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Abstract

This thesis is divided into two parts. The first part consisting of the first four chapters.
We study mainly the properties of complex function f when some conditions are imposed on the

Schwarzian derivative of f.

In Chapter 1, we define the notions of quasiconformal mappings and investigate
conditions that allow f to have a quasiconformal extension outside the unit disc A to the
extended complex plane. We used the method of Ahlfors to obtain and extend the criteria,
involving Schwarzian derivatives, obtained earlier by Ahlfors, Krzyz and Lewandowski etc. In
Chapter 2 we shall look at the domain constant Q(A) introduced by Lehto with the norm of the

Schwarzian and logarithmic derivatives.

In Chapter 3, we consider the Schwarzian S5(f,2) alone and show that if it is sufficiently
small and the second coefficient is also small (depending on S5(f,2)), then fis a a-strongly
starlike function for one such constant, and convex for a smaller constant. QOther properties of f
when S(f,2) is small are also investigated. The method used depends heavily on the second order

differential equations.

Chapter 4 considers the same problems as in Chapter 3, but solved by the use of the
Clunie-Jack principle. The advantage of this principle is that it enables us to consider a more
restricted class of functions. The results obtained complement that of Chapter 3. With the
Clunie-Jack principle, we give alternative proofs of results, in one case with an extension,

obtained previously by Miller and Mocanu.

Chapter 5 is our second part. Here we consider the distribution of the zero sequences of
the solutions of a second order differential equation, with the given coefficient being an entire
transcendental function of finite order. This has been considered by Bank, Laine, Langley and

Rossi etc.
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‘The great end of learning is nothing else
but to seek for the lost mind.
— Mencins

(An ancient Chinese philosopher.)
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Preface

This thesis is largely concern, as the title suggests, with the Schwarzian derivative and
second order differential equations. It is divided into two parts. The first part consists of the
first four chapters dealing with topics in geometric function theory, and the second part,
consisting of Chapter 5 dealing with the value distribution theory of differential equations.
However the theory and techniques used in the first part are closely related to the second part.

In fact many proofs of theorems in part one are based on second order differential equations.

In Chapter 1, we introduce the notion of quasiconformal mappings, a kind of rather
general mappings when compared to conformal mappings. We use quasiconformal mappings to
construct some univalence criteria and criteria for quasiconformal extensions that involve
quantities like f, f and j’ ', where f is defined in the unit disc. It is here we first meet the
Schwarzian derivative and it together with the logarithmic derivative f! / f often appears in
many such criteria. The modern treatment of the Schwarzian derivative will be discussed in
Chapters 2 and 3. We mainly concentrate on a method of obtaining univalence criteria and
criteria for quasiconformal extension. This method that we used was due to Ahlfors and it is
based on a topological result which asserts that a local homeomorphism of C onto itself is a
global homeomorphism. This elegant method allows us to obtain and generalize many well-
known criteria due to Lewandowski, Stankiewicz and Krzyz. Several other results are also

obtained. We also compare our results with those obtained by Anderson and Hinkkanen.

In Chapter 2, the Schwarzian will be introduced together with some historical remarks
and its recent development. However, despite its importence in classical theory of conformal
mappings, it has been found recently that it has a relation with Teichmiiller theory. We will not
discuss anything about the Teichmiiller theory here, but this has some close connections with
univalent function theory and quasiconformal mappings. In one aspect, Lehto has introduced the
notion of Domain Constant of a simply connected domain that depends on the size of the
Schwarzian derivative. This seems more or less a modern way of expressing classical ideas, but it

has many elegant properties that fit perfectly with the Teichmiiller theory. We consider domains

vit
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that are images of strongly starlike functions defined in the unit disc. An upper bound of the
Domain Constant of strongly starlike domains has been found. We also find a corresponding
upper bound for the logarithmic derivative for strongly starlike functions. In fact, it is very often
the case that when one theorem is true for the Schwarzian derivative then it is also true for the
logarithmic derivative. It is known that if the domain constant is small enough then it must be
a quasidisc, that is a image of a unit disc under a quasiconformal mapping of C. We show that
their exist domains whose Domain Constant can be made arbitrary small and they are not
starlike. Similar results are also obtained for the logarithmic derivative. We prove these by
providing explicit counter examples. The techniques used are based on second order differential

equations.

In Chapter 3, we still look at the relation between the size of the Schwarzian derivative
and properties of analytic functions defined in the unit disc. However, we shall use a more
classical approach. It was Nehari who first obtained important results about the Schwarzian
derivatives and univalent functions. Again, the use of second order differential equations is
crucial in his proofs. Nehari showed that if the Schwarzian derivative of f, S(f,z) satisfies
[S(f,2)| <72 /2 for all zin the unit disc then fis univalent. Gabriel showed if |S(f,z)| < ¢, for all z
in the unit disc, where ¢, is a fixed constant, then fis starlike. We define the supremum of the
above upper bounds to be Schwarzian radii of univalence and starlikeness respectively. We
attempt to find the Schwarzian radius of convexity and some related results are obtained. The
main difference between the analysis of Chapter 2 and 3 is to replace the quantity
(1—121%)?|5(f,2)| by |5(f,2)]- We find that the latter has some control of the geometrical shape of
the image of the unit disc under f whereas the former does not. Some examples are also given at

the end of the Chapter.

Chapter 4 was initiated by the private communications with J.G. Clunie and T. Sheil-
Small. We continue the study of the problems in Chapter 3. Both Clunie and Sheil-Small have
given a method of estimating the Schwarzian radius of convexity for functions defined in the
unit disc. Based on the method of the Clunie-Jack principle, we study and obtain several results

which were originally obtained by Miller and Mocanu. We then investigate a subclass of strongly

viis



gamma starlike functions and show that they belong to strongly starlike functions. Hence they

have quasiconformal extensions.

Chapter 5 deals with a different kind of problems. We study the zero distribution of the
solutions of second order differential equations of the type y' '+Ay=0. The basic tool here is the
celebrated Nevanlinna theory. A brief introduction of the Nevanlinna theory is also included.
The main result that we prove in this chapter is: let f;, f, be linearly independent solutions of
equation y''+ Ay=0 where A is a transcendental entire functions of finite order with §(0,A)=1.
Then the maximum of the exponents of convergence of f; and f, is infinite. The proof is based

on some well-known results of Edrei and Fuchs.

Finally, a word about the references. We try to include all full surnames for each of the
literature that we cite. The reference is given at the back of this thesis. Also a ‘O’ sign is used to

indicate the completion of the proof of a theorem.

iz
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Chapter One

On Quasiconformal Extensions in the Unit disc
and Schwarzian Derivatives

§ 1.1 Notations and Definitions

We shall first give a definition of quasiconformal mappings and some fundamental facts

about them.

To begin with, let C and C denote the complex plane and the extended complex plane
respectively. A one to one mapping of a set A onto a set Al is called a homeomorphism if fand
its inverse mapping f~ 1, A" — A are both continuous; here we consider A as a subset of C. A
Jordan Curve C is a set which is homeomorphic to a circle and the Jordan curve theorem states
that the cofnplement of the Jordan curve C consists of two disjoint domains, which both have C

as their boundary.

We shall also need to clarify the meaning of orientation. The orientation of a Jordan
curve can be defined as follows : consider all homeomorphisms that map the unit circle A=
{ ei0| 0<6< 2n} onto C, and with two such mappings f,, f,, the composition f,"1of;(6) is either
increasing or decreasing as # increases. This divides the homeomorphisms into two classes. If C
is a Jordan curve bounding the disjoint domains G, and G,, we can find a linear conformal
mapping ¢ which maps G, onto a domain ¢(G,) containing the origin. Let f: A — C be a
fixed representation (of an equivalent class) of the orientations. As @ increases from 0 to 2, the

argument of gof(@) changes by either 27 or —2x . If it is the first case, we say C has positive
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orientation with respect to G), negative otherwise. It is also easy to see that if gof is positive

orientated with respect to G then it must be negative orientated with respect to G,.

Let w: D — A be a homeomorphism, where D is a Jordan domain and w(D) = D'.

Let f be a representation of the orientation A — 8D , then wof : A — D' induces an
orientation with respect to dw(D). If the orientation is preserved under w(positive or negative) ,
w is called sense-preserving. If w: A — Al , where A and A are general point sets, then w is
called sense-preserving homeomorphism if it preserves the orientation of every Jordan domain D

such that D C A.

Let f=u+iv:G — G bea homeomorphism of plane domains. Let € G, we

define the formal derivatives of f as

fo= Jf—if) and f= d(ftify).

where the subscripts z and y are meant to be the partial derivatives of u(z,y) and (z,y) with

respect to z and y. fis said to be differentiable at z,, if we have at the point z, the following

expression

2) = flz) + fil%)(2—2) + (%) (2—2) + o|z—z)). (1.1.1)

Let z, be an interior point of G, then z, is a regular point of fif fis differentiable at z;, and the

Jacobian Jy(zo) # 0. If J;(z5) > 0 we have the following simple result (Lehto & Virtanen [1]

p.10):

If the homeomorphism f: G — G' possesses a regular point z, where Jy(20) > 0, then
f is sense-preserving in G. Conversely, the Jacobian of a sense-preserving homeomorphism is

positive at every regular point.

§ 1.2 Quasiconformal Mappings

The linear part of (1.1.1) as |z—z,| is small is interpreted as the differential

dfizo) = fa(20) d2 + f(2) dz. (12.1)

We consider dfz,) as a mapping from R>— R? defined by [Z;] — [z:] where df = du + i dv
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= [zﬂ . Then fis differentiable at (z4,y,) in the sense of function of two variables, if there

exists a matrix 4 such that f(z;) = A and

f(zo‘f'o—f(zo)—/(zo)( ' =0.

lim I

¢l —o 1<l
It turns out that the right hand side of (1.2.1) can be written as f(z,) d¢ where f(z,) = [:’ :y]
z Yy
evaluated at z;= %o y § = C1 . And df(z) = Ustly | |dz . Therefore the differentiability
%o (2 vz vy | |dy

in §1.1 coincides with the differentiability of functions of two variables.

Geometrically (1.2.1) can be interpreted as an affine transformation that maps the circle

|z]=r in the plane dz=(dz,dy) locally onto the ellipse in the plane d{=(du,dv). Now at z,
dfiz)(re’®) = falzo) (re'®) + fi(2) (re*?), 0<8<2m . (1.2.1)

As 0 increases from 0 to 27 the circle in the dz-plane becomes an ellipse in d¢-plane with major

i -
eI when

)egmu,:;)

axis (|f.|+|[f5] when 0=%arg(f;ﬁ) and minor axis ir(|f:|—|f&]|

0=%arg(f;ﬁ)+%. Hence the ratio between the length of major and minor axis is defined

1Rl + I (20)]
Dy(%) = TrG=IECT

It is called the dilatation quotient of f at z;, and it measures the distortion from a conformal
mapping locally. Conformal mapping maps a circle onto a circle locally. Thus we have
established a measure of quasiconformality at a regular point. Under a further assumption on f
apart from a homeomorphism, we shall see f is in fact regular at almost all z € G. Together
with the fact that D; is uniformly bounded by a constant, this gives a initial picture of a

quasiconformal mapping.

A function ¢ defined in | C R is absolutely continuous on | if for every ¢ > 0, there
exists a § > 0 such that EE |g(b;)—g(a;)| <€ for every finite sequence of disjoint intervals (a;,b;)
whenever }’:|b,~—a,'|<6. The number of intervals (a;,b;) can also be infinite. A function fis said
to be absolutely continuous on lines in G if for every rectangle in G, fis absolutely continuous
on almost all horizontal and vertical lines by varying one of the variable and by keeping another

variable fixed in each case.
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Chapier 1

We are now in the position to give the definition:
Definition 1.2.1 (Analytic definition)
Let f be a sense preserving homeomorphism in a domain G (C C) satisfying the following
two conditions:
(i) F is absolutely continuous on lines in G (ACL),
(1) Dy(z) < K for almost all z € G.

Then f is called a K-quasiconformal mapping of G, or K-qc of G.

Condition (i) asserts that fis ACL on G and any homeomorphism which is ACL on G
possesses finite partial derivatives almost everywhere in G (Lehto & Virtanen [1] p.128). It is
also a consequence of a theorem due to Lehto and Gehring (see Lehto & Virtanen [1] p.128)
that, if f: G — G' is a homoemorphism and G, G' are bounded, and if f has a finite partial
derivatives a.e. tn G, then f must be differentiable almost everywhere in G. Hence the condition

(ii) makes sense and is well defined.

The Definition 1.2.1 is called the analytic definition of a quasiconformal mapping, there
is also an equivalent geometric definition, we refer this to the standard reference of Lehto &

Virtanen [1]. We shall only use the analytic definition in sequel.

Let us define the function p,= }fr—? , which is called the complez dilatation of f. It has an
z

obvious relation to the dilatation quotient in the following way, namely

D(zy) = ALl ()l 1+l
N [f2(20)| = | F5(20)I 1—|yf|

< K, and this is equivalent to

[y = 1+D,

A homeomorphism satisfying the Definition 1.2.1 is called a K-gqc mapping, a 1-qc
mapping is just a conformal mapping. The composition of a K;-g¢ mapping and a K,-qc
mapping is a K;K,-qc mapping. It can also be shown that the complex dilatation is invariant
with respect to any conformal mapping and that the inverse mapping has the same complex
dilatation at the corresponding points. A K-qc mapping also satisfies the following fundamental

theorem. Although we will not use it, we shall include it here for completeness.
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Theorem 1.2.1 (Lehto & Virtanen [1] p.185) A homeomorphism f is K-quasiconformal if and
only if f is a L?- solution of an equation  fr= pf, , (1.2.2)

where p satisfies

ul < 1=K =k <1,

for almost all z.

Equation (1.2.2) is called the Beltrami equation.

§ 1.3 Compactness Property

A family of functions W which is defined in G is called normal if every infinite sequence
of elements of W contains a subsequence which converges uniformly in any compact subset of G.
We say that a normal family to be compact if the limit of any subsequence converges locally
uniformly also belongs to the family. We have the following criterion for normality :
Theorem 1.3.1 (Lehto & Virtanen [1] p.73) A family W of K-qc mappings of the domain G is
normal if there exists a d>0 such that, for every mapping we€W belonging to the family takes
values at three different fized points z), 25, 23€G such that the distance d(w(z;),w(z;))>d>0,
4,J=1,2,3 , i#£j.

Quasiconformal mappings also possess the compactness property:
Theorem 1.3.2 (Lehto & Virtanen (1] p.74) The limit function w of a sequence wn of K-qc
mappings convergent in G is either a constant, or a mapping of G onto two points, or a K-qc

mapping of G.

§ 1.4 Quasiconformal Extensions

Given a function f which is K-quasiconformal mapping in a region G(#C), we
investigate conditions on fsuch that f admits a K -quasiconformal eztension outside the region

G to C. In this direction a fundamental result is
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Theorem 1.4.1 (Lehto & Virtanen [1] p.96) Let fy: G — G' be a K-quasiconformal mapping
and F a compact subset of G. Then there exists a quasiconformal mapping of the whole plane

which coincides with fy in F and whose mazimal dilatation is bounded by a number depending

only on K, G and F.

For reasons of simplicity, we consider f to be analytic in A, and find conditions so that f
admits a K-quasiconformal extension to C for some K>1. If, in addition, fis locally univalent,
that is /£0 in A , then the existence of a quasiconformal extension implies that the extension f
and f together form a local homeomorphism on the whole Riemann sphere C. By a well-known
theorem in Topology (see Gordon W.B. [1]) which states that a local homeomorphism of C onto
C is actlually a global homeomorphism. We shall refer this as the Topology theorem in this
chapter. The fact that has been used by Ahlfors, Anderson-Hinkkanen and many others to
conclude that f is univalent in A. Hence the quasiconformal extension criteria that we are
seeking also give rise to univalency criteria of f. To be more explicit: let f be locally univalent in

A = |z|<1. We find g in A¥={z |2/>1} so that f will have a continuous extension to |z|=1,

when fsatisfies some additional criteria. The extension is given by the following function:

F(z) = { fz) zeA
9(z) z2€A

and f(z)=g(z) on |z|=1. The modulus of the complex dilatation of F satisfies |up| = |F;/F;|
< k < 1 for almost all ze A* and u p=0 for z€EA. If Fis also locally homeomorphic on 9A,
then it is locally homeomorphic and hence globally homeomorphic on €. Since 8A is a
removable set of plane measure zero, and F is K-quasiconformal in A* and analytic in A, it
follows that it is K-qc in C (see Lehto & Virtanen [1]). Clearly f is conformal in A by the
Topology theorem. Note that the function g chosen must be sufficiently smooth so that it is
ACL in A. eg. geCY(A) (the class of functions that have continuous first order partial

derivatives in A).

There are many methods to produce a quasiconformal extension, for a given locally
univalent function in A. The whole area of this research was first initiated by the famous paper

of Ahlfors and Weill [1], in which they gave the first sufficient criterion for quasiconformal
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extension, by constructing explicitly the extension:
Theorem 1.4.2 (Ahlfors and Weill [1]) Let f be locally univalent in A, if

(1=12*?S(f2)] < 2k V z€A (14.1)
where k < 1 and S(f, 2) is the Schwarzian derivative defined as

s =(5) -y G ),

then f has a K-quasiconformal extension to C with K= %‘;

The case when k=1 was obtained by Z. Nehari in 1949 [1] as a univalence criterion. We
shall also consider this case in Chapters 2 and 3, in which we shall look at the Schwarzian

derivative more closely.

Other methods, like the Lowner differential equation used by Becker [1, 2] to obtain
univalence criteria are extremely powerful. He gave an extension of Theorem 1.4.2 and many
others. More recently Gehring and Pommerenke [1] gave a refined version of Theorem 1.4.2. We
refer the readers to Becker’s survey paper in 1980 [2] which contains an excellent account of
many aspects of qc extensions. J.G. Krzy? also obtained many interesting criteria, among them

we mention the following:

0
Definition 1.4.1 Let f{z)=z+) anz" be an analytic function defined in A, for some 0<a<1
2

such that f satisfies

aryz}(&:)}\s ar v 2€A,

then f is said to be a strongly starlike function of order-a. The family of such functions is

denoted by $*(e).
Note that when a=1, $*(1)=S5*, the class of ordinary starlike functions.

Fait, Krzyz and Zygmunt [1] proved

Theorem 1.4.3 Let f € $*(a) for 0<a<], then the mapping F defined by the formula

9= { f2) |7 <1
mor/F(4) 1A=

where ( satisfies the conditions: |(|=1, arg fi{)=arg f1/Z), is K-qc mapping of C with

k< sin(%) almost everywhere.
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In 1973 Ahlfors [1] published a short paper in which he proved:
Theorem 1.4.4 (Ahlfors L.V. [1]) Lel f be locally univalent in A (i.e. f#0) and suppose that f

satisfies either

'(1—|z|2) zflz)—clzﬁ <k VY zeA, (1.4.2)
n /(2
’(1—|z|2)25(f,z)—2c(1—c) 74 < 2%|1—c| V z€A, (1.4.3)

for some constant ¢ € C with |¢|<k<1. Then there ezists a K-qc extension to C.

Note that (1.4.2) is a generalization of an earlier result due to Becker [1] when ¢=0 and
(1.4.3) also generalizes Ahlfors’ own result (1.3.1). The method of producing criteria (1.4.2) and
(1.4.3) were suprisingly simple when compared to, for example, the method of Loéwner
differential equations used by Becker. Firstly one need to produce an extension and then use a
normal family argument. Along this direction, Anderson and Hinkkanen have recently general-
ized Ahlfors’ method completely to the case of domains of the most general nature i.e. a general
K-quasidisc that is the homeomorphic image of A under a K-qc mapping on the plane. If A=A,
then their results not only give alternative proofs but also generalize earlier results of C.L.

Epstein [1] and Ch. Pommerenke [2].

Theorem 1.4.5 (Anderson and Hinkkanen [1])) Let f be locally univalent in A. Suppose that

=121 g:(2)— zz—lS,z — 2z(1-12|?) ¢(z
l(1||)(g<)g() 18(42) O o) 40

1+ (1=[2%) 6:(2)

for all 2€ A, where g €C'(A) is a complez-valued function such that it satisfies either
(i) that g5 is realvalued and limsup |g(2)|(1—|2|%) <k<1
|zl —1

1+(1—[2%)2%¢(2) > 0 V z€A,

or
(#%) g5 is complez-valued and limsup |g(2)|(1—|2%)? <7 and
le|—1
2 2
limsup |g;(2)|(1—]2%)? < % 1- ‘M V z€A, 0<k+27<1. (1.4.5)
| —1 (1-F)

Then f is univalent in A and has a K-gc eztension h(z) to C given by
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=1y f &
M=AL) + 26 ’ €A*,

1+ (e= L o 4)-} (%)}
The above is equivalent to

g(z)=(z—-%) lf;',(z)+ £(2) (h(—)—f(z)) V zEA. (1.4.6)

§ 1.5 Ahlfors’ Method

Let us now discuss Ahlfors’ method. We consider f to be locally univalent in A, but we

shall assume f to be actually locally univalent in the neighbourhood of A and remove this extra

assumption later. We define an extension of f as follows:

_ fz) zeA
F(z) = {?(1/?) e A (1.5.1)

where g(2)=fz)+u(z) is chosen to be sufficiently smooth in A. Also #(2)=0 on |2|=1 so that
f(z2)=7(z) there. Fis K-qc in |z|>1 if and only if ¢ is a sense preserving K-qc in |z]<1. Hence to

ensure F is K-qc in |2|>1, we need to show, through direct computation and (1.2.2), that

l0:(2)] < klgs(2)] V z€A, k=%_{. (1.5.2)
That is () +u(2)| < klug(2)] VY z€A, (1.5.3)

so it is necessary that u;(2)#0 V z€A. Finally, we require F to be locally homeomorphic on

dA in order to apply the Topology theorem.

Since f is locally univalent and the extension f+u is sufficiently smooth it is
continuously differentiable. Hence the weaker condition

l5:(2)] < l9:(2)] VY 2€A, (1.5.4)

will imply the Jacobian is not equal to zero in A. Thus by the inverse function theorem (see W.

Rudin [1] p.221), F is locally homeomorphic everywhere in C and so homeomorphic in C. Hence

fis univalent in A.

[
§ 1.6 Application to the Logarithmic Derivative %—

We prove the following:



whRaps

Theorem 1.6.1  Let f be locally univalent in A and suppose that 0<k<l, 1/2<a<1 and

p(2) be analytic in A such that it is subordinate to the function it’;: in A. If f satisfies the

inequalily

G - il s £t v e

then f has a K-qc eztension 1o C, K:H—k If k=1 then f is univalent in A.

Theorem 1.6.1 is equivalent to the following statement:

Theorem 1.6.1° Let f be locally univalent in A and suppose that 0<k<1 and 1/2<a<1 and
w(2) be analytic in A such that |w(z)| <k<1, w(0)=0. If f satisfies the inequality

a anfl—a zw’(z) zj" z)
|42u(z) — (1-|22){15 +(1wm 7 ”5k<1VmA, (1.6.1)

then f has a K-gc extension to C, K= Ifk 1 and |w(z)| <1, then f is univalent in A.

The case k=1 and |w(z)|<1, w#1 was in fact proved by Z. Lewandowski [2] as a
univalency criterion by using the Lowner chain under a more general setting and with a > 1/2.

(see also §1.8). Our theorem does not cover this case and our assumption |w(z)|<1 being

stronger. The case when a=1, that is

ENELICIRAC
0t = =1+ )

< k<l V zeA, (1.6.2)

has been obtained by J. Miazga and A. Wesolowski [1] using Ahlfors’ method. In fact (1.6.2) is
also a generalization of an earlier univalency criterion of Z. Lewandowski [1] when k=1,
|w(2)|<1, w#1 proved by the Lowner chain method, as was (1.6.1). If we now let w=c=

constant, then (1.6.1) reduces to (1.4.2), and if w=0 then it reduces to

'
a—1-(1~12%) ;m < ka V z€A, (1.6.3)
/()
with the condition |a—1|<ka. When k=1, it can also be found in Lewandowski [2]. (1.6.4)

As pointed out by Lewandowski in [1], the function j(z)=z+%z2 does not satisfy (1.4.2)

with ¢=0 (Becker’s criterion), but it satisfies (1.6.2) with w(z)=—2, k=1.

Based on the method of Ahlfors and Miazga-Wesolowski, with further modifications, we
shall now prove Theorem 1.6.1.

Proof of Theorem 1.6.1’ : (a) Following Ahlfors, we assume f to be locally univalent in A and

we define an extension F as in (1.5.1) and set g(2)=f{2)+ u(z). Choose u(z) to be

10
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where w is analytic in A and |w(z)|<k<1. Here { is a reflection in [2|=1 and we define the

reflection ¢ to be ¢(z)=2'"%(Z)™°. Note ( is a reflection in |2|=1 if and only if ¢ > 1/2. Thus

. - = fiz 1 A 2 = Rz _z(l_____
te. () = M) + o@D () = R+ oS )

We need to show that (1.5.3) is satisfied, and this is equivalent to proving

- c-1+HED -9 | s kiG@L  ae9)
. _ D= (g SAYEY, 1
since (=g e O+ =) ) o) O~
$(f (2)
and ==y
Now ¢ ,(z):llzl_zg , C;(z):lzl,fa-%— and hence (1.6.5) becomes, after rearranging the

terms,

2|20 w(z) — (1—|z|2°){1;a+,-1i(lzi”:‘()2)+zﬁ(z;))} l < k<1 V z€A. (1.6.6)

The case when a=1 is contained in Miazga-Wesolowski [1]. In order to show that F is the
required K-qc mapping we need to verify that u5(2)#0 in (1.5.3). First we consider those points

z so that g(z)#oo (this is clear from ¢ defined above except at z=0). But

uz(2)= = w(z)) | |2aj’(z) # 0V z€A,

since f#0, so this is satisfied. Next we consider those z such that g(z)=o0o (i.e. when z=0).

Here we consider 1/g(z) instead, since p4(2)=p, ,,(2) at those z. Now

+) = 1 u(2))
(#3).= Tora. = e O
—u@), (/) _ 1/,
= (1.6.7)
RverTe I0)
(u(z)+l) ( (z)+1)

Hence it is equivalent to show (1/u)_+#0 at those points.

