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Abstract

A nineﬂteen—parameter harmonic in-plane force field for
the s—trifiuorobenzene—h3 molepule was constructed. Internal
force constants, symmetry force constants, normal coordinates
and Cartesian displacements were calculated. The observed
data included fundamental frequencies, first order Coriolis
constants and centrifugal distortion constants for both
s—trifluorobenzene—h3 and —d3. Some of the data were obtained
from our study of the mid-infrared spectrum of
s-trifluorobenzene—hB.

A seven-parameter harmonic out-of-plane force field for
the same molecule was also re-investigated, utilising two
accurately obtained fundamental frequencies.

The mid-infrared spectrum of s—trifluorobenzene—h3 was
examined at a resolution of ca. @.9d6 cm_l. An analysis of the
two partially resolved fundamental aé' vibrations was
completed using the method of simulation with synthetic
spectra. -

The five e” fundamental bands of the same molecule in
the mid-infrared region were investigated for the estimation
of first order Coriolis constants. A modified computer
program was used to simulate the effects of 1l-resonance
which were present in some of the fundamentals.

The infrared spectra of some of the overtones
and combination bands were also 1investigated and 1in
some cases effective first order Coriolis constants were
estimated either using computer simulation techniques or
zeta sum rules or both.

The mid-infrared spectra of two deuterium
substituted propynal molecules , namely CZH.CDO and CZD.CDO
were recorded at a resolution of ca. .08 cm—l. A detailed

analysis of the partially resolved vl(a’), vs(a'),



us,vlz(a’,a") bands of CZH.CDO molecule was completed. An
analysis of Yo and Y11 bands of the same molecule was also
performed. Again, the method which was used was the
simulation of the observed bands with synthetic spectra
taking into account the effects of second order Coriolis
interactions between the energy levels of the two bands.
Finally, the vs(a’),vlg(a”) pair of bands of CZD.CDO
species were also analysed, again using the "Band Contour

Method .
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1.1 Introduction

High resolution spectroscopy of polyatomic molecules
is an area of expanding research activity over the last
decades. This has led to a number of advances 1in the
experimental techniques together with important developments
in the theory of rovibrational spectra. Despite the
considerable efforts by a large number of research workers
in this field, problems remain relating to the complexity
of large molecules and the large amount of computation
involved.

During the 196#s and early 18978s gas phase
infrared studies of molecules were performed at
resolutions of between @.1 and 2.8 cm *. This of course
is well outside the Doppler widths for these molecules
typically of the order of @ .061 cm_l. In the context of such
studies’, the term " high resolution" simply meant the
maximum spectral resolution which could be achieved
experimenfally at the time.

In recent years, the development of tunable laser
sources has led to experiments conducted at resolutions

even below the Doppler width of a typical linez.

For our purposes, "high resolution"” infrared
rovibration spectra will be defined to be those obtained at
resolutions of approximately ©0.06 c:m_1 in the
mid-infrared region, that is between 500 - 40800 cm—l. That

was the resolution that was in practice available at UCL.

In most cases the most important piece of information
that can be obtained from the rovibrational structure in the
gas—phase spectra of polyatomic molecules relates to the
characterisation of intramolecular potential energy surfaces.
This is achieved by the determination of certain

spectroscopic constants which subsequently leads to the
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calculation of harmonic force constants. Even anharmonic force
constants have been obtained from studies of vibrational
resonances and from certain rovibrational constants, 1in
favourable cases.

Apart from this, the molecular constants obtained from
the analysis of rovibrational spectra may be of use in other

problems in physical chemistry such as:

o, The empirical mapping of potential energy surfaces in

the kinetic studies;

3. The utilisation of anharmonic force constants in

the interpretation of X-ray and electron diffraction data;

. The calculation of certain thermodynamic functions.

In theory, the prediction of the rovibrational spectrum

of a polyatomic molecule is possible with a knowledge of:

o, The equilibriun structure of the molecule

under investigation;

3. The force field and the atomic masses in the

molecule;

¥. The formulae for the energy levels, the selection

rules and the rovibrational line intensities.

In practice, problems arise when one attempts to

calculate the equilibrium structure and the harmonic and
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anharmonic force constants from the observed spectrum due to
indeterminacy.

To overcome this problem, it 1is necessary to
obtain as complete a set of rovibrational data as 1is
possible. For simple aromatic molecules such investigations
are at an early stage of development in comparison to
simpler molecules 1like the methyl halides.

This is a direct consequence of the relatively large size
of this kind of molecule which results in a very high
number of transitions contributing to the overall
structure of a single rovibrational band.

In the infrared spectra of even simple molecules
the observed rotational structure is highly complicated
consisting of peaks which are superpositions of many lines.
It has been found that in this particular region the
experimental problems associated with obtaining Doppler
limited resolution can be considerable.

Obviously, in order to obtain accurate rovibrational
data, there is a need for very high instrumentalkgg‘er.

This need has been satisfied with the advent of recent

developments in the use of:

. Tunable infrared laser sources;

3. Fourier transform spectroscopy;

¥. Powerful data handling systems.

Finally, the Doppler and sub-Doppler infrared studies of
the smaller polyatomic molecules which have been reported
so far indicate that usually there are complex perturbations

in rovibrational spectra.
In such cases, it 1is necessary to perform highly
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accurate frequency and intensity calculations for a very
large number of transitions. Such operation can only be
accomplished with the use of fast digital computers. Their
increased capabilities have now facilitated the
interpretation of a large number of previously

unaccounted for infrared observations.

1.2 Fourier Transform Infrared Spectroscopy

The concept of this technique was originated in the
beginning of this century by Michelson's first attempts at
interferometric spectroscopy.

However, it was not until the late 18950°s and early
1960 s that the practical benefits were realised. Then,
in the late 1960 °'s with the introduction of He-Ne lasers,
Tryglycine Sulphate (TGS) detectors and completely self-
contained computerised instrumentation the use of Fourier
Transform infrared spectroscopy became widespread.

A review of commercial instrumental developments in FTIR
has been written by Griffiths3 . This covers the history
of this field up to 1983.

The present generation of FTIR spectrometers have

the following advantages over their predecessors:

a) They have data systems which are faster.
3) They are more reliable.
¥) They have more versatile operating systems.

&) They have much greater avallable memory capacity.

Because of these developments the problems associated with
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large scale data processing are rapidly diminishing. Besides,
a number of computer programs have been developed to
assist in the interpretation of the spectra. For example,
computer programs have been developed to assist the rotational
assignment of complicated spectra4§
The improved performance of FTIR spectrometers over

. . . . S
dispersion monochromators is based mainly on two advantages :

a) The Fellgett advantage: Around 1858, Fellgett
recognised that information from all spectral elements
is measured simultaneocusly with an 1interferometer. This so
called multiplex advantage is the fundamental theoretical

advantage of all Fourier Transform spectrometers.

) The Jacquinot advantage: Around that time,
Jacquinot realised the fact that the maximum allowed solid
angle of the collimated beam passing through an
interferometer is greater than the solid angle of a beam of
the same cross-sectional area at the prism or grating of
a monochromator measuring at the same resolution.

Other advantages include built-in <callibration and
the possibility of improving the signal to noise ratio by
co-adding a large number of scans.

The incorporation of a built-in minicomputer makes
the elimination of any reproducible error source, if its
existence and laws are known, relatively easy. The
following catalogue lists error sources, correction

procedures and the software to apply them7:

a) Interference Fringes: The appearance of
interference fringes in the spectrum is caused by a thin
sample with parallel sides. These fringes tend to

obscure the baseline, obstruct detection of relatively
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weak peaks and generally cause distortions in their
intensities.

These fringes being sinusoidal, they give a single spike
in the interferogram. This spike can be recognised because
of its shift in location when the sample is tilted. These

. .. . . ]
fringes can be eliminated using several techniques :

o) The region in the interferogram that contains the
spikes can be replaced with zeros. The problem is that zero
filling an interferogram within the data introduces a
discontinuity in the interferogram. This effect is
distributed over the entire spectrum and effectively
increases the noise slightly. However, 1in most cases its
effect is less severe than the interference fringes

unless the sample is very thin.

3) Two interferograms of the same sample but each one
with the sample tilted slightly in the beam path with the
respect to the other, are collected. This causes the
spike in the interferogram to be displaced. Only
one interferogram is necessary for calculating the
spectrum, so its spike 1s effectively removed by
grafting corresponding interferogram points from the other

interferogram into the first interferogram.

) The sinusoidal fringe can be simulated and
then subtracted.

&) The sample is held at Brewster 's angle to the beam.
Techniques ¥ ) and 65 include the assumption that the
refraction index does not vary with wavenumber which is not
true in practie¢e. This leads to inaccurate quantitative

measurements.
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£) The sample can be wedged. In this case the sample
does not have parallel sides and interference fringes can
not occur. The problem is that this too can 1lead to
photometric errors. The effects of sample wedging are small

but observable.

b) Resolution errors': It can be shown that a
substantial deviation from Beer’s 1law exists when the
resolution of the measurement approaches the width of the
sample bands. In this casea, the tolerance improves when
using boxcar apodization over the common triangular
apodization. The problem is the generation of apparent
negative absorbances due to the Fourier transform process when
the real absorbances are, of course, positive. An alternative
apodization function is the trapezoidal one which avoids
this phenomenon, at the expense of some loss in resolution.

In some of our measurements, the Blackmann-Harris 3
term apodisation function was found to give good results.

The problem is that the resolution is decreased slig@iy
more than with triangular apodization, but the calcufated

spectrum looks more satisfactory.

¢) Interpolation by zero—fillingdt In general, (Zm—l)/N
zeros are added to an interferogram, where m > 1. The
bandwidth after the complex FFT (FFT = Fast FT is an
algorithm in which the number of computations is reduced
when compared with the classical FT) will contain 2(m_1)N
points of which 1/2 N are 1linearly independent and the
rest are interpolated. The result 1is a far smoother
spectrum. For good photometric precision at least 8 output
points per resolution element are necessary, for which
m=3. Problems with this method are the increase in
computation time and/or the excessive requirement for

storage of data.
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1.3 The Band Contour Method

In general, the appearance of a rovibrational band is a

function of some or all of the following parametersp:
a) Selection rules
3) Transition probabilities
v) Moments of inertia
&) Temperature
£) Coriolis interactions

or) Various perturbations such as 1l-type resonance,

Fermi resonance etc.

{) Resolution with which the spectrum is observed.

The "Band Contour Method’ is the name widely wused
referring to the computer calculation of gas phase molecular
band spectra. The main objectives of the “Band Contour
Method ‘when it is used in the analysis of the vibrational

spectra of polyatomic molecules are:

) The determination of band type leading to vibrational

symmetry.

3) The estimation of various molecular constants.

The synthesis of a rovibrational band under study is

achieved by calculating the frequencies and the intensities



20

of the 1lines which are thought to contribute to the
observed band and the application of appropriate selection
rules. Then, the calculated lines are integrated so as to
build up a realistic band contour. In the next

stage, the calculated spectrum is compared with the observed
one. The parameters which affect the appearance of the
calculated spectrum can then be varied until there 1is an
agreement between the observed and the calculated band

contours. In general, two criteria must be satisfied:

a) Agreement between observed and calculated frequencies

of the various features in a band.

3) Agreement between observed and calculated intensities

of various features in a band.

The first criterion may often be satisfied with the use
of analytical expressions to estimate coincidences of lines.

The second criterion depends on:

) The theoretical intensity expressions which are used

in the simulations.

3) The experimental conditions.

The resulting line profiles 7{2 generally fall 1into

two categories:

o) Those which are described by a Gaussian function,
that is, the case when the Doppler broadening is the

dominant effect and collision broadening is negligible.
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3) Those which are described by a Lorentzian function,
that is, the case when collision broadening is the dominant

effect and Doppler broadening 1is negligible.

There are however cases when intermediate situations
may arise. It should also pointed out that the Lorentzian
function can still contribute to the wings of the line
profile even though the Lorentzian halfwidth is small
when compared with the Doppler halfwidth. This comes from
the fact that the Lorentzian function decays as v_z while
the Gaussian function has an exponential decay.

Benedict et al'® estimated that for a 2 : 1 ratio of
Doppler to Lorentzian halfwidths, the Doppler contribution to
the total linewidth can be < 180%. This 1is a consequence
of the relatively slow decay of the Lorentzian function 1in
the wings.

Additionally there are problems in relation to the
correct use of intensity scales and 1lineshape functions
to simulate appropriate instrumental lineshape functions.

However, one of the great advantages of band
contour simulations of spectra over other more conventional
analytical technigues lies in the possibility of
characterising specific interactions which cause
perturbations in the intensities of the observed spectra.

One type of such a perturbation, which we have observed
in the present study, is the l-type resonance which ie
responsible for a prominent and frequently observed intensity
perturbation producing a split Q-branch in many
symmetric rotors. The theory behind this type of perturbation
was thoroughly discussed by Cartwright and Millsu.

