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Abstract. We use the “higher Hida theory” recently introduced by the second author to p-adically
interpolate periods of non-holomorphic automorphic forms for GSp4, contributing to coherent cohomol-

ogy of Siegel threefolds in positive degrees. We apply this new method to construct p-adic L-functions

associated to the degree 4 (spin) L-function of automorphic representations of GSp4, and the degree 8
L-function of GSp4×GL2.

Contents

1. Introduction 1
2. Preliminaries: Groups and Shimura varieties 4
3. The ordinary part of coherent cohomology 7
4. Construction of the p-adic pushforward map 17
5. Automorphic cohomology and periods 21
6. “Nearly” coherent cohomology 25
7. Families of Eisenstein series 31
8. Integral formulae for L-functions I: local theory 33
9. Integral formulae for L-functions II: global theory 41
10. Construction of the p-adic L-function 43
References 45

1. Introduction

1.1. Background. Several of the most important open problems in mathematics involve the arithmetic
significance of special values of L-functions; and a major role in work on these problems is played by p-adic
L-functions. There are, essentially, two main approaches to constructing these objects: “topological”
constructions via Betti cohomology of symmetric spaces (such as the theory of modular symbols for GL2);
or constructions of a more “algebro-geometric” nature, using Shimura varieties and sections of coherent
sheaves over them, as in Hida and Panchishkin’s construction of p-adic L-functions for GL2×GL2.

The most powerful applications of p-adic L-functions are in cases where one can relate the p-adic
L-function to a family of classes in Galois cohomology (an Euler system). Results of this kind are known
as explicit reciprocity laws, and have hugely important consequences, leading to cases of the Birch–
Swinnerton-Dyer conjecture and the Bloch–Kato conjecture, as in the work of Kato [Kat04] and more
recently [DR16], [KLZ17] and others. However, a prerequisite for such an explicit reciprocity law is to
have a construction of the p-adic L-function by algebro-geometric techniques, which can be related to
Galois representations in étale cohomology.

At this point, one hits a serious obstacle. There are many integral formulae known which relate values
of L-functions to cohomology of automorphic sheaves on Shimura varieties. However, these automorphic
sheaves can have cohomology in a range of degrees, and the L-value formulae that are relevant in Euler
system settings always involve cohomology classes near the middle of the range of possible degrees. On the
other hand, the established techniques for studying p-adic variation of these objects are only applicable
to sections, i.e. to cohomology in degree 0 (or, via Serre duality, to cohomology in the highest degree).
This incompatibility is a fundamental limitation in the theory as it presently stands: because of this,
all the reciprocity laws known so far relate to Shimura varieties which have small dimension, or which
factorise as a product of two simpler subvarieties of approximately equal dimension. In particular, the
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previously-known techniques are not sufficient to prove an explicit reciprocity law for the Euler system
constructed in [LSZ17] for automorphic representations of GSp4; this is the major obstacle that must
be solved in order to use this new Euler system to prove the Bloch–Kato conjecture for automorphic
motives attached to this group. The same difficulty arises for several other recently-discovered Euler
systems, such as those of [LLZ18, CLRJ19, LSZ20].

1.2. Our results. In this paper, we develop a new algebro-geometric approach to constructing p-adic
L-functions which resolves this difficulty, and apply it to construct p-adic spin L-functions attached to
automorphic representations of the group GSp4. This is the basis for the sequel to this paper [LZ20] by
the first and last authors, in which we shall prove an explicit reciprocity law relating the p-adic L-function
of the present paper to the Euler system of [LSZ17]. We expect that the techniques of this paper should
also be applicable to p-adic interpolation of many other automorphic L-functions beyond the examples
we study here. For instance, the cases of the Asai L-function of a quadratic Hilbert modular form, and
the degree 6 L-function of an automorphic representation of GU(2, 1), will be treated in forthcoming
work.

Our new approach to constructing p-adic L-functions relies crucially on the higher Hida theory in-
troduced by the second author in [Pil20]. This gives a theory which p-adically interpolates coherent
cohomology of Siegel threefolds in positive degrees, while conventional Hida theory only sees H0. Since
Harris has shown in [Har04] that the critical values of the spin L-function can be interpreted as cup-
products involving coherent cohomology in degrees 1 and 2, this gives a path by which to approach the
p-adic interpolation of spin L-values.

Let us now state our results a little more precisely. Let Π be a cuspidal automorphic representation
of GSp4(AQ) which is non-CAP, globally generic, and cohomological with coefficients in the algebraic
representation of highest weight (r1, r2), for some integers r1 > r2 > 0. For technical reasons we need to
suppose that r2 > 1. Let p be a prime such that Πp is unramified and Klingen-ordinary (with respect to

some choice of embedding Q ↪→ Qp). Let E ⊂ C be the number field generated by the Hecke eigenvalues
of Π.

Theorem A. Suppose that either d = r1 − r2 > 1 or that d = 0 and Hypothesis 10.6 holds. Then there
exist two constants Ω+

Π, Ω−Π ∈ C×, uniquely determined modulo E×, and a p-adic measure µΠ on Z×p ,
such that for all Dirichlet characters χ of p-power conductor and all integers 0 6 a 6 d, we have∫

Z×p

xaχ(x) dµΠ(x) = (−1)aRp(Π, a, χ) ·
Λ(Π⊗ χ−1, 1−d

2 + a)

Ω±Π
,

where Rp(Π, a, χ) is an explicit non-zero factor, and the sign ± denotes (−1)aχ(−1).

Theorem B. Let σ be a cuspidal automorphic representation of GL2(AQ) generated by a holomorphic
modular form of weight `, with 1 6 ` 6 r1−r2+1, and level coprime to p and to the primes of ramification
of Π. Let d′ = r1 − r2 − `+ 1 > 0.

Then there is a constant ΩWΠ , uniquely determined modulo E×, and a p-adic measure µΠ×σ on Z×p ,
such that for all Dirichlet characters χ of p-power conductor and all integers 0 6 a 6 d′, we have∫

Z×p

xaχ(x) dµΠ×σ(x) = Rp(Π⊗ σ, a, χ) ·
Λ(Π⊗ σ ⊗ χ−1, 1−d′

2 + a)

ΩWΠ
,

where R(Π⊗ σ, a, χ) is an explicit non-zero factor. If the hypotheses of Theorem A are satisfied then we
have ΩWΠ = Ω+

Π · Ω
−
Π.

In fact the exact statements are a little stronger, although more complicated to state – we refer to
§10 below for the details. In both theorems, Λ(−, s) denotes the completed L-function (including its
Archimedean Γ-factors); the factors Rp(−) are local Euler factors at p, consistent with those predicted
by general conjectures of Panchishkin and Coates–Perrin-Riou; and the range of values for a corresponds
to the whole interval of critical values of the L-functions concerned. (In the present work we have not
attempted to define a canonical normalisation of the periods ΩWΠ and Ω±Π up to p-adic units, although
this would be desirable for Iwasawa-theoretic applications. See Remark 10.9 for some comments on this
issue.)

1.3. Outline of the construction. The first step in our strategy is to extend the higher Hida theory
of [Pil20], which was developed there for applications to “non-regular” weights (limits of holomorphic
discrete series), to also cover regular weights. This is carried out in §3. The chief new result here is that
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for regular weights lying in the relevant Weyl chamber, the perfect complex representing the ordinary
part of p-adic cohomology is concentrated purely in degree 1.

In §4 we prove our second main technical result: a “functoriality” property for higher Hida theory
relating the group G = GSp4 and its subgroup H = GL2×GL1

GL2. This shows that p-adic families of
modular forms for the subgroup H can be pushed forward to p-adic families in H1 of G. This allows us
to p-adically interpolate period integrals of the form

(1.1)

∫
YH(C)

F (ι(h))f1(h1)f2(h2) dh,

where YH is a Shimura variety for H (of some suitable level); ι denotes the embedding H ↪→ G; h1 and
h2 are the projections of h ∈ H(A) to the two GL2 factors; F is an automorphic form for G contributing
to H2 of the Siegel threefold; and f1 and f2 are holomorphic modular forms varying in p-adic families.

However, for our desired applications, we also need to consider integrals of the above shape in which
one of the fi is not holomorphic but only nearly-holomorphic (the image of a holomorphic form under a
power of the Maass–Shimura differential operator). Hence the next step in our strategy, carried out in
§6, is to develop a theory of “nearly” coherent cohomology for G, and an analogue of the p-adic unit-root
splitting to relate these spaces to higher Hida theory. These are analogues for higher Hida theory of
results recently proved by Zheng Liu in the setting of classical Hida theory for symplectic groups [Liu19].

(Note that this unit-root splitting is not overconvergent – it does not extend to any strict neighbour-
hood of the p-rank > 1 locus. Thus, although a “higher Coleman theory” for the Klingen-finite-slope, but
not necessarily Klingen-ordinary, part of H1 is developed in [Pil20], our results do not extend straight-
forwardly to the finite-slope case; it would be necessary to develop a theory of nearly-overconvergent
cohomology in this setting, analogous to the theory recently developed in [AI19] for GL2. This is surely
possible, but lies beyond the scope of the present work.)

Finally, it remains to show that values of L-functions can be described by period integrals of the form
(1.1). For this, we use two integral formulae of Rankin–Selberg type: a 1-parameter integral formula due
to Novodvorsky for the degree 8 L-function of GSp4×GL2, and a 2-parameter integral formula giving
the product of two copies of the GSp4 L-function, which is an extension of work of Piatetski-Shapiro.
In §§8 and 9 we define the local and global versions of these integrals, and evaluate the local integrals
at p and at ∞ for the specific choices of test data that arise in our construction. Finally, in §10 we put
together all of the above pieces to prove our main theorems.

(These formulae should both be seen as “degenerate cases” of a third, presently conjectural, inte-
gral formula: the Gan–Gross–Prasad conjecture predicts that if f1 and f2 are both cuspidal, then the
integral (1.1) should be related to the square root of the central value of the degree 16 L-function for
GSp4×GL2×GL2. So, assuming the GGP conjecture, our methods give p-adic L-functions interpolat-
ing these square roots as f1 and f2 vary in cuspidal Hida families. However, we shall not treat this case
in detail here, for reasons of space.)

1.4. Relation to other work. We note that Theorem A can be seen as a consequence of a theorem
of Dimitrov–Janusewski–Raghuram [DJR18] (applied to the lifting of Π to GL4). However, our proof of
the theorem is very different: their construction is of a topological nature, using Betti cohomology of a
symmetric space associated to GL4, while ours is algebro-geometric, using coherent cohomology of the
Shimura variety associated to G. This allows us to prove Theorem A in parallel with Theorem B, which
does not seem to be accessible using the methods of [DJR18]. More importantly, as mentioned above,
working on the GSp4 Shimura variety, and using algebraic rather than topological methods, are vital
in order to relate the p-adic L-functions we construct to the Euler system of [LSZ17]. This is pursued
further in the sequel paper [LZ20] by the first and last authors, in which we relate the values of the
p-adic L-function of Theorem A (at points outside the range of interpolation) to the syntomic regulators
of Euler system classes, and apply this to deduce instances of the Bloch–Kato conjecture and Iwasawa
main conjecture for GSp4.

One can also use this technique to construct multi-variable p-adic L-functions. For instance, in the
setting of Theorem B, one can allow f1 to vary through a Hida family of cusp forms, giving a 2-variable
p-adic L-function in which both the weight of f1 and the cyclotomic twist are varying. As a special
case of this, taking f1 to be a CM-type family, one obtains a measure interpolating the L-values of
twists of Π by Grössencharacters of an imaginary quadratic field. In an alternative direction, one can
take both f1 and f2 to be cusp forms varying in Hida families, giving a 2-variable measure interpolating
automorphic periods of Gan–Gross–Prasad type for the pair (SO4,SO5); this is a higher-rank analogue
of the triple-product L-function studied by Harris–Tilouine and Darmon–Rotger [HT01, DR14], which
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interpolates Gan–Gross–Prasad periods for the pair (SO3,SO4). However, for reasons of space we shall
pursue these generalisations in a subsequent paper.
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2. Preliminaries: Groups and Shimura varieties

2.1. Groups. We denote by G = GSp4 the group scheme (over Z) associated to the skew-symmetric

matrix J =

(
1

1
−1

−1

)
. The standard Siegel and Klingen parabolics are then given by

PS =

(
? ? ? ?
? ? ? ?

? ?
? ?

)
, PKl =

(
? ? ? ?
? ? ?
? ? ?

?

)
.

We write MS, MKl for the standard (block-diagonal) Levi subgroups of PS and PKl, and T for the
diagonal maximal torus.

Let H = GL2×GL1
GL2. We define an embedding ι : H ↪→ G by((

a b
c d

)
,

(
a′ b′

c′ d′

))
7→
(
a b
a′ b′

c′ d′

c d

)
.

2.2. Dirichlet characters. If χ : (Z/NZ)× → R× is a finite-order character, for some ring R and
integer N , then we write χ̂ for the character of Q×\A×/R×>0 satisfying χ̂($`) = χ(`) for primes ` - N ,

where $` is a uniformizer at `. (Note that that the restriction of χ̂ to Ẑ× ⊂ A×f is the inverse of χ.) If
χ is C-valued and Π is a representation of G(A), we write Π⊗ χ for the twist of Π by the composite of
χ̂ and the symplectic multiplier G→ Gm, as in the statement of Theorems A and B above.

Gauss sums and epsilon-factors. If χ is a C-valued Dirichlet character of conductor N , we let G(χ) :=∑
a∈(Z/NZ)× χ(a) exp(2πia/N) be the classical Gauss sum, understood as 1 if χ is trivial.

If ψ is the additive character of A/Q whose restriction to R is x 7→ exp(−2πix), and χ is a Dirichlet
character of p-power conductor for some prime p, then the local epsilon-factor ε(χ̂p, ψp) is G(χ).

2.3. Shimura varieties.

2.3.1. Open varieties over Q. Let K be a neat open compact subgroup of GSp4(Af). Denote by YG,Q
the canonical model over Q of the level K Shimura variety. This is a smooth quasiprojective threefold,
endowed with an isomorphism of complex manifolds

(2.1) YG,Q(C) ∼= G(Q)+\ [H2 ×G(Af)/K] ,

where H2 is the genus 2 Siegel upper half-space. It can be identified with the moduli space of abelian
surfaces endowed with principal polarisations and level K structures.

We write YH,Q for the canonical Q-model of the Shimura variety for H of level KH = K∩H(Af), which
is a moduli space for (ordered) pairs of elliptic curves with level structure. (Note that if K = KG(N)
is the principal congruence subgroup, then YH,Q is the fibre product of two copies of the modular curve
Y (N) over µN .) There is a morphism of algebraic varieties

(2.2) ι : YH,Q → YG,Q,

with image a closed codimension 1 subvariety of YG,Q (a Humbert surface). If K is contained in the prin-
cipal congruence subgroup KG(N) for some N > 3, then ι is a closed immersion, by [LSZ17, Proposition
5.3.1].
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2.3.2. Integral models and levels at p. Let p be prime, and suppose K = KpKp with Kp ⊂ G(Ap
f ) and

Kp = G(Zp). Then YH,Q and YG,Q have canonical smooth models over Z(p) (parametrising abelian
surfaces over Z(p)-algebras with appropriate additional structures) which we denote simply by YH and
YG. The morphism ι extends to a morphism YH → YG; if Kp is contained in KG(N) for some N > 3
coprime to p, which we shall assume, then by the same arguments used for the generic fibre above, one
can check that this is a closed immersion of Z(p)-schemes.

For n > 1, we let Kl(pn) = {g ∈ G(Zp) : g (mod pn) ∈ PKl}, and we denote by YG,Kl(p
n)Q the

canonical Q-model of the Shimura variety of level Kp Kl(pn). These do not have natural smooth Z(p)-
models.

2.3.3. Toroidal compactifications. As in [FC90], we may define arithmetic toroidal compactifications of
YG, depending on a choice of combinatorial datum Σ (a rational polyhedral cone decomposition, or
“rpcd” for short). We shall restrict attention to rpcd’s which are “good” in the sense of [Pil20, §5.3.2].
A choice of good rpcd Σ gives rise to an open embedding of Zp-schemes YG ↪→ XΣ

G with the following
properties:

• XΣ
G is smooth and projective over Zp.

• The boundary DΣ
G = XΣ

G − YG is a relative Cartier divisor.

Any such compactificationXΣ
G maps naturally to the minimal compactificationXmin

G . If Σ′ is a refinement

of Σ, then there is a projective morphism π(Σ′,Σ) : XΣ′

G → XΣ
G (compatible with the maps from YG and

to Xmin
G ); and we have π∗(Σ′,Σ)(I

Σ
G) = IΣ′

G , where IΣ
G is the ideal sheaf of the boundary DΣ

G in XΣ
G.

Over XΣ
G there is a canonical semiabelian variety AΣ

G, extending the universal abelian variety over YG;
and a PS-torsor T Σ

G , parametrising trivialisations, as a filtered vector bundle, of the canonical extension
to XΣ

G of the first relative de Rham cohomology of AG/YG (see [MP12, §4.3]). These are all compatible
with refining the cone decomposition Σ.

The same statements as above hold mutatis mutandis for the Shimura varieties of level Kp Kl(pn),
although the resulting Zp-models are no longer smooth. Similarly, we can define toroidal compactifica-
tions for H in place of G. In this case, there is an “optimal” choice of Σ, for which the map XΣ

H → Xmin
H

is an isomorphism, but this is not the only possible choice.

Remark 2.1. If KH = K1×K2 is the fibre product of subgroups of the GL2 factors, then YH is a subset
of the components of Y1 × Y2, where Yi is the modular curve of level Ki; and Xmin

H is the product of
their compactifications Xi. Any other toroidal compactification XΣ

H is obtained from Xmin
H by blowing

up at some sheaf of ideals supported at points of the form {cusp} × {cusp}. �

2.3.4. Functoriality of the compactifications. As explained in [Har89, Proposition 3], any rpcd Σ for G
uniquely determines an rpcd ι∗(Σ) for H. It has recently been shown by Lan [Lan19] that if Kp is
sufficiently small, one may choose an rpcd Σ for G such that:

• both Σ and ι∗(Σ) are good (for G and H respectively),

• the map ι extends to a closed embedding of Z(p)-schemes ιΣ : X
ι∗(Σ)
H ↪→ XΣ

G.

We shall fix a choice of Σ satisfying this condition. It follows from the construction of the torsors T Σ
G

and T Σ
H that we have an isomorphism

(2.3) ι∗Σ
(
T Σ
G

)
= PS ×BH T Σ

H ,

so that T Σ
H is a reduction of structure of ι∗Σ

(
T Σ
G

)
from a PS-torsor to a BH -torsor. We also note the

inclusion of ideal sheaves

(2.4) ι∗Σ
(
IΣ
G

)
⊆ IΣ

H .

We shall frequently omit the superscript Σ from the notation XΣ
G, DΣ

G etc when there is no risk of
ambiguity (and sometimes the subscripts G,H as well).

Remark 2.2. It seems likely that one can choose Σ in such a way that (2.4) is an equality, but we have
not verified this. �

2.4. Representations and coefficient sheaves.
5



2.4.1. Weights and representations. As in [Pil20, §5.1.1], the character group X•(T ) can be identified
with the group of triples (r1, r2; c) ∈ Z3 such that c = r1 +r2 mod 2, by defining λ(r1, r2; c) as the unique
character of T such that ( st1

st2
st−1

2

st−1
1

)
7→ tr11 t

r2
2 s

c.

The weights λ(r1, r2; c) which are dominant for MS are those with r1 > r2; if (r1, r2; c) satisfies this,
we write WG(r1, r2; c) for the irreducible representation of MS with this highest weight. Those weights
which also satisfy r2 > 0 are dominant for G, and in this case we write VG(r1, r2; c) for the corresponding
G-representation.

The torus T is also a maximal torus of H, and we write WH(r1, r2; c) for the 1-dimensional repre-
sentation of MBH = T on which T acts via λ(r1, r2; c). If r1, r2 > 0, then we write VH(r1, r2; c) for the
representation of H of highest weight λ(r1, r2; c); concretely, we have

VH(r1, r2; c) := (Symr1 �Symr2)⊗ det(c−r1−r2)/2 .

Remark 2.3. We have changed notations for G-representations relative to [LSZ17]; the G-representation
denoted Va,b in op.cit. is V (a + b, a; 2a + b) in the new notation. The new notation has the advantage
of greatly simplifying the formulae for the action of the Weyl group: the Weyl group conjugates of
λ(r1, r2; c) are the weights {λ(±r1,±r2, c), λ(±r2,±r1, c)}. �

2.4.2. Automorphic vector bundles. If V is an algebraic representation of PS over Z(p), then we have a
vector bundle [V ] on XG defined by

[V ] := V ×PS TG,
where TG is the canonical PS-torsor over XG defined above (see e.g. [Liu19, §2.1]). The same applies, of
course, to G in place of H. This construction is obviously compatible with direct sums, tensor products,
and duals.

Over C the automorphic bundles [V ] have a convenient interpretation in terms of the complex uni-
formisation (2.1). We can interpret H2 as a G(R)+-invariant open subset of FS(C), where FS is the
Siegel flag variety G/PS. Any PS-representation V gives rise to a G(C)-equivariant holomorphic vector
bundle over FS, and [V ]C is the pullback of this to XG,C. Note that the real-analytic vector bundle
[V ]C∞ obtained from [V ]C by forgetting the holomorphic structure depends only on the restriction of V
to MS (but the holomorphic structure genuinely does depend on V as a PS-representation).

Remark 2.4. By construction, if we take V = V (1, 0; 1) to be the defining 4-dimensional representation
of G, then [V ] is the relative logarithmic de Rham cohomology sheaf H1

dR(AG) of the universal semi-
abelian surface AG/XG, and the evident two-step filtration of V as a PS-representation corresponds to
the Hodge filtration of H1

dR(AG). Note that this is slightly non-standard (it is more usual to send V
to the dual HdR

1 ), but is consistent with the conventions used for étale and motivic sheaves in [LSZ17].
As a representation of MS, V splits as a direct sum of 2-dimensional subspaces; this corresponds to the
Hodge splitting of the bundle [V ] in the real-analytic category. �

Notation 2.5. We write ωG(r1, r2; c) for the vector bundle [WG(r1, r2; c)] on XG, and similarly for H.
We write ωG(r1, r2) = ωG(r1, r2; r1 + r2 − 6), and similarly ωH(r1, r2) = ωH(r1, r2; r1 + r2 − 4).

Remark 2.6. The sheaf ωG(r1, r2) is isomorphic to Symr1−r2(ωA)⊗det(ωA)r2 , where ωA is the conormal
bundle at the identity section of the semi-abelian scheme AG over XG; in other words, ωG(r1, r2) is the
sheaf that was denoted by Ω(k,r) in [Pil20], for (k, r) = (r1−r2, r2). Our choice of “default” normalisation
for the central character coincides with that chosen in Remark 5.3.1 of op.cit.. �

The Kodaira–Spencer construction identifies the sheaves of logarithmic differentials ΩiXG(logDG) and

ΩiXH (logDH) with automorphic vector bundles. These are given by

i 0 1 2 3

ΩiXG(logDG) ωG(0, 0; 0) ωG(2, 0; 0) ωG(3, 1; 0) ωG(3, 3; 0)

ΩiXH (logDH) ωH(0, 0; 0) ωH(2, 0; 0)⊕ ωH(0, 2; 0) ωH(2, 2; 0)

2.4.3. Pullback and pushforward. We shall need to consider pullbacks of automorphic vector bundles
from G to H. From the compatibility of torsors (2.3) and the inclusion of ideal sheaves (2.4) we obtain
the relations

(2.5) ι∗
(
[V ]
)

= [V |BH ], ι∗
(
[V ](−DG)

)
⊆ [V |BH ](−DH).
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for any PS-representation V . (See also [Har90, (2.5.3)] for the generic fibres; it is claimed in op.cit. that
the latter inclusion is also an inequality, but no proof is given, and we have not been able to locate a
proof.)

We also consider the “exceptional inverse image” functor ι!. Since XG and XH are smooth and
projective over Spec Z(p), of relative dimensions 3 and 2 respectively, their relative dualising complexes

are isomorphic to Ω3
XG

[3] and Ω2
XH

[2]. The functoriality of the dualising complex gives a canonical
isomorphism in the derived category of coherent sheaves on XH ,

ι!
(
Ω3
XG

) ∼= Ω2
XH [−1].