@ (1—w(2))*|4** _ 02(1-w(ff))IZI“"Z;‘£0
2112 (?  (1-14*)f(2)

(L) = M _ SO

:™ w0 i) T

for all z€ A, since j’ #0 and 2a4—2<0. Note that it is precisely here the condition a<1 is used.

11
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Hence u;7#0 V z€A. This shows that §(2) is a qc mapping in A, and hence

(%) zEA
F(z) = — 1.6.7
® {a(% =f1/7)+u(1/7)  z€A? (16:72)

is K-qc in C\A and locally univalent in A.

(b) We need to ensure that F is also locally homeomorphic on A. For ¢* €A and 7
sufficiently small, F(¥ +0)=fe") 41 £ () + 0(n?)
if ' +neA; while if e”+n€C\A, we consider g at ¢’ +8€A instead, where & is small. After

some calculations we obtain the expansion

_ i0 _"ei20
61;)(_‘_:”(-23)+56) }+ 0(6?). (1.6.7b)

Since f(¢®)#0 and |w(e*?+6)|<k<1, it follows that F is locally homeomorphic on dA. By the

?(e‘9+6)=f(ei”)+f(e"o){

Topology Theorem F is therefore homeomorphic and hence it is K qc in C\A and conformal in
A. Note that J. Miazga and A. Wesolowski [1] did not show that their extension is locally

homeomorphic on dA.

(c) To complete the proof of the Theorem when 0<k<1, we consider the functions f{rz)
and w(rz) where 0<r<1, now f(rz) and g(rz) are analytic in A. We aim to show that they also
satisfy (1.6.6) and so by what we have proved in the part (a) and (b) we conclude that f{rz) also
has a K-qc extension to C. Since fis conformal in A and so we can choose a constant d>>0 and
three distinct points z;, 2, and 23 belonging to A such that the mutual distances between them
satisfy d(f(z;), fz;))>d>0, 4,j=1,2,3 , i#j. Let us choose a sequence {rn} such that 0<r,<1,

m — 1 as n — oo and d(f(raz),frnz;))>d>0 ij=1,2,3 i#j. Define fo(z)=frn2),

wn(2)=w(rnz), and

Fa(2) = { fa(2) €A (1.6.8)
n(

)= __i(l"'l_ilzi)_ z€A*
1/5)= e+ o id £

We see that the {Fa} is a family of K-qc mapping in C which is conformal in A and K-qc in
C\A. Moreover the family is normal by the choice of the sequence {r,} and the Theorem 1.3.1.
We can thus choose a suitable subsequence such that F, converges locally uniformly to a limit

function, F, say. By the compactness Theorem 1.3.2, F, is also a K-qc mapping in C since it is

not a constant or a mapping of two points. Clearly

12



f(2) z€EA
Fo(2) = = .
o {a(—;-)=f(1/s)+u(1/f) N

Hence f being locally homeomorphic in A and has a K-qc extension to C. We have completed
our proof once we show fn and ws also satisfy (1.6.6).

(d) Now let us replace z by 7z in (1.6.6), and we obtain

l—a | 1 (rﬂzwl(rnz)+rnz/’(rnz)) _ |rnz|2%w(rn2)
a

k
a4 1—w(rn2) P (ra2) 1—|rnz]?® < . (1.6.9)

= 1—|rnz%e

If fn and wy also satisfy (1.6.6), then we have

! ! 2a
I 1 (s (raz)  rmef () |l (ra2) i 6
z — . .6.10
¢ + a (1—w(TnZ)+ f,(rnz) ) l_lzlza - 1_|z|24 ( )
! !
_l—a , 1 (2w (m2) razf(rn2)
Set An(z) - a + a (l_w(rnz) /(rnZ) ) )
|7n2|>*w(ra2) |22 w(rn2)
and Bn(2) = W’ Cn(2) = _1:'|;|2_,;—
So inequalities (1.6.9) and (1.6.10) can be written as
| An(3) = Ba(3) | S 7 (1.6.9)
and | An(2) — Cn(2) | < T—TAT (1.6.10)

respectively. If we write D(c,r)={z |z—c|<r} and let D(c,r) to be the closure of D(c,r), then

(1.6.9)’ and (1.6.10)’ represent the discs ‘._D(Bn, T—IZ»W) and °._D(Cn, IJFW) Also f
and wy will satisfy (1.6.6) if we can show that (1.6.9) = (1.6.10). i.e. ‘—.b(B,,, l_lk?) C
—|rnz

‘?D(Cn, —#) This will be implied by the fact that if the sum of the distances between the
—|z

centres of the discs and the smaller radius is less than or equal to the larger radius. That is

equivalent to proving | Bn(z) — Ca(2) | + l—lfn2|26 b3 1—fz|2“ !
or
| Ba(2) = Ca(a) | € —K — —k (1.6.11)
= 1—|g% 1—|raz|®
But

1—|raz|2® 1—|% 1=|rmz®  1—|%

(1.6.12)

Bn(z)—C"(z)=|z|2“w(r,,z)( rn2? 1 )=w(rnz)( 1 _ 1 )’

13
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2a
. 2a T'n 1 ) — 1 1
since z - = -
12 (l—lrnz|2“ 1—]z)%e 1—|razf®® 1—|2%°

and |wn(2)] < k. This proves (1.6.11) and also completes the proof of the theorem when

0<k<1.

(e) The case when k=1 can be proved by modifying the proof of the case when 0<k<1
above. Let us assume that f satisfies (1.6.1) with k=1 and define an extension g=f+u as above
where f is regular in A. We note that the extension satisfies (1.6.1) with k=1 is precisely the
condition lg:(2)] < |g=(2)] V z€A, (1.6.13)
with g:(2)#0 Vz€A. The proof of the inequality is exactly the same as in part (a) and |w|<1
in the expansion (1.6.7a) with k=1 in (b). Care must be taken as we allow equality to happen in
(1.6.13), hence we merely can say that if f satisfies (1.6.1) with k=1 and fis regular on |z|<1,
then it only has a smooth extension to C, which is not necessarily locally homeomorphic
everywhere. By defining f; and w, as in (c), we may choose the sequence satisfying 0 < rn<1, rn
— 1 as n — oo without further restriction. We show that they satisfy a stronger condition
I(fn);l <|(fn),] in A*(we remember as before that fu also represents the extension of f). Since f

satisfies (1.6.6) with k=1, hence we have again (1.6.9) or (1.6.9)’ with k=1. We prove f, and

wn satisfy | An(2z) — Ca(2) | < l——llzlzr
5 1 1 s & 1 . . .
or G.D(Bn, mza—) - ‘J(Cn, W) i.e. ‘.D(Bn, W) is contained in the
interior of 9P Cn,——‘l_' . This is indeed the case by applying the radii argument above since
1— |z|2a

we have (1.6.12) and |w|<1. This shows that each f, regular in A has a locally homeomorphic
extension to € (see (1.5.4)) given by (1.6.8), thus each Fn is globally homeomorphic in C and
hence univalent in A, Fo=f, in A. Now f, — fas n — oo, uniformly on any compact subset
of A and hence on A. By Hurwitz’s theorem (see Duren [1] p.4), we have that for any sequence
of univalent functions {fn} in a simply open connected set D and fn — f as n — oo, uniformly
on any compact subset of D, then f is either univalent or constant in D. Here we have D=A and
since f is not a constant it must be univalent in A. This proves the case when k=1 and also

completes the proof of the theorem. 0

14
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§ 1.7 Applications to the Schwarzian Derivative

Following the above ideas, we shall apply the same method to obtain:

Theorem 1.7.1 Let f be locally univalent in A, and suppose 0<k<1, 5< 1+—k5a<1 and that
p(2) is analytic and subordinate to i—i-—zg in A where p=%"-’ﬂzo. If f satisfies the

inequalily

21 (2') a a z ’(z) 1+ (z) a _9a
1+z(z)| 2% +a(1—|4* )(1_a+lip(z))+ f (1—|2|2)25(f, 2)| 2|22 < ka(2171)

V z€A, then f has a K-qc extension to C, where K=1ik. If k=1, then f is

Eenl

univalent in A.

Note that when k=1 and a=1, this is a univalency criterion obtained by Z.

Lewandowski and J. Stankiewicz [1] using the method of Lowner chains. See also Miazga-

Wesolowski [2]. Condition (1.7.1) reduces to :

1—p(2) 2 1+2(2) N
1+§(z)||2+(1 l4%) 1—_1;—,,(;)+ P2 -8t 2{<1 ¥ zea,  (17.2)

where p(2) is analytic and R(p)>0, p(0)=0 in A.

We see that by replacing 1 by k<1, their univalence criterion becomes a sufficient

condition of K-qc extension. Theorem 1.7.1 therefore gives an alternative proof and also

p(2)—1
p(2)+1

generalizes their result. Also by putting w(z)= (1.7.1) is equivalent to the following

criterion:

Theorem 1.7.1° Let f be locally univalent in A and suppose 0<k<1 1<—1—<a<1 and let w

' 214k
a+ak—1
—a

be analytic with |w(z)|< w(0)=0 in A. Suppose f satisfies the inequality

2 (2)

. . (1=l2*)’ 2z
au2)| %~ al1=[af*) (1= ety )= gy SN <

(1.7.3)
V 2€A, then f has a K-qc extension to C. If k=1 and |w(z)|<2aa-1, then f is univalent in A.

It is this form of the theorem that we prove below. Now put w=c=constant, then

(1.7.3) reduces to
o1 c)el [ —a(1— a)(1— e)(1 ~ | )~ L=L)"
at+ak—1

S(f,2)|21*72° £ < ka®|1—¢|
and |¢|< <1. Note that if a=1 then we get back to Ahlfors’ result (1.4.3). If we put

w=0 in (1.7.3) then we obtain

15



hemmadaain ) o bhe o ad

i bdhal i

_ —1.]2a _(1_|z|2a)2 2-2a_2 2
a(l1—a)(1—|2*%) o) S(ha)l2| "2 < ka® V z€A.
where 1>a>1/(1+k)>1/2.

Proof of Theorem 1.7.1° (a) As before we first assume f is locally univalent in A and we define

an extension F as in (1.5.1) and set g=f+u. We prove g satisfies (1.5.2). Choose

Oy o a1-u()
u(z) =g d o) = St
T

where w satisfies the hypotheses of the theorem and ((z)=2z'"%(Z)™°® again. Clearly u=0 when
|z]=1. Note that (1.5.3) becomes

|§S(f,z)+v2—v,| < k|vg] V zeA. (1.7.4)
_ 2a
Now ’U(Z) = a—(l ’w(Z))2|aZ|
A1—|2]*%)
and

—aw/(9)|2**  a(1-w(2)|4**(a—1+]2%)
2(1—[2]*) (1=’

@?(1—w(2))|2**

'u(Z)z= ’ ‘U(Z);: (1_|2|2a)2

Substitute these expressions back into (1.7.4) to obtain (1.7.3). To show that F is the required

K-qc mapping we need to verify that u(z); #0 for z€A such that u(z)#oc0 in (1.5.3), that is

17'(2)

v;7#0. We also must consider those z such that v(z);éi /() since u=oo if and only if
2

1z
v(2)= % f'((z))

But v(2)z=

a’(1—u(2)) 2>~
(1~[2%)?

# 0 V z€A, since a<l.

Next we consider those z such that u(z)=co. Here we need to consider 1/g instead. As
shown in the proof of the Theorem 1.6.1, this is equivalent to proving that (1/u(z));# 0 at

those z. Now

v(z)-%fff’(Z) 2 2a-2
1) = (2) | _ w2y _ aP(1—w(2))]|2|2*" Gince d g
()= |70 | =76 = Tty 7 Ot 70 wd o<l

This proves that |u,|<k with the assumption that fis defined in |2|<1.

(b) To show that F is locally homeomorphic on §A we repeat the same argument as in
(b) of the proof of Theorem 1.6.1°. We find, after some calculations, that the expansion of F on
JA is exactly the same as (1.6.7b). Again since f(e'?)7#0 and |w(e'’ +6)|<(a+ak—1)/a<1, it

follows that F is locally homeomorphic on dA. The case when k=1 can be dealt with in the

16



b ddic, L4k o

Ve getr 4

same way. Hence F is K qc in C\A and conformal in A.

(c) To complete the proof when 0<k<1, we use the compactness argument and the

normal family argument in the proof of Theorem 1.6.1° (c) again. Firstly, we rewrite (1.7.3) as :

A(2) +

o1~ u(2)( (1 a)(1 — |2 — au(2)| ") <1 S (17.5)

lzl2—2a(l_|zl2a)2 z|2—2a(1__lz|2n)2 !

azu'(2)

where A(2) = %S(f,z) + Wzlz_a)

Now replace z by rnz in (1.7.5) and multiply by 2 on both sides, then with the following

notations . ,
2 e zw (rn2)
An = rL y I'n ’
() 2 S(f ) + |rnz|272%(1—|raz|®®)
a rnz(l—w(rnz))((l—a)(l—|rnz|2“—aw(r,«.z)|rnz|2°)
C(z) - |7‘n2|2-2a(1—|1‘n2|20)2 ’
&) rnlka?|1—w(rnz)| D(2) a(l—w(rnz))((l—a)(l-—|z|2")—aw(r,,z)|z|2°)
2) = , 2) = —7a 2 ’
Iraz|*722(1—|rm2|*?)? |2]2722(1—|2|?2)?
ka®|1—w(rnz)|
D = ,
(Z) |2|2—20(1_|Z|2a)2
the inequality (1.7.5) becomes
| An(2) + C(2) | € C(2). (1.7.6)

However we wish to prove that, with the definitions fu(2)=f{rn2) and wn(z)=w(rnz2), fn and wn
also satisfiy (1.7.5). Then we deduce the theorem by the compactness property. Substitute f,
and wy into (1.7.5) to obtain

| An(2) + D(2) | < D(2). (1.7.7)
To prove (1.7.6) = (1.7.7), it is equivalent to proving that, by the radii argument,

| D(2) — C(z) | € D(2) — C(2) VY z€A.
Now
s1=a)l=u(ra)] _ r™a(l—a)l=u(rs)] _

D(Z)-—C(Z) = |212—Za(1_lz|2‘1) - Izlz_za(l_i”‘nzlza)

o= [47)? P [rael )’

_{azlw(rnZ)(l—W(rnZ))l |21%* _ a®|u(ra2)(1—w(rn2))| r,.’“|r,,z|2“}

17
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_all—u(ra)| (1= %) { -4 _aIZI“W(rnZ)(l-rn”“—2rn2“|z|2“)}
a-|

|2|>~2¢ 229)(1~Irm2]?) (1—[21**)*(1~raz|**)?

s (1=14*)?  (1=Irnz|*)?

and D(2)—C(2) = ka®|1—w(raz)| { 1 _ F2a }

ke l—w(raz)| (1= ra2%)(1—1a2%|2| %)
T P12 (1=

Hence it is sufficient to show

\(1—a)(1—|z|“)(1-|rnz|2“)—a|z|2“w(rnz)<1+rn’“—2rn2“|z|“) < ka(1—ra?"|2|%).

(1.7.9)

Note that [2)29(14 1220 =270 2%]2]2%) < 1—ra2%|2)%°,

o | (U A= )=l )1 7 =20 1)
< (1=a)(1=[2*)(1=rnz2l?®) + alw(rn2)|(1—ra2|2|*?)
< (1= 1af*) (1= + alu(rad)]) < kall—ra®]4*).

The last inequality follows since we assumed |w| < a++k—1. This proves (1.7.9). As before we

conclude that {fn} form a normal family. Note that A, — A, fu — f, wn — w through a

suitably chosen subsequence. This completes the proof of the theorem when 0 <k<]1.

(d) The case when k=1 and |w|<(2a—1)/a can be considered as in the proof of the
Theorem 1.6.1° (e). We show that if the extension of f satisfies (1.7.3) with k=1 and

|w|<(2a—1)/ain A, then f, and wn defined above will also satisfy (1.7.3) with strict inequality

and k=1. i.e.

3(c,C) c UD,D).

This is true since (1.7.10) and |w|<(2a—1)/a and so fu satisfy |(fa);/(fa):|<1 in C. Hence
{fa} form a normal family of local homeomorphisms in C and hence univalent in A. Its limit

function fmust be univalent in A. (for details see part (e) of the proof of Theorem 1.6.1%) 0

§ 1.8 Some Remarks

18
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We shall discuss here some fine points about the proofs of the Theorems 1.6.1° and

1.7.1°.

() In (1.7.2), the univalence criterion of Lewandowski and Stankiewicz, as
Lewandowski mentioned (private communication), the hypotheses p>0 and p(0)=1 can be
replaced by p>0 in A. This means that the corresponding criterion of (1.7.3) when k=1 and
a=1 can be taken as |w(2)|<1 and w#1 in A. Clearly our proof of (1.7.3) does not handle this
case and we must have |w(z)|<1 for the approximations of the triangle inequalities to go
through. In fact, in Theorems 1.6.1’ and 1.7.1°, the corresponding analytic functions w were
assumed to satisfy w(0)=0 (hence p(0)=1). However, we have not made use of these

assumptions.

(49) In Theorem 1.6.1°, the assumption a>% is necessary in Lewandowski’s proof, and

our Theorem 1.6.1° also has this inequality. However, although ((2)=2'"%(Z)™° is a reflection on
|2=1 only when a>%, we have not made use of this assumption in our proof. All we required
was a<l, hence we may relax our assumption to be 0<a<1. Recently Lewandowski [3] has
extended the range of a to aZ% in a more general criterion. This shows that the proof of
Lewandowski, which based on Pommerenke’s subordinate chains and our proof based on Ahlfors’
method give rise to two ranges of values of a, which overlap each other. It should also be noted

that, by choosing a suitable branch, a could be assumed to be complex-valued. This is seen by

choosing ¢=0 in (1.6.4), where the boundary condition is |1—a| < k|a|. This inequality implies

k
1—k?

and the half-plane R(2) < 1. Similar conditions in the other cases also exist, but we choose not

that a lies in a region which is the intersection of the disc with centre (i-l—kz, 0), radius

to pursue this.

(i) We consider Theorems 1.6.1’ and 1.7.1° again; let a=1 in both cases. i.e. we

consider the criteria .
2,00 1122 (2)
P u(z) = =1yt

< k<1 V zeA, |u|<k, (1.6.2)

#'(2)
/() )

() (1=|4?)?
T=u(z) A= w) S5

and lw(2)|2|2"'(1“‘|2|2)

<k, V zeA, |u|<k.

The corresponding extensions g appear in (1.4.6), of the Theorem 1.4.5 of Anderson and

Hinkkanen [1], are in fact given by
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—w(9) 7 1)
= "27(5)

() =
respectively.

w(2) w(2)

Now (91)z=(1—;‘l;|7)3 and  (g2)s= (1=]7%?’

and they both satisfy (1.4.5) with 7=0 since w is generally a complex-valued function. But
limsup |¢5(2)|(1—]7%)® < %
l2l—1

if and only if |w(z)|<%. Hence Theorem 1.4.5 does not apply in these cases.

(iv) The proof of (c) of Theorem 1.6.1’ can be made easier if we assume f{0)=0 and
7(0)=1. So that, if {fn} satisfy (1.6.6) they have K-qc extension. Also the class of normalized
univalent functions in A having K-qc extension is a normal compact family with respect to the
metric of locally uniform convergence. Hence we can extract a subsequence so that f, — fand f

also has a K-qc extension (see Schober [1]).

(v) We finally mention that although Theorems 1.6.1’ and 1.7.1’ were proved under the
assumption that w(z) is analytic and bounded in A, it seems that all we require is w(z) € C'(A)
(i.e. f has first order continuous derivatives in A) and |w|<k. This will of course lead to some

more general criteria, and we leave this for future work.

§ 1.9 Applications to f

o0

Theorem 1.9.1 Let f(z)= z+), anz"" m>0 be a regular function defined in |2|>1. Suppose f
n=m

also salisfies

f(-1+ Il—l‘z— < l’;;‘% l>1, (1.9.0)

where m+1 > a > H—Llc > % and k<1. Then f has a K-qc eztension to C with Kzi_ii.

The case when a=1 was obtained by Krzyz in 1976 [1] through direct computation. We

simply apply the Ahlfors’ method again with slight alterations.

Proof We first note that (1.9.0) implies that f(z)#0 for |2|>1. For suppose f(z)=0, then

(1.9.0) becomes |1 —a—|z|2*|<ka. Rewrite this as
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—ka<l—a—|z|**<ka.
From the first inequality, we obtain a+|z|?*<1+kae. But a+|z|?*>1+ka, hence f(z)#0 for

|z2]>1 and f is locally univalent in |2|>1. Now we assume that fis locally univalent in |2|>1,

and define the extension F (similar to (1.6.7a)) in A where g¢g(z)=f2)+({(z)—=2) and
¢(2)=7"%z)° Thus
o(),=—a-r2 and g(z)7=f(z)+((1-—a)|-zl%;‘—-1).

|z|2a

Hence from (1.5.3), we show

’f(z)—1 + |12|—2g < lifh l>1 (19.1)
20
Here we have u(z)=2'"%(Z)"*—2z as before. Now u(z), = lz—lga—%— = _:26; # 0, |2/>1 and

27#£00. When z=00, we consider (g(%)’l) at 0 instead. That is to show 1/¢(1/2) is locally
z

univalent at the origin.

(b = (R7+79) = (T7A+TD) "ul)y 52, n=}
_ (—a|z|2“_§_ ?le)) _ .
(R7A+a7a)  (A79+ui7)
ar?é=? )

where z=re'

(r2a-le-¢0+amrmeam0+ )2

= a 0 if z=0and m+1>a.
+ )2 # =

(Tae—;0+amrm+1—aezm0

We then show the extension F is locally homeomorphic on |z|=1. It suffice to show that
¢ is locally homeomorphic in the disc D(e*?, ) for some small 6. If e®+6cC\A, then g is
locally homeomorphic, while if ¢ +6€ A we consider g(e*? +6) where €'’ +5c A*. Now

g(ew_‘_&) — f(eiﬁ+6)+((ew+6)1-a(e-50+3)-a_(ei0+6))
=j(e‘a)+6(f(eio)—a)—aﬁe‘”-{- 0(6%).
From (1.9.1), we have |f’(eio)—al§ka and this implies that 6(f’(e“)—a)—a3e"2o;é0. Hence Fis

locally homeomorphic on |z|=1.

To remove the extra assumption that f is regular on |z2/=1, we approximate f by

fn(Z):Rlnf(an) in (1.9.1) which becomes

f(Ra)=1 + =t | < i lal21, (1.92)
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As before we want to show that f, also satisfies (1.9.1), that is

f(Raz)—1 + |1z|—23 < Iir“ |2)>1. (1.9.3)

We have omitted some details. It is now easy to show that (1.9.2) = (1.9.3). We apply the

radii argument to the closed discs (1.9.2) and (1.9.3):

1—a l—a 1—a 1 ka ka _ ka ( 1
- = 1- d - = 1— .
|z|2° |R"z|2a |z|2a( Rn2a) an |z|2a |anI2a Izl2a\ Rn?.a)

So (1.9.3) is true, since we have assumed that 1 —a<ka or a>1/(1+4k)>1/2. This completes the

proof of the Theorem. (m]

As mentioned before the above theorem, when a=1, is a special case of Theorem 1 in
Krzyz [1]. We shall alter Krzyz’s theorem slightly to obtain the following:

Lemma 1.9.2 Suppose w(z) is analytic in A and such that |w'(2)|<1 in A. Then j(z):%+w(z)

is meromorphic and univalent in A. Moreover, if |w!(z)| <k<1, then f can have a K-gc extension
to C with K:%’g. The extension to C has the form f(z)=z+w(1/3) |2|>1.

We omit the proof.

Let fz)=z+4a,2%+a32°+ --- be analytic in A. We define:

9<2)=L§9_(<1)"—_'C7'3—= i+ (Z—%(l—wﬂ}'(c)) - %(1—|<|2)’((/7')'(c)—%(§(<))’) 24
14+¢2

=1 4 h(z0) (1.9.4)

i.e. h(2() is equal to the right hand side of the above expression. We prove the following result:

Theorem 1.9.3 Let f(2), g(z) and h(2,() be defined as above. If
|h:(2,0)l S k<1 VzEA and (€A, (1.9.5)
1+k

then f has a K-qc extension to C. I(:m.

The case when k=1 was a univalency criterion due to Ozaki and Nunokawa [1]. Thus
Theorem 1.9.3 shows that by replacing 1 by k<1 we actually obtain quasiconformal extension.
Also note that |h:(0,0)] =R(A=ICIP?IS(AQ) <k V¢eA,

is a necessary condition if f has a K-qc extension, and
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|h:(0,0)] < §k V¢eA
is a sufficient condition for fto have K-qc extension (Nehari’s and Ahlfors’ conditions).
Proof: Let f, g and k be defined as above. Since h(z() is analytic in z€A and satisfies (1.9.5), it
also satisfies Lemma 1.9.2 with w(2)=h(2() for a fixed ¢, |w(z)|<k<1. This shows that g has a

K-qc extension which is given by

5 Liwz  |4<1
”(’)={z+w(1/ 7) ld>1

Now

2+¢\ _ (O =[¢1)
1+Zz) - 9(2) + RO

This is equivalent to R2) = &(ZI:C—ICIZ) + fi¢), z2€A.
g(l—Zz)

We have already shown that g has a K-qc extension. It is therefore straightforward to verify f

too has the corresponding extension. According to §,

7o =L | pey s

g(lz:f(z) i

S (3¢Sl MO SR { (9]t 9 ) NN
(f_"é)+h(1/(f_‘é)> (f__é)+h((1;ccz))
Let 7(2) = =8, now

112 112
et g
{(1_Zz)+h(n)}

. —1c12 112
o Fu( = LQA=K) (11_|Zcz|)2_
{(=h)n]

;; _ _ I—Zz 2 _ I—ZZ —
So ;,l- bM(52F) | = eI | =] < el < k<1 for [d>1.
This completes the proof of the theorem. a
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§ 1.10 A Counter Example

Although the Ahlfors’ approximation method works well for finding some of the
sufficient conditions for qc-extension, including those obtainable through Léwner chains, we
provide here an example criterion that has been obtained by Lowner chain but does not seem

obtainable by the radii argument.