In general, the l-doubling of energy levels in a symmetric
rotor arises from the vibrational angular momentum in a
degenerate mode. It 1is observed only in the K = 13

sub-band since the splitting of the sub-levels decreases
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r

a

branch and the P and 'R branches terminate in different

with increasing K . The splitting arises because the

components of the l-doubled levels. Its effect 1is only
observed at high resolution. The effect of the resonance
is to cause a distinct hole near the Q branch region of a
perpendicular band. This effect 1is analysed in more
detail in the second Chapter of this thesis.

Another type of perturbation which is important in the
present study is the interaction between B and C type of
bands in prolate asymmetric rotors which is analysed 1in

detail in the fifth Chapter.

1.4 Population Distribution Of Vibrational Levels

One of the more serious problems encountered in the
analysis of vibrational absorption spectra are
complications due to transitions from vibrationally
excited states. The levels which are wusually involved are
the relatively highly populated low frequency out- of-plane
bending modes. These bands are called "hot bands® due
to the fact that they are temperature dependent and can be
reduced in intensity by cooling the sample. The relative
intensities of the "hot bands’® with respect to the cold
bands are functions of the relative populations of the
energy levels. This occupation probability can be calculated

from the Maxwell-Boltzmann equation:

(1.1)

1]
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where Ni/ N is the relative population of energy level ei
g 1is the degeneracy of this particular energy level
i
N is the total population.
If one assumes harmonic oscillator functions, the denominator

can be written as:

-./kT _
E gie 1 B '1 (partition function)v (1.2)
i

-1
which 1is either [ 1—e_hwc’/kT ] for non-degenerate a modes

{ _ -2
or l 1-e hwe/KkT ] for doubly degenerate e modes.

w is the vibrational frequency in wavenumbers
and the product is taken over all the vibrational modes of
the molecule. The individual partition functions for each
vibrational mode together with the total product at various
temperatures are listed in Table 1.1 for
E—trifluorabenzane—hs. The relative percentage populations
of levels below 750 cm—l, at room temperature, are listed in
Table 1.2.

It can be seen that prominent hot bands will be observed
for several levels, three of which have a population of at

least 307% of ground state population.
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Table 1.1

Partition Functions Of The Vibrational Modes Of

s—Trifluorobenzene—h3

Frea/em ! Mode Symmetry g, p.f./ 283K
207 Yo a, 1 1.568
246 Yon e’ 2 2.037
324 Y14 e’ 2 1.577
582 913 e’ 2 1.184
5587 Yo aé 1 1.069
580 v4 ai 1 1.062
588 vlg e’ 2 1.115
863 vls aé’ 1 1.040
792 Y18 e’ 2 1.842
847 v15 aé' 1 1.816
988 vlz e’ 2 1.415
1012 va ai 1 1.007
1128 Y11 e’ 2 1.008
1178 vs aé 1 1.803
1360 vs 8é 1 1.802
1363 vz ai 1 1.801
1475 10 e’ 2 1.001
16289 Vg e’ 2 1.0601
3876 Yy ai 1 1.000
3113 98 e’ 2 1.001

M¢p.£.), = 8.785 -
v v
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Table 1.2

Relative Populations Of Vibrational Energy Levels Below

~ 756 cm_1 For s—Trifluorobenzene—h3
1 «t
Level Freq/cm r g; % Population/293 K
Ground 4] ai 1 11.49
c ..
'028 245.8 2 6.88
v14 324.2 e 2 4.68
V17 207.0 a, , 1 4.186
szg 491.6 (e’ ") 3 3.09
v14+02@ 569.9 e'xe’” 4 2.80
\317+v20 452 .8 a2 xe 2 2.50
V13 502 .4 e’ 2 1.95
v14+v17 531.2 aé’xeé 2 1.68
2v 414 .0 (a’.’) 1 1.51
17 2 5

2v14 648.4 (e’) 3 1.43
39, 737.0 S 1.23
v 588.0 e’ 2 1.22

18
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2.1 Rovibrational Term Values

The empirical rovibrational formulae which follow arise
from the block diagonalisation of the Hamiltonian
matrix, using perturbation theory. The Hamiltonian matrix is
set up as a product of a rigid rotor contribution multiplied
by a harmonic oscillator contribution. In the transformed
Hamiltonian all the off-diagonal elements connecting

different vibrational states are removed, leading to:

T(v,J) = G(v) + FV(J) (2.1)

where G(v) is the vibration term value which can be expressed

as follows:

G(v)= G(vs,...,vt,lt...) =
w (v _+1/2) +
zs S S 2

+ }; §St<vs+1/2)(vt+1) + E;Zt'xtt,(vt+1)(vt,+1) +

)

VAP 3
@ (v +1) + z | Xgg (Vgrl/2)(vg +1/2) +

. S
t s2s

1.1, (2.2)

t>t Bttt

the rotation term value Fv for an oblate rotor is given

as follows:
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2 z
B,J(J+1) + (C_-B )K® - E;Z(Ctt)vklt -

2 2 2 4
- (DJ)VJ (J+1)™ - (DJK>v(J+1)JK - (D )vK +

F, ()

+

{ 2<nt3) J(I+1rkl, + 2 (710 k1, (2.3)

v is the vibrational quantum number of a molecule

1l is the vibrational quantum number of angular momentum

Jd is the rotational quantum number of angular momentum

k is the signed quantum number associated with the component
of J directed along the z-axis

K = [k

w represents the vibration wavenumber

X,g represent the anharmonicity constants

D,n represent the centrifugal distortion constants

_ B
B,= B_ - Erar(vr+dr/2) . (2.4)
c,=C_ - zrag(vr+dr/2) +. .. (2.5)
(cti)v = (cc z o c (v +d_/2) + ... (2.8)

dr is the degeneracy of the rth normal mode

v is the subscript used to indicate vibrational dependance

s is the subscript used to denote a non-degenerate mode

t is the subscript used to denote a degenerate mode

and r is the subscript used to denote either a degenerate or

a non-degenerate mode.

The third term in equation (2.3) is a consequence of the first
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order Coriolis correction to the rotational energies
for a degenerate vibrational state of a symmetric
rotor. Ci is considered to be characteristic of a
degenerate vibration as a measure of the degree of coupling
along the symmetric rotor axis between the rotational
and vibrational angular momentum components.

The quartic terms in angular momenta in equation (2.3)
are expected to demonstrate a vibrational dependance, but
this effect is often neglectedlz.

The terms in n's in the third row of equation (2.3) are
small and they have been neglected in this study.

As far as the theory of the zeta constants is concerned
there are two classical papers. The first one by Boyd and
Longuet—Higgins13 is on the effect of Coriolis perturbation
on the perpendicular IR bands of symmetric rotors.

The second paper, by Meal and Polo'® is on the zeta
sum rules which relate [ 's for degenerate pairs of vibrations.

In a paper by Oka15 the coefficients of the gquantum
numbers have been classified according to their orders of
magnitude, which is very useful in the interpretation of
observed spectra.

Cartwright and Mills'' have classified in orders of
magnitude these coefficients in terms of the vibrational

wavenumber w and the parameter :
_ 1/4 _
x = (me/Mn) x@.1

where m, = electron mass

typical nuclear mass

=4
=]
1

These coefficients are listed in Table 2.1.
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2.2 Selection Rules And (Effective) First Order

Coriolis Constants

In Chapter 3, we shall be concerned with observed first
order Coriolis constants for the fundamentals and effective
first order Coriolis constants for the overtones and
combinations. A brief discussion is given here sufficient for
the understanding of the conventions used in the experimental
part for s—trifluorobenzene—h3.

In order to compare calculated Coriolis constants
with those from computer simulations, one must be consistent

with regards to classification of the following guantities:

a. Vibrational wavefunctions.
3. Normal Coordinates.

¥. Transition moment operators.

The rotational selection rules used in the band
contour simulation programs were consistent with the simple
diagramatic method developed by Mills‘o. In the following

treatment it is assumed that:

o. The molecule is in its ground electronic state.

3. There is no change of the electronic state during

the transitions.

The degenerate coordinates are represented as:

. (-16) .
C3(Qta+1th) e (Qta+1th) (2.7)
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where O - 2n/n where n is the order of the principal axis of
the molecule. Since for s-trifluorobenzene the principal axis
is Cg , n=3 1in this case.

Q

u are the normal coordinates,

ta’ “tb

W, t W

The vibrational wavefunctions of r Dg point group are

h
characterised by the value of 6 as follows:

v > (2.8)

where 1lvr> is a way of representing a rovibrational

wavefunction.

If & - 0 t (vr> spans a non-degenerate Bpeci.eE.
If G - + (2n/n), where n=3 in this case, v (a)> and |v” (b) >
span a degenerate species with & - +(27/3) and

~(2rr/3) respectively.
6 is determined by the vibrational quantum numbers of

the state as can be seen from the following relation:

J e = (2n/3) 7 (modulo 2n) (2.9)

The selection rules can be expressed as follows:

(2.10)

where the + sign applies when AK=-1 and vice versa.

(2.11)

when AK = 0.
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In the above expressions # represents the electric

dipole moment along a particular direction.

Following Herzberg's classification'’ of rovibrational

levels we get:

(+1) level = |vr(a)> ; k>0

or ]vr(b)> ; k<@

(-1) level = |vr(b)> ; k>@

or |vr(a)> ; k<@

The energy difference between the two (a,b) states can

be written as follows:

tZthsz for e(b)/e(a) states (2.12)

iZCKtsz for (-1)/(+1) states (2.13)
z - nad—

where {2 . = Eglj(a)cj = §£13<b)cj (2.14)

According to the above notation, when (fo > @ the (-1)

energy level is of higher energy than the (+1) one.

After taking the sum of the €@ values for the 3 factors
in (2.10) and (2.11) integrals to be @, the (l)e(*l)
selection rules may be obtained. Therefore, the

operators transform under C3 as follows:
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(pxipy) with 8 *(2n/3)

] with 6 %)

Z

and the rovibrational wavefunctions transform as follows:

|v£> with 6 = +6

|v£’> with 6 = -8

Thus,

AK = K'-K" "= *1, A8 = 8°-68"" = (2n/3)

AK = @, A8

I
Q

A summary of the selection rules for the D3h symmetry
species can be found in Table 2.2.
To calculate a value for szf for a given vibrational

state, it is necessary to take the following steps:

. Determine which set of quantum numbers lj is associated

with lvr(a)> and {vr(b)> from equation (2.9)

. Use equation (2.14) to calculate sgff'



2.3 1-Resonance Perturbations

l-resonance perturbations are seen in some of the bands
of s—trifluorobenzene—hs. A brief discussion of the theory
behind such perturbations 1i1s given here.

l-resonance perturbations are considered to be the
most important of the resonances which are off-diagonal
only in the rotational quantum numbers. l-resonance refers
to the coupling of symmetric rotor rotational levels by

means of the following matrix elements:

v, 13,k [H|v, 1, _

= (erdral Vv r1P-12 M2

[£I(IJ+1)~k(k+1)}{J(J+1)-k(k-1)}]1/2 (2.15)

v, 150, k|H v, 1,52;0, k> =

- prt[(vt+1)d—(lt+l)2]1/d.

[J(I+1)-k(k+1)1Y/ 2 (2k*1) (2.16)
where qé+), qi(:_),rt are the l-doubling constants for

the degenerate vibrational state and are associated with
the off-diagonal elements connecting (Alt:iZ,Ak:iZ),
(Alt:iZ,Ak:IZ) and (Al ,=%Z,Ak=+1) respectively, and o = *1.
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There are symmetry restrictions on the species of

the degenerate vibrations (Q QtZ) for which each type of

interaction can occur. o
q§+) interactions occur for all El(or E) species

vibrations in all symmetric rotor point groups. In the Vt:1

fundamental levels of such vibrations the matrix elements due

to qé+) give rise to a doubling of the k=1t= *1 pair of

levels. This is the familiar 1l-type doubling effect

and q§+)is the familiar l-doubling constant.

Another important point of discussion refers to the
choice of the signs of 1-doubling constants. Due to the fact
that the sign of the q§+) l-doubling constants is an
observable quantity, a convention devised by Cartwright
and Mills'' has been used to relate the experimental
observations to the theoretical expressions for the
l-doubling constants in terms of the rovibrational
interaction parameters and the anharmonic force
constants. the

Following/Caftwright and Mills11 phase convention
together with the sign convention for the l-doubling constant
qé+) it can be shown that eo=-1 for q§+) for all IR active
species of all symmetric rotor point groups. The detailed
expression of the qé+) constant for all symmetric rotor
molecules was derived by Oka15 and Grenier~Besson1’

The first two terms of the expression for q§+) which
arise from second order XY plane Coriolis interactions contain
a resonance denominator. Hence, the perturbation treatment
upon which that expression is given may fail in the case
of such strong interactions.

Besides the l-doubling effect due to qé+) type
interactions in the k:1t=i1 levels, it is also possible to
have an accidental resonance due to qé+). This depends

on the wvalues that the rotational constants have, such
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that the interacting levels happen to be nearly degenerate.
The condition for accidental 1-type resonance in an oblate
rotor with C = (1/2)B is Ct = -1.