Tensoring this with the pullback isomorphism (2.5) (with V replaced by V ⊗WG(3, 3; 0)∗), we obtain
isomorphisms

[V |BH ⊗ α−1
G/H ](−DH) ∼= ι!

(
[V ](−DG)

)
[1]

for any PS-representation V , where αG/H denotes the character λ(1, 1; 0) of BH . Together with the
inclusion of ideal sheaves (2.4) we also obtain maps (which might not be isomorphisms)

[V |BH ⊗ α−1
G/H ]→ ι!

(
[V ]
)
[1].

Remark 2.7. The restriction of [αG/H ] to the open variety YH,Q is the conormal bundle of the closed
embedding ι, which explains its appearance in the pushforward formulae. �

2.5. Cohomology. The (Zariski) cohomology groups Hi(XG, [V ]) and Hi(XG, [V ](−DG)) are indepen-
dent, up to canonical isomorphism, of the choice of cone decomposition Σ, and have actions of prime-to-p
Hecke operators [KgK], for g ∈ G(Ap

f ).

Remark 2.8. Note that if V has central character c, and K has level N , then for all primes ` 6= p
congruent to 1 modulo N , the double coset of diag($`, . . . , $`) acts as `c, where $` is a uniformizer at
`. �

The same is true for H in place of G, and the morphisms of sheaves in the previous section gives us
maps

Hi (XG, [V ])
ι?−→ Hi (XH , [V |BH ]) ,(2.6a)

Hi (XG, [V ](−DG))
ι?−→ Hi (XH , [V |BH ](−DH)) ,(2.6b)

Hi
(
XH , [V |BH ⊗ α−1

G/H ]
)

ι?−→ Hi+1 (XG, [V ])(2.6c)

Hi
(
XH , [V |BH ⊗ α−1

G/H ](−DH)
)

ι?−→ Hi+1 (XG, [V ](−DG)) .(2.6d)

for 0 6 i 6 2 and any PS-representation V . Serre duality gives canonical trace mapsH3(XG, ωG(3, 3; 0)(−DG))→
Zp and H2(XH , ωH(2, 2; 0)(−DH)) → Zp, and with respect to the cup product pairings, the morphism
(2.6d) is the dual of the morphism (2.6a), and similarly (2.6c) is dual to (2.6b).

If we base-extend to Q, we may drop the assuption that Kp be hyperspecial and allow arbitrary level
groups K. The direct limit

H∗ (XG,Q(∞), [V ]) := lim−→
K

H∗ (XG,Q(K), [V ])

is then an admissible smooth Q-linear representation of G(Af). The pullback maps (2.6a) assemble into
morphisms of H(Af)-representations

ι∗ : H∗ (XG,Q(∞), [V ])→ H∗ (XH,Q(∞), [V |BH ]) .

The same statements also hold with [V ] replaced by the subcanonical extension [V ](−DG), using the
maps (2.6b).

3. The ordinary part of coherent cohomology

In this section, we’ll explain how to embed the cohomology of automorphic vector bundles on XG

inside larger spaces which vary in p-adic families, focussing on the case of H1. This is an analogue for
regular weights of the theory developed for singular (non-regular) weights in [Pil20]. In this section we
shall work solely with objects attached to the group G, with the subgroup H playing no role, so we shall
drop the subscripts G from the notation; they will reappear in the next section (where we compare the
theories for G and H).
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Remark 3.1. We have aimed to recall enough of the definitions and notation from [Pil20] to give a
reasonably self-contained statement of the main result of this section (Theorem 3.6). However, in the
proof of this theorem we shall assume familiarity with op.cit.. �

3.1. The ordinary part of classical cohomology. Suppose (k1, k2; c) is a weight with k2 6 1 and
k1 +k2 > 4. For n > 1, we shall consider the Hecke operator on H1(XKl(p

n)Qp
, ω(k1, k2; c)(−D)) defined

by:
Up,Kl := pk1−3−c[Kl(pn) diag(p2, p, p, 1) Kl(pn)]

where we consider diag(p2, p, p, 1) as an element of G(Qp) ⊂ G(Af). The normalisation factor implies
that all eigenvalues of Up,Kl are p-adically integral, and we denote by eKl the projection onto the ordinary
part for this operator (the direct sum of the generalised eigenspaces whose eigenvalues are p-adic units).

It is clear that this operator is independent of c, if we identify the cohomology of ω(k1, k2; c) for
different values of c in the obvious fashion. Hence for the remainder of this section, we shall fix c to be
equal to k1 + k2 − 6, so that the normalising factor for Up,Kl is p3−k2 .

Proposition 3.2. Let Πp be an irreducible subquotient of the G(Qp)-representation

lim−→
Kp

Hi
(
X(KpKp)Q̄p

, ω(k1, k2)(−D)
)
,

for any i, such that eKl ·ΠKl(p)
p 6= 0. Then eKl ·ΠKl(p)

p has dimension 1; and if (α, β, γ, δ) are the Hecke
parameters of Πp (in the sense of [Pil20, §5.1.5]), ordered such that vp(α) 6 vp(β) and p2−k2αβ is the

eigenvalue of Up,Kl on eKl ·ΠKl(p)
p , then we have

k2 − 2 6 vp(α) 6 vp(β) 6 0, k1 + k2 − 3 6 vp(γ) 6 vp(δ) 6 k1 − 1.

Proof. By assumption, there is a line in Π
Kl(p)
p on which Up,Kl acts as p2−k2αβ and the Hecke operator

p2−k2 [Kl(p) diag(p, p, 1, 1) Kl(p)] acts as p2−k2(α + β). Since both of these Hecke operators preserve an
integral lattice, we deduce that vp(α+ β) > k2 − 2 and vp(αβ) = k2 − 2. It follows that vp(α) and vp(β)
lie in the interval [k2 − 2, 0], and we can order them so that vp(α) 6 vp(β). To see that both operators
preserve an integral lattice, we first observe that the cohomology we consider is a subquotient of the
cohomology of a local system by [FC90, chap. VI, Theorem 5.5]. We can produce stable lattices for
the action of the Hecke operators on the cohomology of local systems as in [Laf11]. The inequalities for
vp(γ) and vp(δ) follow using the fact that αδ = βγ is pk1+k2−3 times a root of unity.

From the classification of Iwahori-spherical representations of GSp4 (see [Sch05] for instance, or Table

A.15 of [RS07]), we know that Π
Kl(p)
p has dimension 6 4, with equality if and only if Πp is an unramified

principal series; and the characteristic polynomial of Up,Kl on Π
Kl(p)
p divides (X − p2−k2αβ) . . . (X −

p2−k2γδ). Since {p2−k2αγ, p2−k2βδ, p2−k2γδ} all have strictly positive valuation, this polynomial has
exactly one root which is a p-adic unit, namely p2−k2αβ, and this root appears with multiplicity 1. Thus

eKl ·ΠKl(p)
p is 1-dimensional. �

Corollary 3.3. Suppose Πp is as in Proposition 3.2, and k1 + k2 > 5. Then:

(i) Πp is either a representation of Sally–Tadic type I (i.e. an irreducible principal series), or it is of
type IIIb, so Πp

∼= χo σ1GSp2
, with χ and σ unramified characters. In particular, Πp is spherical.

(ii) The composite map

ΠG(Zp)
p ↪→ ΠKl(p)

p � eKlΠ
Kl(p)
p

is an isomorphism of one-dimensional Qp-vector spaces.

Proof. We know that Πp is a subquotient of the induction of an unramified character of BG, determined
(modulo the action of the Weyl group) by the parameters (α, β, γ, δ). From the inequalities for the
valuations established above, we see that either:

• none of the ratios of the Hecke parameters is p±1; or
• we have β = pα and δ = pγ, and γ

α = β
δ has valuation > 3.

In the first case, the induced representation from BG is irreducible, so Πp is of type I. In the second
case, the induced representation has exactly two composition factors, so Πp is either χo σ StGSp2

(type
IIIa) or χoσ1GSp2

(type IIIb) in the notation of Sally–Tadic, where χ, σ are unramified characters with
χ(p) = γ/α and σ(p) = α/p. However, the type IIIa case cannot occur, because the Kl(p)-invariants
of χ o σ StGSp2

are 1-dimensional with [Kl(p) diag(p2, p, p, 1) Kl(p)] acting as pχ(p)σ(p)2, so the Up,Kl-

eigenvalue is p2−k2αγ, which has valuation > 2. Thus Πp must be of type IIIb, and in particular is
spherical.
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If Πp is an irreducible unramified principal series, then the bijectivity of the map (ii) is proved in [GT05,
Corollary 3.2.4]. For the type IIIb case, one can argue similarly: one checks that if Πp = χ o σ1GSp2

,

then there is a basis of the 3-dimensional space Π
Kl(p)
p in which the spherical vector is (1, 1, 1)T and the

matrix of [Kl(p) diag(p2, p, p, 1) Kl(p)] has the form

σ(p)2 ·

 p2λ2 0 0
(p2 − p)λ2 p3λ 0

(p2 − p)λ2 + (p− 1)λ (p3 − p)λ p2


where λ = χ(p). From this one verifies by explicit computation that the projection of the spherical vector
to the ordinary eigenspace, which corresponds to the eigenvalue p2σ(p)2, is always non-zero. �

3.2. P-adic coefficient sheaves. We recall some notations and constructions from [Pil20, §9]. Recall
that X → Spec Zp is a toroidal compactification of the Shimura variety of prime-to-p level KpG(Zp).

The Klingen and Igusa towers. Let X be the p-adic completion of X, and X>1 the open subscheme where
the µp-rank of the universal semiabelian scheme A is > 1.

Over X>1 we have the tower X>1
Kl (p∞) = lim←−m X>1

Kl (pm), where X>1
Kl (pm) parametrises choices of

subgroup Cm ⊂ A[pm] étale-locally isomorphic to µpm . Above X>1
Kl (pm) there is a (Z/pm)×-torsor

IG(pm), parametrising choices of isomorphism Cm ∼= µpm .

We can identify the generic fibre X>1
Kl (pm) of X>1

Kl (pm) with an open rigid-analytic subvariety of the
analytification of XKl(p

m)Qp
, the compactified Shimura variety of level Kp Kl(pm), where Kl(pm) ⊂

G(Zp) is the preimage of the Klingen parabolic modulo pm. Similarly, the generic fibre of IG(pm) is an
open in the rigid-analytic Shimura variety of level

Kp ×
{(

1 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗

)
(mod pm).

}
Remark 3.4. This is different from the normalisations of [Pil20] where the Igusa tower corresponds to

the subgroups

( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1

)
(mod pm). This difference arises because the choices of Shimura cocharacter

in use in [Pil20] and [LSZ17] differ by a sign (cf. [LSZ17, Remark 5.1.2]), and we have chosen to maintain
compatibility with the latter. �

A “big” coefficient sheaf. Let π be the natural map IG(p∞) → X>1
Kl (p). For R a p-adic ring with a

continuous character κ : Γ→ R×, and k2 ∈ Z, we define a sheaf of R-modules on X>1
Kl (p) by

FG,R(κ, k2) :=
(
π?OIGG(p∞) ⊗̂R

)
[Γ = κ− k2]⊗ ωG(k2, k2),

where Γ = Z×p acts on π?OIGG(p∞) via the Γ-torsor structure of IGG(p∞). Here ωG(k2, k2) = ωG(k2, k2; 2k2−
6) is the line bundle defined in Notation 2.5 above; this twist allows us to construct a p-adic family of
sheaves interpolating the ωG(k1, k2) for varying k1 and fixed but arbitrary k2, rather than just for k2 = 0.
(This corresponds to the twist ωr appearing in [Pil20, §10.6] for example.)

Henceforth until the end of the section we shall omit G from the subscript and write FR(κ, k2). We
shall also omit R if R = Zp and κ is an integer k1 ∈ Z.

Remark 3.5. In [Pil20] the sheaf is defined as above when (R, κ) is the universal object Λ = Zp[[Γ]] (with
its canonical character), and then extended to general (R, κ) by base-change; but it is easily checked that
this agrees with the definition above. �

Comparison maps. For any integers k1 > k2 there is a canonical morphism of sheaves on X>1
Kl (p) ([Pil20,

Section 9.4]):

(3.1) comp : ω(k1, k2)→ F(k1, k2).

3.3. Statement of Theorem 3.6. Let Λ = Zp[[Γ]] and κ : Γ → Λ× the canonical character. We

consider the complex RΓ
(
X>1

Kl (p),FΛ(κ, k2)(−D)
)

in the derived category of Λ-modules, for some k2 ∈ Z.

This complex has an an action of Hecke operators away from p. By [Pil20, §10.6], it also has an action of
Up,Kl. As we shall see in §3.4.1 below, this operator Up,Kl is locally finite (in the sense of [Pil20, Definition
2.3.2]), and hence has an associated ordinary idempotent eKl. We set

M•κ,k2
= eKlRΓ

(
X>1

Kl (p),FΛ(κ, k2)(−D)
)
.

The main result of this section is the following:
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Theorem 3.6. If k2 6 0, the complex M•κ,k2
is quasi-isomorphic to a finite projective Λ-module placed

in degree 1, and for all k1 ∈ Z such that k1 + k2 > 4, we have a canonical quasi-isomorphism:

M•κ,k2
⊗L

Λ,k1
Qp = eKlRΓ

(
XKl(p)Qp

, ω(k1, k2)(−D)
)
.

This isomorphism is compatible with the action of the Hecke algebra away from p, and the operator Up,Kl

at p.

Remark 3.7. We expect that this should be true for k2 = 1 as well, but we have not been able to prove
this. This contrasts with the case k2 = 2 studied in [Pil20], where there exist automorphic representations
contributing to both H0 and H1. �

3.4. Proof of Theorem 3.6. For simplicity, we simply write U for Up,Kl in this section, and e for the
corresponding idempotent eKl.

3.4.1. Existence of the projector and classicity “along the sheaf”. Let (k1, k2) ∈ Z, k1 > k2.

Lemma 3.8. The U -operator acts locally finitely on the complexes RΓ(X>1
Kl (p), ω(k1, k2)(−D)) and

RΓ(X>1
Kl (p),F(k1, k2)(−D)). Moreover, the map

eRΓ(X>1
Kl (p), ω(k1, k2)(−D))→ eRΓ(X>1

Kl (p),F(k1, k2)(−D))

is a quasi-isomorphism.

Proof. We first show the local finiteness for RΓ(X>1
Kl (p), ω(k1, k2)(−D)). By [Pil20, proposition 2.3.1], it

suffices to check that the cohomology RΓ(X>1
Kl (p), ω(k1, k2)(−D)) can be represented by a complex of flat,

p-adically separated and complete Zp-modules, that the U -operator can be represented by an endomor-

phism of this complex, and that U is locally finite on the cohomology groups Hi(X>1
Kl (p)1, ω(k1, k2)(−D))

(for X>1
Kl (p)1 the special fiber of X>1

Kl (p)). The sheaf ω(k1, k2)(−D) is acyclic relative to the minimal

compactification. Let j be the open immersion X>2
Kl (p) ↪→ X>1

Kl (p). We deduce that

j?j
?ω(k1, k2)(−D) −→ j?j

?ω(k1, k2)(−D)

ω(k1, k2)(−D)

is an acyclic resolution of ω(k1, k2)(−D)) (because the images of X>2
Kl (p) and X=1

Kl (p) are affine in the

minimal compactification). Therefore, the cohomology RΓ(X>1
Kl (p), ω(k1, k2)(−D)) can be represented

by a complex of amplitude [0, 1] and the U -operator induces an endomorphism of this complex (because
the Hecke correspondence respects the p-rank stratification). We now check that U is locally finite on

Hi(X>1
Kl (p)1, ω(k1, k2)(−D)). We will prove this by decreasing induction on k2. We know by [Pil20,

Theorem 11.2.1, Theorem 11.3.1 ] that this holds true for k2 > 2. We consider the following exact
sequence, where Ha is the Hasse invariant:

0→ ω(k1, k2)(−D)
Ha−−→ ω(k1 + p− 1, k2 + p− 1)(−D)→ ω(k1 + p− 1, k2 + p− 1)(−D)/Ha→ 0.

This yields a U -equivariant long exact sequence on cohomology by [Pil20, lemma 10.5.2.1]. By our induc-

tive hypothesis, U is locally finite on Hi(X>1
Kl (p)1, ω(k1 +p−1, k2 +p−1)(−D)). On Hi(X>1

Kl (p)1, ω(k1 +
p−1, k2+p−1)(−D)/Ha) = Hi(X=1

Kl (p)1, ω(k1+p−1, k2+p−1)(−D)), multiplication by the second Hasse
invariant (see [Pil20, Section 6.3.2]) induces U -equivariant isomorphisms Hi(X=1

Kl (p)1, ω(k1 + p− 1, k2 +
p−1)(−D)) = Hi(X=1

Kl (p)1, ω(k1 +p−1+p2−1, k2 +p−1+p2−1)(−D)) ([Pil20, Lemma 10.5.3.1]). By
the inductive hypothesis, U is locally finite on Hi(X=1

Kl (p)1, ω(k1 +p−1+p2−1, k2 +p−1+p2−1)(−D)).

We can therefore conclude that U is locally finite on Hi(X>1
Kl (p)1, ω(k1, k2)(−D)) by [Pil20, lemma 2.1.1].

We now prove the local finiteness on RΓ(X>1
Kl (p),F(k1, k2)(−D)) and the quasi-isomorphism. This

cohomology is computed by a complex of amplitude [0, 1] and U lifts to an operator on this complex by
arguments similar to the ones used for the sheaf ω(k1, k2)(−D). We next show that U is locally finite on

Hi(X>1
Kl (p),F(k1, k2)(−D)⊗Fp). As in the proof of [Pil20, Theorem 11.3.1 ] we establish at the same time

local finiteness and the isomorphism: eHi(X>1
Kl (p)1, ω(k1, k2)(−D))→ eHi(X>1

Kl (p),F(k1, k2)(−D)⊗Fp).
Details are left to the reader. �

Lemma 3.9. The U -operator is locally finite on RΓ(X>1
Kl (p),FΛ(κ, k2)(−D)).

Proof. This follows from the previous lemma and [Pil20, Proposition 2.3.1]. �
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3.4.2. A vanishing theorem. Recall that X>1
Kl (p)1 denotes the mod p reduction of X>1

Kl (p).

Proposition 3.10. If k2 6 0, then eH0(X>1
Kl (p)1, ω(k1, k2)(−D)) = 0.

Proof. Over X>1
Kl (p)1 we have a universal multiplicative subgroup C ⊂ A[p], where A is the universal

semiabelian scheme. The associated conormal sheaf, which is an invertible sheaf, is denoted by ωC . We
have a surjective map ωA → ωC , and therefore there is a surjective map

ω(k1, k2) = Symk1−k2 ωA ⊗ detk2 ωA −→ ωk1−k2

C ⊗ detk2 ωA.

It follows from [Pil20, Lemma 10.7.1], that the map eH0(X>1
Kl (p)1, ω(k1, k2))→ eH0(X>1

Kl (p)1, ω
k1−k2

C ⊗
detk2 ωA(−D)) is injective.

The idea of the proof is to evaluate sections of H0(X>1
Kl (p)1, ω

k1−k2

C ⊗detk2 ωA(−D)) on various mod-

ular curves that map to X>1
Kl (p)1. We will see that the sections of H0(X>1

Kl (p)1, ω
k1−k2

C ⊗ detk2 ωA(−D))
vanish along these modular curves, and that the union of the images of these modular curves is Zariski
dense.

The tame level of X>1
Kl (p)1 is the compact open subgroup Kp ⊂ G(Ap

f ). Let K ′
p ⊂ G(Ap

f ) be a

compact open subgroup and let g ∈ G(Ap
f ) be such g−1K ′

p
g ⊂ Kp. We have a map g : X>1

K′p Kl(p)1 →
X>1

Kl (p)1 for suitable choices of polyhedral cone decompositions.
Let E0 be an ordinary elliptic curve defined over a field k of characteristic p. For a suitable level

structure K ′′
p ⊂ GL2(Ap

f ) and the choice of a suitable level structure on E0, we have a map from the

modular curve of level K ′′
p

away from p and spherical level at p to X>1
K′p Kl(p)1:

j : YGL2,K′′p,1 ×
Fp
k → X>1

K′p Kl(p)1

defined by sending the universal elliptic curve E to the abelian surface E0×E, equipped with the product
polarization, the multiplicative subgroup C ⊂ E0 and the apropriate level structure away from p. This

map extends clearly to a map j : XGL2,K′′p,1 ×SpecFp Spec k → X>1
K′p Kl(p)1 of the compactified modular

curve.
Let f ∈ H0(X>1

Kl (p)1, ω
k1−k2

C ⊗ detk2 ωA(−D)). The pull back j?g?(f) is a cuspidal modular form of
weight k2 6 0. We therefore find that j?g?(f) = 0.

It follows that f vanishes at all prime to p Hecke translates of points of the form E0×E, where E0 is
an ordinary elliptic curve, E is any elliptic curve and C ⊂ E0 is the multiplicative subgroup. We claim

that this set is Zariski dense in X>1
Kl (p)1 and therefore that f = 0.

It suffices to prove that this set is Zariski dense in X>2
Kl (p)1, and using the irreducibility of the étale

cover : X>2
Kl (p)1 → X>2

1 , we are left to prove the Zariski density of prime to p Hecke translates of points

in X>2
1 (the ordinary part of the modulo p Shimura variety of prime-to-p level) of the form E0×E for a

product of two ordinary elliptic curves. This set is the union of the Hecke translates of the codimension

one subscheme ι(X>2
H,1) (the image of the ordinary part of the modulo p Shimura variety for H). It is

sufficient to prove that these Hecke translates form an infinite union of codimension one subschemes

(indeed, one can easily reduce to the case that X>2
1 is connected). We prove this last claim as follows.

Given a geometric point x on some prime to p Hecke translate of X>2
H,1, we let d(x) be the minimal degree

of a prime to p isogeny between x and a product of two elliptic curves. It will suffice to prove that there
exists a sequence of points xn with d(xn) → ∞. We can produce such points as follows. We consider
two non-isogenous ordinary elliptic curves E and F over F̄p. Let ` 6= p be a prime, and let e1, e2, f1, f2

be a basis of the `-adic Tate modules of E and F (with 〈e1, e2〉 = 〈f1, f2〉), and let C` be the subgroup
generated by the images of e1 +f1 and e2−f2 in E[`]×F [`]. This is a totally isotropic subgroup. We let
A` = (E × F )/C`. This is a principally polarized abelian surface and it is easy to see that the minimal
degree of an isogeny between A` and a product of elliptic curves is `2. �

Corollary 3.11. If k2 6 0, then eHi(X>1
Kl (p), ω(k1, k2)(−D)) is 0 if i 6= 1, and for i = 1 it is a flat,

p-adically complete and separated Zp-module.

Proof. The sheaf ω(k1, k2)(−D) is acyclic relative to the minimal compactification. Since the image

of X>1
Kl (p) in the minimal compactification is covered by two affines, we deduce that the cohomology

RΓ(X>1
Kl (p), ω(k1, k2)(−D)) is represented by a complex of amplitude [0, 1] of complete, separated, flat

Zp-modules. The same holds for eRΓ(X>1
Kl (p), ω(k1, k2)(−D)). Let us write this complex as M0 d→M1.

We claim that d is injective and that coker d is flat, p-adically complete and separated.
11



The complex M0 ⊗ Fp
d⊗1→ M1 ⊗ Fp computes eRΓ(X>1

Kl (p), ω(k1, k2)(−D)). By proposition 3.10,
ker(d⊗ 1) = 0 and it follows that ker d = p ker d. Since ker d is a complete and separated Zp-module, we
deduce that ker d = 0. We also deduce that M0 ∩ pM1 = pM0 and it follows that coker d = M1/M0 is
flat, p-adically complete and separated. �

3.4.3. Finiteness. Let XKl(p) be the analytic adic space associated to XKl(p). Let X>1
Kl (p) be the locus

where H is multiplicative (the generic fiber of X>1
Kl (p)). We may consider the following cohomology

RΓ(X>1
Kl (p), ω(k1, k2)(−D)) = RΓ(X>1

Kl (p), ω(k1, k2)(−D))⊗LZp Qp as well as its ordinary part

eRΓ(X>1
Kl (p), ω(k1, k2)(−D)) = eRΓ(X>1

Kl (p), ω(k1, k2)(−D))⊗LZp Qp.

