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ABSTRACT 

 

INTRODUCTION: Machine learning models were used to discover novel disease trajectories for 

autosomal dominant Alzheimer’s disease. 

 

METHODS: Longitudinal structural MRI, amyloid PET, and fluorodeoxyglucose PET were 

acquired in 131 mutation carriers and 74 non-carriers from the Dominantly Inherited Alzheimer 

Network; the groups were matched for age, education, sex, and apolipoprotein 4 (APOE 4). A 

deep neural network was trained to predict disease progression for each modality. Relief 

algorithms identified the strongest predictors of mutation status. 

 

RESULTS: The Relief algorithm identified the caudate, cingulate, and precuneus as the strongest 

predictors among all modalities. The model yielded accurate results for predicting future 

Pittsburgh Compound-B (R2=0.95), fluorodeoxyglucose (R2=0.93), and atrophy (R2=0.95) in 

mutation carriers compared to non-carriers. 

 

DISCUSSION: Results suggest a sigmoidal trajectory for amyloid, a biphasic response for 

metabolism, and a gradual decrease in volume, with disease progression primarily in subcortical, 

middle frontal, and posterior parietal regions. 

 

Keywords: Autosomal dominant Alzheimer disease (ADAD), Machine learning, Pittsburgh 

compound B (PiB), Fluorodeoxyglucose (FDG), Magnetic resonance imaging (MRI) 
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1. INTRODUCTION 

Alzheimer’s disease (AD) is the most common form of dementia, accounting for 60%–70% of 

the 50 million dementia cases worldwide [1]. AD leads to slow cognitive decline, behavioral and 

psychiatric disorders, and impairments in functional status. Pathological features of AD include 

the accumulation of amyloid-beta (A) plaques, neurofibrillary tau tangles, and 

neuronal/synaptic losses that correspond with atrophy and decreased glucose metabolism [2]. 

The most common form of AD occurs in older age and is known as late-onset Alzheimer’s 

disease (LOAD). Autosomal dominant Alzheimer’s disease (ADAD) accounts for less than 1% 

of all AD cases and is caused by pathogenic mutations in amyloid precursor protein (APP), 

presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes that lead to early increases in Aβ deposition 

in the brain, which, in turn, is hypothesized to initiate a cascade that causes cognitive decline 

[3,4]. The age of onset of cognitive impairment in ADAD mutation carriers (MC) is earlier than 

LOAD and remains fairly consistent within a family, allowing for calculation of the estimated 

age of symptom onset (EAO) [5]. 

  

Multiple neuroimaging methods have been used to evaluate in vivo changes in the brain due to 

AD. [11C]Pittsburgh Compound-B (PiB) has high affinity for Aβ plaques, with distributions 

similar to those seen at autopsy [6]. PiB PET has been employed in ADAD to identify amyloid 

deposition, with amyloid deposition identified more than 20 years prior to EAO in MC [7–10].  

 

Abbreviations. Aβ: Amyloid beta, ADAD: autosomal dominant Alzheimer disease, ANN: artificial neural 
networks, DIAN: Dominantly Inherited Alzheimer Network, DIAN-TU: Dominantly Inherited Alzheimer Network 
Trials Unit, EAO: expected age of symptom onset, EYO: estimated years to symptomatic onset, FDG: 
[18F]Fluorodeoxyglucose, MC: mutation carrier, ML: machine learning, NC: non-carrier, PiB: [11C]Pittsburgh 
Compound-B, RMSE: root mean squared error, ROIs: regions of interest, SUVRs: standardized uptake value ratios 
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Studies have also shown increases in PiB retention in MC are associated with a worsening 

cognitive performance, a decrease in glucose metabolism, and a decrease in hippocampal volume 

[7,11]. 

 

 [18F]Fluorodeoxyglucose (FDG) uptake reflects glucose metabolism and has shown promise in 

discriminating symptomatic MCs from cognitively normal, mutation-negative non-carriers (NC) 

[6,9,10]. In ADAD, studies have shown FDG uptake in MCs is decreased in the precuneus and is 

inversely correlated with PiB binding. Marked decreases in glucose metabolism occur 

approximately 5–10 years before EAO in MCs [10,12]. 

 

Structural MRI provides a method to evaluate regional volumetric changes in neurodegeneration 

that occur with disease progression [13]. MRI can reveal regional brain atrophy, which is a 

characteristic feature of neurodegeneration due to synaptic losses [14]. ADAD is characterized 

by progressive atrophy that manifests as changes initially in the temporal lobes and subcortical 

regions with eventual spread to other regions. Observed changes in atrophy are related to the 

spread of neurofibrillary tangles in AD [14].  

 

Machine learning (ML) is a branch of artificial intelligence that can learn to extract patterns from 

existing data to predict future events [15]. Advances in ML offer promise for a number of 

applications, including medical imaging and predictive analytics [15,16]. Compared to 

traditional statistics that provide primarily group-level results, ML algorithms can predict clinical 

outcomes at the individual level and could enable personalized treatments that provide targeted 

care for patients [17]. Although a number of studies have applied ML to neuroimaging measures 
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to study LOAD [18–22], few studies to date have applied these techniques to ADAD. Because 

time until conversion to symptomatic impairment can be estimated with EAO, ADAD provides a 

unique opportunity for ML to model the progression of the disease and provide decision support 

to evaluate therapies currently being investigated in the Dominantly Inherited Alzheimer 

Network (DIAN) Trials Unit (DIAN-TU). 

 

In this longitudinal study, we used artificial neural networks (ANNs) to evaluate progression to 

cognitive impairment using multimodal neuroimaging biomarkers. Specifically, within a cohort 

of MCs (n = 131) and NCs (n = 74), we used ANNs to investigate: (1) changes in Aβ deposition 

(using PiB), (2) changes in glucose metabolism (using FDG), and (3) brain atrophy (using 

structural MRI) as a function of aging in relation to EAO. Further, we utilized feature selection 

to identify regions that were the strongest discriminators of mutation status for each modality. 

We then performed Monte Carlo simulations to identify cutoffs for the identified regions. This 

data-driven approach provides an opportunity to discover novel mechanisms and disease 

trajectories specific for ADAD.  

 

2. METHODS 

2.1 Participants 

One hundred thirty-one MCs with mutations in PSEN1, PSEN2, or APP and 74 healthy, 

mutation-negative NCs were recruited from sites participating in the DIAN study. Participants 

from the 12th data freeze with genetic, clinical, and longitudinal neuroimaging data that passed 

quality control procedures were included. The Washington University Institutional Review 

Board provided supervisory review and human subjects’ approval. Participants provided written, 
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informed consent or assent with proxy consent. All study procedures were approved by the 

Washington University Human Research Protection Office and the institutional review boards of 

the participating sites.  

 

2.2 Clinical Classification 

The CDR® Dementia Staging Instrument was used to assess dementia status at each clinical 

assessment [23]. A participant’s EAO was calculated at each visit on the basis of the 

participant’s current age relative to the family mutation–specific expected age at onset of 

dementia symptoms [5]. Parental age at first progressive cognitive decline was used if the 

mutation-specific EAO was unknown. EAO was calculated identically for both MCs and NCs. 

All clinical evaluators were blinded to the mutation status of participants. The presence/absence 

and type of mutation were determined using polymerase chain reaction amplification followed 

by Sanger sequencing [7]. 

 

2.3 MRI Acquisition and Processing 

MRI was performed using the Alzheimer’s Disease Neuroimaging Initiative protocol (ADNI) 

[24]. Sites used a 3T scanner that passed regular quality control assessments. The ADNI Imaging 

Core screened images for compliance. T1 weighted images at 1.1 x 1.1 x 1.2 mm voxel 

resolution were acquired for participants. FreeSurfer 5.3 [25,26] was used to perform volumetric 

segmentation, cortical surface reconstruction, and to define cortical and subcortical regions of 

interest (ROIs). Segmentations were inspected and edited as needed by members of the DIAN 

Imaging Core. A regression approach was used to correct subcortical volumes for intracranial 
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volumes. Volumetric measures were averaged across hemispheres. FreeSurfer-defined cortical 

and subcortical ROIs (44 total) were used for regional processing of PET data. The FreeSurfer-

defined ROIs were derived from the Deskian/Killiany atlas [27] for segmentation. These are 

standard regions used for volumetric analyses. 

