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REVIEW

Harnessing machine learning for development of microbiome therapeutics
Laura E. McCoubrey a, Moe Elbadawi a, Mine Orlua, Simon Gaisforda,b, and Abdul W. Basita

aUCL School of Pharmacy, University College London, London, UK; bFabRx Ltd., Ashford, Kent, UK

ABSTRACT
The last twenty years of seminal microbiome research has uncovered microbiota’s intrinsic relation-
ship with human health. Studies elucidating the relationship between an unbalanced microbiome 
and disease are currently published daily. As such, microbiome big data have become a reality that 
provide a mine of information for the development of new therapeutics. Machine learning (ML), 
a branch of artificial intelligence, offers powerful techniques for big data analysis and prediction- 
making, that are out of reach of human intellect alone. This review will explore how ML can be 
applied for the development of microbiome-targeted therapeutics. A background on ML will be 
given, followed by a guide on where to find reliable microbiome big data. Existing applications and 
opportunities will be discussed, including the use of ML to discover, design, and characterize 
microbiome therapeutics. The use of ML to optimize advanced processes, such as 3D printing 
and in silico prediction of drug-microbiome interactions, will also be highlighted. Finally, barriers to 
adoption of ML in academic and industrial settings will be examined, concluded by a future outlook 
for the field.
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Introduction

The human microbiome describes the genomes of 
trillions of microorganisms that live on and within 
the human body. Members of the microbiota 
include bacteria, viruses, fungi, archaea, and proto-
zoa; collectively they inhabit nearly every imagin-
able region of their host.1 Bacteria alone encode for 
over 100-fold more unique genes than humans.2 

Subsequently, microbiota is known to exert exten-
sive influence upon human health and metabolism. 
For example, the development of metabolic syn-
drome, Parkinson’s disease, inflammatory bowel 
disease, and periodontitis are strongly associated 
with imbalanced, also known as ‘dysbiotic’, micro-
biome compositions.3–6 With regards to metabo-
lism, the microbiome wields impactful metabolic 
capacity. The gut microbiome plays a crucial role 
in the degradation of dietary fibers, proteins, poly-
phenols, and starches which would be otherwise 
indigestible by their human host.7,8 Endogenous 
moieties broken down by microbiota include bile 
acids, hormones, and intestinal mucus.9 Drugs are 
also highly susceptible to metabolism by micro-
biota. A seminal study found that of 271 commonly 
administered oral drugs, 176 (64.9%) of them were 

significantly metabolized by at least one strain of 76 
human gut bacteria.10 Due to substantial differ-
ences between individuals’ microbiomes, drug 
metabolism by microbiota can result in significant 
inter-patient variability in pharmacokinetics and 
pharmacodynamics.11

From the beginning of the 21st century, micro-
biome-based research has amassed at a progressive 
rate. In the mid-2000s, affordable and accurate 
DNA sequencing methods facilitated the com-
mencement of the Human Microbiome Project: 
a multi-site collaboration leading to the genomic 
profiling of microbiota at key body sites.12 Later, 
the project assessed the role of the microbiome in 
human health and disease.13 In parallel to this field- 
leading work, many other laboratories worldwide 
have contributed to the now extensive knowledge 
base concerning the microbiome. Vast quantities of 
data have been made globally accessible through 
publications and online databases, such as the 
NIH Human Microbiome Project Data Portal; 
MicrobiomeDB; and China National 
GeneBank.14–16 Such data are being increasingly 
utilized by scientists to design microbiome- 
targeted therapies and predict microbiome-drug 
interactions. Due to the scale of available data, 
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artificial intelligence (AI) offers a means to quickly 
and accurately mine, process, and analyze available 
information. Whilst it may take a human years to 
identify patterns in terabytes of data, AI algorithms 
can efficiently perform operations within seconds 
to minutes, depending on computer processing 
power, data size, and algorithm complexity. There 
are four main types of AI: machine learning (ML); 
natural language processing; rule-based expert sys-
tems; and robotics.17 By far, ML is the most exten-
sively used AI technique within the microbiome 
field.18–20 ML uses coded computer algorithms to 
identify patterns in data, which facilitates the clas-
sification of new information or prediction of 
future outcomes (Figure 1).

This review will provide an accessible intro-
duction to ML and highlight its current appli-
cations within the microbiome therapeutics 
field; namely, using ML as a tool for designing 
microbiome-targeted therapies, and predicting 
drug-microbiome interactions. An overview of 
useful databases for ML microbiome projects 
will also be presented. Opportunities for utiliz-
ing ML will be addressed, with a description of 
barriers to adoption in academic and industrial 
settings. Finally, an outlook for the field will be 
described.