We may also consider the overconvergent cohomology RΓ(X>1
Kl (p)†, ω(k1, k2)(−D)). One checks that

the U -operator is compact on this cohomology (see [Pil20, sect. 13. 2]). In particular it makes sense to

speak of the ordinary part : eRΓ(X>1
Kl (p)†, ω(k1, k2)(−D)), and this is a perfect complex of Qp-vector

spaces.

Lemma 3.12. If k2 6 0, eRΓ(X>1
Kl (p)†, ω(k1, k2)(−D)) is concentrated in degree 1 and the map

eH1(X>1
Kl (p)†, ω(k1, k2)(−D))→ eH1(X>1

Kl (p), ω(k1, k2)(−D))

is surjective.

Proof. The image of X>1
Kl (p) in the minimal compactification is covered by two affinoids, say U1 and U2.

Let π be the projection from toroidal to minimal compactification. The complex

H0(U1, π?ω(k1, k2)(−D))⊕H0(U2, π?ω(k1, k2)(−D))→ H0(U1 ∩ U2, π?ω(k1, k2)(−D))

computes RΓ(X>1
Kl (p), ω(k1, k2)(−D)). The subcomplex of overconvergent sections

H0(U†1 , π?ω(k1, k2)(−D))⊕H0(U†2 , π?ω(k1, k2)(−D))→ H0(U†1 ∩ U
†
2 , π?ω(k1, k2)(−D))

computes RΓ(X>1
Kl (p)†, ω(k1, k2)(−D)). Therefore there is a surjective mapH0(U1∩U2, π?ω(k1, k2)(−D))→

H1(X>1
Kl (p), ω(k1, k2)(−D)) and overconvergent sections in H0(U1∩U2, π?ω(k1, k2)(−D)) are dense. The

map H1(X>1
Kl (p)†, ω(k1, k2)(−D))→ H1(X>1

Kl (p), ω(k1, k2)(−D)) induces a continuous map

eH1(X>1
Kl (p)†, ω(k1, k2)(−D))→ eH1(X>1

Kl (p), ω(k1, k2)(−D))

(by functoriality of slope 0 decomposition) with dense image. The space eH1(X>1
Kl (p)†, ω(k1, k2)(−D))

is a finite-dimensional Qp-vector space, and therefore the map is surjective and the target is also finite

dimensional. There is also an injective map H0(X>1
Kl (p)†, ω(k1, k2)(−D))→ H0(X>1

Kl (p), ω(k1, k2)(−D))

which induces an injective map eH0(X>1
Kl (p)†, ω(k1, k2)(−D))→ eH0(X>1

Kl (p), ω(k1, k2)(−D)). This last

module is trivial and therefore eH0(X>1
Kl (p)†, ω(k1, k2)(−D)) = 0. �

Corollary 3.13. If k2 6 0, then M•κun,k2
[1] is a finite-rank projective Λ-module.

Proof. By corollary 3.8, for any k1 > k2, we have M•κun,k2
⊗LΛ,k1

Zp = eRΓ(X>1
Kl (p), ω(k1, k2)(−D)). The

corollary follows from the previous corollary and Nakayama’s lemma for complexes [Pil20, Proposition
2.2.1]. �

3.4.4. Classicity. We recall the following classicity theorem :

Theorem 3.14. [Pil20, theorem 14.7.1] The map

eRΓ(XKl(p), ω(k1, k2)(−D))→ eRΓ(X>1
Kl (p)†, ω(k1, k2)(−D))

is a quasi-isomorphism if k1 + k2 > 3, and similarly without the (−D).

We want to conclude :

Theorem 3.15. The map

eRΓ(XKl(p), ω(k1, k2)(−D))→ eRΓ(X>1
Kl (p), ω(k1, k2)(−D))

is a quasi-isomorphism if k1 + k2 > 3 and k2 6 0.

We already know that both complexes are concentrated in degree 1 and that eH1(XKl(p), ω(k1, k2)(−D))→
eH1(X>1

Kl (p), ω(k1, k2)(−D)) is surjective. It will therefore suffice to prove injectivity.
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3.4.5. Injectivity if k1 is large enough. We will first show that injectivity holds if k1 is very large. The
idea is to prove that the ordinary cohomology is isomorphic to ordinary cohomology at spherical level,
and then to use the following type of result:

Theorem 3.16. Let S be a Cohen–Macaulay scheme and L be a locally free sheaf over S. Let U ⊂ S be
an open subscheme such that S − U has codimension i. Then the map Hj(S,L)→ Hj(U,L) is bijective
if j < i and injective for i = j.

Proof. SGA 2, III, lem. 3.1 and prop. 3.3. �

We need to define the relevant ordinary projector at spherical level. This is a somewhat involved
calculation. Let Y → Spec Zp be the Shimura variety with spherical level at p and tame level Kp away
from p. Let Yp be the Shimura variety with paramodular level at p and tame level Kp away from p.
Let YKl(p) be the Shimura variety with Klingen level at p and tame level Kp away from p. Over YKl(p)
we have a chain A → A/L1 → A where L1 is a subgroup of order p3 of A[p] and the total map is
multiplication by p. Therefore A/L1 carries a degree p2 polarization λ and ker(A/L1 → A) is a subgroup
of order p of the kernel of the polarization. We have morphisms p1 : YKl(p)→ Y defined by (A,L1) 7→ A
and p2 : YKl(p)→ Yp defined by (A,L1) 7→ A/L1.

We now consider toroidal compactifications X, XKl(p) and Xp of Y , YKl(p) and Yp, such that the
maps p1 and p2 extend. We make further specifications. We can choose a smooth cone decomposition Σ
for X, a smooth cone decomposition Σ′ for Xp and we take for XKl(p) the same cone decomposition Σ′.

We now take formal completion of all these spaces and restrict to the p-rank > 1 locus. We denote
by X>1, X>1

p and C1 the resulting spaces (we use C1 for the p-rank > 1 locus in XKl(p), to avoid any

confusion with X>1
Kl (p)). The spaces X>1 and X>1

p are smooth over Spf Zp. The morphism C1 → Spf Zp
is Cohen–Macaulay.

We remark that the maps p1 and p2 are quasi-finite away from the boundary (this is a consequence
of the fact that abelian surfaces of p-rank at least one over algebraically closed fields have only a finite
number of subgroups of order p). It follows from miracle flatness that p1 and p2 are finite flat away
from the boundary. Actually, by our choice of cone decomposition, p2 is quasi-finite at the boundary
and therefore p2 is finite flat.

We let C = C1 ×p2,X
>1
p ,p2

C1. Over C we have a chain of isogenies A → A/L1 → A/L where the

first isogeny has degree p3, the second isogeny has degree p. We have two projections q1, q2 : C → X>1,
defined by q1(A,L) = A, q2(A,L) = A/L. We have a natural map q?2ω(k1, k2)[1/p] → q?1ω(k1, k2)[1/p]
arising from the differential of the isogeny A→ A/L which is étale after inverting p.

Lemma 3.17. The relative dualizing sheaf q!
1OX>1 is a Cohen–Macaulay sheaf. We have a fundamental

class q?1OX>1 → q!
1OX>1 which extends the usual trace map on the complement of the boundary.

Proof. Since C1 is Cohen–Macaulay, and the map C1 → X>1
p if finite flat, we deduce from [Mat89],

corollary on page 181, that the map C1 → X>1
p is a Cohen–Macaulay morphism (i.e a flat morphism

with Cohen–Macaulay fibres). A base change of a Cohen–Macaulay morphism is still a Cohen–Macaulay
morphism. Therefore, the morphism C → C1 is a Cohen–Macaulay morphism. Since C1 is Cohen–
Macaulay, we deduce that C is Cohen–Macaulay and that the structural morphism g : C → Spf Zp is a
Cohen–Macaulay morphism. On the other hand the morphism h : X>1 → Spf Zp is smooth. We find
that q!

1OX>1 ⊗ h!Zp = g!Zp and it follows that q!
1OX>1 is a CM sheaf (see [FP19, Lemma 2.2]). The

usual trace map away from the boundary extends to give a morphism q?1OX>1 → q!
1OX>1 by [FP19,

Proposition 2.6]. �

Therefore we get a map Θ : q?2ω(k1, k2)[1/p] → q!
1ω(k1, k2)[1/p] obtained by composing the map

q?2ω(k1, k2)[1/p]→ q?1ω(k1, k2)[1/p] and the map q?1ω(k1, k2)[1/p]→ q!
1ω(k1, k2)[1/p] (simply obtained by

tensoring the map of lemma 3.17 with q?1ω(k1, k2)[1/p]). By adjunction, this is also a map (q1)?p
?
2ω(k1, k2)[1/p]→

ω(k1, k2)[1/p].
We now optimize integrality: we determine the optimal integer s for which psΘ extends to a map

q?2ω(k1, k2) → q!
1ω(k1, k2). It is enough to determine the value of s over the ordinary locus (and even

away from the boundary) because a map from a locally free sheaf to a CM sheaf which is defined up to
a codimension 2 closed subset is defined everywhere.

Let us say that the isogeny A→ A/L1 is as étale as possible if L1 has étale rank 2 and as multiplicative
as possible if L1 has multiplicative rank 2. We have C=2 = Cet,et ∪ Cm,et ∪ Cet,m ∪ Cm,m, where the first
superscript refers to A→ A/L1 being as étale or as multiplicative as possible, and the second superscript
to A/L1 → A/L being multiplicative or étale.
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We denote by Θ?,?? the projection of Θ on the connected components C?,??.
We check that :

• Θet,et : q?2ω(k1, k2)→ pk2+3q!
1ω(k1, k2),

• Θet,m : q?2ω(k1, k2)→ pk2+k1+2q!
1ω(k1, k2),

• Θm,et : q?2ω(k1, k2)→ pk2+k1+1q!
1ω(k1, k2),

• Θm,m : q?2ω(k1, k2)→ p2k2+k1q!
1ω(k1, k2)

Let us briefly explain where these numbers arise from.

• Θet,et : q?2ω(k1, k2) → pk2q?1ω(k1, k2) → pk2+3q!
1ω(k1, k2) where the first pk2 factor arises from

the differential of the isogeny q?2ωA/L → pk2q?1ωA (the group L has multiplicative rank 1) and

the second p3 factor arises from the trace.
• Θm,et : q?2ω(k1, k2) → pk2+k1q?1ω(k1, k2) → pk2+k1+1q!

1ω(k1, k2) where the first factor pk2+k1

arises from the differential of the isogeny. The group L contains A[p]mult. The factor p arises
from the trace.

• Θet,mq?2ω(k1, k2)→ pk2+k1q?1ω(k1, k2)→ pk2+k1+2q!
1ω(k1, k2) where the first factor pk2+k1 arises

from the differential of the isogeny. The group L contains A[p]mult. The factor p2 arises from
the trace.

• Θm,m : q?2ω(k1, k2) → p2k2+k1q?1ω(k1, k2) → p3k2+k1q!
1ω(k1, k2) where the first factor p2k2+k1

arises from the isogeny. The group L contains a subgroup isomorphic (for the étale topology) to
µp × µp2 .

Therefore, under the hypothesis that k1 > 2 and k2 + k1 > 3 we have an operator T = p−k2−3Θ :
q?2ω(k1, k2)→ q!

1ω(k2, k1). We also denote by T ∈ End(RΓ(X>1, ω(k1, k2))) the associated Hecke opera-

tor. We will especially be interested in the reduction modulo p of this operator T ∈ End(RΓ(X>1
1 , ω(k1, k2))).

There is a natural map RΓ(X>1
1 , ω(k1, k2)) → RΓ(X>1

Kl (p)1, ω(k1, k2)) and we will compare the or-
dinary parts of these cohomology for T and U respectively. We first look at the cohomology over the
ordinary locus :

Lemma 3.18. If k1 > 2 and k2 + k1 > 3, there is an operator T̃ : H0(X>2
Kl (p)1, ω(k1, k2)) →

H0(X>2
Kl (p)1, ω(k1, k2)) fitting in a commutative diagram :

H0(X>2
Kl (p)1, ω(k1, k2)) H0(X>2

Kl (p)1, ω(k1, k2))

H0(X>2
1 , ω(k1, k2)) H0(X>2

1 , ω(k1, k2))

T̃

T

Moreover, if k1 − k2 > 0, U ◦ T̃ = U2.

Proof. Under the assumptions k1 + k2 + 1 > k2 + 3 and 2k2 + k1 > k2 + 3, only the “étale” part
of the correspondence contributes modulo p: the cohomological correspondence T is supported on the

component Cet,et × Spec Fp. The second projection q2 : Cet,et → X>1 lifts to q̃2 : Cet,et → X>1
Kl (p) by

sending (A,L) to (A/L, (A[p] + L)/L). It follows that there is a commutative diagram:

H0(X>2
Kl (p)1, ω(k1, k2))

H0(X>2
1 , ω(k1, k2)) H0(X>2

1 , ω(k1, k2))T

which can be completed into the diagram of the proposition. It remains to see that U ◦ T̃ = U2. We can
argue exactly as in the proof of [Pil20, Lemma 11.1.3]. �

We now examine the situation on the p-rank 1 locus. We have two Hecke operators :

U ∈ End(RΓ(X=1
Kl (p)1, ω(k2, k1)))

for all k1 > k2, and

T ∈ End(RΓ(X=1
1 , ω(k2 + p− 1, k1 + p− 1)))

for k1 > 2 and k2 + k1 > 3 (see [Pil20, section 7.4 and 10.5.2] to see how we can obtain these operators
by restriction of the cohomological correspondence).
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Observe that the obvious projection p1 : XKl(p)1 → X1 induces an isomorphism X=1
Kl (p)1 ' X=1

1

(because over the p-rank one locus there is a unique choice for a multiplicative subgroup C). We can
therefore compare U and T .

In order to do so, let us consider X=1, X=1
p , C=1

1 and C=1 the completion along the rank one locus of all

the formal schemes X>1, X>1
p , C1 and C. We have X=1

p = X=1,oo
p ∪ X

=1,m/et
p . This is the decomposition

according to whether the kernel of the polarization is a connected group or an extension of étale by
multiplicative group.

We have C=1
1 = C=1,m

1 ∪ C=1,et
1 ∪ C=1,o

1 according to whether L⊥1 is multiplicative, étale or bi-
infinitesimal.

We have C=1 = C=1,m,et ∪ C=1,et,et ∪ C=1,m,m ∪ C=1,o,o according to the isogeny A → A/L1 → A/L.
Namely :

• in case m, et, the group L⊥1 is multiplicative and L/L1 is étale,
• in case et, et, the group L⊥1 is étale and L/L1 is multiplicative,
• in case m,m, the group L⊥1 is multiplicative and L/L1 is multiplicative,
• in case o, o, the group L⊥1 is bi-infinitesimal and L/L1 is also bi-infinitesimal.

Lemma 3.19. If If k1 > p+1, k2+k1 > 1+2p and k1−k2 > 3(p+1), then T = U on H0(X=1
1 , ω(k1, k2)).

Proof. The proof is very similar to [Pil20, Lemma 11.1.2.1]. We let T ?,?? : q?2ω(k2, k1)→ q!
1ω(k2, k1) the

restriction of T to a component of C=1,?,??. Our objective is to prove that T reduces to T et,et = U on
X=1

1 .
We have to look at all possible types of the isogeny:

• We have T et,m : q?2ω(k1, k2)→ pk2+k1−k2−3q!
1ω(k2, k1) because A[p] ⊂ L,

• We have Tm,et : q?2ω(k1, k2)→ pk2+k1−k2−3q!
1ω(k2, k1) because A[p]0 ⊂ L,

• We have Tm,m : q?2ω(k1, k2)→ pk2+k1−k2−3q!
1ω(k2, k1) because A[p] ⊂ L.

The case of the component o, o remains. Let ξ = Spec k̄ → X=1
1 be a generic point. Let ξ̃ :

W (k̄) → X=1 be a lift of ξ. We may restrict the cohomological correspondence to ξ̃ and we have a
map T o,o : (q1)?q

?
2ω(k1, k2)ξ̃ → ω(k1, k2)ξ̃. For a section f ∈ (q1)?q

?
2ω(k1, k2)ξ̃, this map can be written

as T oof(A,µ) = 1
pk2+3

∑
L f(A/L, µL) where L runs over all subgroups of A[p2] corresponding to the

component C=1,o,o (defined over OCp), µ is a trivialization of ωA and µL is a rational trivialization of
ωA/L such that π?LµL = µ for the isogeny πL : A→ A/L. For any L, the map π?L : ωA/L → ωA has ele-

mentary divisors (p,$) for an element $ with v($) > 1
p+1 . We find that f(A/L, µL) ∈ pk2$k1−k2OCp .

If k1 − k2 > 3(p+ 1) we find that T o,o(f(A,µ)) = 0 (mod p). �

The local finiteness of T on RΓ(X,ω(k1, k2)(−D)) for k1 large enough (depending on k2) follows easily
from the previous lemmas. We can now prove :

Proposition 3.20. If k1 > 2 and k2 + k1 > 3 and k1 − k2 > 3(p− 1), the map

e(T )H1(X>1
1 , ω(k1, k2)(−D)) −→ e(U)H1(X>1

Kl (p)1, ω(k1, k2)(−D))

is an isomorphism.

Proof. The following complexes compute the cohomology of ω(k1, k2)(−D) over X1 and X>1
Kl (p)1:

H0(X>2
Kl (p)1, ω(k1, k2)(−D)) lim−→

n

H0(X>1
Kl (p)1, ω(k1 + n(p− 1), k2 + n(p− 1))(−D)/Han)

H0(X>2
1 , ω(k1, k2)(−D)) lim−→

n

H0(X>1
1 , ω(k1 + n(p− 1), k2 + n(p− 1))(−D)/Han)

We apply the projector for U on the top and for T on the bottom.
It follows from lemmas 3.18 and 3.19 that the left vertical map becomes surjective and the right

vertical map an isomorphism after applying the projector. This is enough to conclude. �

Lemma 3.21. If k1 > 2, k2 + k1 > 3 and k1 − k2 > 3(p− 1), the map e(T )H1(X>1, ω(k1, k2)(−D))→
e(U)H1(X>1

Kl (p), ω(k1, k2)(−D)) is an isomorphism.
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Proof. We first show that the map is surjective. Since H2(X>1, ω(k1, k2)(−D)) = 0, we deduce that

e(T )H1(X>1, ω(k1, k2)(−D))/p = e(T )H1(X>1
1 , ω(k1, k2)(−D)) and by Nakayama’s lemma and propo-

sition 3.20, we deduce the surjectivity. Let K be the kernel of the map of the proposition. By reduction

modulo p we get an exact sequence (since e(U)H1(X>1
Kl (p), ω(k1, k2)(−D)) is flat):

0→ K/p→ e(T )H1(X>1
1 , ω(k1, k2)(−D))→ e(U)H1(X>1

Kl (p)1, ω(k1, k2)(−D))

from which it follows that K/p = 0 and that K = 0. �

We now prove the analoguous result for classical cohomology.

Lemma 3.22. If k1 + k2 − 3 > 2 and k1 > 3, the map

e(T )RΓ(X , ω(k1, k2)(−D))→ e(U)RΓ(XKl(p), ω(k1, k2)(−D))

is an isomorphism.

Proof. We shall consider the smooth admissible GSp4(Qp) representation lim−→n
Hi(X (pn), ω(k1, k2)(−D)).

The invariants under GSp4(Zp) are Hi(X , ω(k1, k2)(−D)) and the invariants under the Klingen para-
horic are Hi(XKl(p), ω(k1, k2)(−D)). Let π be an irreducible representation with spherical invariants
contributing to lim−→n

Hi(X (pn), ω(k1, k2)(−D)). Then π is a quotient of a principal series representation

and its Hecke parameters are (α, β, γ, δ) such that αδ = βγ. We may assume that they are in increasing
p-adic valuation. Morover, by Proposition 3.2, the Newton polygon is above the Hodge polygon, which
has slopes in increasing order k2 − 2, 0, k1 + k2 − 3, k1 − 1 (or 0, k2 − 2, k1 − 1, k1 + k2 − 2 but the case of
interest to us will be k2 6 0 so we will assume for simplicity that we are in the first case), and they have
the same initial and end point. The T eigenvalue is p2−k2(αβ+αγ+αδ+βδ+γδ)+p1−k2(1+p+p2)αδ.
Under the assumption that k1 > 3, we find that p1−k2(1+p+p2)αδ has p-adic valuation at least one and
that π is T -ordinary if and only if αβ has valuation k2 − 2. Under the assumption that k1 + k2 − 3 > 2
we find that ξ−1ξ′ 6= p for all ξ, ξ′ ∈ {α, β, γ, δ} or that β = pα and pγ = δ. Therefore, if π is T -ordinary
it is either an irreducible principal series type I or a type III(b) representation in Schmidt’s classification
[Sch05]. Comparing with Corollary 3.3, we see that e(T )πGSp4(Zp) is non-zero if and only if e(U)πKl(p)

is non-zero, and the natural map between the two is an isomorphism.
It follows that the map e(T )RΓ(X , ω(k1, k2)(−D))→ e(U)RΓ(XKl(p), ω(k1, k2)(−D)) induces an iso-

morphism on every graded piece of some Jordan–Hölder filtration, and hence is an isomorphism as
required. �

Corollary 3.23. If k1 + k2 − 3 > 2, k1 > 3 and k1 − k2 > 3(p− 1), we have a commutative diagram:

e(U)H1(XKl(p), ω(k1, k2)(−D)) e(U)H1(X>1
Kl (p), ω(k1, k2)(−D))

e(T )H1(X , ω(k1, k2)(−D)) e(T )H1(X>1, ω(k1, k2)(−D))

and the vertical maps are isomorphisms.

Proof. This follows from lemmas 3.21 and 3.22. �

Lemma 3.24. If k1 + k2 − 3 > 2, k1 > 3 and k1 − k2 > 3(p − 1), the map eH1(X , ω(k1, k2)(−D)) →
eH1(X>1, ω(k1, k2)(−D)) is injective.

Proof. This follows from theorem 3.16. �

Corollary 3.25. If k1+k2−3 > 2, k1 > 3 and k1−k2 > 3(p−1), the map eH1(XKl(p), ω(k1, k2)(−D))→
eH1(X>1

Kl (p), ω(k1, k2)(−D)) is injective.

We observe that for a fixed value of k2, the conditions on the weight are satisfied for all k1 large
enough.

3.4.6. Injectivity for all values of k1. The perfect complex M•κun,k2
admits an overconvergent variant

M†,•κun,k2
. Its main properties are (see section 13 and 14 of [Pil20]) :

(1) If k1 + k2 > 3, k1 − k2 > 2, then M†,•k1,k2
= eRΓ(XKl(p), ω(k1, k2))(−D)).
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(2) If k1 + k2 > 3 and k1 > k2, there is an isomorphism

H0(M†,•k1,k2
) = eH0(XKl(p), ω(k1, k2))(−D)) = 0

and an injective map

H1(M†,•k1,k2
)← eH1(XKl(p), ω(k1, k2))(−D)).

We consider the two functions defined for k1 > 3 − k2 : d(k1) = dim eH1(XKl(p), ω(k1, k2)(−D)),

d′(k1) = dimH1(M†,•k1,k2
), and dord(k1) = dim eH1(X>1

Kl (p), ω(k1, k2)(−D)).

We have proved that d(k1) > dord(k1) and that equality holds if k1 is large enough. We have d(k1) 6
d′(k1) and equality holds if k1 is large enough. Moreover, dord and d′ are locally constant if we endow
Z>4−k2 with the topology of characters of Z×p . We deduce that dord = d′ and finally that d = dord.

Therefore d(k1) = dord(k1) for all values of k1, completing the proof of Theorem 3.6. �

4. Construction of the p-adic pushforward map

In this section, we’ll define morphisms from spaces of p-adic modular forms for H = GL2×GL1
GL2 to

the p-adic H1 spaces for G defined in the preceding section, and show that they interpolate pushforward
maps for the usual coherent automorphic sheaves.