 

2.4 PET Acquisition and Processing 

Amyloid PET was performed using a bolus injection of PiB. Data from the 40–70-minute post-

injection timeframe were converted to regional standardized uptake value ratios (SUVRs) 

relative to the cerebellar gray matter using FreeSurfer-derived ROIs (PET Unified Pipeline) [28]. 

Glucose metabolism imaging was performed with a single bolus injection of FDG. A 30-minute 

dynamic acquisition beginning 30 minutes post-injection was acquired. The last 20 minutes of 

each FDG scan were converted to SUVRs using the cerebellar gray matter as a reference region. 

All PET data were partial volume corrected using a regional spread function technique [29,30]. 

PET images were aligned to the T1 image processed using FreeSurfer. PET scanner–specific 

filters were applied to account for differences in spatial resolution and to achieve a common 

resolution (8 mm) [31]. The DIAN imaging core performed quality control checks on the PET 

Unified Pipeline processing. 

 

2.5 Machine Learning and Statistical Analyses 

ML analyses were performed in MATLAB R2018b. Deep feedforward ANNs were trained for 

each of the neuroimaging modalities. Feedforward ANNs map an input to an output by 

composing sets of smaller functions laid out as a directed acyclic graph [32]. The feasibility of 

these networks is based on the Universal Approximation Theorem, which states a neural network 
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with a single hidden layer contains a finite set of artificial neurons that approximate continuous 

functions on subsets of Rn [33].  

 

Our ANNs contained 4 hidden layers with 10 artificial neurons in each layer. The network 

architecture was decided based on design methodologies [34,35],  incremental pruning, and  

cross-validation. Further details on model design and validation can be found in supplementary 

material (Methods- Machine Learning Model Design). An ANN was trained to output all ROIs 

for each modality. Input to the models included age, sex, APOE 4 status, mutation status, the 

amount of time in the future to predict, and the given imaging variables (MRI or SUVR) for 44 

FreeSurfer ROIs. A complete list of the ROIs can be found in Supplementary Table 1. The 

output of each model corresponded to the ROI values at a time point in the future. Rates of 

change were calculated by subtracting scans at time point N by the scan at time point N-1. Rates 

were then divided by the number of months between the scans to obtain a normalized rate of 

change. The mean time between scans was 2.6 years (±1.4). If a participant had more than 2 

scanning sessions, all possible combinations were evaluated. Using the first time point, data were 

projected into the future by iteratively adding the normalized rate of change, and these data were 

used for training. For each point, the rate of change was used to project the data ± 3 years from 

the current age. Data were projected into the future and the past to avoid biasing the model to 

later phases of the disease. We chose this window based on previous work [10], which showed 

the biomarkers’ rate of change is not constant along the disease continuum.  

 

Predictive features of mutation status were ranked according to importance using a Relief 

algorithm [36]. Relief algorithms detect conditional dependencies between attributes using a 
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nearest neighbor approach, with features ranked by estimating how well their values distinguish 

between proximal comparisons. Further, cutoff points for PiB, FDG, and brain volumetrics were 

identified based on the likelihood of the values generated by Monte Carlo model simulations. 

The simulations generated an equal number (by mutation status) of random sample points from 

the multivariate distribution defined by the mean and covariance matrix of the data given a 

specific mutation status, age, and EAO range [37]. 

 

We also trained a linear regression model to compare the results to our ANN. This comparative 

analysis was performed due to recent research suggesting that, in some cases, linear models can 

outperform nonlinear models [38]. When training the regression model, all methods previously 

described for training the ANN were applied. Each biomarker was modeled separately, and the 

models were trained using 5-fold cross-validation. Cross-validation was performed at the 

participant level, and all results reported were derived by combining the test data results from 

each of the 5 folds of cross-validation. In addition, the input to the regression model was the 

same as the ANN, but the only output considered was the precuneus. We chose the precuneus as 

it is highly predictive and heavily involved in disease progression in ADAD [10], making it 

optimal for comparison. Further, a multivariate linear regression was performed which derived 

brain regions in the same manner as the ANN. The regression model utilized ordinary 

multivariate normal maximum likelihood estimation with the full variance-covariance matrix and 

constant, linear, and interaction terms. We also performed the zero rule algorithm on the data to 

compare baseline predictability using the mean of the output values observed in the training data 

compared to the testing data. 
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3. RESULTS 

3.1 Demographics of the Cohort 

Detailed demographics are presented in Table 1. Participants were matched for age, sex, and 

education. 

 

Table 1. Demographics of participants 

 Mutation carriers 

(MC) 

Mutation-negative 

non-carriers (NC) 

p Values 

N 131 74  

Age (years) ± SD 39.2 ± 10.6 39.3 ± 10.2 .95 

Sex (% Male) 40% 35% .72 

Education (years) ± SD 14.3 ± 2.7 15.1 ± 2.6 .06 

APOE 4 (% carriers) 39% 36% .81 

EAO (years) ± SD 46.3 ± 6.8 48.1 ± 5.7 .90 

Abbreviations: SD, standard deviation; APOE 4, apolipoprotein 4; EAO, estimated age of 

symptom onset. 

 

3.2 PiB 

The Relief algorithm identified the nucleus accumbens, caudate, precuneus, anterior cingulate, 

pallidum, putamen, and middle frontal regions as strong predictors of mutation status. The ANN 

was able to predict the future PiB values with an average R2 value of 0.95 and RMSE of 0.2. 

Figure 1 depicts results for the 4 best-predicted ROIs. The algorithm was able to accurately 

estimate the values in both MCs and NCs, with the NCs having lower SUVRs compared to the 
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MCs. Supplementary Figure 1 shows the model predictions for MCs based on distance from 

EAO for PiB. Two relatively distinct clouds were seen for PiB, with lower SUVRs seen at 

greater distances from EAO, while MCs closer to EAO had elevated PiB SUVRs. 

 

 

Figure 1. Results of Pittsburgh Compound-B (PiB) predictions for mutation carriers (MC) (blue) 

and non-carriers (NC) (red). Correlation and RMSE of predicted versus actual values. The ANN 

was able to predict future PiB values with an average R2 of 0.95 and RMSE of 0.2 in both MCs 

and NCs. 

 

3.3 FDG 

The strongest predictors of mutation status with respect to metabolism were the pericalcarine, 

caudate, precuneus, fusiform, anterior cingulate, insula, and transverse temporal regions. The 
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ANN was able to predict future FDG values with an R2 value of 0.93 and RMSE of 0.02 in both 

groups. Figure 2 depicts results for the 4 best-predicted ROIs. The algorithm showed a trend of 

MCs having lower future FDG values than NCs. Supplementary Figure 2 shows the model 

predictions for MCs based on distance from EAO for FDG. Two clouds are seen for FDG, with 

higher SUVRs seen at greater distances from EAO, while MCs closer to EAO had lower FDG 

SUVRs. 

 

 

Figure 2. Results of fluorodeoxyglucose (FDG) predictions for mutation carriers (MC) (blue) 

and non-carriers (NC) (red) in select ROIs. Correlation and root mean squared error (RMSE) of 

predicted versus actual values. The ANN was able to predict future FDG values with an average 

R2 of 0.93 and RMSE of 0.02 in MCs and NCs, with MCs showing trends of lower predicted 

FDG values than NCs 
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3.4 Volume 

The strongest predictors of mutation status with respect to brain atrophy were seen in the nucleus 

accumbens, pericalcarine, caudate, precuneus, anterior cingulate, insula, entorhinal cortex, 

pallidum, and transverse temporal regions. The ANN was able to predict changes in brain 

volumes with an average R2 value of 0.95. Figure 3 depicts results for the 4 best-predicted 

regions. The algorithm showed a general trend of MCs having more brain atrophy than NCs. 