Theorem 1.10.1 (Becker [2]) Let j(z)=z+9zl+ -+ be analytic in |z|>1. If |¢|<1, c#1 and
k<1, then if

(- CIZI )H(fl(z) D—cl7"Y < k, |2>1 (1.10.1)

1+k

tmplies fhas —F 9 extension to C.

We now try to prove this criterion by Ahlfors’ method with the extra assumptions that
¢ is real and that c<(1—k)/2. Note that fis locally univalent in |2|>1. For suppose f(z)=0 for
some z, then (1.10.1) and ¢<(1—k)/2 will yield a contradiction. So let fbe defined as above but

also analytic on |z|=1 and define the extension to be g=f+({—z), where C(z)— /T Ile is
—c/|z

an anti-quasiconformal mapping which maps the A onto |z/>1 and fixes the |2|=1 with
luel=lel/ |22<|e| (this anti-qc mapping is also due to Becker). The quasiconformal condition
requires |g;|<k|g:| |2|>1. We obtain
— 1 1 —(1-¢
9:() = Q=N ———5ma S5+ — 3 |~ 23 PRI IY

4 (1- /IZI 5 z® Ik ( 22) z(1—c/|4*)?
an

3 =1 (1-c) 1L
5=0) = 11~

The quasiconformal condition just becomes (1.10.1). We note that if e'’4+85€A then the

extension

(e +8)=7(1/(e7+8)) =)+ Lo (6+5(1— )1 = (¢ )™ + 0(5?)

and (1.10.1) shows that F is locally homeomorphic on JA.

_ l=¢) v k1=
Let A= Tha— AT R
and B)=U0=9  pry=Fll=d (1.10.2)

(lef*~e)? |I2f* =

Replace z by Rnzand R,>1 in (1.10.1). This becomes
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If (Rnz)—1—A(2)| < A(2). (1.10.3)
Consider the family f,,(z):I%j(R,,z) where R, — 1 as n — oo. We want to show f,(2) also
n

satisfies (1.10.1). i.e. 17 (Baz)—1—B(2)| < B(2). (1.10.4)

As we have done before, we want to deduce (1.10.3)=>(1.10.4). It is easy to obtain that
k|1—c|(Rn®=1)]2|®

B()-A()= |Izlz_Clzlanzlz_cl2{|z|2(zz,.2+1)-(c+z)},
_ _(1=c)(Ba’=1)|4? 2
and B(2)—A(2)= (|Z|2—C)2(anz|2—c)z{lzl2(Rﬂ +l)-—2c)}.
Hence |A(2)—B(2)| < B(2)—A(2),

if and only if

- R(c)

PR | |1
2 —_

The above inequality is true if and only if ¢ is a real number. So we conclude by the Ahlfors’

method and the radii argument that we have Theorem 1.10.1 only if c is real.

§ 1.11 A Univalence Criterion involving an Area Integral

We have already seen many univalence criteria or criteria for quasiconformal extension,
most of which were given in the form of inequalities. They can also be given in the form of an

area integral. D. London was the first one who gave such a result.

0
Theorem 1.11.1 (London D. [1]) Let fz)=2z+)_ anz" be an analytic function defined in A and
2

//]S(f,z)] do o< 2n

a

if

then f is univalent, and o, denotes the area element of 2-plane.

Following London’s method, we have

o0
Theorem 1.11.2 Let flz)=2z+) an2" be an analytic function defined in A and if
2

//IT(J’,Z)I2 do.< (1.11.1)

A
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where T(f,2)=1"(2)/f(2), then f is univalent.

We remark that this result has been found independently by V.D. Golovan’ [1] and he
also proved that if the inequality in (1.11.1) is strict then 8f{A) will be rectifiable. The proof of
Theorem 1.11.2 is similar to that of Golovan’, but our considerations are quite different and this

leads to new problems.

Let z=2({) be conformal in A, then it is easy to verify the following.

T(foz,$)=T(£2)7({)+ T(2,¢) (1.11.2)
Also T(f,z)=0 if and only if f=az+b where a, b are constants. The Schwarzian derivatives also

have a similar identity which we will see in the next chapter.

We need two lemmas.

o)
Lemma 1.11.3 (D. London [1]) Let g(2)=)_bnz" be an analytic function.
0

Then we have w]g(O)lS//lg(zN do ..
a

Lemma 1.11.4 Let f(z)-z+2anz be defined in A, then

( [ [izear d«u) |

T(f,2)|< 1.11.3
P N
Proof Let z=2(() be a conformal mapping which maps ¢-plane to z-plane. Consider
J [ 11w . = [ [ ()¢ ao
2| <1 l¢]<1
> 7r|’[(f,z(0))z’(0)|2 from Lemma 1.11.3.
We now choose 2(({) to be an automorphism of the unit disc and set 2(¢ )=1(:‘_L7tc
Hence [ 11627 do.2 = 1100~ 147 0

|z|<1

Proof of the theorem Suppose fsatisfies the hypotheses of Theorem 1.11.2. Then from (1.11.3)

1
(1= 1) T2 < ( / / ()2 da,) <1.
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The univalence of f follows immediately from (1.4.2), the theorem of Becker. o

It is also clear we have the following corollary.

o0
Corollary 1.11.5  Let flz)=2+)_an2" be an analytic function defined in A. If

2
l J12ua? do.< b,

where 0<k<1, then f has a K-qc eztension to C, where K=H.
Remark Theorem 1.11.2 was also obtained by Krzyz [2] in a very different way, involving the
Green’s function and the Schwarz symmetrization. Krzyz considered the geometrical shape of the
set

Q,={log f(2): z€A} {0,
and asked under what conditions on Q2 that implies f is univalent. He proved that if the area

|Q ]|$7r, then fis univalent. The proof of Theorem 1.11.2 serves as a simple alternative method

of Krzyz.

The correct analogue of Theorem 1.11.1 of London would involve [[|T(f,z)|do, instead

of the L?-norm and the question appears to be open.
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Chapter Two

Schwarzian Derivatives and the Domain Constants

§ 2.1 Introduction

Let us recall the definition of the Schwarzian derivative of an analytic function defined
- Y o 1( oY |
in a domain A. We have S(f,z):(-——) (z)—é(—(z)) . We shall also write S(f,z) as S; if we do

! !

not want to emphasize z.

Historically, the differential operator was first known to Riemann as early as 1857, but
the first person who actually studied it extensively was H.A. Schwarz. He investigated
differential operator invariant with respect to M6bius transformations; this later became known
as the Schwarzian. Much later M. Lavie [1] showed that under the assumption that f 0 all the
differential operators of order n on f (i.e. operator involving f, f, f',---, f(")) invariant with
respect to Mobius transformations can be written as rational functions of S(f,2) and its
derivatives of order up to n—3. The Schwarzian also plays an important role in several branches
of complex function theory. We have seen that it is closely related to the theory of

quasiconformal extensions in the last chapter and univalent function theory later in this chapter.

Let fbe an analytic function defined in a domain A and z: B — A be analytic, then we
have S(foz¢) = S(f,2) 2(¢)*+ S(z¢) (2.1.1)
It is not difficult to check that S(z,{)=0 if and only if 2 is a Mébius transformation. Hence if

A=A and zis a Mobius transformation mapping the unit disc onto the unit disc then (2.1.1)

28



bl o & ANGEPE . e

e TRy e &

becomes S(foz¢) = S(f,2) Z(¢)?, : (2.1.2)

since the Schwarzian of a Mobius transformation is identically equal to zero.

We also recall that the Poincaré density function of a simply connected domain A is

defined as

where fis any conformal mapping which maps A onto a unit disc. Let fand g both be conformal
mappings defined in A, then it follows from (2.1.1) that

S(feng) - S(gon) ={S(a) — S(a9)} (). (2.1.3)
Nowlet I: B —+ A and J: A — A be conformal such that Joz = I Since the Poincaré

density of B is independent of the conformal mapping, we have

QL _ @A)
—HOF ~ 1-1G)?

n(¢) = n4(2) 17(Q)

and (2.1.3) becomes
S(fOZ,C) - .S'(goz,() — S(.f;z) - S(gaz).
UB(C)z 1’,4(2)2

Now define the norm of the Schwarzian dertvative to be
ISt} = sup { 15(52)] n4(2)7% 2€A}.

Hence

1S1=551, = [Sr0—Ss0+] - (2.1.4)

-1

If we now put z=¢~", we obtain

HSI—SgIA= ISfoy_llg(A). (2.1.5)

If fis the identity mapping of A, then (2.1.5) becomes

1501, = Hsg_lﬂy(A). (2.1.6)

Suppose ¢ is a Mébius transformation in (2.1.5). Then the equation becomes

Ilequ ﬂSjOg"llg(A)’

and if we now let m be a Mobius transformation, then we have

I571,= [Smo fog_lL(A). (2.1.7)

i.e. the norm of the Schwarzian is completely invariant with respect to Mobius transformations,

since when comparing to (2.1.2) the last term disappeared.
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§ 2.2 The Domain Constant Q(A)

We now introduce the concept of domain constant of a simply connected domain. Let f
be a conformal mapping which maps A onto A . The domain constant Q(A) is defined by
QA) = || = swr { |5(52)] nA(z)_z: 2€A, f: A = A conformal}.
This definition is well defined, for if ¢ : A — A is also conformal, then fog~! is an
automorphism of the unit disc and so it must be a Mobius transformation, hence g—= Mof where
M is a Mdbius transformation. Thus by (2.1.7), Q(A) is well defined. Also from (2.1.6), since

Sl U K

we have the equivalent definition:
QUA) = |Sf| = swp { |5(£2)| na(2)"% 2€A, f: A = A conformal}. (2.2.1)

= sup { (1—121H)?|5(f,2)| : 2€4, f: A — A conformal).

One of the main problems is to determine what Q(A) is when given a domain ACC.
Since the Schwarzian derivative of a Mébius transformation is identically equal to zero, so Q(A)
can be regarded as a measure of the deviation of A from A or f from the Mobius
transformations. We have an upper bound of Q(A) whenever fis conformal. This has been found
by Kraus [1] in 1922 but was forgotten and rediscovered by Z. Nehari [1] in 1949. Let us proceed
to the proof now. According to (2.2.1) we may assume f: A — A to be conformal and since for
any z,€A, there exists an automorphism g of A such that g(0)=2z,, we have by (2.1.7) that

(1=12*)*|S(f20)l = (1=101*)|S(fog,0)| = |S(fog,0)I.
So we have another characterization of Q(A) that:
QA) = sup { |5;(0) : f: A — A conformal }.
Now by (2.1.7) again, we may further assume that f€S and since S(f,0) = 6(az—ay?), we
finally have
Q(A) = sup { |6(ag—a,?)| : f€S, f: A — B conformal and B is Mbbius equivalent to A }.

This new characterization gives a relation between the domain constant Q(A) and the
coefficients of f which is very useful. Let f€S, then 1/f1/2)=2+by+b,/2z+ --- is meromorphic
in |z/>1 and the class is called X. It is well known that |b,]<1 by the area theorem (see Duren
[1] p.29). But b;=a,%—as, hence |a,>—a3|<1. Thus we eventually arrive at the sharp estimate

Q(A) < 6 (see also Lehto [2] p.61).
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Let f€S, then the renormalization of fis given by

yfou()=fou(0)

= o w ()

’

where w(z)= e"o(%), (€A, is an automorphism of A. Clearly g also belongs to S. We call
z

any family of functions that has the similar property as S above to be linearly invariant. The

function ¢ is called Koebe transform of f; the ranges of f and ¢ are therefore similar. It is clear

that the above new characterization for the domain constant depends on the fact that § is

linearly invariant.

Recently there has been growing interest in finding the domain constant of different
domains A. Nehari [3] himself had found that if A is a convex domain, then Q(A) < 2 and the

bound is sharp.

We recall that the domain A has bounded boundary rotation kr if there exists a
conformal mapping fof the A onto A such that

2r
r"'_’»”l/ lu(re®)| db < kr,
0

'
where u(z):%(l-{-z%). It is therefore easy to see that if the boundary rotation is exactly 27
then f is convex or A is a convex domain. For details about the bounded boundary rotation
functions we refer to the book of Duren [1] p.269. Using the techniques described above Lehto

and Tammi [1] (see also Lehto [2] p.64) proved that :

Theorem 2.2.1 Let A be Mébius equivalent to a domain with bounded boundary rotation less
than kr. If k<4 then T Q(A) < %"7___'*;1:1 )

the bound is sharp.

Similarly we have the following result if the function is close to convez. A conformal

mapping ](0):/(0)—1:0 is said to be close-to-convez of order 8 if ar&zi < % where g is a
g (z

convex conformal mapping defined in A and 8 > 0, we denote this class by Cp. A domain is

called close-to-convez of order (3 if it is a image of a close-to-convex of order # function in A.

Theorem 2.2.2 (Koepf W. [1]) Let A be Mébius equivalent to a domain close-to-convez of order
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B, then we have Q(A) = {;ﬁ'i;iﬂ‘w ,(;$>11.

This result is sharp.

§ 2.3 The Domain Constant of a Strongly Starlike Domain

Let us recall from the Definition 1.4.1 that a function f{z)=2+4a,22+ ---€S is strongly
starlike of order a where 0<a<1, if |arg%{|5%. We shall now define a domain A to be
strongly starlike of order o if it is a image of a function which is a-strongly starlike.

When considering Q(A) for different classes of domain A, we found that the method
described above in § 2.2 does not seem to work for strongly starlike domains. Both the proofs of
Theorems 2.2.1 and 2.2.2 were based on the fact that the classes of functions with bounded
boundary rotation and close-to-convex functions are in fact linearly invariant. Hence one can
transfer the problem to the origin and find a least upper bound of |Sf(0)| over the corresponding
functions and then transfer it to other points in the unit disc. This is exactly what we have done
for the class S. But strongly starlike functions are not linearly invariant. However we still find
that:

Theorem 2.3.1 Let A be a domain which is Mobius equivalent to a strongly starlike domain of

order o, where 0<a<1, then QA) <6 sin(%).

Let us say that feSy if f€S and f has a K-qc extension to C, where its complex

K—1
K+1-°

F(2)=A(7) when |z]<1. We also define Sg(c0) to be the subclass of S such that f(co)=o00. We

dilitation p, satisfies |u,| < k = The extension is written as f(2) when |z/>1 and

quote the following lemma which is due to R. Kiihnau [1] and Lehto [1] :

Lemma 2.3.2 Suppose fE€Sg, then lay® —as|<k =§I—%. If in addition ]'(oo):oo i.e.

feSk(c0), then lay] < 2k

and wilh equality if and only if

) = z/(1+lc<'3"".z)2 |z] <1 .
2 /({F+ke*4E)? |21
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Proof of Theorem 2.3.1 By Theorem 1.4.3, feS*(a) then feSg with k<sin(aw/2). So by
Lemma 2.3.2, |a;®—ag|<k. Since the class Sy is linearly invariant, then according to § 2.2 we

deduce Q(A)< 6 sin(%). It is however not known that if this estimate is sharp. o

!
7.

!
Just like estimating the |S;| we can also estimate (1—|z|? zL by similar techniques.
/ !

§ 2.4 Estimations of the Logarithmic Derivative

However the logarithmic derivative does not share the same invariance properties as the
Schwarzian derivative. It is well known that if f€S, then |a;] < 2 (see Duren [1] p.30) and by

the Koebe transform

z+¢\
1+Zz) (9] _ z+(l(1-|C|2)L(O _ z) 24 (2.4.1)
£(O0~1¢1?) 2

()

!
still belongs to S. Hence we have (1—|z|2)2% - 2|73 <4
z
!
or 1—|2] 2){ (2) < 6.
R

We have the following analogue when fis convex:
o
Theorem 2.4.1 (Hayman W.K.; see Ahlfors [2] p.5) Let f2)=2+) anz" be a convez function
2

defined in A, then

(1—|z|2>|z%’))| <4

We shall be interested in finding the constant for strongly starlike functions and close-

to-convex functions. Let us quote the following result:

Theorem 2.4.2 (Schiffer and Schober [1]) Let f € Sy, then
lay| < 2—4k2, (2.4.2)

where k = ,,l-r arccos k € (0, %] This estimate is sharp (the extremal function also ezists).

Since f is linearly invariant with respect to Sy, we can use (2.4.1) and (2.4.2) together

to obtain
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(1=14%) 4(‘2—2)) — 2037 < 2(2-447)

or (1—|z|2)| z%:))l < 6—8k2.

However if we consider f€S*(a) we can expect a better estimate. By a closer inspection of the

qc-extension of $*(a) in Theorem 1.4.3, we see that f(co)=oco. Hence by Lemma 2.3.2 we

deduce that

!
(1=122) %’)ﬂ < 6 sin(%T).

But this is still not the best possible estimate, we shall now derive the sharp result for the

logarithmic derivative for $*(a) .

Theorem 2.4.3 Let feS*(a) 0<a<l, then
a-1) £ < 6o,
where equality can occur if and only if
’ﬂg;) = (&Y, lel=1 and a<1. (2.4.3)

When a=1 fis just a starlike function and the estimate is also sharp.

We require the following definition and lemmas. Let f and g be analytic functions in A.
We say that fis subordinate to g in A if there exists an analytic function w defined in A such
that w(0)=0, |w(z)]<1 when z€ A and fz)=g(w(z)) for z€ A. We denote this relation by f<g.

It is well known that if g is univalent in A, then f<gin A if f0)=g(0) and {A)Cg(A).

Lemma 2.4.4 (Pick’s lemma; see Ahlfors [1] p.3) Let P be an analytic function defined in A
and if |P|<1 in A, then \
P < AL v e,

i9g 2—2;

with equality if and only if P is an automorphism of the unit disc i.e. P(2) = e ==
-4

o0 0

Lemma 2.4.5 (Rogosinki W. [1] p.70) Let {z)=)_an2" be subordinate to F(z)=) Anz" in A.
1 1

If f is univalent in A and F(A) is conver univalent, then |an| < |A;| Vn. If F(A) is not a half

plane, then the equality can hold for a given n only if {2)=F(e2"), |e|=1. If F(A) is a half

plane then equality occurs only if
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fi2)=1} 2 i 4520 L=y e =len()

Proof of Theorem 2.4.3 Let f€S*(«) and P(z)_zﬁ(;) Then P is subordinate to the function
(1 + z)
1-=2

pe. Pz < (32)" zea.

Hence there exist an analytic function w(z) such that w(0)=0 and |w]<1 and

P(z) = (“’“’(’))" 2€A.

1—wu(2)
N : #'() _ P'(z)
Differentiate both sides f( p) = P(z)—1+z2 P( Py (2.4.4)
Now P(z)-1 = (}t:ﬁgg)a—l < (i——t—;)a—l z€EA.

o
Since (%}i) —1 is a convex conformal mapping, by Lemma 2.4.5 the coefficients of

o
P—1 in the series expansion are dominated by the first coefficient of (-{—'_Lf) —1 which is

bounded by 2c. So suppose (i+z}}§3)a-1 = %bkz", then
- 1
1+u(2) k E_ 2a|z|
I(I_—T(z—)) |< 2167 < 202 ld*= 1 1<t (2.4.5)
Also since
@ 14

HOME '1?:%’

We have 1P(2) _ () + W'(z)  _ 24/(2)

APz) T T+uw(@) * 1-w(z) ~ 1-w(z)?
By Pick’s lemma
(-l 22 =

P() (1 | IZ) 2|zw’(z)| 2|z|(1—|w(z)| ) < 9. (2.4.6)

T—wdf = e =

From (2.4.4) we deduce that

APLACOP 1+w(z)\* a2 P (@)
1—|z|>| 70|s -1 (o o) 1|+(1 ||>1 e
< (1-|2%) 2°‘||z|| + 2a
< (1+4]2]) 2a + 2a < 6a. (2.4.7)
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Equality in (2.4.7) can occur if and only if both (2.4.5) and (2.4.6) hold with equalities.
From (2.4.5) and Lemma 2.4.5,

zf(z 14 w(2)\*
;((z)) = (l—sz;) , w(z)=€2" |e|=1 and a<1.

Also from (2.4.5) and Lemma 2.4.4 the only automorphism w(z)=ez" of the unit disc
such that w(0)=0 must be w(z)=ez where |¢|=1. Hence f has the representation (2.4.3). When
a=1 f is just an ordinary starlike function and it has a standard representation (see

Pommerenke [1]). o

Remark 1 The estimate 6a in the above theorem is better than 6 sin(gzl).

Remark 2 Let f€S*(a) then since #f/f < (}—i;z)a, it is reasonable to believe that if f satisfies
the equation (2.4.3) then fis the extremal function, just as the Koebe function is the extremal
function of many problems in Geometric function theory. Theorem 2.4.3 shows that fis indeed
the extremal function for that problem. However Brannan, Clunie and Kirwan [1] found that the
f satisfying the (2.4.3) is not the extremal function for the coefficient problems, and it is
extremal only if « is near to 0 or 1. The situation is more complicated, in fact they proved:

(a) if |ay| < 2 and (2.4.3) is the extremal function;

(b) if 0<a<1/3, then |azg| < a and the extremal function satisfies %: (%)ﬁel:l;

(c) if 1/3<a<l, then |a3] < 3a? and the extremal function satisfies (2.4.3);

(d) if @=1/3, then |az| < 1/3 and the extremal function satisfies

9 1/3
A (2) =(/\G_E£Z_)+(l_,\)(l+€ f))

f2) €z 1—¢27
where |¢}=1 and 0<A<1.

Similarly, we have the following estimate for the functions which are close-to-convex of

order 3.
Theorem 2.4.6 (cf. Theorem 2.2.2) Let fe Cg, f2>1, then

!
(1—|2|? f—(z)‘ < 2(2+8) VzeA.
f(2)
This estimate is sharp.

Proof Since f€ Cp, we can find a convex function ¢ such that
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By the subordination principle, there exists an analytic function w(z) such that w(0)=0 and
Jw] <1, with

f(2) _ (1+u(2)\f
é'(z) (l—w(z)) ’

Taking logarithms and differentiating both sides, we obtain

£ _ 4" AOINRACR\ I 220/(2)
f& 2(¢'(z) th (1+w(2)+1—w(z))) = TPy @

We claim that (1—|2|?)|2¢''(z)/$'(z)] < 4. This of course is the result of Hayman mentioned

"
above. However, we present here a simple proof. Since ?R(l+z’;S )>0 in A, by the
%"(2) _ 1+u(2)
¢'(z)  1-w(2)

As w, satisfies the hypotheses of the Schwarz’s lemma, we have |w;| < |z| and so |1—w,| >

subordination principle we have 1+

for some w, analytic, w,(0)=0, |w,|<1.

1—|wy| > 1—]4|.

Now  (1—|d?)s ”‘ =120 < - < o) < 4.

¢'(2) 1—w(2)] |2l

Using Pick’s lemma again, it follows from (2.4.8) that

L 4@ ) 252 228120/ ()
(=1 | S Ot ]+ O
< 4 4 opilwdl —luw(2)|? < 4428 = 2(2+8) ]
S ey '

§ 2.5 The Geometry and the Domain Constant of A

Recall the definition of Q(A) from § 2.2. We have already seen that different
geometrical shapes of A lead to different Domain Constants. We shall now discuss a more
general class of domains i.e. quasidiscs. A domain A is a K-quasidisc if it is an image of the unit
disc A under a K-qc mapping of the plane. Let C be a Jordan curve and 2;, 2, €C divide it into
two arcs €, and C,, C is said to satisfy the arc condition if there exists a constant ¢ such that

miz'n (diam C,) < cjzy—z,| (2.5.0)
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for all pairs of 2; and 2z, on C. Ahlfors gave a geometric characterization of quasidiscs (see Lehto
(2] p.45): a Jordan domain A has boundary satisfying the arc condition if and only if A is a
quasidisc. It is easy to see that if Q(A) < 2k, k<1, then A is a 1+i quasidisc. For, by Theorem
1.4.1, f: A — A admits a K-qc extension to C and in fact f is conformal in A and K-
quasiconformal in C\A. By the definition, A is therefore a K-quasidisc. On the other hand we
have:

Theorem 2.5.1 (Lehto [2] p.73) If A is a K-quasidisc, then Q(A) < 6 K ;}

It is not known whether the estimate of the above theorem is best possible. It is
therefore natural to ask if €2(A) < e where € is a sufficiently small positive constant, implies

that A is a starlike or convex domain. The answer turns out to be negative.

Theorem 2.5.2 Given any €>0, there ezisis a domain A(e) containing the origin such that
2(A) < ¢,

and A is not a starlike domain (let alone a conver domain).

The proof of the above theorem depends upon the theory of the second order differential
equation Y+ Ay=0, (2.5.1)
and its linearly independent solutions. We require some lemmas here which will also be used
again in Chapters 3 and 5. Similar to the Schwarzian derivative we introduce the following

notation:

E bold .
<5 o= HE) 4Gt

where ¢ is a constant.

Lemma 2.5.3 (Bank and Laine [2]) (a) Let A be meromorphic in a region D, and assume that

h

fis fo are linearly independent solutions of (2.5.1). Then g=f
2

has the following properties;
(i) All zeros of ¢ in D are of even multiplicity;

(i1) All poles of g in D are of odd order;

(iii) A=35(¢,)-

(b) Conversely, let g be an non-constant meromorphic function in a simply connected domain

D, which possesses properties (i) and (i), and define A by (iii). Then the equation (2.5.1)

h
fa

possesses lwo linearly independent solutions fi, f, in D such that g=F%
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We note that most of the Lemma 2.5.3 is well-known, see Hille [1] or Fuchs [2].
Lemma 2.5.4 (Bank and Laine [2]) (a) Let A be meromorphic in a region D, and assume that
(2.5.1) possesses two linearly independent meromorphic solutions f, f, in D. Set E=f,f, and
c= W(f,f,) (the Wronskian of f, and f,). Then,
(¢) All zeros of E(2) in D are simple;

(i) All poles of E(z) in D are of even order;

(i17) At any zero z; of E in D, the number is an odd integer;

c
E'(z)
() A=<E,c>.

(b) Conversely, let E(z)#0 be a meromorphic function in a simply-connected region D, and let c
be a non-zero constant such that (i), (i) and (iii) above hold. Then, if A(2) is defined by (iv),
the equation (2.5.1) possesses two linearly independent meromorphic solutions fy, fo in D such

that

(v) E=fifs and c= W(f,,fo).