Machine Learning Methods

The origins of ML date back to the 1600s, when the 
first mechanical calculator, and the modern binary 
system were created. These inventions, still integral 

to contemporary ML, were translated to modern 
ML by the mid-1950s. In 1952, IBM’s Arthur 
Samuel coined the phrase ‘machine learning’ upon 
creating a computer program that could improve 
its skill in the game of checkers the more it played. 
Later, in 1997, IBM’s Deep Blue computer rose to 
fame after successfully beating the chess grandmas-
ter Garry Kasparov. Though Kasparov requested 
a rematch, Deep Blue was retired with its clean 
slate without encore. At the turn of the millennium, 
ML algorithms were progressively applied to tasks 
other than winning board games. Research on ML 
began hitting an exponential rate; algorithms were 
developed to detect cancer more accurately than 
radiologists, identify human faces from images, 
predict consumer behavior, speak like a native, 
and lipread, to name just a few.21 Today, ML tech-
nology has been applied to almost every sector on 
a global scale. Still ML capabilities are advancing at 
a rapid rate; new research articles are published 
daily that solve previously impenetrable challenges. 
Healthcare has especially benefitted from ML; algo-
rithms are now available to diagnose disease, 
develop drugs, recommend personalized treatment 
plans, and predict future health outcomes. Though 
it will take some time for widespread clinical adop-
tion, ML promises a future of consistent, probabil-
ity, and evidence-based medicine.17

ML can be split into two parts: supervised and 
unsupervised learning.18 Supervised learning 
involves directing an algorithm to solve a pre- 
defined problem. For example, ‘will this newly 
synthesized drug be metabolized by gut 

Figure 1. Flow of information for machine learning (ML). Vast quantities of experimental data are uploaded to online globally 
accessible databases. These data can then be mined and used by ML algorithms.
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microbiota?’ To generate an answer, the ML soft-
ware must have access to data that have been 
labelled. To pertain to the previous example, the 
ML algorithm would be supplied with a list of 
drugs, and their molecular features, labeled as 
being susceptible or not susceptible to gut micro-
biota metabolism. The algorithm would then look 
for similarities between the newly synthesized drug, 
and the list of labeled drugs, by examining their 
molecular features. A prediction, based on prob-
ability, would then be outputted based on whether 
the new drug has more in common with drugs that 
are known to be metabolized, or those that are 
known to remain intact. This is known as 
a classification task. The ML model can then be 
validated by performing experiments testing micro-
biome-drug metabolism in a laboratory setting.

An entire dataset can be used to train an ML 
model, however, it is a common practice to split 
data into separate training and testing sets. The 
latter is used to test the model’s performance on 
new and unseen data, if obtaining new data is not 
readily attainable. The training set can be further 
split into training and validation sets, wherein the 
latter is used to further refine the model. Supervised 
algorithms can either classify new data, e.g. ‘meta-
bolized’ or ‘not metabolized’, or they can predict 
a numerical value, such as ‘percentage of dose 
metabolized’. The output of the algorithm 

(classification or numerical value) depends on 
how the dataset is labeled, and whether 
a classification or regression analysis is performed. 
Several types of supervised ML algorithms exist, 
these include basic linear methods, decision trees, 
support vector machines, and advanced neural net-
works (Figure 2).

Compared to supervised methods, unsupervised 
learning does not address any pre-defined 
questions.22 At all stages of data mining and ML, 
the chance of bias should be reduced as much as 
possible. One could say that introducing a question 
to an algorithm leads to bias, as the algorithm will 
look to solve that particular problem. In unsuper-
vised learning, an ML algorithm works to identify 
patterns in data without any prior operator input. 
This can subsequently lead to elements being iden-
tified that could not be conceived by the operator. 
Unsupervised ML methods can produce clustering 
or association outputs. Clustering algorithms iden-
tify distinct groups within data; association algo-
rithms output rules found within data. Common 
unsupervised ML techniques include k-means clus-
tering, principal component analysis, and k nearest 
neighbors.

At the intersection between supervised and 
unsupervised learning is semi-supervised ML.18 

Semi-supervised learning involves using a partly 
labeled set of data. The ML algorithm uses 

Figure 2. Supervised machine learning steps. Labeled data is split into training and testing sets. The algorithm is then trained to learn 
the differences between the labeled data. The test set is used to check and refine algorithm performance. Predictions can subsequently 
be made using new data previously unseen by the algorithm.
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unsupervised learning to label the unlabeled data, 
by drawing conclusions from the labeled data. 
Following that, supervised techniques can be 
employed to answer defined questions about the 
labeled information. In practice semi-supervised 
learning is useful, as real-world datasets are often 
incompletely labeled due to poor formatting at the 
time of conception. Hand-labeling data can be 
extremely time-consuming, error-prone, and 
expensive, especially if datasets are particularly 
large and complex. The automated labeling step in 
semi-supervised learning provides a quick and 
unbiased way to format previously difficult data.

The final type of ML, reinforcement learning, is 
similar to supervised learning in the sense that it is 
goal-directed.23 Though unlike supervised learning, 
reinforcement learning does not require labeled 
data. Instead, it is supplied with a set of rules 
around a problem. For example, an operator may 
input ‘if a new formulation protects a drug from 
microbiome metabolism, this is a positive action. If 
the drug is degraded by the microbiota, this is 
a negative action’. Reinforcement learning solves 
pre-defined problems in a self-teaching, iterative 
manner. An algorithm will carry out actions to 
attempt to solve a problem; the closer an action 
gets to a solution, the more reward experienced in 
the system. If a given action results in an outcome 
that veers away from a solution, then the system 
will experience punishment. Over time, the algo-
rithm will learn what types of actions are reward-
ing. In this way, a path toward problem solution is 
paved. In order to build an optimum path to pro-
blem solution, reinforcement learning algorithms 
face the dilemma of attempting new actions whilst 
concurrently aiming to maximize reward, this is 
known as the exploration vs. exploitation trade- 
off.24 Reinforcement learning is probably best 
known for its use in the mastery of games, such as 
the incredibly complex and ancient board game 
‘Go’. In 2017, reinforcement learning reached 
superhuman performance within Go, without any 
input of data: the algorithm was its own teacher.25 

Common types of reinforcement learning include 
temporal-difference learning, Q-learning, and 
state-action-reward-state-action (SARSA) learning 
(Table 1).24

In all types of ML, it is important for operators to 
be aware of over or under fitting algorithms. 

