ~ 4 —  ) w , * )  — <  1 V ze A , ( 1.7.2)

where p(z) is analytic and 3fi(p)>0, p (0 )= 0  in A .

We see th a t by replacing 1 by k<  1, their univalence criterion becomes a sufficient 

condition o f K-qc extension. Theorem 1.7.1 therefore gives an a lternative  proof and also 

generalizes their result. Also by pu tting  w{z)—^ l — (1.7.1) is equivalent to  the fo llow ing
P(z) + 1’

criterion:

Theorem 1.7.1* Let f  be locally univalent in A  and suppose 0 < Ar< 1, | < | ^ ^ < a < l ,  and let w 

be analytic with |t^(-?)|<a~ ^ iu(0) =  0 in A . Suppose f  satisfies the inequality

zw \z )  \  ( l - l z |2a)2
<  ka‘

(1.7.3)
_  p  1

V z 6 A , then f  has a K-qc extension to C. I f  k =  1 and |u ;(z )[<  a , then f  is univalent in  A .

I t  is th is form  o f the theorem th a t we prove below. Now pu t w =  c=constant, then

(1.7.3) reduces to
{ i I _l 2o\2

<  A:a211 — c|

and |c |<  a— aJ-— - < 1 .  Note tha t i f  a = l  then we get back to  Ahlfors* result (1.4.3). I f  we put 

i/>=0 in  (1.7.3) then we obtain
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„ ( l - a ) ( l - | z n - (1 lf a)3 S (/,z ) |z| 2—2a Z 
~Z <  ka2 V zG A .

where l > a > l / ( l  +  &)> 1/ 2.

P roof o f Theorem 1.7.1* (a) As before we firs t assume /  is locally univalent in  A  and we define

an extension F  as in  (1.5.1) and set g = f + u .  We prove g satisfies (1.5.2). Choose

(1 — w(z)
( ( z ) - z

q(z) =  / ( j  and 4 , )  =  l £ = 4 & ,

7 «

where w satisfies the hypotheses o f the theorem and £(z) =  z1-a (z )_a again. C learly « = 0  when 

|z| =  l .  Note tha t (1.5.3) becomes

\%S(f,z) +  v2 — vz\ <  k |v j |  V iG A . (1-7-4)

Now

and

_  q ( l - w ( z ) ) | z | 2a

_  - q » '( z ) |z |2° . a ( l - » ( z ) ) |z |2- ( a - l  +  |z |2«) _ a 2( l- « < z ) ) |z |
W ’ -  z ( l — |z|2° )  z2( l - | z |2“)2 ’ n  ( l - | z | 2a)2

2o—2

Substitute these expressions back in to  (1.7.4) to  obta in (1.7.3). T o  show tha t F  is the required

K-qc mapping we need to verify tha t u(z)7 ^ 0  for zG A such th a t u(z)^koo in  (1.5.3), tha t is
j t ( )

We also must consider those z such tha t v ( z ) ^ k  . since « = o o  i f  and only i f

V( Z) = i i L i i i
2/ (z) '

B u t v(z)7 =  “  ^  0 V zGA, since a<  1.

Next we consider those z such tha t u(z) =  oo. Here we need to  consider 1 / g instead. As 

shown in  the proof o f the Theorem 1.6.1, th is is equivalent to  proving th a t ( l / « ( z ) ) 7 ^  0 a t 

those z . Now

(u (z )X / «
v(z)7 a2( l  — w(z))\z\2a~2 . j

=  j  -■ =  —\ 0, since f  ̂ 0 and a < l .  
/ ( z )  / ( z ) ( l - | z |2- )2 r

This proves tha t \ f i j \ < k  w ith  the assumption th a t /  is defined in  |z |< l .

(b) To  show tha t F  is locally homeomorphic on <9A  we repeat the same argument as in

(b) o f the p roof o f Theorem 1.6.1*. We find, after some calculations, th a t the expansion o f F o n  

d A  is exactly the same as (1.6.7b). Again since / ( e ‘ * ) ^ 0  and |iy(e*^ +  6) |< (a + a £ — 1) / a <  1, i t  

follows th a t F  is locally homeomorphic on d A . The case when k = l  can be dealt w ith  in  the

16



K s n u j / i c  T 1

same way. Hence F  is K  qc in  C \A  and conformal in  A .

(c) T o  complete the proof when 0 < fc < l,  we use the compactness argument and the 

normal fa m ily  argument in the proof o f Theorem 1.6.1’ (c) again. F irs tly , we rewrite (1.7.3) as :

a(l — w (z ) ) ( ( l  — a )( l  — \z\2a — aw(z)\z\2a'j.   , *  , ,    . . . „ 2
A{z) +

|* |2- 2a( l - | * | 2a)2
ka [1 —«<^)|

whete ^ ( * )  =  25( / ’ z) +

Now replace z by r nz in  (1.7.5) and m u ltip ly  by r n2 on both  sides, then w ith  the fo llow ing 

notations
-  r „ 2<y, v , r» 3a z u /{ rnz)

M *)  -  2 S(J' r " z) +  |rnz|2-2a( l  — |r nz|20)’

a r»2( l - t i i ( r „ z ) ) ( ( l  —a )( l —|r nz|2,’ -a w ( rn z ) |r „ z |2<' )  

=  |r „ z |2- 2“ ( l - | r „ z |2“)2 ’

n _  r n2 ka2 \1 — w(rnz)\ n , x _  < l - w ( r nz ) ) ^ l - a ) ( l - \ z \ 2a) - a w ( r nz)\z\2a)

C{Z) ”  | r n , | 2- 2a( l - | r n , | 20)2’ {Z) ~  M 2- 2a( l - M 2a)2

~ _  ka |1 —w (rnz)|
K ) ~  | , |2- 2o( l - | ^ | 2a)2 ’

the inequality (1.7.5) becomes

| An{z) +  C(z) I <  C(z). (1.7.6)

However we wish to  prove tha t, w ith  the definitions f n( z )= J [ rnz) and wn( z ) = w { r nz), f n and wn

also satisfiy (1.7.5). Then we deduce the theorem by the compactness property. Substitute f n

and wn in to  (1.7.5) to  obtain

| A n(z) +  D(z) | <  D(z). (1.7.7)

T o  prove (1.7.6) =>■ (1.7.7), i t  is equivalent to  proving tha t, by the rad ii argument,

| D(z) -  C(z) | <  D(z) -  C(z) V z G A .

Now
2 a

n ( r \ - r ( A  -  _  rn aa ( l - a ) \ l - w ( r nz)\ _
W  W -  |^,2- 2a(1 _ ljs|2«) | , |2- 2a( 1_ | rn , | 2a)

a2\w(rnz)( l  — w(rnz))\ \z\2a a2\w (rnz )( l  — w (rn,?))| rn2a\rnz\2a 

\z\2~2a{ l - \ z \ 2a)2 M 2_2a( i - | M 2a)2 }
17



a |l —w(rnz ) |( l  —rn2a) f  i _ a a|«|2“® (rn «)(l-r„2“—2rn2“|« |2°)
U |2- 2“ l ( l - | Z|2“) ( l - | r „ 2|2“) ( l - | z | 2“)2( l - | r „ 2|2“)2 }

and D(z) — C(z) =
_  ka2\ l  — w(rnz)\ j  \_____________^

|^ |2- 2a \ ( l - \ z \ 2a)2 ( l - | r „ z |2a)2}

_  ta 2| l - u i ( r nz ) |( l —r n2ll) ( l  —rn 2° |z |4a)

|z|2- 2“ ( l - | z | 2‘' ) 2( l - M 2a)2 ‘

Hence i t  is sufficient to  show

(1 —a)(l —|2|2a) ( l  —|rnz|2a) —fl|z|2au^rnz)(l +  rn2a—2rn2a|z |2a)

(1.7.9)

Note tha t |z|2a( l  +  rn2<1—2r n2a|z|2a) < 2a I „|4a

so (1 —a )( l — |z|2a) ( l  — |r n2|2a) —a|z|2aiy (rn2) ( l  +  r n2a —2r n2a|z|2°)

<  ( l - a) ( l - | z | 2a) ( l - | r n . | 2a) +  a\w(rnz ) \ ( l  — rn2a\z\4a)

<  (1 — r „ 2a|.z|4a) ( l  —a +  a|u;(rn,?)|j <  ka(l — r n2a\z\4a).

The last inequality follows since we assumed |to| <  —— — -. Th is proves (1.7.9). As before we 

conclude tha t { / n} form  a normal fam ily. Note tha t An —> A, f n —> f  , wn —* w through a 

su itab ly chosen subsequence. This completes the proof o f the theorem when 0 < fc < l.

(d) The case when k =  1 and \w \< {2 a —l ) / a  can be considered as in  the p roof o f the

Theorem 1.6.1’ (e). We show tha t i f  the extension o f /  satisfies (1.7.3) w ith  Jfc=l and

|iy |< (2 a — 1 ) /  a in  A , then f n and wn defined above w ill also satisfy (1.7.3) w ith  str ict inequality 

and Ar= 1. i.e.

% C ,C )  C <3)(D,D).

This is true since (1.7.10) and \w \< (2 a —l ) f  a and so f n satisfy | ( / n ) j / ( / n ) z |< l  in  C. Hence 

{ f n }  fo rm  a norm al fam ily  o f local homeomorphisms in  C and hence univalent in  A . Its  l im it  

function /  must be univalent in A . (for details see part (e) o f the proof o f Theorem 1.6.1’ ) □

§ 1.8 Some Remarks

18



We shall discuss here some fine points about the proofs o f the Theorems 1.6.1’ and

1.7.1’ .

(*) In  (1.7.2), the univalence criterion o f Lewandowski and Stankiewicz, as 

Lewandowski mentioned (private comm unication), the hypotheses p > 0  and p(0) =  l  can be 

replaced by p > 0  in A . This means tha t the corresponding criterion o f (1.7.3) when Jfc=l and 

a =  1 can be taken as |u ;(z ) |< l and w ^ l  in  A . C learly our proof o f (1.7.3) does not handle th is 

case and we must have | w(z)| <  1 for the approxim ations o f the triangle inequalities to  go 

through. In  fact, in  Theorems 1.6.1’ and 1.7.1’ , the corresponding ana lytic functions w were 

assumed to  satisfy tu(0) =  0 (hence p(0) =  l ) .  However, we have not made use o f these 

assumptions.

(m) In  Theorem 1.6.1’ , the assumption a > |  is necessary in  Lewandowski’s proof, and 

our Theorem 1.6.1’ also has th is inequality. However, although £ (z )= z 1- a (z )_° is a reflection on 

|z| =  1 only when we have not made use o f this assumption in  our proof. A ll we required

was a < l ,  hence we may relax our assumption to be 0 < a < l .  Recently Lewandowski [3] has 

extended the range o f a to  a > |  in a more general criterion. Th is  shows th a t the p roof o f 

Lewandowski, which based on Pommerenke’s subordinate chains and our proof based on Ah lfors ’ 

method give rise to  tw o ranges o f values o f a, which overlap each other. I t  should also be noted 

tha t, by choosing a suitable branch, a could be assumed to  be complex-valued. Th is  is seen by 

choosing c = 0  in (1.6.4), where the boundary condition is 11 — a| <  £|a|. Th is  inequality implies 

th a t a lies in  a region which is the intersection o f the disc w ith  centre rad ius ^

and the half-plane $ (z )  <  1. S im ilar conditions in  the other cases also exist, bu t we choose not 

to  pursue this.

(m ) We consider Theorems 1.6.1’ and 1.7.1’ again; let a = l  in  both cases, i.e. we 

consider the criteria

<  k < 1  V z € A , |u>|<fc, (1.6.2)

and
,2N Z w \ z )  (1 —|z |2)2 ,  y .  A | . . .1 '  a({~\ z <  £ , v  ^ A ,  M < * -w(z) \z\ ~  (1 —M  ) l T l on  t w S(f’ z)^TW l 1 v '  1 — w{z) 2(1 — w(z)) v '  z

The corresponding extensions g appear in (1.4.6), o f the Theorem 1.4.5 o f Anderson and

Hinkkanen [1], are in  fact given by
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, . — w{z) Z 1 f \ z )  . , . — w(z) z
gAz) —  T~T=r +  ?i * - and g2(z) =  ----- ^ 5-
m  '  l - \ z \ 2 2 / ( z )  l - \ z \ 2

respectively.

Now (^ = ( T $ [ ^  and
and they both satisfy (1.4.5) w ith  r  — 0 since w is generally a complex-valued function. B u t

limsup |tf7 (2) | ( l - M 2)2 <  i
Id —*■! 1

i f  and only i f  | tu (z ) |< |.  Hence Theorem 1.4.5 does not apply in  these cases.

( iv ) The proof o f (c) o f Theorem 1.6.1’ can be made easier i f  we assume J{0 )= 0  and 

/ ( 0 )  =  1. So tha t, i f  { f n}  satisfy (1.6.6) they have K-qc extension. A lso the class o f normalized 

univalent functions in  A  having K-qc extension is a normal compact fa m ily  w ith  respect to  the 

m etric o f locally uniform  convergence. Hence we can extract a subsequence so th a t f n —* f  and /  

also has a K-qc extension (see Schober [1]).

(v) We fin a lly  mention tha t although Theorems 1.6.1’ and 1.7.1’ were proved under the 

assumption tha t w(z) is ana lytic and bounded in  A , i t  seems tha t a ll we require is w{z) €  ^ ( A )  

(i.e. /  has firs t order continuous derivatives in  A )  and |u;|<&. Th is w ill o f course lead to  some 

more general criteria, and we leave this for fu ture  work.

§ 1.9 Applications to /

00
Theorem 1.9.1 Let j { z ) =  2+ X )  ° nZ ”  be a regular function defined in  | >  1. Suppose f

n = m
also satisfies

ka i* i > 1,A * ) - l  +  H Ta |2 a (1.9.0)

where m + 1  >  a >  |  and k <  1. Then f  has a K-qc extension to C with _ 1  +  *

The case when a =  1 was obtained by Krzyz in  1976 [1] through direct com putation. We 

sim ply apply the Ah lfors ’ method again w ith  slight alterations.

P roof We firs t note tha t (1.9.0) implies tha t f { z ) ^ 0 for |2| > 1. For suppose / ( 2i ) = 0, then

(1.9.0) becomes |1 — a— |21|2a|<A:a. Rewrite th is as
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— k a < l  — a— \zl \2a<ka.

From  the firs t inequality, we obtain a+ |-? i|2o< l  +  ̂ fl- B u t a +  |^1|2a> l  +  iba, hence / ( z ) ^ 0  for 

|^ |> 1  and /  is locally univalent in |^ |> 1 . Now we assume th a t /  is loca lly univalent in  12r|>  1,

and define the extension F  (sim ilar to  (1.6.7a)) in  A  where g (z )= f (z )+ (C (z )—z) and 

C(z) =  z1-a OO_a. Thus

« (*). =  and ^ J)T= A 2) + ( ( 1 - “ ) g 5 3 - 1)  •
1* 1'

Hence from  (1.5.3), we show

A 2) " 1 +  UTa
ka

|2 a M > i -

Here we have u(z) =  z a(z ) a — z as before. Now u {z )_=  — ^ ^  0 , |^ |> 1  and
z \z\ Z "T

2^ 00. When z =  oo, we consider ^ ( j ) -1 ^ at 0 instead. T h a t is to  show l / g ( l / z )  is locally 

univalent at the origin.

( t f d ) ” 1)  =  (./ ( I / * )  +  » ( ! / * ) ) “ 1=  ( A 1 /^)-+- “(1 /  2r) )~ 2w( r? H § f » *7 =  2

_ ( o j l p 15)

( j { \ / z )  +  u ( \ / z j } 2 ( x i / * )  +  « (! A ) ) 5

ar,2a —2
( r2a - le- if l +  arnrmeim(»+  . ..)5

(r°e- **+  amrm+1-a e*mfl +

where 2=  re

^  0 i f  2= 0  and m + l> a .

We then show the extension F  is locally homeomorphic on |z| =  l .  I t  suffice to  show tha t 

g is locally homeomorphic in the disc ^(e **, 6) for some sm all S. I f  e,tf+ 6G C \A , then g is 

locally homeomorphic, while i f  e‘ * +  6 6 A  we consider g(et9+ £ )  where et0+ 6 € A * .  Now

J ( e " + f )  =  Xe i<’ +  5) +  ((e*# +  5)1- “ (e— +  —(ei#+ 5 ) )

= A e ia) - t--S (/(^ ")  — a) — a? e*'2® 0 (^ 2).

From  (1.9.1), we have | / ( e ' tf) — a\ <ka  and th is implies th a t 6 ( / ( e i9) — f l ) — fl5e, 2tf^ 0 .  Hence F  is 

locally homeomorphic on |^| =  1.

To  remove the extra assumption tha t /  is regular on |z| =  l ,  we approxim ate /  by

fn(z) =  -fi-j{Rnz) in  (1.9.1) which becomes 
Kn

+ &
< ka

| RnZ 2 a U I> 1. (1.9.2)
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As before we want to  show tha t f n also satisfies (1.9.1), tha t is

ka
|2 a \z\>  1.

We have om itted  some details. I t  is now easy to  show tha t (1.9.2) 

rad ii argument to  the closed discs (1.9.2) and (1.9.3):

(1.9.3)

(1.9.3). We apply the

1 —a _  1 —q _  l  — a(  1 1 an(j
|zj2a In „ z \ 2a -  |z|2A a Rn

ka _  ka _  ka ( i 1 \
\z\2a \RnZ\2a \z\2a\  Rn2° I '

So (1.9.3) is true, since we have assumed tha t 1 — a<ka  or a > l / ( l  +  fc )> l/2 .  Th is  completes the 

proof o f the Theorem. □

As mentioned before the above theorem, when a = l ,  is a special case o f Theorem 1 in  

Krzyz [1]. We shall a lter K rzyz’s theorem s ligh tly  to  obta in the fo llow ing:

Lemma 1.9.2 Suppose w(z) is analytic in A  and such that | t t / (2) | < l  in  A . Then J{z) =  |  +  iu(z) 

is meromorphic and univalent in A . Moreover, i f  |u /(z )| < Ar< 1, then f  can have a K-qc extension 

to C with The extension to C has the fo rm  f ( z ) = z z + w ( l / z )  |<?|>1.

We om it the proof.

Let j {z) =  z +  02Z2 +  a3z3 +  be analytic in  A . We define:

: =  i  +  M*.C) (1-9-4)

i.e. h(zX) is equal to  the righ t hand side o f the above expression. We prove the fo llow ing result:

Theorem 1.9.3 Let J[z), g(z) and h(z,Q i t  defined as above. I f

\hz(z,C)\ <  k <  1 V z £ A  and C € A , (1.9.5)

then f  has a K-qc extension to C. I ( =  |

The case when &=1 was a univalency criterion due to Ozaki and Nunokawa [1]. Thus 

Theorem 1.9.3 shows tha t by replacing 1 by k <  1 we actua lly  obta in  quasiconformal extension. 

Also note th a t |M 0 ,01 = | ( 1 - | C | 2)2W ,C )I < k V < ^ A  ,

is a necessary condition i f  /h a s  a K-qc extension, and
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IM 0 .O I <  j *  v < e A

is a sufficient condition for /  to  have K-qc extension (Nehari’s and A h lfors ’ conditions).

Proof: Let /, g and h be defined as above. Since h (z£ )  is ana lytic  in  z £ A  and satisfies (1.9.5), i t  

also satisfies Lemma 1.9.2 w ith  w(z) =  h (zX ) for a fixed |u;(z)| <Jfc<l. Th is shows tha t g has a 

K-qc extension which is given by

~a(2\ -  I  \  +  < z) M < 1
9 1 > ~  \  z + w { l /  z)  |z |> l*

Now z + <  \  _  A c k i - ic i2)
1 +  <lz) 9{z)

+  AC).

Th is is equivalent to y j»  =  A C )(1  1,1 11) +  A a  z e A _

We have already shown tha t g has a A'-qc extension. I t  is therefore stra ightforw ard to  verify /  

too has the corresponding extension. According to  g ,

7(z) =  +  x o ,  | * | > i

A l - ? J

/ ( 0 ( i — ic i2) , ^  A o a - i c h  ^  K n

& > { &

Let rj(z) =  now

7 R  - / ( C X 1 - IC I2) l  (JJ) 1 - IC I2
f i ( z) -  7-----------------------T 2 W )  r-— 7 T2

.1 u - o

Hi-c*

and fz (z )  = /(0(i-ici2) 1-ici5
' j - C .  
T  — £z

( l - C z ) 2

So f j
f  z

=  I M * ) I
L z C f <  I M 7?)! <  *  <  1 f ° r M > i -

Th is completes the proof o f the theorem. □
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§ 1.10 A Counter Example

Although the Ah lfors ’ approxim ation method works well fo r find ing  some o f the 

sufficient conditions for qc-extension, including those obtainable through Lowner chains, we 

provide here an example criterion tha t has been obtained by Lowner chain bu t does not seem 

obtainable by the rad ii argument.

Theorem 1.10.1 (Becker [2]) Let y(z) =  z + y  +  ••• be analytic in  |-?|>1. I f  | c |< l ,  c ^ l  and 

k <  1, then i f

1 — c
(1 c|z\ 2)2|j 2

1 +  k

- 2 < * ,  |*|>1 (1.10.1)

implies f  has  ̂ ■ j -qc extension to C.

We now try  to  prove th is criterion by Ah lfors ’ method w ith  the extra assumptions tha t

c is real and tha t c < ( l  — k ) /2 .  Note tha t / i s  locally univalent in  |* |> 1 . For suppose /(<?) =  0 for

some z, then (1.10.1) and c < ( l  — k ) /2  w ill yield a contradiction. So le t /  be defined as above but

also ana lytic  on \z\ =  1 and define the extension to  be <7= /+ ( C  —*)» where £(<?) = — ^ ~ C o-^ -  is
1 - c / \ z y  z

an anti-quasiconformal mapping which maps the A  onto | z |> l  and fixes the \z\ =  l  w ith

| / i j  =  | c | / | 2|2< |c | (th is  anti-qc mapping is also due to Becker). The quasiconformal condition 

requires |<77|<fc|<7*| |z \ > l .  We obtain

9* {z) ~  (1 c){ ( l  —c/%12)2 z l 3 +  l - c / | z |2 (  I 2) }
—( 1—0

,  I 2( l - c / | z |2)2
and

fc (* )  =  / ( ^ ) - 1- (1_(c / |^|)2)2 j ^ j .

The quasiconformal condition ju s t becomes (1.10.1). We note th a t i f  e‘ * +  £ € A  then the 

extension

F(ei# +  « ) = j ( l / ( e - '» + i ) ) = y ( e ' , ) + r ^ ( i + ? ( l - < :) ( l - / ( e i#)} fc )e i2'  +  0 («2) 

and (1.10.1) shows tha t F  is locally homeomorphic on d A .

* ( * ) = , .■ 51,7 c\ a . t | l _ c |

(U 0 -2>

Replace z by Rnz and Rn >  1 in (1.10.1). Th is becomes
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\ f ( R nz ) - l - A { z ) \  <  A{z). (1.10.3)

Consider the fa m ily  f n { z )  =  -^ - f{R nz) where Rn —► 1 as n —► oo. We w ant to  show f n(z) also
I t n

satisfies (1.10.1). i.e. \ f ( R nz) — 1 — B(z)\ <  B(z). (1.10.4)

As we have done before, we want to  deduce (1.10.3)=>(1.10.4). I t  is easy to  obta in tha t

n ^ S S S 5{|z|2(ii"J+1)-(c+5)}’

and

Hence

i f  and only i f

\A (z ) -B (z ) \  <  B { z ) - A { z ),

U l W  +  1) — c < H W + i )
-  »(<0

The above inequality is true i f  and only i f  c is a real number. So we conclude by the Ah lfors ’ 

method and the rad ii argument tha t we have Theorem 1.10.1 only i f  c is real.

§ 1.11 A Univalence Criterion involving an Area Integral

We have already seen many uni valence crite ria  or crite ria  fo r quasiconformal extension, 

most o f which were given in  the form  o f inequalities. They can also be given in  the fo rm  o f an 

area integral. D. London was the firs t one who gave such a result.

oo
Theorem 1.11.1 ( London D. [1]) Lei j{z) =  z+'%2anzTl be an analytic function defined in  A  and

2

i f

J J \ S ( f , z )| daz<  2tt

then f  is univalent, and a z denotes the area element of z-plane.

Follow ing London’s method, we have 
oo

Theorem 1.11.2 Let J{z) =  z + Y ^ anZn be an analytic function defined in  A  and i f
2

J  J m M ?  < ^ « < ( l . n . i )
A
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where T ( f z ) = f f ( z ) / f ( z ) ,  then f  is univalent.

We remark tha t th is result has been found independently by V .D . Golovan' [1] and he 

also proved th a t i f  the inequality in  (1.11.1) is s tric t then d j{A )  w ill be rectifiable. The proof o f 

Theorem 1.11.2 is s im ilar to  tha t o f Golovan', bu t our considerations are quite d ifferent and th is 

leads to  new problems.

Let z = z ( Q  be conformal in  A , then i t  is easy to  verify  the fo llow ing.

T\foz,c)=m V(o+n*.o (i.n.2)
Also T \ f  2)= 0  i f  and only i f  f — az-\-b where a, b are constants. The Schwarzian derivatives also 

have a s im ilar iden tity  which we w ill see in the next chapter.

We need tw o lemmas.
o°

Lemma 1.11.3 (D . London [1]) Let g(z) =  '%2bnzn be an analytic function.
0

Then we have 7r | ̂ (0) | <  J  J \g (z ) \  d<rz.

oo
Lemma 1.11.4 Let f{z) — z + '£ Janzn be defined in A , then

2 1

\T (f,z)\2 d<r3

\ U f z ) \ <  ■—n  ,2\ '  ( l-H -3 )
T 5 F (l- |z | )

Proof Let z= z (£ )  be a conformal mapping which maps £-plane to  2-plane. Consider

J  J  m / . * ) i2 =  J  J  i i ( M < ) y « ) i a

|*|<i |c|<!

>  7r| T^/,z(0)^ 2;(0 )|2 from  Lemma 1.11.3.

We now choose 2(C) to be an automorphism o f the u n it disc and set 2(C)=

Hence J  J  \T(f,z)\2 i a . >  r  |71(/,<)|2(1-|<|V.
\ * \ < ‘

Proof o f the theorem Suppose /  satisfies the hypotheses o f Theorem 1.11.2. Then from  (1.11.3)

1

( i - M 2M / , * ) |  <  ^  ( / /  W . * ) I J i * .  J < i .
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The uni valence o f /fo llo w s  im m ediately from  (1.4.2), the theorem o f Becker.

I t  is also clear we have the fo llow ing corollary.

00
C oro lla ry  1.11.5 Let j{z) =  z+'%2anZn be an analytic function defined in  A . I f

2

J  J  I2 &**<
A

~ 1 +  Jfcwhere 0 < & < 1 , then f  has a K-qc extension to C, where K = ^ _ ^ .

Remark Theorem 1.11.2 was also obtained by Krzyz [2] in  a very d ifferent way, invo lv ing  the 

Green’s function and the Schwarz sym metrization. Krzyz considered the geometrical shape o f the 

set

t t j  =  {log f ( z ) :  ze  A }  / ^ 0 ,

and asked under what conditions on fly  tha t implies /  is univalent. He proved th a t i f  the area 

| f l y | < 7r, then /  is univalent. The proof o f Theorem 1.11.2 serves as a simple a lternative  method 

o f Krzyz.