Proof of the Theorem 2.5.2 We prove the theorem by providing an explicit counter-example. It
is sufficient to show that given ¢>0 there exists a conformal mapping f (depending on ¢€) in A

such that (1—|2|%)?|S(f;2)| <€ Yz€A and fis not a starlike function.

Given €>0, let  E(2)= z]<1 where A=iu, p<(2/7)e.

._2_2_7\ [
-

Since F(0)=0 and E'(2)=(1+(2A—1)2%)/(1—2*)"** we have E'(0)=1. Moreover the origin is
the only zero of E in A and it has no pole in A. Therefore FE clearly satisfies (i), (ii) and (iit) of
Lemma 2.5.4 with c=—1 i.e. ¢ is odd. Let A=<E,c>, then the differential equation (2.5.1) has
two linearly independent analytic solutions f;, f, such that E=ff, and W(f,f,)=—1=

F1(0)£(0)—£,(0)£,(0), since E(0)=0 we may assume f,(0)=0. Now

E(z E” 2 _ E(z E(z
A=<E,—-1>=<E, 1>= %{( E((z))) E((z)) E(lz)z} 1{ (E((z))) (E'((Z)))2+E(lz)2}

We calculate A. Differentiate log E:

E(z) 1, 2 E(@\_ 1 224222
) i a-2) (E‘(z)) 2T u=A
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z z -2
Therefore 4A(z)=_{ ( 2+2(/I+22A)2)+(%+(12_)_\22))2+ (L zﬁ) }

_2 22342)027%) 1 4 42 (=4
T2 TA=2F 2 (-2 0-2F 2

_ l+—4,\—4Azz—4,\(1—z2)—4)\2z2_ (1-2)%
-2 (1-2)? 2

_ 1, —8XA—4)\2  1(1_oy,2,2M22=1) 4
= z2+ (1_22)2 22(1 20z°+ a1 z )

_ —8X—4%7 M2 -1) 5
= =0=%; + (2225 )

22(22—-1
(T).22+

Let P(z) = 2X —

be the term in brackets above. The nth coefficient of P is equal to

20(22=1)(2X=-2)--- (21— n+1) (2,\2_.1)(2)\3_2)(2,\4_3).“(2,\—511;—1)).

n!

It is not difficult to see that the modulus of each factor of the right hand side of the above

equality is strictly less than 1 as long as |A| is chosen to be sufficiently small (less than 1, say).

And so all the coefficients of P are bounded by 2|A|=2u. So we deduce

—8)\—4)222 20(2A-1
(1=121%)?44] <(1~14%)? %+ (1l 2a- 2B =0z, |

8|A| +4[2?
<(1-14%)? %:;}lz—u (1-—|z[2)2(2|)\|+2|A||z|2+2|,\|z|4 4o )

< 12A|+(1— [

1
—~ ||

= 12|17 + 2[|A|(1—]2|%) < 14/)].

ie. (1—122)%|4] < T4|,\| = %p<€. (2.5.2)
Since A is analytic in A, and f}, f, considered above are linearly independent solutions

of (2.5.1), by Lemma 2.5.3 (a) the function defined by
f1(z)
2)= 2.5.3
(=02 (253)
satisfies the identity A(z)E%S(g,z). According to the equation (2.5.1) f;, f, are analytic and so is

their product E=f,f, and since the only zero of E(2) is when 2=0 which is the zero of f;. We
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conclude that f; has only one zero and f, has no zero in A. Hence we deduce that g must be

w(

analytic in A ( in fact, since g':-_—fle—’f"’);éﬂ so ¢ is locally univalent in A). Now ¢(0)=0 and
2

g is analytic, by (2.5.2) (1—|2/%)?|5(g,2)| can be made arbitrary small so g satisfies the Ahlfors-

Weill’s criterion (Theorem 1.4.1) and it must be conformal in A.

of

The well known criterion for a normalized function to be starlike is that %(—)>0

f
Vz€A (see Duren [1] p.31 ). However

zy’i) =2 = _Z_
9o(2) — hh T E(3)
— (1_22))\

= ea:p()\ Iog(l—zz))
= ez:p{iu(log |1—22|+ iarg(l—z"’)}
= e:cp{—;z arg(1—22)+ ip log |1—z2|}

= e:cp{—-,u arg(l—z2)}czp{ip log |1—22|}.

i
Now the argument of z% is plog|ll—7%| which tends to negative infinity as z — 1.
!
Therefore, there exists infinitely many 2€A such that SR(%)<0. This shows g cannot be

starlike and also completes the proof. u]

§ 2.6 An analogue for the Logarithmic Derivative

The logarithmic derivative does not share the same properties as the Schwarzian
derivative, for it is invariant only with respect to linear mappings. Thus it is probably not very
useful to define another domain constant analogue to 2(A). Theorems 2.4.3 and 2.4.6 show that
for different domains, we can have different estimates for the logarithmic derivative
(1—|z|2)|zﬂ|. Since Becker’s result (put ¢=0 in (1.4.2) of Theorem 1.4.4) shows that when

f

!
1—1z|? zﬁ— <1 then f{A) is a quasidisc, we can thus ask the same question as we did in § 2.4;
!

!
namely if (1—]|z)? ZL is small, is f{A) necessarily starlike or convex ? The answer can easily
/

be deduced and turns out to be negative as expected from § 2.4 .

Given €>0, we consider the same ¢ as constructed in (2.5.3) of the proof of the Theorem

2.5.2, then E=f,f,=z/(1—2*)* and |A|<(1/3)e is sufficiently small. It has been shown that
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(1—|z|2)2|S(y,z)| in § 2.5 can be made arbitrary small and it is not difficult to show

(1—17| )|zg | can also be made arbitrary small. Recall that

20(2) _ = (1—2%)* and let P(z) = zg’(z).

9(2) 9(2)
From (2.4.3) 29,';(;) P(2)— 1+2P2(;)_(1 AP —1— 2*"2 .
Now
! 2212122
(A= l) 7 | < A== -ty
= (1—|2?)] (1=Az +’\(’\ D o142 lll—_2I2|
<A=1?)AA> +HA*+ o) + 20 (2.5.3)

2 IM2?
—|

Note that the inequality (2.5.3) follows since we can choose |A| so small that the

=(1—|2|* ) e +2|A|=|A2|4+2]A|< 3|A| = 3u<e.
coefficients in the series expansion have modulus less than |A| as in the proof of the Theorem
2.5.2. Hence by making u small the same ¢ satisfies Becker’s criterion and so it must be

conformal yet it fails to be a starlike function.

We summarize the above results:

Theorem 2.6.1 Given 0<e<1, there erists a conformal mapping g (depending on €), ¢(0)=0,

such that ,
!
(1—]2? | < € V€A,
g
and g(A) is not a starlike domain (let alone a convexr domain). a
Remark 1 Note that E=—% 5~ can be choosen instead of E=—%— — in Theorem 2.6.1 and

(1-2) (1 —z’)

it is still sufficient to construct, by the same argument as in the proof of the Theorem 2.5.2, a
counter example ¢ for Theorem 2.6.1 . But it fails to be a counter example in Theorem 2.5.2.

Remark 2 We shall see in Chapter 4 that, when | 7! / ! | is small, f can indeed be starlike.

§ 2.7 Some more General Problems

In this section, we would like to discuss the results obtained in the previous sections and
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to explore more deeply into the relationship between the Schwarzian derivatives and the

quasidiscs.

It is obvious that not all starlike domains with respect to the origin are K-quasidiscs.
Since starlike domains can have cusps. In Theorem 1.4.1, Krzyz actually shows that for strongly
starlike functions of order a < 1 can have K(a)-qc extension i.e. f{A) is a K(a)-quasidisc. Hence
a-strongly starlike functions must characterize those starlike domains without cusps. On the

other hand, Gehring and Pommerenke [1] generalized the original Nehari’s result:

Theorem 2.7.1 Let f be meromorphic in A and let

S| <2

%1, =
Then f has a spherically continuous extension to A and f{A) is a Jordan domain or the image of
the parallel slit T={w: |arg w|<w/2} under a Mobius transformation. Moreover if z€HA and
f(z))# o0, then |j(rz1)—j(zl)|=0(dist(j(rzl), Bj(A))llz) asr — 1—.

This shows that the boundary 8f{A) can allow certain cusps. On the other hand:
Theorem 2.7.2 (Gehring and Pommerenke [1)): If f is meromorphic in A and if
quIIAg b <2,

then f{A) is a quasidisc with the constant ¢ < 8(1—6/2)_1/2, where ¢ is defined in (2.5.0) §2.5.

And the order of the bound c is best possible as b — 2 (see Gehring and Pommerenke [1] p229).

These two theorems indicate that if |$ fﬂAis small then the boundary of the image f{A)
is a quasidisc and is smooth up to a certain degree. However, Theorem 2.5.2 shows that it has
little control on the overall geometrical shape of the image f{A) and it certainly cannot
guarantee f{A) to be starlike. Little is known just how much f{A) looks like when lelA small,
and there is a gap between these results (see also Chapter 3). Of course f{A) is a disc when
HSIHA=0. Actually Theorems 2.3.1 and 2.4.3 clearly show that if o is small then the strongly
starlike functions satisfy both the Nehari’s and Becker’s criteria and the opposites is not true.

Obviously, an analogue can also occur if we consider the logarithmic derivatives.

Finally we have the following fundamental result due to Ahlfors.

Theorem 2.7.3 (see Lehto [2] p.81) Let A be a K-quasidisc. Then there is a constant e(K)>0,
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depending only on K, such that every function f meromorphic in A with the property
[, < <
is univalent in A and can be extended to a quasiconformal mapping of the plane whose complex

dilatation p(z) satisfies the inequality
gl <I1s e(K).
1< |5, /<(K)
Note that both Nehari’s and Gehring-Pommerenke’s results are special cases of this
theorem when A=A. In view of the Theorem 2.5.2, we may ask the following: What conclusion

can we make other than f is univalent in A, if A is a K-quasidisc and f meromorphic in A such

that

15|, < <o,

where >0 is sufficiently small 7
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Chapter Three

Properties of Analytic Functions with
Small Schwarzian Derivatives

§ 3.1 Introduction

We have already introduced some univalence criteria obtained by the methods of
Ahlfors and Loéwner differential equations. We have also seen how to use the second order
differential equations techniques to construct counter examples that no matter how small that
qulI is f need not be starlike or convex etc. In this chapter we shall continue to use differential
equations techniques to show that, replacing the hypothesis ISfI < & by |5(f,z)] < & for some
sufficiently small § which also depends on the second coefficient a, of f, and |a,| is also small,
then f is indeed starlike for one é and convex for another §. We then investigate some other
consequences for f, when the Schwarzian derivative is ‘small’. We shall introduce a fundamental
theorem of Gronwall in differential equations which is of central importance and will be used in

the proofs and later in the thesis.

Let us recall the definitions of the Schwarzian derivative of an analytic function defined

in the unit disc A with f#0 in A. We have
1 1 ! 2
st =(L) - § (L)’

By using the method of differential equations, we can study the relations between the

Schwarzian and Univalent Function Theory. This line of research was first initiated in the

45



e IRy B R

works of Z. Nehari. In his famous paper of 1949, he obtained the necessary and sufficient con-

ditions for an analytic function defined in the unit disc to be univalent:

Theorem 3.1.1 (Z. Nehari [1]) Suppose f is analytic in A and f #0 in A.
In order that f be univalent in A, 1l is necessary that
1-121?I5(h2)| < 6 VzeA,
and sufficient that
1—=12))%8(f,2)| < 2 V:z2€A. (3.1.1)

Both constants are best possible.

We recall that in Chapter 1, replacing 2 by 2k, k<1 on the right hand side of (3.1.1), it

becomes a sufficient condition for K-quasiconformal extension.

In [1] Nehari considered the second order differential equation
'+ 1s(h2) = o, (3.1.2)
and the stability of its solutions. He called (3.1.2) disconjugate if and only if no solution can
vanish more than once in A. He showed by applying Green’s transformation to (3.1.2), that if

5(f,2) satisfies (3.1.1), then it is disconjugate and this implies that fis univalent. The Green’s

transformation has its origin dating back to the beginning of this century, see Hille [1],[2]. Now f

can be written as :

NG
=45

where f,, f, are linearly independent solutions of (3.1.2) (see Lemma 2.5.3). Suppose that

AT RS

Then f,(z)—afi(2)=0, fi(z3)—afi(2,)=0. This shows that (3.1.2) is not disconjugate, hence f
must be univalent. It is therefore easy to see that (3.1.2) is disconjugate if and only if no

solution of (3.1.2) can vanish more than once in A, hence if and only if fis univalent in A.

Later Nehari also published a series of papers in 1954 [2], 1979 [4] and Friedland &
Nehari 1970 [1] with more general univalence criteria. Along the same line F. G. Avkhadiev (see
Avkhadiev & Aksent’ev [1]) gave a complete generalization of (3.1.1). Many different methods

have been developed to obtain these kind of criteria by others (e.g. Lowner differential
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equations). For a complete review of this area, we refer the readers to a survey paper of F.G.

Avkhadiev and L.A. Aksent’ev [1].

We note that Theorem 3.1.1 is irrespective of the normalization of f. However we shall
consider the normalized class N={f] f analytic in A and f0)=0, £(0)=1} and the subclass S C

N such that fis univalent. Such an fhas the expansion

o)
f2) = 240,24 - = 24 Y an2".
2

We consider also the class N={g| ¢ analytic in 0<|2|<1, with a simple pole at the origin of
residue = 1 }, that is
o(z) = Ltbo+byz+byP+ oo .

Also N, is the subclass fe Nl such that by=0.

§ 3.2 The Problems

Schwarzian derivative is invariant with respect to the Mobius transformations M and
S(M,z)=0. A Mbbius transformation is a one to one conformal mapping of C. We normalize M
such that for each fe M, f0)=0 and f(0)=1. This class is denoted by M,. For example consider
the normalized mapping z/(1—z) which maps the unit disc A onto R(2) >—-%. It is
reasonable to believe that when S(f,2) is small in absolute value for any f, then fis close to M.
That is f is univalent, starlike or even convex. The following discussions and results show that
this is indeed the case and we also give some quantitive estimates. Our problems although
similar to those considered in Chapter 2 § 2.1, in which the quantity ISfI the norm of the
Schwarzian derivative was used to investigate the univalence and relation with M, our

assumptions are much stronger and we fixed our normalisation.

Our starting point is from a less well-known sufficient univalence criterion of Nehari also

published in [Nehari 1]. He proved:

Theorem 3.2.1 (Nehari [1]) If f belongs to either N or N, and satisfies

IS0l < 2, Vzea, (3.2.1)

then f is univalent. The resulls are sharp.
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The constant 72/2 is best possible. This is shown by the examples (ezp(irz)—l)/(iﬂ')

and iw/ (ezp(hrz)—l) respectively. Both have Schwarzian derivatives equal to 72 /2.

Later in 1954, R.F. Gabriel [1] used Green’s transformation and similar techniques to
obtain the following :
Theorem 3.2.2 Let g € Ny, and suppose that
|S(g,2)] € 2¢q% 2.73  |2|<1,
where ¢, is the smallest positive root of the equation
24z — taniyz = 0,
then g is univalent in 0<|z|<1 and maps the interior of each circle |z]=r<1 onto the erterior

of a convez region. The constant c, is best possible.

The above result is still true even if b;50 i.e. if f€ N, since a convex domain remains
convex after a translation. Also if f € N then 1/f € N; but since S(f,z) = S(1/f,2), it is easy to
obtain the following:

Corollary 3.2.3 (Gabriel R.F. [1]) Let feN, and suppose that
1S(52)| < 2¢0 for |7 < 1,
where the constant ¢, is the same as defined in the Theorem 3.2.2, then f maps A onto a

starlike domain.

We note that although 2¢, is sharp for the Theorem 3.2.2, it does not follow that it is
again sharp for Corollary 3.2.3. There are many results of a similar nature about the solutions of

the equation (3.1.2). Among them we mention the following:

Theorem 3.2.2 (Robertson M.S. [1]) Let zA(2) be analytic in A with
R(2A() < T|o?, VzeA. (3.2.2)

Then the unique solution u, satisfying u(0)=0, u'(0)=1, of the differential equation
y'+ Ay =0 (3.2.3)

is univalent and starlike in A. The constant 72 /2 is best possible.

We note that by putting A=-12-S(f,z) in (3.2.2), then (3.2.1) of Theorem 3.2.1 implies

(3.2.2). Hence Nehari’s theorem has a stronger hypothesis. Thus Robertson proved that the
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unique solution of the equation (3.2.3) is starlike whereas Nehari proved that the quotient of the

linearly independent solutions of (3.2.3) is univalent.

Let us compare Nehari’s and Gabriel’s results for the class N; we have the following
relation: 2¢y < %2 )
where 72 /2 and 2¢, are the best possible constants for fto be univalent and convex respectively.
This leads naturally to the following problem : what is the best constant so that when |S(g,2)| <
26 V z€A, then g is starlike ? Clearly this constant must lie between 2¢, and x2/2, otherwise
this is meaningless. More precisely we define

%—2 = 26(g€N,ITI ; univalence) = sup { 26: geNN ; |S(g,2)] < 25 = ¢ univalent}
to be the Schwarzian radii of univalence of the classes N and N. Let

2¢o = 26(geN; convez) = sup { 26: 9eN; |S(g,2)] < 25 = g conver}

to be the Schwarzian radius of convezity of the class N.

We can therefore put our questions as follows, that is to find
26(g€ N; starlike) = sup { 26: geN ; |S(g,2)] < 26 = g starlike},
and 26(fEN; convez) = sup { 28: fEN; |S(f,2)] < 26 = f convez},

the Schwarzian radius of starlikeness of the class N and convexity of N.

The method of proof is to consider the equation (3.2.3) and its linearly independent
solutions. First we shall give a different version of Corollary 3.2.3, under the assumption that a,,
the second coefficient of f, is small. This, of couse, fails to recover the result of the corollary, but
we actually obtain a stronger conclusion that f is strongly starlike of order-a: $*(a), as defined
in chapter one. We will also give an example to show the requirement that ¢, being small is
necessary. However when a=1 and a;=0, Theorem 3.3.2 gives a poor estimate for é for starlike
functions when compared to Corollary 3.2.3.. In fact when a,=0, Theorem 3.3.2 shows that
|S(f,7)]<1.8 then fis starlike. We have not been able to find a useful estimate for 26(ge N:
starlike). Corollary 3.2.3 shows that 2¢,<28(f€N; starlike). The next obvious question is to find
28(feN; convez). Our methods, similar to that of Theorem 3.3.2, allow us to obtain a lower
bound for 26(f€ N: convez) provided a, is small. In § 5, by using an earlier result of Clunie and
Keogh {1], we find a rough estimate on the coefficients of fin terms of |S(f,2)|. In § 6 we show

that it is possible to drop the assumption of a, being small if f has a quasiconformal extension f
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to € such that f(oo):oo. With the applications of quasiconformal extension we obtain a
distortion theorem analogous to Koebe-1/4 theorem in § 7. We shall give two explicit examples
of functions which in turn estimate the lower bounds of Schwarzian radii of starlikeness and

convexity.

Remark Under the assumption that |S(f,z)| is bounded by a constant in A, we deduce that /
cannot have any zero in A. For if f has a zero of order n at z, say, then S(f,2) will have a pole
of order 2 at z,. This will contradict the assumption that it is uniformly bounded in A. Hence
we can drop the assumption that f#0 in the theorems which we are going to state and prove

below.

§ 3.3 Main Results and Proofs

Let us recall the definition of the strongly starlike functions of order a and starlike
functions in Chapter 1. Let f€S, then fis called $*(a) strongly starlike function of order « if
and only if |arg f /fl<an /2, Vz€A, 0<a<l. $*(1)= S*, the class of starlike functions. We
also need the following well known-result for differential equations known as Gronwall's lemma.
It is a fundamental result to estimate the growth of solutions of a given second order differential
equation. We shall also present the proof, for it will be used again later. It is crucial in many of

our proofs.

Lemma 3.3.1 (Gronwall T.H.; see Hille [1] p.19) Suppose that A(t) and ¢(t) are non-negative

continuous real functions for t>0. Let k>0 be a constant. Then the inequality

4
o) < b+ [ d)A() ds,
0

implies for all 1>0 that
t
g(t) < k ez‘p(/ A(s) ds).
0

Proof  Divide through the first inequality by its right hand side and then multiply by A on
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both sides. We obtain

(A ¢ o

lc+/ g(s)A(s) ds
0

Notice that the numerator is the derivative of the denominator. We integrate both sides from 0

to t to obtain : 4

t
t t
Iog( k+/ 9(s)A(s) ds) < / A(s) ds.
0 o O

t t
Thus Iog( k+/ 9(8)A(s) ds)—log k< / A(s) ds
0 0

t

t
9(1) < k+/ 9(s)A(s) ds < k exp(/ A(s) ds). 8]
0 0

Theorem 3.3.2 Let fe N, and suppose 0<a<1 and |ay}=1n< sin(ar/2). Let
sup |S(f,2)] = 26(n),
2€EA

where §=06(n) satisfies the inequality

m-l[ﬁn__)e;pﬂg)] + sin—l[n +(1+n)earp(g(ﬂ)/2)6(71):' e (3.3.1)

Then feS*(c).

Remark The inequality (3.3.1) enables us to have such a §=4§(7) since we have assumed sin™'n

< am/2.

Before we go on to prove this theorem, let us pause for a moment to look at an

extremal example when S(f,2)=0. It is well known that 5(g,2)=0 if and only if g is a Mobius

transformation, we normalize g so that geN (in fact g€S), hence

g(z): l-ifcz y |c|<l.

We require |c| <1, since ¢ is analytic in A. Note that the series expansion of g is

W(2)= z2—c+2P— ..., (3.3.2)

If | c| < sin(ar /2) for some @, 0<a<1, then g€ S*(a) since f satisfies the hypotheses of Theorem
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3.3.2 where § is identically equal to zero. In fact

A
g(z) 14cz °
So arg z!—(——) = |arg 1 = |arg(1+c2)|] < sin~Y|c|
') T+ez s .
Hence | arg A, (( )) 0‘7 if and only if |c|<sin(aw/2), since this inequality is sharp for equality

can be attained. Therefore g€S*(a) if and only if |c|<sin(an/2). This shows, at least in this
case, when g is defined as above that it is necessary for |02|<sm for g to be strongly starlike
of order-a. So the conditions in Theorem 3.3.2 is nearly the best possible. However, when |c|>1
the function g does not have the Taylor ezpansion (3.3.2), so it does not serve as a counter

!
example which shows that the Corollary 3.2.3 is false, since 3?(2‘%—)<0 for some z.

Proof of the Theorem 3.3.2  Suppose u(2), ©(z) are linearly independent solutions of the diff-

erential equation

"+ 1s(£2)y=0 (3.3.3)

with the normalization u(0)=4'(0)—1=0, ¥(0)—1=1/(0)=0. This is always possible since the
Wronskian W(u,v) of u(z) and (z) of a second order differential equation is identically equal to

a constant which we may take to be —1. Thus we have u(z)=z+ --- and (z)=1+ ---.

By Lemma 2.5.3 (b) in Chapter 2, we can find two linearly independent solutions y,, y,
of (3.3.3) such that

_n()_au bz
j(z)_y:(z)_cu(z)+ T G4 beR0. (3.3.4)

The representation depends on three arbitrary constants only, but A= %S(f;z) is a third order
differential equation, hence they can be determined uniquely and any solution can be obtained

from it by a suitable choice of these constants.

We deduce that b=0 since f{z)=2+4a,2%4 ---. We can divide through by a on both
sides of (3.3.4) and therefore we may assume a=1. Also d=1 since f(0)=1, note also that
— : 0y =
¢=—a,, since f!(0)=2a,. Hence

u(2)
fa)= cu(2)+v(2)
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(W)= u2()

== a0’
Wy 1 .
D+ @~ e+ L)

Hence ;f(z) = 2 .
D) u(z)(cu(2)+u(2))

Differentiate f, to obtain

We will show that | arg (2) ‘ < 2T, Integrating (3.3.3) by parts, we can write u(2) in the

f) | = 2

following form:

z
W) = o+ [ (=) AQ) w0) k. (3.3.5)
0
The path of integration is taken along the radius ¢(t)=1e'’ t€[0,r], z=re'®. We have

r
[u(2)] < r+ / |te“—rc"o| |A(tew)| |u(te“)| dt
0

< 1+ / (r—1) |A(te'%)| |u(te'?)] dt.
0

Now |A(z)| <6=6(n), where § satisfies (3.3.1). Thus applying lemma 3.3.1 we deduce:

lu(z)| < epr: / (r—1) |A(te)| dt]
0

< em [6(0) [ o-ya
0

)
= erp[é—g-]. (3.3.6)
Now substitute back into (3.3.5), to obtain
r
(=2l < [ (=) 14 Ju(te)] d
0

< [ (=0 4G exp(®E) at
0

<é ezp(%)/ (r—1) dt
0

__ b6 exp(8/2) r
= ——-2_.
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Hence

|g(72_) _ 1‘ < 6ea:p(62/2) T 6ezp(;/2) . (3.3.7)
Similarly, v(z) can also be written in the form

W) = 1+ [ (€=2) A©Q) «0) de.
0

Combining this with (3.3.5) we obtain

cu()+o(z) = 14 cot / (¢=2) A(Q) (eu(Q)+2(0)) & (3.3.8)
0

The path of integration is chosen as above. So we can estimate cu+ v as before

r
Jeu(a)+u(a)] < el [ (1) TG )] leu(tei®)+o(te)] at.
0
Since |A| < &(n) where é satisfies (3.3.1) by the hypotheses, we obtain, by applying Lemma
3.3.1 again that

jeua)+o(a)| < (L+]cl) ezp / (r=1) |4t d

IA

(1+16l) eap|5 |

IN

(1+]¢]) czp[6/2]. (3.3.9)

Substitute this back into (3.3.8) and note that |c|=n<sin(aw /2). We obtain

.
jeu+o(a)=11 < lelr + [ [¢=41 1A leu(@)+o(C)] dt

+ / (r—1) |A(te'®)] |cu(te'®)+ v(te'?)| dt
0

IA

IA

7+ (406 eap(6/2) [ (r—1) d
<0+ (s 2D (3.3.10)

It follows from (3.3.7) and (3.3.9) that

argﬂ)'

£2)
of (2)

arg
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_ ‘ arg AU+ o(2)

< | arg %2 | + | arg {u(a)+o(2)}

< sin'l(w) + sin“(n+(1+n) ‘M)
<8

The last inequality follows from the hypothesis (3.3.1). Hence f belongs to $*(a). This completes

the proof of the theorem. ]

Remark If we put a,=0 and a=1 in the above theorem, then (3.3.1) only gives a rather poor
estimate for 6. The best 6 that we can derive from (3.3.1) with a,=0, a=1 is approximately

1.8.