Supplementary Figure 3 shows the model predictions for MCs as a function of distance from 

EAO for brain volumes.  

 

 

Figure 3. Results of brain volumetric predictions for mutation carriers (MC) (blue) and non-

carriers (NC) (red). Correlation and root mean squared error (RMSE) of predicted versus actual 
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values. The ANN was able to predict changes in brain volumes with an average R2 value of 0.95 

and showed a general trend of MCs having more brain atrophy than NCs. 

 

 
Figure 4. (Top left) Simulated biomarker evolution for total mean cortical and subcortical 

Pittsburgh Compound-B (PiB), total mean cortical and subcortical fluorodeoxyglucose (FDG), 

and total gray matter volume (scaled to a common interval) derived from the artificial neural 

network (ANN) in mutation carriers (MC). Shaded region indicates model variability, with EAO 

marked by perpendicular line. (Top right) Simulated biomarker evolution for total mean cortical 
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and subcortical PiB, total mean cortical and subcortical FDG, and total gray matter volume 

(scaled to a common interval) derived from the ANN in mutation non-carriers (NC). (Bottom 

left) Normalized biomarker rate of change for mean PiB, mean FDG, and total gray matter 

volume (scaled to a common interval) fit to a polynomial curve showing 95% confidence 

interval. (Bottom right) Mean absolute error of predicted (normalized) biomarker values given 

the amount of time in the future to predict, fit with a 2-degree polynomial curve projected into 

the future. Errors increased linearly with an increase in the amount of time in the future to 

predict. 

 
 

3.5 Simulations 

Using the trained models, amyloid accumulation, changes in metabolism, and brain atrophy were 

simulated for MCs and NCs (Figure 4, top). Consistent with previous work, the models showed 

that in the MC group, the earliest changes are in amyloid deposition, which follows a sigmoidal 

trajectory and continues to accumulate past EAO. A biphasic response was seen for metabolism, 

with changes occurring earlier than expected, and progressive decline was observed in atrophy 

throughout the course of the disease, with the greatest changes occurring just prior to EAO. The 

NC groups showed little change over time for all modalities. 

 

We fitted a polynomial curve to the normalized rates of change for each of the neuroimaging 

biomarkers (Figure 4, bottom left). Consistent with the models, amyloid showed an inverted U 

shape, with increases occurring early in the disease, and subsequently followed by a gradual 

decline in rate of PiB accumulation. FDG showed a slight increase in the early stages, followed 
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by a gradual decrease when the distance from EAO approached 0. Finally, brain volumetrics 

showed a gradual increase in the rate of decline throughout progression to EAO. 

 

Figure 4 (bottom right) shows the normalized models errors based on years to predict (e.g., the 

error for a participant’s PET/MRI values predicted 1 year in the future versus the error for 

predicting 5 years in the future). A 2 degree polynomial curve was fit to the error data, which 

showed a predominantly linear increase with increasing number of years to predict. The fit lines 

were projected into the future for up to 40 years. The plot shows that the model maintains a mean 

absolute error less than 0.1 up to 10 years in the future. The individual biomarkers showed 

similar trends, only at different scales.  

 

Supplementary Figures 4–6 display the results of the Monte Carlo model simulations for each of 

the highly predictive regions for each modality. Larger values on the y-axis represent a greater 

likelihood of producing a given value. For PiB, clear cut-points were observed between MCs and 

NCs with nearly 100% specificity. Cut-points were 1.17 for the nucleus accumbens, 1.3 for the 

caudate, 1.4 for the precuneus, and 1.2 SUVR for total cortical mean. For FDG, the cut-points 

were less defined for some regions. Cut-points for the anterior cingulate, caudate, precuneus, and 

total cortical mean ranged from 1.4–1.825 SUVR. The model simulations indicate MCs had a 

trend for decreased FDG in each of these ROIs, as well as a biphasic response in the caudate and 

anterior cingulate. For brain volumes, MCs had greater atrophy than NCs. Cutoffs were 

identified for the nucleus accumbens (550 mm3), caudate (3300 mm3), precuneus (8500 mm3), 

and total gray matter (575,000 mm3). 
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3.6 Alternative Analysis Methods 

Supplementary Figure 8 displays the error histograms [probabilities of errors (actual-predicted)] 

for the ANN versus the regression model for PiB in the precuneus. Although both models 

performed very well, the performance obtained through regression was lower than that obtained 

through the ANN. The ANN’s error probability distribution was highly clustered around 0 

(RMSE = 0.17), whereas the regression model showed greater dispersion (RMSE = 0.28), 

indicating a greater likelihood of making a larger error compared to the ANN. Similar results 

were seen using FDG and volumetric data. Whole brain average RMSE for the ANN, 

multivariate linear regression, and zero rule algorithm are provided at the bottom of 

supplementary table 1. As expected, the ANN showed lower RMSE compared to multivariate 

linear regression and the zero rule algorithm for all modalities. 

  

4. DISCUSSION 

Our models yielded high accuracy in predicting amyloid accumulation, changes in metabolism, 

and brain atrophy in ADAD. The Relief algorithm identified both subcortical (caudate) and 

cortical (precuneus and anterior cingulate) ROIs as the strongest predictors of mutation status. 

Figure 5 displays the strongest predictors for each modality. For amyloid PET, which is believed 

to reflect the earliest changes in ADAD, changes were primarily seen within subcortical 

(pallidum, nucleus accumbens, caudate, putamen, and entorhinal) compared to cortical regions 

(middle frontal, anterior cingulate, and precuneus). For changes in metabolism measured by 

FDG, which reflect changes later in the disease process compared to amyloid, more cortical 

(insula, fusiform, middle frontal, precuneus, anterior cingulate, pericalcarine, and transverse 

temporal) rather than subcortical (caudate) regions were involved.  
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Figure 5. Strongest predictors of mutation carrier (MC) status for autosomal dominant 

Alzheimer’s disease (ADAD) as identified by Relief algorithms. The strongest predictors across 

all modalities were the precuneus, caudate, and anterior cingulate. Changes in amyloid PET 

(PiB, blue circle) were primarily seen within subcortical regions. Changes in metabolism (FDG, 

orange circle) showed more cortical involvement. Volumetric changes (Volume, green circle) 

showed both cortical and subcortical involvement. 

 
For changes that occur late in the disease process due to atrophy, both cortical (precuneus, 

anterior cingulate, pericalcarine, transverse temporal) and subcortical (caudate, pallidum, nucleus 

accumbens, entorhinal, thalamus) regions were affected. This suggests that the disease may start 

within subcortical areas and quickly involve additional subcortical and cortical regions. Overall, 

these analyses point to multiple hubs being affected early in the disease process, followed by 
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spread to other brain regions (Supplementary Figure 7).  Supplementary Table 1 lists the RMSE 

for the individual ROIs for each of the 3 biomarkers, as well as the mean overall RMSE of the 

models compared to the zero rule algorithm and multivariate linear regression. 

 
 
In the amyloid analysis, the model achieved 0.95 R2 and 0.2 RMSE (see Figure 1). The model 

showed PiB uptake was greater in MCs compared to NCs for most regions. Our results also 

confirm that the presence of amyloid alone is insufficient for conversion to symptomatic AD. 

The simulated trajectory for mean cortical amyloid accumulation (see Figure 4, top left) showed 

deposition started to occur approximately 15–20 years before EAO. These results are consistent 

with other studies that focused on global and regional amyloid deposition [7,11]. Our model 

indicates a sigmoidal trajectory of accumulation for amyloid, with a slow increase 20–30 years 

from EAO, an abrupt increase 0–15 years from EAO, and slowing to an eventual decline after 

EAO. This is consistent with what has been hypothesized to occur in LOAD [39].  

 

As a point of reference, we calculated the normalized rates of change for all mutation-positive 

participants (see Figure 4, bottom left). The normalized rate of amyloid deposition shows a 

consistent increase from roughly 10 years prior to EAO followed by slowing in the rate of 

accumulation after EAO. Only after EAO does the rate of accumulation diminish, which is 

consistent with the sigmoidal model trajectory.  