The correct analogue o f Theorem 1.11.1 o f London would involve JJ| T(fz)\d<Tz instead 

o f the Z2-norm  and the question appears to  be open.

□
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Chapter Two

Schwarzian Derivatives and the Domain Constants

§ 2.1 Introduction

Let us recall the defin ition o f the Schwarzian derivative o f an ana lytic function defined 

in  a dom ain A. We have S(f,z) =  \ — J (z) — • We shall also w rite  S(f,z) as S j  i f  we do

not want to emphasize z.

H istorically, the d ifferentia l operator was firs t known to  Riemann as early as 1857, but 

the firs t person who actually studied i t  extensively was H .A . Schwarz. He investigated 

d ifferentia l operator invariant w ith  respect to  M obius transform ations; th is later became known 

as the Schwarzian. Much later M. Lavie [1] showed tha t under the assumption th a t 0 a ll the 

d ifferentia l operators o f order n on f  (i.e. operator invo lv ing  /, / ,  / V - - ,  / " ^ )  inva rian t w ith  

respect to  Mobius transformations can be w ritten  as ra tiona l functions o f S(f,z) and its  

derivatives o f order up to  n—3. The Schwarzian also plays an im portan t role in  several branches 

o f complex function theory. We have seen th a t i t  is closely related to  the theory o f 

quasiconformal extensions in the last chapter and univalent function  theory later in  th is chapter.

Let /  be an analytic function defined in  a domain A  and z : B  —► A be ana lytic, then we 

have S(fozX)  =  S{f,z) / ( C )2 +  S(z,C) (2.1.1)

I t  is not d ifficu lt to  check tha t 5'(z,C) =  0 i f  and only i f  z is a M obius transform ation. Hence i f  

A =  A  and z is a Mobius transform ation mapping the u n it disc onto the u n it disc then (2.1.1)
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becomes S(foz,Q =  S(f,z) / ( C ) 2, (2.1.2)

since the Schwarzian o f a Mobius transform ation is identica lly  equal to  zero.

We also recall tha t the Poincare density function o f a s im ply connected dom ain A  is 

defined as
!/(» )!

A _  1 I ff .M2'v A * )  =
i - I M l

where /  is any conformal mapping which maps A  onto a u n it disc. Let /  and g both  be conformal 

mappings defined in  A, then i t  follows from  (2.1.1) tha t

S (fo z ,0  -  % o * ,C )  =  {•?(/,*) -  S(g,z))  / ( O 2. (2.1.3)

Now let /  : B  —► A  and J  : A —► A  be conformal such th a t Joz =  I. Since the Poincare

density o f B  is independent o f the conformal mapping, we have

„  ,n  =  lAfll =  IA*) API =  „  ( A  I J ( n \

’’ s iO  i - | / ( C ) |2 l - U W I 2

and (2.1.3) becomes
S(f°z ,Q  ~  S(gozX) _  S(f,z) -  S(g,z) 

1B(nB( 0 2 vA(z)2

Now define the norm o f the Schwarzian derivative to  be

\Sf  \ =  sup {  \S(fz)\ r}A(z)~2: z 6 A } .

Hence

l 5/ - S» h =  (2-1-4)
I f  we now put z = g -1 , we obtain

\si ~ sA a =  ( » • « )

I f / i s  the ide n tity  mapping o f A, then (2.1.5) becomes

\ S>\A =  (2-1-6)

Suppose g is a M obius transform ation in (2.1.5). Then the equation becomes

and i f  we now let m be a Mobius transform ation, then we have

i5'h= i w u  (2-L7)

i.e. the norm  o f the Schwarzian is completely invariant w ith  respect to  M obius transform ations, 

since when comparing to  (2.1.2) the last term  disappeared.
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§ 2.2 The Domain Constant fi(A)

We now introduce the concept o f domain constant o f a s im ply connected domain. Let /  

be a conformal m apping which maps A  onto A  . The domain constant f i (A )  is defined by 

f i(A )  =  |5 / |  =  sup { \S(fz)\ riA(z)~2: zGA, f :  A  —► A  conformal}.

This defin ition  is well defined, for i f  g : A —► A  is also conformal, then fog-1 is an 

automorphism  o f the u n it disc and so i t  must be a M obius transform ation, hence g = M o f  where 

M  is a M obius transform ation. Thus by (2.1.7), f t(A )  is well defined. Also from  (2.1.6), since

H =  i H v
we have the equivalent defin ition:

f i(A )  =  |5 / |  =  sup { |S(fz)\ rjA (z)~2’ z e A , / :  A  —► A conformal}. (2.2.1)

=  sup {  (1 — \z\2)2\S(fz)\ : z £ A , / :  A  —► A conformal}.

One o f the m ain problems is to  determine what f t (A )  is when given a dom ain A c C . 

Since the Schwarzian derivative o f a Mobius transform ation is identica lly  equal to  zero, so f t(A )

can be regarded as a measure o f the deviation o f A  from  A  or /  from  the Mobius

transformations. We have an upper bound o f f t(A )  whenever /  is conformal. Th is has been found 

by Kraus [1] in 1922 bu t was forgotten and rediscovered by Z. Nehari [1] in  1949. Let us proceed 

to the proof now. According to (2.2.1) we may assume / :  A  —► A  to  be conformal and since for 

any £0G A , there exists an automorphism  g o f A  such tha t g(0) =  zo, we have by (2.1.7) tha t

( i - W 2)2W .*o ) l =  ( i - | o | 2)J|S(ybj,o)| =  |S(/o,,o)|.

So we have another characterization o f f i(A )  that:

f t (A )  =  sup {  |5y(0)| : / :  A  —► A conformal } .

Now by (2.1.7) again, we may further assume tha t /G S  and since S(f,0) =  6(a3 — a22), we 

fina lly  have

ft(A )  =  sup {  |6(o3 — a22)| : /GS, / :  A  —► B conformal and B  is Mobius equivalent to A  } . 

This new characterization gives a relation between the dom ain constant Q (A ) and the 

coefficients o f /w h ic h  is very useful. Let /GS, then l / f ( l  /  z ) = z + b Q +  b1/  z +  • • • is  meromorphic 

in |^ |>  1 and the class is called E. I t  is well known th a t |& i |< l  by the area theorem (see Duren

[1] p.29). B u t b1 =  a22 — a3, hence \a22 — a3\ < l .  Thus we eventually arrive at the sharp estimate 

D (A ) <  6 (see also Lehto [2] p.61).
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Let /G S, then the renormalization o f /  is given by

(fow) (0)

where w(z) =  e*e ( r r £ ) >  « € A - is an automorphism  o f A . C learly g also belongs to  S. We call 
v i “p ̂  z /

any fam ily  o f functions tha t has the s im ilar property as S above to  be l inearly invariant. The 

function g is called Koebe transform  o f f  the ranges o f /  and g are therefore sim ilar. I t  is clear 

tha t the above new characterization for the dom ain constant depends on the fact th a t S is 

linearly invariant.

Recently there has been growing interest in  find ing  the dom ain constant o f d ifferent 

domains A. Nehari [3] h im self had found tha t i f  A  is a convex domain, then f i(A )  <  2 and the 

bound is sharp.

We recall tha t the domain A has bounded boundary rotation kir i f  there exists a 

conformal m apping /  o f the A  onto A  such tha t

2tt

lirn J  |u (re '*)| dO <  ibr,

0

where u{z) =  $ t ( l  +  J j ^ .  I t  is therefore easy to  see th a t i f  the boundary ro ta tion  is exactly 27T 

then /  is convex or A  is a convex domain. For details about the bounded boundary ro ta tion  

functions we refer to  the book o f Duren [1] p.269. Using the techniques described above Lehto 

and T am m i [1] (see also Lehto [2] p.64) proved th a t :

Theorem 2.2.1 Let A be Mobius equivalent to a domain with bounded boundary rotation less 

than kir. I f  k < 4  then ,

the bound is sharp.

S im ila rly  we have the fo llow ing result i f  the function is close to convex. A  conformal

<  where g is amapping / ( 0 ) = / ( 0) - l = 0  is said to  be close-to-convex o f order fd i f  I ar/ ^  1
9(z )

convex conformal mapping defined in A  and /? >  0, we denote th is class by Cp. A  dom ain is 

called close-to-convex o f order /3 i f  i t  is a image o f a close-to-convex o f order /? function in  A .

Theorem 2.2.2 (Koepf W. [1]) Lei A be Mobius equivalent to a domain close-to-convex o f order
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/?, then we have 

This result is sharp.

n (A )  =  f 2+2AP P - 1 .
V J \2(3 +4/3 (3 > l

§ 2.3 The Domain Constant o f  a Strongly Starlike Domain

Let us recall from  the D efin ition  1.4.1 tha t a function j {z ) =  z + a 2z2 +  ---G S is strongly

z f
starlike o f order a  where 0 < a < l ,  i f  | a r ^ - j - | < ^ .  We shall now define a domain A  to  be 

strongly starlike o f order a  i f  i t  is a image o f a function which is a-strong ly starlike.

When considering D(j4) for different classes o f domain A, we found tha t the method 

described above in  § 2.2 does not seem to work for strongly starlike domains. Both the proofs o f 

Theorems 2.2.1 and 2.2.2 were based on the fact tha t the classes o f functions w ith  bounded 

boundary ro ta tion  and close-to-convex functions are in fact linearly invarian t. Hence one can 

transfer the problem to  the origin  and find  a least upper bound o f |5y(0)| over the corresponding 

functions and then transfer i t  to other points in the u n it disc. Th is is exactly what we have done 

for the class S. But strongly starlike functions are not linearly inva rian t. However we s till find  

that:

Theorem 2.3.1 Let A be a domain which is Mobius equivalent to a strongly starlike domain o f  

order a, where 0 < a < l ,  then f i( ;4 ) <  6 s in ( ^ ) .

Let us say tha t fGSK  i f  f c S  and /  has a K-qc extension to  C, where its  complex 

d ilita tion  /j^  satisfies |/i^ | <  k =  The extension is w ritten  as f ( z )  when |^ |> 1  and

f ( z ) = j { z )  when 12r|<  1. We also define S ^(oo) to  be the subclass o f such tha t f (oo )= oo. We 

quote the fo llow ing lemma which is due to  R. K iihnau  [1] and Lehto [1] :

Lemma 2.3.2 Suppose f£ S K , then |a22 — a31 ^^  =  *'n E d i t io n  / ( oo) =  oo i.e.

f€ S K (oo), then |a2| <  2k

and with equality i f  and only i f

n >  l * l > i '
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Proof o f Theorem 2.3.1 By Theorem 1.4.3, /E S * (a )  then /G S ^  w ith  fc<s*n(a;7r / 2). So by 

Lemma 2.3.2, \a22 — a3\<k .  Since the class SK  is linearly invarian t, then according to  § 2.2 we 

deduce f i( .4 )<  6 s in ( y ) .  I t  is however not known th a t i f  th is estimate is sharp. □

§ 2.4 Estimations o f  the Logarithmic Derivative - j .
f

Just like estim ating the |5^| we can also estimate (1 —1 |̂2) | ^ - |  by s im ilar techniques. 

However the logarithm ic derivative does not share the same invariance properties as the 

Schwarzian derivative. I t  is well known tha t i f  /GS, then |a2| <  2 (see Duren [1] p.30) and by 

the Koebe transform

/(<)(!

s till belongs to  S. Hence we have <  4

or ( i - M 2) m
a *)

< 6.

We have the fo llow ing analogue when /  is convex:

oo
Theorem 2.4.1 (Hayman W.K.\ see Ahlfors [2] p.5) Let j{z) =  z + ^ 2 anzn be a convex function

2
defined in A , then

( i - M 2)
a *)

<  4.

We shall be interested in  find ing the constant for strongly starlike functions and close- 

to-convex functions. Let us quote the fo llow ing result:

Theorem 2.4.2 (Schiffer and Schober [1]) Let f  € SK , then

\a2\ <  2 —4/c2, (2.4.2)

where k =  ^  arccos k E (0, | ] .  This estimate is sharp ( the extremal function also exists).

Since /  is linearly invariant w ith  respect to SK , we can use (2.4.1) and (2.4.2) together

to obtain
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VyftUJStCT 4

( 1 - I * | 2 ) | ^  -  2 | « | 2| <  2 ( 2 — 4 k 2 )  

( 1 - ^ | 2 ) | ^ |  <  6 — 8 k 2 .

However i f  we consider f(ES*(a)  we can expect a better estimate. B y a closer inspection o f the

qc-extension o f S * (a ) in  Theorem 1.4.3, we see th a t / ( o o )= o o . Hence by Lemma 2.3.2 we 

deduce that

d - W 2) | ^

B ut th is is s til l not the best possible estimate, we shall now derive the sharp result fo r the 

logarithm ic derivative for S * (a ) .

Theorem 2.4.3 Lei f £ S * ( a )  0 < o < l ,  then

( i - M 2)

where equality can occur i f  and only i f
a *)

<  6o,

* - jfr  =  W  =  1 « < 1 .  (2.4.3)Z1
K*)

When a =  l  f  is just a starlike function and the estimate is also sharp.

We require the fo llow ing defin ition  and lemmas. Let /  and g be ana lytic  functions in  A . 

We say tha t /  is subordinate to  g in A  i f  there exists an ana lytic  function  w defined in  A  such 

th a t w (0 )= 0 , \w (z ) \< l  when z £ A  and J(z) =  g(w(z)) for z € A . We denote th is re lation by f-<g. 

I t  is well known tha t i f  g is univalent in A , then /-< g in  A  i f  J(0) =  g(0) and / (A ) C g ( A ) .

Lem ma 2.4.4 ( Pick’s lemma; see Ahlfors  [1] p.3) Let P be an analytic function defined in  A  

and i f  \P \< 1  in A , then

I ^ M I  <  v  * e A >
1 — u

with equality i f  and only i f  P  is an automorphism o f the unit disc i.e. P(z) =  1
zxz

00 oo
Lem ma 2.4.5 (Rogosinki W. [1] p.70) Let J(z) =  Y^(*nZn be subordinate to F ( z ) = ^ 2 A nzn in  A .

1 1
I f  f  is univalent in A  and F (A )  is convex univalent, then |an | <  l - d j  Vn. I f  F (A )  is not a half-

plane, then the equality can hold fo r  a given n only i f  f { z )= F (c z n), |e| =  1. I f  F {A )  is a half- 

plane then equality occurs only i f
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/*y>o , E f i j = A i»

Proof o f Theorem 2.4.3 Let f (zS *(a )  and P(z)
z/(z)

i.e.

JW

-< ( £ f ) “  * € A

Then P  is subordinate to  the function

Hence there exist an ana lytic function w(z) such tha t u>(0)=0 and | i t ; | < l  and

'W  -  ( £ § ) '  « ■

?/_(*) =  p ^ _ l  +  / ( Z)Differentia te both sides

Now

(2.4.4)

Since —1 is a convex conformal mapping, by Lemma 2.4.5 the coefficients o f

P — 1 in  the series expansion are dominated by the firs t coefficient o f —1 which is

bounded by 2a. So suppose “ * =  12bJ tA  then

H  *  ?  ^  *  2“ ?  i«i*= T = f t -  |2 |< i- <2-4-5>
Also since

i / « =  l + j r f r t
v ’ 1 — w(z)

We have 

By P ick ’s lemma

\ P , (z) _  w \z )  w \z )  _  2 it/(z )+ 2 *

P(z)

1 +  111(2) l - t o ( 2) 1 — w(r)

n  i - i2i  -  s M U - M * ) ! 2) ^  o (2.4.6)

From  (2.4.4) we deduce tha t

( i - N 2) + ( i - M 2) P(z)

<  ( i - l *
2a|^|

T ^ U T
+  2 a

<  (1 +  |^|) 2a +  2a  <  6a. (2.4.7)
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E qua lity  in  (2.4.7) can occur i f  and only i f  both (2.4.5) and (2.4.6) hold w ith  equalities. 

From  (2.4.5) and Lemma 2.4.5,

z f(z )  / l  +  ty (^ )\°  , . n i i 1 j  1
-Jz )  =  ( r ^ j )  ’ " M = "  | e | = l  a n d a < h

Also from  (2.4.5) and Lemma 2.4.4 the only automorphism  v)(z) =  ezn o f the u n it disc 

such th a t tu (0 )=0  must be w(z) =  cz where |e| =  l .  Hence /  has the representation (2.4.3). When 

a  =  l  /  is ju s t an ord inary starlike function and i t  has a standard representation (see 

Pommerenke [ l ] ) .  □

Remark l  The estimate 6a  in  the above theorem is better than 6 s i n ( ^ ) .

Remark 2 Let f £ S * ( a ) then since z f  / /  -< ^ j  , i t  is reasonable to  believe th a t i f  /sa tis fies

the equation (2.4.3) then /  is the extremal function, ju s t as the Koebe function is the extrem al 

function o f many problems in  Geometric function theory. Theorem 2.4.3 shows tha t /  is indeed 

the extremal function for tha t problem. However Brannan, Clunie and K irw an  [ l ]  found th a t the 

/  satisfying the (2.4.3) is not the extremal function for the coefficient problems, and i t  is 

extremal only i f  a  is near to  0 or l .  The situation is more complicated, in  fact they proved:

(a) i f  | a21 <  2a and (2.4.3) is the extremal function;

z f  / I  | r ^ \ a
(b) i f  0 < a < l / 3 ,  then |a3| <  a  and the extremal function satisfies - j - =  ^  ^ J |c| =  l ;

(c) i f  l / 3 < a < l ,  then |a3| <  3 a 2 and the extremal function satisfies (2.4.3);

(d) i f  a  =  l / 3 ,  then |a3 | <  1 /3  and the extremal function satisfies

f t 1

1 / 3

where |e| =  l  and 0 < A < 1 .

S im ila rly , we have the fo llow ing estimate for the functions which are close-to-convex o f

order (3.

Theorem 2.4.6 (cf. Theorem 2.2.2) Let /€  C^, /?> 1, then

(1 -W 2)

This estimate is sharp.

/ m
< 2(2 + 0 ) A.

Proof Since /G C^, we can find  a convex function <j) such tha t
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/(*)arg -
V w -  2  •

By the subordination principle, there exists an ana lytic function w^z) such tha t 10(0) =  0 and 

| <  1, w ith
/(f) _

\ l  — w(z)J

Taking  logarithm s and d ifferen tia ting  both sides, we obtain

* / ' ( * )  _  j 4 n ( * ) , o f  w\ z) , w\ z) w  _  y ; (*)0 2  = J tM  + *ii> )) = £SS + fiJS & L . (2.4.8)
/ ( * )  ^ ( 2) Vl +  U<z) l - w ( z ) / /  <£'(2) l - l t f ( z )  2

We claim  tha t (1 — \z\2)\z<f>n (z) /  (z)\ <  4. This o f course is the result o f Hayman mentioned

(  z6n \
above. However, we present here a simple proof. Since 9£^l +  - ^ - J > 0  in  A , by the

subordination princip le we have 1 +  ^  for some wx analytic , m;1(0) = 0, 1 | <  1.
<f> ( z) l — wi \ z)

As wx satisfies the hypotheses o f the Schwarz’s lemma, we have lu^ l <  \z\ and so 11 —«;! | >

1~KI >  l - \ z \ .

Now (1 — \z\2)
> ' ( 2) = ( 1_ |z |2) [ r = ^ R i  -  ^  2 l * l ( i+ W )  < 4 -

Using P ick ’s lemma again, i t  follows from  (2.4.8) tha t

m
/ w

< o - w 2)
> " ( * )

< 4  +  2/3

*'(*). 

i - H * ) l2
|1 — w(z)

+ ( i - m
2Jt0 \zw ’ (z)\

\ l - w ( z ) 2\

2, <  4 + 2 ^  =  2(2 +  0). □

§ 2.5 The Geometry and the Domain Constant o f  A

Recall the defin ition  o f D (A ) from  § 2.2. We have already seen th a t different 

geometrical shapes o f A lead to  d ifferent Dom ain Constants. We shall now discuss a more 

general class o f domains i.e. quasidiscs. A domain A is a K- quasidisc i f  i t  is an image o f the u n it 

disc A  under a A-qc mapping o f the plane. Let C be a Jordan curve and zlt  z2 GC d ivide i t  in to  

two arcs Cx and C2, C is said to  satisfy the arc condition i f  there exists a constant c such tha t

min (diam  Ct ) <  c\zl  — z2\ (2.5.0)
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fo r a ll pairs o f z1 and z2 on C. Ahlfors gave a geometric characterization o f quasidiscs (see Lehto

[2] p.45): a Jordan domain A has boundary satisfying the arc condition i f  and only i f  A is a

1 I jL
quasidisc. I t  is easy to see tha t i f  f l (A )  <  2k, k <  1, then A is a j^ ^ -q u a s id is c . For, by Theorem

1.4.1, /  : A  —► A admits a K-qc extension to  C and in  fact /  is conform al in  A  and K- 

quasiconformal in  C \A . By the defin ition, A is therefore a if-quasidisc. On the other hand we 

have:

Theorem 2.5.1 (Lehto [2] p.73) I f  A  is a K-quasidisc, then D (A ) <  6 ^ 2~ ^ .
K  - f l

I t  is not known whether the estimate o f the above theorem is best possible. I t  is 

therefore natura l to  ask i f  Q (A) <  e where e is a suffic iently sm all positive constant, implies 

tha t A is a starlike or convex domain. The answer turns out to  be negative.

Theorem 2.5.2 Given any e>0 , there exists a domain A(e) containing the origin such that

D (A ) <  c,

and A is not a starlike domain ( let alone a convex domain).

The proof o f the above theorem depends upon the theory o f the second order d ifferentia l 

equation yn +  A y =  0, (2.5.1)

and its  linearly independent solutions. We require some lemmas here which w ill also be used 

again in  Chapters 3 and 5. S im ilar to  the Schwarzian derivative we introduce the fo llow ing 

notation:

1 ( ( & ( * ) } *  «& '( .* )  (  c f -1 
<  ’ > ~  4 IV E (z ) )  E(z) J ’

where c is a constant.

Lemma 2.5.3 (Bank and Laine [2]) (a) Let A  be meromorphic in a region D, and assume that

f
/i> f i  are linearly independent solutions of (2.5.1). Then g—^r has fo llowing properties;

h

( i)  A l l  zeros o f  g1 in D are o f even multip l ic ity ;

( i i )  A l l  poles of g in D are of odd order,

(Hi) A  =  \s(g,z).

(b) Conversely, let g be an non-constant meromorphic function in a simply connected domain

D, which possesses properties (*) and ( ii) ,  and define A by (Hi). Then the equation (2.5.1)

f
possesses two linearly independent solutions f x, f 2 in D such that g= 7^.



We note tha t most o f the Lemma 2.5.3 is well-known, see H ille  [1] or Fuchs [2].

Lemma 2.5.4 (Bank and Laine [2]) (a) Let A be meromorphic in a region D , and assume that

(2.5.1) possesses two linearly independent meromorphic solutions / j ,  f 2 in D. Set E —f \ f 2 and 

c = W ( f i , f 2) ( the Wronskian of f^ and f 2). Then,

( i )  A l l  zeros o f E(z) in D  are simple;

( i i )  A l l  poles o f E(z) in D are o f even order,

( i i i )  A t  any zero zx o f E  in D , the number —  is an odd integer,
E ( z  J

(iv ) A =  < E ,c > .

(b) Conversely, let E(z) £ 0 be a meromorphic function in a simply-connected region D, and let c 

be a non-zero constant such that (*), ( i i)  and ( i i i )  above hold. Then, i f  A(z) is defined by (iv), 

the equation (2.5.1) possesses two linearly independent meromorphic solutions f l t  f 2 in D  such 

that

(i>) E = f J 2 and c =  W{fl J 2).

Proof o f the Theorem 2.5.2 We prove the theorem by provid ing an exp lic it counter-example. I t  

is sufficient to  show tha t given e > 0  there exists a conformal mapping /  (depending on c) in  A  

such tha t (1 — |2|2)2|S(/,2)| < e  V z € A  and /  is not a starlike function.

Given e>0 , let E(z) = ------ M < 1  where A =  i/ i,  / i< (2 /7 )e .
(1 - z  )

Since JE7(0)= 0  and jE/(^) =  (1 +  (2A — \ ) z 2 ) / { \  — 22)1+a we have i / ( 0 )  =  l .  Moreover the o rig in  is 

the only zero o f E  in  A  and i t  has no pole in  A . Therefore E  clearly satisfies (*), ( i i )  and ( i i i )  o f 

Lemma 2.5.4 w ith  c =  —1 i.e. c is odd. Let A = < E , c > ,  then the d ifferen tia l equation (2.5.1) has 

two linearly independent analytic solutions / j ,  f 2 such th a t E = f xf 2 and W(f1J 2) =  — 1 =  

/ i ( 0 ) /2( 0 ) - / 2(0)/i(0 ), since £ '(0 )= 0  we may assume / 1(0 )= 0 . Now

’ <£. !> 4U^2)J 2^ z) 4 t +ll](z) j +£ )̂2/

We calculate A. D ifferentiate log E:

_ i  2 \z  1 , 2 \ + 2 \ z 2
E(z) ’ U ( . ) J “  z2 + ( l - z 2)2 '
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Therefore , + ^ w t + _ ^ ) - +  i i ^ }

_  2 2(2A+2Az2) i  iX  4AV  ( l - z 2)2*
z2 ( I  — *2)2 z2 (1 — Z2) (1 — z2)2 -j2

  I  -4A -4Az2-4 A (1 -z 2) - 4 A V  (1 -z 2)
— o +

2A

2 r  / i  _2\2
( I - * 2)2 **

_  _ 8a _ 4A V .  2 A ( 2 A - 1 ) ,  \
-  ( i _ ^ ) 2  +  r A 2! *  +

Let P(z) =  2A -  2A(2A 1) 2a+  ...

be the term  in brackets above. The nth coefficient o f P  is equal to

2A(2A —1)(2A—2)---(2A —n + 1 )  =  2A^2 A - 1 ^ 2 A - 2 ^ 2 A - 3  ̂ ( 2A~ | lW~ 1^ .

I t  is not d ifficu lt to  see tha t the modulus o f each factor o f the r ig h t hand side o f the above

equality is s tr ic tly  less than 1 as long as |A| is chosen to be suffic iently sm all (less than 1, say). 

And so a ll the coefficients o f P  are bounded by 2 |A |=2 /i .  So we deduce

2\ 2|,, A I I j 2\2
~ ( iA- J y V +  •••

< (1 - | * | 2)2 8 ||1I^ I|2 *I+  ( 1 - M Y ( 2 | a I+ 2 |A | |* |2+ 2 |A |z | 4 + • • •  )  

<  12 |A |+ (1  —|z|2)22|A|
1- 1* 1'

=  121A| +  2|A|(1 —|z|2) <  14|A|.

i.e. (l-|*|2)V l <  U |A | =  (2.5.2)

Since A is analytic in  A , and f ly f 2 considered above are linearly  independent solutions 

o f (2.5.1), by Lemma 2.5.3 (a) the function defined by

satisfies the ide n tity  A{z) =  ̂ S{g,z). According to  the equation (2.5.1) / j ,  f 2 are ana lytic  and so is 

the ir product E = f l f 2 and since the only zero o f E(z) is when z= 0 which is the zero o f f v  We
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conclude th a t has only one zero and f 2 has no zero in  A . Hence we deduce th a t g must be 

ana lytic in A  ( in  fact, since gr = — so g i s locally univalent in  A ) . Now ^ (0 )= 0  and 

g is analytic, by (2.5.2) (1 — |2|2)2|S(<jr,z)| can be made a rb itra ry  sm all so g satisfies the Ahlfors- 

W e ill’s criterion (Theorem 1.4.1) and i t  must be conformal in A .