For the case when the degenerate normal coordinates
(Qtl’QtZ) are IR active the resonance will be largest for
high J and low K values. From that it follows that the
biggest perturbation will occur for the high J lines in the
central sub-bands.

The effect of g
by diagonalising a typical (2x2) block of the Hamiltonian

matrix involving two levels coupled by 1l-resonance in the

é+) resonance can be calculated

following form:

]w1> |w2>
lvy> Hyq Hio
lv,> Hyo Hyo

This can be done as follows:

a ob Hl1 le a -ob
-ob a le H22 ob a

-~ E° = (1/2)(H11+H22) * (1/2)A (2.17)
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2

where A = [&7 + 4H§2]1/2

H is defined by expression (2.15)

12

& = H,.,-H

11 722

& for the q§+) interaction can be given as follows:

[1> = |1, =+1,k+1> , [2> = |1t=-1,k—1>

t

- 2 2
Hll_HZZ = B{JI(I+1)-(k+1)"] + C(k+1)" -

— 2(CL)(k+1)-B[I(J+1)-(k-1)%] -
- C(k-1)%- 2(CT)(k-1)

= 4k[C-(C{)-B] (2.18)

The above expression does not include the centrifugal
distortion terms in equation (2.3).
Assuming le is real it follows that:

gt > g7

The eigenvectors are given by the following expressions:
a = [(A+8)/281Y% and b = [(a-6)7281Y/%

Assuming that the square root > @ = a,b > 8.
. a>b when &>9 and a<b when &<@

Also, ¢=+1 when H12>® and o=-1 when H12<®.

By using the explicit equations for the eigenvalues
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of a (2x2) matrix given above we can obtain explicit
formulae for the perturbed line positions.

The two interacting basis functions in the excited
vibrational state are denoted by (J7,K+1,+1) and
(J",K-1,-1). The -eigenfunctions resulting from the
interaction are denoted by (J ,K+) and (J ,K-), where K+
denotes the upper and K- the lower of the resulting
eigenstates. Transitions to these states obey the usual
selection rules i.e. from a (J,K) level of the ground state
according to AJ = J'-J= -1,8,1 for a P,&@ or R branch
line respectively.

The wavenumberz of the linez resulting from the

perturbation are given by the following formula:

V{(v,=1,J",K*) - (v,=0,J,K)} =

= Vo + B"'J'(J"+1) - B""J(J+1) + C'—Z(C’(t -B° +

+ [(C’—C")—(B'—B")]K2 * ZK{[C'—(CCt)'-B'J2 +

+<Q§+)/4QF (J°(I°+1) - RKR+1)].[J (T +1) - K(K—l)]}l/z (2.19)

This formula simplifies to the usual one when q§+) = @.
The l-resonance perturbations are accompanied by intensity
perturbations. A discussion of the treatment of such
perturbations is given by Cartwright and Mills“’and is not
repeated here.

The effect of q(+)1—resonanoe perturbations on P,Q

t
and R lines is represented diagramatically in Figure 2.1.
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2.4 Computer Simulation Of Band Contours

As it was indicated in the introduction, the aim of the
band contour calculations is to identify the major influences
which are thought to contribute to the observed spectrum. So
this method can be used to assist assignments of the
individual lines and hence help with the determination of
the main spectroscopic constants which influence the
structure of a particular band.

In most cases the energies of the combining states
and intensities of the lines can be satisfactory calculated

using:
o, The appropriate analytical expressions for the energies.

3. The electric dipole selection rules which control these

transitions.

The general procedure can be summarised as follows:
a. Input of data

3. Calculation of line frequencies and intensities
¥. Formation of basic intensity distribution

&. Processing of intensity diétribution for output of

synthetic spectrum.
A more detailed discussion of these four steps follows.

First step : The program which was used in the majority of

the calculations in this thesis is a modified version of
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the PLLBAND program first described by Barnard1? The PLLBAND
program calculates and plots parallel and perpendicular
band spectra for a symmetric rotor molecule. The selection
rules are calculated using the method of Mills'®. The
general description of the PLLBAND program 1is given in

Appendix 3.

Second step: a. Parallel Bands: The selection rules for

parallel bands are:

The parallel band contours were computed from
combinations between energy levels given in standard

text books17.

3. Perpendicular Bands: The selection

rules for the perpendicular bands are:

AJ

I
s~
1+
[

AR = #*1

The formulae for the calculation of the frequencies for
the Q-branches, neglecting the effects of centrifugal

distortion are again given in standard textbookszo.

¥. l1-Resonance Perturbations:

The modified subroutine PEBAND, part of the PLLBAND
program is given 1in Appendix 1. The theory behind
this kind of perturbation is discussed earlier in this

Chapter. The procedure which was adopted may be summarised
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as follows:

- 11
For the 1 resonance perturbation we have

2

+ 2K{[C" - (CCY" - B" 1% + (@) /ak)2 [T (I +1) -

CK(K+1)7.[J (I +1) - K(K-1)]}33/2

C” - (CC) - B-

If we put a

b = qtF? /4K

c (J°(d"+1) - K(K+1)].[J (I "+1) - K(K-1)]

the above expression transforms as follows:

+2K{a’+b%c} /2 - t2Kasaf{a’+bcyl/?

1/2

+2Ka{(a’+b%c)/a’} - +2Ka{ 1 + (bZ/a)c 31/2

If we put x = (bz/az)c , We have

*2Ka{ 1 + x }1/2 ~ 2Ka{ 1 + x/2 - x2/8 + ...}

provided x is small.
. We end up with the following expression:
*2Ka *Kax iKax2/4....

where the first part of the expression 1is the unperturbed

expression.
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If
(C"-(CLHY'-B") > O
AK = +1 ; r-type transition
positive sign
AK = -1 ; p-type transition
negative sign
if

(C'-(CLHY'-B") < @

AK = 41 ; r-type transition

negative sign

AK = -1 ; p-type transition

positive sign.

. The perturbation term = *Kax(1l-x/4...)

Assuming (C'-(CLY -B") <« @ we have
(+k[a$t)/4K)%/ [(C =B )=(CL)Y 1}[I(I-1) -
4,02 2
~ R(K+1)T[I(I-1)-K(K-1)1[1-{(a‘*?/aK)%/a[C -B " -(CC) " 1%}
[J(JI-1) - R(K+1)]{J(I-1) - K(K-1>1]

where the positive sign refers to a p-branch while the

negative one refers to an r-branch.

Third Step: The intensities of the rovibrational transitions

are calculated using the Honl-London formulae17
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-F""(J,K) / kT

I = CVAJKEJKe

JK

where C is a constant

Vv is the frequency of the transition

gJK is the statistical weight of the lower state:
ng = (2J+1)gN for K = @
gJK = 2(2J+1)gN for K # 0

where gN is the nuclear spin statistical weight

e F (LK) / kT is the Boltzmann factor

and AJK

given in standard textbooksi7.

is the line strength factor. The AJK factors are

The constant C in the Honl-London formula is set in
the computer program when the computed contour is
normalised with respect to the most intense feature in the

spectrum.

Fourth Step: The processing of the intensity distribution
for the output of the synthetic spectrum can be divided into

the following number of steps:

. The individual lines are broadened using a chosen lineshape
function (Lorenzian in our case). The choice is important in

high resolution workif

3. The intensities of the individual 1lines are partitioned
about the line frequency among a number of frequency elements

of an array.

¥. The total intensity of each element of the array is summed

and stored in an array for further processing.
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&, The frequency interval for the raw intensity contour is
usualy chosen to be about an order of magnitude 1lower than

the desired convoluted linewidth.

£. The raw intensity array can then be prepared for plotting
on one of a number of hardware devices. For plotting purposes
the intensities are normalised to the most intense line
in the spectrum. Then, they are scaled so that the final
output at the digital plotter represents frequency versus

linear or 1logarithmic scale in intensity.



Table 2.1

Terms In Rovibrational Hamiltonian Classified
By Order Of Magnitude

45

Constant Magnitude
w vibration wavenumbers w
X anharmonicity constants I
rr’, Stt- C1Ly i
z . 2
B.,C ,(CL) rotational constants 2w
v’Tvw t'v
B C (cr? 4
a ,o A t vibrational dependance 2 W
of rotational constants
qé+) l-doubling constants x4w
. . . 6
DJ’DJK’DK centrifugal distortion 2w
constants

Note: 2 = 3.1 and w = typical vibration wavenumber
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Table 2.2
Selection Rules For Rovibrational Transitions
For The D3h Point Group
Transition Selection Rules
r AK = K'-K*°
Upper Lower +1(L) -1(41) acn)
State State
E A1 2 (+1)e(8) (-1)e(8)
A1 > E (2)e(-1) (B)e(+1)
E E (-1)ea(+1) (+D)e(-1) (+D)e(+l)
(-1)e(-1)
Note: The requirement (" ")&(") on AK = @ transitions

and (" ")e(" ") or (")e( ) for AK =

*]1 transitions is assumed

for the D3h point group.
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Figure 2.1
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The Effect Of q(+) l-resonance On P,Q, And R-Branch Lines

Jd =3 -1 K
+1 -1 K 1
\ %]
\’ 2
— 1
3
\-—— 2
L3
r P
Ps Fa
K-
— @
— 1
— 2
3
-3
Notation: AKAJ

K-

J'=J""+1

Jr=J K’ +1

-1 K-’

SN

Jo°

where AK = K'-K""; A = J '-J°°
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Chapter 3

Investigation Of The Mid-IR Spectrum Of s—Trifluorobenzene—h3

Using FTIR Spectroscopy
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3.1 The Infrared Spectroscopy Of s-Trifluorobenzene

The 30 normal vibrations of s-trifluorobenzene
are distributed among the irreducible representations of D3h

as follows:
r(QV) = 4ai + Saé + 7e” + Baé’ + 3e’’

The ai(vl—v4), e"(v18—v2®) modes are Raman active,
the aé’(v15—v17) modes are infrared active, the e'(vs—v14)
modes are both Raman and infrared active and finally the
aé modes are inactive according to the dipole selection
rules. Furthermore, the planar vibrations of s-trifluorobenzene
are of symmetry species ai, aé and e’ while its out-of-plane

P

vibrations are of symmetry species a, and e’ ’

Throughout this report the numbering of normal modes
follows Herzberg's17 recommendation which is consistent with
that adopted in previous vibrational studies.

There have been a number of experimental and
theoretical studies relating to s-trifluorobenzene since the
early infrared and Raman study of Nielsen, Liang and
Smith21, in 1859. In their work, the infrared spectrum of
s—-trifluorobenzene in the gaseous and liquid states together
with its Raman spectrum in the liquid state was
investigated.

In 1853, a normal coordinate analysis of the
out-of-plane vibations of s-trifluorobenzene was carried out
by Fergusonzz. His study furnished support for Nielsen et
al s tentative assignment of the lowest aé' fundamental but
concluded that the value of the e”° fundamental was toc high.

In 1962, a Modified Urey-Bradley force field calculation
was performed by Scherer, Evans and Muelderza. Their report

also included a valence force field calculation for the

out-of-plane vibrations.
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In 1973, Schlupf and Weber24 performed the first
high resolution rotational Raman study of the molecule., using
a single mode Ar laser. Their experiment 1led to the
determination of the B]" rotational constant and the Dj’
centrifugal distortion constant.

In the same year, Eaton and Steele29 presented a study
of the planar vibrations of benzene and fluorobenzenes
including s-trifluorobenzene. In their study, 38 and 38
parameter force fields were used. Two years later, the same
two researchers’’ tried to investigate the effect that the
removal of the Kekule  assumption would have on the force
field.

In 1976, Eaton, Pearce, Steele and Tindlezc recorded
the low frequency absorption spectrum between 48084 and 50
cm_l.

Three years later, the gas phase contours of the infrared
active fundamentals and some overtones and combination bands
were recorded at about 0.5 cm—1 resolution by Shurvell et
al®’. Their experiment led to the determination of first
order Coriolis constants for the e° fundamentals together
with “effective’” Coriolis constants of some overtones and
combination bands of the same symmetry species.

Finally, in 1981 Korppi-Tommola et alze, recorded the
gas phase Raman band contours of s—trifluorobenzene—h3 and
the infrared and Raman band contours of its fully deuterated
isotope at about 6.5 cm_1 resolution. They also did computer
simulation of the band contours of the e’ modes to determine

the first order Coriolis coupling constants for both

isotopes.
In an attempt to upgrade the various data for
s-trifluorobenzene, we have re-recorded the mid-infrared

spectrum between 550-35008 at a rescolution of about @.06 cm_1

using the Bruker IFS113 Fourier Transform spectrometer with
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the MCT detector cooled down to 77K. Commercially available
s—trifluorobenzene—h3 was used without further purification.
Path lengths of 18 cm and 4 m were used. The survey spectra

at a resolution of about 0.5 cm—1 with a sample pressure of ca
14 Torr are shown in Figures 3.1 and 3.2. They were

recorded without use of computer subtraction of CO2 and
HZO absorptions. The fundamental wavenumbers obtained

from the literature’ > and the present investigation are
collected in Table 3.1.