 

With regard to metabolism, our model yielded 0.93 R2 and 0.02 RMSE. Although the MCs had 

greater decreases in FDG for most brain regions, the separation between the 2 groups was not as 

well defined compared to PiB. This is likely because the rate and amount of change are less 
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extreme compared to amyloid (see Figure 4, top left). Our model indicates metabolism did not 

decrease below a baseline until 10 years before symptom onset and continued to decline after 

EAO. These results are consistent with the normalized rate of change (see Figure 4, bottom left). 

The rate of metabolism did not decline below baseline until 10 years prior to EAO, followed by a 

steady decline.  

 

An uptick in metabolic activity was observed in the early stages of amyloid accumulation and 

did not begin to decrease until amyloid significantly increased. This was observed in the 

simulated trajectory and the normalized rate of change. Similar results were observed within the 

precuneus in a cross-sectional analysis [7]. Rate of change analysis revealed this primarily occurs 

in the basal ganglia. Because the basal ganglia show the least toxic response to amyloid 

deposition [40–42], these transient increases may be prominent because these neurons mount a 

compensatory response preceding significant amyloid accumulation [43–47]. However, at a 

point, the brain is no longer able to buffer changes when amyloid deposition becomes significant. 

 

Our model showed total gray matter volume slightly declined during the early stages of ADAD, 

followed by a dramatic decrease 5–10 years prior to EAO. The decrease in volume occurred 

when metabolism was decreased and amyloid had accumulated. Volumetrics continued to 

decline even after EAO. The model was able to predict volumes with an R2 of 0.95.  

 

These findings have clinical importance for the care of people with ADAD in the context of 

amyloid, metabolism, and atrophy. Using feature selection methods, we have identified 

brain regions that are both common amongst modalities as well as unique for each 
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modality (Figure 5). Specifically, we have shown the precuneus, caudate, and anterior 

cingulate are strong predictors of mutation status among all modalities. These findings are 

significant for multimodal imaging studies and clinical trials whose goal is to assess the 

overall impact of a therapy. Further, the fact that we have identified regions that are 

unique to each modality suggest a complex set of evolving interactions that are not localized 

to a small set of brain regions. Our models also suggest a complex disease progression that 

goes beyond a linear or sigmoidal pattern that has been hypothesized for LOAD (Figure 4). 

We have identified a biphasic response in metabolism, where hypermetabolism is seen very 

early in the disease process. Future studies should investigate this phenomenon, as previous 

studies have primarily focused on hypometabolism that occurs later in the disease process.  

 

We also extend the literature by establishing clinically useful algorithms for modeling the 

progression of ADAD, and show the utility of ML in developing diagnostic and predictive 

tests. A major deficiency in AD clinical research is the problem of individual predictability 

versus group level differences. ML is ideal for research aimed at discovering patterns in 

high dimensional data that are believed to underlie complex clinical phenotypes that go 

beyond group level results. This is especially relevant for diseases such as ADAD and 

LOAD, which show chronic progression over long periods of time, as well as variability in 

terms of symptoms, risk factors, and progression. Our models were trained on the largest 

available ADAD data set, and are able to accurately forecast disease progression several 

years into the future at any stage of the disease. Inputting a patients unique demographics 

and imaging variables will yield trajectories that are specific to that individual. Further, by 

simulating our trained models, we are able to identify trajectories and cutoff values unique 
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to each brain region which best discriminate MCs from NCs. Because our models have 

been trained on a variety of demographics, one can easily generate values that are specific 

to a given sex, APOE 4 status, and education level. Utilization of these models provides the 

opportunity to expedite clinical trials and provide precision medicine tailored to a patient 

based on his/her unique set of demographics, disease subtype, and treatment response. As 

we have shown, while both linear regression and our ANN performed well in predicting 

disease progression, the ANN had a lower error rate. More accurate models could lead to 

better decision-making and improved efficiency of research, and accurate identification of 

participants whose progression patterns differ from model predictions could allow for 

decision support in evaluating the effects of specific therapies in clinical trials. 

 

Limitations and future work for this study are detailed as follows. Data leakage, which 

refers to the use of test data in any part of the training process, is a major concern in the 

AD field [48], and is difficult to address due to the limited number of samples. This is 

especially relevant in the context of ADAD. While we utilize the largest available data set, 

the fact that ADAD only accounts for a small portion of the total AD cases restricts the 

number of available of samples. Still, choosing the proper set of hyperparameters in the 

context of deep neural networks is a difficult task. However, the performance and 

flexibility of these models crucially depends on how these parameters are set [49]. In our 

analysis, the number of layers and number of artificial neurons in each layer were 

identified by testing multiple network architectures within our data (see supplemental). 

Measures were taken to ensure that the partitioning of the data for 5 fold cross validation 

in this process did not match the data partitions used for the 5 fold cross validation for the 
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final analysis. We also ensured the models trained in the network architecture 

identification process were discarded after the fact, and all subsequent models generated in 

the main analysis had randomly initialized weights. However, because the same data set 

was used to identify the size of the network as well to perform the main analysis, we 

acknowledge that this could be a source of data leakage, which could lead to an 

underestimation of errors. Future work will involve further validation and testing of the 

proposed models. Specifically, conducting blinded out of sample testing on newly acquired 

data from the DIAN study is needed to ensure issues such as data leakage and overfitting 

do not influence the model results. Further, alternative network models will need to be 

considered. As more longitudinal time points are acquired for participants in DIAN, time 

series specific networks, such as long short term memory networks may be more 

appropriate. Lastly, alternative forms of feature selection should be considered to 

investigate the relationships between biomarkers and brain regions. 

 

4.1. Conclusion 

To provide targeted treatment to persons with ADAD, novel methods are needed to model disease 

trajectories. We have shown ANNs can accurately forecast amyloid accumulation, changes in 

glucose metabolism, and brain atrophy. Using feature extraction methods, we identified the 

strongest predictors of mutation status over 44 brain regions. Our results show a sigmoidal 

progression of amyloid accumulation, a biphasic response to glucose metabolism, and a gradual 

increase in brain atrophy in MCs compared to NCs. Our models indicate disease progression is 

primarily in subcortical regions, followed by cortical involvement within anterior and posterior 

portions of the brain. 
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7. FIGURE LEGENDS 

 

Figure 1. Results of Pittsburgh Compound-B (PiB) predictions for mutation carriers (MC) (blue) 

and non-carriers (NC) (red). Correlation and RMSE of predicted versus actual values. The ANN 

was able to predict future PiB values with an average R2 of 0.95 and RMSE of 0.2 in both MCs 

and NCs. 

 

Figure 2. Results of fluorodeoxyglucose (FDG) predictions for mutation carriers (MC) (blue) 

and non-carriers (NC) (red) in select ROIs. Correlation and root mean squared error (RMSE) of 

predicted versus actual values. The ANN was able to predict future FDG values with an average 

R2 of 0.93 and RMSE of 0.02 in MCs and NCs, with MCs showing trends of lower predicted 

FDG values than NCs. 

 

Figure 3. Results of brain volumetric predictions for mutation carriers (MC) (blue) and non-

carriers (NC) (red). Correlation and root mean squared error (RMSE) of predicted versus actual 

values. The ANN was able to predict changes in brain volumes with an average R2 value of 0.95 

and showed a general trend of MCs having more brain atrophy than NCs. 

 

Figure 4. (Top left) Simulated biomarker evolution for total mean cortical and subcortical 

Pittsburgh Compound-B (PiB), total mean cortical and subcortical fluorodeoxyglucose (FDG), 

and total gray matter volume (scaled to a common interval) derived from the artificial neural 

network (ANN) in mutation carriers (MC). Shaded region indicates model variability, with EAO 
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marked by perpendicular line. (Top right) Simulated biomarker evolution for total mean cortical 

and subcortical PiB, total mean cortical and subcortical FDG, and total gray matter volume 

(scaled to a common interval) derived from the ANN in mutation non-carriers (NC). (Bottom 

left) Normalized biomarker rate of change for mean PiB, mean FDG, and total gray matter 

volume (scaled to a common interval) fit to a polynomial curve showing 95% confidence 

interval. (Bottom right) Mean absolute error of predicted (normalized) biomarker values given 

the amount of time in the future to predict, fit with a 2-degree polynomial curve projected into 

the future. Errors increased linearly with an increase in the amount of time in the future to 

predict. 