The well known criterion for a normalized function to  be starlike is th a t 0

V,zE A  (see Duren [1] p.31 ). However

V ( * ) _  z _  z
«(*) f i h  % i )

=  ( 1 - * V

=  exp^X log(l — z2)^

=  exp^ipL^log |1 —z2| +  ia rg{\ — z2)^

=  exp^ — p. a rg(l — z2) +  i f i  log |1 —

=  exp^ — p, arg(l — z2)^exp^ if i  log |1 — -?2| | .

t
Now the argument o f is p,log\l — z2\ which tends to  negative in f in ity  as z —>■ 1.

Therefore, there exists in fin ite ly  many zG A  such th a t Th is  shows g cannot be

starlike and also completes the proof. □

§ 2.6 An analogue for the Logarithmic Derivative

The logarithm ic derivative does not share the same properties as the Schwarzian 

derivative, for i t  is inva rian t only w ith  respect to  linear mappings. Thus i t  is probably not very 

useful to  define another domain constant analogue to  f2(A). Theorems 2.4.3 and 2.4.6 show tha t 

fo r d ifferent domains, we can have different estimates fo r the logarithm ic derivative

(1 — 1-?|2) | ^ | .  Since Becker’s result (pu t c = 0  in  (1.4.2) o f Theorem 1.4.4) shows th a t when

r(1 — |-?|2) |2y |  < 1  then J{ A )  is a quasidisc, we can thus ask the same question as we d id  in  § 2.4; 

namely i f  (1 — 1̂ |2) | ^  | is small, is J{A )  necessarily starlike or convex ? The answer can easily 

be deduced and turns out to  be negative as expected from  § 2.4 .

Given e > 0 , we consider the same g as constructed in  (2.5.3) o f the proof o f the Theorem

2.5.2, then E = f 1f 2 =  z /(1  — z2) x and |A |< ( l / 3 ) e  is suffic iently sm all. I t  has been shown tha t
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(1 —|z|2)2|S(<7,z)| in  § 2.5 can be made a rb itra ry  small and i t  is not d iffic u lt to  show 
n

(1 —|z|2)|z^y  | can also be made a rb itra ry  small. Recall tha t

V W  =  (1_ * y  ^  iet p (t) =
g{z) g(z)

From  (2.4.3) ^  =  P ( z ) - 1 +  ̂  =

Now
Jl  o l \ l l . | 2

( i - m *7
<  (1 _ |z|^ ) | (1 -zY - 1 | + ( 1 _ |2|2) ? H M

=  ( 1 - M 2)| ( l - A z ^ ^ j ^ z 4-  . . . ) - l | + 2 A | z |2 

< ( l - | z | 2)|A|(|z|2 +  |z|4 +  ■••) +  2|A| (2.5.3)

=  ( 1- k | 2) | ^ C  + 2 |A | =  |Az2|+ 2 |A |<  3|A| =  3 /z<c.

Note tha t the inequality (2.5.3) follows since we can choose |A| so sm all th a t the 

coefficients in the series expansion have modulus less than |A| as in  the proof o f the Theorem

2.5.2. Hence by m aking // small the same g satisfies Becker’s crite rion  and so i t  must be 

conformal yet i t  fa ils to  be a starlike function.

We summarize the above results:

Theorem 2.6.1 Given 0 < e < l ,  there exists a conformal mapping g ( depending on e), ^ (0 )= 0 ,

such that

/  
V( i - M 2) < e v*eA,

and g(A )  is not a starlike domain ( let alone a convex domain). □

Remark 1 Note th a t E =  can be choosen instead o f E =  . in  Theorem 2.6.1 and
( 1 - * ) A ( I - * 2)

i t  is s til l sufficient to  construct, by the same argument as in the p roo f o f the Theorem 2.5.2, a 

counter example g for Theorem 2.6.1 . B u t i t  fa ils to  be a counter example in  Theorem 2.5.2. 

Remark 2 We shall see in Chapter 4 tha t, when |/V/l *s small, /  can indeed be starlike.

§2 .7  Some more General Problems

In  th is section, we would like to  discuss the results obtained in  the previous sections and
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to  explore more deeply in to  the relationship between the Schwarzian derivatives and the 

quasidiscs.

I t  is obvious tha t not a ll starlike domains w ith  respect to  the o rig in  are A-quasidiscs. 

Since starlike domains can have cusps. In  Theorem 1.4.1, Krzyz actua lly  shows th a t fo r strongly 

starlike functions o f order a  <  1 can have K ( a )~qc extension i.e. A  A )  is a A(a;)-quasidisc. Hence 

a-strong ly starlike functions must characterize those starlike  domains without cusps. On the 

other hand, Gehring and Pommerenke [1] generalized the orig ina l Nehari’s result:

Theorem 2.7.1 Let f  be meromorphic in A  and let

l 5/ h - 2'

Then f  has a spherically continuous extension to A  and j { A )  is a Jordan domain or the image o f  

the parallel slit T = { w : |arg iw| < 7r / 2} under a Mobius transformation. Moreover i f  z ^ d A  and 

A zi ) ^ o o ,  then \Arzi ) ~ A zi) \  =  O ^ d is ^ A ^ ) ,  d y (A ))1/2)  as r  -► 1- .

This shows tha t the boundary d A & )  can allow certain cusps. On the other hand: 

Theorem 2.7.2 ( Gehring and Pommerenke [1]): I f  f  is meromorphic in A  and i f

—  1 / 2
then / ( A )  is a quasidisc with the constant c <  8(1 — 6 /2 ) , where c is defined in (2.5.0) §2.5.

And the order o f the bound c is best possible as b -+ 2 ( see Gehring and Pommerenke [1] p229).

These two theorems indicate tha t i f  |Sy| is small then the boundary o f the image / ( A )  

is a quasidisc and is smooth up to a certain degree. However, Theorem 2.5.2 shows th a t i t  has 

l it t le  control on the overall geometrical shape o f the image ./(A ) and i t  certa in ly cannot 

guarantee / ( A )  to  be starlike. L ittle  is known jus t how much y (A ) looks like  when |5^| small, 

and there is a gap between these results (see also Chapter 3). O f course 7 (A ) is a disc when 

| 6y | = 0 . A c tua lly  Theorems 2.3.1 and 2.4.3 clearly show tha t i f  a  is sm all then the strongly 

starlike functions satisfy both the Nehari’s and Becker’s crite ria  and the opposites is not true. 

Obviously, an analogue can also occur i f  we consider the logarithm ic derivatives.

F ina lly  we have the follow ing fundamental result due to  Ahlfors.

Theorem 2.7.3 ( see Lehto [2] p.81) Let A be a K-quasidisc. Then there is a constant e ( K ) > 0,
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depending only on K, such that every function f  meromorphic in A with the property

\ S , \ <  <(*)

is univalent in  A  and can be extended to a quasiconformal m apping o f the plane whose complex 

d ila ta tion  f i(z) satisfies the inequality

M „ <  \S f \A l < K ) -

Note tha t both Nehari’s and Gehring-Pommerenke’s results are special cases o f th is 

theorem when 4̂ =  A . In  view o f the Theorem 2.5.2, we m ay ask the fo llow ing: What conclusion 

can we make other than f  is univalent in A , i f  A  is a K-quasidisc and f  meromorphic in A such 

that

where e> 0  is sufficiently small ?
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Chapter Three

Properties of Analytic Functions with 

Small Schwarzian Derivatives

§ 3.1 Introduction

We have already introduced some univalence crite ria  obtained by the methods o f 

Ahlfors and Lowner d ifferentia l equations. We have also seen how to  use the second order 

d ifferentia l equations techniques to construct counter examples th a t no m atter how small tha t 

|5y| is /  need not be starlike or convex etc. In  th is chapter we shall continue to  use d ifferentia l 

equations techniques to show tha t, replacing the hypothesis l 5/ l  <  6 by \S(f,z)\ <  6 fo r some 

suffic iently small 6 which also depends on the second coefficient a2 o f /, and |a2| is also small, 

then /  is indeed starlike for one 6 and convex fo r another 6. We then investigate some other 

consequences for /, when the Schwarzian derivative is ‘sm all’ . We shall introduce a fundam ental 

theorem o f G ronwall in  d ifferentia l equations which is o f central im portance and w ill be used in  

the proofs and later in  the thesis.

Let us recall the defin itions o f the Schwarzian derivative o f an ana lytic  function  defined 

in  the u n it disc A  w ith  0 in  A . We have

By using the method o f d ifferentia l equations, we can study the relations between the 

Schwarzian and Univalent Function Theory. Th is line o f research was firs t in itia ted  in  the
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works o f Z. Nehari. In  his famous paper o f 1949, he obtained the necessary and sufficient con­

d itions fo r an ana lytic  function defined in  the u n it disc to  be univalent:

Theorem 3.1.1 ( Z. Nehari [1]) Suppose f  is analytic in  A  and / ^ 0  in  A .

In  order that f  be univalent in A , i t  is necessary that

( i - W l ) JW W I < 6 v * e a ,

and sufficient that

( l - I ^ U ’ W .* )! <  2 v *€ A . (3.1.1)

Both constants are best possible.

We recall th a t in Chapter 1, replacing 2 by 2k, k <  1 on the r ig h t hand side o f (3.1.1), i t  

becomes a sufficient condition for if-quasiconformal extension.

In  [1] Nehari considered the second order d ifferentia l equation

y " +  \  =  0, (3.1.2)

and the s ta b ility  o f its  solutions. He called (3.1.2) disconjugate i f  and only i f  no solution can

vanish more than once in  A . He showed by applying Green's transformation  to  (3.1.2), th a t i f

S ( fz ) satisfies (3.1.1), then i t  is disconjugate and th is implies th a t /  is univalent. The Green’s

transform ation has its  origin dating back to  the beginning o f th is century, see H ille  [1],[2]. Now /  

can be w ritten  as :

j t z) =  M ±
M  AW ’

where f v  f 2 are linearly independent solutions o f (3.1.2) (see Lemma 2.5.3). Suppose tha t

f l ( zl )  _  \ \ _  f l ( z2) _  /
AW) "  l) ~  A h )  ~  AW ) "  1# 2'

Then f 2{zi ) ~ a f i ( zi ) —®) f 2(z2) ~ Qf i { z2) = ^ ’ Th is shows th a t (3.1.2) is not disconjugate, hence /  

must be univalent. I t  is therefore easy to  see th a t (3.1.2) is disconjugate i f  and only i f  no 

solution o f (3.1.2) can vanish more than once in  A , hence i f  and only i f  / i s  univalent in  A .

Later Nehari also published a series o f papers in  1954 [2], 1979 [4] and Friedland &  

Nehari 1970 [1] w ith  more general univalence criteria. A long the same line F. G. Avkhadiev (see 

Avkhadiev &  Aksent’ev [1]) gave a complete generalization o f (3.1.1). M any different methods 

have been developed to  obtain these kind o f crite ria  by others (e.g. Lowner d ifferentia l
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equations). For a complete review o f th is area, we refer the readers to  a survey paper o f F.G. 

Avkhadiev and L .A . Aksent’ev [1].

We note th a t Theorem 3.1.1 is irrespective o f the norm alization o f /. However we shall 

consider the normalized class N = { f \  f  analytic in  A  and / (0 )= 0 , / ( 0 )  =  1} and the subclass S C 

N  such tha t /  is univalent. Such an /  has the expansion

o 00
j{z)  =  z + a 2r  +  ••• =  z +  J£ i anzn.

2

We consider also the class N =  {g\ g analytic in  0 < | .z |< l,  with a simple pole at the origin o f  

residue =  1 }, tha t is

9(z) =  l  +  bQ +  b1z + b 2z2+  ••• .

Also N 0 is the subclass /g A / such tha t 60= 0 .

§ 3.2 The Problems

Schwarzian derivative is inva rian t w ith  respect to  the M obius transform ations M  and 

S(M,z) =  Q. A  Mobius transform ation is a one to  one conformal m apping o f C. We normalize M  

such tha t fo r each / G  Af, j { 0) =  0 and / ( 0 )  =  1. Th is class is denoted by M 0. For example consider 

the normalized mapping z / ( l  — z) which maps the u n it disc A  onto $ (z )  ^  *s

reasonable to  believe tha t when S(f,z) is small in  absolute value fo r any /, then /  is close to  Af0. 

T ha t is /  is univalent, starlike or even convex. The fo llow ing discussions and results show tha t 

th is  is indeed the case and we also give some quantitive  estimates. O ur problems although 

s im ilar to  those considered in  Chapter 2 § 2.1, in  which the qua n tity  |5y| the norm o f the 

Schwarzian derivative was used to investigate the univalence and relation w ith  AT, our

assumptions are much stronger and we fixed our norm alisation.

Our sta rting  po in t is from  a less well-known sufficient univalence criterion o f Nehari also

published in  [Nehari 1]. He proved:

Theorem 3.2.1 (Nehari [1]) I f  f  belongs to either N  or N, and satisfies

W W I  <  - j p  V * € A , (3-2.1)

then f  is univalent. The results are sharp.
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The constant 7t 2/2  is best possible. Th is is shown by the examples ^exj>(*7rz) — 1 ^/(* tt)  

and iTr/^exp(inz) — l j  respectively. Both have Schwarzian derivatives equal to  t t2/2 .

Later in  1954, R .F. Gabriel [1] used Green's transformation  and s im ilar techniques to  

obta in the fo llow ing :

Theorem 3.2.2 Let g E N 0 , and suppose that

|S(0*-OI <  2c0«  2.73 M < 1 ,

where c0 is the smallest positive root o f the equation

tan^x  =  0 ,

then g is univalent in  0 < | z | < l  and maps the in te r io r  o f  each circle |z| =  r < l  onto the exterior 

o f a convex region. The constant cQ is best possible.

The above result is s till true even i f  60^  0 i.e. i f  /E  N, since a convex dom ain remains 

convex after a translation. Also i f  /  E N then 1 / /  E N\ bu t since S(f,z) =  5 (1 // ,z), i t  is easy to  

obta in  the fo llow ing:

C oro lla ry 3.2.3 ( Gabriel R.F. [1]) Let /E/V, and suppose that

W , * ) l  <  2c0 fo r  \z\ <  1, 

where the constant c0 is the same as defined in the Theorem 3.2.2, then f  maps A  onto a 

starlike domain.

We note tha t although 2c0 is sharp for the Theorem 3.2.2, i t  does not fo llow  th a t i t  is 

again sharp for C orollary 3.2.3. There are many results o f a s im ilar nature about the solutions o f 

the equation (3.1.2). Among them we mention the fo llow ing:

Theorem 3.2.2 ( Robertson M.S. [1]) Let zA(z) be analytic in  A  with

& { J A { z)) <  ^ | z | 2, V zE A . (3.2.2)

Then the unique solution w, satisfying u (0 )= 0 , t / ( 0 ) = l ,  o f the differential equation

y " +  A y  =  0 (3.2.3)

is univalent and starlike in  A . The constant 7t 2/2  is best possible.

We note tha t by p u ttin g  A =  ̂ S(f,z) in  (3.2.2), then (3.2.1) o f Theorem 3.2.1 implies 

(3.2.2). Hence Nehari’s theorem has a stronger hypothesis. Thus Robertson proved th a t the
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unique solution o f the equation (3.2.3) is starlike whereas Nehari proved th a t the quotient o f the 

linearly independent solutions o f (3.2.3) is univalent.

Let us compare Nehari’s and G abriel’s results fo r the class N ; we have the fo llow ing

2
relation: 2c0 <  ,

where 7t2/2  and 2c0 are the best possible constants fo r /  to  be univa lent and convex respectively. 

This leads na tu ra lly  to  the fo llow ing problem : what is the best constant so th a t when |5(^,z)| <  

26 V zE A , then g is starlike ? C learly th is constant must lie between 2c0 and i r2/ 2, otherwise

th is is meaningless. More precisely we define

2 „
—■ — 26{gEN,N ; univalence) =  sup {  26: gEN,N ; |5(y,z)| < 2 6 => g univalent}

to  be the Schwarzian radii o f univalence o f the classes N  and N. Let

2c0 =  26(gEN; convex) =  sup {  26: g E N ;  |5(<7,z)| <  26 => g convex}

to  be the Schwarzian radius o f convexity o f the class N.

We can therefore put our questions as follows, th a t is to  find

26(gE N ; starlike) =  sup {  26: gEN  ; |5(^,z)| <  26 => g starl ike},

and 26{fEN; convex) =  sup {  26: fE N ;  |5(/,z)| <  26 ^  f  convex},

the Schwarzian radius o f starlikeness o f the class N  and convexity o f N.

The method o f proof is to  consider the equation (3.2.3) and its  linearly independent 

solutions. F irs t we shall give a different version o f C orolla ry 3.2.3, under the assumption th a t a2, 

the second coefficient o f f  is small. This, o f couse, fa ils to  recover the result o f the coro llary, but 

we actua lly  obtain a stronger conclusion th a t /  is strongly starlike o f order-a: S*(ar), as defined 

in  chapter one. We w ill also give an example to  show the requirement tha t a2 being sm all is 

necessary. However when a  =  l  and a2= 0 ,  Theorem 3.3.2 gives a poor estimate fo r 6 fo r starlike 

functions when compared to  C orollary 3.2.3.. In  fact when a2= 0 , Theorem 3.3.2 shows tha t 

|5 (/,z )|< 1 .8  then /  is starlike. We have not been able to  find  a useful estimate fo r 26(gEN: 

starlike). Corollary 3.2.3 shows tha t 2c0< 2 6 ( fE N ; starlike). The next obvious question is to  find  

26(fEN\ convex). Our methods, s im ila r to  th a t o f Theorem 3.3.2, a llow  us to  obta in  a lower 

bound fo r 26{fEN: convex) provided a2 is small. In  § 5, by using an earlier result o f C lunie and 

Keogh [1], we find  a rough estimate on the coefficients o f / i n  terms o f \S(fz)\.  In  § 6 we show 

tha t i t  is possible to  drop the assumption o f a2 being small i f  /  has a quasiconformal extension /
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Chapter 3

to  C such tha t / ( oo) =  oo. W ith  the applications o f quasiconformal extension we obta in a 

d is tortion  theorem analogous to  Koebe-1 /4  theorem in  § 7. We shall give tw o exp lic it examples 

o f functions which in  tu rn  estimate the lower bounds o f Schwarzian rad ii o f starlikeness and 

convexity.

Remark Under the assumption th a t |5(/,z)| is bounded by a constant in  A , we deduce th a t /  

cannot have any zero in  A . For i f  /  has a zero o f order n at z0 say, then S(f,z) w ill have a pole 

o f order 2 at z0. Th is w ill contradict the assumption th a t i t  is un ifo rm ly  bounded in  A . Hence 

we can drop the assumption th a t / ^ 0  in  the theorems which we are going to  state and prove 

below.

§ 3.3 Main Results and Proofs

Let us recall the defin ition  o f the strongly starlike functions o f order a  and starlike 

functions in  Chapter 1. Let /£ S , then /  is called S*(ar) strongly starlike  function o f order a  i f  

and only i f  |arg z f  /  f \< o tn  f  2, V 2 GA, 0 < c *< 1 .  S * ( l ) =  S*, the class o f starlike functions. We 

also need the fo llow ing well known-result for d ifferentia l equations known as GronwalTs lemma. 

I t  is a fundam ental result to  estimate the growth o f solutions o f a given second order d ifferentia l 

equation. We shall also present the proof, fo r i t  w ill be used again later. I t  is crucial in  m any o f 

our proofs.

Lem ma 3.3.1 ( Gronwall T.H.\ see Hille [1] p.19) Suppose that A ( t ) and g(t) are non-negative 

continuous real functions fo r  <>0. Let k > 0 be a constant. Then the inequality

t

g(t) <  k +  J  g{s)A(s) rfs,

0
implies f o r  all t > 0 that

t

g(i) <  k exp^ J  j4(s) ds'j.

0

P roof D ivide through the firs t inequality by its  r ig h t hand side and then m u ltip ly  by A  on
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Cchapter J

both sides. We obtain
g(t)A(t)

k + J  9(s)A(s)

<  A(t) .

ds

Notice tha t the numerator is the derivative o f the denominator. We integrate both sides from  0
- i tto  t to  obtain f t

Thus

log{  ̂ k+ J  g(s)A(s) ds) <  l  i4(s) ds.

i  i

log^ J  < 7 (s ) j4 (s )  ds) — log k <  j  ;4(s) ds

i  i

g(t) <  k+ J  0(s)i4(s) ds <  k exp^ J  /l(s )  ds). □

Theorem 3.3.2 L e t fe N ,  and suppose 0 < o ;< l  and | a21 =  77<  s in (a i r /2 ) .  Let

sup \S(fz)\ =  26(77) , 
z£ A

where 6 =  6(77) satisfies the inequality

( l  +  7?)erp(6(77)/2)6(77)j <  a x

T h e n fe S * (a ) .

(3.3.1)

Remark The inequality (3.3.1) enables us to have such a 6 =  6(77) since we have assumed sin 1r} 

<  0 7 t/2 .

Before we go on to  prove th is theorem, let us pause for a mom ent to  look a t an

extrem al example when S(f,z )=0. I t  is well known th a t 5(<7,2)=0  i f  and only i f  g is a M obius 

transform ation, we normalize g so th a t g £ N  (in  fact </€S), hence

l  +  cz , | c |< l .

We require | c |< l ,  since g is analytic in  A . Note tha t the series expansion o f g is

g (z )=  z— cz2 +  c2 23 — ••*. (3.3.2)

I f  |c| < s in ( a v / 2 )  fo r some a, 0 < a < l ,  then 0G S *(a ) since /sa tis fies  the hypotheses o f Theorem
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3.3.2 where 6 is identica lly equal to  zero. In  fact

/ ( * )  =  1 
g{z) 1 +  cz

So

Hence

J ( z)arq z- -> ' arg-
1 +  cz =  \a rg [\ +  cz)\ <  sin 11c|

J { z)arg z-■ ( . <  ^  i f  and only i f  |c |< s in (c t7 r/2 ), since th is  inequality  is sharp fo r equality
g\z) 1

can be atta ined. Therefore ^ € S * (a )  i f  and only i f  |c |<s*n(o;7r/2). Th is  shows, a t least in  th is 

case, when g is defined as above tha t i t  is necessary for |a2| <  s i n ^  fo r g to  be strongly starlike 

o f order-a. So the conditions in  Theorem 3.3.2 is nearly the best possible. However, when | c| >  1 

the function g does not have the Taylor expansion (3.3.2), so i t  does not serve as a counter

1

J
example which shows tha t the C orollary 3.2.3 is false, since 3£(z^-)<0 fo r some z.

Proof o f the Theorem 3.3.2 Suppose u(z), v(z) are linearly independent solutions o f the d iff­

erential equation

y " +  \S ( f , z ) y = 0 (3.3.3)

w ith  the norm alization u (0 )= t / ( 0 )—1 = 0 , v(0) — l  =  i / ( 0 ) = 0 . Th is  is always possible since the 

W ronskian W(u,v) o f u(z) and v(z) o f a second order d ifferentia l equation is identica lly  equal to  

a constant which we may take to  be —1. Thus we have u(z) =  z +  ••• and v(z) =  1 +  •••.

By Lemma 2.5.3 (b) in  Chapter 2, we can find  tw o linearly independent solutions jq, y2 

o f (3.3.3) such tha t

^ 0 4 4 + M i )  ^  (3.3.4)
V2\z) cu(z)+dv(z) ^  v y

The representation depends on three a rb itra ry  constants only, bu t A =  ̂ S(f,z) is a th ird  order 

d ifferen tia l equation, hence they can be determined uniquely and any solution can be obtained 

from  i t  by a suitable choice o f these constants.

We deduce tha t 6 = 0  since f t z ) = z + a 2z2 +  •••• We can div ide through by a on both

sides o f (3.3.4) and therefore we may assume a = l .  Also d =  1 since / ( 0 ) = 1 ,  note also tha t

c =  —a2, s in c e / , (0 )= 2 a 2. Hence

j w -  U(J)cu(z)+v(z)
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Differentiate /, to  obtain

Hence

f (z\A u\ zM * ) - « ( * ) A * ) )
(cu{z) +  v(z))2

_  — W{u,v) _  j
(cu(z) +  v(z))2 (cu{z) +  v(z))2

J{z) u{z){cu{z) +  v(z))'

We w ill show tha t 

fo llow ing form :

<  In tegrating (3.3.3) by parts, we can w rite  u(z) 
z

u(z) = z+ j  (C-z) A(C) «(C) <*C- 
0

The path o f integration is taken along the radius £(<) =  <e’ * <6[0,r], z = r e t9. We have

r

\u{z)| <  r +  j  \tei9- r e i9\ \A(te i9)\ |u (*e ") | dt 

0

r

<  1+ J  ( r - f )  |A(«e")| K<«")| if.
0

Now \A(z)\< 6  =  6(77), where 6 satisfies (3.3.1). Thus applying lemma 3.3.1 we deduce:

|u(z)| <  exp

<  exp

r

J  ( r - i ) \A(te i9)\ dt

r

% ) J  ( r - i ) dt

=  exp' —2 I*

Now substitu te back in to  (3.3.5), to  obtain

r

\u(z) — z\ <  J  ( r —t) |A (/e ’ *)| |tt(/e,tf)| dt 

0

r

< j  ( r —t ) |A(<e‘ *)| e x p ( ^ )  dt

<  6 exp(x) J  ( r —t) dt 

0
_  6 exp(6 / 2 ) r2
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Hence
u(z)

-  1
8exp(8/2) r  8exp{8/2)

(3.3.7)

S im ila rly , v(^) can also be w ritten  in  the form

z

v( i)  =  1 +  /  ( ( - * )  X « )  t< ()  d(.

0

Com bining th is w ith  (3.3.5) we obtain

z

Cu(z)-\-v(z) =  1 +  C2 +  J  ( ( - z )  A(C) (c« (C )+ t< C ))

0

The path o f in tegration is chosen as above. So we can estimate c u + v  as before

r

\cu(z) +  v(z)\ <  ( l  +  |c |r) +  J  ( r —t) \A (te '6)\ \cu(tet$) +  v(tete)\ dt.

0

Since |A | <  6(77) where 8 satisfies (3.3.1) by the hypotheses, we obta in, by applying Lemma

(3.3.8)

3.3.1 again tha t

\cu{z) +  v(z)\ <  ( l  +  |c|) exp

r

J  { r —t) |A ( te " ) |  dt

<  ( l  +  |c|)

<  ( l  +  |c|) exp\8 f2] . (3.3.9)

Substitute th is back in to  (3.3.8) and note th a t | c |= 77<s*n(<*7r / 2). W e obta in

{z) +  v ( z ) - l \  <  |c |r  +  J  \C -z \  |A(C)| |cu(C) +  K O I dt 

0
r

<1 + f  (r - t) |X(fei#)| |c#(te") + »(<e'')| 
0

r
< t j + (1 +  77)6 exp{8/ 2)J  ( r — t )  d t

dt

^  / t  \c exp(8/2)  <  77 +  (1 +  77)6 - n2 (3.3.10)

I t  follows from  (3.3.7) and (3.3.9) tha t
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The last inequality follows from  the hypothesis (3.3.1). Hence /  belongs to  S *(a ). Th is  completes 

the proof o f the theorem. □

Remark I f  we put a2= 0  and or =  l  in  the above theorem, then (3.3.1) on ly gives a rather poor 

estimate fo r 8. The best 8 tha t we can derive from  (3.3.1) w ith  a2= 0 ,  a = l  is approxim ately 

1.8.