Overfitting occurs when an algorithm is too sensi-
tive to patterns in training data, leading to perfect 
accuracy when training, but inadequate perfor-
mance during testing and validation. On the other 
hand, if an algorithm is not sensitive enough, and 
too simple, then it will not be able to model the 
training data and is expected to perform poorly 
when generalized to the testing dataset. Finding 
an optimal balance between algorithm underfitting 
and overfitting is a crucial component of ML engi-
neering. Inadequate performance of ML algorithms 
is typically due to poor fitting; it can take a great 
deal of ML engineers’ time to tweak and perfect ML 
parameters to find a sweet spot (Figure 3).26

Databases For Ml Microbiome Projects

What makes a good database?

The quality of data used for ML projects is para-
mount. Weak, invalid data will lead to weak and 
invalid ML outputs: ‘garbage in equals garbage out’. 
Whilst large datasets are favorable for ML projects, 
as more information invariably leads to higher 
internal and external validity, big data often come 

Table 1. Types of machine learning.

ML Type

Defined 
question 
asked?

Is data 
labeled? Outputs

Example 
Algorithms

Supervised Yes Yes (fully) ● Classification
● Real values

● Linear 
regression

● Logistic 
regression

● Decision 
trees

● Neural 
networks

Unsupervised No No ● Clustering
● Association

● K-means 
clustering

● Principal 
component 
analysis

● K-nearest 
neighbors

Semi- 
supervised

Yes Yes (partly) ●
Classification

● Real values
● Clustering
● Association

Any 
supervised 
or 

unsupervised 
method

Reinforcement Yes No (rules supplied 
instead)

Actions moving 
toward 
a solution

● Temporal- 
difference

● Q-learning
● SARSA
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with challenges.27 Firstly, it is important to validate 
the source of data. Within microbiome science, it is 
common for researchers to use individuals’ stools 
to sample their gut microbiomes, however it is 
becoming increasingly clear that stools may not be 
the most accurate method for profiling the gut 
microbiome.28 Though assaying of stools is nonin-
vasive and cost-effective, microbiota composition 
changes across the intestinal tract, therefore stools 
cannot provide a snapshot of any one gastrointest-
inal niche.29,30 Many reputable databases contain 
stool microbiome data, and the information should 
not be ignored as it can provide useful 
insights.14,31–33 It is, however, important to be 
aware of sampling methodology when conducting 
ML analysis to allow for valid interpretation. 
Another detail to investigate when examining 
a microbiome dataset is the population sampled. 
Microbiome composition is well known to differ 
with respect to a plethora of factors, including age, 
sex, health, diet, ethnicity, diet, and drug use.34–39 If 
a ML project aims to draw universally valid inter-
pretations, scientists must consider how globally 
representative the input data is.

The amount of data available in databases is 
another important factor. Generally, the more 
data available to an ML project the better, as the 
algorithm will naturally be exposed to more infor-
mation with more variance, allowing increased 
prediction accuracies.40 However, the impact data-
base size has on ML predictions does vary con-
siderably based on the problem being analyzed, 
and the complexity of the algorithm. For example, 
if there is a very strong pattern in data, such as 
‘ionized drugs are more water soluble than neutral 
drugs’, less data are required to teach an ML 
algorithm. Furthermore, some algorithms inher-
ently require larger amounts of data, due to their 

intricacy and complexity. Simpler algorithms such 
as linear regression and basic decision trees typi-
cally need less data compared to neural networks 
and deep learning algorithms with multiple 
layers.41 Unfortunately, there is no single mini-
mum amount of data needed for all types of ML. 
A decision on appropriate sample size can be 
reached using several methods, such as acquiring 
expert opinion, operator experience, and obser-
ving sample sizes in other similar published pro-
jects. For a given project, a plot of ‘dataset size vs. 
model prediction performance’ can be constructed 
using a subset of available data. This will allow 
reasonable projection of potential amounts of data 
required for a given performance score.42 Though 
insufficient dataset size is a common problem in 
the general field of ML, big data have become 
intrinsic to microbiome research. DNA sequen-
cing, metabolomics, proteomics, and in silico 
representation of drugs produce enormous quan-
tities of data that describe the minutiae of the 
microbiota-host relationship.43 Though vast quan-
tities of data can help to build highly predictive 
ML models, very large datasets (reaching tera-
bytes) do come with problems.44 For one, it is 
not guaranteed that big data are entirely without 
bias and fully globally representative. Populations 
less likely to be involved in microbiome research 
should not be disregarded; thus, it is important to 
always examine the source of data, no matter its 
scale. Next, data in repositories are commonly 
‘messy’, containing missing values, unequal scal-
ing, and background noise from poorly performed 
experiments or incorrect data labeling.45,46 

Clearly, without rectification messy data will 
adversely impact the predictive power of ML algo-
rithms. Data cleaning is a key part of ML projects. 
Before any algorithm training or testing begins, it 

Figure 3. Illustration of underfitting and overfitting in simple regression machine learning. Data points are represented by green 
markers and model fitting by a red line.
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is imperative that messy data are pre-processed. 
Contrary to common belief, machine learning 
engineers do not spend most of their time build-
ing, training, and refining algorithms. A 2020 
study found that data pre-processing (cleaning, 
labeling, compiling) is on average allocated over 
75% of ML project time.47 There are a myriad of 
techniques applied to data pre-processing, and full 
description of these is outside the scope of this 
article. A couple of existing sources summarizes 
this topic well.22,48 In brief, missing values can be 
removed or imputed with best estimates.49 Units 
of data features, such as drug molecular weight or 
LogP, will be transformed to a similar scale, to 
avoid giving undue weight to smaller units (e.g. 
100 mg may be treated as more important than 
0.1 g by an algorithm).50 Outliers in datasets may 
also be removed if they are judged as anomalies.