 

Figure 5. Strongest predictors of mutation carrier (MC) status for autosomal dominant 

Alzheimer’s disease (ADAD) as identified by Relief algorithms. The strongest predictors across 

all modalities were the precuneus, caudate, and anterior cingulate. Changes in amyloid PET 

(PiB, blue circle) were primarily seen within subcortical regions. Changes in metabolism (FDG, 

orange circle) showed more cortical involvement. Volumetric changes (Volume, green circle) 

showed both cortical and subcortical involvement.  
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ABSTRACT 

 

INTRODUCTION: Machine learning models were used to discover novel disease trajectories for 

autosomal dominant Alzheimer’s disease. 

 

METHODS: Longitudinal structural MRI, amyloid PET, and fluorodeoxyglucose PET were 

acquired in 131 mutation carriers and 74 non-carriers from the Dominantly Inherited Alzheimer 

Network; the groups were matched for age, education, sex, and apolipoprotein 4 (APOE 4). A 

deep neural network was trained to predict disease progression for each modality. Relief 

algorithms identified the strongest predictors of mutation status. 

 

RESULTS: The Relief algorithm identified the caudate, cingulate, and precuneus as the strongest 

predictors among all modalities. The model yielded accurate results for predicting future 

Pittsburgh Compound-B (R2=0.95), fluorodeoxyglucose (R2=0.93), and atrophy (R2=0.95) in 

mutation carriers compared to non-carriers. 

 

DISCUSSION: Results suggest a sigmoidal trajectory for amyloid, a biphasic response for 

metabolism, and a gradual decrease in volume, with disease progression primarily in subcortical, 

middle frontal, and posterior parietal regions. 

 

Keywords: Autosomal dominant Alzheimer disease (ADAD), Machine learning, Pittsburgh 

compound B (PiB), Fluorodeoxyglucose (FDG), Magnetic resonance imaging (MRI) 
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1. INTRODUCTION 

Alzheimer’s disease (AD) is the most common form of dementia, accounting for 60%–70% of 

the 50 million dementia cases worldwide [1]. AD leads to slow cognitive decline, behavioral and 

psychiatric disorders, and impairments in functional status. Pathological features of AD include 

the accumulation of amyloid-beta (A) plaques, neurofibrillary tau tangles, and 

neuronal/synaptic losses that correspond with atrophy and decreased glucose metabolism [2]. 

The most common form of AD occurs in older age and is known as late-onset Alzheimer’s 

disease (LOAD). Autosomal dominant Alzheimer’s disease (ADAD) accounts for less than 1% 

of all AD cases and is caused by pathogenic mutations in amyloid precursor protein (APP), 

presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes that lead to early increases in Aβ deposition 

in the brain, which, in turn, is hypothesized to initiate a cascade that causes cognitive decline 

[3,4]. The age of onset of cognitive impairment in ADAD mutation carriers (MC) is earlier than 

LOAD and remains fairly consistent within a family, allowing for calculation of the estimated 

age of symptom onset (EAO) [5]. 

  

Multiple neuroimaging methods have been used to evaluate in vivo changes in the brain due to 

AD. [11C]Pittsburgh Compound-B (PiB) has high affinity for Aβ plaques, with distributions 

similar to those seen at autopsy [6]. PiB PET has been employed in ADAD to identify amyloid 

deposition, with amyloid deposition identified more than 20 years prior to EAO in MC [7–10].  

 

Abbreviations. Aβ: Amyloid beta, ADAD: autosomal dominant Alzheimer disease, ANN: artificial neural 
networks, DIAN: Dominantly Inherited Alzheimer Network, DIAN-TU: Dominantly Inherited Alzheimer Network 
Trials Unit, EAO: expected age of symptom onset, EYO: estimated years to symptomatic onset, FDG: 
[18F]Fluorodeoxyglucose, MC: mutation carrier, ML: machine learning, NC: non-carrier, PiB: [11C]Pittsburgh 
Compound-B, RMSE: root mean squared error, ROIs: regions of interest, SUVRs: standardized uptake value ratios 
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Studies have also shown increases in PiB retention in MC are associated with a worsening 

cognitive performance, a decrease in glucose metabolism, and a decrease in hippocampal volume 

[7,11]. 

 

 [18F]Fluorodeoxyglucose (FDG) uptake reflects glucose metabolism and has shown promise in 

discriminating symptomatic MCs from cognitively normal, mutation-negative non-carriers (NC) 

[6,9,10]. In ADAD, studies have shown FDG uptake in MCs is decreased in the precuneus and is 

inversely correlated with PiB binding. Marked decreases in glucose metabolism occur 

approximately 5–10 years before EAO in MCs [10,12]. 

 

Structural MRI provides a method to evaluate regional volumetric changes in neurodegeneration 

that occur with disease progression [13]. MRI can reveal regional brain atrophy, which is a 

characteristic feature of neurodegeneration due to synaptic losses [14]. ADAD is characterized 

by progressive atrophy that manifests as changes initially in the temporal lobes and subcortical 

regions with eventual spread to other regions. Observed changes in atrophy are related to the 

spread of neurofibrillary tangles in AD [14].  

 

Machine learning (ML) is a branch of artificial intelligence that can learn to extract patterns from 

existing data to predict future events [15]. Advances in ML offer promise for a number of 

applications, including medical imaging and predictive analytics [15,16]. Compared to 

traditional statistics that provide primarily group-level results, ML algorithms can predict clinical 

outcomes at the individual level and could enable personalized treatments that provide targeted 

care for patients [17]. Although a number of studies have applied ML to neuroimaging measures 
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to study LOAD [18–22], few studies to date have applied these techniques to ADAD. Because 

time until conversion to symptomatic impairment can be estimated with EAO, ADAD provides a 

unique opportunity for ML to model the progression of the disease and provide decision support 

to evaluate therapies currently being investigated in the Dominantly Inherited Alzheimer 

Network (DIAN) Trials Unit (DIAN-TU). 

 

In this longitudinal study, we used artificial neural networks (ANNs) to evaluate progression to 

cognitive impairment using multimodal neuroimaging biomarkers. Specifically, within a cohort 

of MCs (n = 131) and NCs (n = 74), we used ANNs to investigate: (1) changes in Aβ deposition 

(using PiB), (2) changes in glucose metabolism (using FDG), and (3) brain atrophy (using 

structural MRI) as a function of aging in relation to EAO. Further, we utilized feature selection 

to identify regions that were the strongest discriminators of mutation status for each modality. 

We then performed Monte Carlo simulations to identify cutoffs for the identified regions. This 

data-driven approach provides an opportunity to discover novel mechanisms and disease 

trajectories specific for ADAD.  

 

2. METHODS 

2.1 Participants 

One hundred thirty-one MCs with mutations in PSEN1, PSEN2, or APP and 74 healthy, 

mutation-negative NCs were recruited from sites participating in the DIAN study. Participants 

from the 12th data freeze with genetic, clinical, and longitudinal neuroimaging data that passed 

quality control procedures were included. The Washington University Institutional Review 

Board provided supervisory review and human subjects’ approval. Participants provided written, 
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informed consent or assent with proxy consent. All study procedures were approved by the 

Washington University Human Research Protection Office and the institutional review boards of 

the participating sites.  

 

2.2 Clinical Classification 

The CDR® Dementia Staging Instrument was used to assess dementia status at each clinical 

assessment [23]. A participant’s EAO was calculated at each visit on the basis of the 

participant’s current age relative to the family mutation–specific expected age at onset of 

dementia symptoms [5]. Parental age at first progressive cognitive decline was used if the 

mutation-specific EAO was unknown. EAO was calculated identically for both MCs and NCs. 