Another observation is tha t we can estimate a r g ( ^ ^  the same way as we have done to 

arg^J-j^j^J. Since

n r n  ^ u(z)arg
z{cu(z) +  v(z)}

u(z)
arg

u(z)
a r g + r t

+

+

arg { cu(z) +  v(z)}~1

arg {cu {z )+v {z )}

th is estimate is exactly the same as (3.3.1) o f Theorem 3.3.2. Hence we obta in

C oro lla ry 3.3.3 Let fd N ,  suppose 0 < c * < l and | a21 =  77<  sin a n /  2. Suppose

sup |S(/,z)| =  26(r}), 
ze  A

where 8(rj) is some positive number which satisfies the inequality

siK.ipM£*eM] + S!„->[,+to)f££(£WZM2)] < ^



§ 3.4 Applications to Convexity

We shall now consider another class o f ana lytic functions.

D efin ition  3.4.1 I f  / i s  analytic and defined in  A , then i t  is called convex univalent o f order p 

(0< / / < l )  i f  and only i f

sof 1 _l_ ,____
7 W

The class o f functions is denoted by %(p). C learly 3G(0) =  3G is the class o f convex univalent 

functions as in  Chapter 2(see Duren [1]).

Note tha t the above defin ition is irrespective o f the norm alization o f /.

We have, from  the results o f Nehari and Gabriel, the fo llow ing relations:

2 .73«2c0<25(/V, starlike) <26(N , univalence) =  n 2/2 .

We would like to  find  a lower estimate fo r 2S(N, convex) under the add itiona l assumption when 

a2 is small. Needless to  say we expect i t  to  be less than 2c0.

Theorem 3.4.1 Let j{z)  =  z + a 2z2+  ••• €  N and suppose that |a21 = » ? < g.

Let sup |S(fz)\  =  25(t/),
zC A

where 6( 77) satisfies

677+  5(1 +  77) 5(77) exp(j>(rj)/2>j  <  2. (3.4.1)

In  part icu lar i f  a2= 0 then 0.6712 <  26(f£N , a2= 0; f  convex).

Remark 1 Note tha t (3.4.2) holds i f  (3.4.1) holds so tha t the quotient appearing in  (3.4.2) is 

positive.

Remark 2 Unlike Theorem 3.3.2, Theorem 3.4.1 is va lid  only fo r 77< |  and not fo r 77< 1.

Remark 3 J.G. C lunie has proved the special case o f theorem when a2= 0  and he has improved 

the constant 0.6712 to  5 /6= 0.833-••. We shall look at this again in  Chapter 4.
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We consider the example o f Theorem 3.3.3 again in  which we take 

g(z )=  ~  z+ cz2+ c 2z3+  •••, |c| =  l .

B u t g maps the u n it disc onto a ro ta tion  o f r igh t hand h a lf plane passing through — ̂ c ,  and so 

i t  is clearly a convex mapping w ith  |a2| =  l .  However the hypotheses in  the above theorem 

require | «21 ^  Hence i t  is not sharp.

P roof o f the Theorem Let us assume th a t /  satisfies the hypotheses o f the theorem. As in  the 

proof o f Theorem 3.3.2 , we consider the d ifferentia l equation (3.3.3) w ith  A =  ̂ S(f,z)

y "+ \s (S ,z )  y =  0.

Using exactly the same argument as before we can w rite  /  as

«(*)
cu(z) +  v(z) ’

where «(z), v(z) are linearly independent solutions o f the d iffe ren tia l equation w ith  the 

norm alization u(0) =  0 =  t/(0 )  — 1, v(0) —1 =  0 =  t/(0 ). I t  is easy to  show th a t

1 +  ^  =  1 -  2 * ^ 4 4 5 - #  (3.4.3)/ ( * )  C«(z)+I<z) v ’

/  f^(z) \
We shall prove tha t +  z y  y  j> 0 .  In  view o f (3.4.3), i t  is sufficient to  prove th a t

| cu,{z)-\-v, {z)
cu(z)+v{z)

We note tha t r} +  ̂ ( l  +  r))6(T])exp{6(T})/2} <  1 since rj and 6(rj) satisfy (3.4.1). Let us recall tha t 

«, v have the fo llow ing forms

z z

u{z) =  z + J  ( ( - Z ) A(C) u{C) d(, v{z) =  1+ J  (C z) 4(C) KO 
0 0

Hence z

c~ f  -4(C) (ctt(C)+«)) dC
cu,( z ) + v \ z ) _  __________ Q____________________________

dC.

cu(z) +  v(z) *
l  +  cz+  J  « - z )  A(C) (« < C ) +  K O )  dC
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Since |4 |< 6  by hypotheses we deduce from  (3.3.9) (after applying Lemma 3.3.1), tha t

z

cz+ J  (C ~ z) 4(C ) {cu(C)+KC )} d£
0

r

<  |c| +  J  ( r - t ) |4(<e‘ *)| ( l  +  |c |)e x p (^ - )  dt

0
<  r] +  (1 +  7?) 8 exp(6 /  2) J  ( r — t) dt

0

<  77 +  ( l  +  *7) 6 e xp (8 /2 ) /2  <  1.

The last inequality follows from  hypothesis (3.4.1).

Thus
cuf (z) +  vf (z)
cu(z) +  v(z)

z

- J  4(C) (c«(C) + i<C))

1 + c z + J  ( c« (C )+ < C ))  d<

z

|c - J  ( C - z )  A(C) ( c « ( 0 + < C ) )  d< I

0____________________________
z

l - \ cz+  J  ( C - z )  A(C) (c n (C )+ K C )) dC I

{ *

l c- JI n
^ « )  (c«(C)+«(C)] <KI I S .  I cz+ J  (C-z) 4(c) MO+KC)] <jc|"J

<  {»7 +  (l+ *7) & exp (6 /2 )}  |  ^  (jj +  (l-\-rj) 8 exp(6/2)/2^ j |

rj +  ( l  +  T}) 8 exp(8/2)  _  2{t;4-(1  +  t?) 6 exp(8/2)}
(1 +  ̂ )  8 exp(8/2) ~  2— 2;/—(1 +  77) 6 exp(6/2)

1 -  T)

Because o f (3.4.4), the above geometric progression converges. Moreover

2(» ? + (l +  »?) 6 exp(8f 2 ))  1

2 -  2t/ —( l- t - 77) 6 exp(8 /  2) 2

i f  and only i f  (3.4.1) holds, and so /  is convex univalent. Now

* ( l  +  J ! iiI )  =  * ( i  _  2z-C“ 'W  +  ?'( f
V f ( z )  '  V cu(z) +  v(z)(*) +  < * )
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/  2 [t; +  (1 +  77) 6 exp(6/2 )] \

— y 2 — 2rj — ( l  +  rj) 6 exp(6/ 2) I

_  2—677—5(1 +  17) 6 exp(6 / 2)
2— 277—(1 -h77) 6 exp(6/2)

I f  we now put — a2 =  c = 0 in  the above argument, i t  follows from  (3.4.1) th a t

56 exp{8/ 2) <  2,

where 6 can be calculated. Numerical calculations give 6 <  0.3365. Hence |5(/,^)| <0.6712 

implies th a t /  is convex univalent. Th is completes the p roof o f the Theorem. □

We summarize the above relations

0.6712<26(/V, convex)<2c0<26(N , starlike)<26(/V, univalence) =  ir2/2 .

§ 3.5 An estimation on the Area and the Coefficients o f f

We have seen, in  the last section, tha t when the Schwarzian and the second coefficient 

o f /  is small, then /  is a ar-strongly starlike function where a  depends on a2. Brannan and 

K irw an  [1] have shown tha t, i f  a < l ,  an a-strongly starlike function is necessarily a bounded 

ana lytic function. They even showed tha t the boundary o f j { A )  is rectifiable and bounded by 

27rAf(a) 5 ec(a7r / 2) where M (a )  ia a constant depending only on a.  We shall give an upper 

bound fo r the area o f J{A )  by using the estimations in  the last section. Then by using a theorem 

o f C lunie and Keogh, we also give an upper bound o f the coefficients o f /.

Theorem 3.5.1 Let f  E N and \a2\ =  r f < l .  Let

sup \S(f,z)\ =  26(77), 
ze  A

where 6(77) satisfies

277-h(1 -h77) 6(77) exp(6(rj)/2) <  2. (3.5.1)

Then

X > M 2 <  [  2_ 2,_ ( i  + , ) ?i( <S/ ) 6e)I p(iS ( , ) /2) ]  • (3 '5' 2)

Remark I t  is well-known tha t i f  /  is a bounded univalent function in  A  then the area o f its
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OO
image has the representation 7 rE  w|an | (< o o ).

1

Proof Suppose tha t f e N  and satisfies the hypotheses o f the theorem. Also le t «, v be normalized 

linearly independent solutions o f the d ifferentia l equation (3.3.3), as in  the proof o f theorem

3.3.2 . Then
u{z)

cu{z)-\-v(z)

By Green’s form ula  (see Duren [1] p. 15), the area o f j [  A )  can be w ritten  as

J  J \ / (*)\2 dxdv = r/ i^ 1 -57- J  f ( z) / ( z) dz
A  d A r

<  l i m m a x  2| r  \ f ( 2)\ 1/ ( 2) |
r ~* 1 \z\ — T Z

=  l im  max n 
r  ►! |2| =  r

=  /im  max ir

u( z)
cu(z) +  t;(;?)

K * ) l

(c tt(*) +  v(.?))

r—11-1 Id —r |cu(z) +  l>(z)|

Bu t |A(z)|<<5(t/) and (3.5.1) is satisfied, so by the same argument as in  the last p roof , we 

deduce \u (z ) \<exp(6 /2 )  and |cu(,?) + v (z ) |_1 <  E (*7  +  (1 +  *7)*c? p ( * /2) / 2)  .

/  \ 3 
2 dxdy <  7T exp(8/ 2) ^ ^ ^ ^ ry  +  ( l 4-77)5ezp(6 / 2) / 2^ J

=  7T
2 exp(6 / 6)

However
2 — 2?/ — ( l  +  77)£ea:p(6/2) /

r  27t

J  J dxdy =  J  J  ^ re**
0 0

1

=  2* J
00

1+  E  n2|a „ |2r 2"-2 
2

00
rd r  =  n|an |2.

2
□

We quote the fo llow ing result:
00

Theorem 3.5.2 ( Clunie J. k, Keogh F.G. [1]) Suppose f {z )—z + ^ 2 a nzn is starlike in  A  and
2

maps A  onto a domain o f area Q. Then

|a „| <  ^  >J f n > 2.
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We see tha t |an | =  O (^) when j { A )  has a fin ite  area and th is result is also best possible. On the 

other hand, i f  we fixed the area Q and consider a ll the starlike functions /  maps A  to  Q then i t  

is not best possible in  the sense tha t one can produce an example (in  C lunie and Keogh [1]) 

which has in fin ite ly  many \an \ >

As a consequence we have 

Theorem 3.5.3 We assume the same notations and hypotheses as in the Theorem 3.3.2. Then

,3/2
_________' n > 2.

2 - 2 r j —(l- \-r j)6exp(6 /2) I
Remark We mention th a t the above estimate is not sharp when we pu t n = 2 , since \a2\ is 

assumed to be less then s in (a7r/2).

P roof /  is a a-strongly starlike function for some a < l ,  since i t  satisfies the hypotheses o f the 

Theorem 3.3.2. Hence i t  must be a bounded univalent function. C ondition (3.3.1) implies 

condition (3.5.1) w ith  the same 6(77). Therefore the hypotheses o f Theorem 3.4.1 are also 

satisfied. So from  (3.5.2)

Area o f A A )  =  Q <  *  [  2 _ 2|> ]  •

Now apply Theorem 3.5.2 to  complete the proof. □

§ 3.6 On the Second Coefficient o f f

Theorem 3.4.1 was proved under the assumptions th a t |a2| is sm all and the Schwarzian 

derivative is also small depending on |a2|. However, i t  is also clear from  the above proofs tha t 

|a2| does not necessarily depend on \S(f,z)\ w ithou t fu rthe r restriction on /. We show th a t th is is 

indeed the case and there is a strong relation w ith  quasiconformal extension o f /  ( i f  /  has one) as 

defined in  Chapter 1. Let us recall from  §2.3 the class S ^(oo ) tha t are those /e S  such th a t /  has 

a i£-quasiconformal extension to C, where its  complex d ila ta tio n  /i^ (z) satisfies |/iy(z)| <  k =  

and its  extension /(o o )  =  00. We discuss the problem o f Schwarzian radius o f convexity 

o f / i n  S ^(oo). T ha t is we consider
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2 6 ( / e S ^ ( o o ) ;  convex) — sup {  2 6  : <  2 6, f  £ SK (oo) =>• J {A )  is convex }.

Unlike the previous cases where 28 depends on a2, th is tim e  K  also depends on a2.

Theorem 3 .6 .1  Let f  £  S ^(oo ) where <  1 .2 4  and suppose that

sup |S(f,z)\ =  26 ( 77)  <  0 .2 1 7 ,  
z£  A

then f  is convex in  A .

P roof The firs t part o f the proof is identical to  th a t o f Theorem 3.4.1. We also use the same 

notations as those in  Theorem 3.4.1. B u t by our hypotheses

( l- |z |2)2 |S(/,z)| < W,z)| <24, 6 <  1 Vz€A.

I t  follows from  the Theorem 1.4.1 o f Ahlfors and W e ill, tha t /  adm its a j^^ -qu a s ico n fo rm a l

extension to  C. B u t since / ( o o )=oo , i t  follows from  the Lemma 2.3.2 th a t | a21 =  77 <  28. I t  

follows th a t /  is convex or %t(\ +  >  0, i f  only i f  (3.4.1) is va lid . However we now have

677 +  5(1 +  77) 8(rj) exp[<5(77) / 2]  <  \ 2 8 +  5 (1 + 2 6) 6 (77) exp [6(?7) / 2] .

Hence we only need to solve the last inequality fo r 8 so tha t the last expression is less than 2. 

Numerical calculations show tha t th is is true i f  26 <  0.217. So /  is convex univalent in  A . This 

completes the proof o f the theorem. □

§ 3.7 On the applications o f  the Second Coefficient o f  f.

I t  is well known th a t the image o f A  under any function in  the class o f S always 

contains a disc o f radius p centred at the orig in , here p is an absolute constant. This remarkable 

fact was firs t discovered by Koebe and later proved by Bieberbach. He found th a t the constant p 

is a t least equal to  1 /4 , the bound is atta ined only by the Koebe function K ( z ) =  z / ( l  — z)2 and 

its  ro ta tion  and so i t  is sharp. The orig inal p roof made use o f a well known result on the second 

coefficient o f /, tha t is \a2\ <  2 for a ll f£S .  We shall use the same m ethod to  obta in a special 

version o f Koebe-1/4 theorem when the Schwarzian derivative is small.
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Theorem 3.7.1 (a) Suppose that f £ N  and |£(/,.z)| <  26, 6 < 1  V 2G A . Let k  =  cos_16 so that 

k £  (0 ,^]. Then the image f { A )  of the unit disc contains a disc o f radius

1
4(1—2/c(6)2) ’

centred at the origin.

( b) Let f  £  SK (oo) and |5(/,^)| <  26, 6 < 1  V ^6 A . Then J[A )  contains a disc o f radius at least

1
2( l + 6 - 2 /c(6)2) ’

centred at the origin.

P roof (a) Suppose /  satisfies hypotheses (a) and tha t there exists a complex number w so th a t

f { z ) ^ w  V z £ A .

Let g(z) =  =  z +  ( fl2 +  i )  (3 .7 .i)

Notice th a t g £ N  again and S(g,z) =  S(fz). So

( 1 - | * | 2)2|% - * ) I  =  (1- | 2|2)2|S(/,z)| < |S (/ ,2)| <  26, 6 < 1  V s e A .

I t  fo llows from  Theorem 1.4.1 again th a t both g(z) and f(z)  have j  ̂  ̂ -quasiconformal extensions 

to  C \A .  Since g£SK > we obta in from  Lemma 2.4.2 th a t

<  2 —4/c2.

So <  2 —4/c2 +  |a21 <  2 (2—4/c2).

Hence M > l
2\*4 (1—2/c )

(b) I f  f€.SK (oo) then gE.SK  where g is defined in  (3.7.1). By a s im ila r argument and using the 

fact th a t |a2| <  26 we deduce from  Lemma 2.3.2 tha t

<  2 —4/c2.«2 +  i

<  2 —4/c2+  |a21 <  2 —4/c2+26

IH >
2 ^ 1 + 6 —2/c2]*

Remark 1 Since we used only the fact tha t /  adm its a K-qc extension, we m ay weaken our
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assumption to  (1 — \z\2)2\S(f,z)\<26.

Remark 2 In  the case (a), suppose K -+  1 as 6 —*■ 0, then /c —► th is implies / ( A )  contains a

disc o f radius 1 /2 . This coincides w ith  the class

Si =  { f : A z )  =  - r t ^  M < 1} ,

the normalized class which has 1-quasiconformal extension (analytic continua tion) to  C. On the 

other hand, let K  —*• oo as 6 —► 1, then « —► 0 and /  contains a disc o f radius 1 /4 . B u t is 

dense in  S in  the topology o f locally uniform  convergence as K  —► oo (see Schober [1] p. 148), so 

th is yields the classical Koebe constant. Therefore we see th a t (a) is sharp in  the lim itin g  cases. 

However in  the case when a2 =  0 we obta in from  Theorem 3.4.1 th a t |$ (/,*)| <  0.6 im plies /  is 

convex and hence /  contains a disc o f radius equal to  1 /  2 already.

Remark 3 In  the case (b) K  —► 1 as 6 —* 0. This implies tha t the radius tends to  1. The only 

function in  S ^(oo) whose image contains the whole u n it disc is J[z) =  z. Also S ^(oo ) is

dense in  S in  the topology o f locally uniform  convergence, since f(kz) /  k £ S g (oo). Th is  tim e the 

radius approaches 1 /4  as K  —► oo which is again what we expect.

Remark 4 We note tha t Schiffer and Schober also obtained another version o f Koebe-1 /4  

theorem in (Schiffer and Schober [1]). They proved, by using the method o f calculus o f 

variations, tha t i f / e S ^ ,  then

f pg A A )  =  | « : N <  J “ P U * '/2) j -

where k is defined in  Lemma 3.6.1. This also gives the same lim its  fo r the rad ii o f discs as K  

oo and K  —► 1 as in Remark 2. We have a stronger hypothesis than th a t o f Schiffer and Schober 

b u t our p roof is perhaps more straightforward.

§ 3.8 Estimations on the lower bounds o f  the 6 ’s.

We shall consider tw o examples which have same constant Schwarzians. So we can 

investigate how small the Schwarzian we require in  order th a t the function  be starlike or convex. 

We recall th a t two functions have a same Schwarzian derivative i f  and only i f  they d iffe r by an 

a rb itra ry  M obius transform ation T. If, however, we restrict ourselves to  the class S, then one
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fixed the transform ation T  which takes /E S  in to  S again. In  th is case, T {z )=  ^ z^  w ith  |Ar[ <4 .

Since (7o /)(z ) eS, we have 1 — k f  ^  0 i.e. /  ^  1 / k, therefore | l / f r |  >  1 /4  by Koebe’s -1 /4

theorem. I f  we impose a fu rther condition on T  and /  so th a t f \ 0) =  0 and (0 )= 0 , then

T  must be the ide n tity  mapping. This can be easily verified.

F irs tly , we observe th a t the normalized function

exp{i2-^6 z)—\
M  =

has Schwarzian S(f,z) =  26. By Theorem 3.2.1, /E S  i f  S(f,z) =  26 <  i t 2 f  2 «  4.9. I t  is well- 

known th a t any function in  S is starlike in  the smaller disc o f radius \z \< tanh  ( t t /4 )  and convex 

in  |s |<  2 — -J3. Both constants are best possible (see Duren [1] p.95). In  view o f the above 

remark, i t  is easy to  see tha t /  must be starlike when

W , * ) l  <  { tm h  (2T/4)}2  »  0.215. (3.8.1)

For we can choose 6 suffic iently small so th a t |t2^6^| <  |2^5| <  [<anh ( ir /4 )J 2/2 ,  then

according to  the radius o f starlikeness, the function exp(w) — 1 w ith  w =  2^6 iz  m ust be

CXVl W ]  1
starlike. Since — —  remains starlike, hence i t  is sufficient to  assume (3.8.1) fo r /  to  be

i24? 1

starlike in  A . This is o f course is weaker than Corollary 3.2.3. S im ila rly  we also have

W , * ) l  <  ^  ~ 2^ - «  0.036

im plies th a t /  is convex.

Our second example is g(z) =  -A -  tan (4 fo )- 

Th is is in  fact obtained under a M obius transform ation from  the above /  and hence S(g,z) =  26. 

Notice th a t y , (0 )= 0 . Unlike /, we show th a t the bounds fo r Schwarzian derivatives when g 

becomes starlike or convex are much larger.

I t  is easy to  obtain

.  </(*) =  V6z 
§{z) sin(45^) C0s(^£z)

_ 2 $6z
$in(2>[62) .
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/  o^(z)\
We require to show tha t ^  ® ^ z € A  when 6 is small. T h is  is equivalent to  find ing

the smallest disc |w| <  rsuch  tha t is non-negative, 2^6z  =  w — £ + i f i .

Let *({,M ) =  « ( * % * )  =  # (

_  £ sin £ cosh n — /z cos £ sink fi

~  e + 1 ?  *

Let F(£ ,n)  =  £ sin £ c°sh I* ~  I* cos £ sinh A4*

We apply the method o f the Lagrange multip l ier  to  F(£,fz) subject to  £2 +  f i 2 =  r 2 fo r some r. 

A t these point F(£ ,f i)  must be extremal. Now let

<£(£,//) = F(£,pt) 4- A(£2 + n2-  r2),
We need to solve <f>^= 0, <f>n= 0, <j>\= 0.

<f>£ =  cosh /z (£ cos £ +  sin £) — p sin £ sinh /z +  2A£ =  0,

(f>n =  £ sin £ sinh /z 4- cos £ (/z cosh /i +  sinh /z) 4- 2A/z =  0,

4>x =  «2 +  / i2-  r2 =  0.

M u ltip ly  the firs t equation by /i and the second equation by £, and equate them, then 

(^2 +  /z2) sin £ sinh n  =  — £ cos £ ( f i  cosh /z 4* sinh /z )-f /z cosft /z (£ cos £ +  sin £)

=  — £ cos £ sinh /z )+  /z cosh /z sin £

ie - ^+ f‘2 = id r , - iS r r  <3-8-2)
Hence

/i(£,/z) =  —2 ^£ s,n £ cos^ A4 +  A4 cos £ s,n^ A4) ̂ 4“ A4
1 ^  t  sinh f i (£ 2 +  f i2) sin £ +  £ cos £ . \

=  -7T±—5 £ sin £ — 77—̂--------------— :— ?------------------- h A4 cos £ stnh A4 1
£ 4-/z \  ^  s m Z I

_  I  (  sinh fi

~  t 2+ n 2
^  s t n h j i ^ 2 +  n 2) £ sin £ 4- £2 cos £ +  p 2 cos £ ^ j

=  £2- f/z 2 i ^  +  F 2) (£ sin £ +  cos £)

sinh u / *. j. . ^
-  — j r  (£ sin £ +  cos £)•

6 6



sixth u
As — -p -!- is an even function and so always positive, we have th a t <  0 i f  and only i f

£sin£ -f- f  <  0. Th is is equivalent to  find ing  the firs t positive root o f the equation

£ tan £ =  — 1.

Substitute back in to  (3.8.2), we have

£2+  „2 _   =  _ L  . c2
tank / i (  —” )  ta fih  \jl ’

i.e. to  solve /j  tanh / j  =  1. Here the problem reduces to solve the fo llow ing transcendental

equations £ tan £ =  — 1,

/ i n  =  1.

Num erical calculation gives 2.79 <  f  <  2.8,

1.199 <  / i <  1.2.

So 3.037 <  (£2d V ) 1 /2<  3.046. (3.8.3)

So w ill firs t become negative when w lies in  the annula defined by (3.8.3). Hence i f  we

require 6 such tha t |2 -^  z\ — |H  <  3.037

i.e. | 2 ^ |  <  3.037

i.e. 6 <  2.3,

then g is a starlike function i f  26 <  4.6. I t  is also clear tha t g is not starlike  i f  26 >  4.64.

We can s im ila rly  consider the convexity case. We show th a t $ ^ l  +  .z^yj >  0 when the

Schwarzian is small. Now we consider, as before tha t

g' cos^6z
l  +  ziJ  =  1 + 2 ^ 6

=  1+  2^6z tan^6z.

Again le t w = ^ 6 z .  I t  is sufficient to  find  the smallest rsuch  th a t 9J(u; tan w) ^  *s eas^

obta in
» ( »  tan w) =  *  (  (1 - t a n k 2? )  -  H tanh y. ( l  +  ta n 'Q

1+  tan £ tank n

Unlike the starlike case, i t  is much more d ifficu lt to  work out precisely the firs t r  such tha t
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1
$l(wian w) =  — Elementary calculations show tha t, i f  we set £ =  0,

tan w) =  —fi tanh f i  — —

i.e. we solve ft tanh fi =  The approximate solution is 0.7715 <  /i <  0.773. Hence i f  /i >  

0.7715, 9i(iu tan w) could be less than — ̂  . i.e. i f  6 >  0.5952, g need not be convex univalent.

Summarizing the above analyses, we deduce

Proposition 3.8.1 Let j{z )  =  — — - and g{z) =  tan^Sz.

(*) I f \S ( f ,z )| =  26 <  i  Mnfc2|  , Vx G A  Men /  G S*,

7 /|S (/,x )| =  26 <  | [2 - a [3 ] 2 , Vz G A  then f  G 3G.

(**) 7/|S(y,.z)| =  26 <  4.6 , VzG A  Men / G  S*,

iMere 6 =  (x2^-!/2)1̂ 2 and x, y are Me /*'rs< positive roots o f the transcendental equations

2^ 6x Mn(2^ 6x) =  —1, 2^ 6y tanh(2-(6y) =  1.

And f ina lly  i f  f o r  some z0£ A  suck that |5(y,20)| >  1*2, then g need not be convex univalent.

Although the above calculations are not sharp, i t  shows th a t the Schwarzian rad ii o f 

starlikeness when a2 =  0 must be less than 4.6, and tha t o f convexity m ust be less than 1.2. We 

shall also see in  next chapter th a t i f  the coefficients o f f  a2 =  a3=  ••• = a n = 0, then larger 

Schwarzian rad ii are obtained, increasing as a function o f n.
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Chapter Four 

Further Schwarzian Derivatives and Related Results

§ 4.1 Introduction

The firs t three sections o f th is chapter should be considered as a continuation o f the last 

chapter. There were in itia ted  by private communications w ith  Professor J.G . C lunie and 

Professor T . Sheil-Small. Each o f them has given his own proof fo r the lower bounds o f 

Schwarzian radius o f convex functions, under add itiona l assumption on /. We then find  th a t i f  

the grow th o f the Schwarzian derivative is slower than th a t o f l  +  z f f / f  , when the second 

coefficient is equal to  zero, then /  is also a convex function. In  § 4, we apply the Clunie-Jack 

princip le  to  give some alternative proofs o f some results, concerning convexity, obtained by S.S. 