Useful databases

Projects utilizing ML within the field of micro-
biome therapeutics will likely require information 
on drugs, microbiota, and microbiota-human 
interactions. With a few exceptions, large databases 
bringing this information together do not yet exist, 
therefore it is necessary to mine data from multiple 
sources. Table 2 gives a summary of some reputable 
databases with potential utility for ML projects in 
this field.

Applications And Opportunities

Design and discovery of microbiome therapeutics

The last few years have seen an upsurge in publica-
tions utilizing ML within microbiome research, 
though ML used to specifically design new thera-
peutics targeted to the microbiome is still in its 
infancy. The expansion of microbiome ML work 
naturally follows the curation of large accessible 
databases.14–16 With the elucidation of host- 
microbiota metabolomics, proteomics, and geno-
mics, disease phenotypes can be identified.52–56 

Whilst scouring research literature and databases 
for microbiome disease markers could be time- 
consuming for a human, ML algorithms output 
information much more efficiently. Once it is 
known what elements of the microbiome cause 

disease, it is possible to begin work toward preven-
tative agents and treatments. Dysbiosis at various 
body sites has been associated with many diseases. 
For example, perturbations in the proportions of 
phyla Firmicutes and Bacteroidetes in the gut are 
strongly linked with several pathologies, including 
ulcerative colitis, obesity, and motor neuron 
disease.57–59 Etiological factors are believed to be 
increased intestinal permeability and inflamma-
tion, decreased short-chain fatty acid (SCFA) pro-
duction, and increased levels of lipoprotein 
lipase.3,60 A variety of ML methods, such as support 
vector machines, neural networks, and logistic 
regression, have been utilized to identify micro-
biota features present in several disease states.61 

Gupta et al. have developed a classification ML 
model that can predict individuals’ health status 
based on microbiome profiling.62 Elsewhere, 
human-bacteria protein-protein interactions have 
been successfully predicted.63 A study by Zeevi 
et al. used an ML algorithm integrating 800 people’s 
blood parameters, dietary habits, anthropometrics, 
physical activity, and gut microbiome profile to 
predict postprandial glycemic response.64 Such 
work illustrates how precision microbiome medi-
cine can become a reality.65 The promise for ML- 
led microbiome precision medicine within oncol-
ogy has been well described by Cammarota et al.26

Drug discovery scientists have utilized ML for 
years to identify novel molecules with therapeutic 
potential.41,66–68 Supervised, unsupervised, semi- 
supervised, and reinforcement learning styles have 
all been applied to novel drug-target predictions: 
methods which could be easily employed for iden-
tification of microbiome therapeutics.69–72 ML has 
also been applied to drug repurposing, allowing 
screening of thousands of marketed drugs for alter-
native therapeutic purposes.73 In 2018 over 1,000 
marketed drugs were screened for activity against 
40 gut bacteria strains: 24% of the drugs were found 
to inhibit growth of at least one strain, despite the 
majority not being marketed for antibiotic 
purposes.35 This highlights the potential for repur-
posing within microbiome medicine. Prebiotics, 
entities that promote the growth of beneficial 
microbiota, are popular and efficacious interven-
tions within microbiome medicine.74–76 A recent 
study using both supervised and unsupervised ML 
has elucidated and quantified the importance of the 
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structure-property relationships of beta-glucans as 
prebiotics.77 Probiotics, live microorganisms that 
when administered in adequate amounts confer 
a health benefit, are commonly investigated micro-
biome therapeutics.78 Currently identification of 
probiotic candidates usually occurs via a top- 
down approach, whereby bacteria are selected 
based on the observation that they are enriched in 

healthy individuals.65 Though this methodology 
has discovered useful probiotics such as 
Bifidobacterium, Lactobacillus, and Akkermansia 
muciniphila, it gives little consideration for thera-
peutic mechanism, dose, or heterogeneity between 
individuals.60,79 A bottom-up approach could 
exploit ML techniques to identify mechanisms of 
probiotic action, and search for microbiota that 

Table 2. Summary of key databases with potential utility in ML microbiome projects. Databases have been divided into: drugs, drug- 
microbiota interactions, microbiota, and microbiota-human interactions.