All clinical evaluators were blinded to the mutation status of participants. The presence/absence 

and type of mutation were determined using polymerase chain reaction amplification followed 

by Sanger sequencing [7]. 

 

2.3 MRI Acquisition and Processing 

MRI was performed using the Alzheimer’s Disease Neuroimaging Initiative protocol (ADNI) 

[24]. Sites used a 3T scanner that passed regular quality control assessments. The ADNI Imaging 

Core screened images for compliance. T1 weighted images at 1.1 x 1.1 x 1.2 mm voxel 

resolution were acquired for participants. FreeSurfer 5.3 [25,26] was used to perform volumetric 

segmentation, cortical surface reconstruction, and to define cortical and subcortical regions of 

interest (ROIs). Segmentations were inspected and edited as needed by members of the DIAN 

Imaging Core. A regression approach was used to correct subcortical volumes for intracranial 
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volumes. Volumetric measures were averaged across hemispheres. FreeSurfer-defined cortical 

and subcortical ROIs (44 total) were used for regional processing of PET data. The FreeSurfer-

defined ROIs were derived from the Deskian/Killiany atlas [27] for segmentation. These are 

standard regions used for volumetric analyses. 

 

2.4 PET Acquisition and Processing 

Amyloid PET was performed using a bolus injection of PiB. Data from the 40–70-minute post-

injection timeframe were converted to regional standardized uptake value ratios (SUVRs) 

relative to the cerebellar gray matter using FreeSurfer-derived ROIs (PET Unified Pipeline) [28]. 

Glucose metabolism imaging was performed with a single bolus injection of FDG. A 30-minute 

dynamic acquisition beginning 30 minutes post-injection was acquired. The last 20 minutes of 

each FDG scan were converted to SUVRs using the cerebellar gray matter as a reference region. 

All PET data were partial volume corrected using a regional spread function technique [29,30]. 

PET images were aligned to the T1 image processed using FreeSurfer. PET scanner–specific 

filters were applied to account for differences in spatial resolution and to achieve a common 

resolution (8 mm) [31]. The DIAN imaging core performed quality control checks on the PET 

Unified Pipeline processing. 

 

2.5 Machine Learning and Statistical Analyses 

ML analyses were performed in MATLAB R2018b. Deep feedforward ANNs were trained for 

each of the neuroimaging modalities. Feedforward ANNs map an input to an output by 

composing sets of smaller functions laid out as a directed acyclic graph [32]. The feasibility of 

these networks is based on the Universal Approximation Theorem, which states a neural network 
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with a single hidden layer contains a finite set of artificial neurons that approximate continuous 

functions on subsets of Rn [33].  

 

Our ANNs contained 4 hidden layers with 10 artificial neurons in each layer. The network 

architecture was decided based on design methodologies [34,35],  incremental pruning, and  

cross-validation. Further details on model design and validation can be found in supplementary 

material (Methods- Machine Learning Model Design). An ANN was trained to output all ROIs 

for each modality. Input to the models included age, sex, APOE 4 status, mutation status, the 

amount of time in the future to predict, and the given imaging variables (MRI or SUVR) for 44 

FreeSurfer ROIs. A complete list of the ROIs can be found in Supplementary Table 1. The 

output of each model corresponded to the ROI values at a time point in the future. Rates of 

change were calculated by subtracting scans at time point N by the scan at time point N-1. Rates 

were then divided by the number of months between the scans to obtain a normalized rate of 

change. The mean time between scans was 2.6 years (±1.4). If a participant had more than 2 

scanning sessions, all possible combinations were evaluated. Using the first time point, data were 

projected into the future by iteratively adding the normalized rate of change, and these data were 

used for training. For each point, the rate of change was used to project the data ± 3 years from 

the current age. Data were projected into the future and the past to avoid biasing the model to 

later phases of the disease. We chose this window based on previous work [10], which showed 

the biomarkers’ rate of change is not constant along the disease continuum.  

 

Predictive features of mutation status were ranked according to importance using a Relief 

algorithm [36]. Relief algorithms detect conditional dependencies between attributes using a 
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nearest neighbor approach, with features ranked by estimating how well their values distinguish 

between proximal comparisons. Further, cutoff points for PiB, FDG, and brain volumetrics were 

identified based on the likelihood of the values generated by Monte Carlo model simulations. 

The simulations generated an equal number (by mutation status) of random sample points from 

the multivariate distribution defined by the mean and covariance matrix of the data given a 

specific mutation status, age, and EAO range [37]. 

 

We also trained a linear regression model to compare the results to our ANN. This comparative 

analysis was performed due to recent research suggesting that, in some cases, linear models can 

outperform nonlinear models [38]. When training the regression model, all methods previously 

described for training the ANN were applied. Each biomarker was modeled separately, and the 

models were trained using 5-fold cross-validation. Cross-validation was performed at the 

participant level, and all results reported were derived by combining the test data results from 

each of the 5 folds of cross-validation. In addition, the input to the regression model was the 

same as the ANN, but the only output considered was the precuneus. We chose the precuneus as 

it is highly predictive and heavily involved in disease progression in ADAD [10], making it 

optimal for comparison. Further, a multivariate linear regression was performed which derived 

brain regions in the same manner as the ANN. The regression model utilized ordinary 

multivariate normal maximum likelihood estimation with the full variance-covariance matrix and 

constant, linear, and interaction terms. We also performed the zero rule algorithm on the data to 

compare baseline predictability using the mean of the output values observed in the training data 

compared to the testing data. 
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3. RESULTS 

3.1 Demographics of the Cohort 

Detailed demographics are presented in Table 1. Participants were matched for age, sex, and 

education. 

 

Table 1. Demographics of participants 

 Mutation carriers 

(MC) 

Mutation-negative 

non-carriers (NC) 

p Values 

N 131 74  

Age (years) ± SD 39.2 ± 10.6 39.3 ± 10.2 .95 

Sex (% Male) 40% 35% .72 

Education (years) ± SD 14.3 ± 2.7 15.1 ± 2.6 .06 

APOE 4 (% carriers) 39% 36% .81 

EAO (years) ± SD 46.3 ± 6.8 48.1 ± 5.7 .90 

Abbreviations: SD, standard deviation; APOE 4, apolipoprotein 4; EAO, estimated age of 

symptom onset. 

 

3.2 PiB 

The Relief algorithm identified the nucleus accumbens, caudate, precuneus, anterior cingulate, 

pallidum, putamen, and middle frontal regions as strong predictors of mutation status. The ANN 

was able to predict the future PiB values with an average R2 value of 0.95 and RMSE of 0.2. 

Figure 1 depicts results for the 4 best-predicted ROIs. The algorithm was able to accurately 
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estimate the values in both MCs and NCs, with the NCs having lower SUVRs compared to the 

MCs. Supplementary Figure 1 shows the model predictions for MCs based on distance from 

EAO for PiB. Two relatively distinct clouds were seen for PiB, with lower SUVRs seen at 

greater distances from EAO, while MCs closer to EAO had elevated PiB SUVRs. 

 

3.3 FDG 

The strongest predictors of mutation status with respect to metabolism were the pericalcarine, 

caudate, precuneus, fusiform, anterior cingulate, insula, and transverse temporal regions. The 

ANN was able to predict future FDG values with an R2 value of 0.93 and RMSE of 0.02 in both 

groups. Figure 2 depicts results for the 4 best-predicted ROIs. The algorithm showed a trend of 

MCs having lower future FDG values than NCs. Supplementary Figure 2 shows the model 

predictions for MCs based on distance from EAO for FDG. Two clouds are seen for FDG, with 

higher SUVRs seen at greater distances from EAO, while MCs closer to EAO had lower FDG 

SUVRs. 

 

3.4 Volume 

The strongest predictors of mutation status with respect to brain atrophy were seen in the nucleus 

accumbens, pericalcarine, caudate, precuneus, anterior cingulate, insula, entorhinal cortex, 

pallidum, and transverse temporal regions. The ANN was able to predict changes in brain 

volumes with an average R2 value of 0.95. Figure 3 depicts results for the 4 best-predicted 

regions. The algorithm showed a general trend of MCs having more brain atrophy than NCs. 