3.2 The Parallel Bands Of s—Trifluorobenzene—h3
3.2.1 The vls(aé’) Parallel Fundamental Band

The vls(aé’) parallel fundamental was re-recorded at a
resolution of ca. 0.06 cm.1 using the Blackmann-Harris
3-term apodization function inste a d of Sellors12 trapezoidal
one. The apodization function which was used here is described
in Chapter 1 and it gives an improved line shape at the
expense of a slight decrease in the resolution. Also, we
have completed a computer simulation of the partially
resolved rotational structure.

u15 is a very strong band which was recorded using a
16 cm cell fitted with KBr windows. The pressure of the
sample was ca. 2 Torr. In the absence of any strong Fermi
or Coriolis resonances this aé’ mode was expected to give
rise to a parallel band with a relatively simple rotational
structure.

The-computer simulation was carried out as described
in Section 2.4 using the c¢losed term expressions for an
oblate symmetric rotor molecule and the appropriate selection

rules for a parallel band. Assuming that the distortion
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constants are the same in both states, the P and R branches
are expected to have a coarse J structure determined

primarily by the constants 5;, B, ag: B""-B~ and

D..
J
they would have a fine K structure determined mainly

When J manifolds are observed at high resolution

by ag: c '-Cc-, 02 and DJK . The assumption that for a
planar oblate symmetric rotor C = B/2 was found to be
sufficient. Finally, the following relations were assumed
to exist between the centrifugal distortion constants of
a planar symmetric rotor molecule:

2DJ + 3DJK + 4DK =0 (3.1)

] 4 o _
DJK = ZDJ{(Ce/Be) - 13} = -1.875 DJ (3.2)

The first relation was originally derived by Dowling’~ while
the second approximate one is due to Aliev, Subbotin and
Tyulin®'. A more detailed analysis of these two relationships
is given in Chapter 4 where the harmonic force field
calculations are discussed. |

The region of the observed v15 band from 835.5 to 861.42
cm_1 with the band centre at 848.13 cm_lis shown in compressed
form in Figure 3.4. From that Figure it can be seen that the
observed structure is complicated by the presence of at
least another strong band and several other medium to weak
bands. After considering the relative populations of the
vibrational levels at room temperature, it seems that there

are at least three relative intense "hot bands’ involving

low frequency fundamentals. These are the following:

r Type Of Vibration % Total Population
Ground ai 11.49
Y7 a, out-of-plane 4.16
vl4 e planar 4.68
v e out-of-plane 6.88

20
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Therefore, the primary candidate for the assignment of
the second strongest peak at 847.60 cm—1 seems to be a
sequence band” of the type (v15+v2g—vzg). Another
relatively strong peak at 847.18 cm could be due either to

(Pygt¥77%17) OF (¥4 V40
The analysis of the main band can be divided into

the following steps:

a. Initially, a series of computations was performed to
determine the K value of the J lines. It was found that the
various 9P and R peaks coincide with 1low K transitions
(i.e. K =2 @). An example of such a calculation 1is given in

Figure 3.3.

7. The observed J structure was fitted into a polynomial of

the following form:

‘a + bm + cm2 + dm + ... (3.4)

v
=)
1

where: m = -J for a P-branch, m = J+1 for an R-branch

a = > + [(C-B")=(C""-B"")IKZ =

0
-5 B C..2
= 10 + (as ch)K (3.5)
_ . .. 2
b =(B" + B"") - ZDJKK (3.6)
- - - _NB
c =B B = -o (3.7)
d = -4D (3.8)

Assuming K = @ we have:
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b =B + B
_ B
c = -
s
d = —4DJ

So from the above relations values for vo, B, a?5 and DJ

were derived.

r. The values derived from the previous step were used for a
computer simulation of the observed band using the PLLBAND

program.

The standard deviation in the residuals {p(obs)—v(calc)}
was o = @.083 which 1s consistent with the estimated
uncertainty in the peak positions. The value for B~ differs
slightly from the ones guoted by Schlupf24 and Sellorsi? The
discrepancy with the value obtained by the rotational Raman
analysis24 is expected due to the effects of "hot bands’
which are different in each case. The pfoblem tends to become
more important towards the bottom of Table 3.2 which lists
the observed and calculated peak positions. At the relatively
high temperatures at which the rotational Raman spectra are
photographed, there are several low lying vibrational states
which are appreciably populated. So it is 1likely - that the
analysis of the spectrum yields a value for B" " which is not
quite equal to the true value of B~ but a weighted average
of B over these vibrational states.

The peak assignments, together with the differences
between observed and calculated peak wavenumbers are listed
in Table 3.2. The parameters which were used in the computer
simulation of the band are listed in Table 3.3. The observed

and calculated band contours are given in Figure 3.4.
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3.2.2 The vls(aé') Parallel Fundamental Band

The v1§

ca. 3.66 cm using the same apodization function as 1in

(aé') band was investigated at a resolution of

the case of the vls(aé') band. The experimental conditions
were the same as in the case of the vls(aé') band.

» The region of the observed vlS band from 650.0 to 680.0
cm is shown in a compressed form in Figure 3.5. From that
Figure, it can be seen that there are several quite strong
peaks in the central region. As in the case of the y15 band,
the most intense of them was assumed to be the 2@ branch of
the Y16 7 - '
peak was at ca. 664.4 cm ~. Once again the primary

band at ca. 684.7cm-1. The second most 1intense

candidate for the second strongest peak would seem to be a
"sequence band’® of the type (v16+vzg—v26). Also, a?ither two
slightly weaker peaks were present at ca. 664.5 cm and ca.
664 .0 cm—l. These are probably due to the "sequence
bands”’ (916+v17—v17) and (v18+vl4—v14) respectively.

For the main band, a similar type of analysis was
carried out as in the case of the Y15 band which 1led to
a simulated spectrum which reproduced the partially
resclved rotational structure satisfactorily. The effects
of "hot bands” in the central region of the band were not
taken into account in the simulation of the band.

Alregular J structure in the P and R branch can be
seen more clearly in some places than in others. The central
Q@ sructure was once again completely unresolved. The J and AJ
values may be assigned to about 10@ P and R branch peaks of
the main band though at not such a high accuracy as in the u15
band. As in the case of the Y15 band, it was assumed that
the 9P and 9R peaks coincide with low K transitions (i.e.

K24 ).
The standard deviation in the residuals { p(obs)—v(calc)}
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is ¢ = 0.01 which is well outside the expected uncertainty
in the peak positions of ca. ©.0086 cm_1 (for a resolution of
0 .06 cm_l). So it is expected that the value of B’"°
rotational constant will not be so accurate. In faect, it
was found to be 0.057833 cm_1 compared with a value of
0.058742 cn ' from the analysis of the v . band. This is due

to the two following reasons:

. A decrease in the signal to noise ratio in this particular
region gives rise to a relatively noisy spectrum. This leads

to a higher uncertainty in the observed line positions.

2. The usual presence of several peaks due to "hot bands’
which leads to a perturbation in the positions of the
individual peaks in the P and R branches. This effect is
difficult to be measured due to the fact that the individual

peaks are not so well resolved.

The line positions are, therefore, quoted to three decimal
places instead of four decimal places as in the v15 band.

In the simulation of the band the values for v, B’
and a?B were taken from the 1least "squares analysis. The
usual relationship between the rotational constants of a
planar oblate molecule were assumed to hold. The

distortion constants were transferred from the analysis of

the v15 band.
The observed and calculated lines for the
vls(a;’) fundamental band are given in Table 3.4. The derived

constants for the same band are given in Table 3.5. The

observed and calculated band contours are given in Figure 3.5
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3.3 The Perpendicular Bands of s—Trifluorobenzene—hs.

Shurvell et al®’“estimated the Coriolis constants for
the perpendicular bands of s—trifluorobenzene—h3 for the first
time. One of the methods used in their analysis of
partially resolved bands is the so-called "P-R-separation’
method by Hoskins3z. This method <can be used only to
obtain approximate values of Coriolis constants for

symmetric rotor molecules according to the following formula:

gy = 4.@<AkT/hc)1/2<1-c§) (3.9)

where Av indicates the separation between the P and R

PR
branches in a band,
(2 is the first order Coriolis coupling constant,

t
A 1s the rotational constant and the rest of the parameters

have their usual meaning.

The problem with this method is that relatively small
errors in the determination of P-R maxima separations can
lead to large errors in the Coriolis constants,
particularly when P-R maxima become less well defined as
Ci > ?1.@. Such values of Ei for planar oblate
symmetric rotor molecules cause the subband origins to give
rise to a “pseudo-parallel’” band appearance in the overall
band profile with‘sharp coalesced @ branch structures
which are usually distorted by “hot bands’ . This could 1lead
to errors in Ci values of between *(3.05 to *0.20.

Another method which is considered to be more accurate is
to match the observed and calculated spectra. This
method was employed by Shurvell et al27 but they did not

take into account the following effects which contribute
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to the overall band profile:

o, Overlap of combination or overtone bands.

3. Hot bands of the type (vs+vt)—vt discussed in the analysis

of the parallel fundamental bands.

7. Differences in rotational constants between the ground and

excited states.
&. l-resonance perturbations.

In this study, the second method of analysis was used taking
into account the factors y and &.

It was found that at the resolution used, l-resonance
effects were observable in a number of perpendicular

fundamental bands.

3.3.1 The vlz(e') Perpendicular Fundamental Band

The vlz(e') band extends from about 977 cm_1 to about

19014 cm_1 with the band centre at 996.25 cm_1 and can be seen
in Figure 3.6. The band exhibits a PQR structure with an

obvious l-resonance perturbation affecting the central Q

branch.
In the computer simulation of the vlz(e’) band, the

ground state rotational and centrifugal distortion constants
taken from the 1least squares analysis of the vls(aé')
parallel fundamental band, were used. Once again, it was

assumed that the vibrational dependance of the centrifugal

distortion constants could be neglected and the usual
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relationship C=B/2 applied for the planar e’ vibrations. The
synthetic spectrum was calculated using the PLLBAND program.
Maximum values of J and K were taken as 170 with synthetic
spectral line widths usually at slightly lower than the
observed experimental resolution.

In preliminary calculations the l-resonance (q§+))

parameter was not included. It was found that the best fit

was achieved when a?z = @.900062 cﬁl and (§2 = -0.35.
The value quoted by Shurvell et alzpfor Ciz is -40.47.
(+)

After optimising these two parameters, the 9y,  was
allowed to vary. It was found that the best fit was
achieved with qgg) = +0.00012cm 't

The best fit parameters for the vlz(e’) perpendicular band
are listed in Table 3.6. The observed and calculated

spectra ,in compressed form, are given in Figure 3.6.

3.3.2 The ull(e’) Perpendicular Fundamental Band

" The vll(e’) band extends from abouE11112 cm—1 to 1142
cm with the band centre at 1127.60 em ~, as can be seen in
Figure 3.7. The band exhibits a PQR srtucture. A weak
l-resonance effect was observed perturbing the central Q
branch of the band.

The band was investigated using the method of matching
observed with calculated spectra. In the simulation of the
observed band the maximum J and K values were taken as
150. Once again the ground state rotational constants and
centrifugal distortion constants were taken from the analysis
of the vls(aé') parallel fundamental band. The same

assumptions as in the vlz(e’) case were applied.
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In the initial calculations the 1-resonance qé+)

parameter was not included. After several trial and error
attempts, it was found that the best fit was achieved with
of = 0.000062 cn” " and (% = 0.05. The value obtained by

the present study for the Coriolis constant is the same as the
one quoted by Shurvell et a127.

After optimising these two parameters, the qu)
l-resonance parameter was allowed to vary. It was found that
the best fit was achieved with qgi)z +@ . 00013 cwm 1

The best fit parameters for the vll(e’) perpendicular
band are listed in Table 3.7. The observed and calculated

spectra, in compressed form, are given in Figure 3.7.

3.3.3 The vlg(e') Perpendicular Fundamental Band

") band extends from about 1460 cm_1 to 1488

. The ulg(e ) .
cm with the band centre at 1475.40 cm as can be seen in
Figure 3.8. The vlg(e’) band exhibits a PQR structure. The
central region has a somewhat unusual feature in the form
1

of a dip at ca. 1476 cm Although l-resonance perturbation

was taken into account in the simulation of the band, this
particular feature could not be reproduced completely
satisfactorily. Another relatively minor problem was

due to the presence of trace HZO lines which obscured
parts of the spectrum but not enough to affect the general
shape of the band.

In the computer simulation of the observed band, the
maximum J and K values were taken as 178. The usual
assumptions were made as in the ulz(e') case.

It was found that the best fit was achieved

. B _ -1 z  _ (+)_ it
with Mg T @.000132 cm 7, Cl@ = -0.40 and a1g°" +0 . 00020 cn”.
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The value quoted by Shurvel l et al?’ for the Coriolis

constant is -0.55.
The best fit parameters are given in Table 3.8 and
the observed and calculated spectra are given, in compressed

form, in Figure 3.8.