Database Description URL

Drugs
BindingDB A binding affinity database focusing on drug-protein interactions. http://www.bindingdb.org/bind/ 

index.jsp
ChEMBL A manually curated database of 2 million bioactive molecules bringing together chemical, activity, 

and genomic data.
https://www.ebi.ac.uk/chembl/

ChemDB A user-friendly database incorporating over 5 million small molecules annotated with important 
chemical features, e.g. predicted solubility.

http://cdb.ics.uci.edu/

ChemSpider A chemical structure database providing information on over 67 million entities from hundreds of 
sources.

http://www.chemspider.com/

DrugBank A bioinformatics and cheminformatics database providing information on over 13,500 drug 
entities, including biologics.

https://www.drugbank.ca/

Open Babel A wiki-led chemical toolbox suitable for use in many ML programs. http://openbabel.org/wiki/Main_ 
Page

PharmGKB A smaller database of 708 drugs annotated with information on how genetic variation can impact 
clinical response.

https://www.pharmgkb.org/

RDKit A cheminformatics software for use in ML projects in Python. https://www.rdkit.org/
Super Natural Database of over 325,000 natural products providing information on physicochemical properties 

and toxicity.
http://bioinf-applied.charite.de/ 

supernatural_new/index.php? 
site=home

Drug-microbiota 
interactions

DrugBug Database constructed using ML to predict the metabolism of drugs by bacteria found in the 
human gut.51

http://metagenomics.iiserb.ac.in/ 
drugbug/

Microbiota
BacDive Database providing taxonomic, physiological, and environmental data on over 80,000 strains of 

bacteria.
https://bacdive.dsmz.de/

EnsemblBacteria Database for bacterial and archaeal genomes. http://bacteria.ensembl.org/index. 
html

European 
Nucleotide 
Archive

Database providing comprehensive nucleotide sequencing information for bacteria, viruses, and 
fungi, protozoa and archaea.

https://www.ebi.ac.uk/ena/brow 
ser/home

Gold Database providing genomic information for eukaryotes, prokaryotes, and viruses. https://gold.jgi.doe.gov/
IMG/M Metagenomic database for microbiota, annotated with functions. https://img.jgi.doe.gov/
NCBI Microbial 

Genomes
Comprehensive database covering information on microbial genomes, functions, and recent 

corresponding publications.
https://www.ncbi.nlm.nih.gov/gen 

ome/microbes/
Microbiota-human 

interactions
Disbiome Database covering microbiota changes in disease states. https://disbiome.ugent.be/home
eHOMD Expanded Human Oral Microbiome Database: genomic data on 775 microbial species in the upper 

GI and respiratory tracts.
http://www.homd.org/

HMDB The human metabolome database containing information on over 114,000 human metabolites. https://hmdb.ca/
Human 

Microbiome 
Project

Genomic characterization of microbiota at five body sites (HMP1), and information on microbiota- 
human interactions in disease (iHMP).

https://www.hmpdacc.org/

MDB Microbiome database from China National GeneBank, providing metadata on both host- 
associated (humans, rodents, pigs) and environmental microbes.

https://db.cngb.org/microbiome/

MGnify Database providing genomic, proteomic, and metabolomic data on human and environmental 
biomes.

https://www.ebi.ac.uk/ 
metagenomics/

MicrobiomeDB Data mining platform for microbiome experiments. https://microbiomedb.org/mbio/ 
app/

UniProt Detailed database providing the proteomes of almost 200,000 microbiota and humans. https://www.uniprot.org/
Virtual Metabolic 

Human
Database on human and gut microbial metabolism with corresponding disease and nutritional 

information.
https://www.vmh.life/#home
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fulfils these actions.65 Algorithms could consider 
a multitude of factors before recommending 
a probiotic, such as efficacy, bioavailability, risk of 
toxicity, ease of formulation, and scalability. Deep 
learning techniques, which can incorporate multi-
ple layers of ML algorithms, would be well suited to 
solve these kinds of complex tasks (Figure 4).41

Formulation of microbiome therapeutics

Once active moieties have been selected, then phar-
maceutical expertise can be used to transform 
a drug into a medicine. There are three main cate-
gories of microbiome therapeutics: probiotics, pre-
biotics, and entities that alter the microbiome 

microenvironment (Table 3). By far the most suc-
cessful of probiotic therapies is fecal microbiota 
transplant (FMT) for the treatment of Clostridium 
difficile infection. Traditionally, FMT involves the 
infusion of feces from a healthy donor into the GI 
tract of a patient via the rectal route, to ‘reset’ their 
gut microbiome composition. In C. difficile infec-
tion, FMT has a 92% rate of disease resolution, far 
outperforming traditional antibiotics. Work is 
increasingly underway to investigate FMT for ben-
efit in other diseases, and formulate fecal micro-
biota in oral capsules to avoid transplant of whole 
fecal material.4,80–82 Prebiotics are often regarded 
as unregulated dietary supplements, due to their 
natural presence in food. There have however 

Figure 4. Example of a deep neural network for application in probiotic screening. Input information describing a bacterial strain is fed 
into hidden layers of the network. Progressing through the layers, the algorithm approaches its output: the predicted intestinal 
colonization efficiency of the bacteria, when administered as a probiotic.

Figure 5. Various drugs proven to be susceptible to metabolism by gut microbiota.10,32,33,172–177
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been several clinical trials using prebiotics for ame-
lioration of defined diseases at specified doses. For 
example, 20 g of specific prebiotics daily for 6 weeks 
has been shown to improve gut dysbiosis in human 
immunodeficiency virus (HIV).83,84 The final cate-
gory of microbiome therapeutics, entities that alter 
the microbiome microenvironment, is perhaps the 
broadest and most novel. This category includes 
small molecules and biopharmaceuticals that pro-
mote the growth of beneficial microbiota or dis-
suade the growth of pathogens.85 Such entities 
include the direct delivery of beneficial bacterial 
metabolites to the gut, and bacteriophages designed 
to lyse harmful bacteria.86–89Figure 5

When formulating a medicine, there are hun-
dreds if not thousands of factors to consider. 
These include route of administration, site of drug 
release, ease of manufacture, dosage form, and drug 
solubility, stability, and bioavailability.90 As well as 
being a therapeutic target, the microbiome can also 
be harnessed to facilitate targeted drug delivery.91,92 