M ille r and P .T. Mocanu [1]. In  some cases, new crite ria  about convexity, invo lv ing  the 

Schwarzian are also obtained. We shall look at another s im ila r problem invo lv ing  the 

logarithm ic  derivative and the logarithm ic rad ii for univalence and starlikeness criteria. In  § 6, 7 

and 8 we consider a subclass o f strongly gamma starlike functions th a t has qc extension. We 

m ention th a t the m ain theme o f th is  chapter is the applications o f the Clunie-Jack princip le.

In  Chapter 3 we have already defined the class A/, however we shall adopt a more 

general defin ition  for i t  as follows: N(n) consists o f the normalized ana ly tic  functions defined in  

the u n it disc A  and have the expression



Each o f the C lunie’s and Sheil-Small’s p roof was o rig ina lly  given under the hypotheses tha t 

n = 3 and i f  S(fz)  is small then /  is a convex function. However i t  is not d iffic u lt to  extend the ir 

proofs to  consider such /  fo r any integer n >  3, and to  conclude tha t /  is convex univalent o f order 

/z i.e. /  £ 3G(/z). The ir methods do not appear to  extend to  the case when a2 in  (4.4.1) is small 

as in  Chapter 3. On the other hand the d ifferentia l equation method o f Theorem 3.4.1 fa ils to 

consider the case when n> 4 . Also C lunie ’s proof gives a better result than the other tw o 

methods, when n = 3 .

§ 4.2 Clunie’s Method

Let us define the m axim um  modulus o f /  to  be

M (r)  =  max \j{z)\ ,
M = r

where /  in  (4.1.1) is an ana lytic function defined in  A . We require some lemmas. The firs t is an 

old result dating back to  the beginning o f this century.

Lemma 4.2.1 ( Blumenthal see Hayman [1]) M (r ) is itself an analytic function o f  r, except at an 

isolated number o f points r x<  r 2<  ••• , and M ( r ) is represented by distinct analytic funtions in 

the intervals [ r ^ ] ,  [ r 2, r3], [ r 3, r4], ••*.

Lemma 4.2.2 Let f  be analytic and M r( r ) =  max \ f (z ) \  ,
\ z \ = r

r

then M (r)  <  J  M*(t) dt. (4.2.1)

0

Proof Let /  be defined in  (4.1.1), hence Af(0) =  0. By Lemma 4.2.1, M {r )  is continuous apart 

from  countably many points in  (0,r). I t  is also clear tha t by the m axim um  princip le M (r )  must 

be a monotonic increasing function in  [0,r], hence the integral in  (4.2.1) m ust exist. Now

M (r ) =  M (r)  — A/(0) =  max \ J{z) — J{0) | =  max I  f ( t e ' ° ) e %e dt
| z \ = r  | z \ = r \ J

1 0r

< max f  | / ( t e ' e)| d t<  f  max | f ( t e ' 6)\ dt 
\z\ =  r j  J  O<0<2 *

o

=  J  m 'W dt. □
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Although we are a ll fa m ilia r w ith  Schwarz’s lemma, we need the fo llow ing extended 

version o f it ;  since its  p roof is ju s t an easy exercise, we shall om it its  proof.

Lemma 4.2.3 {Schwarz's lemma)

Let g{z) =  bnzn +  6n*n+1+  •••

be an analytic function defined in  A . Then when 0 <  p <  r,

M{p,g) <  M(r,g).

Theorem 4.2.4 ( J.G . Clunie [2]) Let f  be as defined in  (4.1.1) with n >  3. I f

I S M I  <  (1 - ^ - 7 + ^ , (4.2.2)

where 0 <  /z <  1, then f  £ *(#»)•

P roof We require to  proof tha t 3?^\  +  >  /z. Let

=  ( \ z )  =  n ( n - l )  anzn-2 +  ( n + l ) »  an+1zn' 1+  •••

^  ^ f { z )  1 +  n anz»-* +  (n + 1 )  an+1zn +  •••

=  n(n—1 ) a n zn ' 2 +  •••

This im plies |p (* ) l <  ^ ~ ^ M { r v <p)} r < ^ <  1, (4.2.3)

by Lemma 4.2.3. Then by the assumption we have

=  W - 2)l <  ( 1~ /i)4(n - 6 7+A‘ ) V z € A -

So, we have

l v ' W I - ^ 3W I <  (1 ;<)4(» - 6 7 + '* )

I t  fo llows th a t for |z| =  r,

4 W )  -  | ^ ( W )2 <  ( 1~ /i)4(n V + / i )  •

Integrate from  0 to  on both sides,

J  M(t,<pr) d t -  1J  M(t,<p)2 dt <  - - 1- — r x. 

0 0

We apply (4.2.3) and Schwarz’s lemma 4.2.3 to  obtain

( 1  /z )  ( 4 n - 7  +  /z )
 f i  •

4n—6
0
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T ha t is M (n ,V ) -  (4.2.4)

Now consider the continuous function F(t)  =  <— 2(2n '1"$ j ~’ S°  ^  — 2n—3 *

We see th a t F  is an increasing function o f { as long as <rx<  2n—3, for n >  3. Suppose

then ^ . y ) - ^ ((21; ^ r i > ( l - / i ) - (21(2B/12 31̂  >  ^ " ' ' Y n - e  ' Th is  18 a

contradiction. Hence A f(r1?y?) <  1 — fi  and since is a rb itra ry  so +  >  /i. This

completes the proof o f the Theorem. □

Remark When n tends to  in f in ity , the condition ISC/**)! <  e <  1 is sufficient to  guarantee /  to  

be convex univalent.

§ 4.3 Sheil-Small’s Method

Let us firs t state the result.

Theorem 4.3.1 (T. Sheil-SmaU [1]) Let f  be as defined in (4.1.1) with n >  3. Suppose that

W , * ) l  < (1_Al) , 0 <  /i <  1, (4.3.1)

then f  6  9G(//).

The orig inal proof given by Sheil-Small was a special case o f the above theorem when 

n = 3  and / i = 0. The method o f p roof make use o f a m axim um  princip le  known as Clunie-Jack 

principle (see Jack I.S. [1]). S im ilar methods invo lv ing Clunie-Jack princip le have been used

successfully by other mathematicians to  solve wide varie ty o f problems, among others, see J.G.

Clunie [1], S.S M ille r [1], S.S. M ille r and P .T . Mocanu [1].

Lemma 4.3.2 ( Clunie-Jack principle)

Let w(z) =  bmzm +  bm + lzm+1+  ••• , m >  1

be an analytic function defined in a unit disc A . Suppose w attains its maximum value at z0, i.e. 

\w(z0)\ =  max \w(z)\, z0=  r 0e%9°, then z0 wf (z0) /w (z 0) is real and
Id < *•<>

72



„  =  i  >  »  >  i .
w{zQ) -  -

We note tha t part o f the Clunie-Jack princip le was also obtained by W .K . Hayman [1],

Instead o f proving tha t (4.3.1) implies /E36(/i), i t  is more convenient to  consider the fo llow ing 

equivalent statement: the inequality

|S(/,z)| <  (1 - j? ) (2” - 5 - P )  , (4.3.2)

implies that f £  3G^(1 +  /?)J. Here \i — ^ (/? +  l ) ,  —1 <  /3 <  1.

P roof o f the Theorem: Let us consider the M obius transform ation

f  -  l ~ P  z
'  ~  1 - z

which maps the u n it disc onto the h a lf plane 9ft(C) >  ^ (/? H- 1). We shall only consider the case 

when — 1 <  /? <  1.

Let f(z) =  z +  anzn +  an+iZn+1+  ••• n >  3

satisfy the hypotheses. We now defined w(z) to  be an ana lytic  function  defined in  A , iu (0 )= 0  

such th a t

1 +  , § 1 =  1 ~  * ■ (4.3.3)
f ( z )  I  -  w(z)

In  view o f the above remark, i t  is equivalent to  assume /  satisfies (4.3.2) and so we wish to  show 

1 + Z^  ^  -< \  • Hence i t  is sufficient to  prove m ^ ) |  <  1 fo r a ll z £  A  in  (4.3.3) by

subordination. There are tw o possibilities: either |to(.z)| <  1 fo r a ll z €  A , or there exists a 

zQ =  rQe °G A  such that |tw(^r)| <  1 for a ll \z\ <  r0, bu t |w (2q)| =  1. I f  i t  is the firs t case the 

theorem is proved by subordination (see Chapter 2). Hence we assume from  now on the second 

case and get a contradiction. Now

and

A i l  =  (1 _  f l )  «(») (4.3.4)
/ ( z )  1 -  H z )  V '

_ f \ z )  _  n (n — 1) anzn 1 +  n (n + 1 )  an+i2n +  
f ( z )  1 -I- n anzn~x +  (n  +  1) an+ lzn +  •

=  n (n  — 1) anzn~l +  ••• .

Since w (0 )= 0  we may suppose

u>i2) =  bmZm +  bm+1zm+1+  ••• , m >  1. 
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Then
w(z) _

(i -  0) = (i -  0) («<*) + » « 2+ ”<*)3 + -  )

=  ( l  -  /?) ( bmJ " +  W " +1+  -  )•

Now compare the series expansions on both sides o f (4.3.4). We deduce th a t m =  n — 1. Also

_ n _ aJ 2V/(Z) ~ w(z) + W{zf \  (f'(z)\2_ (1 -  (3)2 Vjzf
\/(z)) \  2z2(1 -  w(z))2 J ’ V(z)' *2(1 -  *iz)f

and thus

u f ’ W  
5(/,2) ~  I t m  )  -  2 [ 7 7 ^  JA*)' 2 v/w

2zu/(.z) — 2w(z) +  (1 + /? ) iu(z)2
=  (1 -  f i ) 2 z \ l - w ( z ) y

Since |iu(z)| <  1 for \z\ <  r0, there exists a z0> |z0| =  r0 such th a t w a tta ins its  m axim um  at

/ '  .
z0 and m«?o)l =  M zo) 7̂  !• For ^  w(zo) =  1 then 1 +  * ~J *s n° t  an anaty t ic function and

hence /  w ill have a zero, th is contradicts the fact tha t the S(f,z) is un ifo rm ly  bounded in  A . I t

follows from  the above analyses and the Clunie-Jack princip le th a t z0vu{z0) =  tw(z0), where

t > n — 1. We consider S(f,z) a t z0.

|S (/,z 0)| = (1-/J) *■<*> t '-1* + (1+/?) ^
2zq ( 1- w ( z 0)

/ 2(<-i) -  ((1+/?) h *0)i) k«o)i
-  (  2»o ( l  +  l )2

> ( i -0)  - J i±£L)

>  ( l - «  2n~ 48~ 1~ /?- =  ( 1- f l  2 5 = 1 = ^ .

Th is contradicts (4.3.2) and shows the second case cannot happen. T h is  completes the proof o f 

the theorem. □

Let us compare Theorems 4.3.1 and 4.2.4 . We set / i =  0 in  both  cases. When n =  3, a 

better bound for the Schwarzian radius 5 /  6 is obtained by C lunie ’s method. However when n >  

4, the criterion  (4.2.2) is always bounded by 1 as we have already remarked. However, the 

criterion (4.3.1) not only gives a better estimate on the Schwarzian rad ii, when n >  4, i t  shows

74



th a t the Schwarzian rad ii are unbounded as n approaches in f in ity . Hence when n >  7, i f

( l - H 2)2 |S (/,;)| <  |S (/,;)| <  =  2.5

from  (4.3.1) and Theorem 4.3.1 shows tha t /  not only univalent, bu t also convex, a much 

stronger conclusion. However, the Nehari criterion (Theorem 3.1.1) fa ils to  show th a t /  is 

univalent. Hence our result complements tha t o f Nehari.

Unlike the d ifferentia l equation method used in  the last chapter, the above methods do 

not seem to  apply to  the starlike case nor when a2^ 0 .  B u t the advantage o f the Clunie-Jack 

princip le  is tha t i t  could be used to  consider d ifferent n >  3.

2 .
The result o f Nehari shows tha t |S(/,2)| <  ^  is sufficient fo r /  to  be univalent and tha t

_2
is sharp. The above discussions suggest the fo llow ing problem: W ha t is the sharp bound

26(n) for |S(/,.z)|, depending on n, so tha t i f  /h a s  the fo rm  (4.1.1) fo r each n >  2 then |S(/,z)| <

26(n) =̂ - / is univalent ?

i.e. 26(/eA /(n),n>3; univalent) ?

In  what follows, we shall use the Clunie-Jack princip le to  prove various results o f th is 

type, including some known ones. Among others, we firs t show th a t i f  the growth o f S (fz ) is 

slower than th a t o f l  +  where n >  3, then /  is again convex univalent.

Theorem 4.3.3 Let f  be as defined in (4.1.1) and f  ̂  0 with n >  3. Suppose

I **S(f,z) | <  ( n - 2 )
i

V : 6  A , (4.3.5)

then /  6 3G.

Proof Let
m  =  =
/ ( * )  l - w ( z )  K J y >

as before, where w(z) is ana lytic in  A . We require to  prove 3?(A)>0 fo r a ll z €  A . Thus i t  is 

sufficient to  show |u ;(^ ) |< l,  V zE A . Suppose th is is not true as in  the proof o f the last theorem, 

then there exists a r 0< l  such tha t |w(^)| <  1 when \z \<  r 0<  1 and w{z) a tta ins its  m axim um  

at zQ} |z0| =  r 0 w ith  m ^ o ) l =  1 an^ ^(^o) ^
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Now

So

z2S(fz )  =  zh\z )  -  (h{z) -  1) -  |  (h(z) -  l ) 2 

=  zh\z )  +  i  (1 -  h(z)2). (4.3.7)

z2S(fz )  _  ^ t i (z )  ^ . ( i -  K z? )
h{z) h(z) 2h(z)

_  /  1 +  \  /" 2zwf(z) j  /  1— 2w (z)+w (z )2 — 1— 2iu(z)
V I -  /  \J1 _  w(z))2 +  2 V

- w ( z f

(1 -  v iz ) ) '

2 w(z)_  2zw\z)
~  1 -  w(z)2 1 -  w(z)2 '

Consider z2S(f,z)/ h(z) a t z0. By the Clunie-Jack principle, we have

4  s(f,zQ) 2 tw(z0) — 2 w ( z q )

h(z0) 1 ~  w ( zo )2
where t >  n — 1

=  2 (* -  1)
|1 -  U)(20)2|

>  ( i  +  , )  >  n I .

The reason tha t t >  n — 1 follows by comparing the series expansions from  (4.3.6) as in  the 

last proof. This contradiction completes the proof o f the theorem. □

§ 4.4 On some theorems o f  S.S. M iller and P. T. Mocanu

In  1978 S.S. M ille r and P.T. Mocanu [1] developed some general d ifferentia l inequalities 

which could be applied to  d ifferent areas o f function theory and d iffe ren tia l equations. One o f 

the ir basic tools is again the Clunie-Jack princip le and subordination. The ir methods served well 

to  ‘construct’ some criteria  for convexity (and starlikeness), but not fo r others like  Theorem 

4.3.3 proved in  th is chapter. We find tha t some o f the ir results can be proved by applying the 

Clunie-Jack princip le, d irectly, w ithou t going through the ir reasoning. In  fact we also generalize 

some o f the ir results and a result tha t does not appear to  be obtained by the ir methods.

Let us firs t state their result.

Theorem 4.4.1 ( M il le r  S.S. &  Mocanu P.T. [1]) Let u =  tq-l- iv2 , v =  i^ - f  iv2 , and let 

p(u,v) be a complex valued function satisfying:

( i)  p(%v) is continuous in a domain D C C 3,
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( i i )  (1,0) € D and 3? p(  1, 0) >  0,

(m ) 3? p ( iu2,vi )  <  0 when v1 <  0.

Let f  satisfy (4.1.1) with f  =£ 0 and suppose that  ̂ 1 +  J y  , z2S (fz )  |  €  D  when z£  A .

I f  ^ p  ( l  +  J y  , z2S(fz)  ) ^  >  0 ̂ en 3? ^1 +  J y  )  >  0.

The fo llow ing functions defined in C 3 satisfy ( i) , ( ii) , and ( i i i)  above as suggested in  

M ille r S.S. h  Mocanu P .T . [1],

Px(u,v) = u2 +  v ,

p 2(u,v) =  u +  otv , 3ft a >  0,

p 3(u,v) =  u ev.

They im p ly  the fo llow ing criteria

3? ^  ^ 1 +  J y )  +  z2S ( fz ) )j  > 0  =>■ 3® ̂ 1 +  ^ y )  ^  ®

31 ^ 1 +  J^y +  a z2S(fz)^j >  0, 3®a >  0 =» 3® ( l +  2^ )  >  0

and 3® +  ^ y )  exp^z25 ( / , ^ ) ^  > 0  =>• 3® ^1 +  J y ^ >  0 .

We shall now give alternative proofs to  these crite ria  and they also shed new lig h t in to  

the theorem. We shall discuss th is po in t later in  th is section.

Theorem 4.4.2 Let f  be as defined in ( 4 . 1 . 1 ) / ^  0 , then

(fl) 3®^1 +  ^ y )  > 0  => 3® ^1 +  jy ')  >  0 , V z 6  A

(b ) 3®^1 +  £ y  +  a  z2S(fz)^j >  0, 3®a >  0 => 3® ( l +  J y )  >  0, V z G A

(c) 3 ^ 1 +  J y  +  a  z2S(f,z)^  >  0, $?a >  1 and n >  3 =>• 3® ̂ 1 - f Jy) >  0, V

(d) ^ ( 1 +  )  ea:p (* 2^Cf>z) ) ^  >  0 =>• 3® ( l +  J y )

z €  A

>  0 V z G A .

Remark The part (c) o f above theorem does not appear to  be proved d irectly  by the methods o f 

M ille r and Mocanu.

77



Proof We shall prove ( ii)  and ( ii i)  firs t as i t  is s im ila r to  Theorem 4.3.1. Define w to  be an 

ana lytic function in  A  such tha t

1 +  $  -  =  * " > ' ( ,  “ l

w ith  w(z) — bmzm+  bm+1zm+1+  •••.

Under the hypotheses ( ii)  and ( i i i)  we require to  show 9® ^ 1 +  z f * / / )  >  0, i.e. tha t

| tt/| <  1 V z £  A . We suppose th is is not true. Then there exists a r0, 0 < r o< l  so th a t |u;| <  1

iO
for \z\ < r 0 such tha t m ^ 0)| =  1 w ith  zQ=  r0e 0 where w is maxim ized. We can w rite  w(z0) in  

the fo llow ing form  w(z0) =  cos 90 +  i  sin 90. I t  is easy to  verify the fo llow ing:

w(zo) _  - 1  1 +  M *o) _  .• sin 90 ( ,
(1 -  w(z0) )2 2(1 -  cos 90) ’ 1 -  w( zq) 1 -  cos 90 '

v  (  «<*o) \ 2_  cos 90 /  i  \  _  cos90 /A A n tx
V 1 -  w(z0) )  2(cos 90 -  1) ’ V (1 -  w(z0) )2 )  2(cos 90 -  1)

From  (4.3.7) we have

z2S(f,z) =  zh’ (z) +  |  (1 — h(z)2).

We also w rite  a  =  atl  +  i a 2, where a 1 >  0 in  ( ii)  and ot2 >  1 when we consider case ( iii) .  A t  z0, 

we apply the Clunie-Jack princip le and (4.4.2). We obtain

( l  +  +  azoS(f>zo) =  h( zo) +  a (^o ^ (^o ) +  \  ( !  “  K *o )2))-

_  1 +  tv(zo) 2a (z0 w \ z Q) -  w(z0))

1 -  «<*o) (1 -  w(z0) )2

_  1 +  tv(z0) 2a (< -  lM -g p )

1 -  H zo) (1 -  w(zQ))2

sin 90 f . _ 1
~  1 1 -  cos 90 +   ̂  ̂ 2(1 -  cos 0O)

_  - < * i ( t  — 1) . sin 90— a 2( t  -  1)
— 1 — cos 90 1 — cos 90

I f  we assume the hypothesis ( ii)  then

9® I (1 +  *o'
/ ' ( * )^  J +  az0 S(f,z0) j  -  i  _  cos $Q —

since a x >  0 and t >  m =  1. I f  we now assume the hypothesis ( i i i)  we have

a (<■+ •% $>+ - ’H = l) s •
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K S tb iA y  I 'Z ' l  *

since or2 >  1 and t >  m =  2 or equivalently n >  3. This follows easily from  comparing the 

power series expansions o f (4.4.1). Hence in  both cases we obtained contradictions. Th is  proves

(b) and (c).

Suppose /  satisfies (a). We have

h(z)2+  z2S(f,z) =  zh \z )  +  |  (1 +  h(z)2) 

where h is defined by (4.1.1). A t z0, we apply the Clunie-Jack princip le as above to  obta in

- d ( -  \ I 1 (1 I h(- -  2 zow' ( zo) , \ (  2 +  2 «<*o)2 \
o (Zo) +  2 +  h<*> > -  (1 -  „< * „ )) *  +  ( i  -  «< *„))* )

_  2 <to(z0) 1 +  w(zq)2

(1 -  w(z0) )2 (1 -  «<^o))2 *

From  (4.2.2) we have

S ( ( 1+  +  Z°25(/,Zo))  =  2(cosV0 -  1) +  2(c<w 90 -  1)

_  ( t  +  cos 90) ^   ̂ since t >  1 >  cos 0O.
1 — cos Uq ~  _  _  u

We sketch the proof o f (d). From  (4.4.1), w a tta ins its  m axim um  at z0 and we have

from

( l  +  * o y exp(z2S(f,2r0) )  =  fc(*0) carp ( 20^ ( * o ) +  |  (*  “  K *o ))2)

(1 -  u<20)) (1 -  u<z0))'

/  2(< -  1) w(z0) \
V ( I  — w (  znW 2 /

1 +  w(z0) (  2 (t  -  1) w{z0)
1 -  u<20) V (1 _  w(zQ)) :

by the Clunie-Jack principle. But

w(z0) _i . , j 1 + w(zo) s*n 0o . . . r;--------—f—--5 =  ^71------ ±— Tpr is real and —---------7- - ^-  =  1 ^ — is im aginary from
(1 -  w(z0))2 2(1 -  cos 90) 1 -  w{zQ) 1 -  cos 60 5 3

(4.4.2).

Hence

* ( (1+ 2»7^ ) ™p(*o2S(U))J = *  (> “P ( 1 -  cos'l)) =

contradiction. Th is completes the proof o f the theorem.
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Remark The last part o f the the proof o f the above theorem (i.e. (d )) seems to  suggest tha t 

either 0? ^1 +  ■*4') exp [ z2 >  0 or <  0 is sufficient fo r /  to  become convex. However the
7

second case when <  0 is meaningless when z =  0.

I t  is also true tha t many other functions which satisfy the hypotheses o f Theorem 4.4.1 

can be considered by means o f the Clunie-Jack principle. We show th a t even Theorem 4.4.1 can 

be proved by the same method directly.

Let p(u,v) satisfies (i)  ( ii)  ( ii i)  o f Theorem 4.4.1 and let 1 +  ̂ -  =  ,

%B
where w is defined as before. We suppose w a tta ins its  m axim um  a t z0 =  r0e 0 and |w| <  1 for 

\z\< r 0. A t z0 and from  (4.4.2) we have

1 +  — * i— 5 ==f ( z Q) 1 “  cos 90 0 o; 1 -  cos e o

Now by the hypothesis p ( i  z—s~  - °  ^  , 7- ^ ------ <  0 w ith
y \  1 -  cos 0o ’ 1 — cos e 0J ~

_  sin 90 _  — ( t  — 1)
U2 ~  1 — cos 60 ’ Vl ~~ 1 — cos 60

Since / >  1, we have —(/ — 1) <  0; hence i>x <  0. This contradicts the fact th a t p (u }v) >  0 V

z €  A , and completes the proof.

We see th a t the condition p ( iu2,vl ) <  0 when 1̂  <  0 is precisely where the

contrad iction occurs when we apply the Clunie-Jack principle. Theorem 4.4.1 actua lly chara­

cterises those functions in  C 3 which yield a contradiction to  the hypotheses when the Clunie- 

Jack princip le is applied. Th is also explains why the method works so well when proving some 

special cases. Before we go on to discuss the logarithm ic derivative in  the next section, we state 

tw o  more results; the ir proofs have now become a m atter o f tr iv ia lity .

Theorem 4.4.3 Let f  be as defined in (4.1.1), 0 and n >  3. I f

f t ( z 2S(/,z)) > 0  V z €  A ,

then 8?^1 +  >  0.

P roof We sim ply consider (4.3.7) again. □

There are also some criteria  fo r starlikeness.
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Theorem 4.4.4 Let f  be as defined in (4.1.1), 0. I f  f  satisfies either o f the following

(a)  » ( !  +  / . -  f j )  >  0 or  3? ( 1 +  4 )  >  * ( 4 )  V 2 €  A , n >  2

or

(*) ft

Men >  0.

>  —(n — 1) V A , n >  2

We shall o m it the proofs.

§ 4.5 Applications to the Logarithmic Derivative

Let /E /V  w ith  / ^ 0  in A . Recall the logarithmic derivative is defined in  § 1.11 as 

T ( f z ) = f t ( z ) / f ( z ) .  I t  is inva rian t w ith  respect to  translations. We have seen in  Chapter 1 tha t 

T { fz )  and S{fz )  have many sim ilar properties. For example, both (1 —1,?|2)|71(/,z)| <  1 and

(1 — \z\2)2\S(fz)\ <  2, proved by Becker and Nehari, lead to  sharp univalence criteria . Theorem

2
3.2.1 showed th a t \S(f,z)\ <  is also a sharp criterion for uni valence. I t  is therefore natura l to  

ask fo r the sharp bound <r >  0, so tha t | T(f,z)\ <  <r implies /  to  be univalent. We seek 

c(/eA /; univalent) =  sup{a : | T { f z ) \ < o  => f  is univalent}, 

the logarithmic radius o f univalence o f N. Several papers have been devoted to  th is problem. The 

best result was proved by S.N. Kudryashov [1]; see also Avkhadiev and Aksent’ev [1] p.35 :

Theorem 4.5.1 Let f  E N be defined by (4.1.1) and suppose that

\T ( fz ) \  <  a  V : E A ,

where a  is the root o f the equation 8 — 2)3 —3(4 — z)2 =  12 , 3.05 •••. Then f  is

univalent in \ z \  <  1.

Th is  shows tha t 3 .05<o-(/E  N\ univalent). Consider the function f(z)  =  exp(<rz), then 

T { f z ) =  a. Hence /  is univalent i f  and only i f  cr <  7r, fo r cr >  tt, /  is not univalent. The sharp 

bound appears to  be 7r bu t the problem o f find ing  the best bound remains open. Now i f  the 

Schwarzian is small then /  is convex as shown in  Chapter 2. We can therefore ask a s im ilar
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question, tha t is to  find

<r(/£/V; starlike) =  sup{a : \T { fz ) \< d -  => f  is starlike}, (4.5.1)

and s im ilarly  to  define i t  as the logarithmic radius o f the class S*. Besides, we find  th a t we can

not solve this problem by the differentia l equation method, since we do not have the analogue o f 

Lemma 2.5.3 for the logarithm ic derivative. B u t the Clunie-Jack princip le works again, and i t

enables us to  find an lower bound o f <r(/E/V, n> 3 ; starlike) in  (4.5.1).

Theorem 4.5.2 Let f  be as defined in (4.1.1) with n >  2. I f

| T (fz ) \  <  n -  1 V x G A ,

then f  is starlike.