4.1. Level groups.

Notation 4.1. For m > 1, define subgroups of H(Zp) by

KH,1(pm) := {h ∈ H(Zp) : h = (( 1 ∗
∗ ) , ( 1 ∗

∗ )) (mod pm)},
KH,∆(pm) := {h : h = (( x ∗∗ ) , ( x ∗∗ )) (mod pm) for some x},
KH,0(pm) := {h : h = (( ∗ ∗∗ ) , ( ∗ ∗∗ )) (mod pm)}.

The following elementary but important group-theoretic computation underpins our construction.

Recall the subgroup Kl(pm) =

{( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗

)
(mod pm)

}
⊂ G(Zp) defined in §3.2 above.

Proposition 4.2. Let γ ∈ G(Zp) be any element whose first column is (1, 1, 0, 0)T . Then we have

H(Qp) ∩ γKl(pm)γ−1 = KH,∆(pm). �

Remark 4.3. The group H acts on G/PKl
∼= P3 with exactly 3 orbits, two closed and one open, and the

element γ represents the open orbit. �

We write XH,?(pm)Q for the Shimura variety for H of level Kp
HKH,?(pm) (for our fixed prime-to-p

level Kp), and XH,?(pm) for the associated rigid-analytic spaces over Qp. The proposition implies that
there is a finite morphism of Q-varieties

ιm : XH,∆(pm)Q → XG,Kl(p
m)Q,

given by composing ι with right-translation by γ (and this is a closed embedding away from the boundary
if Kp is small enough). Our goal is to interpolate pullback and pushforward maps for these embeddings
ιm.

4.2. Classical modular forms. For integers `1, `2 > 0, L any field extension of Q, we define

M(`1,`2)

(
pm, L

)
:= H0

(
XH,0(pm)L, ωH(`1, `2)

)
,

S(`1,`2)

(
pm, L

)
:= H0

(
XH,0(pm)L, ωH(`1, `2)(−DH)

)
,

with Hecke operators normalised as in Notation 2.5, so that if Kp
H has level N and q 6= p is a prime

congruent to 1 modulo N , then the double coset of diag(q, q, q, q) ∈ H(Qq) acts as multiplication by
q`1+`2−4.

More generally, let χ1, χ2 be characters of (Z/pm)× with values in L. We let M(`1,`2)(p
m, χ1, χ2, L)

be the subspace of H0
(
XH,1(pm)L, ωH(`1, `2)

)
on which the quotient KH,0(pm)/KH,1(pm) acts via the

character (( a ∗∗ ) , ( b ∗∗ )) 7→ χ1(a)χ2(b), and similarly S(`1,`2)(p
m, χ1, χ2, L). Note that for q as above, the

action of diag(q, . . . , q) ∈ H(Qq) on this space is now via q`1+`2−4 · χ1χ2(q)−1.
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4.3. The Igusa tower for H. Recall that XH denotes a smooth compactification over Z(p) of the
modular curve YH of prime-to-p levelKH = Kp

HH(Zp). Over YH we have two elliptic curves E1, E2, which
extend to semiabelian schemes over XH ; and the direct sum E1 ⊕ E2 is the pullback via ι : XH → XG

of the universal semiabelian scheme AG/XG.
Let XH/ Spf Zp be the p-adic formal completion of XH , and Xord

H the ordinary locus in XH . Over
Xord
H we have an Igusa tower IGH(p∞) = lim←−m IGH(pm), parametrising embeddings αi : µpn ↪→ Ei for

i = 1, 2; this is evidently a (Γ× Γ)-torsor.

Notation 4.4. Let ∆m denote the diagonally-embedded copy of (Z/pmZ)× in ((Z/pmZ)×)
2
, and let

Xord
H,∆(pm) denote the quotient IGH(pm)/∆m.

The generic fibres of the formal schemes Xord
H,∆(pm) and IGH(pm) are naturally open subvarieties of

the rigid-analytic varieties XH,∆(pm) and XH,1(pm) respectively.

4.4. R-adic sheaves. In analogy with the theory for G, we shall let R be a p-adic ring with two
characters κ1, κ2 : Γ→ R, and consider the sheaf on Xord

H,∆(p) defined by

FH,R(κ1, κ2) =
(
π?OIGH(p∞) ⊗̂R

)
[Γ×̇Γ = (κ1, κ2)]⊗WH(0, 0;−4)

where π : IGH(p∞)→ Xord
H,∆(p) is the projection map, and Γ×̇Γ denotes the group {(x, y) ∈ Γ× Γ : x =

y mod p}. This is a rank 1 locally free sheaf of R-modules on Xord
H (p); and we define spaces of p-adic

modular forms (resp. cusp forms) by

M(κ1,κ2)(R) := H0
(
Xord
H,∆(p),FH,R(κ1, κ2)

)Q
,

S(κ1,κ2)(R) := H0
(
Xord
H,∆(p),FH,R(κ1, κ2)(−D)

)Q
where Q is the quotient group (Γ × Γ)/(Γ×̇Γ) ∼= (Z/p)×. These spaces (and their classical analogues)
are independent of the choice of rpcd Σ, and have an action of Hecke operators away from p, with
diag(q, q, q, q) ∈ H(Qq) for q = 1 mod N acting as qκ1+κ2−4.

Remark 4.5. It might seem more natural to work with sheaves on Xord
H , not Xord

H,∆(p), which would obviate

the need for the tiresome quotient Q; but we choose to work over Xord
H,∆(p) since it is easier to relate to

the theory for G. �

For any k1, k2 ∈ Z, there is a comparison isomorphism

comp : ωH(k1, k2)
∼=−→ FH(k1, k2).

Hence, for any finite extension L/Qp and characters χ1, χ2 : (Z/pm)× → L×, we obtain an injection

M(k1,k2)(p
m, χ1, χ2, L) ↪→M(k1+χ1,k2+χ2)(OL)⊗ L.

This is not Hecke-equivariant in general (unsurprisingly, because the central characters do not match).
Rather, it intertwines the action of a double coset [Kp

HhK
p
H ], for h ∈ H(Ap

f ), on the left-hand side
with χ̂1χ̂2(deth)−1 · [Kp

HhK
p
H ] on the right-hand side, where χ̂ is the adelic character associated to χ

as in §2.2. However, we shall only use this if χ1χ2 = 1, in which case the map does indeed become
Hecke-equivariant.

There are also versions of these comparisons for cusp forms. Crucially, however, a classical modular
form may be a p-adic cusp form without being a cusp form in the classical sense. These “fake cusp
forms” will be vital in our construction of p-adic L-functions below (as a substitute for our inability to
prove an analogue of Theorem 3.6 for cohomology of non-cuspidal sheaves on G).

4.5. Maps between Igusa towers. The morphism Xord
H,∆(pm) → Xord

H represents the functor of iso-

morphisms E1[pm]◦ ∼= E2[pm]◦, where Ei[p
m]◦ is the identity component of Ei[p

m]. Note that E1 ⊕ E2

is the pullback (via ιΣ) of the universal semiabelian surface A over XG. We can therefore consider the
following diagram of morphisms of formal schemes, for any m > 1:

IGH(pm) IGG(pm)

Xord
H,∆(pm) X>1

G,Kl(p
m)

XH XG

ι̃m

ιm

ι
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where the vertical arrows are the natural degeneracy maps, and the horizontal arrows are defined as
follows:

• ι = ιΣ is as defined in §2.3.4 above;
• ιm maps an isomorphism E1[pm]◦ ∼= E2[pm]◦ to its graph, considered as a multiplicative subgroup

of (E1 ⊕ E2)[pm];
• ˜ιm maps a pair of embeddings (α1, α2) to α1 + α2 : µpm ↪→ (E1 ⊕ E2)[pm].

Proposition 4.6. The morphisms ιm and ι̃m are closed embeddings.

Proof. We first treat ι̃m. The commutativity of the above diagram implies that ι̃m factors through
the fibre product Zm = XH ×XG IGG(pm). Since XH ↪→ XG is a closed embedding, so is the second
projection Zm ↪→ IGG(pm). Hence it suffices to show that the morphism IGH(pm) → Zm is a closed
embedding.

We shall show that IGH(pm) is in fact a component of Zm. The space Zm, by construction, classifies
embeddings α : µpn ↪→ (E1 ⊕ E2)[pm]. Composing α with the first and second projections, we obtain
morphisms of group schemes αi : µpm → Ei[p

m] over Zm. By Theorem IX.6.8 of SGA III, there is an
open-and-closed formal subscheme Z◦m ⊆ Zm over which the maps αi are both embeddings1. The map
ι̃m clearly factors through Z◦m, and the projections αi determine a map Z◦m → IGH(pm) which is an
inverse to ι̃m. Hence ι̃m defines an isomorphism between IGH(pm) and Z◦m, and in particular it is a
closed embedding into Zm and hence also into IGG(pm).

To obtain the statement for ιm, we note that ι̃m intertwines the action of ∆m ⊂ ((Z/pmZ)×)2 on
IGH(pm) with the natural (Z/pmZ)×-action on IGG(pm), so we can recover ιm by passage to the
quotient. �

Lemma 4.7. For any m > 1, the diagrams

IGH(pm) IGG(pm)

Xord
H,∆(p) X>1

G,Kl(p)

ι̃m

ι1

and

Xord
H,∆(pm) X>1

G,Kl(p
m)

Xord
H,∆(p) X>1

G,Kl(p)

ιm

ι1

are Cartesian.

Proof. The first statement follows from the fact that if α : µpm ↪→ (E1 ⊕ E2)[pm] is an embedding and
the projections αi of α to the Ei are injective restricted to µp, then the αi are in fact injective, so α
comes from a point of IGH(pm). The second statement is similar (replacing the embeddings with their
images). �

We can restate this in terms of a compatibility of “big” sheaves on Xord
H,∆(p). We let πG denote the

projection IGG(p∞)→ X>1
G,Kl(p); and we let πH denote the projection IGH(p∞)→ Xord

H,∆(p). Then the

Cartesian diagram above translates into the following equality of sheaves on Xord
H,∆(p):

ι?1
(
πG,?OIGG(p∞)

)
= πH,?OIGH(p∞).

We note that πG,?OIGG(p∞) is a sheaf of Γ-modules. On the other hand, πH,?OIGH(p∞) has an action

of the larger group Γ×̇Γ := {(a, b) ∈ Γ × Γ : a = b mod p}; if we regard it as a sheaf of Γ-modules by
restriction to the diagonal ∆∞ ∼= Γ, then the above isomorphism is Γ-equivariant.

4.6. Pullback of R-adic sheaves. We now let R be any p-adic ring equipped with two continuous
characters λ1, λ2 : Γ→ R×; and let k2 ∈ Z. If we define2 κ = λ1 + λ2 − k2, then we have defined above

the sheaf FG,R(κ, k2) of R-modules on X>1
G,Kl(p) by

FG,R(κ, k2) =
(
πG,?OIGG(p∞)⊗̂R

)
[Γ = κ− k2]⊗ ωG(k2, k2; 2k2 − 6).

The Cartesian property of the first diagram of Lemma 4.7 gives an isomorphism of R-module sheaves on
Xord
H (p),

ι?1 (FG,R(κ, k2)) =
(
πH,?OIGH(p∞)⊗̂R

)
[∆∞ = κ− k2]⊗ ωH(k2, k2; 2k2 − 6).

1Note that this is a specific property of homomorphisms G → H of group schemes with G of multiplicative type; it
is not true for more general finite flat group schemes G. We are grateful to Laurent Moret-Bailly for pointing out this

reference, in response to a MathOverflow question of ours (link).
2We find it convenient to use additive notation for the group law on characters, since we shall frequently use the

embedding of Z into the character group.
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Since the character κ− k2 = λ1 + λ2 − 2k2 of ∆∞ is the restriction of the character (λ1 − k2, λ2 − k2) of
Γ×̇Γ, we have a canonical inclusion(

πH,?OIGH(p∞)⊗̂R
)

[Γ×̇Γ = (λ1 − κ1, λ2 − κ2)] ↪→
(
πH,?OIGH(p∞)⊗̂R

)
[∆∞ = κ− k2],

and hence an inclusion of sheaves

FH,R(λ1, λ2){−2} ↪→ ι?1 (FG,R(κ, k2)) ,

where {−2} indicates tensor product with the line bundle ωH(0, 0;−2). (This is trivial as an abstract
sheaf, but twists the Hecke action by the character ‖ det ‖, so that for h ∈ H(Ap

f ), the action of [Kp
HhK

p
H ]

on the cohomology of FH,R(λ1, λ2) corresponds to the action of ‖deth‖−1[Kp
HhK

p
H ] on the cohomology

of ι∗FG,R(κ, k2).)

Proposition 4.8. For any integers `1, `2, k1, k2 with min(`1, `2, k1) > k2 and `1 + `2 = k1 + k2, we have
the following commutative diagram of sheaves on Xord

H,∆(p):

ωH(`1, `2){−2} ι?1ωG(k1, k2)

FH(`1, `2){−2} ι?1 (FG(k1, k2))

Here the right-hand vertical arrow is the pullback via ι1 of the comparison morphism for G, and the
left-hand arrow the analogous comparison morphism for H.

Proof. We may assume without loss of generality that k2 = 0. It suffices to prove the statement modulo
pn for each n. This arises (via adjunction) from the following diagram of sheaves on the mod pn reduction
of IGH(pn) (where we omit the central character terms for brevity)

ωH(`1, `2) ωG(k1, 0)

OIGH(pn)n ι̃?n
(
OIGG(pn)n

)
Here the right vertical arrow is given by pullback to the universal µpn -subgroup composed with the
Hodge–Tate period map. By construction, this restricts to the standard trivialisation of either ωH(1, 0)
or of ωH(0, 1) modulo pn. �

Remark 4.9. As noted in [Pil20, Remark 9.4.1], the comparison morphism ωG(k1, k2)→ FG(k1, k2) can
be interpreted as projection onto the highest weight vector in the representation WG(k1, k2) of GL2 (the
Levi factor of the Siegel parabolic in Sp4). In this optic, our choice of embedding of IGH(p∞) into
IGG(p∞) corresponds to acting on this highest weight vector by the element ( 1

1 1 ) of GL2, so that it
projects nontrivially to every direct summand for the action of the subgroup GL1×GL1 (the Levi factor
of the Borel in the derived subgroup of H). This is an analogue for coherent automorphic sheaves of the
branching computations for étale sheaves in [LSZ17]. �

4.7. Pushforward of R-adic sheaves. Let X>1
G,Kl(p)n denote the mod pn reduction of the formal

scheme X>1
G,Kl(p). Note that this is a smooth and quasi-projective (Z/pn)-scheme, and thus its relative

dualising complex is defined, and is isomorphic to a shift of the sheaf of top-degree differentials; and
similarly for Xord

H,∆(p). Carrying out the same construction as in §2.4.3 for these truncated schemes, we
obtain homomorphisms

H0
(
Xord
H,∆(p)n, ι

?
1(M)⊗ ωH(−1,−1; 0)(−DH)

)
−→ H1

(
X>1
G,Kl(p)n,M(−DG)

)
,

for M any flat quasi-coherent sheaf on X>1
G,Kl(p)n (not necessarily of finite rank). If M = (Mn)n>1 is

a flat formal Banach sheaf on XG,Kl(p) in the sense of [Pil20, §12.6], then the above morphisms are
compatible as n varies and assemble into a map

ι? : H0
(
Xord
H,∆(p), ι?1(M)⊗ ωH(−1,−1; 0)(−DH)

)
−→ H1

(
X>1
G,Kl(p),M(−DG)

)
.

In particular, this applies to the sheaf FG,R(κ, k2) defined above (assuming the coefficient ring R to be
Zp-flat). If we choose characters λ1, λ2 : Z×p → R× with λ1 +λ2 = κ+ k2− 2, then the preceding section
gives a morphism

FH(λ1 + 1, λ2 + 1)⊗ ωH(0, 0;−2)→ ι?1 (FG(κ, k2)) .
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Composing this with the above coboundary morphism, and noting that FH(λ1+1, λ2+1)⊗ωH(−1,−1;−2) =
FH(λ1, λ2), gives a map of R-modules

(4.1) ι? : S(λ1,λ2)(R) −→ H1
(
X>1
G,Kl(p),FG(κ, k2)(−DG)

)
.

By construction, this map is compatible with base-change in (R, λ1, λ2).

4.8. Comparison with classical pushforward. We want to compare the map ι? of (4.1) with the
analogous construction for algebraic varieties. For our purposes, it suffices to carry this out after inverting
p, so we shall use the language of rigid-analytic spaces. We choose integers k1, k2, `1, `2 such that
min(`1 + 1, `2 + 1, k1) > k2 and `1 + `2 = k1 + k2 − 2.

Let X>1
G,Kl(p

m) be the rigid-analytic generic fibre of the formal scheme X>1
G,Kl(p

m). On the algebraic

side, let XG,Kl(p
m)Qp

be the base-change to Qp of the toroidal compactification of the Shimura variety
of level KG,Kl(p

m) (using the same rpcd Σ we used at spherical level; this may not be smooth for level
KG,Kl(p

m), but this does not matter). If XG,Kl(p
m) is the associated rigid space, then we have a natural

open immersion

X>1
G,Kl(p

m) ↪→ XG,Kl(p
m).

We can argue similarly with H in place of G to obtain an open immersion

X ord
H,∆(pm) ↪→ XH,∆(pm).

There is a finite morphism of Q-varieties XH,∆(pm)Q → XG,Kl(p
m)Q, injective away from the boundary,

given by composing the standard embedding ι : H ↪→ G with translation by the element γ above. We
denote this morphism also by ιm. We can therefore obtain two finite maps of rigid spaces X ord

H (pm) →
X>1
G,Kl(p

m): either as the generic fibre of the formal-scheme morphism ιm of the previous section, or
as the restriction of the analytification of the map of Q-varieties we have just constructed. A simple
check using the explicit description of the action of G(Ẑ) on the moduli problem shows that these two
morphisms coincide.

From this equality (and the compatibility of the formal-analytic and rigid-analytic dualizing com-
plexes) we obtain the following commutative diagram. Suppose O is the ring of integers of a finite
extension L/Qp, and χ1, χ2 are characters (Z/pm)× → O× (not necessarily primitive) with χ1χ2 = id,
we have a commutative diagram

S(`1,`2)(p
m, χ1, χ2, L) H1 (XG,Kl(p

m)L, ωG(k1, k2)(−DG))

S(`1+χ1,`2+χ2)(OL)⊗ L H1
(
X>1
G,Kl(p),FG(k1, k2)(−DG)

)
⊗ L.

ιm,?

ι?

where the lower horizontal arrow is the map of (4.1).

Remark 4.10. We could also relax the assumption that χ1χ2 be the identity, and replace FG(k1, k2) on
the right-hand side with FG(k1 + χ, k2) where χ = χ1χ2. However, we shall not use this additional
generality in the present paper. �

5. Automorphic cohomology and periods

We now use the p-adic theory of the previous sections to study the p-adic variation of period integrals,
given by pairing a class in H0 of an automorphic vector bundle over H with a class in H2 over G.

5.1. Discrete-series automorphic representations. Let r1 > r2 > 0 be integers. Then there exists
a unique generic discrete series representation Π∞ of GSp4(R) whose central character has finite order,
and which has non-zero (g,K)-cohomology with coefficients in the appropriate twist of V (r1, r2). This
is the representation denoted ΠW

k1,k2
in [LSZ17, §10], taking the parameters (k1, k2) of op.cit. to be

(r1 + 3, r2 + 3).
We fix – for the remainder of this paper – a globally generic automorphic representation Π of GSp4(AQ)

whose component at ∞ is this discrete series representation. We also assume that Π is not a Saito–
Kurokawa lifting. Via the classification of cuspidal automorphic representations of GSp4 announced in
[Art04] and proved in [GT19], this leaves exactly two possibilities:

• (“Yoshida type”) Π lifts to a non-cuspidal automorphic representation of GL4 of the form π1�π2,
where the πi are cuspidal automorphic representations of GL2 generated by holomorphic modular
forms of weights r1 + r2 + 4 and r1 − r2 + 2 respectively.
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• (“General type”) Π lifts to a cuspidal automorphic representation of GL4.

Note that in the present work, unlike its predecessor [LSZ17], we shall allow the case of Yoshida lifts,
since it presents no additional difficulties to do so (although in this special case there exist other, simpler
proofs of our main results).

The “automorphic” normalisations are such that Π is unitary, and its central character is of finite
order, thus equal to χ̂Π for some Dirichlet character χΠ. Note that the sign of this character is (−1)r1−r2 .
We are most interested in the “arithmetic” normalisation of the finite part, Π′f := Πf ⊗ ‖ · ‖−(r1+r2)/2;
this is definable over a number field (while Πf in general is not).

5.2. Coherent cohomology. We define Li, for 0 6 i 6 3, to be the irreducible MS-representations
with the following highest weights:

L0 : λ(r1 + 3, r2 + 3;m) L1 : λ(r1 + 3, 1− r2;m)

L2 : λ(r2 + 2,−r1;m) L3 : λ(−r2,−r1;m),

where m = r1 + r2.

Remark 5.1. Note that the highest weights of the representations Li lie in a Weyl-group orbit, for a
suitably shifted action; geometrically, they are vertices of an octagon centred at (1, 2). �

The following result follows by standard methods from Arthur’s classification:

Theorem 5.2. If Π is of general type, then for each 0 6 i 6 3, Π′f appears with multiplicity 1 as a
Jordan–Hölder factor of the G(Af)-representations

Hi (XG,Q, [Li](−D))⊗C and Hi (XG,Q, [Li])⊗C;

moreover, it appears as a direct summand of both representations, and the map between the two is an
isomorphism on this summand. If Π is of Yoshida type, then the preceding statements apply for i = 1, 2,
while for i = 0, 3, Π′f does not appear as a Jordan–Hölder factor of either representation.

If 0 6 i 6 3 and L is any irreducible representation of MS which is not isomorphic to Li, then
the localisations of Hi (XG,Q, [L](−D)) and Hi (XG,Q, [L]) at the maximal ideal of the spherical Hecke
algebra associated to the L-packet of Π are zero for all i. �

Notation 5.3. We shall write Hi(Πf) for the Π′f-isotypical subspace of Hi (XG,E , [Li](−D)), for some
number field E over which Π′f is definable.

By Serre duality, we have GSp4(Af)-equivariant perfect pairings

(5.1) H3−i (XG,Q, [L3−i])×Hi (XG,Q, [Li](−D))→ Q{r1 + r2},
for each i, where {m} denotes the character mapping a uniformizer at a prime ` to `m. In particular, if
we choose a vector η ∈ H2(Πf), then we may regard it as a linear functional on H1 (XG,E , [L1]), factoring
through projection to H1(Π∨f ), where Π∨ is the contragredient of Π.

5.3. Definition of the period pairing. Let (t1, t2) be integers > 0 such that t1 + t2 = r1 − r2. Then
there exists a non-zero homomorphism of BH -representations

WH(1 + t1, 1 + t2; r1 + r2)→ L1|BH ⊗ α−1
G/H ,

unique up to scalars (where the BH -actions on both source and target factor through the Levi of BH ,
identified with the diagonal torus T ). Hence there is a pushforward map

ι? : H0
(
XH,Q, ωH(1 + t1, 1 + t2; r1 + r2)

)
→ H1

(
XG,Q, [L1]

)
.

Note that the source of this map is simply the space of modular forms of weight (1 + t1, 1 + t2) for H (up
to a twist by the norm character). Combining this with (5.1) we obtain a bilinear, H(Af)-equivariant
period pairing

H0 (XH,E , ωH(1 + t1, 1 + t2))⊗H2(Πf)→ E{r1 − 2},
mapping f ⊗ η to 〈ι?(f), η〉.

Remark 5.4. Note that our period pairing arises by composing the pushforward H0(XH) to H1(XG) with
the Serre duality pairing H1(XG)×H2(XG)→ E, for suitable coefficient sheaves. This will allow us to
study the degree 4 (“spinor”) L-series of Π. Serre duality also gives a pairing H0(XG)×H3(XG)→ E,
and this pairing plays a fundamental role in many works such as [Liu20] and [Zha18], where it is applied
to study the degree 5 (“standard”) L-series of Π. (It would be interesting to compare the periods arising
from the two constructions, but we shall not pursue this here.) �
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5.4. Real-analytic comparison. We now recall the comparison between the cohomological cup prod-
ucts above, and period integrals for automorphic forms, justifying the terminology “period pairing”. (We
shall prove a more general statement in §6.3 below, allowing our modular forms to be nearly-holomorphic
rather than holomorphic, but we give the “base case” here for ease of reading.)