Supplementary Figure 3 shows the model predictions for MCs as a function of distance from 

EAO for brain volumes.  
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3.5 Simulations 

Using the trained models, amyloid accumulation, changes in metabolism, and brain atrophy were 

simulated for MCs and NCs (Figure 4, top). Consistent with previous work, the models showed 

that in the MC group, the earliest changes are in amyloid deposition, which follows a sigmoidal 

trajectory and continues to accumulate past EAO. A biphasic response was seen for metabolism, 

with changes occurring earlier than expected, and progressive decline was observed in atrophy 

throughout the course of the disease, with the greatest changes occurring just prior to EAO. The 

NC groups showed little change over time for all modalities. 

 

We fitted a polynomial curve to the normalized rates of change for each of the neuroimaging 

biomarkers (Figure 4, bottom left). Consistent with the models, amyloid showed an inverted U 

shape, with increases occurring early in the disease, and subsequently followed by a gradual 

decline in rate of PiB accumulation. FDG showed a slight increase in the early stages, followed 

by a gradual decrease when the distance from EAO approached 0. Finally, brain volumetrics 

showed a gradual increase in the rate of decline throughout progression to EAO. 

 

Figure 4 (bottom right) shows the normalized models errors based on years to predict (e.g., the 

error for a participant’s PET/MRI values predicted 1 year in the future versus the error for 

predicting 5 years in the future). A 2 degree polynomial curve was fit to the error data, which 

showed a predominantly linear increase with increasing number of years to predict. The fit lines 

were projected into the future for up to 40 years. The plot shows that the model maintains a mean 

absolute error less than 0.1 up to 10 years in the future. The individual biomarkers showed 

similar trends, only at different scales.  
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Supplementary Figures 4–6 display the results of the Monte Carlo model simulations for each of 

the highly predictive regions for each modality. Larger values on the y-axis represent a greater 

likelihood of producing a given value. For PiB, clear cut-points were observed between MCs and 

NCs with nearly 100% specificity. Cut-points were 1.17 for the nucleus accumbens, 1.3 for the 

caudate, 1.4 for the precuneus, and 1.2 SUVR for total cortical mean. For FDG, the cut-points 

were less defined for some regions. Cut-points for the anterior cingulate, caudate, precuneus, and 

total cortical mean ranged from 1.4–1.825 SUVR. The model simulations indicate MCs had a 

trend for decreased FDG in each of these ROIs, as well as a biphasic response in the caudate and 

anterior cingulate. For brain volumes, MCs had greater atrophy than NCs. Cutoffs were 

identified for the nucleus accumbens (550 mm3), caudate (3300 mm3), precuneus (8500 mm3), 

and total gray matter (575,000 mm3). 

 

3.6 Alternative Analysis Methods 

Supplementary Figure 8 displays the error histograms [probabilities of errors (actual-predicted)] 

for the ANN versus the regression model for PiB in the precuneus. Although both models 

performed very well, the performance obtained through regression was lower than that obtained 

through the ANN. The ANN’s error probability distribution was highly clustered around 0 

(RMSE = 0.17), whereas the regression model showed greater dispersion (RMSE = 0.28), 

indicating a greater likelihood of making a larger error compared to the ANN. Similar results 

were seen using FDG and volumetric data. Whole brain average RMSE for the ANN, 

multivariate linear regression, and zero rule algorithm are provided at the bottom of 
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supplementary table 1. As expected, the ANN showed lower RMSE compared to multivariate 

linear regression and the zero rule algorithm for all modalities. 

  

4. DISCUSSION 

Our models yielded high accuracy in predicting amyloid accumulation, changes in metabolism, 

and brain atrophy in ADAD. The Relief algorithm identified both subcortical (caudate) and 

cortical (precuneus and anterior cingulate) ROIs as the strongest predictors of mutation status. 

Figure 5 displays the strongest predictors for each modality. For amyloid PET, which is believed 

to reflect the earliest changes in ADAD, changes were primarily seen within subcortical 

(pallidum, nucleus accumbens, caudate, putamen, and entorhinal) compared to cortical regions 

(middle frontal, anterior cingulate, and precuneus). For changes in metabolism measured by 

FDG, which reflect changes later in the disease process compared to amyloid, more cortical 

(insula, fusiform, middle frontal, precuneus, anterior cingulate, pericalcarine, and transverse 

temporal) rather than subcortical (caudate) regions were involved.  

 
For changes that occur late in the disease process due to atrophy, both cortical (precuneus, 

anterior cingulate, pericalcarine, transverse temporal) and subcortical (caudate, pallidum, nucleus 

accumbens, entorhinal, thalamus) regions were affected. This suggests that the disease may start 

within subcortical areas and quickly involve additional subcortical and cortical regions. Overall, 

these analyses point to multiple hubs being affected early in the disease process, followed by 

spread to other brain regions (Supplementary Figure 7).  Supplementary Table 1 lists the RMSE 

for the individual ROIs for each of the 3 biomarkers, as well as the mean overall RMSE of the 

models compared to the zero rule algorithm and multivariate linear regression. 
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In the amyloid analysis, the model achieved 0.95 R2 and 0.2 RMSE (see Figure 1). The model 

showed PiB uptake was greater in MCs compared to NCs for most regions. Our results also 

confirm that the presence of amyloid alone is insufficient for conversion to symptomatic AD. 

The simulated trajectory for mean cortical amyloid accumulation (see Figure 4, top left) showed 

deposition started to occur approximately 15–20 years before EAO. These results are consistent 

with other studies that focused on global and regional amyloid deposition [7,11]. Our model 

indicates a sigmoidal trajectory of accumulation for amyloid, with a slow increase 20–30 years 

from EAO, an abrupt increase 0–15 years from EAO, and slowing to an eventual decline after 

EAO. This is consistent with what has been hypothesized to occur in LOAD [39].  

 

As a point of reference, we calculated the normalized rates of change for all mutation-positive 

participants (see Figure 4, bottom left). The normalized rate of amyloid deposition shows a 

consistent increase from roughly 10 years prior to EAO followed by slowing in the rate of 

accumulation after EAO. Only after EAO does the rate of accumulation diminish, which is 

consistent with the sigmoidal model trajectory.  

 

With regard to metabolism, our model yielded 0.93 R2 and 0.02 RMSE. Although the MCs had 

greater decreases in FDG for most brain regions, the separation between the 2 groups was not as 

well defined compared to PiB. This is likely because the rate and amount of change are less 

extreme compared to amyloid (see Figure 4, top left). Our model indicates metabolism did not 

decrease below a baseline until 10 years before symptom onset and continued to decline after 

EAO. These results are consistent with the normalized rate of change (see Figure 4, bottom left). 
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The rate of metabolism did not decline below baseline until 10 years prior to EAO, followed by a 

steady decline.  

 

An uptick in metabolic activity was observed in the early stages of amyloid accumulation and 

did not begin to decrease until amyloid significantly increased. This was observed in the 

simulated trajectory and the normalized rate of change. Similar results were observed within the 

precuneus in a cross-sectional analysis [7]. Rate of change analysis revealed this primarily occurs 

in the basal ganglia. Because the basal ganglia show the least toxic response to amyloid 

deposition [40–42], these transient increases may be prominent because these neurons mount a 

compensatory response preceding significant amyloid accumulation [43–47]. However, at a 

point, the brain is no longer able to buffer changes when amyloid deposition becomes significant. 

 

Our model showed total gray matter volume slightly declined during the early stages of ADAD, 

followed by a dramatic decrease 5–10 years prior to EAO. The decrease in volume occurred 

when metabolism was decreased and amyloid had accumulated. Volumetrics continued to 

decline even after EAO. The model was able to predict volumes with an R2 of 0.95.  