3.3.4 The vq(e') Perpendicular Fundamental Band.

The vg(e’) fundamental band extends from about 1623 cm—1

to about 1648 cm-1 with the band centre at 1628 cm—l, as can
be seen in Figure 3.38. The spectrum in this region 1is
complicated due to the presence of another combination
band. This combination band has been found to affect the
low wavenumber part of the band which exhibits a slightly
distorted PQR structure. Another problem is that the
central region has been found to be slightly complicsated

by the presence of some trace HZO lines. However,

it is obvious that the central peak of the band exhibits
an l-resonance perturbation.

The exact position of the band centre can not be
measured very accurately due to Fermi resonance between the
¥g band and the combination band. (Fermi resonance is the
phenomenon, when in a polyatomic molecule two vibrational
levels belonging to different vibrations have nearly the
same energy, so as to be accidentally near degenerate.)

In the computer simulation of the observed band the
maximum J and K values were taken as 17@0. The usual
assumptions were made as in the vlz(e') case.

Following the wusual procedure for the
perpendicular fundamental bands described earlier in this

chapter, it was found that the best fit was achieved with
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o
o - g.000062 cn!, {2 - 0.05 and q{*’ = +0.0001g. The value
guoted by Shurvell et al®’ for the Coriolis constant did
not contradict the one obtained from the present study.
The best fit parameters are given 1in Table 3.9 and
the observed and calculated spectra are given, in compressed

form, in Figure 3.9.

3.3.5 The v8(e’) Perpendicular Fundamental Band.

The v8(e’) perpendicular fundamental band was recorded
using a multi-pass cell with a total path length of about 4m.
The pressure of the sample was ca. 2 Torr.

The v8(e’) fundamental band is a very weak band which
extends from about 30809 cm_1 to about 3135 c:m_1 with the band
centre at 3113 cm—l, as can be seen in Figure 3.16.

This perpendicular band is a very weak and distorted one,
so a satisfactory computer simulation is almost impossible.
Another problem arises from the presence of trace
HZO lines which obscure parts of the band contour.
Finally, in the region that the v8(e’) band 1lies, the
detector power drops dramatically which leads to an increase
in the noise leVel.

It has been speculatedz? that there is a combination
band in this region in Fermi resonance with v8(e') band
which leads to the observed distorted feature but nothing
really conclusive could be observed at this relatively high
resolution.

The calculated contour was not expected to fit
satisfactorily with the observed band due to the reasons

discussed earlier. Under these circumstances, the best
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possible fit was achieved with ag = 0.0008882 and (g = -0.002.

The value derived for Eg did not contradict the one quoted by

Shurvell et al”’.

Not any l-resonance effect could be observed so the
qé+) l-rescnance parameter was assumed to be 0.
The best fit parameters for the v8(e') perpendicular band
are listed in Table 3.18 and the observed and calculated

spectrum, in compressed form, are given in Figure 3.10.

3.3.6 The { Sum Rule.

According to the [ sum rulelé we have the following
expression: .
zct = -1 (3.18)

Therefore, by adding the five Ct's which were obtained from
the present study and the two Ct’s from the literature27, we

get:

C8+Cg+...+fl4 = 8.09+0.85-...-0.208= -1.25

After taking into account the relative uncertainties in each
of the Coriolis constants the value obtained for 2 Et is

considered satisfactory.
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3.4 Overtone And Combination Bands Of s-CBHSFB.

In this study, the overtone and combination bands of
s—C8H3F3 were recorded at the same resolution as before using
the same multipass cell which was used for the recording of
the v8(e') fundamental band. The total path length was again
3m and the pressure of the sample was <ca. 2 Torr. A
common problem in the recording of all the combinations and
overtones was a dramatic decrease in the signal to noise
ratio which was caused by the decreased signal from a
larger number of traversals in the multipass cell.

The analysis which was employed was the same as in the
case of the perpendicular fundamental bands. In general, the
results of such an analysis can be used as a check for
the first order Coriolis constants obtained from the
analysis of the fundamentals. Furthermore, first order
Coriolis constants obtained from the analysis of
combination bands can then be used to provide useful
supplementary force field data.

The profile shapes of the combination and overtone
band contours are determined primarily by the effective
Coriolis constants (2ff which wunder the harmonic

vibrations assumption are formed from certain 1linear
z
t
For the combination of two degenerate e’ modes Vs

combinationsis of the ( values.

and Yy the effective Coriolis constant, denoted as Cgff ,
is equal to the following expression:

z _ z z

For the combination of a non-degenerate a mode with a

degenerate e’ mode vt the effective Coriolis constant 1is

as follows:
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zZ _ Z
Lerr = %% (3.11)

The Cgff constant for the first overtone of degenerate e  mode

vt is given by the following relationship:

A

Cepp = ~2%

z
t (3.12)
Finally, following the analysis of Korppi-Tommola et al28 for
the gas phase Raman band contours of s—trifluorobenzene—h3
the Ci constants of the e degenerate modes were set to 4.

In the analysis, l-resonance effects were ignored due

to the lower quality of the spectra. The best fit values for
z

eff
the proposed assignments of the combinations and

the observed and calculated £ values together with
overtones obtained from the present analysis are given 1in
Table 3.11. The observed szf values were taken from the
computer simulation analysis of each band and compared with
the calculated szf values from expressions (3.18)-(3.12).

The aB, J ,K values which were used are of

max max

the same order as the ones in the analysis of the

perpendicular fundamental bands.

3.4.1 The v, _+

18t Y11 (e’x e ) Combination Band.

band extends from about 2580 cm_1 to

The » + v
10 _1 11 _1
about 2610 cm with the band centre at 2681 cm as can be
seen in Figure 3.11.
The szf(obs.) value obtained from the computer simulation
analysis of the band was ©@.45 the same as the szf(calc.)

one.
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The corresponding values given by Shurvell et a1%’
are V.57 and @.47 respectively. (At this point it was
realised that the calculated (z

eff
mentioned paper do not correspond to the values obtained

values in the above

using expressions like (3.1@0) with values for Cz and Ci for
the appropriate fundamentals. By using the values for
(gand (i for the appropriate fundamentals in each case from
the same paper, new corrected values for the C:ff
constants were derived. So, for example, in the present case
the corrected (:ff(calo.) constant has a value of 0.68

using Cigand Cil values from the paper by Shurvell et

a127instead of 8.47 quoted in the same paper. From now on,
only the corrected szf constants will be used as a
comparison with the wvalues obtained from the present
study).

The observed and calculated band contours for the

v10+ vll combination band are given in Figure 3.11.

3.4.2 The v + vll(aixe’) Combination Band.

2

This band extends from about 2460 cm—1 to 2509 cm—lwith
the band centre at 2483 cm_1 as can be seen in Figure 3.12.

The (:ff(obs.) value was @.05 while the (:ff(calc.) one
was -@.05. After taking into account that the Coriolis
constant is almost @, the agreement between the two values is
satisfactory.

The corresponding values obtained by Shurvell et a127are
@.10 and -8.05 respectively.

The observed and calculated band contours are given

in Figure 3.12.
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3.4.3 The v5+v11(a2xe ) Combination Band.

This band extends from ca. 2415 cm © to ca. 2431 _—
with the band centre at 2425 cm—1 as can be seen 1n Figure
3.13.

oy oy i
The \eff(obs.) value was 8.05 whereas the \eff(calc.)
one obtained from expression (3.11) was again -8.65. The

agreement between the two values is satisfactory due to the
fact that the Coriolis cconstant is close to zero.

The corresponding values for these constants given by
Shurvell et 3129 are -@.03 and -8.05 respectively.

The observed and calculated band contours are given in

Figure 3.13.

3.4.4 The v2+v12(aixe’) Combination Band.

The ”g;”12 combination band extends froTlabout 2330 cm_1
to 2370 cm with the band centre at 2355 cm “as can be seen
in Figure 3.14. The band is obscured by the presence of
trace 002 lines which were identified and ignored. Their
positions are denoted with small dots in Figure 3.14.

The tsz (obs.) wvalue was found to be -0.15 while

the (2ff(calc.) one was -@.35. The agreement between the
two values is not satisfactory.

The corresponding values 1in the literature’’ are -0.48
and -@.47 respectively.

The observed and calculated band contours are given in

Figure 3.14.
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3.4.5 The 2v11(e')2 Overtone Band.

The Zvll overtone band extends from about 2240 c:m—1 to
2265 em © with the band centre at 2252 cm | as can be seen in
Figure 3.15.

The (sz(obs.) and (sz(calc.) values were found to be
-@3.1 and @.1 respectively. The agreement between the two
values is satisfactory due to the fact that the Coriolis
constant is close to zero.

The corresponding values in the literature27 are -0.2
and 8.1 respectively.

The observed and calculated band contours are given in

Figure 3.15.

3.4.6 The v11+ vlz(e xe ) Combination Band.

This combination band extends from ca 2110 cm_1 to ca.
2130 cm_1 with the band centre at 2121 r:m—1 as can be seen in
Figure 3.186.

The (zeff(obs.) and (sz(calc.) constants were found to
be .5 and @.4 respectively. The agreement between the
two values is satisfactory.

The corresponding values given by Shurvell27 are ¢¥.32 and
B.52.

The observed and calculated band contours are given in Figure

3.16.

3.4.7 The v3+912 (alxe ) Combination Band.

The v3+ v12 combination band extends from about 1885 cm—1 to
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2015 c:m-1 with the band centre at 2007 c:m_1 as can be seen in
Figure 3.17.

The (fo(obs.) and (calc.) constants were found to be
-@3.25 and -@.35 respectively. The agreement between the
two values is satisfactory.

In Shurvell’s27 paper the coresponding values are
-#4.43 and -@.47 respectively.

The observed and calculated band contours of this

combination band are given in Figure 3.17.

3.4.8 The v, + v14(e'xe') Combination Band.

1@

This combination band extends from ca. 1790 cm-1 to ca.
1810 cm—1 with the band centre at 1882 cm—las can be seen in
Figure 3.18. The band is partially obscured by the presence
of trace HZO lines which were identified and ignored. Their
positions are denoted by small dots in Figure 3.18.

The (2ff(obs.) and (calc.) constants were found to be 1.9
and 8.6. respectively. The agreement between the two values
is satisfactory due to the fact that the Coriolis constant is
close to 1 and also due to the lower quality of the spectrum.

In the literature27, the corresponding values are .85
and @.75.

The observed and calculated spectra are given in Figure

3.18.

3.4.9 The v + v xe ) Combination Band.

4t v11(3g

The v4+ vll combination band extends from ca 1680 cm—1 to
-1

ca 1715 cm_1 with the band centre at 1705 cm as can be
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seen in Figure 3.19. Here again the band 1is partially
obscured by the presence of trace HZO lines which were
identified and removed.

The ngf(obs.) and (calc.) constants were found both to
be 0.1.

Shurve1127quotes C:ff(obs.) and (calec.) as -@.04 and
-3.05 respectively.

The observed and calculated band contours are given in

Figure 3.189.

3.4.16 The v12+v14 (e xe”) Combination Band.

combination band extends from ca. 1318 cm-1 to

The ¥12%%14 1
1325 ¢cm with the band centre at 13280 cm as can be seen in
Figure 3.20. The band was again partly obscured by trace
HZO lines.

The ngf(obs.) and (calc.) constants were found to be
©.75 and 8.55 respectively. The agreement between the two
values is satisfactory.

In the literature27 they are quoted as @.72 and ©.67.

The observed and calculated band contours are given 1in

Figure 3.20.

3.4.11 The v18+v18(aé’xe") Combination Band.

This combination band extends from ca 12580 cm—1 to ca.

1270 cm_1 with the band centre at 1261 cm-1 as can be seen
in Figure 3.21. It is again partly obscured by HZO lines
though not to a great extent.

The (sz(obs.) value was found to be -@.85 whereas the



71

calculated value was set to @. The agreement between the two
values is satisfactory.

The (2ff(obs.) value given by Shurvell®’is @.

The observed and calculated band contours are given in

Figure 3.18.

3.4.12 Other Combination Bands In The Mid-Infrared Spectrum

of s—Trifluorobenzene—h3.

There are several other bands in the S_CSHSFS
mid-infrared spectrum which can not be assigned with a
great certainty. However, possible assignments will be
discussed in this section and in some cases first order
Coriolis constants will be given.

In the 2700-3008 cm
weak bands. One at ca 2821 cm_1 could be due to Zulg(e')2

in which case the (sz(calc.) value would be @.8.

region there are four relatively

Due to the 1low quality of the spectrum, no computer

simulation of this band was performed.

The other three features in the same region are found at

ca, 2831 cm_l, 2801 cm_1 and 27790 cm_l. The first one could
. . . . z _
be either due to v2+ Y10 (alxe ) with (eff(calc.) = @.4
. Lo\ 2 . z _
or w9+2v19(e x(e” ")7) with Ceff(calc.) = 3.85. The second one

could be due to vg+2ulg(e'x(e”)2). Finally, the third

P . z

one could be due to v5+v1®(a2xe > with (eff(calc.) =
a

-0.4. Again/better quality spectrum 1is needed to confirm

these assignments. The region is shown in Figure 3.22.
Another band which extends from ca. 2658 cm—1 to ca.