Let K∞ = R× ·U2(R) denote the maximal compact-mod-centre subgroup of G(R)+. The representa-
tion Π∞ has two direct summands as a G(R)+-representation, Π∞ = Π∞,1⊕Π∞,2, which have minimal
K∞-types (Blattner parameters) τ1 = (r1 + 3,−r2− 1) and τ2 = (r2 + 1,−r1− 3) respectively. Since the
minimal K∞-type in an irreducible discrete series has multiplicity 1, we have dim HomK∞(τi,Π∞) = 1
for i = 1, 2.

Remark 5.5. After base-extending to C we can identify K∞ with a conjugate of the Siegel Levi MS, and
τ1 and τ2 correspond to the MS-representations WG(r1 +3,−r2−1) and WG(r2 +1,−r1−3) up to twists
by the norm character. �

Meanwhile, let Hi(Πf)C = Hi (XG,C, [Li](−D)) denote the base-extension to C of the E-vector spaces
defined in Notation 5.3.

Theorem 5.6 (Harris, Su).

(a) For j = 1, 2 there is a canonical isomorphism of irreducible smooth G(Af)-representations

HomK∞(τj ,Π)
{
r1+r2

2

} ∼=−−→ Hj(Πf)C.

(b) If η ∈ H2(Πf)C, corresponding to some K∞-homomorphism Fη : τ2 → Π, then for any integers
t1, t2 > 0 with t1 + t2 = r1− r2, and any holomorphic modular forms f, g of weights 1 + t1, 1 + t2
respectively, then we have

〈ι? (f � g) , η〉 =
1

(2πi)3

∫
R×H(Q)\H(A)

Fη(vt1,t2)f(h1)g(h2) dh,

where vt1,t2 is the standard basis vector of τ2 of weight (−t1 − 1,−t2 − 1). Here we identify f
and g with functions on GL2(Q)\GL2(A).

Proof. For weights (r1, r2) sufficiently far from the walls of the Weyl chamber, this is proved in [HK92],
as an application of general results in §§3.5 and 3.8 of [Har90]. It follows from the results of [Su19] that
the result in fact applies for all regular weights. �

5.5. Hecke eigenvalues at p. Let p be a prime such that Πp is unramified. Recall that we chose above

a number field E such that Π′f = Πf ⊗‖·‖−(r1+r2) is definable over E. We let {α, β, γ, δ} be the elements

of E (unique modulo the action of the Weyl group) such that the spin L-factor is given by

L(Π′p, s− 3
2 ) = L(Πp, s− r1+r2+3

2 ) =
[
(1− αp−s) . . . (1− δp−s)

]−1
.

We order these such that αδ = βγ = p(r1+r2+3)χΠ(p). As noted in the proof of Proposition 3.2 above,
the fact that Πp is unramified and generic implies that (Π′p)

Kl(p) is 4-dimensional, and the two operators

Up,Kl = p−r2 ·
[
Kl(p) diag(p2, p, p, 1) Kl(p)

]
, U ′p,Kl = p−r2 ·

[
Kl(p) diag(1, p, p, p2) Kl(p)

]
acting on this space both have eigenvalues

{
αβ
pr2+1 ,

αγ
pr2+1 ,

βδ
pr2+1 ,

γδ
pr2+1

}
.

More generally, we may consider the Hecke operator Up,Kl on the Kl(pm)-invariants, for any m > 1.
One checks easily that the operators Up,Kl at different levels are compatible with respect to the natural
inclusion maps (since they admit a common set of coset representatives), and one has the following
compatibility:

Proposition 5.7. For m > 2, the endomorphism Up,Kl at level Kl(pm) factors through the canonical
inclusion of the Kl(pm−1) invariants in the Kl(pm) invariants. �

It follows that the space (Π′p)
Kl(pm) has a Up,Kl-equivariant direct-sum decomposition as the sum of

(Π′p)
Kl(p), on which Up,Kl is invertible, and a complementary subspace on which Up,Kl is nilpotent.

Similar statements hold for the dual Π∨ in place of Π, and the transpose of U ′p,Kl with respect to the

natural pairing (Π′p)
Kl(pm) × (Π′∨p )Kl(pm) is given by χΠ(p) · Up,Kl.

Definition 5.8. If η ∈ H2(Πf)
Kl(p), and m > 1, then we define ηm ∈ H2(Πf)

Kl(pm) to be the unique
vector such that the linear functional 〈−, ηm〉 on H1(Π∨f )Kl(pm) has the following properties:

• it vanishes on the Up,Kl = 0 generalised eigenspace,
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• it agrees with η on the image of the Kl(p)-invariants.

It is clear that the ηm are compatible under the “normalised trace” maps,

ηm = 1
p3

∑
γ∈Kl(pm)/Kl(pm+1)

γηm+1.

We have the following reasonably concrete formula:

Proposition 5.9. If η1 = η lies in the U ′p,Kl = λ eigenspace, then we have

ηm =

(
p3−r2

λ

)m−1 ∑
a∈Z/pm−1

(
1

1
1

pma 1

)( 1
p
p

p2

)m−1

η.

Proof. Let η′m denote the right-hand side of the above formula. For m = 1 we evidently have η′1 = η1.
Since the operator U ′p,Kl at level Kl(pm) (for any m > 1) has a set of single-coset representatives which

are lower-triangular and commute with

(
1

1
1

pma 1

)
, it follows easily that η′m is a U ′p,Kl-eigenvector at

level Kl(pm) with the same eigenvalue as η1. Moreover, we can group the coset representatives in the
normalised trace map for Kl(pm−1)/Kl(pm) in such a way that the inner sum becomes U ′p,Kl acting on

η1, and using the eigenvector property of η1 gives the trace-compatibility of the η′m. Hence η′m = ηm for
all m. �

Definition 5.10. Choose a place v of E above p. We say that Π is Klingen-ordinary at p (with respect
to v) if the operator Up,Kl on (Π′p)

Kl(p) has an eigenvalue λ which is a p-adic unit.

It follows from the proof of Lemma 3.22 above that the unit eigenvalue λ is unique if it exists (and
the corresponding eigenspace is 1-dimensional). In particular, λ lies in Ev, rather than in some finite
extension.

5.6. Interpolation of cup-products. We now apply the above constructions to interpolate cup-
products in families. Let L be the completion of E at our place v | p, and O its ring of integers.
We shall assume that r2 > 1 and Π is Klingen-ordinary at p (with respect to the place v); and we choose
some class η ∈ H2 (Πf), lying in the ordinary eigenspace for U ′p,Kl. Thus η defines a linear functional

eKl ·H1 (XG,Kl(p)L, [L1])→ L.

We also choose a flat p-adic O-algebra R, and τ1, τ2 : Z×p → R× continuous characters such that
τ1 + τ2 = r1 − r2 + 2. With these notations, (4.1) gives a map

ι? : S(τ1,τ2)(R)→ H1
(
X>1
G,Kl(p),FR(3 + r1, 1− r2)(−D)

)
= R ⊗̂

Zp
H1
(
X>1
G,Kl(p),FZp(3 + r1, 1− r2)(−D)

)
.

Definition 5.11. Given E ∈ S(τ1,τ2)(R), we define an element 〈ι? (E) , η〉 ∈ R[1/p] as follows: it is the
image of ι?(E) under the composition of maps

R[1/p] ⊗̂
Zp
H1
(
X>1
G,Kl(p),F(3 + r1, 1− r2)(−D)

)
eKl−−→ R[1/p] ⊗̂

Zp
eKl ·H1

(
X>1
G,Kl(p),F(3 + r1, 1− r2)(−D)

)
∼=−→ R[1/p]⊗Qp eKl ·H1

(
XG,Kl(p)Qp , [L1](−D)

)
$−→ R[1/p]⊗Qp eKl ·H1

(
XG,Kl(p)Qp , [L1]

)
〈−,η〉−−−→ R[1/p].

Here the second map is the isomorphism of Theorem 3.6, and the map $ is the“forget cuspidality” map,
given by the natural inclusion of sheaves [L1](−D) ↪→ [L1].

Proposition 5.12. Let φ : R→ L be a continuous ring homomorphism such that

• the composites φ ◦ τi : Z×p → L× are the algebraic characters x 7→ xti , for some integers ti > 1
with t1 + t2 = r1 − r2 + 2;

• the p-adic modular form Eφ ∈ S(t1,t2)(K
p
H ;L) given by specialising E is the restriction to X ord

H of
a classical holomorphic form Eφ ∈M(t1,t2)(p, L).
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Then we have
φ (〈ι? (E) , η〉) = 〈ι1,?(Eφ), η〉 .

Proof. The construction of the pairing 〈−,−〉 is compatible with base-change in R, so it suffices to
assume that R = O, φ is the identity map, and E is the p-adic modular form associated to a classical
modular form E.

If E is cuspidal as a classical modular form, then the result is essentially a restatement of the commu-
tativity of the diagrams in the previous section (in the simple case where m = 1 and the χi are trivial).
However, we are working in a slightly greater degree of generality, where we allow E to be a “fake cusp
form” in the sense of §4.4 above, so it can be non-vanishing at some components of DH lying outside
the ordinary locus; and this is rather more delicate.

We first summarise why the obvious argument does not work. Let (k1, k2) = (r1 + 3, 1− r2). From E
we can form the following two cohomology classes:

• An “algebraic” class zalg = ι1,?(E) ∈ H1 (XG,Kl(p)L, ωG(k1, k2)).

• A “analytic” class zan = ι?(E) ∈ H1
(
X>1
G,Kl(p),FG(k1, k2)(−DG)

)
.

These are compatible, in the sense that the restriction of zalg to X>1
G,Kl(p) coincides with the image of

zan in H1
(
X>1
G,Kl(p),FG(k1, k2)

)
under the “forget cuspidality” map $.

The classicity theorem for ordinary cohomology, used in the construction of our pairing, shows that

there is some zalg
cusp ∈ H1 (XG,Kl(p)L, ωG(k1, k2)(−D)) whose restriction to X>1

Kl (p) is eKl · zan. If

we can show that the image of zalg
cusp under the “forget cuspidality” map $ coincides with eKl · zalg,

then we are done. However, all that we know is that $(zalg
cusp) and eKl · zalg have the same image in

H1
(
X>1
G,Kl(p),FG(k1, k2)

)
, and since we have no analogue of Theorem 3.6 for the non-cuspidal p-adic co-

homology, we do not know that the restriction mapH1 (XG,Kl(p)L, ωG(k1, k2))→ H1
(
X>1
G,Kl(p),FG(k1, k2)

)
is injective on the ordinary part.

We work around this by using overconvergent cohomology. Theorem 3.14 gives a classicity result for
both of the spaces

H1
(
X>1
G,Kl(p)

†, ωG(k1, k2)
)

and H1
(
X>1
G,Kl(p)

†, ωG(k1, k2)(−D)
)
.

Performing the same construction as before for the overconvergent spaces, we obtain a class z† ∈
H1
(
X>1
G,Kl(p)

†, ωG(k1, k2)(−D)
)

with the following properties: the restriction of z† to the p-rank > 1 lo-

cus (forgetting the overconvergence) is zan; and the image of z† in H1
(
X>1
G,Kl(p)

†, ωG(k1, k2)
)

(forgetting

the cuspidality) coincides with the restriction of zalg.

The classes $(zalg
cusp) and eKl · zalg have the same image in H1

(
X>1
G,Kl(p)

†, ωG(k1, k2)
)

(namely eKl ·
$(z†)). Using the classicity theorem for this overconvergent cohomology, we conclude that $(zalg

cusp) and

eKl · zalg coincide. �

5.7. Higher level specialisations. We also have a version of this theorem for specialisations that are
classical of higher p-power levels, using the vectors ηm at level Kl(pm) constructed from η as in §5.5.

Theorem 5.13. Let φ : R → L be a continuous ring homomorphism such that φ ◦ τi has the form
x 7→ xtiχi(x), for some ti as before and finite-order characters χ1, χ2 with χ1χ2 = 1. Suppose that φ(E)
is the image of a classical modular form Eφ ∈M(t1+1,t2+1)(KH(pm), L), for some m� 0.

Then we have
φ (〈ι?(E), η〉) = 〈ιm,?(Eφ), ηm〉 .

Proof. By the same arguments as above, φ (〈ι?(E), η〉) is the image of ιm,?(Eφ) under the unique linear
functional on H1(XG,Kl(p

m)L, [L1]) which factors through the ordinary idempotent eKl and agrees with
〈−, η〉 on the image of H1(XG,Kl(p)L, [L1]). This is exactly the definition of ηm. �

6. “Nearly” coherent cohomology

It is well-known that nearly-holomorphic modular forms can be considered as p-adic modular forms.
In this section, we shall formulate an analogous statement for our p-adic cohomology spaces for GSp4,
and show that the Λ-adic pushforward map constructed in the previous section is compatible with this
additional structure.

25



6.1. “Nearly” sheaves. In this section, we’ll consider coherent cohomology with coefficients in certain
indecomposable representations of PS. This is needed in order to study pushforwards of non-holomorphic
Eisenstein series; we regard it as an analogue for H1 of Siegel varieties of Shimura’s theory of nearly-
holomorphic modular forms.

Definition 6.1. If V is a finite-dimensional algebraic representation of PS, we let Filn V denote the

direct sum of the eigenspaces of W on which the torus

(
x
x

1
1

)
acts with weights > n (i.e. the weight

spaces of weight λ(r1, r2; c) with r1 + r2 + c > 2n).

This filtration is stable under PS, and the PS-action on the graded pieces Grn V = Filn V/Filn+1 V
factors through MS. We shall apply this to V = V (r1, r2; r1 + r2), for some integers r1 > r2 > 0; in this
case the non-zero graded pieces are in degrees 0 6 n 6 r1 + r2.

Definition 6.2.

• Let L̃1 denote the representation V/Filr1+1 V ⊗W (3, 1; 0), and L′1 the smallest filtration subspace

Grr1 V ⊗W (3, 1; 0) of L̃1.

• Dually, let L̃2 denote the PS-representation Filr2 V ⊗W (2, 0; 0), and L′2 the top filtration quotient

Grr2 V ⊗W (2, 0; 0) of L̃2.

There is a natural projection L′1 � L1, and a natural inclusion L2 ↪→ L′2 (both of which are split, but
we do not need this).

Proposition 6.3. The natural maps

H2 (XG,E , [L2](−D))→ H2 (XG,E , [L
′
2](−D))

and

H2
(
XG,E , [L̃2](−D)

)
→ H2 (XG,E , [L

′
2](−D)) ,

induced by the maps of PS-representations L̃2 � L′2 ←↩ L2, are both isomorphisms on the Π′f generalised
eigenspace (and similarly without (−D)).

Proof. This follows readily from the final statement of Theorem 5.2, since the kernel of L̃2 � L′2 and
the cokernel of L2 ↪→ L′2 do not contribute to the Π′f -eigenspace of H2. �

We write η̃ for the unique class in H2
(
XG,E , [L̃2](−D)

)
[Πf ] corresponding to η under the above

isomorphisms. The linear functional 〈−, η̃〉 is thus a homomorphism

H1
(
XG,E , [L̃1]

)
→ E,

characterised as follows:

• it factors through the Π∨f -isotypical part;
• its restriction to H1 (XG,E , [L

′
1]) is the composite of the projection L′1 � L1 and pairing with η.

This extended homomorphism will play a role analogous to Shimura’s “holomorphic projection” op-
erator in the GL2 theory.

6.2. Pullback and pushforward of “nearly” sheaves.

Proposition 6.4 (cf. [LSZ17, Proposition 4.3.1]). Suppose (r1, r2; c) is a G-dominant weight. The
restriction to H of the irreducible representation VG(r1, r2; c) of G is a direct sum of distinct irreducible H-
representations. The representation VH(t1, t2; c) appears as a direct summand if and only if the integers
t1, t2 satisfy t1 + t2 = r1 + r2 mod 2 and

r1 − r2 6 t1 + t2 6 r1 + r2, |t1 − t2| 6 r1 − r2. �

Since the cocharacter used to define the filtration is strictly dominant with respect to BH , any repre-
sentation of BH has a canonical BH -invariant filtration, with the action on the graded pieces factoring
through T ; and this is compatible with the above branching from G to H.

We shall be particularly interested in H-subrepresentations of the form VH(t1, t2; c) with t1 +t2 = r1−
r2; note that there are precisely r1−r2+1 such subrepresentations. We shall call these subrepresentations
small.
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Recall now the larger sheaves L̃2 � L′2 ←↩ L2 defined above. Since VH(t1, t2; r1 + r2) is a direct
summand of V , we have a projection map

L̃2|BH = (Filr2 V ⊗W (2, 0; 0)) |BH → VH ⊗ λ(1, 1; 0)

given by the tensor product of the projections V |H → VH and W (2, 0; 0)|H → λ(1, 1; 0). This determines
a homomorphism

ι?nearly : H2
(
XG,Q, [L̃2](−D)

)
→ H2

(
XH,Q, [VH ]⊗ ωH(1, 1; 0)(−D)

)
.

Note that the composition of ι?nearly with the projection VH → VH/Filr2+1 VH ∼= WH(1−t1, 1−t2; r1 +

r2) factors through H2 (XG,Q, [L
′
2](−D)), and we can (and do) normalise such that this composite agrees

with ι? on the image of L2 ↪→ L′2.
Dually, we obtain a map

ιnearly
? : H0

(
XH,Q, [VH ]⊗ ωH(1, 1; 0)

)
→ H1

(
XG,Q, [L̃1]

)
.

The source of this map is the space of nearly-holomorphic modular forms for H of weight (1 + t1, 1 + t2).
We thus have an extended period pairing

H0
(
XH,E , [VH ]⊗ ωH(1, 1; 0)

)
⊗H2(Πf)→ E, (f, η) 7→ 〈ιnearly

? (f), η̃〉.

From the construction of η̃, we see that the restriction of this pairing to the space of holomorphic forms
agrees with the period pairing of §5.3 above.

6.3. Archimedean theory: the Hodge splitting. We can compute H2(XG,C, [L̃2](−D)) in terms
of automorphic forms, using results of Su [Su19]. As above, let K∞ be the standard maximal compact
subgroup of G(R)+, fixing the point h = iI2 ∈ H2. The Shimura cocharacter determines a decomposition
of Lie(G)C as k ⊕ p+ ⊕ p−, where k = Lie(K∞)C, and p+ (resp. p−) is identified with the holomorphic
(resp. antiholomorphic) tangent space ofH2 at h. The parabolic Ph ⊂ G(C) with Lie algebra p = k⊕p− is
a conjugate of the Siegel parabolic PS, so we may identify any PS-representation V with a representation
of P∞.

The main theorem of op.cit. gives a canonical and Hecke-equivariant isomorphism

H∗(XG,C, [V ]) ∼= H∗
(
p,K∞;A(G)K ⊗ V

)
,

for any level K and any algebraic representation V of PS, where A(G) is the space of automorphic forms
on G (twisted by an appropriate power of the norm character so that the central characters match).
The relative Lie algebra cohomology on the right-hand side can be computed as the cohomology of the
complex with j-th term

HomK∞

(∧j
(p−)⊗ V ∨,A(G)K

)
.

Lemma 6.5. Let Π∞,2 be the G(R)+-submodule of Π∞ described in §5.4 above. Then we have

HomK∞

(∧j
(p−)⊗ (L̃2)∨, Π∞,2

)
= 0

for all j 6= 2, and for j = 2 this space is 1-dimensional and maps isomorphically to its image with L2 in
place of L̃2.

Proof. An explicit description of the K∞-types appearing in Π∞,2 is given in [Sch17]. The minimal K∞-
type is τ2 = (r2 +1,−r1−3), and the other K∞-types lie in the convex cone {τ2 +m ·(1, 0)+n ·(−1,−1) :
m,n > 0}.

On the other hand, the K∞-types appearing in (L̃2)∨ are all contained in a different convex cone,

{(r2 + 2,−r1) +m · (1, 1) +n · (−1, 1) : m,n > 0}. So the weights of (L̃2)∨⊗
∧j

(p−) are contained in the

translate of this cone by the highest weight of
∧j

(p−); this translation is by (0,−2) if j = 1, by (−1,−3)
if j = 2, and by (−3,−3) if j = 3. So if j 6= 2, these regions have empty intersection, whereas if j = 2
the intersection consists only of τ2, which appears in both representations with multiplicity 1. �

Thus the Πf -isotypical part of the (p,K∞)-cohomology is represented by a complex concentrated in

degree 2, giving a a canonical space of Dolbeault differential forms representing H2
(
XG,C, [L̃2]

)
[Πf ]: the

vector-valued automorphic forms whose coordinate projections lie in the minimal K∞-type of Πf⊗Π∞,2.

Moreover, these differentials in fact take values in [L2], regarded as a subsheaf of [L̃2] via the Hodge

splitting: the projections of these differentials to the other graded pieces of [L̃2] are trivial, since the
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corresponding K∞-types do not appear in Π∞,2. Since Π is cuspidal, these differential forms are rapidly-
decreasing.

Now let t1, t2 be integers with t1 + t2 = r1 − r2, as before. The analogue of this K∞-equivariant
splitting for H in place of G is the Hodge splitting in the category of C∞ vector bundles,

[VH ]⊗ ωH(1, 1; 0)→ ωH(1 + t1, 1 + t2),

which allows nearly-holomorphic modular forms to be interpreted as scalar-valued real-analytic functions
onH(Q)\H(Af), transforming underKH,∞ via the character (1+t1, 1+t2). Evidently these two splittings
are compatible (since they are both given by projection to eigenspaces for the action of the centre of
K∞, which is contained in KH,∞), so we deduce the following theorem:

Theorem 6.6. Let E ∈ H0 (XH,C, [VH ]⊗ ωH(1, 1; 0)) and let E∞ ∈ H0 (XH,C, ω(t1 + 1, t2 + 1)C∞) be
its image under the Hodge splitting. If η and Fη are as in Theorem 5.6, then we have

〈ιnearly? (E), η̃〉 =
1

(2πi)3

∫
R×H(Q)\H(A)

Fη(vt1,t2)E∞(h) dh.

Proof. We know that the [L̃1]-valued current representing ιnearly
? (E) is the direct sum of ι?(E∞) and

some other terms lying in other graded pieces of the sheaf [L̃1]. By the previous lemma, η̃ pairs to zero

with the latter; on the other hand, we clearly have 〈ιnearly
? (E), η̃〉 = 〈ι?(E∞), η〉 since η̃ maps to η in

[L2]. �

Remark 6.7. This construction is strongly analogous to one appearing in Harris’ work [Har04], which
also considers period integrals of automorphic forms for G multiplied by nearly-holomorphic Eisenstein
series on H. However, our treatment differs from Harris’ in the following point: in defining η̃, we used
G(Af)-equivariance to split a cohomology exact sequence on G (relating the cohomology of [L2] and L̃2]).
Harris uses instead a splitting on H, characterised by equivariance for the action of H(Af) (see the proof
of Proposition 1.10.3 of op.cit). It is not clear to us whether these constructions agree in general. �

6.4. A p-adic splitting. We now define a partial p-adic analogue of the Hodge splitting. Let us briefly
recall the definition of the torsor TG defined in §2.3.3 above. Over the integral model of the open Shimura
variety YG of prime-to-p level Kp · G(Zp), we have a locally free sheaf H1

dR(A) of rank 4, with a rank

2 locally free subsheaf Fil1H1
dR(A). There is a canonical extension of H1

dR(A) to a locally free sheaf
H1

dR(A)can on XG, fitting into a short exact sequence of locally free sheaves

0→ ωAΣ → H1
dR(A)can → ω∨AΣ → 0,

where AΣ is the semiabelian variety over XG extending A, and ωAΣ its conormal sheaf at the identity
section. Moreover, if IGG(p∞)ord denotes the preimage in IGG(p∞) of the ordinary locus Xord

G ⊂ XG,
then over Xord

G there is a splitting
H1

dR(A)can ∼= ωAΣ ⊕ U ,
where U is the unit root subsheaf [Liu19, §3.12].