Another observation is that we can estimate arg(f(Tz)) the same way as we have done to
@\ o
arg(zl’i—). Since
fz) 9
z

arg 5

= ’ arg _—u(z)
Hcu(z)+o(2)}

org %2 |+ | arg ety |

IA

= arggz—) + | arg {cu(2)+v(2)}

< sin"(éﬁz"g&ﬂ) + sin“(q+(1+n) Sezp(6/2) g” 2)),

this estimate is exactly the same as (3.3.1) of Theorem 3.3.2. Hence we obtain

Corollary 3.3.3 Let feN, suppose 0<a<l and |ay]=n< sin ar /2. Suppose
sup |S(f,2)| = 26(n),
z€A

where 6(n) is some positive number which satisfies the inequality

sin-1[5(n)e;p6(n)] + sin—l[,’ +(1+n)erp(g(ﬂ)/2)5(n)] <ar.
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Then argf(Tz) < %.

§ 3.4 Applications to Convexity

We shall now consider another class of analytic functions.

Definition 3.4.1 If fis analytic and defined in A, then it is called convez univalent of order u

(0<pu<1) if and only if

%(l+z& )>p VzEA.

1)

The class of functions is denoted by %(u). Clearly %6(0)=% is the class of convezr univalent

functions as in Chapter 2(see Duren [1]).

Note that the above definition is irrespective of the normalization of f.
We have, from the results of Nehari and Gabriel, the following relations:
2.73~2c,<26(N, starlike)<26(N, univalence)=m2/2.
We would like to find a lower estimate for 26(N, convez) under the additional assumption when

a, is small. Needless to say we expect it to be less than 2¢;.

Theorem 3.4.1 Let f(z) = 24a,2>+ --- € N and suppose that |a2|=n<:1§.

Let sup |S(f,2)| = 26(n),
.. 2€4
where 6(n) satisfies

6n+ 5(1-+n) &(n) ezp(8(n)/2) < 2. (3.4.1)
2—6n—5(1+n) 8(n) ezp{6(n)/2}
Then Te flc(2—2"7,—(1+r7) 5To) a9 5(0) /) ) (342)

In particular if a,=0 then 0.6712 < 26(f€N, a,=0; f convez).

Remark 1 Note that (3.4.2) holds if (3.4.1) holds so that the quotient appearing in (3.4.2) is
positive.

Remark 2 Unlike Theorem 3.3.2, Theorem 3.4.1 is valid only for n<% and not for n<1.
Remark 3 J.G. Clunie has proved the special case of theorem when a,=0 and he has improved

the constant 0.6712 to 5/6=0.833--.. We shall look at this again in Chapter 4.
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We consider the example of Theorem 3.3.3 again in which we take

9(z)= 1_"62 = z4c2+EB2+ -, |e|=1.

But ¢ maps the unit disc onto a rotation of right hand half plane passing through —%?, and so

it is clearly a convex mapping with |a,|=1. However the hypotheses in the above theorem

require |a,| <%. Hence it is not sharp.

Proof of the Theorem Let us assume that f satisfies the hypotheses of the theorem. As in the
proof of Theorem 3.3.2 , we consider the differential equation (3.3.3) with A=%S(f,z)

' +isg) v =0
Using exactly the same argument as before we can write f as

G
=+

where u(z), v(z) are linearly independent solutions of the differential equation with the

normalization u(0)=0=1'(0)—1, v(0)—1=0=1/(0). It is easy to show that

') _ ;. c@+Y()
1+ T = T CETER (3.4.3)

'
We shall prove that §R(1 + z%)>0. In view of (3.4.3), it is sufficient to prove that
z
cu'(2)+7/(2)
cu(2)+v(2)

1
3¢

We note that n+%(1+n)6(n)ezp{6(n)/2} < 1 since 7 and é(n) satisfy (3.4.1). Let us recall that

u, v have the following forms

u(z) = =+ / C=2) A(Q) u(¢) d¢,  oz) = 1+ / (C—2) A(C) ) dC.
0 0

Hence z
e— | A©) () +(¢)) &
el (2)+9(3) _ {
cu(2)+v(2)

N

trert [ (¢=2) A (eulQ)+(0)) &
0
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Since |A| <6 by hypotheses we deduce from (3.3.9) (after applying Lemma 3.3.1), that

ot [ (¢=3) AQ) {euO+o(Q)} d<|
0

< |e| + / (r—1) |A(te'?)] (1+|c|)erp(%t2) dt
0 r
< n+(14n)6 ezp(6/2)/ (r—1) dt
0
< n+ (147n) 6 ezp(6/2)/2 < 1. (3.4.4)

The last inequality follows from hypothesis (3.4.1).

4

o~ [ 4©) (w0 +0)) d¢

Thus cu’(z)+v'(z)| _ 0 |
cu(z)+v(z) | z
Lrert [ (¢=2) AQ) (cu(O)+(0)) de
0
o= [ (¢=2) AQ) (caO+2(0)) & |
< 0

F3
1=lest [ (¢=9) Q) (cu(©)+4(0)) dc |
0

Y

< {n+(1+n) 6 exp(s/2)} { $° (r+am) 8 ezp(s/z)/z)"}

o= [ () [eu(@)+(O) dc'} {ﬁf}o xt [ (¢=2) A©) [+ )] dcr}
0 = 0

n=0
_ _ n+(+n) éezp(6/2) _ _2{n+(1+n) b ezp(6/2)}
- g (1+9) 62ezp(6/2) 2— 2n—(1+n) 6 ezp(6/2) ~

Because of (3.4.4), the above geometric progression converges. Moreover

2(17+(1+17) § exp(6 /2)) .
2— 2n—(14n) 6 ezp(6/2) <3

if and only if (3.4.1) holds, and so fis convex univalent. Now

£'OY _ afy 5, @+
%(1 s )= %(1 2 o) )
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51 2( 2[7)+(1+r]) ) ezp(6/2):| )
= 2— 2n—(14n) 6 exp(6/2)

2—6n—5(1+n) é exp(6/2)
2— 2n—(1+n) 6 exp(6/2) °

If we now put —a,=c=0 in the above argument, it follows from (3.4.1) that
58 ezp(6/2) < 2,
where § can be calculated. Numerical calculations give § < 0.3365. Hence |S(f,z)|<0.6712

implies that fis convex univalent. This completes the proof of the Theorem. O

We summarize the above relations

0.6712<26(N, convez)<2cy<26(N, starlike)<26(N, univalence)==2/2.

§ 3.5 An estimation on the Area and the Coefficients of f

We have seen, in the last section, that when the Schwarzian and the second coefficient
of fis small, then fis a a-strongly starlike function where o depends on a,. Brannan and
Kirwan [1] have shown that, if «<1, an a-strongly starlike function is necessarily a bounded
analytic function. They even showed that the boundary of f{A) is rectifiable and bounded by
2xM(a) Sec(aw/2) where M(a) ia a constant depending only on a. We shall give an upper
bound for the area of {A) by using the estimations in the last section. Then by using a theorem

of Clunie and Keogh, we also give an upper bound of the coefficients of f.

Theorem 3.5.1 Let f € N and |a,|=n<1. Let
sup |S(£,2)] = 26(n),
2€A

where 8(n) satisfies

2n+(1+n) 6(n) exp(6(n)/2) < 2. (3.5.1)

Then

e 2 ezp(5/6) 3
2_ rlanl? 5[ T 5 =) 6) ezp(é(n)/z)]' (3:5.2)

n=1

Remark It is well-known that if fis a bounded univalent function in A then the area of its
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image has the representation 7Y n|as|* (<00).
1

Proof Suppose that f€ N and satisfies the hypotheses of the theorem. Also let %, v be normalized

linearly independent solutions of the differential equation (3.3.3), as in the proof of theorem

3.3.2 . Then
W)
)= oy

By Green’s formula (see Duren [1] p. 15), the area of {A) can be written as

[ [ r wiy=tim - [ 7t &
A OA,

< lim maz 252 ()] 1£()
= lim mazr « u(z) L

T—1 |zj=r C"(Z)+v(z) (Cu(z)"' v(z)) Iz
= lim mazr «w __|"_(i)|__ y

r=10d=r  |cu(z)+v(2)|?

But |A(2)|<é(n) and (3.5.1) is satisfied, so by the same argument as in the last proof , we
.9} n

deduce |u(z)| < ezp(6/2) and |cu(z)+v(z)|* < 2(n+(1+n)6ezp(6/2)/2) .
0

So

3
[ [1t@r dsiy < = emior2) (ff(n+(1+n)aezp(6/2)/2) )
A 0

- 2 exp(6/6) °
T U \2-2n—(T+n)bezp(6/2) )

However

[ 1t iy = tim / /2 e iy
A 00

r

o0 [.9]

= 2x / |:1+ ¥ n2|an|2r2"'2:lrdr = wz n|an)?. O

2 2
0

We quote the following result:
oy

Theorem 3.5.2 (Clunie J. & Keogh F.G. [1]) Suppose fz)=z+) anz" is starlike in A and
2

maps A onto a domain of area Q. Then

ol < 21 \$ w22
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We see that |an| = O(%) when f{A) has a finite area and this result is also best possible. On the
other hand, if we fixed the area @ and consider all the starlike functions f maps A to @ then it
is not best possible in the sense that one can produce an example (in Clunie and Keogh [1])

which has infinitely many |an| > 1.

As a consequence we have

Theorem 3.5.3 We assume the same notations and hypotheses as in the Theorem 3.3.2. Then

3/2
5/2
lan| < 2 |: ezp(6/6) :| n>2.

n—1| 2=2p—(1+7n)bezp(6/2)

Remark We mention that the above estimate is not sharp when we put n=2, since |a,| is
assumed to be less then sin(aw /2).

Proof fis a a-strongly starlike function for some a <1, since it satisfies the hypotheses of the
Theorem 3.3.2. Hence it must be a bounded univalent function. Condition (3.3.1) implies
condition (3.5.1) with the same &(n). Therefore the hypotheses of Theorem 3.4.1 are also

satisfied. So from (3.5.2)

2 ezp(6/6) 3
2—-2n—(1+n)bexp(6/2) |~

Areaof fA)=Q< l:

Now apply Theorem 3.5.2 to complete the proof. a

§ 3.6 On the Second Coefficient of f

Theorem 3.4.1 was proved under the assumptions that |e,| is small and the Schwarzian
derivative is also small depending on |a,|. However, it is also clear from the above proofs that
|ay| does not necessarily depend on |S(f,2)] without further restriction on f. We show that this is
indeed the case and there is a strong relation with quasiconformal extension of f (if f has one) as
defined in Chapter 1. Let us recall from §2.3 the class S (00) that are those f€S such that f has
a K-quasiconformal extension to C, where its complex dilatation ps(z) satisfies |ps(z)| < & =

ﬁ;i and its extension f(00) = co. We discuss the problem of Schwarzian radius of convexity

of fin Sg(c0). That is we consider
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26(fe Sk (00); convez) = sup { 28 : |S(f,2)| < 28, f € Sg(00) = fA) is convez }.

Unlike the previous cases where 2§ depends on a,, this time K also depends on a,.

O

Theorem 3.6.1 Let f € Sy (o0) where Kzijs < 1.24 and suppose that

sup |S(f,z)| = 26(n) < 0.217,
2€A

then f is convez in A.

Proof The first part of the proof is identical to that of Theorem 3.4.1. We also use the same

notations as those in Theorem 3.4.1. But by our hypotheses
(1=|2*)? |S(h2) < IS(ha)l < 26, 6 <1 VzeA.

It follows from the Theorem 1.4.1 of Ahlfors and Weill, that f admits a %—quasiconformal

extension to C. But since f(co)=00, it follows from the Lemma 2.3.2 that |a,|=n < 26. It

[
follows that fis convex or %(1-{-2/7) > 0, if only if (3.4.1) is valid. However we now have
6n+ 5(1+7) 6(n) exp[&(n)/2] < 126+ 5(1426) 6(n) exp[&(n)/2:].

Hence we only need to solve the last inequality for 6 so that the last expression is less than 2.
Numerical calculations show that this is true if 26 < 0.217. So fis convex univalent in A. This

completes the proof of the theorem. O

§ 3.7 On the applications of the Second Coefficient of f.

It is well known that the image of A under any function in the class of S always
contains a disc of radius p centred at the origin, here p is an absolute constant. This remarkable
fact was first discovered by Koebe and later proved by Bieberbach. He found that the constant p
is at least equal to 1/4, the bound is attained only by the Koebe function K(z)= z/(1—z)? and
its rotation and so it is sharp. The original proof made use of a well known result on the second
coefficient of f, that is |a;| < 2 for all f€S. We shall use the same method to obtain a special

version of Koebe-1/4 theorem when the Schwarzian derivative is small.
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Theorem 3.7.1 (a) Suppose that feN and |S(f,z)| < 26, 6<1 VzeA. Let k = % cos’1§ so that

KE (0,%]. Then the image f{A) of the unit disc contains a disc of radius

1
4(1—2x(6)%)’

centred at the origin.

(b) Let f € Sg(o0) and |S(f,2)| < 26, <1 Vz€A. Then fA) contains a disc of radius at least
1
2(1+6—-2x(6)%)°

centred at the origin.

Proof (a) Suppose fsatisfies hypotheses (a) and that there exists a complex number w so that

R2)#w VzeA.
Let 9(2) = ww—f(j?z) =z+ (a2+1-1—”) 24 (3.7.1)

Notice that g€ N again and S(g,z) = S(f,2). So

(1=1418(g,2)] = (1=|2*PIS(£2)| <IS(fi2)l < 26, 6 <1 VzeA.

It follows from Theorem 1.4.1 again that both g(z) and f{2) have i%?-quasiconformal extensions

to C\A. Since g€ Sy, we obtain from Lemma 2.4.2 that

a2+% l < 2—4k2,
So I%IS 2—4k2+ |y < 2(2—4k7).
Hence |w| > S S—

= 4(1-2x?)

(b) If feSg(co) then g€Sy where g is defined in (3.7.1). By a similar argument and using the

fact that |a,| < 26 we deduce from Lemma 2.3.2 that

a+1 | < 2—4x2,
|,l,,|5 2—4k2+ |ay| < 2—4Kk2+26
1
w > —1 O
| 2[1+6—2«7]

Remark 1 Since we used only the fact that f admits a K-qc extension, we may weaken our
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assumption to (1—]z|)?|S(f,2)| <26.

; this implies f{A) contains a

DOl

Remark 2 In the case (a), suppose K— 1 as § — 0, then £k —

disc of radius 1/2. This coincides with the class

S ={f:fa) = 725 ld <1},

l1—cz

the normalized class which has 1-quasiconformal extension (analytic continuation) to C. On the
other hand, let K — oo as § — 1, then kK — 0 and f contains a disc of radius 1/4. But Sy is
dense in S in the topology of locally uniform convergence as K — oo (see Schober [1] p.148), so
this yields the classical Koebe constant. Therefore we see that (a) is sharp in the limiting cases.
However in the case when a,=0 we obtain from Theorem 3.4.1 that |S(f,2z)] < 0.6 implies fis
convex and hence f contains a disc of radius equal to 1/2 already.

Remark 3 In the case (b) K — 1 as § — 0. This implies that the radius tends to 1. The only
function in Sy (oco) whose image contains the whole unit disc is fz) = z. Also IS’%J«)oSK(oo) is
dense in S in the topology of locally uniform convergence, since f{kz)/k€Sg(o0). This time the
radius approaches 1/4 as K — oo which is again what we expect.

Remark 4 We note that Schiffer and Schober also obtained another version of Koebe-1/4
theorem in (Schiffer and Schober [1]). They proved, by using the method of calculus of

variations, that if f€ Sy, then

1
feﬂSKj(A) = { w: |w < 211— ezp (/ (z—"/z— 25/2) —1%’?—) },

0

where « is defined in Lemma 3.6.1. This also gives the same limits for the radii of discs as K —
oo and K — 1 as in Remark 2. We have a stronger hypothesis than that of Schiffer and Schober

but our proof is perhaps more straightforward.

§ 3.8 Estimations on the lower bounds of the é's.

We shall consider two examples which have same constant Schwarzians. So we can
investigate how small the Schwarzian we require in order that the function be starlike or convex.
We recall that two functions have a same Schwarzian derivative if and only if they differ by an

arbitrary Mobius transformation T. If, however, we restrict ourselves to the class S, then one
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fixed the transformation T which takes f€S into S again. In this case, T(z)= T -~ s with |k| <4.

Since (Tof)(z)€S, we have 1—kf # 0 ie. f # 1/k, therefore |1/k| > 1/4 by Koebe’s-1/4

n
theorem. If we impose a further condition on T and fso that f/(0) = 0 and (Tof) (0)=0, then

T must be the identity mapping. This can be easily verified.

Firstly, we observe that the normalized function

_ ezp(i2482)—1
B=="55

has Schwarzian S(f,z) = 26. By Theorem 3.2.1, feSif S(fz) = 26 < 72/2 ~ 4.9. It is well-
known that any function in § is starlike in the smaller disc of radius |2| <tank (7 /4) and convex
in |2|< 2—43. Both constants are best possible (see Duren [1] p.95). In view of the above

remark, it is easy to see that f must be starlike when
2
1S9 < {ﬁ‘l’ﬂ;ﬂ ~ 0.215. (3.8.1)

For we can choose 6 sufficiently small so that |i2Y6z] < |248] < [tanh (1/4)]2/ 2, then

according to the radius of starlikeness, the function ezp(w) — 1 with w = 246iz must be
starlike. Since E%%:—l remains starlike, hence it is sufficient to assume (3.8.1) for f to be
)

starlike in A. This is of course is weaker than Corollary 3.2.3. Similarly we also have

2
IS(f2)] < w ~ 0.036

implies that fis convex.
Our second example is 9(2) = w[_%— tan ({62).
This is in fact obtained under a Mé6bius transformation from the above f and hence S(g,2) = 26.

Notice that ¢''(0)=0. Unlike f, we show that the bounds for Schwarzian derivatives when ¢

becomes starlike or convex are much larger.

It is easy to obtain

L90G) _ {82
9(2)  sin(62) cos({62)

_ 2\|T$z
- sin(2\lT$z) .
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'
L0

o2)/ =
the smallest disc |w| < rsuch that ?R(W) is non-negative, 246z = w = £+ip.

We require to show that ?R( ) > 0 VzeA when § is small. This is equivalent to finding

Let h(ew) = R(42) = gﬁ(sin ¢ cos i/é -:iucosf sin g,,)

__ € sin & cosh p — p cos € sinh p
&+ p '

Let F(&,p) = € sin & cosh p — p cos € sinh p.

We apply the method of the Lagrange multiplier to F(€,u) subject to €2 + u?= r? for some r.

At these point F(&,u) must be extremal. Now let

$(&n) = F(&p) + A& + p°— 1),

We need to solve ¢€= 0, =10, 4,= 0.
¢e = cosh p (€ cos & + sin §) — p sin € sinh p + 20§ = 0,
éu = € sin € sinh p + cos £ (p cosh p + sinh u) + 2;\;1 =0,
¢ =& +pl—r =0
Multiply the first equation by u and the second equation by £, and equate them, then
(€2 +p?) sin € sinh p =— € cos £ (u cosh p + sinh p)+ p cosh p (€ cos & + sin £)

=— & cos & sinh p)+ p cosh p sin §

. 2, ,2_ _ B &
i.e. &+ 1= T TnE (3.8.2)
Hence
h(&,p) = 62_}_#2 (f sin € cosh p 4+ p cos € sinh p)
1 ., sinh p(€24p®) sin € + € cos € .
= m({ sin § m i € + pocos € sinh p

= £2+#2( sin’iz p((§2+[l2) Esin € + €2 cos & + p? cos E))

= 52.}.#2 w (€2 +p?) (€ sin € + cos €)

sin

= ,fu(f sin € + cos ).
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As smz £ is an even function and so always positive, we have that h(€,u) < 0 if and only if

Esin€ + £ < 0. This is equivalent to finding the first positive root of the equation

§tan § = —1.
Substitute back into (3.8.2), we have
2, 2__ _B & _ p 2
£+”—tanhp (_l)—tanhp+€’
3
i.e. to solve u tanh 4 = 1. Here the problem reduces to solve the following transcendental
equations §tan &€ =—1,
ptanh p = 1.
Numerical calculation gives 279 < £ < 2.8,
1199 < p < 1.2
So 3.037 < (£2+4%)'/*< 3.046. (3.8.3)

So St(s—i';‘b—'”) will first become negative when w lies in the annula defined by (3.8.3). Hence if we

require é such that 1246 2] = |uw| < 3.037
ie. 1246 < 3.037
ie. § < 2.3,

then g is a starlike function if 26 < 4.6. It is also clear that g is not starlike if 26 > 4.64.

"
We can similarly consider the convexity case. We show that R(l+z’q—) > 0 when the

J

Schwarzian is small. Now we consider, as before that

/"

14 = 14 245, sinlez
g

cosNbz

=1+ 2‘]—6z tan«J_&z.

Again let w=16z It is sufficient to find the smallest r such that R(w tan w) >—-%. It is easy to

obtain
€ tan € (1—tanh®p) — u tank p (1+tan’¢)
14+ tan?¢ tanh®p

R(w tan w) =

Unlike the starlike case, it is much more difficult to work out precisely the first r such that
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R(wtan w) = —%. Elementary calculations show that, if we set £ = 0,
R(wilen w) = —p tanh p = ~—%.
i.e. we solve pu tanh y = % The approximate solution is 0.7715 < p < 0.773. Hence if u >

0.7715, R(w tan w) could be less than —% . l.e. if 6§ > 0.5952, g need not be convex univalent.

Summarizing the above analyses, we deduce

ezp(2i‘]—62)—1

Proposition 3.8.1 Let (z) = ———=— and ¢(2) = L tanyd2.
Proposition 3.8.1 Let f{2) 210 e G 6
0) If IS(f2)] = 26 < § tank®T , V2€A then f € S*,

IFIS()] = 26 < J2—{3]' , VzeA thenfe %.
€D If |5(g,2)| = 26 < 4.6 , VzEA then f € S*,
where 6 = (:c2+g/2)1/2 and z, y are the first positive roots of the transcendental equations
24_61: tan(2ﬂ$z) = —1, 2\[753/ tanh(2«|_5y) = 1.

And finally if for some zy€ A such that |S(g,25)| > 1.2, then g need not be conver univalent.
Although the above calculations are not sharp, it shows that the Schwarzian radii of

starlikeness when a,=0 must be less than 4.6, and that of convexity must be less than 1.2. We

shall also see in next chapter that if the coefficients of f, ay=a3= --- =a,=0, then larger

Schwarzian radii are obtained, increasing as a function of n.
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Chapter Four

Further Schwarzian Derivatives and Related Results

§ 4.1 Introduction

The first three sections of this chapter should be considered as a continuation of the last
chapter. There were initiated by private communications with Professor J.G. Clunie and
Professor T. Sheil-Small. Each of them has given his own proof for the lower bounds of
Schwarzian radius of convex functions, under additional assumption on f. We then find that if
the growth of the Schwarzian derivative is slower than that of 1+zf! / f , when the second
coefficient is equal to zero, then fis also a convex function. In § 4, we apply the Clunie-Jack
principle to give some alternative proofs of some results, concerning convexity, obtained by S.S.
Miller and P.T. Mocanu [1]. In some cases, new criteria about convexity, involving the
Schwarzian are also obtained. We shall look at another similar problem involving the
logarithmic derivative and the logarithmic radii for univalence and starlikeness criteria. In § 6, 7
and 8 we consider a subclass of strongly gamma starlike functions that has qc extension. We

mention that the main theme of this chapter is the applications of the Clunie-Jack principle.

In Chapter 3 we have already defined the class N, however we shall adopt a more
general definition for it as follows: N(n) consists of the normalized analytic functions defined in
the unit disc A and have the expression

) = 2+ § o a>2. (4.1.1)
k=n
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Each of the Clunie’s and Sheil-Small’s proof was originally given under the hypotheses that
n=3 and if 5(f,z) is small then fis a convex function. However it is not difficult to extend their
proofs to consider such f for any integer n>3, and to conclude that fis convex univalent of order
p e f € %(p). Their methods do not appear to extend to the case when a, in (4.4.1) is small
as in Chapter 3. On the other hand the differential equation method of Theorem 3.4.1 fails to
consider the case when n>4. Also Clunie’s proof gives a better result than the other two

methods, when n=3.

§ 4.2 Clunie’s Method

Let us define the maximum modulus of fto be
M(r) = maz |f2)|,
|z]=r
where fin (4.1.1) is an analytic function defined in A. We require some lemmas. The first is an
old result dating back to the beginning of this century.
Lemma 4.2.1 (Blumenthal see Hayman [1]) M(r) is itself an analytic function of r, ezcept at an
isolated number of points < ro< -+, and M(r) is represented by distinct analytic funtions in

the intervals [ry,rp), [ra,r3), [rasra), -
Lemma 4.2.2 Let f be analytic and M'(r) = |mla:c 17l
zl=r

then M(r) < / M (1) dt. (4.2.1)
0

Proof Let f be defined in (4.1.1), hence M(0)= 0. By Lemma 4.2.1, M(r) is continuous apart
from countably many points in (0,r). It is also clear that by the maximum principle M(r) must

be a monotonic increasing function in [0,7], hence the integral in (4.2.1) must exist. Now

M(r) = M(r) = M(0) = maz | f) = £0) | = maz

,
/f'(te”)e“ dt‘
T r 0

0 16
Sﬂ‘lfl__f_[ | £ (1) dts{ Og},gg,lf(ie )| dt

= /rM’(t) dt. 0
0
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Although we are all familiar with Schwarz’s lemma, we need the following extended

version of it; since its proof is just an easy exercise, we shall omit its proof.