2680 cm © could be attributed to v10+2vlg(e’x(e")2) with
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(sz (calec.) = -8.40. The band in this region was simulated
with C:ff(obs.) = -@.2 and is shown in Figure 3.23 with the
experimental one.

The band which extends from ca. 22080 cm_1 to 2220 cm
could be either due to v, +vg(ajxe’) with szf(calc.) =

-1

?.85 or vg+v19(e'xe") with the same isz(calc.). It was
simulated with a (Eff(obs.) = 0.2 and is shown in Figure
3.24.

Another band which extends from ca. 1180 cm_lto ca. 1240
cm_1 with an irregular feature at ca. 1220 cm - is partially
obscured by HZO lines. This feature could be due to either
v3+v17(aixaé’) or vlﬁ—vzg(e’xe") with a szf(calc.) = -0.40.
Here it was reproduced with Esz(obs.) = -@.15 and is
shown in Figure 3.25 with the simulated one.

There is another band at ca. 1155 cm_1 which is shown

in Figure 3.24 which could be due to v (e xe’) with a

18" " 14
Kgff(calc.) = @.680. This band was not simulated due to the

lower quality of the spectrum.
-1

Another prominent band extends from ca. 190783 cm to
1100 cm-1 and could be due to v4+v13(aixe’) with a
z _ - . . z _
Ceff(calc.) = -9.3. Here it is simulated with a (eff(obs-)—

-0.4 and 1s shown in Figure 3.27 together with the
experimental one.
Finally, in the region between ca. 780 cm_1 and ca. 885

cm_1 there are another three features at ca. 881 cm_l, 885

em ! and 785 em~ ! which could be due to v1®+ulg(e’xe") with
z e —
a Keff(calc.) = -0.40,

= @ and v4+v17(a1 Xa

.. .. . z
v17+blg(a2 xe ") with a Ceff(calc.)
2") respectively. These are shown in

Figures 3.28 and 3.29. These bands were not simulated due

to the lower quality of the spectrum.



Fundamental Wavenumbers

Table 3.1

' emd

of s—Trifluorobenzene—h3
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and -d

<l

r Ve CelaF 3 CgD3F3
a; ¥ 3976%° 2314°
Y2 1363%7 13608°°

Y3 1812%° ged®

¥4 580%° 577%°

a; ¥ 1304 .6 1261.3
1173.8 947.7

553.7 509.8

e vg 3113 2314%°
vg 1629 1617%°

10 1475.4 1425%°

1 1127.6 1@¢54°°

vy, 996.25 792%°

Vs 502%7 487°

v, 324%7 322%°

a;’ e 848.130 777%°
Vig 664 .693 522%°

Vo 207%° 206°

e’ g 792%7 64€°
Yig 598%° 538°%°

- 246%7 231°

Note: The aé

calculations.

fundamentals were derived from our force field



74

Table 3.2
Observed And Calculated Lines For vls(aé’) Fundamental Band

of s—C8H3F3.

P(J"");AJ=-1 Obs.Wavenumber (Obs.-Calc.)Wavenumber

P(20) 845.7720 -@0.9835
P(22) 845.5388 -0.0007
P(23) 845.4258 2.0043
P(24) 845.3049 3.9815
P(25) 845.1838 -@.0816
P(28) 845.0649 -0.8033
P(27) 844 .9508 @.0018
P(28) 844 .8288 -9 .9812
P(29) 844.7109 -0.0028
P(30) 844 .5969 B.2023
P(31) 844 .4758 -0 .0006
P(32) 844 .3560 -0.0022
P(33) 844 .2429 8 .2830
P(34) 844.1218 g.0001
P(35) 844 .0020 -0.0014
P(38) 843.8889 2.0038
P(37) 843.7678 3.6011
P(38) 843.6479 -0 .0004
P(39) 843.5269 -0 .9030
P(4@) 843.4138 ?.06023
P(41) 843.2939 7 .0008
P(42) 843.1729 -0.0017
P(43) 843.0598 2 .08036
P(44) 842.9390 3.0013
P(45) 842.8188 -8 .0004
P(486) 842.6980 -8 .0026
P(47) 842.5850 2.0029
P(48) 842.4648 @.9413
P(49) 842 .3440 -4 .00083
P(51) 842.1108 2.0031
P(352) 841.88080 0.0010
P(83) 841.8698 -0.08004
P(54) 841.7488 -9 .8028
P(55) 841.6360 0.0831
P(56) 841.5158 2.8817
P(57) 841.3948 -0 .00806
P(58) 841.2748 -0.0018
P(59) 841.1618 B.0040
P(60) 841.0408 ?.0017
P(61) 840 .81838 -8.0083

P(B62) 840 .7388 -8.0016



P(J ");AJ=-1 Obs.Wavenumber (Obs.-Calc.)Wavenumber

P(63) 840.67380 -4.0035
P(64) 840 .5658 B.0022
P(65) 840 .4458 g.0019
P(66) 840 .3259 -0 .0008
P(B67) 840 .2048 -0.0821
P(68) 840 .0840 -0.0839

R(J"");AJ=+1 Obs.Wavenumber (Obs.-Calc.)Wavenumber

R(11) 849.5388 @.6011
R(12) 849.6513 -9 .0029
R(13) 848.7648 -0.0070
R(14) 849.8848 -0 .0042
R(15) 849.383878 -0 .0083
R(186) 850.11889 -0.0042
R(17) 850 .2468 2 .0067
R(18) 850 .3588 @.0029
R(19) 858.47289 -9.9911
R(29) 850.5840 @.9831
R(21) 850 .68380 -0 .0088
R(22) 850.8198 -0.0048
R(23) 850 .9480 @ .00686
R(24) 851.4608 @.0026
R(25) 851.1738 -8.98017
R(286) 851.29838 @.0022
R(27) 851.4148 3 .2064
R(28) 851.5138 -8 .088353
R(28) 851.6448 -0 .0008
R(33) 851.7610 B.0827
R(31) 851.8738 -@.9011
R(32) 851.9948 B.8035
R(33) 852.1079 2.0001
R(34) 852.2288 -2 .0036
R(35) 852 .3448 -2.06001
R(36) 852.4618 0 .0046
R(37) 852.5750 @.86813 -
R(38) 852.6958 B.0857
R(398) 852.8088 g.00824
R(4@) 852.9218 -2 .0808
R(41) 853.0420 3 .9028
R(42) 853.1548 -0.0085

R(43) 853.2758 3 .0044
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R(J"7");AJ=+1

Obs.Wavenumber

(Obs.~-Calc.)Wavenumber

R(44)
R(45)
R(46)
R(47)
R(48)
R(49)
R(5@)
R(51)
R(52)
R(53)
R(54)
R(585)
R(56)
R(57)
R(58)
R(58)
R(69)
R(B1)

853.
853.
853.
853.
853.
.9680
854.
854.
854.
.4280
854 .
.6818
854 .
854.
855.
855.
855.
855.

853

854

854

3889
5020
6218
7348
8569

4818
2018
3148

5488

7749
8948
2078
1289
24189
3550

.0013
.20818
.0018
.0011
.0038
.0099
.0022
.0018
.8041
.0038
0212
.0615
.9043
.0002
.0029
.0825
.0001
.0826
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Derived Constants For vls(aé’) Fundamental Band

of s—C6H3F3.

Parameter Derived Value
- -1
uo/cm 848.139
B"/cm_l @.058742
B -1
a15 /cm ?.000013
C " /em 1 @.029371
oC. som”? 0 .000006
15
DJ /cm_1 5.3 x 18—9
-1 -9
DJK / cm -9.9 x 16
Dy / em” 1 4.8 x 1879
-1
c / cm @2.003
B _ . .
Note: oaF = B""-B c "-C



Table 3.4

Observed And Calculated Lines For

Of s-C_ H,LF

78

vls(aé’) Fundamental Band

63 3°

P(J  ");AJ=-1 Obs.Wavenumber (Obs.-Calec.)Wavenumber

P(28)
P(30)
P(31)
P(32)
P(33)
P(34)
P(35)
P(36)
P(37)
P(38)
P(38)
P(49)
P(41)
P(42)
P(43)
P(44)
P(45)
P(48)
P(47)
P(48)
P(48)
P(58)
P(51)
P(52)
P(53)
P(54)
P(55)
P(56)
P(57)
P(58)
P(58)
P(69)
P(61)
P(82)
P(63)
P(64)
P(B5)

661.
661.
661.
.@855
660 .
660.
669.
6649 .
860@.
860 .
660.
660 .
558.
559.
.799
558.
558.
558.
559.
558.
.043
5398.
558.
5588.
5588.
558.
558.
558.
558.
557.
557.
557.
557.
557.
557.
557.
557.

661

559

559

384
281
175

842
828
701
580
460
347
218
185
992
856

638
533
495
284
164

930
817
697
569
456
343
245
191
988
868
747
653
514
401
280
167

ISESESESENESESESESENESENRN]

.817
.020
.028
.024
.027
.828
.017
.912
. 837
.010
.903
.000
.803
.017
.@az2
.902
.009
.002
.907
.010
.014
.010
.906
.809
.020
.15
.g11
.908
.017
.913
.015
017
.007
.014
.008
.911
.885



P(J " ");AJ=-1 Obs.Wavenumber (Obs.-Calc.)Wavenumber

P(66) 557.0838 -8.014
P(67) 556.937 ?.903
P(68) 556.813 -3.902
P(68) 556.685 -6.0811
P(78) 556.587 2.011
P(71) 556.470 @.913
P(72) 556.331 -8 .806
P(73) 556.237 D.020
P(74) 556.120 @.823
P(75) 556.090 3.023

R(J"");AJ=+1 Obs.Wavenumber (Obs.-Calc.)Wavenumber

R(28) 667.858 ~8.835
R(29) 667.978 -0.023
R(38) 668.091 -8.831
R(31) 668.204 -0.033
R(32) 668 .340 -0.012
R(33) 668.468 3.001
R(34) 668 .588 2 .0807
R(35) 668.679 -0.817
R(386) 668.807 -0.004
R(37) 668.912 -0.014
R(38) 668.025 -2.016
R(38) 669.153 -0.004
R(483) 669.278 -0.0802
R(41) 669.390 B.003
R(42) 669.4392 -2.010
R(43) 663.620 0.002
R(44) 669.749 0.816
R(45) 663.862 4.813
R(46) 669.974 7.810
R(47) 670.080 -0.0800
R(48) 670.193 -2 .883
R(49) 670.336 b.024
R(5@) 670.438 ¥.010
R(51) 670 .540 - -0.004
R(52) 679 .668 4.008
R(53) 670.788 g.812
R(54) 670.901 0.008
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R(J ");AJ=+1 Obs.Wavenumber (Obs.-Calec. )Wavenumber

R(55)
R(56)
R(57)
R(58)
R(59)
R(60)
R(8B1)
R(62)
R(83)
R(64)
R(B5)
R(66)
R(87)
R(68)
R(B9)
R(70)
R(71)
R(72)
R(73)
R(74)
R(75)
R(76)
R(77)
R(78)
R(78)

671.
671.
.248
671.
.486

671

671

671.
.707
.843
.956
672.
672.
672.
672.
672.
872.
672.
672.
672.
673.
673.
673.
673.
B873.
673.
673.

671
671
671

214
135

372

602

B76
182
302
423
536
641
777
882
9386
124
237
357
479
591
696
824

ISNESENESESESESESENES RS ENESES SR

.0085
.003
.906
.813
.020
.008
.803
.016
.012
.014
.2083
.005
.009
.084
.009
.09
.005
.83
. 000
.005
.004
.010
.008
.022
.@213
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Table 3.5
Derived Constants For vls(aé') Fundamental Band
of S_CBHBFB'
Parameter Derived Value
- -1
vo/cm 664 .683
B "/em t @ .057033
B -1
/
g /em @.000005
c/en ! @.028517
oS sem 1 @.000003
16
-1
o /cm 3.014

Note: See note at the bottom of Table 3.3



Table 3.6

82

Best Fit Constants For vlz(e’) Fundamental Band

of s-C8H3F3.

Parameter Best Fit Value * Uncertainty
v/ — 996.25 * .01

B _1 +
s / cm @.000062 * G .000030
&4 ~¢.35 * 9.085

12 : -

-4
qS)/m

J,RK = 170

+0.900012 * 0.0606010

Note: See note at the

bottom of Table 3.3.



Table 3.7

83

Best Fit Constants For vll(e') Fundamental Band

0Of s-C_.H F3

63

Parameter Best Fit Value * Uncertainty
v / em™1 1127.68 *+ 0.01
B -1
all/ cm 7.200862 + @.0000820
4 ~9.05 + 0.092
11 : - :
aitf et +0.00013 * @.00005
J,K = 150

Note:

See note

at the bottom of Table 3.3.
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Table 3.8

Best Fit Constants For vlg(e') Fundamental Band

of s—C6H3F3.