Over the Igusa tower IGG(p∞), we have a morphism of p-divisible groups α : µp∞ ↪→ AΣ[p∞], and
hence a canonical map ωAΣ

G
→ OIGG(p∞), i.e. a class [α] ∈ H0(IGG(p∞), ω∨AΣ).

Proposition 6.8. There exists a unique lifting of [α] to a class [α]ur ∈ H0(IGG(p∞),H1
dR(A)can) with

the following property: its restriction to IGG(p∞)ord takes values in the subsheaf U .

Proof. By construction, there is a unique class [α]ord ∈ H0(IGG(p∞)ord,H1
dR(A)can) lifting the restriction

of [α] and taking values in the unit-root subsheaf U . Since IGG(p∞)ord is dense in IGG(p∞), it follows
that [α]ur is unique if it exists.

Let IGG(p∞)◦ denote the preimage in IGG(p∞) of the open Shimura variety YG (mod p). Since the
complement of IGG(p∞)◦∪IGG(p∞)ord has codimension > 2 in IGG(p∞) (and the sheaf is locally free),
it suffices to find a second section [α]◦ over IGG(p∞)◦ which coincides with [α]ord where both are defined.

We shall carry this out using a generalisation of the construction of the unit-root splitting given in
[Iov00]. Recall that if A/S is an abelian scheme over an arbitrary base S, then there exists a universal
vectorial extension of A, which is universal among short exact sequences of S-group schemes

0→ V → I → A→ 0

where V is a vector group. Moreover, the space of invariant differentials Inv(I/S) is isomorphic to
H1

dR(A/S), with the subspace Inv(A/S) corresponding to Fil1. Taking associated formal groups, we

have a short exact sequence 0→ V̂ → Î → Â→ 0.
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If we are given a morphism α : Ĝm ↪→ Â, and Îα denotes the pullback of this extension along α, we
have a diagram of exact sequences

0 V̂ Î Â 0

0 V̂ Îα Ĝm 0

However, any extension of a formal multiplicative group by an additive one must be split, so there is a
(necessarily unique) map Ĝm → Îα splitting the lower sequence. Thus the composite

vα : Inv(I/S)→ Inv(Iα/S)→ Inv
(
Ĝm/S

)
is an extension of the pullback map Inv(A/S) → Inv

(
Ĝm/S

)
∼= OS to H1

dR(A/S). Moreover, if p is

topologically nilpotent on S and A is ordinary, then Â is itself of multiplicative type. Hence we have a
splitting of the top row, which is clearly compatible with the splitting of the bottom row; and the main
result of [Iov00] shows that this construction recovers the unit-root splitting. This gives the required
section [α]◦. �

Notation 6.9. Let Q be the subgroup PS ∩PKl of G, where PS is the standard Siegel parabolic subgroup
and PKl = J−1PKlJ is the lower-triangular Klingen.

Note that T is a Levi subgroup of Q, so any weight λ(r1, r2; c) can be regarded as a representation of
Q.

Definition 6.10. Let T Kl denote the sheaf over X>1
G,Kl(p

∞) parametrising bases f1, . . . , f4 of H1
dR(A)can

compatible with the filtration and polarisation, and with the additional property that the pullback of f4

to IG>1
G,Kl(p

∞) is a scalar multiple of [α]ur. This is is a reduction of structure of the PS-torsor T to a

Q-torsor over X>1
G,Kl(p

∞).

One can interpret the comparison morphism of §3.2 using this torsor. Let k1 > k2 be integers. We
shall see in Lemma 6.11(i) below that the inclusion of the highest weight space λ(k1, k2) into WG(k1, k2)
has a Q-equivariant splitting. If we pull back further to IGG(p∞), the sheaf [λ(k1−k2, 0)] has a canonical
trivialisation, so we obtain a morphism of sheaves

[WG(k1, k2)]→ [WG(k2, k2)] = (detωA)k2 .

Pushing back down to X>1
G,Kl(p), this gives us a morphism

[W (k1, k2)]→
(
π?OIGG(p∞)

)Γ=k1−k2 ⊗ (detωA)k2 ,

which is the sought-after comparison morphism. The advantage of this new interpretation is that we
can easily see how to extend the comparison morphism to larger coefficient sheaves, using some simple
Lie-theoretic computations.

Lemma 6.11.

(i) Let k1 > k2. Then there is a unique (up to scalars) Q-equivariant map

W (k1, k2; c)→ λ(k1, k2; c).

(ii) Let r1 > r2 > 0. Then there is a unique (up to scalars) Q-equivariant map

V (r1, r2; r1 + r2)→ λ(r1,−r2; r1 + r2).

This map factors through V/Filr1+1 V .
(iii) The restriction of the homomorphism (ii) to Grr1 V is non-trivial, and factors as the composite of

the projection from Grr1 V to its unique MS-summand isomorphic to W (r1,−r2; r1 +r2), composed
with the map from (i) for this subrepresentation.

Proof. Part (i) is clear, since the image of Q in the Levi quotient of PS is the lower-triangular Borel.
For part (ii), we argue analogously, using the fact that Q is contained in a Weyl-group conjugate of the
standard Borel subgroup of G, and λ(r1,−r2; c) is the lowest-weight vector for this conjugate Borel. The
compatibility (iii) is clear by considering the weights appearing in each factor. �
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Proposition 6.12. The morphism of Q-representations

Grr1 V ⊗W (3, 1; 0) −→W (r1 + 3, 1− r2; r1 + r2) −→ λ(r1 + 3, 1− r2; r1 + r2)

has a unique Q-equivariant extension to the whole of L̃1.

Proof. This is an easy consequence of Lemma 6.11(iii). �

In terms of sheaves, this gives the following.

Definition 6.13. For r1 > r2 > 0, we define a map

[L̃1]→
(
π?OIGG(p∞)

)Γ=r1+r2+2 ⊗ (detωA)1−r2

using the Q-equivariant morphism of Proposition 6.12.

Remark 6.14. If r2 = 0, so that [V ] = Symr1 H1
dR(A), this morphism has a simple explicit description:

it is given by restriction to Symr1 H1
dR(G1) and the trivialisation G1

∼= µp∞ over IGG(p∞). �

Corollary 6.15 (“Unit root splitting”). For any r1 > r2 > 0, we have a diagram of cohomology groups

H1
(
XG,Kl(p)

>1, [L̃1](−D)
)

H1
(
XG,Kl(p)

>1, [L1](−D)
)

H1
(
XG,Kl(p)

>1,F(r1 + 3, 1− r2)(−D)
)
.

6.5. Branching to H. Recall that we have defined a homomorphism of formal schemes

ι∞ : Xord
H (p∞)→ X>1

G,Kl(p
∞).

The space Xord
H (p∞) classifies pairs of ordinary elliptic curves (E1, E2) with prime-to-p level structure

and isomorphisms

γ : E1[p∞]◦
∼=−−→ E2[p∞]◦.

Hence there is a reduction of ι∗∞(T Kl) to a torsor for the group {diag(x, x, y, y) : x, y ∈ O×}.

Theorem 6.16. Let VH be a small subrepresentation of V given by a pair (t1, t2) as above. Then the
composite

H0(Xord
H , ω1,1 ⊗ [VH ](−D))→ H1(X>1

G , L̃1(−D))→ H1
(
X>1
G ,F(r1 + 3, 1− r2)(−D)

)
coincides with the composite of the unit-root splitting

H0(Xord
H , ω1,1 ⊗ [VH ](−D))→ H0(Xord

H , ω(t1+1,t2+1)(−D))

and the pushforward

H0(Xord
H , ω(t1+1,t2+1)(−D))→ H1(X>1

G , L1(−D))→ H1
(
X>1
G ,F(r1 + 3, 1− r2)(−D)

)
.

Proof. We need to compare two maps of sheaves on Xord
H (p∞). The first is the composite

VH(t1, t2)→ ι∗∞(V/Filr1+1)→ ι∗∞ ([λ(r1,−r2)]) ,

where the second map is given by the splitting of Corollary 6.15. The second is the map

VH(t1, t2)→ ωt1,t2 → ι∗ ([λ(r1,−r2)]) ,

where the first map comes from the unit-root splitting on H. Via our torsor formalism we are reduced

to checking the equality of two morphisms of representations of the group {
( x

x
y
y

)
: x, y ∈ O×}, and

this is obvious. �

Corollary 6.17. Theorem 5.13 holds as stated if we assume only that φ(E) is the image under the p-adic
unit-root splitting of a classical nearly-holomorphic modular form. �

Remark 6.18. If VH is any irreducible H-subrepresentation of V (not necessarily small), then the same ar-

gument as above extends to show that the composite H0(Xord
H , ω1,1⊗ [VH ](−D))→ H1(X>1

G , L̃1(−D))→
H1
(
X>1
G ,F(r1 + 3, 1− r2)(−D)

)
factors through projection to ω1,1 ⊗ [Grr1 VH ], regarded as a subsheaf

of [VH ] over Xord
H via the unit root splitting. The small subrepresentations are precisely those where

Grr1 VH is the smallest nonzero filtration step. �
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7. Families of Eisenstein series

The theory developed in the previous sections allows us to define p-adic measures interpolating the
cohomological periods 〈ιm,?(E), η〉, as E varies over the specialisations of some family of cuspidal p-adic
modular forms E on H. In this section, we shall specify the particular families E which we shall consider,
which will be built up from Eisenstein series and cusp forms for GL2. We shall prove in the remaining
sections that the resulting periods 〈ιm,?(E), η〉 are special values of L-functions.

7.1. Non-holomorphic Eisenstein series. Let Φf ∈ S(A2
f ,C) be a Schwartz function.

Definition 7.1. For k > 1, τ = x+ iy in the upper half-plane, and s ∈ C with Re(s) > 1, we define

E(k,Φf )(τ ; s) :=
Γ(s+ k

2 )

(−2πi)kπs−
k
2

∑
(m,n)∈Q2−(0,0)

Φf(m,n)y(s−k2 )

(mτ + n)k|mτ + n|2s−k
.

This can be extended to all s ∈ C by analytic continuation in s.

Remark 7.2. If Φf is the indicator function of (0, α) + Ẑ2, this series is E
(k)
α (τ, s− k

2 ) in the notation of
[LLZ14]. �

If χ is a Dirichlet character, and χ̂ the corresponding adelic character as in §2.2, we define

Rχ(Φf) :=

∫
a∈Ẑ×

χ̂(a) (( a 0
0 a ) · Φf) d×a,

the projection of Φf to the χ̂−1-isotypical subspace for Ẑ×, and we set E(k,Φf )(τ ;χ, s) := E(k,Rχ(Φf ))(τ ; s).
Note that E(k,Φf )(−;χ, s), vanishes if (−1)kχ(−1) 6= 1.

We can interpret E(k,Φf )(−; s) and E(k,Φf )(−;χ, s) as C∞ sections of a line bundle on the GL2 Shimura
variety. More precisely, the C∞ sections of the automorphic line bundle ω(k) are the smooth functions
f : GL2(Af)×H → C satisfying

f(g, τ) = (ad− bc)(cτ + d)−kf
((

a b
c d

)
g, aτ+b

cτ+d

)
for all

(
a b
c d

)
∈ GL+

2 (Q).

With these notations, E(k,Φf )(s) := (g, τ) 7→ ‖ det g‖s+1−k/2E(k,g·Φ)(τ ; s) is a C∞ section of ω(k), and
similarly with χ; and E(k,Φf )(χ, s) transforms under the centre of GL2(Af) by χ̂−1‖ · ‖2−k.

7.2. Nearly holomorphic specialisations.

Proposition 7.3. For integers j ∈ [0, k−1], the C∞ section E(k,Φf )(k2−j) of ω(k) is nearly-holomorphic;
and if Φf takes values in a number field E, this section is defined over E.

Notation 7.4. We let ψ denote the unique additive character A/Q→ C× satisfying ψ(x∞) = exp(−2πix∞)
for x∞ ∈ R. For Φf ∈ S(Af), we write Φ′f(u, v) for the Fourier transform in the second variable only:

Φ′f(u, v) :=

∫
Af

Φf(u,w)ψ(vw) dw.

If we define the “q-expansion” of a nearly-holomorphic form to be the Fourier expansion of its holo-
morphic part, then for n > 0 we have

an

(
E(k,Φf )(k2 − j)

)
=

∑
(u,v)∈(Q×)2

uv=n

ujv(k−1−j) sgn(u)Φ′f(u, v).

The constant term a0

(
E

(k)
Φf

(k2 − j)
)

is zero unless j = 0 or j = k − 1, in which case it is given by a

special value of a linear combination of Hurwitz zeta functions. For our purposes it suffices to note that
if Φf(−, 0) = Φf(0,−) = 0, then the constant term is zero for all j.

7.3. Families of p-adic Eisenstein series. We shall now define a family of local Schwartz functions
Φp,µ,ν , depending on a choice of two Dirichlet characters µ and ν of p-power conductor.

Definition 7.5. We define Φp,µ,ν ∈ S(Q2
p,C) as the unique function such that

Φ′p,µ,ν(x, y) =

{
µ(x)ν(y) if x, y ∈ Z×p ,

0 otherwise.
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(The values of Φp,µ,ν can be made explicit in terms of Gauss sums, but we do not need this.) Note
that Φp,µ,ν transforms under ( a 0

0 d ), a, d ∈ Z×p , by µ(a)ν−1(d) = µ̂−1(a)ν̂(d).

Now let Φ(p) be a Schwartz function on (Ap
f )2 with values in a number field E, and χ(p) a Dirichlet

character of prime-to-p conductor such that Φ(p) satisfies ( a 0
0 a ) · Φ(p) = χ̂(p)(a)−1Φ(p) for a ∈ (Ẑ(p))×.

Let L be the completion of E at some prime above p. If µ, ν are Dirichlet characters of p-power
conductor as above, and we set χ = χ(p)µν−1, then the function Φµ,ν = Φ(p)Φp,µ,ν is in the image of the
idempotent Rχ.

Theorem 7.6. Let R = ΛL(Z×p × Z×p ), with its two canonical characters κ1, κ2. For each Φ(p) taking

values in L, there exists an element EΦ(p) (
κ1, κ2;χ(p)

)
∈ Sκ1+κ2+1(R), whose specialisation at (a+µ, b+

ν), for integers a, b > 0, is the p-adic modular form associated to the algebraic nearly-holomorphic form

(g, τ) 7→ ν̂(det g)−1 · E(a+b+1,Φµ,ν)
(
g, τ ;χ(p)µν−1, b−a+1

2

)
∈Mnh

a+b+1.

For g ∈ GL2(Ap
f ), we have g · EΦ(p)

= ‖ det g‖1−κ1 · Eg·Φ(p) . The q-expansion of EΦ(p)

at ∞ is∑
u,v∈(Z×

(p)
)2

uv>0

sgn(u)uκ1vκ2(Φ(p))′(u, v)quv.

The Eisenstein series EΦ(p)(−;χ(p)) is identically 0 on the components of SpecR where κ1(−1)κ2(−1) 6=
−χ(p)(−1).

This result is essentially a restatement of Katz’s theory of the Eisenstein measure; we have stated
it in a slightly unusual form in order to spell out precisely the GL2 (Ap

f )-equivariance properties of the
construction. Note that the factor ν̂(det g)−1 is required in order that the right-hand side be invariant
under ( 1 ∗

∗ ) ⊂ GL2(Zp), which is a prerequisite for it to be the specialisation of a p-adic modular form.

7.4. Input to the machine: the case of GSp4. Suppose we are given an automorphic representation
Π as before, which is globally generic and cohomological with coefficients in V (r1, r2), and unramified
and Klingen-ordinary at p. We set d = r1 − r2 > 0, and χΠ the Dirichlet character such that Π has
central character χ̂Π.

Let R = ΛL(Z×p ×Z×p ) with its two canonical characters j1, j2. Given Φ
(p)
1 ,Φ

(p)
2 , we consider the family

of p-adic modular forms for H given by

EΦ
(p)
1 (d− j1, j2;χΠ)� EΦ

(p)
2 (0, j1 − j2; id).

By construction, the specialisation of this family at (a1 + ρ1, a2 + ρ2), for integers a1, a2 such that
d > a1 > a2 > 0 and Dirichlet characters ρi of p-power conductor, is the product of two Eisenstein series
of the form

ν̂i(det g)−1E(ki,Φi)(χi, si),

where the parameters are given by

k1 = 1 + d− a1 + a2, k2 = 1 + a1 − a2,

χ1 = ρ−1
1 ρ−1

2 χΠ, χ2 = ρ−1
1 ρ2,

s1 = 1−d+a1+a2

2 , s2 = 1+a1−a2

2 .

The Schwartz functions Φf,i are given by Φf,i = Φ
(p)
i × Φp,µi,νi , where Φ

(p)
i are chosen arbitrarily, and

the characters µi, νi are given by

µ1 = ρ−1
1 , µ2 = id,

ν1 = ρ2, ν2 = ρ1ρ
−1
2 .

Remark 7.7. Note that our choices are made such that the Eisenstein series on the second factor of H is
holomorphic, although the one on the first factor is only nearly-holomorphic in general. �

We also choose a vector η ∈ H2(Πf), lying in the ordinary U ′p,Kl-eigenspace at level Kl(p). From the

theory of §4, we obtain a measure L ∈ R, whose specialisation at (a1 +ρ1, a2 +ρ2) interpolates the period
integral of η against the specialisation of the above family.
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We shall see in the following chapters that if (−1)a1ρ1(−1) 6= (−1)a2ρ2(−1), this period integral will
be (up to various elementary factors) equal to the product of L-values

L

(
Π⊗ ρ−1

1 ,
1− d

2
+ a1

)
· L
(

Π⊗ ρ−1
2 ,

1− d
2

+ a2

)
.

On the other hand, if (−1)a1ρ1(−1) = (−1)a2ρ2(−1), then both of the Eisenstein series will be identically
0. This shows that we can only interpolate products of twisted L-values of opposite parity, a condition
which is familiar from the setting of Kato’s GL2 Euler system.

7.5. Input to the machine: the case of GSp4×GL2. Now let us suppose we are given an auxiliary
automorphic representation σ of GL2, corresponding to a holomorphic modular form of weight ` > 1,
and suppose that

d′ = r1 − r2 + 1− ` > 0.

For λ a holomorphic modular form in the space of σ, we consider the family of p-adic modular forms
over R = ΛL(Z×p ) given by

EΦ(p)

(d′ − j, j;χΠχσ)� λ.

Note that at j = a+ ρ with 0 6 a 6 d′, this specialises to

ρ̂(deth)−1E(Φf ,d
′+1)

(
h1; ρ−2χΠχσ,

1−d′
2 + a

)
λ(h2)

where Φf = Φ(p)Φ(p,ρ−1,ρ). We shall see in the next chapter that the cup-product of this series with η
gives a zeta-integral computing

L
(

Π⊗ σ ⊗ ρ−1, 1−d′
2 + a

)
.

Remark 7.8. One checks that for ρ any Dirichlet character, the critical values of L(Π⊗ ρ, s) are exactly
the values s = 1−d

2 + a, for integers 0 6 a 6 d. Similarly, the critical values of L(Π ⊗ σ ⊗ ρ, s) are the

s = 1−d′
2 + a for 0 6 a 6 d′. So in each case we hit the full interval of critical values of the relevant

L-function (and not any others!).
If we have ` > r1 − r2 + 2, then the L-function for Π⊗ σ may still have some critical values; but we

do not see them by this method. �

8. Integral formulae for L-functions I: local theory

In this section and the next, we recall a general formula which will be used to relate the cohomological
periods studied above to critical values of L-functions, based on work of Novodvorsky and others. In
this section, we let F be an arbitrary local field, and ψF a non-trivial additive character F → C×. We
use ψF to define a character ψ : N(F )→ C by by

ψ(n) = ψF (x+ y), n =

((
1 x ∗ ∗

1 y ∗
1 −x

1

))
.

8.1. Siegel sections. If Φ is a Schwartz function on F 2, χ a smooth unitary character of F×, and
g ∈ GL2(F ), we define

fΦ(g;χ, s) := |det g|s
∫
F×

Φ((0, a)g)χ(a)|a|2sd×a.

This integral converges absolutely for Re(s) > 0 and defines an element of the principal series rep-

resentation I(| · |s− 1
2 , χ−1| · | 12−s) of GL2(F ), the normalized induction of the representation ( x ∗y ) 7→

|x/y|s− 1
2χ(y)−1 of the Borel. It has meromorphic continuation in s; if v is a finite place, it is even a

rational function of qs (where q is the cardinality of the residue field, as usual).

Remark 8.1. Note that this is an un-normalised Siegel section, and hence is not necessarily entire. �

We define the Whittaker transform WΦ(g;χ, s) of fΦ(g;χ, s) to be the function

WΦ(g;χ, s) =

∫
F

fΦ (η ( 1 x
0 1 ) g;χ, s)ψF (x)dx, η =

(
0 1
−1 0

)
.

If s is such that I(| · |s− 1
2 , χ−1| · | 12−s) is irreducible, then every vector in this representation is fΦ for

some Φ, and the map fΦ 7→ WΦ gives the isomorphism from I(| · |s− 1
2 , χ−1| · | 12−s) to its Whittaker

model (with respect to the inverse character ψ̄F ).
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For fixed g and Φ, WΦ(g;χ, s) is entire as a function of s; if v is nonarchimedean, χ and ψF are
unramified, and Φ is the characteristic function of O2

F , then WΦ(1;χ, s) is identically 1. These functions

satisfy a functional equation: if Φ̂ is the 2-variable Fourier transform defined by

Φ̂(x, y) =

∫
F 2

Φ(u, v)ψF (xv − yu) dudv,

then we compute that

(8.1) W Φ̂(g;χ−1, 1− s) = χ(det g)WΦ(g;χ, s).

Remark 8.2. The values of WΦ on the diagonal torus can be given in terms of the “partial” Fourier
transform

(8.2) Φ′(x, y) :=

∫
F

Φ(x,w)ψF (yw) dw.

With this notation, we have

WΦ(( x y ) ;χ, s) = χ(−1)|x|s|y|s−1

∫
a

Φ′
(
xa, 1

ya

)
χ(a)|a|2s−1 d×a. �

8.2. Definition of the local integrals. Let π be an irreducible smooth representation of G(F ), with
unitary central character χπ. We assume π is generic, i.e. that π is isomorphic to a space of functions
G(F ) → C satisfying W (ng) = ψ(n)W (g) for n ∈ N(F ). Such a model is unique (see [Rod73, Thm. 3]
if F is nonarchimedean, and [Wal83, Thm. 8.8(1)] if F is archimedean). We fix a choice of isomorphism
between π and its Whittaker model, and for ϕ ∈ π, we write Wϕ for the corresponding Whittaker
function.

The two-parameter GSp4 integral. Let χ1, χ2 be smooth characters of F× such that χ1χ2 = χπ.

Definition 8.3. We define

Z(ϕ,Φ1,Φ2, s1, s2) :=

∫
ZG(F )NH(F )\H(F )

Wϕ(h)fΦ1(h1;χ1, s1)WΦ2(h2;χ2, s2) dh,

where ϕ ∈ π and each Φi is a Schwartz function on F 2.

Substituting in the definition of WΦ2(−) as an integral, we obtain the following alternative formula:

Proposition 8.4. For ϕ ∈ π, the integral

Bϕ(g, s) :=

∫
F×

∫
F

Wϕ

((
a
a
x 1

1

)
w2g

)
|a|s−

3
2χ−1

2 (a) dxd×a, w2 =

(
1

1
−1

1

)
converges for Re(s)� 0 and has meromorphic continuation to all values of s; and we have

Z(ϕ,Φ1,Φ2, s1, s2) =

∫
DNH\H

Bϕ(h; s1 − s2 + 1
2 )fΦ1(h1;χ1, s1)fΦ2(h2;χ2, s2) dh,

where D denotes the torus {diag(p, q, p, q) : p, q ∈ F×}.

The function Bϕ(g; s) is an element of the Bessel model of the representation π: it transforms by a
character under left-translation by the Bessel subgroup DNS. On the other hand, the integral defining
Bϕ in terms of Wϕ is an instance of Novodvorsky’s local zeta integral for L(π ⊗ χ−1

2 , s) [Nov79]. These
two facts will be crucial in our analysis of the two-parameter integral Z(ϕ,Φ1,Φ2, s1, s2).