For example, fermentable carbohydrate coatings 
have been developed for accurate colonic drug 
delivery.93,94 Supplied with information on a drug 
compound, ML can quickly and accurately assess 
formulation options without bias.95 Due to the 
complex nature of formulation science, deep ML 
techniques are especially useful. Yang et al. have 
used deep ML to predict specific characteristics of 
formulations, such as dosage form disintegration 

and drug release.96 Elsewhere, deep ML has been 
used to predict drug solubility and oral tablet 
disintegration.97,98 Other types of ML have also 
shown utility in formulation design. Supervised 
ML, specifically random forest, has been used to 
predict the physical stability of solid dispersions 
over 6 months.99 Factors considered include drug 
molecular weight, and polymer viscosity, melting 
point, and topological polar surface area. The abil-
ity to predict formulation stability could save for-
mulation scientists months of time spent iterating 
unstable dosage forms. Other applications include 
prediction of nanoparticle loading efficiency, con-
centration of vitamins in samples, crystallinity of 
drugs, and biophysical properties of monoclonal 
antibodies.100–103 As biopharmaceuticals, monoclo-
nal antibodies share similarities with probiotics. 
Due to the inherent sensitivity of biopharmaceuti-
cals, formulations should strike a balance between 
product efficacy, safety, stability, and manufactur-
ability. Both proteins and live bacterial cells are 
susceptible to degradation in the acidic environ-
ment of the stomach, thus formulations for oral 
administration must adequately protect entities 
during gastrointestinal transit.104 As shown in the 
work by Gentiluomo et al., ML can be utilized to 
better understand factors that impact biotherapeu-
tic stability.100 This is furthered echoed in work 
published by Pfizer, who developed an ML model 
to predict biophysical stability of antibodies using 

Table 3. Types of microbiome therapeutics.
Category Definition Examples

Probiotics Live microorganisms, which when administered in adequate 
amounts, confer a health benefit on the host.163

● Fecal microbiota transplant for treatment of C. difficile infection.80

● Oral administration of MET-3 (bacteria derived from human feces) 
for improvement of glucose tolerance in obese participants.164

● Prevention of infant atopic dermatitis by Lactobacillus strains.165

● Rectification of ulcerative colitis dysbiosis by administration of the 
commercial probiotic formulation, Symprove.57

Prebiotics A substrate that is selectively utilized by host 
microorganisms conferring a health benefit.166

● Improvement of HIV dysbiosis following 20 g defined prebiotics 
daily for 6 weeks.83,84

● Improvement of clinical biomarkers in obese participants follow-
ing administration of a daily polyphenol-prebiotic blend for 
8 weeks.167

● Histological improvement of nonalcoholic steatohepatitis follow-
ing administration of oligofructose for 36 weeks.168

Entities altering the 
microbiome 
microenvironment

Small molecules and biopharmaceuticals that promote the 
growth of beneficial microbiota or dissuade the growth of 
pathogens.

● Improvement of murine gut dysbiosis and clinical biomarkers of 
metabolic disease following administration of self-assembling 
cyclic peptides.169

● Improvement in obese participants’ clinical biomarkers following 
administration of inulin-propionate ester for 24 weeks.87

● Reduction in colorectal tumor growth following peritoneal injec-
tion of liposomal acetate for 4 weeks.170

● Bacteriophage and bacteriocin therapy for the gut microbiome.171
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only the primary protein sequence.105 Perhaps in 
the future, the stability of probiotics in formulation 
could be predicted using their genomic sequence, 
or cell surface proteins. ML has been used to iden-
tify bacterial genes essential for life, predict antimi-
crobial resistance, and explore antibiotic 
permeation through bacterial membranes.106–108 

In the case of bacterial membrane permeation, 
this could be applied to nanoparticles designed to 
enter bacterial cells for beneficial microbiome 
effects. Efficacy of formulations can also be pre-
dicted using ML. Luo et al. have illustrated the use 
of ML following a clinical trial, allowing prediction 
of changes to the gut microbiome after prebiotic 
consumption.109 This could pave the way for per-
sonalized design of formulations that maximize 
individual clinical outcomes. 3D printing is an 
additive manufacturing method with great utility 
in production of personalized medicines.110–120 

The human microbiome is as unique as one’s fin-
gerprint, thus 3D printing could be a useful tech-
nique for manufacture of personalized microbiome 
therapeutics.121–127 Such formulations could con-
tain live microorganisms, for example oral films 
containing viable probiotics have been produced 
using inkjet printing.128 3D printing of microbiome 
therapeutics remains in its infancy, and so ML can 
be well applied to efficiently optimize printing para-
meters; reducing the number of empirical experi-
ments needed.129,130 For example, ML has been 
used to accurately predict the printability of medi-
cines; this could be well applied to printing of 
microbiome-targeted therapeutics to optimize for-
mulation performance.131 Toxicity of formulations 
can also be predicted by ML. For example, the skin 
and genital microbiomes are sensitive to the use of 
certain excipients.132 ML could predict which exci-
pients in topical formulations may exert detrimen-
tal impacts on external commensals. Clearly, there 
is a lot of potential, and room for innovation, 
within the design of microbiome therapeutics 
using ML.