Remark When n =  2 the theorem becomes tr iv ia l, for \T(J,z)\ <  1 im plies +  and

so /  must be starlike.

Proof Let /  satisfy the hypotheses. Define w{z) =  bmzm +  ••• to  be ana lytic  in  A , 

such that

M .  =  ) +  ■(«) . (4.5.2)
* / ( * )  1 -

We require to  show >  0, and th is is true i f  and on ly i f  >  0. Hence i t  is sufficient

to  prove |iu| <  1 for \z\ <  1 as before. Suppose th is is not true. Then there exists a z0 such

th a t |tu| <  1 when \z\ <  |20| =  r 0 and |iw(^o)l =  !•

M u ltip ly  z on both sides and then differentiate (4.5.2), we obta in  :

So

1 _  H. L  — 1 +  w , 2 w'
f  f  I  -  w ( i  _  wf  *

/ ' _ / / !  _  1 +  w________2zw1 \
/  ~  f  V  1 - w  (1 _  wf  )

-  I  (  1 — w ^ (1 _  1 +  w 2 zw1 \
z \  I  +  w J \  1 — w ( I  — w)2 )

-  1 M  — w \  /  (1 -  w)2-  (1 -  w )( l +  w) -  2z J  \  
Z \  1 +  W  A  (1 -  w)2 )

_  i  2 (w2 — w — zw1)

-  ~z
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A t z0 ,where w atta ins its  m axim um , we can apply the Clunie-Jack princip le  th a t Zqw\ zq) 

=  tw(z0) and t >  n — 1. This follows by comparing the coefficients on both sides o f (4.5.2). 

Hence

/ ' < * ) 2 w2(zo) ~  w(zo) ~  1 w(zo)

f ( zo) Z° 1 -  w(z0)2

>  |  | < +  1 — w(zQ) | > < + 1  — l > n  — 1.

Th is  contradiction completes the proof. □

We shall consider functions defined in  |£| >  1, and apply the Clunie-Jack princip le to  

solve an analogue o f the above theorem. However the result is not so satisfactory in  th is case.

Let y(C) = C + *8 + + -• »>0,  |<|>1. (4.5.3)

The function is starlike i f  and only i f  >  0. C £  A * ;  see fo r example Pommerenke [1]

p.47). We have the fo llow ing result:

Theorem 4.5.3 Let g be as defined in (4.5.3) with n >  4. I f

<  n -  3 V i  6  A ,
<7(0

then g is starlike.

P roof The proof w ill be sketchy as i t  is s im ila r to  th a t o f above theorem. Let g satisfy the 

hypotheses. Then

«'(<) =  i -  pri -  £ °* Kl >  L (4-5-3)

1 _  nbn _  ( n+ l) f tn + i _

Hence =    <— ______-  =  1 _  -  ...
S (o  i . j» _  . ts±i . c"-1 C"

1 "r  ^ n - l  "T ^n -2 "r

=  1 — bnzn~l — bn+1zn — ••• 

where we have made the substitu tion £ =  Now consider

9 (0  _  1 +  w(z) _  1 +  y j i / Q  

(g'(0 1 “  «<*) 1 “  « < l/0  ’
(4.5.4)
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where w(z) — qmzm +  ?m+i-zm+1 +  •••, m >  0. By comparing the coefficients on both  sides we 

deduce m =  n — 1 again.

We use the same argument as before and by subordination i t  is sufficient to  prove tha t 

\w(z)| <  1 for V z € A . Suppose th is is not true then there exists a ( 0 G A *  so th a t a t the

i 6
corresponding l / £ 0=  z0=  r0e ° £  A . We have |w(^)| <  1 for \z\ <  r 0.

We now differentiate (4.5.4) w ith  respect to  £ to  obtain:

9M(C)_  1 (  1 ~  w(z) \  ( ,  _  1 +  w( z)_______ 2zw \z )  \
« '(£) C V 1 +  w(z) J \  1 — v iz )  ( l  — w(zYI2 /

Hence at zc
«<*) (1 -  u i z ) f

+ g/A(Co)

S '( C o )

w2(z0) -  w(z0) +  t v jz 0) 
1 -  w{zQ)2

^  o l *  -  1 +  w ( z o ) \  
-  2

>  2 - 2)  =  t -  2 >  n -  3.

§ 4.6 On a subclass o f  Strongly Gamma Starlike Functions

o° ,
Let y(z) =  z +  5 3 anc  ̂ A z) f ( z) 7̂  0 be an ana lytic  function  in  A . P .T . Mocanu [1

2 . t1969] defined a subclass o f S such tha t the real part o f the a rithm etic  mean o f the quantities ^4 

/ "and l  +  2y - is positive A :

> 0  V z €  A , (4.6.1)

where <* is any fixed real number. Functions satisfying th is condition are said to  belong to  the 

class o f alpha-starlike function  and they have been shown to  be starlike  fo r a ll a  in  M ille r, 

Mocanu and Reade [1]. Also when a  =  0 , S* and 36. In  1979 Sakaguchi and

F uku i [1] proved tha t i f  /  satisfies (4.6.1) then j ( z ) f ( z )  ^  0 in  A ; hence th is  part o f the 

hypotheses can be dropped.

Before we proceed further, i t  is necessary to  recall some elementary facts; we define the 

princ ipal branch o f the argument o f z—re%0 be — 7T < 0 < 7r, and we denote i t  by 6 =  A rg  z. The
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princ ipal branch o f the logarithm is defined as Log z= lo g  r + iA r g  z whereas the ord inary 

logarithm  is denoted by log z= log  r + ia r g  z. I f  no confusion arise we shall also sometime w rite  

arg z = A rg  2 as in  the rest o f th is thesis. We also define the complex exponential to  be 

/  =  \ e Lo3 z where A is a complex number. We have the fo llow ing facts: A rg  2*  =  A A rg  z i f  A is 

real where 0 < A < 1  and Arg z1z2 =  Arg zl  +  A rg  z2 i f  and only i f  —ir < A r g  z1 +  A rg  z2<w.

Lewandowski, M ille r and Zlotkiewicz [1] defined another subclass o f S such th a t the

geometric mean o f the quantities J j  and 1 +  *s positive i*e* /» /  and 1 +  2^ - ^  0 in  0 <  | ̂ | <  1. 

Suppose 7 is real and

(4 ),'y(i+4 )ft > 0  V i e  A .

Where the above quantities are raised to  certain powers, the branch considered is meant to  be 

the principa l branch. Such functions are called Gamma-Starlike functions L y and they too have 

been proved to  be starlike for a ll real 7 in Lewandowski, M ille r and Z lotkiew icz [1]. C learly JL0 =  

S* and JL1 =  3G. Also in  Lewandowski, M ille r and Zlotkiew icz [1], the fo llow ing subclass o f L y 

was suggested:

oo , f t
D efin ition  4.6.1 Let j(z) =  z - f  J^an2n be an analytic function in A  and f  / ,  and 1 +  &-r ^  0

2 /  
in 0 <  12] <  1. Suppose 7 , a  are real constants such that 0 <  7 , ot <  1 and that

( 1 - 7 ) A rg ^ jj. ')  +  7  A r g f l  +  J ^ ' j V 2 €  A .

Then we say that f  is a strongly gamma-starlike functions o f order a , and we denoted the class 

o f such functions by £ 7(0:).

Note th a t £*(<*) C L y , and so strongly gamma-starlike function  must be starlike. We 

shall show th a t fo r a subclass o f £*(<*), /  is not only starlike bu t strongly-starlike o f order /? 

where /? depends on 7 . S trongly-starlike functions were defined in  Chapter 1.

Let #?(/?) =  { /  | /  G l * ( o r) where a  =  +  , 1 >  P >  }»

i.e. i f  / € ( £ ( £ )  then /  satisfies

( I - 7 ) A r g ^ ^ j  +  7 A rg ^ l  +  d y 'j | <  ( /? ( l +  7 ) — y) |  V 2 G A . (4.6.2)

where 1 >  /? >  7 / ( I  +  7 ).



We shall now state the theorem.

Theorem 4.6.1 Q*(/?) Q $*(/?).

P roof The proof is s im ila r to  tha t o f Lewandowski, M ille r and Zlotkiew icz [1], or M ille r [1] and 

the theorems above. We let /  £ Q*(/?) and

=  ( - 1 ^ - ) " =  ™  0 <  /» s  1 V ,  6  A . (4.6.3)

Then u ;(0 )=0  and w jk + 1  is ana lytic in  A  as before. I f  m 2) | < l  V zEA  then the theorem 

follows from  subordination. Suppose not, then there exists a z0=  r0e £  A  such th a t |tu(2)| <  

1 fo r \z\ <  r 0. Suppose also tha t w atta ins its  m axim um  at z0. Then by the Clunie-Jack 

princip le we have at z0,

T h a t is

(4.6.4)* 0 ^ r 4  =  r >  1 =  ■ ' =  i5  .V\ZQ) ~  l  — w(zQ) 1 — COS0Q

where S is clearly a non-zero real number.

Note tha t we can w rite  the left hand side o f (4.6.2) in  the equivalent form :

A y ,  A ‘ ) }  ■ =  0 ^ T < 1- (4.6.5)

Differentia te (4.6.3) and substitute to obtain

A y ,  m  =

_ / i+ u < * h (1- 7> Y f  ! + “ <*) V* | o T (  w' ( z) , w' ( z) ^
\1  — w(z)) V ^ l - w (z) '  \  1 +  10(2) 1 — w(z)J J

A pp ly ing  (4.6.4) a t z0, we obtain

4 r . « * »  -  ( ! ^ f ( l T %  +  ! ^ & ) ) ’

=  ( ( .S ) *  +  T4  ( l - £  +  i S - 1) )

=  > ?  ( ,  +  * . ) j

( - i S ) " ’ - " 5' " ” ”  ( ' + ' © ) ’ + > ' ♦ '  ?  +  * > ) ’
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Since S could be either positive or negative, i t  is necessary to  consider them in  separate

cases. We firs t consider S to  be positive. Since both a  and /? are positive and less than or equal

to  1, we clearly have Arg (z0/ ( z Q) / and Arg (^ +  z0/ , (z0) / / ( z Q) ) y less than i r / 2.

Thus, tak ing  the argument o f (4.6.5),

Arg  J { 7 , j [ z 0)}  =  ( I - 7 )/? (Arg i+ A r g  S) +  7  Arg f  (s?  +

=  (1 — 7 ) /?  Arg i +  7  Arg

Now Arg f  — and

I  2 ( 5 ; /  \ ^  +  7’/? /2 ( 5 + 1 /s ) c o s ( 1 - /3 ) i / 2 /

I  ^ / 2 ( 5 + 1 / A i » ( 1 - ^ / 2 \
< ta n  M ---------- f ---------- J-- =<an *( fa n ( l— /?)£ )= (1  — /?)£.

\ T 0 / 2 ( S + l / S ) c o 8 ( l - 0 ) w / 2 j  \  2. J 2

Hence the sum o f the arguments o f f  and +  i1 *s êss f ^ en or equal

to  tt/ 2 and each argument is positive. Thus we have

I Arg  J{  7 , f(z0)}\  = ( l - 7 ) /? f +  7/3§ +  7 - 4 r , ( ^ +  i 1- ^  ( S + J ) ) |  

/3§ + 1 + Tr(5+s)c<”((1~/J)i)+

/? | +  7 i an 1 t (s+s) Sin((1-/J)i)
1 T B / -  i \  / .............

>  /3§ -  7

tan 1

tan 1

/? ! — 7 tan 1(^tan

s"+ t (5+s)

t (5+s) s,n((1_̂ )f)

^ + t (s+s) C(,s((1_/?)l).

? ( 5+g)
^ ( 5 + 1 )  cos( ( i - ^ ) | )

5(i

, 7T   7T

■/»))

( /? ( l +  7 ) - 7 ) .

The above inequalities fo llow  since fan 1 is an increasing function and S is a positive number. 

We m ust now consider S to  be negative. Note tha t we can w rite  S =  —15| =  e * '! ^  and hence
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iS = e  ,ir^ 2|5|. S im ila rly  we have

\Arg J(7 , />o))l = >lr^(e-<,r/2|5|)(1' 7)/J((e-,',r/2|5|)^+ e“" /a-|2(|5| + |i|))7 

- § ( 1 - 7 ) / ?  -  §7/? +  7 4 r$ ( |S |/ ,+  “ f ^ ( l ‘S1 +  |£ |)  c’ ( 2+/?2))  

- | / ?  +  7^ r <7 |5|/,+ - 7T  ( l^ l +  R j) ( cos +  * sin

■£/?2 P -  7 fan - l |S|

I S l ' V  Tr(|S|+$j) c o » f ( j 9 - l )

fan - l |5|

\S\

=  |  /? — 7 ( “ n

=  |/J  -  7(1- /3 ) f  =  f  (/J (1+7) - t )-

Hence, in  both cases the above argument leads to  contradictions a t the same tim e. This 

completes the p roof o f the theorem. □

§ 4.7 A Criterion for Quasiconformal Extension

Since the class S*((3) adm its a /('-quasiconformal extension to  C, w ith  k <  s*n(/?^), an 

imm ediate deduction from  the theorem gives:

C oro lla ry 4.7.1 The class §*(/?) admits a K-quasiconformal extension to C with k <  sin( /?§)•

Note th a t Qo(/?) =  $ * (P )  an<  ̂ §*(/?) the class o f/s a t is fy in g

<,r« (1 +  S (2/3- l ) f  , \  <  fi <  1,

which is a subclass o f strongly convex function of order 2/3 — 1. This condition implies th a t /



satisfies

As we can see the above im p lica tion  only va lid  i f  |  <  f3 <  1. Th is leaves out the /? in  the range 

o f 0 <  (3 <  |  . Hence i t  seems tha t the Theorem 4.7.1 is not best possible in  the sense th a t a 

better estimate o f /? in  the defin ition  of Q*(/?) could be obtained so th a t the theorem can include 

the missing range o f /? when 7 =  1.

§4 .8  A more General Inclusion

The Theorem 4.7.1 showed that when /  € 9*(/?) =► /  6  §*(/?) =  We now show

th a t th is is in  fact a special case o f the the fo llow ing general inclusion.

Theorem 4.8.1 7 /0  <  77 < 7  then Q*(/?) C  ()*(/?).

P roof The case when 77 =  0 has been proved in Theorem 4.7.1, so we only need to  consider 

the case 0 < 77 < 7  <  1. By using the subordination princip le, we fin d  th a t we do not need to 

use the argument in  Theorem 4.7.1 again.

Let /  6  9*(/?) > we shall prove tha t /  satisfies

( l - ; / )  A rg ^ jj:')  +  77 A rg ( \  +  J j }  | <  ( /? ( l +  »7) - r 7)§  V z €  A .

Since /  6  Q*(/?) i f  and only i f  there exists a function P\(z)  such tha t

Pi(z)  €  9* =  { P(z) | P(0) =  1, P is analytic in  A  and 3?(jP(z))>0 in  A }

the relation

is satisfied. By Theorem 4.7.1, /  also belongs to  S*(/?). Hence there also exists another P2( z) E ^  

so th a t

P^f-  (4.8.2)
A *)
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K ^na-p ie r *

Raise both sides o f (4.8.1) to  the power 77/ -y<  1 ( 77̂ 0 )  to  obta in 

Raise both sides o f (4.8.2) to  the power o f (1 —77/ 7 )< 1 . We obtain

( * M f  ̂  (4-8.4)

We now m u ltip ly  identities (4.8.3) to  (4.8.4) and obtain

& ' ■ c r - ’.

Let P3(z) =  P ^ z ) ^  ^  nP2( z ^  so P3(0) =  1. Note th a t both  the powers are less 

than one. Now

\Arg  P3(z)| =  | A r g ^ P ^ z f ^ * ^  * P2( z f (1 ^  )|

<  [ p i ^  +  r ^ - r ^ l A r g  Px(z)\ +  \A rg  P2(z)\

<  {^ (?  +  7?)-7?} |  |

=  |  (/?(T7 +  l) -7 7 ) .

Since /  €  9*(/?), we have 1 >  /? >  as 7 >  77. T h is  is because g(x) =

is increasing for a ll positive x. Thus P3 has positive real part and

I Arg P3{z) | <  |  (/?(77 +  l )  —77)  <  |  .

So P3{z) € and /  6  Q*(/?)« This completes the proof o f the theorem. □

The whole class o f Q*(/?) 0 <  7 <  1 is o f special interest, since C orolla ry 4.7.1 shows 

th a t a ll functions in  the class have a K(  7 )-quasiconformal extension to  C.
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Note added to  th is chapter

A fte r th is thesis was w ritten , I realized th a t Theorem 4.5.2 has been obtained 

independently by M ille r and Mocanu in [2] w ithou t the assumption th a t / / (0 )= 0 . The ir method 

is more advanced and requires the use o f Lowner chains. We note th a t our method allows us to  

consider n> 3 .
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Chapter Five

Second Order Linear Differential Equations with 

Transcendental Entire Coefficients

§ 5.1 Definitions and the Nevanfinna Theory

We sta rt by in troducing some well known defin itions and facts about the growth and 

value d is tribu tion  theory o f a meromorphic functions (or entire functions) in  the complex plane 

C. We base our account o f the theory on the standard text o f meromorphic functions w ritten  by 

W .K . Hayman [2].

We consider a function /  meromorphic and not identica lly  equal to  zero in  the complex

plane C. Let n(f,oo) be the number o f poles o f / i n  the disc \z \< t ,  counted w ith  m u ltip lic ity .

The counting function fo r  f  is defined as
r

a f  n ( t ,oo )-n (0 ,oo )  . w
N\ r J )  =  / —--------------   dt +  n(0,oo) log r.

0
Set log+ u = m a x {0, log «} , fo r « > 0  and

27T

= J  log+\Aret0)\ d9 
0

which is called the Nevanlinna •proximity function. Then i t  follows from  the Poisson-Jensen 

formula  , see Hayman [2] p . l  , tha t we have the relation

m{r,f) +  N(r,f)  =  m { r , l l f )  +  N ( r , l / f )  +  log\cx \. (5.1.1)

Here cx is the firs t non-zero coefficient in  the Laurent expansion o f J(z).

Let us set T(r,f)  =  m(r,f)  +  N(r,f) . The function T(r,f)  is called the Nevanlinna
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characteristic function o f f .  So we can rewrite (5.1.1) as T ( r , f ) =  T ( r , l / f )  +  0 (1 ). We also defined 

N(r,a) =  N ( r , l / ( f— a)) and m (r,a) =  m ( r , l / ( / — a)) and T ( r ,a )=  T ( r , l / ( f — a)) fo r any fin ite  a. 

The firs t fundamental theorem states tha t (see Hayman [2] p.5) fo r any function  meromorphic 

in  the |z |< f2<oo, and for a fin ite  or in fin ite , we have the relation

T (r ta )=  T(r,f) +  €(r,a) r < R  

where \€(r,a)\<log+ \a\ +  \log\c\\ +  log 2 ,

and c is the firs t non-vanishing coefficient in the Laurant expression o f / — a.

We have some basic properties o f the characteristic functions:

T ( r , f+ g )<  T ( r , f )+  T(r,g) +  log 2,

T ( r , f g ) < H r , f ) + n r , g ) ,  

and 7 (r ,  ^ ) = 7 1 ( r J )  +  0 ( l )  a i - b c g t 0.

Also T{r,f)  is continuous in r  and increasing convex function o f log r. The importance o f the 

characteristic function is tha t i t  can determine the growth o f function. For example, let /  be any

_ ? * £ < .r —► oc

must be rational.

non-constant meromorphic function and satisfying l im  j < c  fo r some constant c. Then /
r —► oo log r

Let s(r) be a non-negative increasing function. The order  and lower order o f s(r) are 

defined as

P
y.— log s(r) , log s(r)

=  hm — —  and 77 =  hm —.— —
r —► 00 log r  r ~ o o  log r

respectively. Then the order and lower order of a meromorphic function f  are defined as

„ ( f ) =  1̂  and , ( / ) =  Urn
r —>• 00 log r  r ~ o o  log r

respectively. Let M (r,f)  be the m axim um  modulus o f /  as defined in  Chapter 2. We have the 

fo llow ing relation between T(r,f)  and M (r,f)  for regular functions. I f  / i s  reguler fo r |z |< i2 , then 

T {r , f )< log+ M ( r , f ) < ^ T { R , f )  (0 < r < i j ) ;  see also Hayman [2] p. 18. Th is  shows th a t T{r,f)  and 

log+M (r ,f)  have the same order.

We define the Weiers/rass primary factor  to  be E(z,q) =  ( l  — z)ez w ith

E(z,0) =  l  — z. Then we have the follow ing im portant factorization theorem: let f  be meromorphic

71W ) .
r —► ooin C and {a w}, {bp} are the zeros and the poles of f  respectively such that l im^   ̂ ^ = 0  where

q is a positive integer. Then , \
I I  M ,aZ ^)



where k is an integer and P{z) is a polynomial o f  degree at most q (see also Hayman p.20). The

converse is also true. Given an increasing sequence o f complex numbers {a n}  whose m oduli tends 

00  1 0 °  1
to  in f in ity  such th a t - ■ q =  oo and — T + 1^ 00’ w^ere q is a positive integer, then the

^  1 M  1 M
canonical product Y lE ^ ^ q ^ j  converges un ifo rm ly  in  any bounded region o f C. Let {a n}  again 

be the sequence o f zeros o f /  ordered w ith  non-decreasing m oduli and | an | —*► 00 as n —► 00, we 

defined the order o f  {a n}  to  be the order o f n(r,0) =  n ( r , j ) .  We also define the exponent o f  

convergence o f the zeros o f f  to  be A(,f) =  in f lq  : ^   ̂ g< o o  and </ER+| .  The genus o f the
L 1 M  J

Weierstrass product is defined to  be the integer q. Hence we have the re la tion q < p < q + 1.

We now come to  one o f the most im portan t theorems in  the value d is tribu tion  theory. 

Theorem 5.1.1 (Nevanlinna?s Second fundamental theorem)

Suppose that f  is a non-constant meromorphic function in |^ |< r .  Let ax, a2*--, aq be distinct

f in ite  complex numbers, 6 > 0  and suppose that \ap — fo r  1 Then

Q
m(r,oo) +  '$2m(r,ap) <  2 T ( r , f ) - N x( r )  +  S(r),

1
where N x(r)  is positive and is equal to N ( r , l  /  f )  +  2N(r,f)  — N ( r , f )  and 

S{ r) =  m( r , /  / f )  +  r, } - q l o g ^  +  log 2 +

with some modifications i / y ( 0 ) = 0  or 00 o r / ( 0) = 0.

J , .. ,; /  A  f  m i r i a )  1 7̂ —  N ( r , a )Let us w rite  d la , f )=  lim -=$— tt = 1 — hm 7̂ —77.
r ~ 00 T{r,f)  r~+°°T {r , f )

We call i t  the deficiency o f the value a o f f  The above theorem can be rew ritten in to  a more 

useful fo rm  (see also Hayman [2] p.43 for details).

Theorem 5.1.1* ( Nevanlinna1 s Second fundamental theorem)

I f  f  is meromorphic fo r  z-£00, then the deficiency 6(a,f) defined above vanishes fo r  at 

most a countable set o f values o f a. The sum o f all deficiencies is at most equal to 2:

oGC

This  readily proves Picard's theorem: I f  f  is a meromorphic transcendental function in 

C, then f  takes every value inf in itely often, except with at most two exceptions. The values th a t /  

takes only fin ite ly  often are called Picard exceptional values. Notice th a t 0 < 6 ( a , f ) < l ;  i f  6{a,f) is 

near to  1 then /  takes a less often, when 6{a,f) is near to  0 then /  takes a very often. For details 

about the relation between the deficiency o f /  at a and the growth, the asym ptotic values o f f  

see W .H .J. Fuchs [3] 1982.
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§ 5.2 Value Distribution o f  the solutions o f  Second Order Linear Differential Equations

We consider the second order d ifferentia l equation:

yn +  A y = 0

where A  is either meromorphic or entire and o f fin ite  order. Much has been done when A  is 

m eromorphic or periodic, see Bank and Laine [2], [3]. We shall firs t consider A  to  be a 

polynom ia l.

Theorem 5.2.1 ( Bank and Laine [1] 1982)

Let A be a polynomial o f degree n >  1 and let f  be a solution o f  y, f + A y = Q .  Then:

(a) The order o f growth o f f  p ( / ) = ^ i ^ ;

(4) I f n  is odd, A ( / ) = 2 i^ ;

(c) I f  n is even, and i f f  , f 2 are linearly independent solutions o f the equation, then m a x { \ ( f ) ,  

A (/2)}  =  ̂ i ^ .  I f  f  is a solution such that A (7 )< ^ y ^ , then f  has only f in ite ly  many zeros;

(rf) I f  n is even, there are examples where some solution has no zeros and other examples where

each solution f £ 0 has A{f) =  ̂— ^ .

We firs t note th a t i f  n = 0 , then the equation can possess tw o linearly  independent 

solutions each o f which has no zeros. For example consider yn  — y = 0 which has linearly 

independent solutions ez, e~z, non o f which has any zeros. Part (a) o f the above theorem was 

due to  H. W itt ic h  [1] using W im an-Valiron  theory, another p roo f can also be found in  

Gundersen [1]. P art (b) is a simple consequence o f the Hadamard factorization theorem.

We now look at the result when A is transcendental entire.

Theorem 5.2.2 ( Bank and Laine [1] 1982)

Let A be a transcendental entire functions o f order p (A ).

(a) Let p { A ) <  oo and p (A )  is not an integer. Let f ,  f 2 be two linearly independent solutions o f  

yn + A y = 0 :

( i)  i f p ( A ) > ± ,  then m a x { \ ( f ) , \ { f 2) } > p ( A ) > ± ,

{ i t )  i f  p(A)<l, then m a x { \ ( f ) , \ ( f 2)} =  oo.

( b) A ny  solution /=£0 o f the equation has p{f) =  oo.

(c) Suppose \ ( A ) < p ( A )  and f  is any solution o f the equation, then A(f ) > p ( A ).

(d) Suppose that p (A )  is arbitrary and let A(f) denotes \ { f )  but counted with the distinct zeros of



/, and that A(A)</>(i4). Then max{X(fl ) , \ ( f 2) ]> p ( A ) .

(e) I f  p is a positive integer or equal to oo, then there exists a transcendental entire function A 

with p (A ) =  p such that the equation ytf +  A y = 0  possesses two linearly independent solutions 

each having no zeros.

Part (b) o f the theorem is a simple consequence o f the logarithmic derivative lemma

/
which states tha t for any meromorphic function o f fin ite  order we have m (r, j ) = 0 ( l o g  r)  for a ll 

r  except possibly for a set r  o f fin ite  measure. Follow ing Hayman [2 p.36] le t us say, i f  an 

inequality holds except for a set r  o f fin ite  linear measure, tha t the inequality  holds nearly 

everywhere or n.e. for short. Let /  be any solution o f yrt +  A y = 0 ,  and suppose on the contrary 

tha t /  has fin ite  order p ( f ) <  oo. Then

T(r,A ) =  m (r ,A ) =  m(^r, m^r, +  j ^ — 0(log r) n.e. r —*■ oo.

Hence T (r,A ) =  0(log r)  and A  has only fin ite ly  many zeros and thus reduces to  a polynom ial. 

This is a contradiction.