Parameter Best Fit Value * Uncertainty

= 1

v/ em” 1475.40 * 8.85
B -1 .
oy / em 0.000132 + 0.000040
& ~@.48 * @.15
10 46 2.
a$t ) et +0.00020 * 0.00010
10
J,K = 170

Note: See note at the bottom of Table 3.3.



Table 3.9

85

Best Fit Constants For ug(e') Fundamental Band

Of s-C_ H,F

63 3°

Parameter Rest Fit Value * Uncertainty
;o / cm_1 1629.8 * Fermi Resonance
og / om ™1 ?.000862 * @.000030
z
Cg 2.5 + 2.02
qé+)/CMfi +0.00010 * 0.00005
J,K = 170

Note:

See note at the bottom of Table 3.3.



Table 3.10

86

Best Fit Constants For v8(e’) Fundamental Band

0f s-C H,F

6 3 3°

Parameter Best Fit Value * Uncertainty

;6/ em”} 3113.8 * Fermi Resonance(?)
B —1 +

a8 / cm @ .0000682 * 0.000040

c; -3.002 * 0.901
+

a§*’/ emt 8)

J,K = 170

Note:

See note at the bottom of Table 3.3.



Table 3.11

87

Overtone And Combination Bands Of s-C F3H3.

1

Wavenumber/cm (sz(obs.) Cgff(calc.) Assignment

2820 - @.80¢ 2”10 (?)

2830 - -9.40 vz vl@ (?27?7)
@3.05 Dg+2919 (??2)

2801 - ?.05 v9+2v19 (?27)

2778 - -3.40 v5+v1E (?27?)

2668 -0.20 -0.40 v1®+2vlg

26@1 @.45 @.45 V18+P11

2483 @.05 -0.05 92+v11

2425 .85 -0.05 p5+v11

2355 -2.15 -@.35 u2+v12

2282 -0.10 0.10 2v11

2210 0.20 .05 v4+ug (?7)
@.95 V9+v18 (?)

2121 g.50 @.49 v11+v12

2087 -0.25 -8.35 v3+v12

1882 1.900 @.60 L’10+1-’14

1705 0.19 0.10 YatPiq

13208 @.75 0.55 v12+v14

1261 -0.85 0.0 916+v19

1218 -3.15 0.0 v3+v19 (?)
-0.40 Y1g Y29 (%)

11585 - 0 .60 vlg—vl4 (?2?)

1887 -@.40 -0 .30 v4+v13

881 - -0.40 le+V19 (?27?7)

805 - .0 v17+v19 (?7?)

785 - 0.0 v +v (?7?)

4 17
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

.10

.11

.12

.13

Figures

Infrared survey spectrum of s—CBHsF3
(10cm path length)

Infrared survey spectrum of s—CSHBF3
(3m path length)

Calculated K structure of a J line

Observed and calculated band spectra

in the v region

15

Observed and calculated band spectra

in the vlS region

Observed and calculated band spectra

in the v12 region

Observed and calculated band spectra

in the Y11 region

Observed and calculated band spectra

in the VlB region

Observed and calculated band spectra

in the Vg region

Observed and calculated band spectra

in the v8 region

Observed and calculated band spectra

in the v10+V11 region

Observed and calculated band spectra

in the »_+v region

2 11

Observed and calculated band spectra

in the v_+v region

5 11

88
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84

85

g6

g7

98

g8

100

100

121
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

.14

.15

.16

.17

.18

.19

.20

.21

.22

.23

.24

.25

.26

Observed and calculated

in the v2+v region

12

Observed and calculated

in the 2w region

11

Observed and calculated

in the »_ _+v region

1112

Observed and calculated

in the 93+v region

12

Observed and calculated

in the » region

1867714

Observed and calculated

in the v +v region

4 11

Observed and calculated

in the u12+v14 region

Observed and calculated

in the v18+v19 region

band spectra

band spectra

spectra

spectra

spectra

spectra

spectra

spectra

Observed spectrum in the (2700-

3000) em” 1 region

Observed and calculated
in the (2650-2680) cm 1

Observed and calculated
in the (22008-2220) em 1

Observed and calculated
in the (1180-1240) em™ !

Observed spectrum near 1155 cm

spectra

region
spectra
region

spectra
region
1

83

102

192

193

193

184

104

185

185

106

106

187

187

108



8@

Figure 3.27 Observed and calculated spectrsa
in the (1870-1100) cm—1 region 108

Observed spectrum in the (788-

Figure 3.28 }
885)cm” ! region 109

Figure 3.28
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Chapter 4

Harmonic Force Field Calculations

For s-Trifluorobenzene
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4.1 Introduction

Several reviews of calculations which seek to establish
the force fields controlling the normal vibrations of
polyatomic molecules have appeared in the literaturea}ao.
In these reviews the types of observed data that are needed
to determine the force constants as well as the mathematical
and computational methods which are used to simpify
calculations are included.

The greatest difficulty which is usually encountered in
this type of calculations is that the number of force
constants is larger than the number of observed data
available for their determination. Consequently, the force
constants are not well determined by the data. As one
might expect, the problem becomes wors@ with 1increasing
size and decreasing symmetry of a particular
molecule. To overcome this problem a number of
approximate force fields containing fewer force constants
than the General Force Field (G.F.F.) have been proposed.

Some of the more important ones are listed below:

The Valence Force Field (V.F.F.),

The General Valence Force Field (G.V.F.F.),
Several Modified Valence Force Fields(M.V.F.F.),
The Central Force Field (C.F.F.),

The Urey-Bradley Force Field (U.B.F.F.),

t . The Local Symmetry Force Field (L.S.F.F.),

{. The Hybrid Orbital Force Field (H.O.F.F.).

Hh O R DR

Q
4
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4.2 The Calculation Of Force Constants

The vibrational secular equation is solved using the
so called GF method®”. There are several textbooks’  which
describe the detailed method involved in the force constant
calculations. The whole procedure may be divided into the

following steps:

First step: The choice of internal coordinates (e.g.
stretching, bending etc.) is made. Usually the number of
internal coordinates is different from the number of internal
degrees of freedom. This leads to a number of redundancies

which increases as the molecular dimension increases.

Second step: The G matrix (the kinetic energy matrix) which
has a mxm dimension (where m is the number of internal
coordinates) is constructed. This can be done using several
standard procedures which are widely available. If
redundaniies are included, then the G matrix is singular
(i.e. G

roots in the secular equation. N of course 1is the number

does not exist). This leads to m-(3N-6) =zero

of atoms in the molecule.

Third step: The F matrix, the potential energy matrix,

also of dimension mxm, is constructed. For the case of an

approximate force field, a new vector F 1is constructed
which consists of the elements of the upper triangular
part of the F matrix. This can be accomplished wusing the

following relationship:
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F=-27.% (4.1)

where Z is a matrix with non-zero elements only in the
rows corresponding to non-zero F matrix elements
and & is a vector of the non-zero force constants required by

the chosen approximate force field.

Fourth step: The F and G matrices are symmetrized to reduce
computational time using the symmetry coordinates.
The transformation from internal to symmetry coordinates

may be expressed as follows:

S = U.s (4.2)

where S is the symmetry coordinates vector,
U is a unitary matrix
and s is the internal coordinates vector.

Then, the F and G matrices are symmetrized as follows:
F = U.F.U"

G

u.g.u" (4.3)

This leads to the factorization of the secular equation in
internal coordinates into a number of secular equations

of smaller dimension, which can be expressed as:
FRLR = L2AR (4.4)

where G is the block of the G matrix which belongs to
the r# irreducible representation,

a
F

L%is the eigenvector matrix which belongs to the same

is the corresponding F matrix block,

representation

and A? is the corresponding eigenvalue matrix.
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Fifth step: The secular equation is solved using some
numerical method available for the calculation of the

eigenvectors and eigenvalues of a matrix.

Sixth step: The Potential Energy Distribution (P.E.D.) can
be calculated. This gives information on the contribution of
each force constant to the normal frequencies of vibrations.

This can be done using the following relatioship:
P.E.D. = A " .J.F (4.5)

where J 1is the Jacobian matrix whose form is widely available

in the literature.

Seventh step: The cartesian displacements of the atoms of a
molecule in a normal vibration are calculated. They are given

by the following relationship:

(4.8)

where B is the matrix used to transform the internal
coordinates to the cartesian ones.

The ith coordinate of the T matrix gives the
atomic displacements for a unit displacement of the normal

coordinate Qi'

Eighth step: The Coriolis constants are calculated using the

following relationship:

T ,1/2

¢@ = 8 yi/2 yo /2 g (4.7)
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where o = x,y,2,

Co are the Coriolis constants,

T is the diagonal matrix of the eigenvalues of G,

M is a diagonal matrix whose elements are the atomic masses

o . ] 14
and M~ are auxiliary matrices

Ninth step: The <centrifugal distortion constants are
calculated. In general, the observed distortion constants
are related to the so called T constants which are in turn
directly related to the elements of the inverse F matrix.
These constants are calculated as follows:

Taﬁré - 210 Io Io Io af3
k,1

(4.8)

oo BB yy &8

_ 2 2 _
where Iaa = EZFi(ﬁ +¥7) ete. , Iaﬁ = E:miaiﬁi ete.

i i
Ji _ daI . - o Z n. |5, dﬁ.l Y dr
o as.- S U P 1 357-
k o i k k “
|
Jk _ d o - n. e dﬁl + B da
¢ las, Lt a5 - e
k o i k k ~“

[F_l] - Z S T
kl T

S sl denote internal or symmetry coordinates

and &, 3, ¥, &, are the cartesian coordinates.
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For planar symmetric rotor molecules, the three centrifugal

distortion constants DJ, DJK’ DK are linear combinations of
30

XxXxx’ Tzzzz’ Txxyy’ szxz
This can be simplified further to yield the following

only four 7t°'s, namely 7

relationships:
- . 4
DJ = -l/4 T XXXX
D = 1/2 (T -27 )F%
JK XXXX z2zz2
D, =-1/4(t. -3t yh (4.10)
K ! XXXX z2zzzZ )
In the above relationships the symmetry axis, which is

perpendicular to the plane of the molecule was chosen as
the z axis. It has been found3031>that the following
relationships exist between the centrifugal distortion

constants of a planar symmetric rotor molecule:

~ 4_ N -
D X 2DJ [(Ce/Be) 1] = -1.875D

JK J

D

K = - [1/2DJ +3/4D (4.18)

JK?
Thus, if one of the three distortion constants for a

planar symmetric rotor molecule can be determined, the above
equations can be used to find the approximate values of the

other two.

Tenth step: The force constants are refined using— some
iterative method. This step is analysed in more detail in the

next section.
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4.3 The Refinement Of The Force Constants

The process of the refinement of the force constants can

be divided into the following number of stepsao:

First step: A trial set of force constants is guessed. These
are used to calculate the vibrational frequencies, the
Coriolis constants and the centrifugal distortion constants.
Then, the Jacobian matrix elements of the frequencies, =zetas
and distortion constants defined as the first term in the
Taylor expansion of the calculated data with respect to
each force constant, are calculated. These can be defined

as follows:

[
>

J = J (4.11)

o

Second step: The error vector is formed. This can be denoted

as follows:

L)

(4.12)

Thus, the -Jacobian matrix is used to set up linear equations
relating the first order changes in the force constants (&F) to

the consequent small changes in all the calculated data which
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is identified with the error vector, i.e.
J.&8F = ¢ (4.13)

Third step: A residual vector 1is formed which <can be

expressed as follows:
r = J.8F - ¢ (4.14)

Then, the solution &F which minimises the sum of the weighted
squares of residuals is determined. This can be done by

forming the normal equations:
J'WIJ.OF = J 'We (4.15)

where W is a diagonal matrix of the weights wi.These are
related to the estimated probable error of the observed

values by the equation:

O?W. = O?W. = ... = constanto2 (4.186)
i'i J J

where ozis the variance of an observation of unit weight.
The ozis given from the sum of the weighted squares

of the residuals:

o® = r'Hr / (N-M) (4.17)

where N-M is the excess of equations over unknowns. Thus,

the solution is obtained as:
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&F = [J°WI1 Y7 e (4.18)

The diagonal elements of (J'WJ)_l give the variance and the
best estimates of the force constants:

2.z _ . -1 2
o [Fi] = [J WJ]ii' o (4.18)

and the off-diagonal elements give the correlation coefficients

‘[E"I'] [J “J]]‘l‘ . Cz/:‘[E‘]E'[E’] (4026)

In the case where a & vector is used, the previous equations

40
are transformed as follows

&F = 288 = 2(Z°J WIZ) 1z7°3°We

2 _ R -1 2
fod (2? = (Z°Jd WJZ)ii . o
oz(Fi) = [Z(Z'J’WJZ)Z—I]iio2 (4.21)

Fourth step: The &Fs which are determined from the previous

equation are used to form a new set of force constants
F(new) = F(old) + 6F (4.22)
Then, the whole cycle 1is repeated a preset number of

times. Usually 7 to 8 cycles are sufficient for the &F = @,

i.e. for the calculation to have converged.
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4.4 Mathematical Difficulties in Force Field Calculations

There are three main mathematical difficulties which arise in

force field calculationsag, namely

a. Non-linearity
3. Singularity

y. Multiple Solutions.

o. Non-linearity: If the initial F matrix 1is not a good
guess, the errors £ and the corrections &F will contain

some relatively large elements and the relationship
J.6F = ¢

will not hold. This will also happen if some elements of J
are very sensitive to changes in the force constants. This is
usually observed as oscillations in the calculation. This can
be avoided by adding only 1/2 &F for the first few cycles of
the calculation increasing it until it reaches 1 in the final

cycle.