The GSp4×GL2 integral. Similarly, if π is as before and σ is a generic representation of GL2(F ), we let
χ = χπχσ and define

Z(ϕ, λ,Φ, s) :=

∫
ZG(F )NH(F )\H(F )

Wϕ(h)fΦ(h1;χ, s)Wλ(h2) dh,

where ϕ ∈ π and λ ∈ σ, and Wλ denotes the image of λ in the Whittaker model of σ, again with respect
to the opposite character ψ̄F .

Remark 8.5. Note that if χ2| · |2s2−1 /∈ {| · |±1} (so that σ = I(| · |s2−1/2, | · |1/2−s2χ−1
2 ) is irreducible),

we can regard the first integral as a special case of the second, taking λ = fΦ2(−;χ2, s2). However, it
is convenient to treat the first integral separately in order to understand the reducible cases, and the
variation in s2. �

Essentially the same analysis of the local zeta integrals as in [Sou84] and [GPSR87] yields the following:
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Proposition 8.6.

(i) There exists a positive real number R > 0, depending on π and σ, such that the local zeta integral
Z(ϕ, λ,Φ, s) converges absolutely for Re(s) > R, for all choices of (ϕ, λ,Φ). Furthermore, each
Z(ϕ, λ,Φ, s) has a meromorphic continuation in s, and is a rational function of qs if F is
nonarchimedean.

(ii) There exists a positive real number R > 0, depending on π and s2, such that the local zeta
integral Z(ϕ,Φ1,Φ2, s1, s2) converges absolutely for Re(s1) > R, for all choices of (ϕ,Φ1,Φ2).
Furthermore, each Z(ϕ,Φ1,Φ2, s1, s2) extends to a meromorphic function of (s1, s2) ∈ C2, and
is a rational function of (qs1 , qs2) if F is nonarchimedean. �

8.3. Nonarchimedean L-factors. In this section we assume F is nonarchimedean.

Definition 8.7. Let L(π, s) and L(π ⊗ σ, s) denote the local L-factors associated to π and to π ⊗ σ via
Shahidi’s method, as in [GT11a, §4].

By construction, these L-factors coincide with the Artin L-factors of the Weil–Deligne representations
rec(π) and rec(π)⊗rec(σ) respectively, where “rec” denotes the local Langlands correspondence of op.cit..

Theorem 8.8. (i) The vector space of functions on C2 spanned by the Z(ϕ,Φ1,Φ2, s1, s2), as the data
(ϕ,Φ1,Φ2) vary, is a fractional ideal of C[q±s1 , q±s2 ] containing the constant functions. This fractional
ideal of C[q±s1 , q±s2 ] is generated by the product of L-factors

L
(
π, s1 + s2 − 1

2

)
L
(
π ⊗ χ−1

2 , s1 − s2 + 1
2

)
.

(ii) If π, χi and ψF are unramified, ϕ0 ∈ π is the unique spherical vector such that Wϕ0(1) = 1, and
Φ0

1 = Φ0
2 = ch(O2

F ), then

Z(ϕ0,Φ0
1,Φ

0
2, s1, s2) = L

(
π, s1 + s2 − 1

2

)
L
(
π ⊗ χ−1

2 , s1 − s2 + 1
2

)
.

Proof. It suffices to prove the analogous result result for fractional ideals in C[q±s1 ], for a fixed value of
s2. It follows from the computations of Takloo-Bighash [TB00] that the “lowest common denominator”
of Novodvorsky’s zeta integrals agrees with Shahidi’s definition of the L-factor. That is, if we define

B̃ϕ(g) = L(π ⊗ χ−1
2 , s1 − s2 + 1

2 )−1 ·Bϕ(g),

then B̃ϕ(g) ∈ C[q±s1 ] for all g, and there is no s1 such that B̃ϕ(g) vanishes for all g and ϕ.

It follows from the theory summarized in [RS16] that the space of functions {B̃ϕ(−) : ϕ ∈ π},
is the (unique) split Bessel model of π, with respect to the character of the Bessel torus given by

(| · |s2−s1χ2, | · |s1−s2χ1). The integral
∫
DN\H B̃ϕ(h)fΦ1(h1)fΦ2(h2) dh is precisely Piatetski-Shapiro’s

zeta integral [PS97] for the local L-factor L(π, s), with s = s1+s2− 1
2 . So to prove (i) we are reduced to the

question of whether the Piaetski-Shapiro’s zeta integral always agrees with the Shahidi and Novodvorsky
definitions of L(π, s), independently of the choice of character used in the definition of the Bessel model.
This is exactly the main result of [RW17].

The unramified computation (ii) now follows from the corresponding computation of Novodvorsky
and Piatetski-Shapiro’s integrals in the unramified case. �

For the GSp4×GL2 integral we have a less complete result:

Theorem 8.9. (i) The vector space of functions on C spanned by the Z(ϕ, λ,Φ, s), as the data (ϕ, λ,Φ)
vary, is a fractional ideal of C[q±s] containing the constant functions. If either

• σ is principal series, or
• π arises from a pair (τ1, τ2) of generic irreducible representations of GL2 with the same central

character (via the theta-lifting from GSO2,2), and if σ is supercuspidal, then neither of the τi is
isomorphic to an unramified twist of σ∨,

then this fractional ideal is generated by the L-factor L(π⊗ σ, s). In particular, this holds if at least one
of π and σ is unramified.

(ii) If π, σ and ψF are all unramified, ϕ0 ∈ π and λ0 ∈ σ are the spherical vectors normalised such
that Wϕ0(1) = Wλ0(1) = 1, and Φ0 = ch(O2

F ), then

Z(ϕ0, λ0,Φ0, s) = L(π ⊗ σ, s).
Remark 8.10. The representations of GSp4(F ) which are theta-lifts from the split orthogonal group
GSO2,2(F ) ∼= (GL2(F )×GL2(F ))/{(z, z−1) : z ∈ F×} are tabulated in [GT11b]. Note that this class of
representations includes all irreducible principal series, and all representations irreducibly induced from
supercuspidal representations of the Siegel Levi subgroup. �
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Proof. Firstly, we note that if σ is an irreducible principal series representation, then after replacing π
and σ with π⊗β and σ⊗β−1 for a suitable character β, we can arrange that σ = I(|·|s2−1/2, |·|1/2−s2χ−1

2 )
for some s2. Then we have L(π ⊗ σ, s) = L

(
π, s1 + s2 − 1

2

)
L
(
π ⊗ χ−1

2 , s1 − s2 + 1
2

)
and part (i) in this

case follows from the previous theorem. Part (ii) follows similarly, noting that the Whittaker transform of

Φ0 = ch(O2
F ) satisfies WΦ0

(1) = 1, so the two natural normalisations of the spherical test data coincide.
The assertion concering π lifted from GSO2,2 follows from the results of [Sou84]. Soudry shows that in

this case the fractional ideal of values of Z(ϕ, λ,Φ, s) is generated by the product of GL2×GL2 Rankin–
Selberg L-factors, L(τ1 ⊗ σ, s)L(τ2 ⊗ σ, s); since the Gan–Takeda local Langlands correspondence is (by
construction) compatible with theta-lifting from GSO2,2, this Rankin–Selberg L-factor coincides with
the Shahidi L-factor.

It remains to check that the fractional ideal contains 1 in all cases. This follows from the “P3 theory”
of [RS07, §2.5], which can be used to construct ϕ such that the restriction of Wϕ to the Klingen parabolic
is non-zero, but has arbitrarily small support modulo the centre and the unipotent radical of the Borel.
(Compare the proof of Proposition 2.6.4 of op.cit..) We can then choose the Schwartz function Φ such
that fΦ(h1) is supported (modulo the Borel of H) in a small neighbourhood of the identity in P1, cf. the
proof of Lemma 14.7.5 of [Jac72]. �

8.3.1. Rationality. Let us suppose π is definable over a number field E, i.e. we have isomorphisms
π ⊗C,σ C ∼= π for all σ ∈ Aut(C/E). From the uniqueness of the Whittaker model it follows easily that
W(π) is the base-extension to C of the E-vector space

W(π)E = {W ∈ W(π) : W (g)σ = W (w(κ`(σ))g) ∀σ ∈ Aut(C/E)},
where w(x) = diag(x3, x2, x, 1) ∈ G(F ), and κ` is the `-adic cyclotomic character. Note that if π is
unramified, the normalised spherical vector Wϕ0 of Theorem 8.8(ii) is in W(π)E .

Proposition 8.11. In the above setting, suppose χ1, χ2 take values in E×, and χ2 is unramified. If
Wϕ ∈ W(π)E, and Φ1,Φ2 are E-valued, then Z(ϕ,Φ1,Φ2; s1, s2) ∈ E[q±(s1+s2), q±(s1−s2)].

Proof. This is a routine check from the definition of the zeta-integral. �

It follows that L(π, s − 1
2 ) = P (q−s) for a polynomial P with coefficients in E; and moreover,

we can find a vector in W(π)E ⊗ S(F 2, E) ⊗ S(F 2, E) whose image under Z(−; s1, s2) is exactly
L
(
π, s1 + s2 − 1

2

)
L
(
π ⊗ χ−1

2 , s1 − s2 + 1
2

)
. This will be used in §10 below to show that our L-values

lie in E after renormalising by a suitable period.
(A similar statement can be formulated for the GSp4×GL2 zeta integral, using E-rational Whittaker

models of both π and σ; we leave the details to the reader.)

8.4. Local calculations at p. We carry out an evaluation of the local zeta integral for particular choices
of (ramified) data. This calculation will be used to identify the Euler factors at p in our final formula
for the values of the p-adic L-function. To simplify notation we assume that F = Qp, and that ψF
is unramified (i.e. trivial on Zp but not on p−1Zp). We also assume that the local representation π of
G(Qp) is an unramified principal series.

In this section (only) we shall deal exclusively with the Klingen parabolic PKl and its Levi MKl, so
we shall drop the subscripts and denote them simply by P and M . We identify M with GL2×GL1 by(

λ
A

det(A)/λ

)
7→ (A, λ).

Under this identification, the modulus character δP is the character of GL2×GL1 given by (A, λ) 7→
|λ4/ det(A)2|. (See e.g. [RS07, §2.2]). In particular, we have

δP (
(

det(A)
A

1

)
) = |detA|2.

8.4.1. The vectors φr ∈ πp. Since π is a principal series representation, it is in particular induced
from the Klingen parabolic. Let us choose an unramified principal series τ of GL2(Qp), and a character

θ : Q×p → C×, such that π is isomorphic to the induced representation IndGP (τ�θ) (normalised induction
from the Klingen parabolic). With these notations, the central character of π is given by χπ = θχτ (where
χτ is the central character of τ), and the spin L-factor of π is given by

L(π, s) = L(τ, s)L(τ ⊗ θ, s).
For r > 0, let Kr ⊂ G(Zp) be the depth r Klingen parahoric subgroup:

Kr := {g ∈ G(Zp) : g mod pr ∈ P (Zp/p
rZp)}.
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If we identify the quotient P (Qp)\G(Qp) with P3, then Kr is precisely the stabiliser of the point
(0 : 0 : 0 : 1) ∈ P3(Zp/p

rZp), so we have the following characterisation of the coset P (Qp)Kr:

Lemma 8.12. Suppose r > 1 and let g =

( ∗ ∗ ∗ ∗
b′ ∗ ∗ ∗
c′ ∗ ∗ ∗
a b c d

)
∈ G(Qp). Then g ∈ P (Qp)Kr if and only if

d ∈ Q×p and d−1a, d−1b, d−1c ∈ prZp. �

Definition 8.13. For r > 1, let φr ∈ πKrp be the function with support P (Qp)Kr, and such that

φr(1) = p3r.

Note that the functions φr are trace-compatible, i.e. we have

1

[Kr : Kr+1]

∑
k∈Kr/Kr+1

kφr+1 = φr.

Moreover, the restriction of φr to M(Qp) is independent of r up to scaling: it is given by (A, λ) 7→
p3r|λ2/det(A)|ξ(A)θ(λ), where ξ is the normalised spherical vector of the unramified GL2(Qp)-representation
τ .

A straightforward explicit computation gives the following:

Lemma 8.14. Let r > 1, and let tP = diag(1, p, p, p2). Then

(i) The vector φr is an eigenvector for the operator [KrtKr] on πKrp , with eigenvalue p2χτ (p).
(ii) We have

φr =
(

p
χτ (p)

)r−1 ∑
a∈prZp/p2r−1Zp

(
1

1
1

a 1

)
tr−1
P · φ1. �

Conversely, given any eigenvalue of [K1tK1] on πK1
p , we can always write πp in the form IndGP (τ � θ)

such that p2χτ (p) is the given eigenvalue.

8.4.2. Statement of the formula. Let σ be any generic representation3 of GL2(Qp), and W(σ) its Whit-
taker model with respect to ψ−1. Let χ = χπχσ. The goal of this section is the following computation:

Proposition 8.15. Let Φ1 ∈ S(Q2
p) and λ ∈ σ. Then there is some R (depending on Φ1 and λ) such

that the zeta integral

(8.3) Zp(γ · φr, λ,Φ1, s) =

∫
(ZGNH\H)(Qp)

Wφr (hγ)fΦ1(h1;χ, s)Wλ(h2) dh, γ =

(
1
1 1

1
−1 1

)
is independent of r > R. If Φ′1(0, 0) = 0, where Φ′1 denotes the partial Fourier transform as in (8.2),
then this limiting value is given by

L(τ × σ, s)
L(τ∨ × σ∨, 1− s)ε(τ × σ, s)

∫
Q×p

Wξ(( x 0
0 1 ))WΦ1 (( x 0

0 1 ) ;χ, s)Wλ(( x 0
0 1 ))

θ(x)

|x|
d×x.

Remark 8.16.

(i) The assumption on Φ1 is probably not needed, but it is true in the cases of interest, and it simplifies
the proof.

(ii) In the present paper, we shall apply this formula with the data Φ1 and λ chosen such that the
integrand is a multiple of the characteristic function of Z×p , so the integral is just the product of the
three Whittaker functions at the identity. However, we shall need to consider more general choices
of the local data in a sequel to the present paper (in preparation).

(iii) Since τ is assumed to be unramified, we have

ε(τ ⊗ σ, s) = ε(σ)2 · (p−2sχτ (p))f(σ)

where f(σ) is the conductor of σ, and ε(σ) = ε(σ, 0). In our applications, σ will be a principal-series
representation, so ε(σ) will be a product of Gauss sums, as in §2.2. However, χτ (p) is a more
sophisticated invariant: we shall choose τ such that χτ (p) = p−(r1+2)λ, where λ is the p-adic unit
eigenvalue of the operator Up,Kl acting on Πp. �

We shall first give the argument assuming the slightly stronger condition that Φ1(0, x) = 0 for all x.

3We allow the case where σ is a reducible principal series, in which case we simply define W(σ) to be the image of the
Whittaker transform.
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8.4.3. Reduction to a GL2×GL2 integral. In this section, we shall use explicit formulae for the Whittaker
transform to express the integral (8.3) as a Rankin–Selberg integral for GL2×GL2. For brevity we shall
write f1(−) = fΦ1(−;χ, s). Recall that Φ1 is such that f1(1) = 0, so f1 is supported in the “big
cell” BGL2

ηNGL2
, where η =

(
0 1
−1 0

)
as before. Moreover, the function x 7→ f1 (η ( 1 x

0 1 )) is compactly
supported.

Lemma 8.17. The integral (8.3) equals∫
a∈Qp

f1(η ( 1 a
0 1 ))

∫
h∈NGL2\GL2

Wφr

((
det(h)

h
1

)
uaγ

)
|det(h)|s−1Wλ(h) dhda,

where ua = ι(η ( 1 a
0 1 ) , 1).

Proof. Note that if (h1, h2) ∈ H with h1 in the big Bruhat cell, then there exists h ∈ GL2, uniquely
determined modulo NGL2 , and a ∈ Qp such that

NHZG · (h1, h2) = NHZG · (( deth
1 ) , h) · (η ( 1 a

1 ) , 1) .

Making this change of variables in the integral, and using the fact that f1 transforms on the left under
( deth

1 ) by (deth)s, the lemma follows. (The s− 1 in the exponent comes from the modulus character,
because we are writing NHZG\H as the product of two factors that do not commute.) �

The map from the model of πp = IndGB(α) as an induced representation to the Whittaker modelW(πp)
is given explicitly as follows: for φ ∈ πp we have

Wφ(g) =

∫
NB(Qp)

φr(Jng)ψ(−m− x) dn, n =

(
1

1 m
1

1

)( 1 x y z
1 y

1 −x
1

)
= n(m)n(x, y, z).

Here J is as in §2.1. We have n(x, y, z)
(

deth
h

1

)
=
(

deth
h

1

)
n(u, v, w), where (u, v) = (x, y) ·

h(deth)−1, w = z/deth; thus x = 〈(u, v), (0, 1)h〉, where 〈, 〉 : Q2
p×Q2

p → Qp is the pairing 〈(a, b), (c, d)〉 =
ad− bc. Hence we have

Wφr (
(

det(h)
h

1

)
uaγ)

= |det(h)|2
∫
NB

φr

(
Jn(m)

(
det(h)

h
1

)
n(u, v, w)uaγ

)
ψ(−m− 〈(u, v), (0, 1)h〉) dmdudv dw.

We note the following matrix identity. Let u(m) = ( 1 m
0 1 ). Then

Jn(m)
(

det(h)
h

1

)
n(u, v, w)uaγ =

= ι(η, η) · ι(1, u(m)) · ι(( deth
1 ) , h) · n(u, v, w) · ι(ηu(a), 1) · γ

=

(
−1

ηu(m)h
− det(h)

)
· ι(η−1, 1) · n(u, v, w) · ι(ηu(a), 1)γ.

One verifies that

ι(η−1, 1)·n(u, v, w)·ι(ηu(a), 1)·γ =

(
1 −a a

1 a −a
1

1

)
·

(
wa+1 −ua −(u+w)a2+(1−v)a (u+w)a2

−wa+(−v+1) ua+1 (u+w)a2+(2v−2)a (−u−w)a2+(−v+1)a
u 0 −ua+1 ua

u−w u wa+(v−1) −wa+1

)
If ka(u, v, w) denotes the last matrix above, then we deduce that

Jn(m)
(

det(h)
h

1

)
n(u, v, w)uaγ ∈ P (Qp)ka(u, v, w).

It follows from the definition of φr that φr(Jn(m)
(

det(h)
h

1

)
n(u, v, w)uaγ) = 0 unless ka(u, v, w) ∈

PKr.

Lemma 8.18. Let C = max(−vp(a), 0). If r > max(2C,C + 1), then ka(u, v, w) ∈ P (Qp)Kr implies
ka(u, v, w) ∈ Kr.

Proof. Suppose that ka(u, v, w) ∈ PKr. By Lemma 8.12, we must have

1− aw ∈ Q×p and u
1−aw ,

w
1−aw ,

v−1+aw
1−aw ∈ prZp.

If w
1−aw = prb for b ∈ Zp, then w(1 + prab) = prb. Since pra ∈ pZp by assumption, we can conclude that

(1 + prab) is a unit and hence w ∈ prZp. Thus 1−aw is also a unit, and we deduce that u ∈ prZp. Since
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v = 1− aw mod pr we have v = 1 mod pr−C . In particular, ua2,wa2 and (v − 1)a all have valuation at
least r − 2C > 0; hence ka(u, v, w) is integral (and even congruent to the identity modulo pr−2C). �

We suppose that r > max(2C,C+1), and let R(a, r) denote the set of (u, v, w) such that ka(u, v, w) ∈
Kr. Then we obtain the formula

Wφr (
(

det(h)
h

1

)
uaγ)

= |det(h)|2
∫
R(a,r)

∫
m

φr

((
−1

ηu(m)h
− det(h)

)(
1 −a a

1 a −a
1

1

))
ψ(−m−〈(u, v), (0, 1)h〉) dm dudv dw.

Since the argument of φr lies in P (Qp), we have

φr

((
−1

ηu(m)h
− det(h)

)(
1 −a a

1 a −a
1

1

))
= p3r|deth|−1ξ

(
ηu(m)hu(a)

)
where ξ is the spherical vector of τ , as before. (Note that θ(−1) = 1, since θ is assumed to be unramified.)
Thus the inner integral over m reduces to the Whittaker transform of ξ, evaluated at hu(a); so we can
write this as

Wφr (
(

det(h)
h

1

)
uaγ) = p3r|det(h)|

∫
(u,v,w)∈R(a,r)

Wξ(hu(a))ψ(−〈(u, v), (0, 1)h〉) dudv dw.

If Φa,r denotes the Schwartz function Φa,r(u, v) = vol{w : (u, v, w) ∈ R(a, r)}, then we can collapse this
down to

Wφr (
(

det(h)
h

1

)
uaγ) = p3r|det(h)| ·Wξ(hu(a)) · Φ̂a,r((0, 1)h),

where the Fourier transform for Schwartz functions is defined as above.

Remark 8.19. The function Φa,r(u, v) is rather explicit, and depends only on the valuation of a. If C is
as above, then the set R(a, r) is given by {u = 1 mod pr, v = 1 mod pr−C , w = a−1(1 − v) mod pr+C},
so Φa,r = p−(r+C) ch((prZp)× (1 + pr−CZp)). �

Putting things together we have:

Proposition 8.20. Suppose Φ1(1,−) is supported in p−NZp, and let r > max(2N,N + 1). Then we
have

(8.3) = p3r

∫
a∈Qp

f1(η ( 1 a
0 1 ))

∫
h∈NGL2

\GL2

Wu(a)ξ(h) · w2(h) · Φ̂a,r((0, 1)h)|det(h)|s dhda,

a finite linear combination of Rankin–Selberg integrals. �

8.4.4. Application of the functional equation. By the functional equation for Rankin–Selberg integrals,
due to Jacquet [Jac72, Theorem 14.7 (3)], for any w1 ∈ W(ξ) and w2 ∈ W(σ), and any Φ ∈ S(Q2

p), we
have∫

N2\GL2

w1(h)w2(h)Φ̂((0, 1)h)|det(h)|s dh =

1

γ(τ × σ, s)

∫
N2\GL2

w1(h)w2(h)

(χτχσ)(deth)
Φ((0, 1)h)|det(h)|1−s dh,

where

γ(τ × σ, s) =
L(τ∨ × σ∨, 1− s)

L(τ × σ, s)
ε(τ × σ, s)

is Jacquet’s local γ-factor. (More precisely, the integrals on the left and right sides are convergent
for Re(s) � 0, resp Re(s) � 0, and both have meromorphic continuation to all s and are equal as
meromorphic functions.) Noting that χτχσ = χ/θ, and taking Φ = Φa,r, we have

(8.3) =
p3r

γ(τ × σ, s)

∫
a∈Qp

f1(η ( 1 a
0 1 ))

∫
h∈N2\GL2

Wu(a)ξ(h)w2(h)Φa,r((0, 1)h)(θ/χ)(deth)|det(h)|1−s dhda.

The Schwartz function Φa,r has total integral p−3r, and as r →∞, its support becomes concentrated
in smaller and smaller neighbourhoods of (0, 1). Hence the limiting value is given by

(8.3) = 1
γ(τ×σ,s)

∫
a∈Qp

f1(η ( 1 a
0 1 ))

∫
x∈Q×p

Wu(a)ξ((
x 0
0 1 ))w2(( x 0

0 1 ))
θ(x)

|x|sχ(x)
d×xda.
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We have Wu(a)ξ((
x 0
0 1 )) = ψ(xa)Wξ(( x 0

0 1 )), and we compute∫
a

f1(η ( 1 a
0 1 ))ψ(xa) da = χ(x)|x|s−1WΦ1(( x 0

0 1 )).

This concludes the proof of Proposition 8.15 assuming that Φ1(0,−) is identically 0.

8.4.5. Conclusion of the proof. We have proved the formula of Proposition 8.15 for functions Φ1 satisfying
Φ1(0, x) = 0 for all x, which is a more restrictive condition than stated in the proposition. We now reduce
the general case to this.