Moreover, for any non-zero number 6, from  y,r +  A y = 0  we have

/ ' + A ( f - b ) = - A b

T - i + A - - M
f - b

1 - - I f f  _______
_ - b ~  A b { f - b + J i J - A b \  f - b  /  Ab f - b  

Thus m (r, j ^ ) < m ( V ,  +  +  0 ( l ) < m ( r ,  +  ^

Since T (r ,A )  =  o (T(r, f ))  and m^r, )  =  o(T (r, f ))  n.e. r —► oo

and so m (r,  j ^ - j ^  =  o (T (r, f ))  n.e. r —► oo.

Hence JV^r, j ^ - ^ j ~ T ( r , f ) .  n.e. r —* oo.

Thus any solution o f y, f + A y = 0  takes each non-zero complex number b in fin ite ly  often 

  6)
such tha t 6(6,/) =  1— ( i^ p ^ r / )  Z~ ^  ° n^  P°ss^ e exceptional value. We shall be

interested in  the exponent o f the convergence o f the zeros o f the solutions o f yff +  Ay= Q .  As 

shown by Theorem 5.2.2 (a) case ( it)  th a t when A  is an entire transcendental function o f order 

less than 1 /2 , then max{X(f1),X(f2)}  =  oo. This has been extended to  p (A ) =  |  by J. Rossi [1]. In  

fact he proved a more general result.
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Theorem 5.2.3 ( / .  Rossi [1] 1984) Lei A be a transcendental entire function o f order p ( A ) < \ .  

I f  f x and f 2 are the two linearly independent entire solutions o f yf t + A y = 0 ,  then the exponent o f  

convergence o f E —f xf 2 is either inf in ite or satisfies

1 + T 7 S <  2 .p ( A y  X(E)

In  particular i f  p ( A ) < ^  =̂ - m a x { \ ( f1) , \ ( f 2)}  =  oo.

I t  is s till an open question whether the strong conclusion th a t both A ^ ) ,  A(/2) = o o  as 

soon as p ( A ) < l .  In  fact Bank and Laine [1] 1982 conjectured tha t max{X(f1),X(f2) } = o o  holds i f  

p (A )  is any positive number not equal to an integer. However by Theorem 5.2.2 (e) there exists 

an A, p (> l)€N  such th a t each o f the linearly independent solution has no zeros. There are also 

results about the locations o f zeros o f the solutions which can be found in  Hellerstein and Rossi 

[1].

§ 5.3 The Solutions o f  the Differential Equations when the Coefficient A is Transcendental Entire 

with some Growth Conditions and the Main Result

Bank, Laine and Langley investigated some growth conditions on A  to  ensure tha t 

m ax{A(/1),A (/2) }= o o . They obtained the fo llow ing.

Theorem 5.3.1 (Bank, Laine and Langley [1] 1986) Let A be a transcendental entire function

o f f in ite  order p (A )< o o  with the following properties: there exists a set HE.R o f  measure zero

such that fo r  each real number 0 e R \H , either 

\A(re ie)\
(*) — m —► oo as r  —► oo fo r  each N > 0,

r
oo

or  (« ) J  r \ A ( r e )| d r < +  oo,
0

or  (m ) there exists a positive number K  and b, and a non-negative real number n (a ll

Th | 2possibly depending on 6 ), such that —̂ - - < p ( A )  and

\A(re*e) \ < K r n fo r  all r> b .

Then i f  and f 2 are linearly independent solutions o f yl t  +  A y= Q , we have max{X(f1) 

=  •

• PRoughly speaking Theorem 5.3.1 shows tha t i f  A  behaves like e where P  is a
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ff ppolynom ia l o f degree n say. In  the case o f the equation y + e  y = 0, i t  has been proved th a t 

every solution /  satistfies A(/) =  oo, for details please see Bank and Laine [1] 1982 p.10. O f 

course, Theorem 5.3.1 allows a much larger class o f functions which w ill grow as rap id ly  as ez or 

tend to  zero as t~ z or behave like a polynom ial o f small degree in  d ifferent regions o f the plane 

C. The conclusion tha t max{X(f1),X(f2) }= o o  is weaker than A (/)= o o  fo r every solution. We 

have the fo llow ing useful corollary.

C oro lla ry 5.3.2 (Bank, Laine and Langley [1] 1986) Let P 1? P 2, •••, P n  » > 1  be non-constant

polynomials whose degrees are deg P ^ d ^  i= l , - - - ,n  and suppose that deg[Pi — P j )  =  max{di ,d^}

i ^ j .  Set A(z) =  J^B j (z)exp(Pj (z))
1

where fo r  each j ,  B j  is a non-constant entire function with p ( B j ) < d j .  Then i f  f± and f 2 are 

linearly independent solutions o f yn + A y = Q ,  we have max{X(f1),X(f2) }= o o .

I f  yft +  (A  +  P ) y = 0 where P is a polynomial o f degree m and < p ( A ) = m a x { d A ,
l  j  j

then the same conclusion holds. This is a best possible result.

Both the proofs o f Theorems 5.2.3, 5.3.1 and part o f 5.2.2 were based on the product 

E = f 1f 2. I t  is therefore reasonable to ask, i f  A being a transcendental entire function which 

behaves or has growth conditions sim ilar to those o f e^or to  the hypotheses o f Theorem 5.3.1, 

the same conclusion w ill hold. A  result o f A. Edrei and W .H .J. Fuchs suggests th a t fo r an entire

  N( f* 0̂
function A, i f  A  om its 0 too often. For example i f  5(0,A) =  1 =  1 — l im  or

'  f  —► oo T( r,f)

N(r,0) =  o (T(r,f)) ,  then A grows like eP where P  is a polynom ia l in  certain annuli. In  fact they 

found T ( r ,A )~ \c ( r ) \ r p /2

fo r some r  su ffic iently large, where c(r) may diverge.

We state our main result.

Theorem 5.3.3 Let A be a transcendental entire funct ion o f f in i te  order p (A )  satisfying 

6(0,A) =  1. I f  f x and f 2 are linearly independent solutions o f the equation yn + A y = 0. We have 

max{X(f1),X(f2) }= o o .

I f  /h a s  only fin ite ly  many zeros, we have the fo llow ing general result.

Theorem 5.3.4 (Bank and Langley [1] 1987) I f  A is a transcendental entire function o f f in ite
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order having f in ite ly  many zeros, all non-tr ivial solutions o fy ( k) + A y = 0, k> 2 satisfy A(y) =  oo.

• , /I P #
Note th a t th is  settles the problem the equation y - f  e y = 0 where P  is a polynom ial. 

Not on ly do we have m a x { \ ( f l ) , \ ( f 2)}  =  oo as Theorem 5.3.1 allows. Theorem 5.3.4 implies 

A(/) =  oo fo r every non -triv ia l solution.

§ 5.4 Results required for the Proof

Since 6(0,A) =  1, i t  is well-known tha t the order o f the function is an integer (see 

Hayman [2] p. 105). Let us quote the follow ing lemma.

Lemma 5.4.1 (A. Edrei and W.H.J. Fuchs 1959 [1]) Let A be a meromorphic function of

f in ite  lower order and 6(0,A)  =  1 so that the order p ( A ) = p  is an integer say. Then A has the 

following properties:

(*) A can be factorized as n
A(z) =  zkeP̂ z  ̂ lim  — 7 ^ ,

where k is an integer and P(z) =  a 0zp H \-ap is a polynomial o f  degree p.

( U) Let c(r) =  a 0 +  U  -Xp -  ^  -± p }, (5.4.1)
W l< r av IM < r  v

then f o r  any 0 < e < l  we have

T T (r,A )= (H -7?( c ) ) t i t i l L  f o r r > r 0 , \r} \<€  (5.4.2)
1

(m ) Let a  =  ep+1 and Cj =  c(a3) where j  is an integer. Then given the same e > 0  as defined in

(i»), there exists a io (e) such that fo r  all j > j 0 we have

log \A (z) \  -  & { Cjzj ) < 4 e \Cj\ r p, (5.4.3)

f o r  all j  sufficiently large. Here

=  I a 3 < r < a j+ 3 /2 }  (5.4.4)

and E j  is a collection o f f in ite  number of discs whose sum o f rad ii are less than 4e6aJ+3^ 2,

where 0 < 6 < l / e  and 6 can be chosen arbitrary small.

We shall introduce the concept o f linear and logarithm ic measure. Let 7 = [l,o o ] and 
F C I , then

m(F(r))  — J  dt and lm (F (r))  =  J  j  d t ,

t € F ( r )  t e F ( r )
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where i^ r) =  F n [ l ,  r], are the l inear  and logarithmic measure respectively. We also define

U L D (F )=  l im  and L L D (F ) =  lim  lm(F ( r ^
v y i— ► oo log r  v y r ^ o o  /o<jr r

to  be the upper and lower logarithmic density.

Note tha t ULD(I) =  L L D (I )  =  1

and tfZD (F) =  l - I Z £ ( / - F ) .

We cite the fo llow ing two well-known lemmas.

Lemma 5.4.2 ( W.H.J. Fuchs [1]) Suppose h(z) is meromorphic in  C and o f f in ite  order p. 

Then given C >0 and 6 with  0 < 6 < l / 2 ,  there exists a constant K (p X )  and a set o f  positive real 

numbers G of lower logarithmic density at least 1 —C *-e. L L D (G )>  1 —C such that i f  

0 < 6 2 — 6 i < 6 and rE G , then

2̂
r  | h!(reiB\ 1

r  j  | d$ <  K (p , ( )  6 log J H(r,A). (5.4.5)

'1

Lemma 5.4.3 ( Valiron  [1] p.74-75) Let f  be an entire function o f f in ite  order, then

/(*) =  0 ( r * )  rE [0 ,oo ]—£  (5.4.6)
A *)

here k is some positive number and E is a set o f real numbers o f f in ite  l inear measure.

We also require the fo llow ing lemma.

Lemma 5.4.4 Let A be an entire function o f f in ite  order satisfying £(0,j4) =  1, then there exists 

a set H  o f r  with positive lower logarithmic density, such that the inequalities (5.4.3), (5.4.5) and 

(5.4.6) hold at the same time fo r  sufficiently large r£ H .

Proof Let F 1 =  {r \  r £ l — G }  (5.4.7)

tha t is the set o f r  such tha t the inequality (5.4.5) does not hold. We have

ULD( F1) =  l  — L L D ( I -  F1) = l  — LLD ( G)

< i- ( i -O = C (> 0 ) .
Also let F2 =  { r | r E i? }  (5.4.8)

tha t is the set r  such tha t the inequality (5.4.6) does not hold. Since E  has fin ite  linear measure 

we deduce / dt <  I  dt < o o ,

* e F 2 ( r )  t E F 2  ( r )
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hence ULD(F2) =  L L D (F 2) = 0.

Let us recall from  Lemma 5.4.1 the defin itions o f T j  =  {z\ a *  < r < a J+3^ 2} and the set 

E j  which is a collection o f fin ite  number o f discs whose sum o f rad ii are less than 4 ebjOt**3^ 2, 

where 0 < 6  j < l  /  e for each j .  Here 8 j  is defined for each E j  in  Lemma 5.4.1.

Let F 3 =  [ j { r = \ z \ :  z e E j } .  (5.4.9)
3

Clearly r  satisfies a jf< r < a '?+3'/2 for each j .  We let q =  =  i / ( p + l )  I’ w^ ere M  rePresenf s

the integra l part o f zER. Also since for each E j,  6 j  can be chosen a rb itra ry  sm all, given any 

T7>0 we may assume 8 j< r }  for a ll j .  In  order to  prove the lem m a i t  suffice to  show 

L L D ( I—\ j F j ) > 0 .  j+3 /2
3 q «

Consider /  f  =  0 ( 1 ) + E  /  7
‘ € F 3 ( r )  1 - 1 J

3 + 3 /2
q 1 ar 

<  <W  + £  x , /  dt
7=1 ay - *  3a

?

S o ( i)+ E ( V ^ “ i+3/2)
j = i  01

=  0(l)+4eo3/2E « ;
j =  1

< 0 ( l ) + 4 e a 3/2 qrj.

Hence -  J  & = o(| - l - ) + 4 e a 3 / , ( j> + l).j .

i e F 3(r)

Since rf is a rb itra ry  we may let r  —*■ oo to  obta in ULD(F3)=Q .  Hence

L L D ( I - { jF j )  = \ - U L D { \ j F j ) > \ - ' t u L D { F j ) 
j  j  1

= i-(C+o+o)=i-c>o

which completes the proof o f the lemma.

§ 5.5 Proof o f Theorem 5.3.3

Our method o f proof is to  consider the product E = f l f 2 where f x and f 2 are linearly
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independent solutions o f yn + A y = 0  and we shall also use the G ronw all’s lemma stated in  

Chapter 3. F irs t we need to establish some basic facts about the function E.

We observe tha t by the AbePs identity, the Wronskian  o f and f 2 satisfies

W ( h J 2 ) = h k ' - h h '  =  C

where c is a non-zero constant. Now

ff 2\ _ f 2 f i  ~ f 2f \  _  c
A  A  A  A

hut & Inn F — ^  ln a ( f  f  i —̂  I A^AA^+AA * — E 1b u t j l o g  E - Tz log {fJ2) - j - + j — j j — — E .

Adding the above tw o equalities, we obtain
o A '_  c . i f  

A  ~  E  E '

Differentiate both sides and substitute for A =  —f 2 f / f 2 , we have

i.e. 4 / = ( | ) J- | - 2  f . (5.5.1)

This relation was firs t found by Bank and Laine in  [1] in  1982. See also Chapter 2 section 5.

Now 2 T(r,E ) =  T {r ,E 2) +  0 ( l )

=7ir4)+0{l)
=TH ! ) 2- 2ir - 4'1) 

Î(r’( l)2)+I(r’ ir)+71M))+0(1)
= 2 jv(r, ^ )  +  Jv(n ^ + T \ r , A ) + m ( r ,  ( ^ ) 2)+ m (r ,  ^ ) + 0 (  1)

= 2 A ^ r , j ^ )  +  Jv(r, ^ r )  +  T (r ,A )  +  0{log  r). n.e. os r —>00.

The last equality follows because o f the applications o f the logarithm ic lemma. Since 

W(f1,f2) =  c ^ 0 J th is implies th a t a ll the zeros o f / 1? f 2 are simple and d ifferent to  each other. 

Hence a ll zeros o f E  are simple. So A ^r, =  and A ^r, where A ( r J )

denotes the d is tinc t zeros o f /. Therefore
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2T{r,E) =  Z N ^ r1 T \ r ^ A )+  0(log  r). n.e. as r —*• oo.

or T{r,E) =  O^N^r, T {r ,A )  +  0{log  r)^ . n.e. as r —* oo. (5.5.2)

Also E, , = f 1" f 2+ 2 f1,f 2, + f J 2"  =  - A f J 2+ 2 f 1' f 2' - A f 1f 2 =  - 2 A E + 2 f 1' f 2'.

S im ila rly  E1"  =  - 2 A *  E - 4 A E ? .

Therefore E  also satisfies the th ird  order d ifferential equation

E f " + 4 A E f + 2 A tE=Q .  (5.5.3)

(k)
We also note tha t i f  a function y satisfies the equation y + A y = 0 where Jb>l and A  is 

ana lytic in a domain A  say, then integrating by parts m any times, we can obta in the fo llow ing

z

y(*) =  e0 +  C i(*— *o) +  c2( * — z0)2 +  --- +  ck_x{ z - z Qf - 1- ( k \ y  J  ( ^ - « ) fc_1A(s)y(s) rfs,

zo (5.5.4)

where the path o f the integration is taken w ith in  the domain A .

We now proceed to the proof o f the theorem.

(a) Let f i ,  f 2 be linearly independent solutions o f the equation yr, +  A y = 0, where A is a 

transcendental entire function o f fin ite  order p(A)  and 6(0,A) =  1. W e assume the contrary tha t 

max{X(fi) ,X(f2) } < o o  and show tha t this leads to a contradiction. Consider E = f xf 2. We have 

X{E )<oo .  Since p ( A ) = p  is an integer and A ( r , ^ )  =  0 ( r * )  fo r some g> 0 , we can deduce from  

(5.5.2) tha t p { E ) < oo. However p (E )> p (A ) ,  since from  (5.5.1)

T ( r ,A )= T ( r ,4 A )  +  0(1)

<Kr’ d )2)+Hr’ ir)+I(r- 4)+0{lot r)
=3iv(r, ± ) + 2 T ( r ,E ) + 0 ( t o g  r)

< 5 T ( r ,E )  +  0 (h g  r).

So p (E )> p (A ) .  We shall use the same notations as in Lemma 5.4.1. Let us recall tha t

c( r ) =  “ o +  5 L  ’ (5.5.5)
M < r aV

j

where {ay } are the zeros o f A. Also c; =  c^ep+1^ =  c(aJ) and we have from  (5.4.5) tha t given any 

e > 0  there exists a j Q such tha t for a ll j > j 0

log |A(z)| -  < 4 ^ 1 ^ - !^ , z G { r j - E j } .
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Let us w rite  z = r e t6y ĉ - =  |c -1e*^, so that U(cjZP) — \c j \ r ? cos(pd +  /?). We note th a t /? 

m ay depend on j  bu t we do not emphasize this. Suppose 0ly 02l $ 2p where \0 ^ \< t t  j =  1, 2,

•••, 2p denote the 2p zeros o f cos(p0 +  (3). Given 1 > 6 2> 0 , there exists a ^ > 0  such tha t 

\O—0 j \ > $ i  fo r a ll j — 1, 2, •••, 2p implies that \cos(p9+ f t ) \ > 6 2> 0 .  Since e > 0  is a rb itra ry , we 

m ay choose i t  to  be e < ^ .  Hence

log \A (z) \  -  a?(c;- / )  < 4 6 1 ^ 1 /, z £ { r j - E j ] ,  j > j 0

<  6i \ c ^

\cA rp
<  \cos(pd +  P )|

=  | * ( c / ) | / 2 .

We divide the inequality into two cases.

( i)  I f  cos(p9 +  /3)>Q, we have for z £ { r  j  — E j ]

0< ) f i t ( c j zp)< log  |̂ 4(2r) |< g 8®(c<y-2rp); (5.5.6)

(*i) i f  cos(p6 +  ( i ) < 0, we have for z £ { r  j  — E j }

M (2) | < ^ ( Ci/ ) < 0 .  (5.5.7)

The above inequalities show that one can d ivide up any particu la r annular region 

{ F  j  — Ej }  in to  d ifferent regions w ith j  sufficiently large so th a t A  is either very large or very 

small.

(b) T o  be more exp lic it, let us take an arb itrary r j  defined in  (5.4.4) and

°<={21 e* - f p  ^ 6 ^  0*+ § } ’ <=1 ' 2- ' 2p■

W e d iv ide up r j  in to  2p portions by r j f \ Q i i = l ,  2,• • •, 2p. Since the behaviour o f A  in  each o f 

the r j H Q i  is essentially the same, we only consider F jC \Q i  say. W e a im  to  estimate the growth 

o f A  and E  in  each Qi and to integrate log+ \E\ over 0 to  2ir i.e. to  estimate

1
T ( ryE) =  J ^ J  log \E\d0. Let H = I —(F 1U F2U F3) where F -, 7=  1,2,3 were defined in  lemma Zttq

5.4.4, so H  has positive lower logarithm ic density. We shall choose such r £ H  fo r the in tegra tion 

o f log+ \E\ and we shall always assume r £ H  in sequel. Note th a t z £ { r j  — E j }  (\z\ =  r £ H )  for 

some j  suffic iently large. For convenience we define

H*(€) =  {r. r € H  and re 'e =  z £ r j - E jy j > j 0(e)}.

W ith o u t loss o f generality we may assume cos^p(fi>1 +  ̂ ) 4 - ^ ^  =  l  and cos
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Now we estimate, w ith  r £ H * ( c ),

h + r P

ddJ  (o j+ |£ (re i#)| M  =  J  lo g * \E (re " ) \

r e ^ e r ^ n O ,  * 1 - 5 5

i \  — 6\ 1̂+̂ 1 l̂ + 2 p

= j  log+ \E(re ie)\ d6 +  J  log+ \E(reie)\ dd +  J  log+ \E(reie)\ dd

^ - T P « l-5 l «1+«1

=  A(r) + /2(r) + /s(r) say-

We firs t estimate / 3(r) . From  (5.5.6)

log |A (*)| >  ^ft(C jZP) (> 0 )

=  \ \ c j \ rPcos(p9 +  (3)

1
-  2 ' ^ '
>  £ |c , | r p62.

I c( r)  I r p
Also from  (5.4.2) o f lemma 5.4.1, for any e > 0  and r > r 0(e) we have 7 1 (r,A )= ( l +  T/(c)) ^ —

for \ t] \ < c . We note tha t A  is o f regular growth(see Edrei &  Fuchs [1]) and p (A )= p E N . i.e.

further assu 

n T { r yA)b2

lim  ( £ £ ^ V v d )_  /|fn \°9 ~̂ (r^ ) > l t We may fu rthe r assume here th a t ra n d  rQ€H *(e ).  
— b oo log r  r — oo log r  ~  J u w

Hence %  i*mi >

ft 6 2 7t 6 2 1 - 6 ;
> - f  T ( r , A ) > - f  r

fo r some 53(c )> 0  and i t  tends to  zero as r € n  (e), r  —*■ oo. Summarising the above obser-

' n6-  (5.5.8)vations we have \A {z ) \> e xp { ^  r

as r  —b oo n.e and r£ H * (c )  and +  +

From  (5.5.1) we can w rite

so tha t c
E2 >  m i -

" - ( ( I ) ’ - O I
c2
E 2

=  0 { r k) n.e.From Lemma 5.4.3 we deduce 

and fo r some fc>0. A lthough th is estimate only holds outside a set o f fin ite  measure, Lemma 

5.4.4 asserts th a t i t  and (5.5.8) can hold a t the same tim e  fo r a set r ( £ H )  o f positive lower 

logarithm ic density. Thus

/7r<5o i -6-.

E1
> e x p (^ -^  r  — const.( r* ) (5.5.9)

as r  —b oo n.e. and r£ H * (c )  and 6^ +  +  Th is im plies |E| —> 0 outside those
Lp

exceptional sets and for +  +  In  particu lar |-£1 < 1  for r  su ffic iently large, so
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ei+Tp

/ 3(r)  =  J  log+ \E(rei$)\ d d = 0, re H *(e ) . (5.5.10)

«i+«i

(c) Next we estimate / 2(r). To do so we employ the Fuchs’ small arc Lemma 5.4.2. Since 

r £ H * ( c )  we m ay choose ^  so small such tha t 261< 6 < l / 2 .  For 01 — 61< 6 < O 1 +  81 , we have, 

fo r a fixed r,

log E(re*9) — log E {re ^6l+bl^) =  \ —J
9i + h

and log \E(rel0)\ <  log \E(re }l +J
e

«!+«!

£ ' ( « " )  . l t  
) '  di

^  i t .  
E{re )

Hence

h g * \ E ( n , , )\ <  (o j+ |£ (re i( *1+<l))| +  J
0

*1
<  /o / |£ ( r e ’ (*1+<l,)| +  J

*1 + 51
Ef{rext)

«i+«i

E{rexi)

E, (re i t )

E{re )

dt.

d t

<  log+ \E ( r e i h + h ) )\ + K {p (E ) ,Q  61 log j -  T(r,E).  (5.5.10a)

Here K(p(E),C)  is a positive constant as defined in  Lemma 5.4.2 and 51< l / 4 .

Now log+ \ E ( r e ^ 1+6l^)\ = 0 , since from  (5.5.9) we can choose r £ E * ( c )  su ffic ien tly  large

so tha t l-E^re*^1 * ^ ) |< 1 .  We deduce tha t

* i+ 5i

I 2( r ) =  j  <oj+ |£ (r« ( , )| 16 <  2 K (p (E ) , ( )  5 ,2 log J- T(r,E ).  (5.5.11)
*1-«1

(d) F ina lly  we estimate I i ( r ) .  Recall tha t the function E  itse lf satisfies a th ird  order d ifferentia l 

equation (5.5.3). Let us rewrite i t  in to  the fo llow ing form

E"'+< l>(z)E=  0,

where <f>(z)=A^2^-\-A^^ j.  According to the form ula (5.5.4) we may w rite

z

E(z) =  dQ +  dx( z -  zQ) +  d2( z -  z0)2 J  (z - s ) 2<f>(s)E(s) ds, (5.5.12)

where d0 =  E(z0), d1 =  El (z0) =  E{z0) [ and d2 =  ̂ \ z Q) = ^ E ( z 0)(^ ^ ° ^ ( ^ ^ y  Since

k k
r £ H  we have from  Lemma 5.4.3 tha t both |rf1| =  |F(z0) |O ( r  *) and \d2\ =  \E{zQ) \ 0 { r  2) f ° r some
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and k2> 0  outside a set r  o f fin ite  linear measure as r  — oo.

We also have, from  (5.4.2) and (5.5.7) w ith  r£ H * (c )  being chosen suffic iently large and

7T . th a t log |X (z)| <  ^ ( c , / )  ( < 0)

=  | l cj l rP cos(p9+0)

< ’ l , l< e

<  - n 8 2T(r ,A ).

i.e. <  f r * T(r’A) <  e ’r62r r€ .ff* (e ) and 0X —81< 0 < 0 1 —

We may choose 20 w ith  a r^(2:o) =  01 — and the in tegration is taken along a circu lar arc 

w ith  radius r£ H * (c ) .  According to  the above estimate we have from  (5.5.12), th a t

l ^ ) l < l ^ o ) l ( l  +  0 (r‘1)^ -^ o l + 0(--*‘) |z - 2o|2) +

e

+  2 J  \ re 'e- r e l t \2\<l>(rext) \ \E (re%t) \ r  dt. 

h - h

Note tha t \z— z0\ < ^ a J+3^ 2, where r < a J+3/2. Hence

e
\E(z)\ <  |£ (zo) | ( l  +  0 ( r * 3) )  +  l  J \rex9- r e xt\2\<f>(rext) \ \E (rext) \ r  dt

° i - h

9

< \E(z0) \ ( l  + O(rt3j)+ l j  r3|ei#-ei‘|2| (̂«(')||£(rei')| dt

6l~ 6\

9

<  |JJ(z0) |( l  +  O(r*3)) +  2 /  r3|^(re'*)||£(re**)| dt

h - h

< |£,(z0)|(l + O(rfc3)) expl J  r3\<f>(rext)\
 ̂ 0i~s1 '

Here we have used the G ronw all’s lemma 3.3.1 in  the last inequality fo r a fixed r£ H *(e ) .  Recall, 

from  Lemma 5.4.3, tha t

l* M I  =  MOO |

Also since arg(z0) =  91 — 81, we can use the estimate (5.5.10a) in  (c) above, in  which case
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j + 3 /2
we have log\E(z0)\ =  O^6l log j -  T {r,E )^ r £ H * ( c )  and r < a

Thus

\E (z)\<  log i  7 X r , t f ) )J o ( l +  0 ( r * 3) )  ezp(<9(r*e ' * 2r ) ) .

h - h

So 1 ^ ) =  f log+ \E(rei0)\ dd

*U P

<  0 { l ) + 0 { l o g r ) + o ( s 1 log j -  H r ^ d - O ^ e " " 2’* 1'’ 0 )

<  0(log log j -  T(r,E)') +  o ( r ke~vS2ril (5.5.13)

(e) Combining the inequalities (5.5.10), (5.5.11) and (5.5.13) we fin a lly  obta in  the estimate for 

log+ \E\ in J H jH ^ . Since r£ H *(e ) ,  according to  Lemma 5.4.4 i t  avoids a ll the exceptional sets 

arising from  Lemmas 5.4.1, 5.4.2 and 5.4.3. Choosing r£ H * ( c )  we have

J  log+ \E(re 'e)\ dd =  /i(r) + /2(r) + /3(r) 

= \ 0 ( l o g  r) +  o(«, log ^  T ( r ,E ) ) +  o(r*e_'r*2r<1~<)) j+

+  0 ( i 12 log 1  H (r,£ ))+0.