 

These findings have clinical importance for the care of people with ADAD in the context of 

amyloid, metabolism, and atrophy. Using feature selection methods, we have identified brain 

regions that are both common amongst modalities as well as unique for each modality (Figure 5). 

Specifically, we have shown the precuneus, caudate, and anterior cingulate are strong predictors 

of mutation status among all modalities. These findings are significant for multimodal imaging 

studies and clinical trials whose goal is to assess the overall impact of a therapy. Further, the fact 
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that we have identified regions that are unique to each modality suggest a complex set of 

evolving interactions that are not localized to a small set of brain regions. Our models also 

suggest a complex disease progression that goes beyond a linear or sigmoidal pattern that has 

been hypothesized for LOAD (Figure 4). We have identified a biphasic response in metabolism, 

where hypermetabolism is seen very early in the disease process. Future studies should 

investigate this phenomenon, as previous studies have primarily focused on hypometabolism that 

occurs later in the disease process.  

 

We also extend the literature by establishing clinically useful algorithms for modeling the 

progression of ADAD, and show the utility of ML in developing diagnostic and predictive tests. 

A major deficiency in AD clinical research is the problem of individual predictability versus 

group level differences. ML is ideal for research aimed at discovering patterns in high 

dimensional data that are believed to underlie complex clinical phenotypes that go beyond group 

level results. This is especially relevant for diseases such as ADAD and LOAD, which show 

chronic progression over long periods of time, as well as variability in terms of symptoms, risk 

factors, and progression. Our models were trained on the largest available ADAD data set, and 

are able to accurately forecast disease progression several years into the future at any stage of the 

disease. Inputting a patients unique demographics and imaging variables will yield trajectories 

that are specific to that individual. Further, by simulating our trained models, we are able to 

identify trajectories and cutoff values unique to each brain region which best discriminate MCs 

from NCs. Because our models have been trained on a variety of demographics, one can easily 

generate values that are specific to a given sex, APOE 4 status, and education level. Utilization 

of these models provides the opportunity to expedite clinical trials and provide precision 
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medicine tailored to a patient based on his/her unique set of demographics, disease subtype, and 

treatment response. As we have shown, while both linear regression and our ANN performed 

well in predicting disease progression, the ANN had a lower error rate. More accurate models 

could lead to better decision-making and improved efficiency of research, and accurate 

identification of participants whose progression patterns differ from model predictions could 

allow for decision support in evaluating the effects of specific therapies in clinical trials. 

 

Limitations and future work for this study are detailed as follows. Data leakage, which refers to 

the use of test data in any part of the training process, is a major concern in the AD field [48], 

and is difficult to address due to the limited number of samples. This is especially relevant in the 

context of ADAD. While we utilize the largest available data set, the fact that ADAD only 

accounts for a small portion of the total AD cases restricts the number of available of samples. 

Still, choosing the proper set of hyperparameters in the context of deep neural networks is a 

difficult task. However, the performance and flexibility of these models crucially depends on 

how these parameters are set [49]. In our analysis, the number of layers and number of artificial 

neurons in each layer were identified by testing multiple network architectures within our data 

(see supplemental). Measures were taken to ensure that the partitioning of the data for 5 fold 

cross validation in this process did not match the data partitions used for the 5 fold cross 

validation for the final analysis. We also ensured the models trained in the network architecture 

identification process were discarded after the fact, and all subsequent models generated in the 

main analysis had randomly initialized weights. However, because the same data set was used to 

identify the size of the network as well to perform the main analysis, we acknowledge that this 

could be a source of data leakage, which could lead to an underestimation of errors. Future work 
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will involve further validation and testing of the proposed models. Specifically, conducting 

blinded out of sample testing on newly acquired data from the DIAN study is needed to ensure 

issues such as data leakage and overfitting do not influence the model results. Further, alternative 

network models will need to be considered. As more longitudinal time points are acquired for 

participants in DIAN, time series specific networks, such as long short term memory networks 

may be more appropriate. Lastly, alternative forms of feature selection should be considered to 

investigate the relationships between biomarkers and brain regions. 

 

4.1. Conclusion 

To provide targeted treatment to persons with ADAD, novel methods are needed to model disease 

trajectories. We have shown ANNs can accurately forecast amyloid accumulation, changes in 

glucose metabolism, and brain atrophy. Using feature extraction methods, we identified the 

strongest predictors of mutation status over 44 brain regions. Our results show a sigmoidal 

progression of amyloid accumulation, a biphasic response to glucose metabolism, and a gradual 

increase in brain atrophy in MCs compared to NCs. Our models indicate disease progression is 

primarily in subcortical regions, followed by cortical involvement within anterior and posterior 

portions of the brain. 
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7. FIGURE LEGENDS 

 

Figure 1. Results of Pittsburgh Compound-B (PiB) predictions for mutation carriers (MC) (blue) 

and non-carriers (NC) (red). Correlation and RMSE of predicted versus actual values. The ANN 

was able to predict future PiB values with an average R2 of 0.95 and RMSE of 0.2 in both MCs 

and NCs. 

 

Figure 2. Results of fluorodeoxyglucose (FDG) predictions for mutation carriers (MC) (blue) 

and non-carriers (NC) (red) in select ROIs. Correlation and root mean squared error (RMSE) of 

predicted versus actual values. The ANN was able to predict future FDG values with an average 

R2 of 0.93 and RMSE of 0.02 in MCs and NCs, with MCs showing trends of lower predicted 

FDG values than NCs. 

 

Figure 3. Results of brain volumetric predictions for mutation carriers (MC) (blue) and non-

carriers (NC) (red). Correlation and root mean squared error (RMSE) of predicted versus actual 

values. The ANN was able to predict changes in brain volumes with an average R2 value of 0.95 

and showed a general trend of MCs having more brain atrophy than NCs. 

 

Figure 4. (Top left) Simulated biomarker evolution for total mean cortical and subcortical 

Pittsburgh Compound-B (PiB), total mean cortical and subcortical fluorodeoxyglucose (FDG), 

and total gray matter volume (scaled to a common interval) derived from the artificial neural 

network (ANN) in mutation carriers (MC). Shaded region indicates model variability, with EAO 
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marked by perpendicular line. (Top right) Simulated biomarker evolution for total mean cortical 

and subcortical PiB, total mean cortical and subcortical FDG, and total gray matter volume 

(scaled to a common interval) derived from the ANN in mutation non-carriers (NC). (Bottom 

left) Normalized biomarker rate of change for mean PiB, mean FDG, and total gray matter 

volume (scaled to a common interval) fit to a polynomial curve showing 95% confidence 

interval. (Bottom right) Mean absolute error of predicted (normalized) biomarker values given 

the amount of time in the future to predict, fit with a 2-degree polynomial curve projected into 

the future. Errors increased linearly with an increase in the amount of time in the future to 

predict. 

 

Figure 5. Strongest predictors of mutation carrier (MC) status for autosomal dominant 

Alzheimer’s disease (ADAD) as identified by Relief algorithms. The strongest predictors across 

all modalities were the precuneus, caudate, and anterior cingulate. Changes in amyloid PET 

(PiB, blue circle) were primarily seen within subcortical regions. Changes in metabolism (FDG, 

orange circle) showed more cortical involvement. Volumetric changes (Volume, green circle) 

showed both cortical and subcortical involvement.  
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Systematic review: The authors reviewed the literature using traditional (e.g., PubMed) sources 
and meeting abstracts and presentations. Relevant citations are included where appropriate. 

Interpretation: Our findings suggest that within autosomal dominant Alzheimer’s disease mutation 
carriers, amyloid accumulation shows a sigmoidal progression, glucose metabolism shows a 
biphasic response, and there is a gradual decrease in brain volume, with disease progression 
primarily in subcortical, middle frontal, and posterior parietal regions. These results are consistent 
with clinical findings. 

Future directions: Future work will focus on (a) understanding the role of increased glucose 
metabolism observed in the early stages of the disease; (b) relating the current results with other 
functional neuroimaging methods, such as cerebral blood flow and resting state fMRI; and (c) 
relating the current results with blood and CSF biomarkers of AD. 
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