Lemma 4.2.3 (Schwarz’s lemma)

Let 9(2) = b2+ bu2"'4 .o
be an analytic function defined in A. Then when 0 < p < 1,
pn
M(p,9) < %5 M(r.9).
Theorem 4.2.4 (J.G. Clunie [2]) Let f be as defined in (4.1.1) with n > 3. If

|5(59)| < Lol Thi) (4.2.2)

where 0 < p < 1, then f € %(pu).

L
Proof We require to proof that 82(1+ /) > p. Let

p(z) = /') _ n(n=1) a2+ (n+1)n o, 2™+ -
(2 1+ napz2® !4 (n41) 0, 2"+ -

= n(n—1) a,z"% + .-

n-2

— M(ry,0), r<n <1, (4.2.3)

This implies le(2)] < L
n

by Lemma 4.2.3. Then by the assumption we have

(-1 = 150 < UL ERTHE) g ep,

So, we have

1— 4n—T+
' @l-dle) < L= ETH yoep,
It follows that for |z] = r,

Mirg) — IMirp)? < L UZTHE)

Integrate from 0 to r; on both sides,

n

n
[ Mgy }f moer as A= UnTrn)
0 0

We apply (4.2.3) and Schwarz’s lemma 4.2.3 to obtain

!
M(ry,0)? 2(n-2 1- 4n—-T+
M(rl,()o) _ 31(‘1;% i (ﬂ ) d‘t < ( ”)4(11_6 ;‘)

0

r.
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2 — —
That is M(ry,p) — M(ry,p)°my < (1—p) (4n—T+p) (4.2.4)

4n—6 in—6 -
Now consider the continuous function F(t) = t—-L so that F/(1) =1— fry
2(2n-3)° 2n—3 °

We see that F is an increasing function of ¢ as long as ir,< 2n—3, for n > 3. Suppose

M(ry,0)*r 1—p)?r 1-— 4n—T+ . .
M(ry,p)>1—p then M(rl,go)—%i):*—)lZ(l—p)— (2(2;23)1 > ( ")4(11—6 K) . This is a
!
contradiction. Hence M(ry,p) < 1—pu and since r, is arbitrary so 32(1+z%) > p. This

completes the proof of the Theorem. a

Remark When n tends to infinity, the condition |S(f,z)] < € < 1 is sufficient to guarantee f to

be convex univalent.

§ 4.3 Sheil-Small’s Method

Let us first state the result.

Theorem 4.3.1 (T. Sheil-Small [1]) Let f be as defined in (4.1.1) with n > 3. Suppose that

s < U=BO=220) g <<y, (43.)

then f € %(p).

The original proof given by Sheil-Small was a special case of the above theorem when
n=3 and p=0. The method of proof make use of a maximum principle known as Clunie-Jack
principle (see Jack I.S. [1]). Similar methods involving Clunie-Jack principle have been used
successfully by other mathematicians to solve wide variety of problems, among others, see J.G.

Clunie [1], S.S Miller [1], S.S. Miller and P.T. Mocanu [1].

Lemma 4.3.2 (Clunie-Jack principle)
Let W(2) = bm2™+ by 2" o, m>1
be an analytic function defined in a unit disc A. Suppose w atlains its mazimum value at zy, i.e.

i9
|w(z,)] =gz lw(2)|, zo= roe °, then zy w'(z5)/w(zy) is real and
2 <rg
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We note that part of the Clunie-Jack principle was also obtained by W.K. Hayman [1).

Instead of proving that (4.3.1) implies f€%(u), it is more convenient to consider the following

equivalent statement: the inequality

(1-B) 2n—5—p)
8 ’

15(£,2)] < (4.3.2)

implies that f € %[%(1+ﬂ)]. Here p =1 (8+1), -1 < < 1.

Proof of the Theorem: Let us consider the Mébius transformation

1-p8 2
1—2

¢ =
which maps the unit disc onto the half plane R({) > % (8 + 1). We shall only consider the case

when -1 < g < 1.

Let [2) =24 ap2® + ay 2"+ -« 2 >3
satisfy the hypotheses. We now defined w(z) to be an analytic function defined in A, w(0)=0
such that

1) _ 1= 8uwz)
1+zj’(z)_ l—w(z) .

(4.3.3)

In view of the above remark, it is equivalent to assume f satisfies (4.3.2) and so we wish to show

f'(2) 1—fz
fo) T-=

subordination. There are two possibilities: either |w(z)] < 1 for all z € A, or there exists a

1+%

. Hence it is sufficient to prove |uw(z)] < 1 for all z € A in (4.3.3) by

zo=r0ew°e A such that |w(z)] < 1 for all |z] < 1y, but |w(z)|=1. If it is the first case the
theorem is proved by subordination (see Chapter 2). Hence we assume from now on the second

case and get a contradiction. Now

/' _ w(z)
7 =0 - A7 (4.3.4)

and

z ' _ n(n=1) an™' + n(n41) gy 2"+ -
7(2) 1+ ne "+ (n+1)a,,, "+ -

=n(n—1)a2" + ...

Since w(0)=0 we may suppose

W(2) = b 2™+ by 2™ m> 1.
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Then
(1 - 8) 5 “’(j}(z) = (1= ) (wls) + o+ o2 + )

=(1-8) ( bn2™+ by ™ o )

Now compare the series expansions on both sides of (4.3.4). We deduce that m = n — 1. Also

(L(z))’ = - ﬂ)( 2w'(2) — w(z) + w(2)’ ) , (I"(z))’= (1 — 8)* w(z)’

76 271 — u(2)) 7)) = A - w)y
ey e
6= (53 - (f( I
RSt e———y
Since |w(z)] < 1 for |2| < rp, there exists a 2y, |z| = ro such that w attains its maximum at

!
zo and |w(z)| = 1, w(zy) # 1. For if w(z) = 1 then 142 L is not an analytic function and

!
hence f will have a zero, this contradicts the fact that the S(f,2) is uniformly bounded in A. It

follows from the above analyses and the Clunie-Jack principle that zyu(z)= tw(z,), where

t>n—1. We consider S(f,2) at z,.
- 2
1S, 20)| = (1_g)‘ 2u(z) (1—1) + (1+8) w(zo)

223 (1- w(z0)2

2(t-1) — (1+8) lulz)]) lu(z)l )

2 (l_ﬂ)( 22 (1+1)?

S (l—ﬂ) (2(t—1) ’; (1+ﬂ) )

2n41ﬁ 2n—5ﬂ

> (1-0) = (1-p)

This contradicts (4.3.2) and shows the second case cannot happen. This completes the proof of

the theorem. n]

Let us compare Theorems 4.3.1 and 4.2.4 . We set g = 0 in both cases. When n = 3, a
better bound for the Schwarzian radius 5/6 is obtained by Clunie’s method. However when n >
4, the criterion (4.2.2) is always bounded by 1 as we have already remarked. However, the

criterion (4.3.1) not only gives a better estimate on the Schwarzian radii, when n > 4, it shows
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that the Schwarzian radii are unbounded as n approaches infinity. Hence when n > 7, if

(=1 18G9 < 1S69) < T52 = 2.5

from (4.3.1) and Theorem 4.3.1 shows that f not only univalent, but also convex, a much
stronger conclusion. However, the Nehari criterion (Theorem 3.1.1) fails to show that f is

univalent. Hence our result complements that of Nehari.

Unlike the differential equation method used in the last chapter, the above methods do
not seem to apply to the starlike case nor when a,7#0. But the advantage of the Clunie-Jack

principle is that it could be used to consider different n > 3.
2
The result of Nehari shows that |S(f,z)] < % is sufficient for fto be univalent and that
2
"—2— is sharp. The above discussions suggest the following problem: What is the sharp bound
25(n) for |S(f,2)|, depending on =, so that if f has the form (4.1.1) for each n > 2 then |S(f,z)| <
26(n) = fis univalent ?

i.e. 26(fe N(n),n>3; univalent) ?

In what follows, we shall use the Clunie-Jack principle to prove various results of this
type, including some known ones. Among others, we first show that if the growth of S(f,z) is

’
slower than that of 1+z% where n > 3, then fis again convex univalent.

Theorem 4.3.3 Let f be as defined in (4.1.1) and f# 0 with n > 3. Suppose
£
| 28(f2) | < (n—2)‘1 + 7 | Vz€ A, (4.3.5)
then f €%.

roo € f’(Z) = 1+’U)(Z) = F4
Proof Let 1+ T = Tow) = h(2) (4.3.6)

as before, where w(z) is analytic in A. We require to prove R(h)>0 for all z € A. Thus it is
sufficient to show |u(z)|<1, V z€A. Suppose this is not true as in the proof of the last theorem,
then there exists a ry<1 such that |w(z)| < 1 when |z]< ry< 1 and u(z) attains its maximum

at zg, |29] = rp with |w(z)| = 1 and w(z,) # 1.
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Now 28(f,2) = 2b'(2) — (h(2) — 1) — % (h(2) — 1)2

= 2M(z) + 1 (1 - W(2)?). (4.3.7)
2S(£,2) M), (- K2
So S = we t o
_ ( 1 + w(2) ) 220/ (2) +1 ( 1—2w(z)+w(z)2-1—2w(z)—w(z)2)
T—w(z) /\1 = w(2)? " 2 (1 — w(2))?
220/ (2) 2w(z)

T w2 1-wz)?

Consider z%S(f,z) / h(z) at zy. By the Clunie-Jack principle, we have

2 S(f,2) 1 2 tw(zg) — 2w(z) where n —
o | |1 wretzn =
2t —1)
- |1 - w(zo)2|
2 (t — 1)
> n 2" R

The reason that ¢ > n — 1 follows by comparing the series expansions from (4.3.6) as in the

last proof. This contradiction completes the proof of the theorem. a

§ 4.4 On some theorems of S.5. Miller and P.T. Mocanu

In 1978 S.S. Miller and P.T. Mocanu [1] developed some general differential inequalities
which could be applied to different areas of function theory and differential equations. One of
their basic tools is again the Clunie-Jack principle and subordination. Their methods served well
to ‘construct’ some criteria for convexity (and starlikeness), but not for others like Theorem
4.3.3 proved in this chapter. We find that some of their results can be proved by applying the
Clunie-Jack principle, directly, without going through their reasoning. In fact we also generalize

some of their results and a result that does not appear to be obtained by their methods.

Let us first state their result.
Theorem 4.4.1 (Miller S.S. & Mocanu P.T. [1]) Let v = uy+ iv, , v = v, + iv, , and let
p(u,v) be a complez valued function satisfying:

(%) p(u,v) is continuous in a domain D C C?,
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() (1,0) € D and R p(1,0) > 0,
(i) R p(iug,v;) < 0 when v; < 0.

!
Let f satisfy (4.1.1) with f # 0 and suppose that (1 + zL , 25(f,2) ) € D when z€A.
!

I ?R(p(1+z€;,z25(f,z)))>0then&l(1+2§)>0.
The following functions defined in C? satisfy (i), (ii), and (iii) above as suggested in
Miller S.S. & Mocanu P.T. [1],
pr(wy) = &+ v,
pa(u,v) = v + av, Ra >0,
pa(u,v) = u e’

They imply the following criteria

R ( (1+ zﬂ)2+ z2S(f,z)) >0 = ® (1+ zﬂ) >0

! !
§R(1+z§;+az2$(f,z))>0,§ﬁa20 = se(l+ 4)>0
and R ((1+ 4) e:cp(zZS(f,z))) >0 => ® (1+ 4) >0.

We shall now give alternative proofs to these criteria and they also shed new light into

the theorem. We shall discuss this point later in this section.
Theorem 4.4.2 Let f be as defined in (4.1.1) f# 0, then

(a) at((1+ zﬂ)2+ z2S(f,z)) >0 = R (1+ zL’) >0,VzeA

! !

(4) 82(1+z§;+a225(f,z))>0, Ra >0 = se(1+z§)>o,VzeA

(¢) 8‘(1+z§+az28(f,z))>0, Sa>landn>3 = §R(1+Z§)>0,VZGA
1 ]

(d) ?R((l+ z%) ezp(zzS(f,z))) >0 = ® (1+ z%) >0V z€A.

Remark The part (c) of above theorem does not appear to be proved directly by the methods of

Miller and Mocanu.
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Proof = We shall prove (ii) and (iii) first as it is similar to Theorem 4.3.1. Define w to be an

analytic function in A such that

!
»’;((’)) :+:((3 h(2), (4.4.1)

with w(z) = bp2z™+ b, 2™+ -

Under the hypotheses (ii) and (iii) we require to show R (1+ o7 ) > 0, i.e. that
|w]<1 ¥V z € A. We suppose this is not true. Then there exists a ry, 0<ry<1 so that |uw| < 1
for |2] <ry such that |uw(z)] = 1 with z,= roewo where w is maximized. We can write w(z;) in

the following form w(zy) = cos 03+ sin 0. It is easy to verify the following:

w(zg) _ -1 1+ w(z) — sin 0,
(1 = w(z))* 2(1 — cos 0y) 1 — w(z) 1 — cosf, ’

(4.4.2 a)

_ cos O,

1
2(cos 6y — 1) ' x ( (1 — w(z))? ) ~ 2(cos 8, —

® ( w(zg) )2= cos 8,

= u(e) Iy (442 1)

From (4.3.7) we have
28(ha) = () + § (1 - K@)
We also write @ = a,+iay, where a; > 0 in (ii) and a, > 1 when we consider case (iii). At z,,
we apply the Clunie-Jack principle and (4.4.2). We obtain
(1+ zo’}(( WY o S(a) = M) + o 20b(20) + 5 (1 = M)
Z0)

2a (zg w’(zo) = w(z))
(1 = w(z))?

_ Ll ulx) | 2a(t = Dulx)
T=w() * (1= o)

_ 1+ w(z)

=T u(z) T

_ sin 0, _ -1

=t T " cos 0, +2(t - 1) 2(1 — cos 8,)
(-1 . sin Op— ay(t — 1)

~ 1 — cos b, t 1 — cos 8,

If we assume the hypothesis (ii) then

2 ((1 N zoj{l( 0)) + QZOZS(f,zo)) — —al(t _ 1) <0

(2) 1—cosb, -

since @y > 0 and ¢ > m = 1. If we now assume the hypothesis (iii) we have

( 1 — coséb, =
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since @, > 1 and ¢t > m = 2 or equivalently n > 3. This follows easily from comparing the
power series expansions of (4.4.1). Hence in both cases we obtained contradictions. This proves

(b) and (c).

Suppose f satisfies (a). We have
W22+ 2S(5) = () + 3 (1 + b(2)?)
where h is defined by (4.1.1). At z,, we apply the Clunie-Jack principle as above to obtain
o) + 1 (14 )ty = 2200 0) g2+ 2 ula))
2 (1= wz)? 2 (1 = ulz))’

_ 2 tw(zp) + 1 + w(z)? .
(1= u(z))® (1 = w(z))?

From (4.2.2) we have

j"(z N2 _ 2 cos 0

—(t + cos 0y)

1 —cos 0, <0 sincet>1 > cosb,.

We sketch the proof of (d). From (4.4.1), w attains its maximum at 2z, and we have

from

(1+ Zoff((fj))) eap(25(520)) = Mzo) exp (20 (20) + § (1 = Wz))?)

_ 2 2o/ () 2 w(zo)
- o (R, rte)

1 + w(z) ezp( 2(t — 1) w(zo) ),

T — u(z) (T — w(zm))?
by the Clunie-Jack principle. But
a :‘-)(z)()zo))z = a0 _—308 ) is real and 11 -'_- "';((ZZ(;)) =i iincgg 7 is imaginary from
(4.4.2).
Hence

I, . sin —u -
§R((” z°/((z:))) “”(’025“2“))) = (it o (T agy) = 0

contradiction. This completes the proof of the theorem. a
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Remark The last part of the the proof of the above theorem (i.e. (d)) seems to suggest that
/
either £ (1+4j7) ezp(zzS(f,z)) > 0 or < 0 is sufficient for f to become convex. However the

second case when < 0 is meaningless when z = 0.

It is also true that many other functions which satisfy the hypotheses of Theorem 4.4.1
can be considered by means of the Clunie-Jack principle. We show that even Theorem 4.4.1 can

be proved by the same method directly.

!
Let p(u,v) satisfies (i) (ii) (iii) of Theorem 4.4.1 and let 1+z% =1ltw ,
where w is defined as before. We suppose w attains its maximum at z, = rye %0 and |w] < 1 for

|z]<ry. At 2z, and from (4.4.2) we have

'(zo) - sin 8,

—(t—-1
1+z°jf(zo) T "1 —cos b, ( )

» 2 S(fiz) = T—cos by

sin 0, —(t—-1)
1 — cosfy’l — cos 8,

Now by the hypothesis p(i ) <0 with

sin 0, _—=(t-=1)

Uy = —m20 | oy = ———
27 1T —cosfy' Mt 71— cosb,

Since ¢t > 1, we have —(t — 1) < 0; hence v; < 0. This contradicts the fact that p(u,v) > 0 V

z € A, and completes the proof.

We see that the condition p(iuy,v,) < 0 when w; < 0 is precisely where the
contradiction occurs when we apply the Clunie-Jack principle. Theorem 4.4.1 actually chara-
cterises those functions in C® which yield a contradiction to the hypotheses when the Clunie-
Jack principle is applied. This also explains why the method works so well when proving some
special cases. Before we go on to discuss the logarithmic derivative in the next section, we state

two more results; their proofs have now become a matter of triviality.

Theorem 4.4.3 Let f be as defined in (4.1.1), f# 0 and n > 3. If
éR(z’S(f,z)) >0 VzeA,
!
then ?R(l + 2’%) > 0.

Proof We simply consider (4.3.7) again. 8]

There are also some criteria for starlikeness.
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Theorem 4.4.4 Let f be as defined in (4.1.1), f# 0. If f satisfies either of the following
(a) %(l+zl%,—z§)>0 or%(1+2f];)>%(4)Vz€A,n22
or

(%) §R|:2£(l+z£—zl)}2—(n—l) VzeAn>?2

then %(4) > 0.

We shall omit the proofs.

§ 4.5 Applications to the Logarithmic Derivative

Let feN with j’;éO in A. Recall the logarithmic derivative is defined in § 1.11 as
T(f,2)=f"(2)/f(2). 1t is invariant with respect to translations. We have seen in Chapter 1 that
T(f,7) and S(f,z) have many similar properties. For example, both (1—|z|?)|T(f,z)] < 1 and
(1—12/%)%|S8(f,2)| < 2, proved by Becker and Nehari, lead to sharp univalence criteria. Theorem
3.2.1 showed that |S(f,2)| < "72 is also a sharp criterion for univalence. It is therefore natural to
ask for the sharp bound ¢ > 0, so that |7{f,z)] < ¢ implies f to be univalent. We seek

o(feN; univalent)=sup{ : | T(f,2)| <& = [ is univalent},
the logarithmic radius of univalence of N. Several papers have been devoted to this problem. The

best result was proved by S.N. Kudryashov [1]; see also Avkhadiev and Aksent’ev [1] p.35 :

Theorem 4.5.1 Let f € N be defined by (4.1.1) and suppose that

|T(fiz)] <o V z€ A,

where o is the root of the equation 8 .l;z —2)% 34 — 2)? =12, o~ 3.05 --.. Then fis

univalent in |2| < 1.

This shows that 3.05<co(feN; univalent). Consider the function flz) = ezp(oz), then
T(f,z) = o. Hence fis univalent if and only if ¢ < =, for ¢ > =, fis not univalent. The sharp
bound appears to be 7 but the problem of finding the best bound remains open. Now if the

Schwarzian is small then fis convex as shown in Chapter 2. We can therefore ask a similar
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question, that is to find

o(feN; starlike)=sup{5 : |T(f,2)| <& => f is starlike}, (4.5.1)

and similarly to define it as the logarithmic radius of the class S*. Besides, we find that we can
not solve this problem by the differential equation method, since we do not have the analogue of
Lemma 2.5.3 for the logarithmic derivative. But the Clunie-Jack principle works again, and it

enables us to find an lower bound of o(feN, n>3; starlike) in (4.5.1).

Theorem 4.5.2 Let f be as defined in (4.1.1) with n > 2. If

1T(fiz)] < n—1 V z€ A,
then f is starlike.

!
Remark When n = 2 the theorem becomes trivial, for |7(f,2)] < 1 implies 92(1+§)>0 and

so f must be starlike.

Proof  Let f satisfy the hypotheses. Define w(z) = bnz™+ --- to be analytic in A,

such that

fz) _ 1+ w32
Fo = T (4.5.2)

We require to show %(z;) > 0, and this is true if and only if R(Lf) > 0. Hence it is sufficient
z
to prove |w] < 1 for |z|] < 1 as before. Suppose this is not true. Then there exists a z; such

that |w] < 1 when |z| < |zy] = ry and |uw(z)| = 1.

Multiply z on both sides and then differentiate (4.5.2), we obtain :

N 24/
S S A B (g
(o]

! !
fofl-dar - )

=%(%:$)(l_%i$_(12_zw;)2)
—wY¥=(1 - w — 2

= 1 ({5 (=t =)

=l2(w2—w—zw’)

z 1 —
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At 2z, ,where w attains its maximum, we can apply the Clunie-Jack principle that zow' (20)
=tu(z,) and t > n — 1. This follows by comparing the coefficients on both sides of (4.5.2).
Hence

1(z0)
f(zo)

2 v¥(%) = wl(z) — t w(z)
% 1 — w(z)’

>21t4+1~u(z) [ 2t+1-12n—1

This contradiction completes the proof. o

We shall consider functions defined in |[¢} > 1, and apply the Clunie-Jack principle to

solve an analogue of the above theorem. However the result is not so satisfactory in this case.

b
Let o) =¢ + % + C',‘,‘;ll + - w20, [¢]>1 (4.5.3)

!
The function is starlike if and only if (gﬁ2 > 0, ¢ € A¥; see for example Pommerenke [1
9(<)

p.47). We have the following result:

Theorem 4.5.3 Let g be as defined in (4.5.3) with n > 4. If

/!
<9T(—(<<))|<n-3 Vze A,

then g is starlike.

Proof The proof will be sketchy as it is similar to that of above theorem. Let g satisfy the

hypotheses. Then

n+1)b
J)=1- Cn"b:‘ - C")*;H - a0, ¢ >1. (4.5.3)
_ nbn _ (n+1)bn+1 _
! n+l n+2
Hence Cg(_8= ¢ ; (l:) =1- ?"11_ bzzl_.
g 1+C"ﬂ_1+<zt;+.. C
=1 — b= byt — o
where we have made the substitution { = % Now consider
9(¢) _ 1+ wz) 14 w1/¢) (45.4)

@) T—uwz) ~ 1T-wl1/C)’
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where w(2) = gm2"+ qm+lzm+1+ v+, m > 0. By comparing the coefficients on both sides we

deduce m = n — 1 again.

We use the same argument as before and by subordination it is sufficient to prove that
|w(z)] < 1for ¥ z € A. Suppose this is not true then there exists a (; € A* so that at the

corresponding 1/(o= 2= roewoe A. We have |uw(z)] < 1for |7] < 1.

We now differentiate (4.5.4) with respect to ¢ to obtain:

g"(()_ % ( 1 — w(z) )(1 1+ uw(s) 220/ (2) )

Honce at 2 J¢) V1 +u) 1-w) (- we)
nce at 2z,

¢ g"(Co) w*(2) — w(zg) + ¢ w(z)

| g (Co) ' 1 — u(z)?

=1+ ulo)

>2(t2—2)

=1t—-2>n-3. a

§ 4.6 On a subclass of Strongly Gamma Starlike Functions

Let flz) = z + Eanz and f(2)f(z) # 0 be an analytic function in A. P.T. Mocanu [1

1969] defined a subclass of S such that the real part of the arithmetic mean of the quantities zz

and 1+ZL is positive A:

[
se[(l—a)4+a(1+z$)]>o Vze A, (4.6.1)

where « is any fixed real number. Functions satisfying this condition are said to belong to the
class of alpha-starlike function My, and they have been shown to be starlike for all « in Miller,
Mocanu and Reade [1]. Also when a = 0, Mby= S* and Mb;= %. In 1979 Sakaguchi and
Fukui [1] proved that if f satisfies (4.6.1) then f(z2)f(z) # 0 in A; hence this part of the

hypotheses can be dropped.

Before we proceed further, it is necessary to recall some elementary facts; we define the

principal branch of the argument of z=re'’ be —wr <0<, and we denote it by §=Arg z. The
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principal branch of the logarithm is defined as Log z=log r+iArg z whereas the ordinary
logarithm is denoted by log z=log r+4-iarg 2. If no confusion arise we shall also sometime write
arg z=Arg z as in the rest of this thesis. We also define the complex exponential to be
2=Xel®? ? where X is a complex number. We have the following facts: Arg 2=\ Arg zif ) is

real where 0<A<1 and Arg 2,2, =Arg z;,+Arg 2, if and only if —T<Arg z;+Arg z,<m.
Lewandowski, Miller and Ztotkiewicz [1] defined another subclass of S such that the

! 1
geometric mean of the quantities z; and 1+z$ is positive i.e. f, f and l+z%;é 0 in 0<|2|<]1.

Suppose 7 is real and

R [(%)“’(1 + 4)’} >0 Vze€A.

Where the above quantities are raised to certain powers, the branch considered is meant to be
the principal branch. Such functions are called Gamma-Starlike functions L and they too have
been proved to be starlike for all real ¥ in Lewandowski, Miller and Ziotkiewicz [1]. Clearly L=
S* and £,=%. Also in Lewandowski, Miller and Zlotkiewicz [1], the following subclass of £,
was suggested:

5 L
Definition 4.6.1 Let fz) = z + Y anz" be an analytic function in A and f, f, and 1+ 7 #0

2

in 0<|z|<1. Suppose v , a are real constants such that 0 < v, a < 1 and that

|(1-7) Arg(zf) + v Arg(l+z$) <¥ V:ieA

f

Then we say that f is a strongly gamma-starlike functions of order a, and we denoted the class

of such functions by L3(a).

Note that £3%(a) C £, and so strongly gamma-starlike function must be starlike. We
shall show that for a subclass of £%(a), fis not only starlike but strongly-starlike of order 3

where 3 depends on . Strongly-starlike functions were defined in Chapter 1.

Let @38 = {fl f€ 2%(a) where a = B(14+7)—7,1> 8 > %{ }’
i.e. if fe§¥(pB) then f satisfies

|(1-7) Arg(zf) + v Arg(1+z$)

f

<(BQ+7m)-7 5 VzeaA (4.6.2)

where 1 > 8 > v/(1+7).
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We shall now state the theorem.