Consider the auxiliary zeta integral

Z̃p(ϕ, λ,Φ, s) :=

∫
(ZGNH\H)(Qp)

Wϕ(h)fΦ1(h1;χ−1, s)Wλv (h2)χ(deth)−1 dh.

As before, this has meromorphic continuation to all s; and the functions Z(. . . ) and Z̃(. . . ) are related
by the following local functional equation [Sou84]:

Zp(ϕ, λ,Φ, s) = γ(π × σ, s)−1Z̃p(ϕ, λ, Φ̂, 1− s),
where

γ(π × σ, s) = γ(τ × σ, s)γ(τ × σ × θ, s).
Since Z̃p can be obtained from Zp by replacing the representation σ with σ ⊗ χ−1, we deduce that if

Φ̂(0, x) = 0 for all x, then

Z̃p(ϕ, λ, Φ̂, 1− s) =
1

γ(τ × σ × χ−1, 1− s)

∫
Q×p

Wξ(( x 0
0 1 ))W Φ̂1

(
( x 0

0 1 ) ;χ−1, 1− s
)
Wλ(( x 0

0 1 )) θ(x)
χ(x)|x| d

×x

=
1

γ(τ × σ × χ−1, 1− s)

∫
Q×p

Wξ(( x 0
0 1 ))WΦ1 (( x 0

0 1 ) ;χ, s)Wλ(( x 0
0 1 )) θ(x)

|x| d×x

where the second equality comes from the functional equation (8.1) relating WΦ1 and W Φ̂1 . Since
χ = χτχσθ, we have γ(τ × σ × θ, s)γ(τ × σ × χ−1, 1 − s) = 1. So we have shown that the formula of

Proposition 8.15 holds for all Φ1 such that Φ̂1(0, x) = 0 for all x. Since

(Φ̂1)′(x, y) = Φ′1(y, x),

this is equivalent to requiring that Φ′1(x, 0) = 0 for all x. Since any Schwartz function h on Q2
p such

that h(0, 0) = 0 is a linear combination of functions vanishing identically along {0} ×Qp and Qp × {0},
this shows that our formula holds for all Φ1 such that Φ′1(0, 0) = 0, completing the proof of Proposition
8.15. �

8.5. Local integrals at ∞. We now consider the local integral at a real infinite place v = ∞. For
simplicity, we shall now assume that ψF (x) = exp(−2πix) for x ∈ R.

8.5.1. Siegel sections. We shall need to compute the functions fΦ where Φ = Φ
(k)
∞ ∈ S(R2,C) is the

function given by

Φ(k)
∞ (x, y) := 21−k(x+ iy)ke−π(x2+y2)

for some k ∈ Z>1. (The factor 21−k is convenient for comparisions with algebraic Eisenstein series, as
we shall shortly see.) We find readily that

fΦ (( a a−1 ) ;χ, s) =

{
0 if χ(−1) 6= (−1)k,

21−kikΓ(s+ k
2 )π−(s+k/2)a2s otherwise.

8.5.2. Moriyama’s formula. A formula for the archimedean Whittaker function of a vector in the lowest
K-type subspace of a generic discrete-series representation Π∞ is given in [Mor04, §3.2]. Let (λ1, λ2)
be integers such that 1 − λ1 < λ2 < 0. Then there is a unique generic discrete-series representation of
GSp4(R) whose central character has finite order and which is isomorphic as an Sp4(R)-representation
to the direct sum D(λ1,λ2) ⊕D(−λ2,−λ1), in Moriyama’s notation. For 0 6 k 6 d, we let vk be the k-th
standard basis vector of the lowest K-type of D(−λ2,−λ1).

What we shall need here is Proposition 8 of op.cit., which gives a formula for the image of vk under
the canonical transformation from the Whittaker model to the Bessel model of ΠW

∞ . Recall that we have
defined

Bvk(g, s) :=

∫
R×

∫
R

Wvk

((
a
a
x 1

1

)
w2g

)
|a|s−

3
2χ2(a)−1 dxd×a, w2 =

(
1

1
−1

1

)
.
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Theorem 8.21 (Moriyama). For Re(t) sufficiently large, we have∫ ∞
0

Bvk

(( y
y

1
1

)
, s

)
yt−

3
2 d×y = C · (−1)kL(Π∞, s)L(Π∞, t)

πtΓ( t−s+λ2+k+1
2 )Γ( t+s+λ1−k

2 )
,

where C is a constant depending on λ1 and λ2 (but not on k, s, t), and L(Π∞, s) = ΓC(s+ λ1+λ2−1
2 )ΓC(s+

λ1−λ2−1
2 ), ΓC(s) = 2(2π)−sΓ(s).

Proof. Moriyama states his formula slightly differently, in the form of an inverse Mellin transform. The
result above follows by applying the “forward” Mellin transform to both sides of Moriyama’s formula,
in the same way as the proof of Proposition 5.12 of [Lem17] (which is essentially the same argument as

ours but with a different normalisation of the Bessel function). Moriyama also has a factor
(
d
k

)
, which

does not appear in our formulae, owing to a different convention for the standard basis of the lowest
K-type. �

We shall apply this with (λ1, λ2) = (r1 + 3,−r2 − 1), so that d = r1 + r2 + 4. The vector vk is
then an eigenvector for the action of the diagonal torus in K◦G,∞, which is just K◦H,∞, with weight

(r2 + 1 − k,−r1 − 3 + k). We shall let (k1, k2) be integers > 1 summing to r1 − r2 + 2, and take
k = r1 + 3− k2 = r2 + 1 + k1; thus vk has K◦H -type (−k1,−k2), meaning it can pair non-trivially against
a pair of holomorphic modular forms of weight (k1, k2). Finally, we shall take s = s1 − s2 + 1

2 and

t = s1 + s2 − 1
2 . Note that the right-hand side of Moriyama’s formula is now

(−1)k1+r2+1C ·
L(Π∞, s1 − s2 + 1

2 )L(Π∞, s1 + s2 − 1
2 )

πs1+s2+
1
2 Γ(s1 + k1

2 )Γ(s2 + k2

2 )
.

On the other hand, if one chooses Φi,∞ = Φ
(ki)
∞ , then the integrand in the local Bessel-model

integral is right KH,∞-invariant; so by the Iwasawa decomposition, H = NHTHKH where TH is
the diagonal torus, we conclude that the left-hand side of Moriyama’s formula is exactly the integral

Z∞

(
vk,Φ

(k1)
∞ ,Φ

(k2)
∞ , s1, s2

)
up to a sign and the factor fΦ1(1)fΦ2(1), which corresponds precisely to the

Gamma-factors in the denominator above.
If we instead consider the GSp4×GL2 integral, then the Whittaker function associated to the holo-

morphic vector λ ∈ σ∞ coincides with the Whittaker function of Φ
(`)
∞ at s2 = `

2 . So we see that in this
case the local integral at ∞ is again equal to the expected value, namely L(Π∞ × σ∞, s).

9. Integral formulae for L-functions II: global theory

We now let F be an arbitrary number field, with adèle ring A. Let ψF =
∏
v ψFv be a non-trivial

additive character of A/F , which we regard as a character of N(A) as before.

9.1. Globally generic π. Let π be a cuspidal automorphic represenation of G(A). For each ϕ ∈ π we
define its Whittaker transform with respect to ψ:

Wϕ(g) =

∫
NG(F )\NG(A)

ϕ(ng)ψ(n−1)dn.

The representation π is globally generic if some Wϕ(g) is non-zero. If π is globally generic, it can thus
be modeled as a space of functions W : G(A)→ C satisfying W (ng) = ψ(n)W (g) for all n ∈ NG(A).

We fix an identification π =
⊗′

v
πv of π with a restricted tensor product of irreducible local repre-

sentations. If π is globally generic then each πv is clearly also generic, that is, πv can also be modelled
in a space of functions W : G(Fv)→ C satisfying W (ng) = ψ(n)W (g) for all n ∈ NG(Fv).

Remark 9.1. Note that our definition of “globally generic” is strictly stronger than requiring that each
πv be generic, and depends on the realisation of π as a space of functions on G(F )\G(A) rather than on
the abstract isomorphism class of π. �

Assuming π is globally generic, we fix Whittaker models πv
∼→Wv, φv 7→Wφv for all places v. These

choices can and shall be made in such a way that:

• If ϕ = ⊗vϕv, then we have Wϕ(g) =
∏
vWφv (gv).

• If v is a finite place such that πv and ψFv are unramified, and φ0
v ∈ πv is the basis of the

unramified vectors that was implicitly fixed in the definition of the restricted tensor product

π =
⊗′

v
πv, then Wφ0

v
(1) = 1.
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9.2. Global Eisenstein series. For a Schwartz function Φ : A2 → C, and χ a unitary Grössencharacter,
we define a global Siegel section by

fΦ(g;χ, s) := ‖det g‖s
∫
A×

Φv((0, a)g)χ(a)‖a‖2s d×a,

We may then form the series

EΦ(g;χ, s) :=
∑

γ∈B(F )\GL2(F )

fΦ(γg;χ, s).

(cf. [Jac72, §19]). The sum converges absolutely and uniformly on any compact subset of {s : Re(s) > 1},
and defines a function on the quotient GL2(F )\GL2(A) that transforms under the center by χ−1. It
has a meromorphic continuation in s.

Remark 9.2. Note that g · EΦ(−;χ, s) = ‖ det g‖sEg·Φ(−;χ, s). �

We define the Whittaker transform of EΦ(g;χ, s) with respect to ψ̄F to be

WΦ(g;χ, s) :=

∫
NGL2

(F )\NGL2
(A)

EΦ(ng;χ, s)ψF (x)dn, n = ( 1 x
0 1 ) .

If Re(s) > 1 this unfolds to

WΦ(g;χ, s) =

∫
NGL2

(A)

fΦ(ηng;χ, s)ψF (x)dn, η =
(

0 1
−1 0

)
.

If Φ(g) =
∏
v Φv(gv) with Φv a Schwartz function on F 2

v and Φv the characteristic function Φ0
v of O2

Fv
for almost all finite v, then we have factorisations

fΦ(g;χ, s) =
∏
v

fΦv (gv;χv, s), WΦ(g;χ, s) =
∏
v

WΦv (gv;χv, s)

where the local integrals fΦv and WΦv are as defined above. Furthermore, the local Whittaker transforms
WΦv (g;χv, s) converge for all values of s and are holomorphic as functions of s, and (for a given g and
Φ) all but finitely many of these are 1.

9.3. The global integrals. Let χ1, χ2 be two unitary Grössencharacters of A× such that χ1χ2 = χπ.
For ϕ ∈ π and Φ1,Φ2 ∈ S(A2), define

Z(ϕ,Φ1,Φ2, s1, s2) :=

∫
ZG(A)H(F )\H(A)

ϕ(ι(h))EΦ1(h1;χ1, s1)EΦ2(h2;χ2, s2) dh,

where H = GL2×GL1
GL2 and the EΦi(hi;χi, si) are Eisenstein series as in Section 9.2. This integral

converges absolutely and is holomorphic at all values of s1 and s2 such that neither Eisenstein series has
a pole. This is because the restriction of the cuspform ϕ to H(A) is rapidly decreasing.

We also consider a second integral associated to π and an auxiliary cuspidal automorphic representa-
tion σ of GL2(A). We now let χ = χπχσ, and for ϕ ∈ π and λ ∈ σ, we set

Z(ϕ, λ,Φ, s) :=

∫
ZG(A)H(F )\H(A)

ϕ(ι(h))EΦ(h1;χ, s)λ(h2) dh.

As before, this is holomorphic away from the poles of the Eisenstein series EΦ.
We now suppose that the test data (ϕ,Φ1,Φ2) for the first integral, and (ϕ, λ,Φ) for the second,

are products of local data ϕ =
⊗

v ϕv etc; and for each place v of F , we write Zv(. . . ) for the local
integrals of the previous section at the place v. As a straightforward consequence of Proposition 8.6 and
Langlands’ general results on the convergence of automorphic L-functions, we have the following Euler
product factorisation:

Proposition 9.3. (i) Let s2 be fixed. There exists a positive real number R′, possibly depending on π
and s2, such that for Re(s1) > R′, the product

∏
v Zv(ϕv,Φ1,v,Φ2,v, s1, s2) converges absolutely. For

such s1 we have

Z(ϕ,Φ1,Φ2, s1, s2) =
∏
v

Zv(ϕv,Φ1,v,Φ2,v, s1, s2)

= LS(πv, s1 + s2 − 1
2 )LS(πv ⊗ χ−1

2 , s1 − s2 + 1
2 )
∏
v∈S

Zv(ϕv,Φ1,v,Φ2,v, s1, s2),
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where S is any finite set of places of F including all the archimedean places and all finite places where π
or the χi are ramified, and is such that Φi,v = Φ0

i,v, ϕv = ϕ0
v for all v /∈ S.

(ii) There exists a positive real number R′, possibly depending on π and σ, such that for Re(s) > R′

the product
∏
v Zv(ϕv, λv,Φv, s) converges absolutely, and for such s we have

Z(ϕ, λ,Φ, s) =
∏
v

Zv(ϕv, λv,Φv, s)

= LS(πv ⊗ σv, s)
∏
v∈S

Zv(ϕv, λv,Φv, s),

for S any sufficiently large finite set of primes as before.

Proof. For part (ii), see [Nov79, Theorem 7], or the introduction of [Sou84]. Part (i) follows similarly,
taking an Eisenstein series in place of the cusp form λ. �

As Z(ϕ,Φ1,Φ2, s1, s2), LS(πv, s1+s2− 1
2 ) and LS(πv⊗χ−1

2 , s1−s2+ 1
2 ) have meromorphic continuations

in s1 (and are even meromorphic in both s1 and s2), for any fixed s2 the equality

Z(ϕ,Φ1,Φ2, s1, s2) = LS(πv, s1 + s2 − 1
2 )LS(πv ⊗ χ−1

2 , s1 − s2 + 1
2 )
∏
v∈S

Zv(ϕv,Φ1,v,Φ2,v, s1, s2)

is an equality of meromorphic functions in s1 (and similarly for the GSp4×GL2 integral).

Remark 9.4. The proof of the preceding proposition also shows that if π is not globally generic, then the
integrals Z(ϕ,Φ1,Φ2, s1, s2) and Z(ϕ, λ,Φ, s) are identically zero, for all choices of the test data. �

10. Construction of the p-adic L-function

10.1. Comparing algebraic and real-analytic Eisenstein series. We now assume the number field
F is Q. A routine unravelling of notations gives the following:

Proposition 10.1. Suppose Φ ∈ S(A2,C) has the form Φ = Φf ·Φ(k)
∞ , for some k > 1 and Φf ∈ S(A2

f ,C),
and χ̂ is the adelic character associated to the Dirichlet character χ as in §2.2.

Then the Eisenstein series EΦ(−; χ̂, s) on GL2(Q)\GL2(A) of §9.2 is related to the Eisenstein series
Ek,Φf (−;χ, s) on GL2(Af)×H of §7.1 by

EΦ (gf ( y x0 1 ) ; χ̂, s) = yk/2‖ det gf‖s · Ek,Φf (gf , x+ iy;χ, s)

for x+ iy ∈ H and gf ∈ GL2(Af). �

10.2. Periods and algebraicity.

Definition 10.2. Let E be a subfield of Q. An element W ∈ Ind
G(Af )
N(Af )

(ψ) (i.e. a ψ-Whittaker function

on G) is said to be defined over E if it takes values in E(µ∞) and satisfies

W (g)σ = W (w(κ(σ))g)

for all g ∈ G(Af) and σ ∈ Gal(Q/E), where w(x) = diag(x3, x2, x, 1) for x ∈ Ẑ×, and κ : Gal(Q/Q)→
Ẑ× is the adelic cyclotomic character.

This is the global counterpart of the local definitions in §8.3.1. We now take E to be the field of
definition of the arithmetic twist Π′f , as in §5 above. Given η ∈ H2(Πf) ⊗C, we say η is Whittaker E-
rational if the Whittaker functions of the coordinate projections of the corresponding element of Harris’
space HL2 are the product of an E-defined Whittaker function on G(Af) and the standard Whittaker
function at ∞, which is the unique function that makes the constant C in Moriyama’s formula equal 1.

It follows easily from the definitions that the space of Whittaker-E-rational classes is exactly ΩW (Π) ·
H2(Πf), for some nonzero constant ΩW (Π) ∈ C×, the Whittaker period of Π, well-defined modulo E×.

Notation 10.3. For the remainder of this section, we resume the notations of §5.6, so p > 2 is an
unramified prime, and L the completion of E at a prime above p with respect to which Πp is Klingen
ordinary.
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10.3. The GSp4 L-function.

Proposition 10.4. Let R = ΛL(Z×p × Z×p ). There is an element Lp(Π, j1, j2) ∈ R whose specialisation
at a locally-algebraic point x = (a1 + ρ1, a2 + ρ2) of SpecR, such that d = r1 − r2 > a1 > a2 > 0 and
(−1)a1+a2ρ1(−1)ρ2(−1) = −1, is given by

Rp(Π, ρ1, a1)Rp(Π, ρ2, a2)Λ(Π⊗ ρ−1
1 , 1−d

2 + a1)Λ(Π⊗ ρ−1
2 , 1−d

2 + a2)

ΩW (Π)
,

where

Rp(Π, a, ρ) = (−1)a·


(

1− pa+r2+1

α

)(
1− pa+r2+1

β

)(
1− γ

pa+r2+2

)(
δ

pa+r2+2

)
if ρ is trivial,

G(ρ)2
(
p2a+2r2+2

αβ

)m
if ρ has conductor pm > 1,

where α, β, γ, δ are the roots of the Hecke polynomial such that vp(αβ) = r2 + 1, and G(ρ) is the Gauss
sum as in §2.2.

Proof. If we choose Schwartz functions Φ
(p)
1 and Φ

(p)
2 on (Ap

f )2, then we can use these to build p-adic

families E(Φ
(p)
1 ,Φ

(p)
2 ) of Eisenstein series on H, as in §7.4 above. If we also choose η ∈ H2(Πf) which is

invariant under Kl(p) and lands in the ordinary eigenspace, then we can form a p-adic analytic function

interpolating the cup-products of η with specialisations of the family E(Φ
(p)
1 ,Φ

(p)
2 ).

Specialising at (a1 + ρ1, a2 + ρ2), the cup-product is given by a zeta-integral Z(. . . ), but with Π
replaced by the twisted representation Π⊗ ρ−1

1 . This factorises as a product of local integrals as above.
For finite primes ` 6= p we may choose a finite linear combination of triples (φv,Φ1,v,Φ2,v) such that
the corresponding local zeta integral is the L-factor (and the rationality statements of §8.3.1 allow us to
choose the data such that the resulting coherent cohomology classes are defined over E). For the place
∞, Moriyama’s results show that the specific Archimedean data we have chosen give the Archimedean
Γ-factor and the sign (−1)a1−a2 . For the place p, we have chosen specific local data and evaluated the
local integrals explicitly, which gives the local correction factors Rp(Π, ρi, ai). �

Lemma 10.5. If r1− r2 > 1, then for all finite-order characters ρ of Z×p , we have Λ(Π⊗ ρ−1, 1+d
2 ) 6= 0.

Proof. If r1 − r2 > 2 this is obvious from the convergence of the Euler product. The case r1 − r2 = 1
follows from results of Jacquet–Shalika [JS76] on non-vanishing of L-functions for GLn on the abcissa of
convergence (the “prime number theorem” for GLn L-functions), applied to the automorphic represen-
tation of GL4 lifted from Π. �

If r1 = r2 then we cannot directly establish the non-vanishing, so we must impose it as a hypothesis:

Hypothesis 10.6. There exist finite-order characters ρ+, ρ− of Z×p , with ρ+(−1) = 1 and ρ−(−1) = −1,

such that Λ(Π⊗ ρ−1
+ , 1

2 ) and Λ(Π⊗ ρ−1
− , 1

2 ) are non-zero.

Theorem 10.7. (Theorem A) Suppose that r1 − r2 > 1 or that Hypothesis 10.6 holds. Then there exist
constants Ω+

Π and Ω−Π, uniquely determined modulo E× and satisfying Ω+
ΠΩ−Π = ΩWΠ (mod E×); and an

element L(Π, j) ∈ ΛL(Z×p ), such that

L(Π, a+ ρ) = (−1)aRp(Π, ρ, a)
Λ(Π⊗ ρ−1, 1−d

2 + a)

Ω±Π

for all (a, ρ) with 0 6 a 6 d, where the sign ± is given by (−1)aρ(−1).

Proof. Let ρ+ and ρ− be any two Dirichlet characters of p-power conductor such that ρ+(−1) = (−1)d,
ρ−(−1) = −(−1)d. From the preceding lemma, we see that Λ(Π ⊗ ρ−1

+ , 1+d
2 ) and Λ(Π ⊗ ρ−1

− , 1+d
2 ) are

both nonzero. If d = 1 then we assume also that both characters ρ± are ramified at p, which ensures
that the local Euler factors R(ρ±, d) are non-zero.

Then we may define

Ω+(Π) = ΩW (Π)/[Rp(Π, ρ−, d)Λ(Π⊗ ρ−1
− , 1+d

2 )]

Ω−(Π) = ΩW (Π)/[Rp(Π, ρ+, d)Λ(Π⊗ ρ−1
+ , 1+d

2 )].

We can then define L(Π, j) = L(Π, j, d + ρ−) on the component of weight space where (−1)j = +1,
and L(Π, j, d + ρ+) on the other component; and the interpolation formula follows easily from the
corresponding property of the two-variable L-function L(Π, j1, j2). �
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10.4. The GSp4×GL2 L-function. A similar analysis for the GSp4×GL2 integral formula gives the
following:

Theorem 10.8. (Theorem B) Let R = ΛL(Z×p ). There is an element Lp(Π × σ, j) ∈ R whose special-
isation at a locally-algebraic point x = a + ρ of SpecR, with 0 6 a 6 d′ = r1 − r2 − ` + 1, is given
by

Rp(Π× σ, a, ρ)
ΛS(Π⊗ σ ⊗ ρ−1, 1−d′

2 + a)

ΩWΠ
,

where S is the set of finite places ` such that neither Π` nor σ` is principal series, and

Rp(Π× σ, a, ρ) =
1

ε(τp ⊗ σp ⊗ ρ̂−1
p , 1−d′

2 + a)
L(τ∨p ⊗ σ∨p ⊗ ρ̂p, 1+d′

2 − a)−1L(τp ⊗ σp ⊗ θpρ̂−1
p , 1−d′

2 + a)−1

where we have written Πp = IndGPKl
(τp � θp) for some τp and θp as in §8.4. �

(The factor Rp(Π × σ, a, ρ) can also be written explicitly in terms of Satake parameters and Gauss
sums, as in Proposition 10.4; we leave the details to the reader.)

Remark 10.9. It would be interesting to attempt to define a canonical normalisation for the periods
ΩW(Π) and Ω±(Π) up to p-adic units, analogous to the results of [Vat99] in the GL2 case.

For ΩW(Π), one possibility would be to use the GSp(4) new-vector theory of Okazaki [Oka19]. This
singles out a uniquely-determined level group K ⊂ G(Af) such that ΠK

f is one-dimensional, and such
that W(Πf)

K has a canonical normalised generator wnew satisfying wnew(1) = 1. We then have two
natural OE,(v)-lattices in W(Πf)

K ⊗C: one given by Whittaker functions whose values at 1 are integral,

and one given by the image under the comparison map of the lattice in H2(Πf)
K generated by the

cohomology of the Zp-model XG(K) (or the K-invariants of cohomology at a suitable higher level, since
this K may not be neat). Using the ratio of these two lattices, we obtain a canonical normalisation for
ΩW(Π) up to multiplication by O×E,(v).

However, since we do not know if the test data for the zeta-integrals Z`(. . . , s) at the bad primes `
can be chosen “integrally”, even with this normalised period it is not clear if the p-adic L-functions of
Proposition 10.4 and Theorem B will lie in the Iwasawa algebra with O-coefficients.

The situation for the signed periods Ω±(Π) is still more mysterious, and there seems to be no natural
way of defining a canonical normalisation for these periods directly on GSp4 (rather than via functorial
lifting to GL4 as in [DJR18]). �
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[GT05] A. Genestier and J. Tilouine, Systèmes de Taylor–Wiles pour GSp4, Formes automorphes. II. Le cas du
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