Prediction of microbiome-drug interactions

Though not traditionally acknowledged, the meta-
bolic capacity of the gut microbiome has long been 
equated to that of the liver.133 Over 180 orally 
administered drugs are now known to be 

metabolized by gut microbiota.10,11,33,134,135 

Microbiota drug metabolism can lead to significant 
inter-individual pharmacokinetic variability.136 For 
example, a strain of Eggerthella lenta capable of 
inactivating the cardiac glycoside drug digoxin is 
estimated to inhabit the guts of 40% of the global 
population.137 Intestinal degradation of digoxin 
can lead to higher dose requirements of patients 
and make selecting a first dose difficult. Moreover, 
premature conversion of the Parkinson’s therapeu-
tic levodopa by bacterial tyrosine decarboxylases in 
the jejunum is known to increase patients’ dose 
requirements.138 The number of drugs known to 
undergo microbiota metabolism may only repre-
sent the tip of the iceberg. Firstly, there are still 
many drugs which have not been tested for degra-
dative susceptibility. Secondly, investigations have 
largely focused on bacterial interactions with drugs, 
disregarding contributions of viruses, fungi, proto-
zoa, and archaea.139,140 Thirdly, microbiome meta-
bolism of drugs administered by non-oral routes is 
under-researched. Though the human colon houses 
the highest density of microbiota in the body, the 
small intestine, skin, genital, oral, nostril, ocular, 
and auditory microbiomes represent unique micro-
bial niches that could impact drugs administered by 
other routes.12,141,142 Microbiome-drug metabo-
lism may be assessed using ML combined with 
biosensors, which can measure subtle alterations 
in pharmacokinetics in vivo .143,144 In addition to 
metabolism, the absorption of drugs across biolo-
gical barriers may be impacted by perturbations in 
microbiome composition. For example, dysbiosis 
of the skin microbiome can affect barrier function, 
potentially altering the permeation of topical 
drugs.145 Moreover, dysbiosis in the colon is 
known to impact tight junction integrity.57 Whilst 
a database exists providing information on the 
impact of human genome variation on drug 
response (PharmGKB), comprehensive resources 
summarizing the impact of microbiome variation 
influence on drugs are lacking.146 The DrugBug 
resource curated by Sharma et al. is probably the 
most functional database, however it does not 
address pharmacokinetic concerns arising from 
bacterial metabolism.51

Due to the scale of work required to inves-
tigate microbiome effects on drugs by practical 
experimentation, ML offers a feasible way to 
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predict interactions quickly and accurately. 
Though this work is by no means complete, 
there have been several progressive examples 
of ML use in recent years. In conjunction 
with practical high-throughput analysis of 
drug metabolism by gut bacteria, Zimmerman 
et al. used the clustering ML technique known 
as principal component analysis (PCA) to iden-
tify structural similarities of drugs susceptible 
to gut bacteria metabolism.10 Using the study’s 
documented 20,596 bacteria-drug interactions, 
PCA revealed how the presence of certain 
functional groups can increase the chance of 
metabolism. For example, drugs containing 
ester or amide groups are more likely to be 
specifically hydrolyzed by Bacteroidetes species. 
Other susceptible functional groups include 
nitro and azo moieties, which are prone to 
reduction by multiple anaerobic strains. This 
information is clearly useful for predicting 
untested drugs’ risk of metabolism. Another 
application of ML within the field of micro-
biome drug metabolism is work by Sharma et -
al.51 The group first constructed a database of 
substrates for human gut bacterial enzymes. 
Once assembled, the database included 1,609 
substrates; 324,697 enzymes; and 491 bacterial 
genomes. PCA was then used to assess struc-
tural diversity of the included substrates to 
ensure a robust, representative model. 
Following this, random forest ML was 
employed to classify commercial drugs as 
being susceptible to biotransformation by spe-
cific gut microbiota enzymes. Upon analysis the 
prediction accuracy of the algorithm was 
judged to be >93%. This resource was subse-
quently made publicly available via the 
DrugBug online prediction platform.51 Despite 
being the first work of its kind, the DrugBug 
tool does have room for improvement. Firstly, 
the prediction accuracy could be improved 
using a larger number of drug molecules for 
algorithm training and testing, and by fine 
tweaking of algorithm parameters. Secondly, 
the online platform is quite slow and compli-
cated to use. There is also no information 
given on the prevalence of the gut bacteria in 
the global population, or any clinical or phar-
macokinetic implications of potential drug 

metabolism. DrugBug is a brilliant starting 
point for the ML microbiome pharmaceutics 
community to build on.

Whilst the microbiome can impact the actions of 
drugs, the same applies to the converse. A study by 
Maier et al. has highlighted that a significant pro-
portion of non-antibiotic drugs impair growth of 
gastrointestinal microbiota.35 A couple of research 
groups have utilized this dataset of >1000 marketed 
drugs to build ML models that can predict anti- 
commensal activity of drugs untested by Maier et -
al.147,148 Such work could be highly useful in pre-
clinical toxicity screening within the 
pharmaceutical industry, to predict whether new 
treatments could cause gut dysbiosis.