We can repeat the above analysis from  (a) —(d) to  the rem aining 2p—1 portions EjC\ Q{ 

a = 2,3,• • -,2p. So we have sim ilar estimates w ith  the same Thus we get

27r

^  =  k /  de
0

* i+ rP2 V

= h  E  /  ‘°s+ i£(re")i.—n J _

=  0(/o</ r) +  o^r log j -  T [ r ,E ) j  fo r  each N > 0.

Since c > 0  is a rb itra ry , by choosing <5X suffic iently small the above calculations w ill 

remain va lid  and we can ensure th a t O^d^og^- T ( r ,E ) j< }^ T ( r ,E )  say as rEZT*(e).

Thus

T{r,E)  =  0(log  r) +  o^r- ^  for each AT>0, rE - f l^ e )  su ffic ien tly  large.
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=  0{log  r).

B u t since T(r,E )  is an increasing function, so T(r,E ) =  0(log  r) fo r a ll r  su ffic iently large. This 

implies the order o f E(z) is 0. Hence E  must be a polynom ia l and i t  fo llows from  the expression 

(5.5.1) th a t A  is a rationa l function, a contradiction. Hence max{X(f1),X(f2) }  =  oo. □

Remark One can also conclude th a t i t  contradicts the fact th a t p { E ) > p ( A ) >  1.

§ 5.6 A Perturbation Result

In  the second part o f C orollary 6.3.2, equations o f the form

!("(z) +  (B (2)ei ’W  +  P1(2 ))y = 0  (5.6.1)

were considered, where B(z) is a non-constant entire function o f order p(B )  and P(z), P\(z)  are 

polynom ials o f degrees d > 2 and m > 0 respectively, such th a t p ( B ) < d  and - ^  ■ < d. Then i f

and / 2 are linearly independent solutions of the equation (5.6.1) we have m ax{A(/1),A (/2)}  =  oo.

P(z)T ha t is i f  we perturb B(z)e ' carefully w ith  a polynom ia l o f sm all degree, we obtained the 

same conclusion for the zeros d is tribu tion  o f the solutions.

In  view o f the above observation and noting tha t an entire function A(z)  w ith  6(0,^4) =  1

has behaviour s im ilar to  th a t o f (5.6.1), i t  is reasonable to  believe th a t i f  we consider A +  P

instead o f A, the same conclusion w ill hold. We obtain the fo llow ing special case.

Theorem 5.6.1 Let A(z) be a transcendental entire function o f f in i te  order p (A )  satisfying 

6(0,,4) =  !  and all but f in ite ly  many zeros {a n} o f A lying on certain half-line which has one end

<tn I O
at the origin. Let P(z) be a polynomial o f degree m > 0  such that —^ —< p (A ) .  I f  / j  and f 2 are 

l inearly independent solutions o f the equation

y " + ( A  +  P ) y = 0.

We have m fli{A (/ j) ,  A(/2)}  =  oo.

Remark We note th a t p(A )  must be a positive integer >  2 since 6(0,yl) =  l .

To  prove the theorem we require the fo llow ing lemmas.

Lemma 5.6.2 (Bank, Laine &  Langley [1]) Suppose B(z) is analytic in some sector S containing
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the ray L =  {z: z = r e %9, r > 0 }  and that there exists a constant 6 > 0  and an increasing function

rj(r) f o r  r > b , such that r}(r) has a continuous derivative, 17( 6) > 0  and \B{rex9)\<T}{r) f o r  r> b .

Then any non-tr iv ial solution y o f y,r +  B y= 0 in S satisfies

r  1 /2
log+ \y(rex9)\ <  K +  J  dt (5.6.2)

b
fo r  some K > 0  and r>b .

Lem m a 5.6.3 (Edrei &  Fuchs [1]) We assume the same hypotheses and notations as in Lemma

5.4.1. Given e >0  there exists a j 0(e) such that

log \A(z)\ <  ^ ( c jZj ) +  4e|cJ | r p, z ^ T (5.6.3) 

f o r  a ll j > j 0(e) sufficiently large, where p is the order o f A.

Notice tha t in  the above lemma the estimate (5.6.3) is true fo r a ll z £ T j  w ithou t any 

exceptional sets E j  as in  (5.4.3).

§ 5.7 Proof o f  Theorem 5.6.1

As one may expect, the proof here w ill be s im ilar to  th a t o f Theorem 5.3.3. In  fact i t  is 

somewhat easier.

Let A(z)  and P(z) satisfy the hypotheses o f Theorem 5.6.1. Let f x and f 2 be the linearly 

independent solutions o f the equation

, "  +  (A +  P ) y = 0, (5.7.1)

and F = / 1/ 2. We assume the contrary tha t A(2?)<oo. Hence p ( E ) > p ( A ) £ N. We shall estimate

T { r , E ) = ^ - ^  log \E\ dd and arrive a t a contradiction. The firs t h a lf o f the proof is the same as 
* * 0

those in  (a), (b) and (c) in  § 5.5.

(a) This is the same as tha t in §5.5 (b) except th a t we choose ^ > 0  such tha t 

\cos(p0+/3)\>  62^ { k > 0  when \6 — 1> ^ 1.> 0 . Recall th a te > 0  is a rb itra ry  and there exists a

j 0(e) such tha t when j > j 0

log \A{z)\ -  %(CjzJ) <  4e|cJ|rp, z e i T j - E j }
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<  |  \cos(p9 +  P) \ \ c j \  rp =  | ^ ( c ; r p).

Hence when & (cJ-rp) is positive w ith  zeros dl , - " , d 2p, we have, as in  (5.5.5),

0 < l * ( e / ) < h g  M ( z ) | < | * ( c / )  z e t f j - E , } .

Hence from  Lemma 5.4.1, we obtain

log |A (z)| >  i | Cj.| r pcos(pd +  (3)

>  1^ 2 >  >  W  r2 6s l7?l< e ’ where S3 -*■ 0 M

r  —► oo. Therefore \A + P\> expî -̂ r as r  > r 0 and r£H*(c).

We also note tha t the quan tity  c(r) in  (5.5.5) has a fixed argument fo r a ll r  suffic iently 

large because o f the location o f the zeros {a n} o f A. Thus we see th a t the angle /? does not 

depend on j .  Hence the 2p zeros o f cos{pd +  (d) are fixed on a ll annuli regions T ;-.

W ith  the same notations and reasoning, we only consider the integra l

*1 + ̂  *1-*1 »i + «i

f  log+ \F(re id)\ dd =  j  log+ \F(re ie)\ dd+  f  log+ \F(re ie)\ dd+

h - T P ° '~ 6'

*1+ &

+  J  log+ \F (re 'e)\ dd =  /1(r) +  / 2( r )  +  / 3( r )  say.

«i+$i

Since the order o f A(z)  is a t least two and |P(^)| =  0 ( r m) where m  is the degree o f P, i t  

is easy to  see, from  the relation

4(A +  P) =  ( ^ f - ^ - 2  (5.7.2)

th a t F  —> 0 as r  —► oo outside the exceptional sets E j  fo r dl + 6 \ < d < d 1+

Hence / 3(r) =  0 as r  >  r0 and re P * (e ) . (5.7.3)
0i+« i

S im ila rly  I 2( r ) =  f  log+ \F(re i0)\ dd< 2 K ^ p ( F ) x ) s i 2log ± 71(r,P), (5.7.4)

where 51< l / 4  for r  belongs to  a set o f lower logarithm ic density > 1 —C as in  (b) o f the last

p roo f by Lemma 5.4.2. Thus we can choose a r£ H * (e )  (see Lemma 5.4.4) so th a t (5.7.3) and

(5.7.4) can hold at the same time.

(b) I f  cos(pd +  0 ) < 0 then w ith  the same e > 0  and 62 as in  pa rt (a), we deduce, from
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Lem m a 5.6.3, th a t

log |j4(z)| <  8 (c;V )  +  4e|cJ |rp, z £ T  j  

=  | Cj | r p^ cos(p6 +  /?)+ 4 e )

<  |c; | r p( —5 e + 4 e )= —e |c; | r p<  0 

fo r a ll r £ H * ( c )  sufficiently large and z £ T

So |(i4 +  P )(re ,#)| < Crm for re '9 — z ^ T j  and 01—^ < 0 < 9 1—61.

Thus for any ray L from  the origin and passing through and 01 — ic / 2 p < 9 < 9 1—61 

fo r a ll j  su ffic ien tly  large, we have

\(A +  P)(reie) | = 0 ( r m).

We conclude from  Lemma 5.6.2 w ith  r)(r) =  K r m tha t 

log*  | / l( re i#)| <  log* M A ^  +  log*

r  r

<  K i  +  J  (K tm)1/2dt +  K 2 +  J  (K tm)
b b

1/3 a

We can subdivide the region in to  sections each w ith  suffic iently sm all angle. Since F  has 

fin ite  order, an application o f Phragmen-Lindelof principle  (see fo r example T itchm arsh E.C. [1]

/  - + i \
p.177) im plies log+ \F(re%0)\ =  O f r 2 J un iform ly in  01 — i r / 2 p < 0 < 0 1 — 61 and r ^ H * (e )  suff­

ic ien tly  large.

di~ si  m

Hence 71( r ) =  J  log+ \F(ret9)\ d0 =  o ( r 2 + 

e'~ r P

C om bin ing the above calculation and repeating a s im ilar argument fo r the rem aining sections 

r j D Q i  *= 2 , 3,- -,2p, we have

H ( r , f ) = 0 ( / 1( r )  +  / 2( r)  +  / 3( r ) ) < 0 ( r ? + ‘ ) + 0 ( 2 i r ( p ( n c ) < 12/<.i( £  T ( r ,F ) )+ 0 .

Hence by choosing ^  sufficiently small

/  - + i \
T ( r , F ) = 0 \ r 2 J fo r r€ H *(e ) .

f  —+i \
Thus T ( r }F ) =  0 ( r 2 J fo r a ll r  sufficiently large,

i.e. p ( F ) < ^  +  l < p ( A ) .

Th is  contradicts the fact tha t p (F )> p (A ) .  Hence m ar{A (/1),A (/2) }= o o . □
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§ 5.8 Examples and Further Problems

I f  we have the assumption tha t A(z)  is a transcendental entire function o f order p (A )  =  1 

and a ll bu t fin ite ly  many zeros o f A  ly ing on a half-line w ith  one end a t the orig in , then clearly 

Theorems 5.3.3 and 5.6.1 are different. B u t i f  we assume p ( A ) > 2 and the degree o f the 

polynom ial P(z) is 0 instead, then Theorem 5.6.1 actua lly  includes 5.3.3. For example i f  the 

equation

y "  +  {e *2 +  * } y = 0 ,

where k is any constant, has two linearly independent solutions f x and f 2 , then by Theorem

5.6.1, max{X(f1),X(f2) }  =  oo. However the theorem does not cover the equation yff +  (ez +  k ) y = 0. 

The difference is not jus t a gap due to the techniques used in  the proof o f Theorem 5.3.3 th a t do 

not seem to be able to be extended to tha t o f Theorem 5.6.1. Th is gap in  fact cannot be closed. 

This is because of

Theorem 5.8.1 (Bank, Laine &  Langley [1]) Let c€C  be a fixed constant, and suppose f  is a

non-trivial solution o f y11 +  (ez — c ) y = 0 .
2

/ / c = j g  fo r  some positive odd integer <7, then the equation has two linearly independent solutions 

f i  and f 2 such that Tnax{X(f1) iX(f2) } < l .

This shows tha t Theorem 5.3.3 is essentially the best possible w ith  respect to  the order

o f A.

Moreover, we note tha t Theorem 5.6.1 is also best possible in  certain sense. We use an 

example due to  Bank and Laine [1]; see also Bank, Laine and Langley [1] p.19 . Consider the 

equation

+  +  (5.8.1)

where Q(z) and P(z) are polynomials w ith  degrees d e g Q = n > 2 and d e g P = m > 0. Suppose m + 2  

< 2 n  then max{A(/1),A (/2)} =  oo where f x and f 2 are linearly independent solutions o f the 

equation.

Now let F = e zU where n > 2  is a positive integer and we define A x{z) by (5.7.2). Then i t  

is easy to  check tha t
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4 A 1(z )= 4 (A (z )  +  P { z ) ) = - e ' 22 - n 2 z2n~2- 2 n ( 2 n - l ) z n~2.

By Lem m a 2.5.4 (b), F  is a product o f entire functions / x and / 2 which are linearly  independent 

solutions o f (5.8.1) w ith  A =  — ̂ e~2z and P =  — i ^ n 222n - 2+ 2n(2n — l ) z n~2^. C learly degQ=n

/2 yi 214- 2
and degP =2n—2. B u t  ------ ^ -----=  n<fin and F  has no zeros a t a ll.

On the other hand Bank, Laine and Langley investigated in  [2] the equation

yn (z) +  (e Q^ +  U(z)>)y (z )=Q  

where Q(z) is a polynom ial o f degree n and II(z ) is an entire function o f order p ( I I )< n .  They 

proved th a t i f  the equation adm its a non -triv ia l solution /  such th a t A ( /)< n , then /  has no zeros 

and n ( 2) = - i ((? ')2 +  l 0 " .

Thus an im m ediate question would be to ask: Let A be a transcendental entire function  w ith  

£ (0 ,A )= 1  (hence p(A )  is an integer) and P  a polynom ia l w ith  degP<n. Suppose a non -triv ia l 

solution /  such tha t A( f ) < n ,  satisfies the equation y^(z)-l-^ i4  +  I I ( 2:)^y(2: ) = 0. W hat conclusion 

about n (z ) can we draw ? Th is question is under investigation.

A  recent result o f S. Hellerstein and J. Rossi [1] (Theorem 3) concerns about the

•  •  • i  /  P  •location o f zeros o f the solutions o f the equation y + Q e  — 0 where Q and P  are polynom ials. 

They proved th a t in  those sectors for which A — Q t  is sm all any so lution w ill have on ly fin ite ly  

many zeros. Th is  resembles the real case when considering the equation y ^  =  0.

Our function A(z)  w ith  6(0,A) =  1 has sectorial sets r j C \ Q { i =  1,2, - " ,2 p in  which A  is

either very large or very small. We would like  to  ask whether a s im ila r conclusion is true tha t

only fin ite ly  many zeros fo r the solutions o f the equation yr, +  A y = 0  occur in  sectors where A  is

small. For example, a particu la r simple case would be to  consider when a ll the zeros o f A(z) are

real, then the quan tity  c(r) =  a 0- | - i  is a complex number and $ (c jZ * )  =

|«v| <r ° V
\c j \ r c o s (p 0  +  0 ).  This shows A w ill be large or small according to  where the zeros o f cos(p0 +  (3) 

are.

114



References

Ahlfors L .V . [1] Conformal invariants-Topics in Geometric functions theory M cG raw -H ill 

1973.

Ahlfors L .V . [2] Sufficient conditions fo r  quasiconformal extension Ann. o f M ath, studies 1974 

Princeton Univ. Press 23-29.

Ahlfors L .V . fc W e ill G. [1] A uniqueness theorem fo r  Beltrami equations Proc. Am er. M ath. 

Soc. 13 (1962) 975-978.

Anderson J.M . &  Hinkkanen A . [1] Univalence criteria and Quasiconformal extensions Trans. 

Am er. M ath. Soc. To appear.

Avkhadiev F.G. &  Aksent’ev [1] The main results on sufficient conditions fo r  an analytic 

function to be schlicht Uspekhi M at. Nauk. 30:4 (1975) 3-60.G1

Bank S. fc Laine I. [1] On the oscillation theory o f f 1 +  A f= Q  where A is entire Trans. Amer.

M ath . Soc. 273 (1982) 351-363.

Bank S. &  Laine I. [2] On the zeros o f meromorphic solutions o f second order l inear 

differential equations Comment. M ath. Helv. 58 (1983) 656-677.

Bank S. &  Laine I. [3] Representations o f solutions o f Second order l inear differential 

equations J. Reine Angew M ath. 344 (1983) 1-21.

Bank S. , Laine I. h  Langley J.K . [1] On the frequency o f zeros o f solutions o f second order 

l inear differential equations Resultate M ath. 10 (1986) 8-24.

Bank S. , Laine I. fc Langley J.K . [2] Oscillation results f o r  solutions o f  l inear differential 

equations in the complex domain Resultate M ath. 16 (1989) 3-13.

Bank S. &  Langley J .K . [1] On the oscillation o f solutions o f certain l inear dif ferential

equations in the complex domain Proc. Edinburgh M ath . Soc. 30 (1987) 455- 

469.

Becker J. [1] Lownersche Differentialgleichung und quasikonform fortsetzbare Schlichte 

Funktionen J. Reine Angew. M ath. 255 (1972) 23-43.

Becker J. [2] Conformal mappings with quasiconformal extensions Aspect o f Contemporary 

Complex Analysis (Proc. Nato Adv. Studu Inst. U n iv. o f Durham  1979) 37- 

77 Academic Press. London 1980.

Brannan D .A ., C lunie J.G . &  K irw an W .E. [1] Coefficient estimates f o r  a class o f starlike 

functions Can. J. M ath. 18:3 (1970) 476-485.

Brannan D .A . &  K irw an  W .E . [1] On some classes o f bounded univalent functions J. London 

M ath. Soc. (2) 1 (1969) 431-443.

C lunie J. G. [1] Some remarks on Extreme Points in function theory Aspect o f Contemporary 

Complex Analysis (Proc. Nato Adv. Studu Inst. U niv. o f Durham  1979) 137- 

146 Academic Press. London 1980.

C lunie J.G. [2] Private communications.

115



Clunie J.G . k  Keogh F.R. [1] On starlike and convex schlicht functions J. London M ath. Soc.

35 (1960) 229-233.

Duren P .L. [1] Univalent Functions Springer-Verlag. New Y ork 1983.

Edrei A . k  Fuchs W .H.J. [1] Valeurs deficientes et valeurs asymptotiques des fonctions 

meromorphes Comment. M ath. Helv. 33 (1959) 258-295.

Epstein C .L. [1] The hyperbolic Gauss map and quasiconformal reflections J. Reine Angew.

M ath. 372 (1986) 96-135.

F ia t M . Krzyz J.G. k  Zygmunt J. [1] Explicit quasiconformal extensions fo r  some classes of 

univalent functions Comment. M ath. Helv. 51 (1976) 279-285.

Friedland S. k  Nehari Z. [1] Univalence conditions and Sturm-Liouville eigenvalues Proc.

Amer. M ath. Soc. 24 (1970) 595-603.

Fuchs W .H .J. [1] Proof o f a conjecture o f G. Polya concering gap series Illino is  J. M ath. 7 

No.4 (1963) 661-667.

Fuchs W .H .J. [2] Topics in Nevanlinna theory-Proceedings o f the NRL Conference on 

Classical Function theory Edited by F. Gross 1-32 Navel Research 

Laboratory, Washington D.C. 1970.

Fuchs W .H .J. [3] The development of the theory o f deficient values since Nevanlinna Ann.

Acad. Sci. Fenn. Ser. A I M ath. 7 (1982) 33-48.

Gabriel R .F. [1] The Schwarzian derivative and convex functions Proc. Am er. M ath. Soc. 6 

(1955) 58-66.

Gehring F .W . k  Pommerenke Ch. [1] On the Nehari univalence criter ion and quasicircles 

Comment. M ath. Helv. 59 (1984) 226-242.

Golovan V .D . [1] On the rectifiability o f quasiconformal curves Dokl. Akad. Nauk SSSR 278 

(1984), No. 5.(English translation in  ‘Soviet M ath. D ok l.’ 30(1984), 511-514) 

Gordon W .B . [1] An application of HadamartTs Inverse function theorem to Algebra Amer.

M ath. M onth ly  84 N o .l (1977) 28-29.

Gundersen G.G. [1] On the real zeros o f solutions o f f f + A f = 0  where A is entire Ann. Acad.

Sci. Fenn. Ser A .I. M ath. 11 (1986) 275-294.

Hayman W .K . [1] A characterization o f the maximum modulus o f functions regular at the 

origin J. D ’Analyse M ath. 1 (1951) 155-179.

Hayman W .K . [2] Meromorphic functions 1964 O xford U niversity Press.

Hellerstein S. k  Rossi J. [1] On the distribution o f zeros o f  solutions o f  second order differential 

equations Complex variables 13 (1989) 99-109.

H ille  E. [1] Lectures on Ordinary differential equations Addison-Wesley, Reading, Mass., 1969. 

H ille  E. [2] Ordinary differential equations in the complex plane W iley-Interscience, New 

York 1976.

Jack I.S. [1] Functions starlike and convex o f order a  J. London M ath . Soc. 3 (1971) 469-474. 

Koepf W . [1] Close-to-convex functions, univalence criter ia and quasiconformal extension Ann.

116



Univ. Mariae Curie-Sktodowska Sect.A M ath. 15 (1986) 97-103.

Kraus W . [1] Uber den Zusammenhang einiger Charakteristiken tines einfach

zusammenh'dngenden Bereiches m ii  der Kreisabbildung M it t .  M ath . Sem. 

Giessen 21 (1932) 1-28.

Krzyz J.G. [1] Convolutions and quasiconformal extensions Comment. M ath . Helv. 51 (1976) 

99-104.

Krzyz J.G . [2] John's cr iter ion o f univalence and a problem o f Robertson Complex Variables 3 

(1984) 173-183.

Kudryashov S.N. [1] On some criteria  fo r  the univalence o f analytic functions  M at. Zametki 

13 (1973) 359-366.

Kuhnau R. [1] Wertannahmeprobleme bei quasikonformen Abbildungen m it  ortsabhangiger 

Dilatationsbeschrdnkung M ath. Nachr. 40 (1969) 1-11.

Lavie M . [1] The Schwarzian derivative and disconjugacy o f nth order l inear differential 

equations Can. J. M ath. 21 (1969) 235-249.

Lehto O. [1] Schlicht functions with quasiconformal extension Ann. Acad. Sci. Fenn. A I M ath. 

500 (1971) 1-10.

Lehto O. [2] Univalent functions and Teichmuller spaces Springer-Verlag New Y ork  Inc. 

Graduate te x t in  M ath. 109, 1987.

Lehto O. k  Tam m i O. [1] Schwarzian derivative in domain o f bounded boundary rotation  

Ann. Acad. Sci. Fenn. A I M ath. 4 (1978/79) 253-257.

Lehto O. k  V irtanen K .I. [1] Quasiconformal mapping in the plane Springer-Verlag 1973.

Lewandowski Z. [1] On a univalence criterion  B u ll. Acad. Polon. Sci. Ser. Sci. M ath. 29 

(1981) No.3-4, 123-126.

Lewandowski Z. [2] Some remarks on univalence criter ia  Ann. U niv. Mariae Curie- 

Sklodowska Sect. A  36/37 (1982/1983) 87-95.

Lewandowski Z. [3] New remarks on some univalence criteria  Ann. U n iv. Mariae Curie- 

Sklodowska Sect. A  41 (1987) 43-50.

Lewandowski Z., M ille r S.S. k  Z lotkiewicz E. [1] Gamma-starlike functions  Ann. U niv. Mariae 

Curie-Sktodowska Sect. A28 (1974), 53-58 (1976).

Lewandowski Z. k  Stankiewicz J. [1] Some sufficient conditions fo r  univalence Zeszyty Nauk. 

Politech. Rzeszow. 14 M at. i Fiz. Z . l (1984) 11-16.

London D. [1] On the zeros o f  the solutions o f w,f (z )+p(z)w (z)=Q  Pacific J. M ath . 12 (1962) 

979-991.

Miazga J. k  Wesolowski A . [1] On the inner structure o f some class o f  univalent functions 

Ann. Univ. Mariae Curie-Sklodowska Sect. A  41 (1987) 65-69.

Miazga J. k  Wesolowski A . [2] An univalence criterion and the Schwarzian derivative 

Demonstratio M ath. 19 No.3 (1988) 761-766.

M ille r S.S. [1] On a class o f starlike functions Ann. Polonici M athem atic 32 (1976) 77-81.

117



M ille r S.S. k  Mocanu P .T . [1] Second order differential inequalities in the complex plane J.

M ath. Analysis k  Applications 65 (1978) 289-305.

M ille r S.S. k  Mocanu P .T . [2] On some classes o f f i rs t-o rder differential subordinations 

M ichigan M ath. J. 32 (1985) 185-195.

M ille r S.S., Mocanu P .T. k  Reade M .O . [1] A l l  Alpha-convex functions are univalent and 

starlike Proc. Amer. M ath. Soc. 37 (1973) 553-554.

Mocanu P .T . [1] Une propriete de convexite generalisee dans la theorie de la representation 

conforme M athem atica (C lu j) 11 (34) (1969) 127-133.

Nehari Z. [1] The Schwarzian derivatives and Schlicht functions B u ll. Am er. M ath. Soc. 55 

(1949) 545-551.

Nehari Z. [2] Some criteria o f univalence Proc. Am er. M ath. Soc. 5 (1954) 700-704.

Nehari Z. [3] A property o f  convex conformal maps J. D ’Analyse M ath . 30 (1976) 390-393. 

Nehari Z. [4] Univalence criter ia  depending on the Schwarzian derivative Illino is  J. M ath. 21:3 

(1979) 345-351.

Ozaki S. k  Nunokawa M. [1] The Schwarzian derivative and univalent functions  Proc. Amer.

M ath. Soc. 33 No.2 (1972) 392- 394.

Pommerenke Ch. [1] Univalent Functions Studia M athem atica/M athem atishe Lehrbiicher 25 

Vandenhoeck k  Ruprecht, Gottingen 1975.

Pommerenke Ch. [2] On the Epstein C.L. univalence criter ion  Resultate M ath. 10 (1986) 143- 

146.

Robertson M.S. [1] Schlicht solutions o f W*1 +  p W =  0 Trans. Am er. M ath . Soc. 76 (1954) 254- 

274.

Rogosinki W . [1] On the coefficients o f Subordinate functions  Proc. London M ath. Soc. 48 

(1943) 48-82.

Rossi J. [1] Second order differential equations with transcendental coefficients Proc. Amer.

M ath. Soc. 97 No. 1 (1986) 61-66.

R udin W . [1] Principles o f Mathematical Analysis 3ed. M cG raw -H ill 1976.

Sakaguchi K . k  Fuku i S. [1] On alpha-starlike functions and related functions  B u ll. Nara.

Univ. o f Education 28 (1979) 5-12.

Schiffer M . k  Schober G. [1] Coefficient problems and generalized Grunsky inequalities fo r

schlicht functions with quasiconformal extension A rch. R ationa l Mech. Anal. 

60 (1976) 205-228.

Schober G. [1] Univalent Functions-selected topics Lecture notes series in  M ath . No.478 

Springer-Verlag 1975.

Sheil-Small T . [1] Private communication.

Titchm arsh E.C. [1] The theory o f functions  Second edition. Oxford U nivers ity  Press 1975. 

V a liron  G. [1] Lectures on the general theory o f integral functions  Chelsea, New Y ork 1949. 

W itt ic h  H. [1] Eindeutige Losungen der Differentialgleichung w *=  R(z,w) M ath . Z. 74 (1960)

118



278-288.

119