Theorem 4.6.1 §%(8) C S*(B).
Proof The proof is similar to that of Lewandowski, Miller and Zlotkiewicz [1], or Miller [1] and

the theorems above. We let f € §%(8) and

*’5((5) = ( ifﬁg )ﬁ= Pz) 0<B<L1 VzeA. (4.6.3)

Then w(0)=0 and w# +1 is analytic in A as before. If |w(z)]<1 V z€A then the theorem
follows from subordination. Suppose not, then there exists a zp= roewoe A such that |w(2)| <
1 for |2| < r,. Suppose also that w attains its maximum at z,. Then by the Clunie-Jack

principle we have at z;,

! .
w(z) _ 1+w(z) _ . sinfy .
2y W) T>1 and T=w(z) — T cos 5 = iS, (4.6.4)

where S is clearly a non-zero real number.

Note that we can write the left hand side of (4.6.2) in the equivalent form:

Iy, f2) = (%)1_7(1+ f,((;))y 0<y<L (4.6.5)

Differentiate (4.6.3) and substitute to obtain

I Ko} = P& (P + )

P(2)
_ (L8[ (14u(z) ORI AOR\Y
‘(T—Tz)) (e w(z)) + bz (1+w(z)+1—-w(z)) :

Applying (4.6.4) at zy, we obtain
_ (Tu(z)\O D8 (Ll )\ W) |, o) \)
T o)} = (5503) ((1-1”(;:,)) + 80 (Tt l—w(ozo)))
Y
= 67 (7 + 10 (352 + b))

(S)(x )8 (( )+ ﬂ( % n ,-S_l))7

_ (i) ((5) y ﬁ(s+ S))7
y
That is (zo‘/ﬂ(;:’)))l =(i S)(1 P (1_'_20]}((20))) (( S)p-i- i 5 (S + S))
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Since S could be either positive or negative, it is necessary to consider them in separate
cases. We first consider S to be positive. Since both a and § are positive and less than or equal
to 1, we clearly have Arg (zo.)"(zo)/j(zo))l_‘7 and Arg (142of"(25)/f(2))" less than = /2.

Thus, taking the argument of (4.6.5),
Arg J{v, f2)} = (1—7)B (Arg i+ Arg S) + v Arg i (.S'B-'r i —ﬂ( E))’

2
=(1—7)8 Argi + 7 Arg i (Sp+ P Tﬁ( %))

Now Arg iﬂzﬁé—r and

1-5 TP N Tﬁ/2(S+1/S)sin(1—ﬁ)7r/2)
Aro{ s+ (4= (S"+Tﬁ/2(s+1/s)cos(1—ﬂ)7r/2

<tan~

1( Tﬁ/2(S+l/S)sin(1—ﬂ)1r/2

—_ -1 _ T —(1— 7!'_.
T8/2(S+1/5 cos(l—ﬂ)w/2)—tan (tan1-p)§)=01-5)3

Hence the sum of the arguments of ## and (Sﬂ + il-ﬁ%’[z(S-l-%;)) is less then or equal

to 7 /2 and each argument is positive. Thus we have

|Arg Jy, Rz} = ’(1 -1B% + 7ﬁ" + vArg (5‘6+ i p_TTﬂ( ))|

1
*s
=ﬂg+7Arg(sﬁ+7_;@(s+§)cos((l—a>g) 7 (s+4)sn(1- ﬂ)“))|

= 6T + v tan™! 7(5+) sn(0-95)

’ P+ g (s+}) coo(1-03) |
R )
-2 g 7( +§) cas((l—ﬂ)i)_

. .| BY(s+3) na-0)3)
> f5 — 7 |tan Tﬂ( ) Cos((l ﬂ)”) l

= ﬂ% -5 tan'l(-tan %(l—ﬂ))
= % — v 1-9)F = § (BU+1)—7).

The above inequalities follow since tan~! is an increasing function and S is a positive number.

We must now consider S to be negative. Note that we can write S = —|S| = ¢‘*|S| and hence
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1S= e_h/ZISI. Similarly we have

- - —ir —ix v
|Arg J(v, R2))| = Ary((e /2|S|)(1 v)ﬁ((c 2181+ e /2—122(|S|+|%])) )|

| —Za-m)p — T 64 TB(154L) £CFHD
=|-50-18 = 58 + 7 4rg(1°+ (IS +g) e T )

= —%ﬂ + 7Arg|:|5|ﬂ+ -%i (ISl+|%|) (cos 72—r(ﬁ—1) + i sin %(ﬂ—l))].

%%suﬁ) sin Z(8—1)

>|-24] - of tan™
\ ? 15+ 151+ k) eosf(8-1)
] . %ﬂ(|5|+|%|) sin T(1—B)
> §ﬂ — 7| tan T_ﬂ(|,g|+i) w0 21— 7) |
2 B 2

— %rﬂ _7tan“1(tan12-r(1—ﬂ))

=38 — v(1-p)% = § (B1+m-7)

Hence, in both cases the above argument leads to contradictions at the same time. This

completes the proof of the theorem. ]

§ 4.7 A Criterion for Quasiconformal Extension

Since the class $*(8) admits a K-quasiconformal extension to C, with k < sin(ﬂ‘%), an

immediate deduction from the theorem gives:

Corollary 4.7.1 The class §%(8) admits a K-quasiconformal eztension to C with k < sin(ﬁ%).

Note that §5(8) = S*(B) and §}(B) is the class of fsatisfying

/()

which is a subclass of strongly conver function of order 23—1. This condition implies that f

ary(1+ /i'(—’))’s 28-1)% , % < B <1,
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satisfies

< 63

arg( /((:)))

As we can see the above implication only valid if % < (@ < 1. This leaves out the § in the range

of 0 <8 < % . Hence it seems that the Theorem 4.7.1 is not best possible in the sense that a
better estimate of £ in the definition of gﬁ(ﬂ) could be obtained so that the theorem can include

the missing range of # when v = 1.

§ 4.8 A more General Inclusion

The Theorem 4.7.1 showed that when f € §3(8) = f € G5(8) = S*(B). We now show

that this is in fact a special case of the the following general inclusion.

Theorem 4.8.1 If0 < 1 < 7 then §3(8) € §7(8)-

Proof The case when 7 = 0 has been proved in Theorem 4.7.1, so we only need to consider
the case 0 < n < v < 1. By using the subordination principle, we find that we do not need to

use the argument in Theorem 4.7.1 again.

Let f € §%(8) , we shall prove that f satisfies

< (ﬂ(1+n)—n)§ Vze A.

l(l—-n) Arg(l) + 7 Arg(1+2§)

f

Since f € §%(p) if and only if there exists a function P,(z) such that
Pi(2) € @ = { P(z) | P(0)=1, P is analytic in A and R(P(2))>0 in A}

the relation

(43) 7+ )= pare 48.1)

is satisfied. By Theorem 4.7.1, f also belongs to $*(3). Hence there also exists another P,(z)e®
so that

z%’)) = P,(2). (4.8.2)
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Raise both sides of (4.8.1) to the power /<1 (77#0) to obtain

(%) (1 ’fm)) = BT (4.8.3)

Raise both sides of (4.8.2) to the power of (1—7/7)<1. We obtain

(zﬁz_))l_;; = (0P, (4.8.4)

We now multiply identities (4.8.3) to (4.8.4) and obtain

(ZL))I ’7( +%)"E Pl(Z)p(%+")-np2(z)p(l—g).

f2)

p(1-7

ﬁ(¥+n)-n 7)
y 80 P3(0)=1. Note that both the powers are less

Let P3(2)= Pyi(2) Py(2)

than one. Now

pGam)=n . p(-F)
|Arg Py(2)| = | Arg(Pi(a)" " P (a) T )‘

(Z+n)=n}larg P + (1-2)8 4rg Po(a)]

<{s
<{6(G+n)-n}5 + (1-9)23

= % (ﬁ(71+1)—n).

QIG

Qld

Since f € §%(B), we have 1 > g > %y > %7 as 7 > 7. This is because ¢(z) = H-Lz

is increasing for all positive z. Thus P3 has positive real part and

| Arg Py(d) | < § (Bn+1)-n) < 5 -

So P3(2) € P and f € §5(B). This completes the proof of the theorem. o

The whole class of §3(8) 0 < ¥ < 1 is of special interest, since Corollary 4.7.1 shows

that all functions in the class have a K(v)-quasiconformal extension to C.
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Note added to this chapter

After this thesis was written, I realized that Theorem 4.5.2 has been obtained
independently by Miller and Mocanu in [2] without the assumption that /! (0)=0. Their method
is more advanced and requires the use of Lowner chains. We note that our method allows us to

consider n>3.
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Chapter Five

Second Order Linear Differential Equations with
Transcendental Entire Coefficients

§ 5.1 Definitions and the Nevanlinna Theory

We start by introducing some well known definitions and facts about the growth and
value distribution theory of a meromorphic functions (or entire functions) in the complex plane
C. We base our account of the theory on the standard text of meromorphic functions written by

W.K. Hayman [2].

We consider a function f meromorphic and not identically equal to zero in the complex
plane C. Let n(,00) be the number of poles of fin the disc |z|<?, counted with multiplicity.

The counting function for fis defined as
r
N(r,f):/ ﬁtioo)—tn—((),oo) dt + n(0,00) log .
0

Set log" u=maz{0, log u} , for «>0 and
2m
m(rf)=k [ log*|fre®)| do

0
which is called the Nevanlinna prozimity function. Then it follows from the Poisson-Jensen

formula , see Hayman [2] p.1 , that we have the relation

m(rf)+ N(r)=m(n1/f)+ N(r,1/ ) +logle,]. (5.1.1)

Here c, is the first non-zero coefficient in the Laurent ezpansion of fz).

Let us set T(nf)=m(rf)+N(r,f). The function T(rf) is called the Nevanlinna
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characteristic function of f. So we can rewrite (5.1.1) as T(r,f)=T(r,1/f)+ O(1). We also defined
Mr,a)=N(r,1/(f—a)) and m(r,a)=m(r,1/(f~a)) and T(r,a)=T(r,1/(f—a)) for any finite a.
The first fundamental theorem states that (see Hayman [2] p.5) for any function meromorphic
in the |z] K R< o0, and for « finite or infinite, we have the relation

T(r,a)=T(r,f)+€(r,a) r<R
where le(r,a)| <log*|a] +|log|c|| +log 2,

and c is the first non-vanishing coefficient in the Laurant expression of f—a.

We have some basic properties of the characteristic functions:
T(rf+9)< T(r.f) + T(r,9) +log 2,
T(r,fg)< T(r:f) + T(r9),
and 7( ‘CI;IZ) T(r.)+0O(1) ad—bc#0.
Also T(r,f) is continuous in r and increasing convex function of log r. The importance of the

characteristic function is that it can determine the growth of function. For example, let f be any

r.f)

non-constant meromorphic function and satisfying Izm ' Tog 1

<c for some constant c¢. Then f

must be rational.

Let s(r) be a non-negative increasing function. The order and lower order of s(r) are

defined as

o= Tm log s(r) and

lim log s(r)
r— oo Iog r

r—o logr

7]=
respectively. Then the order and lower order of a meromorphic function f are defined as

P(f)_ — log T(f‘,f) and 77(f)_ lim log T(r’f)

RUGH Iogr r=oo logr

respectively. Let M(r,f) be the maximum modulus of f as defined in Chapter 2. We have the

following relation between T(r,f) and M(r,f) for regular functions. If fis reguler for |2|<R, then

T(r,ﬂslofM(r,f)Sﬁi:T(R,f) (0<r<R); see also Hayman [2] p.18. This shows that T{(r,f) and

log* M(r,f) have the same order.

1.2,....,1.9
We define the Weierstrass primary factor to be E(z¢)=(1—2z)**2* *"""*#* with

E(20)=1—2 Then we have the following important factorization theorem: let f be meromorphic

in C and {av}, {bu} are the zeros and the poles of f respectively such that rﬁ_}mooﬂ ’f)—O where
!

q is a positive integer. Then

I1 E(azv’q)

k P(2) lavl<r
fl2)=2"e im =
H E(E"q)
lbolgr MK
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where k is an integer and P(z) is a polynomial of degree at most q (see also Hayman p.20). The

converse is also true. Given an increasing sequence of complex numbers {a,} whose moduli tends

to infinity such that ?lallqzoo and ?ﬁi<oo, where ¢ is a positive integer, then the
n n

canonical product o]ffE(é,q) converges uniformly in any bounded region of C. Let {a.} again

be the sequence of zeros of f ordered with non-decreasing moduli and |an| — 00 as n — oo, we

defined the order of {an} to be the order of n(r,O):n(r,%). We also define the ezponent of

convergence of the zeros of f to be A(f):inf{q : o:L‘,<oo and q€|R+}. The genus of the

|an|

Weierstrass product is defined to be the integer ¢g. Hence we have the relation ¢<p<g¢+1.

We now come to one of the most important theorems in the value distribution theory.
Theorem 5.1.1 (Nevanlinna’s Second fundamental theorem)
Suppose that f is a non-constant meromorphic function in |2|<r. Let ay, ay---, aq be distinct
finite complez numbers, § >0 and suppose that ]a,,—aC|26 for 1<pu<(<q. Then
(o) + L) < 2T~ Ny(r)+50r),

where N,y(r) is positive and is equal to N(r,1/f)+2N(r,f)— N(r,f') and

q f’ +3
S(r=m(r,f /f)+m{r,};7:a—”}—4"’9 7 +log 2+I""’|f'(10)|

with some modifications if {0)=0 or oo or f(0)=0.

Let us write 6(a,f)= rlz_"_mw%% =1- r@m%(z—aj)).
We call it the deficiency of the value a of f. The above theorem can be rewritten into a more
useful form (see also Hayman [2] p.43 for details).
Theorem 5.1.1° (Nevanlinna’s Second fundamental theorem)
If f is meromorphic for z#00, then the deficiency 6(a,f) defined above vanishes for at

most a countable set of values of a. The sum of all deficiencies is at most equal to 2:

Y é(a <2.
acC

This readily proves Picard’s theorem: If f is a meromorphic transcendental function in
C, then f takes every value infinitely ofien, except with at most two ezceptions. The values that f
takes only finitely often are called Picard ezceptional values. Notice that 0<é(a,f)<1; if 6(a,f) is
near to 1 then f takes a less often, when 6(a,f) is near to 0 then ftakes @ very often. For details
about the relation between the deficiency of f at a and the growth, the asymptotic values of f,

see W.H.J. Fuchs [3] 1982.
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§ 5.2 Value Distribution of the solutions of Second Order Linear Differential Equations

We consider the second order differential equation:
y''+Ay=0

where A is either meromorphic or entire and of finite order. Much has been done when A is
meromorphic or periodic, see Bank and Laine [2], {3]. We shall first consider A to be a
polynomial.
Theorem 5.2.1 (Bank and Laine [1] 1982)
Let A be a polynomial of degree n>1 and let f be a solution of y'' +Ay=0. Then:
(a) The order of growth of f, p(j):nT“;
(8) If n is odd, A(H=2F;
(¢) If nis even, and if f; , f, are linearly independent solutions of the equation, then maz{A(f,),
A(fg}:%z. If f is a solution such that z\(f)<n-—2—+2, then f has only finitely many zeros;
(d) If n is even, there are ezamples where some solution has no zeros and other ezamples where

each solution f#0 has z\(f):nT“.

We first note that if n=0, then the equation can possess two linearly independent
solutions each of which has no zeros. For example consider y''—y=0 which has linearly

independent solutions e*, e~*

, non of which has any zeros. Part (a) of the above theorem was
due to H. Wittich [1] using Wiman-Valiron theory, another proof can also be found in

Gundersen [1]. Part (b) is a simple consequence of the Hadamard factorization theorem.

We now look at the result when A is transcendental entire.
Theorem 5.2.2 (Bank and Laine [1] 1982)
Let A be a transcendental entire functions of order p(A).
(a) Let p(A)<oo and p(A) is not an inieger. Let f,, f, be two linearly independent solutions of
'+ Ay=0:
(i) if p(A)23, then maz{A(£),\()}2p(4)>1,
(id) if p(4)<}, then maz{A(f),A\(f,)}=co.
(b) Any solution f#£0 of the equation has p(f)=o0.
(¢) Suppose M(A)<p(A) and f is any solution of the equation, then A(f)>p(A).

(d) Suppose that p(A) is arbitrary and let M(f) denotes A(f) but counted with the distinct zeros of
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f, and that A(A)<p(A). Then maz{\(f,),A(f;)}>p(A).
(e) If p is a posilive integer or equal to oo, then there exists a transcendental entire function A
with p(A)=p such that the equation y'' + Ay=0 possesses two linearly independent solutions

each having no zeros.

Part (b) of the theorem is a simple consequence of the logarithmic derivative lemma
which states that for any meromorphic function of finite order we have m(r, f%): O(log ) for all
r except possibly for a set r of finite mt;asure. Following Hayman [2 p.36] let us say, if an
inequality holds except for a set r of finite linear measure, that the inequality holds nearly
everywhere or n.e. for short. Let f be any solution of y''+Ay=0, and suppose on the contrary

that f has finite order p(f)<oo. Then

!
T(r,A):m(r,A):m( f; )<m(r, f}: )+m(r, /) O(logr)  n.e. r—o0.
Hence T(r,A)=0(log r) and A has only finitely many zeros and thus reduces to a polynomial.

This is a contradiction.

Moreover, for any non-zero number b, from y’ "+ Ay=0 we have

f”+A(f—b)—
or 7_—I7+A=?_Abb
' M .
or Tl—bzi%(f'f:_b'*"q):__l}((ff_bg +A)=——%(ff_bg +—T1°
Thus m(r, ﬁ)Sm(r, -_—%(Tél—b+A))+ O(I)Sm(r, %)+m(r, (ff__bl)'")+0(1).
Since T(r,A)=o(T(r.f)) and m(r, (f;_bg")=o(7(r,f)) n.e. r—oo
and so m(r, -fl—b)zo(T(r,f)) n.e. r—oo.

Hence N(r, )%5)~T(r,f). n.e. T—00.

Thus any solution of 3’ +Ay=0 takes each non-zero complex number b infinitely often

such that 6(b,f)= 1— Iz I;I‘Er’fb))_l So z=0 is the only possible exceptional value. We shall be

interested in the exponent of the convergence of the zeros of the solutions of y'/+Ay=0. As
shown by Theorem 5.2.2 (a) case (i7) that when A is an entire transcendental function of order
less than 1/2, then maz{A(f;),A(f,)} =o0. This has been extended to p(A)-—— by J. Rossi [1]. In

fact he proved a more general result.
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Theorem 5.2.3 (J. Rossi {1] 1984) Let A be a transcendental entire function of order p(A)<1.
If fi and f, are the two linearly independent entire solutions of y"+Ay=0, then the ezponent of
convergence of E=ff, is either infinite or satisfies

;TlA‘)“LA(LE)Q'
In particular if p(A)<3 = maa{A(f)),\(f)}=co.

It is still an open question whether the strong conclusion that both A(f;), A(f;) =0 as
soon as p(A)<1. In fact Bank and Laine {1] 1982 conjectured that maz{A(f,),A(f,)} =00 holds if
p(A) is any positive number not equal to an integer. However by Theorem 5.2.2 (e) there exists
an A, p(A)EN such that each of the linearly independent solution has no zeros. There are also

results about the locations of zeros of the solutions which can be found in Hellerstein and Rossi

[1].

§ 5.3 The Solutions of the Differential Equations when the Coefficient A is Transcendental Entire

with some Growth Conditions and the Main Result

Bank, Laine and Langley investigated some growth conditions on A to ensure that
maz{A(f;),A(f2)} =o0. They obtained the following.
Theorem 5.3.1 (Bank, Laine and Langley [1] 1986) Let A be a transcendental entire function
of finite order p(A)<oo with the following properties: there ezists a set HER of measure zero
such that for each real number 0 ER\ H, either

|A(re’®)]

() — oo as r — oo for each N>0,
or (i) ?r|A(rei9)| dr < 400,
or (iid) there ezists a positive number K and b, and a non-negative real number n (all
possibly depending on 8), such that n—;—2<p(A) and
|A(re'®)|<KT™  for all r>b.
Then if fi and f, are linearly independent solutions of v''+Ay=0, we have maz{A(f;)

’A(fZ)}=o°’

Roughly speaking Theorem 5.3.1 shows that if A behaves like e where P is a
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polynomial of degree n say. In the case of the equation y' '+ y=0, it has been proved that
every solution f satistfies A(f)=o00, for details please see Bank and Laine [1] 1982 p.10. Of
course, Theorem 5.3.1 allows a much larger class of functions which will grow as rapidly as e* or
tend to zero as e~ * or behave like a polynomial of small degree in different regions of the plane
C. The conclusion that maz{A(f;),A(f,)} =00 is weaker than A(f)=oc0 for every solution. We

have the following useful corollary.

Corollary 5.3.2 (Bank, Laine and Langley [1] 1986) Let Py, P,, ---, Pn n>1 be non-constant
polynomials whose degrees are deg P;=d;, i=1,.--,n and suppose that deg(P;— P;)=maz{d;,d;}
i#j. Set A(z)=i11:Bj(z)ezp(Pj(z))

where for each j, B; is a non-constant entire function with p(Bj)sdj. Then if f; and f, are

linearly independent solutions of y''+ Ay=0, we have maz{A(f;),A(f)}=00.

If "' +(A+P)y=0 where P is a polynomial of degree m and '—"éi2<p(A)=quz{dj},

then the same conclusion holds. This is a best possible resull.

Both the proofs of Theorems 5.2.3, 5.3.1 and part of 5.2.2 were based on the product
E=fif,. It is therefore reasonable to ask, if A being a transcendental entire function which
behaves or has growth conditions similar to those of ePor to the hypotheses of Theorem 5.3.1,
the same conclusion will hold. A result of A. Edrei and W.H.J. Fuchs suggests that for an entire
function A, if A omits 0 tfoo ofien. For example if 6(0,A)=1=1-=lm M(r,0)

[} . p WA)=1=4T —*ooT(r, f)’
N(r,0)=0(T(r.f)), then A grows like ¢¥ where P is a polynomial in certain annuli. In fact they
found T(r,A)~|c(r)|rF /2

for some r sufficiently large, where ¢(r) may diverge.

We state our main result.
Theorem 5.3.3 Let A be a transcendental entire function of finite order p(A) satisfying
8(0,A)=1. If f; and f, are linearly independent solutions of the equation "'+ Ay=0. We have

maz{A(f,),A(f)}=o0.

If fhas only finitely many zeros, we have the following general result.

Theorem 5.3.4 (Bank and Langley [1] 1987) If A is a transcendental entire function of finite
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order having finitely many zeros, all non-trivial solutions of y(¥)+Ay=0, k>2 satisfy A(y)=oo.

Note that this settles the problem the equation y'’ +¢f y=0 where P is a polynomial.
Not only do we have maz{A(f,),A(f;)}=occ as Theorem 5.3.1 allows. Theorem 5.3.4 implies

A(f)=o0 for every non-trivial solution.

§ 5.4 Results required for the Proof

Since 6(0,A)=1, it is well-known that the order of the function is an integer (see
Hayman [2] p.105). Let us quote the following lemma.
Lemma 5.4.1 (A. Edrei and W.H.J. Fuchs 1959 [1]) Let A be a meromorphic function of
finite lower order and §(0,A)=1 so that the order p(A)=p is an integer say. Then A has the
following properties:

(i) A can be factorized as E(

where k is an integer and P(2)=ayz" +---+ap is a polynomial of degree p.

(ii) Let c(r)=a0+ll)i Z‘l L-3 L} (5.4.1)
ay|grY

then for any 0<e<1 we have

I(r,A)=(1+n(e))|—c—(£,r)—|-r—p for >y, |n]<e (5.4.2)

1 .
(i17) Let a=e"*and cj=c(aJ) where j is an integer. Then given the same ¢>0 as defined in

(i1), there ezists a jo(€) such that for all j>j, we have

log |A(2)] — R(c;7')| <dele;|r?, 2€{I;—E;} (5.4.3)
for all j sufficiently large. Here
r;={ a’<r<a’*®?% (5.4.4)
and E; is a collection of finite number of discs whose sum of radii are less than 4e6aj+3/2,

where 0<6<1 /e and & can be chosen arbitrary small.

We shall introduce the concept of linear and logarithmic measure. Let I=[1,00] and
FCI, then

m(F(r)):/ dt  and lm(F(r)):/ % dt,

tEF(r) tEF(r)

99



ULD(F)= &m ’L"I_(E(L)) and LLD(F)= lim ™)
r—oo logr r
to be the upper and lower logarithmic density.
Note that ULD()=LLD(I)=1

and ULD(F)=1-—LLD(I-F).

We cite the following two well-known lemmas.
Lemma 5.4.2 (W.H.J. Fuchs [1]) Suppose h(z) is meromorphic in C and of finite order p.
Then given (>0 and & with 0<6<1/2, there ezists a constant K(p,{) and a set of positive real

numbers G of lower logarithmic densily at least 1—( ie. LLD(G)>1—( such that if

0<0,—0,<6 and reG, then

02 .
K (re?) 1
ra/ W) df < K(p,{) 6 logs T(r,h). (5.4.5)
1

Lemma 5.4.3 (Valiron [1] p.7T4-75) Let f be an entire function of finite order, then

%;7) = 0(r*) re[0,00]—E (5.4.6)

here k is some positive number and E is a sel of real numbers of finite linear measure.

We also require the following lemma.

Lemma 5.4.4 Let A be an entire function of finile order satisfying 6(0,A)=1, then there ezists

a set H of r with positive lower logarithmic density, such that the inequalities (5.4.3), (5.4.5) and

(5.4.6) hold at the same time for sufficiently large r€ H.

Proof Let Fi={r| reI-G} (5.4.7)
that is the set of r such that the inequality (5.4.5) does not hold. We have
ULD(F,)=1—LLD(I-F,)=1—-LLD(G)
<1-(1=0=¢(>0).
Also let Fy,={r| reE} (5.4.8)
that is the set r such that the inequality (5.4.6) does not hold. Since E has finite linear measure

we deduce / # < dt <oo,
tEF,(r) tEF,(r)

100



hence ULD(F,)=LLD(F,)=0.