Barriers To Overcome

Currently, the use of ML to develop microbiome 
therapeutics lags considerably behind other areas of 
science.95,149,150 There are several possible reasons 
for this, representing challenges for the field to 
overcome. Firstly, data describing human- 
microbiome-drug interactions have only begun to 
reach a rapid rate of discovery in recent years, with 
studies such as the high-throughput screening of 
microbiota drug metabolism by Zimmerman et al., 
and work from the field-leading APC Microbiome 
Ireland.10,151–154 Whilst this new abundance of 
information is clearly positive, to facilitate ML pro-
jects data should be collated and formatted into 
accessible databases. Such databases could provide 
information on microbiota drug metabolism, for-
mulation parameters for microbiome therapeutics, 
and pharmacokinetic details for microbiota- 
targeted medicines. With the construction of large 
databases containing reliable, clean data, ML work 
would be easier and yield stronger predictions. 
Clearly, collaboration and information sharing 
between academic institutions and commercial cor-
porations will be necessary for the reality of global 
database creation. Whilst this may be difficult in the 
short term, the yields will far outweigh disadvan-
tages, likely leading to the development of new 
therapies for patients. Where large quantities of 
data are available in-house, for example historical 
experimental data, it may be difficult to use in ML 
projects.155 Without the foresight of storing data 
for potential ML use, it is likely that substantial pre- 
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processing steps will be required.45 Though possi-
ble, cleaning of decades of heterogeneously for-
matted data can take years. There is also the 
barrier of skillset requirements for the adoption of 
ML within the field. Demand for data scientists in 
the United Kingdom grew by 231% in the five years 
preceding 2019.156 In addition to ML skills, it is 
highly beneficial for workers to also have pharma-
ceutics expertise, as this will facilitate optimal data 
mining, cleaning, and end analysis. For example, 
ML scientists without a pharmaceutics background 
may not spot anomalies or mistakes in datasets. 
They may also find interpretation and application 
of ML algorithm outputs more challenging. 
Training of pharmaceutical scientists in ML skills, 
and training of ML scientists in pharmaceutics, is 
thus required. Evidently, this will require substan-
tial investment within both academic and industry 
settings. Finally, it is important that settings facil-
itate the use of ML to obtain optimal results. More 
so in industry, well-defined and proven systems of 
work will change dramatically with the widespread 
adoption of ML. For example, formulation scien-
tists may spend much less time physically com-
pounding iterations of products due to the 
predictive power of ML. Implementation of ML 
will require restructuring of procedures, in 
a careful and strategic manner, with full support 
of team members.

Future Outlook

The explosion of big data within microbiome 
research in the last 20 years opens opportunities 
for ML like never before. Freely accessible genomic, 
proteomic, and metabolomic metadata facilitates 
commencement of ML projects with little initial 
investment or risk. To make the most of ML, aca-
demic and corporate institutions will need to col-
laborate to populate new databases with previously 
proprietary information, such as probiotic viability, 
microbiota drug metabolism, and stability studies. 
Whilst this will invariably raise issues around intel-
lectual property, collaboration will offer projects 
not previously feasible for companies, and most 
importantly, will benefit patients through the devel-
opment of new therapies. In order to adopt ML in 
a strategic, widespread, and sustainable manner, 
institutions will need to invest in the training of 

ML engineers. In the wake of a global recession 
instigated by the COVID-19 pandemic, institutions 
may find training budgets are restricted.157–159 

Low- to middle-income countries will be especially 
affected, for example there is a projected 7.2% 
decrease in regional economic activity in Latin 
America compared to 4.7% in Europe and Central 
Asia.160 Though the global economic downturn will 
undoubtedly affect the pharmaceutical industry, it 
is a worthwhile investment to commit budgets to 
ML expertise. Once workers are trained, ML will 
save time and physical resources in product devel-
opment. ML has the capacity to optimize and 
streamline the preclinical stages of microbiome 
therapeutics, meaning products will progress to 
trials faster with likely higher success rates. Major 
pharmaceutical companies currently showing the 
most activity within AI include Novartis, 
AstraZeneca, and Boehringer Ingelheim.155 

Specialist AI companies, mostly working in the 
drug discovery space, include Exscientia, 
Atomwise, GNS Healthcare, and Berg. These spe-
cialist corporations typically partner with major 
pharma companies to unite expertise, 
a collaborative method of drug development that 
is likely to only increase in occurrence.161

Concluding Remarks

Clearly, opportunities for utilizing ML in develop-
ment of microbiome therapeutics are manifold. 
Since the early 2000s big data within microbiome 
research have become a reality, with genomic 
sequencing and metabolomic mapping providing 
an influx of information on the host-microbiota 
relationship.12,13 This data has provided 
a deepening understanding of how the microbiome 
can affect health, allowing the development of pre-
cision microbiome medicine. In more recent years, 
the impact of microbiota metabolism on drugs has 
come to light, and may change pharmacokinetic 
modeling forever.10,162 With the amount of data 
currently available, it is more important than ever 
to utilize systematic, accurate, and unbiased tools 
for analysis. ML techniques offer an accessible way 
to interpret metadata and use it to solve problems. 
Whilst a human could not feasibly recognize pat-
terns within terabytes of information, ML can do 
this and solve complex tasks within seconds to 
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minutes. To obtain information for ML projects, it 
is important to have access to reliable databases. 
Though several of these exist for data on drugs, 
microbiota, and microbiota-host dynamics, there 
is a distinct lack of resources providing pharmaceu-
tical information. Curation of such databases is 
important for optimal utilization of ML within the 
field. Several challenges face institutions looking to 
adopt ML. Namely, cooperation with other cor-
porations, data management, service remodeling, 
and lack of skillset. Whilst the necessary initial 
investment may be challenging for academic and 
industrial settings, especially considering the cur-
rent global economy, actions will be worthwhile in 
the long term. ML is transforming almost every 
sector worldwide and is here to stay.
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