Let us recall from Lemma 5.4.1 the definitions of I' ;={z| aerSaj+3/2} and the set
E; which is a collection of finite number of discs whose sum of radii are less than 4eé J-aj +3/ 2,

where 0<§;<1/e for each j. Here §; is defined for each E; in Lemma 5.4.1.

Let Fy=U{r=|4|: 2€ E;}. (5.4.9)

j
Clearly r satisfies o’ SrSaj *3/2¢0r each J. We let ¢= I}z: ;]:[1 /It(:lg) _:_'1)], where [z] represents

the integral part of zER. Also since for each E;, §; can be chosen arbitrary small, given any
7>0 we may assume §,<n for all j. In order to prove the lemma it suffice to show
LLD(I—I}_JFJ-)>0. Li%3/2

q
Consider / ‘% = 0(1)+Z / ‘%
tEFy(r) =15

o

j+3/2
a

g
<om+3 L dt
=1
0.7

q
0 Lges.ait3/?
(1)+];1(a]46 o )

IA

-_—.0(1)+4ea3/2z: 6;

g
=1

< 0(1)+4ea3/2q77.

Hence 1 / it _ O($)+4ea3/2(1’+1)n.

Since 7 is arbitrary we may let 7 — oo to obtain ULD(F3)=0. Hence
3
LLD(I-(F;) =1—ULD(UF;)>1- 3 ULD(F;)
J J 1
=1~ (¢ +040)=1~¢>0

which completes the proof of the lemma. o

§ 5.5 Proof of Theorem 5.3.3

Our method of proof is to consider the product E=ff, where f; and f, are linearly
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independent solutions of y"+Ay=0 and we shall also use the Gronwall’s lemma stated in

Chapter 3. First we need to establish some basic facts about the function E.

We observe that by the Abels identity, the Wronskian of f; and f, satisfies

]
W(hfo)=h5'—ff =c
where c is a non-zero constant. Now

I (fz) fi’ fl,_flle_f2f1,_c

W™h A~ RA TF

but ‘;l—zlog E:% l"g(flfz) ifZ_ ]} flfzf:}lfzfl =%.

Adding the above two equalities, we obtain

A

£y
ET

Differentiate both sides and substitute for A=—f,'' /f, , we have

M_ (g2 " !
o)l - (Y )=(5) 4 ).

Ths -G (B) + B -a-Y (G +(B)))
i.e. 4A=(%)2—2—22—2 E. (5.5.1)

This relation was first found by Bank and Laine in [1] in 1982. See also Chapter 2 section 5.

Now 2T(r,E) = T(r,E*)+ 0(1)

(o (B) e B mamrots
=2N(r, )4 M(r, ED) - 1(r ) 4-m(r, (B)?)+m(r, E) 4 01)
_21V(r, )+N(r, ) T(r,A)+O(log r). n.e. as r— co.
The last equality follows because of the applications of the logarithmic lemma. Since

W(f;,fs)=c#0, this implies that all the zeros of f;, f, are simple and different to each other.

Hence all zeros of E are simple. So N(r, %):N(r, %) and N(r, %)Sﬁ(r, %) where N(r,f)

denotes the distinct zeros of f. Therefore
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2T(r,E')=3IV(r, %.)-}- T(r,A)+ O(log r). n.e. as r—oo.

or T(r,E'):O(N(r, %)+ T(r,A)+ O(log r)) n.e. as r— oo. (5.5.2)

Also E' =" f 1215 + 15, = - AR K+ 20 - Afh=—24E+25 1)
Similarly E'l'=_24A'"E—4AF.
Therefore E also satisfies the third order differential equation
E'" 4 4AF +24'E=0. (5.5.3)

(k)

We also note that if a function y satisfies the equation y° “+ Ay=0 where k>1 and A is
analytic in a domain A say, then integrating by parts many times, we can obtain the following

H)=cotex(a= )+ ela=20)'+ -+ e a(a=20)* = ey [ (a= ) ANE) do,
%0 (5.5.4)

where the path of the integration is taken within the domain A.

We now proceed to the proof of the theorem.
(a) Let f;, f, be linearly independent solutions of the equation ! + Ay=0, where A is a
transcendental entire function of finite order p(A) and §(0,A)=1. We assume the contrary that
maz{A(f;),A(f,)} <oo and show that this leads to a contradiction. Consider E=f,f,. We have
A(E)<oo. Since p(A)=p is an integer and N(r,%):O(rq) for some ¢>0, we can deduce from
(5.5.2) that p(E)<oo. However p(E)>p(A), since from (5.5.1)
T(r,A)=T(r,4A)+0(1)

SN(r, (%)2)+N(r, %)+ T(r, }%22)+ O(log 1)

=3 (r, 1)+27(,B)+ Olog 1)

<5T(r,E)+ O(log r).
So p(E)>p(A). We shall use the same notations as in Lemma 5.4.1. Let us recall that

(N=ae+5 3 aL,, : (5.5.5)

v
lau|<r

J_

where {av} are the zeros of A. Also cjzc(ep * ):c(aj) and we have from (5.4.5) that given any
€>0 there exists a j, such that for all 5>,

log |A(2)] — R(c;2’) | <delc;|r®, ze{l;—E,}.
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Let us write z=re'’, cj=|cj|e‘ﬂ, so that R(c;2")=|c;|r” cos(pf+B). We note that S
may depend on j but we do not emphasize this. Suppose 8y, 85, -+ ,0,, where |6;|<7 j=1, 2,
.-+, 2p denote the 2p zeros of cos(pd+ (). Given 1>6,>0, there exists a 6;>0 such that
[6—6;1>6, for all j=1, 2, ---, 2p implies that |cos(pf+ 3)|>6,>0. Since >0 is arbitrary, we
may choose it to be 65%2. Hence

log |A(2)] — R(c;2") | <delc;|r?, z€{I;—E;}, 2o
6
< “22|Cj|"p

P
C;IT
< I costp4)

=|§R(cjzp)|/2.

We divide the inequality into two cases.
() If cos(pf+B)>0, we have for ze{I';—E;}
0<%§R(cjzp)<log [A(z)|<%§k(cjzp); (5.5.6)
(#) if cos(pf+B) <0, we have for z€{I';—E;}

3R(c;2")<log |4(2)| <IR(e;2) <0 (5.5.7)

The above inequalities show that one can divide up any particular annular region

{r J-—-E'J-} into different regions with j sufficiently large so that A is either very large or very
small.
(b) To be more explicit, let us take an arbitrary I'; defined in (5.4.4) and

Q:={ b= <0 < o,-+2lp}, i=1,2, -, 2p.
We divide up I'; into 2p portions by I';NQ; i=1, 2,---, 2p. Since the behaviour of A in each of
the I' ;N Q; is essentially the same, we only consider I" ;N @, say. We aim to estimate the growth
of A and E in each @; and to integrate log*|E| over 0 to 27 ie. to estimate
T(r,E')=2l:‘flog+|E|d0. Let H=I—(F\UF,UF;) where F;, j=1,2,3 were defined in lemma
5.4.4, so H has positive lower logarithmic density. We shall choose such r€ H for the integration
of log*|E| and we shall always assume r€H in sequel. Note that ze{I' i—E;} (|z]=reH) for
some j sufficiently large. For convenience we define

H*(e)={r r€H and re”:zel’j—Ej, 7>70(€)}

Without loss of generality we may assume cos(p(91+§7-;-))+ﬂ)=1 and cos(p(01—2lp)+ﬂ)= —1.
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Now we estimate, with r& H* (e),

01435
log* | B(re'®)| df = / log* | B(re'?)| d8
re’ €T ;nQ, 61-35
61-61 0y+61 01435
—/ log*| E(re'®)| d0+/ log*| E(re'®)) d0+/ log*| E(re'?)| df
o 01-6, 61464

= Li(r)+ L,(r)+ I5(r) say.

We first estimate I3(r). From (5.5.6)
log |A(2)| > §R(c;2") (>0)
= Lle;lr* cos(p0+ )
> Lie;Irs,.
|e(r)lr”
Also from (5.4.2) of lemma 5.4.1, for any €>0 and r>ry(e) we have T(r,A)=(1+n(¢))—%—

for |n|<e. We note that A is of regular growth(see Edrei & Fuchs [1]) and p(A)=peN. i.e.
log T(r,A) i log T(r,A)

I-» i = lim Tog T >1. We may further assume here that r and ro€ H*(¢).
r o0
1 p. _ mI(r,A)b,
Hence log |A(2)] 2 2|CJ'|’" bo= 2(1+1n)
7"52 (r, A)>7"S2 '

for some 65(€)>0 and it tends to zero as r€H*(¢), r — oo. Summarising the above obser-
vations we have [A(z)|>ezp(7rj - 63) (5.5.8)

as r — oo n.e and r€ H*(¢) and 01+6156501+-2£p.

From (5.5.1) we can write
2

a8 24|

From Lemma 5.4.3 we deduce

so that

gl > ua-| (B)'-2%] . (5) -2 =ot*) ne.

and for some k>0. Although this estimate only holds outside a set of finite measure, Lemma

5.4.4 asserts that it and (5.5.8) can hold at the same time for a set (€ H) of positive lower

logarithmic density. Thus

>ez‘p(f§—2 Pl )—const.(r") (5.5.9)

as r — oo n.e. and r€H*(¢) and 6,+46,<0<0 +2 This implies |E] — 0 outside those

exceptional sets and for 8,46, §6501+21%. In particular |E| <1 for r sufficiently large, so
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L
91+ﬁ

Iy(n)= / log*|E(re'®)] d0=0,  reH*(¢). (5.5.10)

01+8
(c) Next we estimate Iy(r). To do so we employ the Fuchs’ small arc Lemma 5.4.2. Since
r€ H*(¢) we may choose §; so small such that 26, <6<1/2. For 8,—6,<0<0,+6, , we have,

for a fixed r,

91+61 EI i
log E‘(reia) — log E(re'(91+61)) — ‘ E((:;‘)) re't dt|
61+46;
and log |E(rew)| < log |E(re'(01+61))| +/ -
A E(re')
Hence
) 01+61 EJ it
Iog+|E(re“)| < Iog+|E(re'(0‘+61))| +/ r ("e.t) di.
Y-t
oy L Bt
< log | B + [ | TS
E(re*’)
< log* |B(re D) 4 K(p(E)C) 6, zog6l1 T(r,E). (5.5.10a)

Here K(p(E),() is a positive constant as defined in Lemma 5.4.2 and §,<1/4.

Now Iog+|E(rei(01+6l))|=0, since from (5.5.9) we can choose r€ H*(¢) sufficiently large
so that |E(re“al_61))|<l. We deduce that

014461
I(n)= / log*| E(re*®)| d8 < 2K(p(E),C) 6, Iog;}-1 T(r,E). (5.5.11)

61-61
(d) Finally we estimate I;(r). Recall that the function E itself satisfies a third order differential
equation (5.5.3). Let us rewrite it into the following form
E'" 4 ¢(2)E=0,
!
where ¢(z)=A(2A7 +4%>. According to the formula (5.5.4) we may write

E(2)=dy+d,(2—2p) + dy(2—29) 1 — /(z—s)2¢(s)E(s) ds, (5.5.12)
where dy=E(z,), d,=F(z)= E‘(zo)( (( 0))) nd dz_lzg}'"( 0)—2E'( o)(g‘,((zzo)))(%’((;:’))) Since

r€ H we have from Lemma 5.4.3 that both |d;|=|E(z)|O(r 1) and |d2|_|E(z0)|0(rk2) for some
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k, and k,>0 outside a set r of finite linear measure as r — oo.

We also have, from (5.4.2) and (5.5.7) with r€ H*(¢) being chosen sufficiently large and
0,—6,<0<0,—5 ,that  log |A(9)] < 1 (c;?") (<0)

= %]cj[rpcos(p0+ﬂ)

$,7rT(r,A
Yol y= - PR ol <c

IN

< - 71'62 T(r,A).

—1621'(1_

)
ie. JA(z)] < " T < ¢ re H*(c) and 0, ~6,<0<0; ~ .

We may choose z, with arg(z)=60,—6, and the integration is taken along a circular arc

with radius r€ H*(¢). According to the above estimate we have from (5.5.12), that

k k
| B Ezo)] (14 O™ 2= 20|+ O(r ™) 2= 20|+
4
+% /|re‘o—re"|2|¢(re“)||E(re“)|rdt.
6,-6,

j+3/2

Note that |z— 20|<7—1';aj+3/2, where r<a . Hence

(4
18] < 1BI(1+0(™))+F [ Irei*=re [ (ret] Bre)r d

61-63

8
< 1BGI(1+ 00 )+ § [ 21680 — 2 la(reitl Blre)] at

4
< 1BEI(14+00™))+ 2 [ Plo(re)IIBret)] ae
816,

9

< |Bz)|(1+0()) exp{ 1g(re)] dt}.

6161

Here we have used the Gronwall’s lemma 3.3.1 in the last inequality for a fixed r€ H*(¢). Recall,

from Lemma 5.4.3, that

|¢(Z)|= IA(Z)] 2 AZ,(Z)+4 %(z) = 0(6_'62"(1_6))0(1}:):0(’},8—1621-(1"))-

Also since arg(zy)=0,—68,, we can use the estimate (5.5.10a) in (c) above, in which case
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we have

IOglE(ZO)|=O(61 log (Sl T(T,E')) rGH*(e) and r<aj+3/2,
1
Thus

s (s s )] o1 0%) e )

81-6,
So Il(r)=/ log*| E(re'®)| do

L3
01—2—p

IN

O(1)+ O(log )+ 0(61 log 31; j[(r’E))_‘_O(rke--;az,.(l-e))

IA

O(log 1)+ 0(61 log 6% T(r,E'))+0(7"‘e_ﬁzr(l-€)). (5.5.13)

(e) Combining the inequalities (5.5.10), (5.5.11) and (5.5.13) we finally obtain the estimate for
log*|E| in I';NQ,. Since r€ H*(¢), according to Lemma 5.4.4 it avoids all the exceptional sets
arising from Lemmas 5.4.1, 5.4.2 and 5.4.3. Choosing r€ H*(¢) we have
01+'2!5
/ log*| E(re'®)| d8 = L(r)+I(r)+I5(7)
P _ (1-¢)
1% =(0(log r)+ o((s1 log 2 T(r,E'))+0(r"e *02r ))+
1
2 1
+0(8,2 log : T(r,E))+0.

We can repeat the above analysis from (a)—(d) to the remaining 2p—1 portions I" ;N Q)

i=2,3,---,2p. So we have similar estimates with the same 6,. Thus we get
27
T(hE) = & / log* | E(re'®)| d8
0
9 0i+33
=2l Z log*| E(re'?)| df
= 0,-—2lp

= O(log r)+o(r'N)+ 0(51 log ‘—51—1 T(r,E)) Jor each N>0.

Since €¢>0 is arbitrary, by choosing 6, sufficiently small the above calculations will

remain valid and we can ensure that O(&llogél T(r,E))S%T(r,E) say as r€ H*(e).
1
Thus

T(r,E) = O(log r)+o(r'N) for each N>0, r€ H*(¢) sufficiently large.
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=0(log 7).
But since T(r,E) is an increasing function, so T(r,E)=0(log r) for all r sufficiently large. This
implies the order of E{(2) is 0. Hence E must be a polynomial and it follows from the expression
(5.5.1) that A is a rational function, a contradiction. Hence maz{A(f;),A(f)}=00. o

Remark One can also conclude that it contradicts the fact that p(£)>p(A4)>1.

§ 5.6 A Perturbation Result

In the second part of Corollary 6.3.2, equations of the form
9"+ (B 4+ Py(2))y=0 (5.6.1)
were considered, where B(z) is a non-constant entire function of order p(B) and P(z), P,(z) are
polynomials of degrees d>2 and m>0 respectively, such that p(B)<d and m-:?—"--2-<d. Then if f
and f, are linearly independent solutions of the equation (5.6.1) we have maz{A(f;),A(f,)}=00.
That is if we perturb B(z)eP(z) carefully with a polynomial of small degree, we obtained the

same conclusion for the zeros distribution of the solutions.

In view of the above observation and noting that an entire function A(2) with §(0,4)=1
has behaviour similar to that of (5.6.1), it is reasonable to believe that if we consider A+ P

instead of A, the same conclusion will hold. We obtain the following special case.

Theorem 5.6.1 Let A(z) be a transcendental entire function of finite order p(A) satisfying

8(0,A)=1 and all but finitely many zeros {an} of A lying on certain half-line which has one end

at the origin. Let P(z) be a polynomial of degree m>0 such that m;'2<p(A). If f; and f, are

linearly independent solutions of the equation
v +(A+P)y=0.

We have maz{\(f;), A(fy)}=00.

Remark We note that p(A) must be a positive integer > 2 since §(0,4)=1.

To prove the theorem we require the following lemmas.

Lemma 5.6.2 (Bank, Laine & Langley [1]) Suppose B(z) is analytic in some sector S containing
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the ray L={z z=re'’, r>0} and that there ezists a constant b>0 and an increasing function
n(r) for r>b, such that n(r) has a continuous derivative, n(b)>0 and |B(re'®)| <n(r) for r>b.
Then any non-trivial solution y of y''+By=0 in S satisfies
. r 1/2
log*|y(re'?)| < K+/ (n(t)) dt (5.6.2)

b
for some K>0 and r>b.

Lemma 5.6.3 (Edrei & Fuchs [1]) We assume the same hypotheses and notations as in Lemma
5.4.1. Given €>0 there ezists a jy(€) such that
log |A(2)| < R(c;7') + 4elc;|r?, z€T; (5.6.3)

for all j>j,(¢) sufficiently large, where p is the order of A.

Notice that in the above lemma the estimate (5.6.3) is true for all 2€I'; without any

exceptional sets E; as in (5.4.3).

§ 5.7 Proof of Theorem 5.6.1

As one may expect, the proof here will be similar to that of Theorem 5.3.3. In fact it is

somewhat easier.

Let A(2) and P(2) satisfy the hypotheses of Theorem 5.6.1. Let f; and f, be the linearly
independent solutions of the equation

y''+(A+ P)y=0, : (5.7.1)

and F=ff,. We assume the contrary that A(E)<oco. Hence p(E)>p(A)EN. We shall estimate

T(r,E):z%riwlog*lEl df and arrive at a contradiction. The first half of the proof is the same as

those in (a), (b) and (c) in § 5.5.

(a) This is the same as that in §5.5 (b) except that we choose §;>0 such that
|cos(pf+B)|> 6,>5¢>0 when |§—6;|>6,>0. Recall thate>0 is arbitrary and there exists a
Jo(€) such that when j>j,

log |A(2)] — R(¢;7')| < 4ele;lr?, ze{Il;—E})
<2, o

5
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4 rP_ 4
< & Jeos(p8+B)lle;| = ER(e;r).
Hence when %(cjrp) is positive with zeros 6, --,0,,, we have, as in (5.5.5),
0<1R(c; ) <log |A(2)| <qR(c;7") 2€{l;—E;}).
Hence from Lemma 5.4.1, we obtain
log |A(z)| > %lcjl 1’ cos(p8 + B)

18,7 T(r, A)
5 2(1+n)

r — 00. Therefore |A+P|>exp<6T207—r r2_63) as r > ry and r€ H*(¢).

> 612—0WT(7',A) > %r Pl |n|<e, where 63 — 0 as

We also note that the quantity ¢(r) in (5.5.5) has a fixed argument for all r sufficiently
large because of the location of the zeros {an} of A. Thus we see that the angle # does not

depend on j. Hence the 2p zeros of cos(pf+ 3) are fixed on all annuli regions I j*

With the same notations and reasoning, we only consider the integral

01+5; 6161 8146,
/ log*|F(re'?)| do =/ log*| F(re'®)] d0+/ log*| F(re'®)| do+
ol-%, 01-7"‘; 61-¢61
b1435
+/ log*|F(re'®)| d8 = I,(r)+ L(r)+I5(r) say.
8146y

Since the order of A(z) is at least two and |P(z)|=O(r™) where m is the degree of P, it

is easy to see, from the relation

2 2 !
4(A+P)=(FT') —5-2 %, (5.7.2)
that F — 0 as r — oo outside the exceptional sets E; for 01+5159501+2Lp.
Hence I3(r)=0 as r > ry and r€ H*(e). (5.7.3)
01+61
Similarly I(r)= / log*| F(re®®)| do< 2K(p(F),()61210g% (r, F), (5.7.4)
61-6,

where 6,<1/4 for r belongs to a set of lower logarithmic density >1—( as in (b) of the last
proof by Lemma 5.4.2. Thus we can choose a € H*(¢) (see Lemma 5.4.4) so that (5.7.3) and

(5.7.4) can hold at the same time.

(b) If cos(pf+3)<0 then with the same ¢>0 and §,, 6, as in part (a), we deduce, from

111



Dadhddiat

Lemma 5.6.3, that
log |A(2)] < R(c;#’) + 4de|c;|r?, z€r;
=c;lr”((cos(p+B)+4e)
< chl‘r‘p(—5€+4€)=—€ |cj|rp$ 0
for all r€ H*(¢) sufficiently large and ze I’ i

So [(A+ P)(re'®)] <Cr™ for rew:zel’j and 01—211’50501—61.

Thus for any ray L from the origin and passing through I'; and 6,—7/2p<0<0,—é,
for all j sufficiently large, we have
|(A+ P)(re®)] =O(r™).
We conclude from Lemma 5.6.2 with n(r)=Kr™ that

log* |F(re'®)| < log* |f,(re'®)|+log* |fy(re'?)]

r r
< K,+/ (K™ dt + K2+/ (K™% dt
b b

m
= O(r2 H).
We can subdivide the region into sections each with sufficiently small angle. Since F has
finite order, an application of Phragmen-Lindelof principle (see for example Titchmarsh E.C. [1]
m
p.177) implies log*| F(re"a)|=o(r2 “) uniformly in 8,—7/2p<0<0,—6, and reH*(c) suff-

iciently large.
#1-61

Hence I;(r)= / log*| F(re'?)| d0=0(r%+1).
0 -~

Combining the above calculation and repeating a similar argument for the remaining sections
r,nQ; i=2,3,---,2p, we have

T(r, )= O (1) + Iy(r)+ I5(r) )< o(r%'“)+ 0(2K(p(F),C>61210g 6{ T(r,F) ) +0.
Hence by choosing 6, sufficiently small

T(r,F)= O(r%ﬂ) for r€ H*(e).

Thus T(r,F)= O(r%“) for all r sufficiently large,
ie. p(F)S%’+1<p(A).

This contradicts the fact that p(F)>p(A). Hence maz{A(f;),A(f;)}=o00. 8]
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§ 5.8 Examples and Further Problems

If we have the assumption that A(z) is a transcendental entire function of order p(A)=1
and all but finitely many zeros of A lying on a half-line with one end at the origin, then clearly
Theorems 5.3.3 and 5.6.1 are different. But if we assume p(A)>2 and the degree of the
polynomial P(z) is 0 instead, then Theorem 5.6.1 actually includes 5.3.3. For example if the
equation

y"+{e‘2+k}y=0,
where k is any constant, has two linearly independent solutions f; and f, , then by Theorem
5.6.1, maz{A(f,),A(f,)}=0c. However the theorem does not cover the equation y''+(e*+k)y=0.
The difference is not just a gap due to the techniques used in the proof of Theorem 5.3.3 that do
not seem to be able to be extended to that of Theorem 5.6.1. This gap in fact cannot be closed.

This is because of

Theorem 5.8.1 (Bank, Laine & Langley [1]) Let c€C be a fized constant, and suppose f is a
non-trivial solution of ¥+ (e —c)y=0.

2
If c=% for some positive odd integer q, then the equation has two linearly independent solutions

fi and f, such that maz{A(f,),A(f,)}<1.

This shows that Theorem 5.3.3 is essentially the best possible with respect to the order

of A.

Moreover, we note that Theorem 5.6.1 is also best possible in certain sense. We use an
example due to Bank and Laine [1]; see also Bank, Laine and Langley [1] p.19 . Consider the
equation

7"+ (e 4 P Yot =0 (5.8.1)
where Q(z) and P(z) are polynomials with degrees degQ=n>2 and degP=m>0. Suppose m+2
<2n then maz{A(f;),A(f;)}=o0c0 where f; and f, are linearly independent solutions of the

equation,

Now let F=¢*" where n>2 is a positive integer and we define A,(z) by (5.7.2). Then it

is easy to check that
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4A1(z)=4(A(z)+P(z))=—e'”n—uzzz”'2—2n(2n—l)z"'2.
By Lemma 2.5.4 (b), F is a product of entire functions f; and f, which are linearly independent
solutions of (5.8.1) with A=—%e’2‘n and P=—-211-(11222"'2+2n(2n—1)z”'2). Clearly degQ=n

(2n—2)+2
2

and degP=2n—2. But =n<n and F has no zeros at all.

On the other hand Bank, Laine and Langley investigated in [2] the equation
/()4 (e 410 )u(2)=0

where @(2) is a polynomial of degree n and II(z) is an entire function of order p(II)<n. They
proved that if the equation admits a non-trivial solution fsuch that A(f)<n, then f has no zeros
and H(z):—%i(Q’)2+%Q".

Thus an immediate question would be to ask: Let A be a transcendental entire function with
8(0,A)=1 (hence p(A) is an integer) and P a polynomial with degP<n. Suppose a non-trivial
solution f such that A(f)<n, satisfies the equation y'/ (z)+(A+H(z))y(z)=0. What conclusion

about II(2) can we draw 7 This question is under investigation.

A recent result of S. Hellerstein and J. Rossi [1] (Theorem 3) concerns about the
location of zeros of the solutions of the equation y'/+ QeP =0 where @ and P are polynomials.
They proved that in those sectors for which A:QeP is small any solution will have only finitely

many zeros. This resembles the real case when considering the equation y" =0.

Our function A(z) with 6(0,A)=1 has sectorial sets I';NQ; i=1,2, ---,2p in which A is
either very large or very small. We would like to ask whether a similar conclusion is true that
only finitely many zeros for the solutions of the equation y''+Ay=0 occur in sectors where A is
small. For example, a particular simple case would be to consider when all the zeros of A(z) are
real, then the quantity c(r):ao—{—% l ZI: alp is a complex number and St(cjzj )=

avl|<r

|c,~|ry cos(pf+ B3). This shows A will be large or small according to where the zeros of cos(pf + 3)

are.
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