3. Singularity: If the matrix {J ' WJ] = singular large
rounding errors may occur in taking its inverse causing
corresponding errors in the calculated corrections &F. This
in general means that the original data do not suffice to fix
the force field. An easy way to detect this is by observing
the diagonal elements of the [J’WJ]_1 matrix. If at least one
diagonal element of the matrix becomes unusually large, it
will lead to a corresponding large uncertainty in at least
one of the force constants. If this is indeed the case then
either further data must be added or the force field must be

constrained in some way.
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Y. Multiple Solutions: There may be several distinct

solutions to the force field which fit all the available

data satisfactorily. The 1ik7%bod of this occurrence

generally decreases with increasing variety in the type of the
experimental data used. If two or more solutions are found, it
may be necessary to choose between the possible solutions on

physical and chemical grounds.

4.5 Planar Normal Coordinates For s-Trifluorobenzene

The planar normal vibrations of s-trifluorobenzene
are distributed among the irreducible representation as

follows:

F(Qv, planar) = 4ai + 3a; + 7e’

It is obvious that the problem 1is more complicated than

"°%_ This is mainly due

the corresponding one for benzene =
to the fact that the blocks into which the planar vibrational
secular determinant factorises are larger than the
corresponding ones for benzene. There are 11 ( 4ai + Te’ )]
assigned fundamental frequencies and three uncertain

ones (Baé) for each 1isotopic species. This indicates that
the G.F.F. is seriously underdetermined due to the fact

that there is a total of 44 independent symmetry force
constants controlling the planar vibrations in it. So it is not
surprising that there are only two published planar force
field calculations. The earlier one>> was a M.U.B.F.F.
calculation published in 1962. In 1873, another force field
calculation was published29 which was a part of a

general study of fluoro derivatives of benzene using the

overlay technique. The authors of the above calculations did



122

not evaluate normal coordinates or centrifugal distortion
constants from their force fields. However, in more recent
paperszzza, calculated Coriolis constants have Dbeen
quoted, derived from the second force field.

One of the aims of the present investigation was the
derivation of a model force field for the planar vibrations
for s-trifluorobenzene and also the computation of normal
coordinates and Cartesian displacements, which have not been

reported before.

4.6 The Secular Equation

The equilibrium geometry of s-trifluorobenzene has been

found to be as follow529:

Rg (C-C) = 1.397A&
ry (C-H) = 1.084&
1@ (C-F) = 1.327A

It was also assumed that s-trifluorobenzene 1is a regular
hexagonal ring. The definitions of the internal displacement
coordinates are given in Table 4.1. In constructing

the planar symmetry coordinates from the given set
of internal coordinates, redundancies are introduced
into the ai and e’ blocks. An explanation of the
procedure for removing the redundancies follows:

. Non-Degenerate species: For the totally symmetric species,

the removal of the redundancy is done following
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the relationship37:

Hence,

Therefore, the redundancy can be removed by the above
orthogonal transformation where SR is the redundant
coordinate, identically equal to zero, and 5, is the symmetry

coordinate which is used in Table 4.2.

3. Degenerate species: The removal of the redundancy for the
degenerate species is of a very complicated form if one assumes
a geometry different from a hexagonal one. But, if 12@o bond

angles are assumed, the redundancy adopts a much simpler
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form. The primitive symmetry coordinates are:

. _ n-1/2, _

S13a = 8 (e + 2a, —ag)
. _ 5,172

Si3p = 2 T (e - 2g)
. _ ~-1/2 _ L

Sisa = 8 7 (Zry - ¥ym ¥3)
. _ 5-1/2,

Sisp = 2 7 (g v ¥y

Then, the following linear combinations are formed:

S = 5; + S3

13a 15a 13a
Si5a = 513a ~ 515a
S13b = S1sb * S13pb
S1sb = S13b ~ °1sb

Then, the usual orthogonal transformation is applied:

S14a | _ -1z | b 7H °12a
| sp | EEER NN
- . - 11T 7
S1ab | _ 12 [ 87 512b
| Sp | EEES R

where the SR is again the reduntant coordinate. It should also
be stressed at this point that the 813 symmetry coordinate
is a combination of two primitive symmetry coordinates.

The symmetry coordinates, which were constructed
specifically for this study but can also be used for related
molecules (eg. s-trichlorobenzene etc.), are listed in Table

4.2.
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4.7 Symmetry Force Constants

7
The symmetry force constants were cgstructed using the

method developed by Wilson, Decius and Cross27 . In general,

the rule for the diagonal constants is as follows:

Multiply the force constant in the first row and 1in the
column labeigd by a given internal coordinate by the
coefficient with which that 1internal coordinate appears
in the symmetry coordinate. Then divide by the coefficient
of the first internal coordinate (row label). Do this for

each column and all the results.

Whereas, for the off-diagonal constants the rule 1is

as follows:

Multiply the force constant in the first row and 1in the
column Jabel@d by a given internal coordinate by the
coefficientfwith which that internal coordinate appears
in the symmetry coordinate. Then divide by the coefficient
of the first internal coordinate of the other set (row
label). Do this for each column and add.

The internal force constants are listed in Table 4.3. The
symmetry force constants derived from the internal force
constants are listed in Table 4.4. These were constructed
specifically for the present study, but can also be used for

related molecules (eg. s-trichlorobenzene etc.).
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4.8 Observed Datsa

The observed data are summarised in Tables 4.5 and 4.6.
The fundamental frequencies, Corioclis constants and
centrifugal distortion constants were not corrected for any
anharmonic effects. It was expected that because of the great
variety of data used that there would be an improvement
in the possibility of determining an acceptable force
field. However, the main problem still remains, namely,
that the number of observables 1is not sufficient to
determine a unique solution for the G.F.F. The situation is

summarised as follows:

Symmetry Number of independent Number of
Species parameters in G.F.F. observables
Ay Fi10 Fapr Fopo Fgqo 8 vs
Fapr F330 Fyupo Fypo
Fa3> Fyq
Total = 10 Total = 8
A, Fgso Fgs» Fggr Fys,
Fr60 Fo7
Total = 6 Total = @
E- Fag Fag: Fagr Figs: 14 vs
Fi09° Fig10° F118° 11 Ts
Fi19° F111e0 Fr1117
Fi28° F1290 F1210,
Fi2110 12120 Fizse
Fi3g’ Fi310° Fi1311°
F1312> F1313 Fias,
etc. until F1414
Total = 28 Total = 25
Total 44 (+3Ds)= 36
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4.9 Results And Discussion.

A model force field of 18 parameters was used in the case
of the planar vibrations of s-trifluorobenzene to see how
well the five e’ fundamental modes , four Coriolis coupling
constants and c¢entrifugal distortion constants measured 1in
this study, were reproduced.

The calculated values for the observed data, the
internal force constants, the symmetry force constants
and the normal coordinates are given in Tables 4.5 to 4.11.

The pictorial representation of the Cartesian
displacements for each normal mode for s-trifluorobenzene —h3
and ~d3 are given in Figures 4.1 and 4.2. The program which was
used to construct these pictorial representations is given in
Appendix 2. The program ASYM20, which is described in
Appendix 3, was used in all our calculations.

The starting values for the internal force constants
were taken from the literature”®. It is obvious, from Tables
4.5 and 4.6 that the observed frequencies, Coriolis coupling
constants and centrifugal dis%{ortion constants are
reproduced reasonably well within the limits of the
assumed experimental uncertainties, in almost all of the
cases. A more detailed analysis of the individual
internal force constants used in the construction of
the model force field follows:

D: This corresponds to the carbon stretching diagonal
constant. The value that was derived as a result of the
refinement procedure in this study is about the same as the
one obtained by Eaton and Steele’'s 38 parameter force
field” for the planar vibrations of benzene and various

fluorobenzenes. At this point, it should be noted that
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slight and in some cases even relatively major
discrepancies between the values for the internal force
constants in this study and the 38 parameter force field are

to be expected due to the following reasons:
o, A different model force field was used.

3. A different wvariety of observed data was used.
That is, only vibrational frequencies from various
fluorobenzenes were included. In a later studyzi Coriolis
constants calculated from a modified version of the above
mentioned force field were quoted , without any indication

o? the changes that these extra data will have in the

independent internal force constants.

E: This refers to the hydrogen stretching diagonal constant.
The value that was calculated in this study is of the same

order of magnitude as in the 39 parmeter force fie1d27.

EF: This corresponds to the fluorine stretching diagonal

constant. Once again, the wvalue that was obtained did
not contradict the similar one in the 39 parameter force

. 20
field™ .

F: This is the diagonal constant due to carbon bending where
the central carbon atom is attached to a hydrogen atom. This
time the value which was obtained is about one third the

corresponding one in Eaton and Steele’s fieldzp.

FF: This diagonal constant corresponds to a carbon bending
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where the central carbon atom ié attached to a fluorine atom.
This time the value which was derived is twice the value

of the 39 parameter force fieldzg.

G: This refers to a carbon-hydrogen bending diagonal
constant. The wvalue obtained was about the same as 1in

Eaton and Steele’s fieleQ.

GF: This corresponds to a carbon-fluorgne bending diagonal

constant. The value that was obtained was significantly
higher than the corresponding one in the 38 parameter force

field>".

d: This is a constant representing the interaction between
T

two carbon s%étchings. d can be defined as follows:

d=d = -d =4d (4.23)

It was introduced by Scherer and Overend41 and was supported
by Duinker and Mills*®. It is called the ‘Kekule’
assumption’. The arguments about the sign relationship among

the above parameters are basically as follows:

According to the “Kekule  assumption® a benzene-1like

molecule exists in the following two forms:

6 1
Rg E:::B Ry
R R

1st form 2nd form
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A positive displacement 1in R1 will tend to 1localise the
m electrons in the 1lst "Kekule® form . The sign of the
interaction constant d0 arises after considering that part

of the potential function which depends on R% and Rg

- 2 2
2V = DR1 + 2dOR1R2 + DR2 (4.24)

After differentiating with respect to R1 and making the
result equal to zero at the new maximum, we have:

dav/ de = ZDR1 + ZdOR2 =0 =

d, = -DR;/ R (4.25)

2

From equation (4.25) it follows that d0 > @@ since
Rl/ R2 < @. Similar arguments can be employed to show that dm
< @ and dp > 9.

In the "Kekule  assumption’, it is further assumed that
these constants are equal in magnitude. That 1is, on
stretching R1 the induced double bond character in R2 is
the same as that induced in R4 and energetically equivalent
to the increase in single bond character 1in R3. There 1is
not any particular reason why this should be true, but, in
our case it was assumed that this is 1indeed the case.

The value obtained in this study is about the same as

the corresponding one in the 338 parameter fieldzp.

hg: This is the constant corresponding to the interaction of

carbon stretching and fluorine stretching in the
ortho position. The value obtained is about the same as the

one obtained from the 39 parameter force fieldzp.
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io: This constant corresponds to the interaction between
carbon stretching and carbon bending with a hydrogen atom
attached to the central carbon atom, in the ortho
position. The value derived from the present study was

twice the wvalue obtained by Eaton and Steelezp.

jO: This refers to the interaction between carbon stretching
and carbon-hydrogen bending, in the ortho positon. The
value produced in this study was again almost twice the value

gquoted by Eaton and Steelezp.

o

J_: This refers to the interaction between carbon stretching
and carbon-fluorine bending , in the ortho position. Again,
our value is about twice the value quoted by Eaton

and Steele’”.

ji: This corresponds to the force constant relating to the

interaction of the same two coordinates but in the meta
position. The constant derived has the same negative sign
as the value quoted in the literature but it is three times

2o
as large.

kF: This constant corresponds to the interaction between

carbon-fluorine stretching and carbon bending with a
fluorine atom attached to the central carbon atom. This
time there 1is complete disagreement between the present
field and the 38 parameter force field. In this study a
relatively large positive value was obtained while 1in the

39 parameter force field a large negative value was quotedzg.
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ng: This refers to the interaction between carbon bending

with a hydrogen atom attached to the central carbon atom
and carbon fluorine bending, in the ortho position.
The value predicted in the present study is more than twice

the one in the 1iterature29

kz’: This corresponds to the interaction between fluorine
stretching and carbon bending with a hydrogen atom attached
to the central carbon atom. The value predicted in this
study 1is very much larger than the one quoted in the

. 290
literature

k: This corresponds to the interaction between hydrogen
stretching and carbon bending with hydrogen attached to the
carbon atom in the central position, in the ortho position.
The value calculated here 1is about four times the one

quoted in the 1iterature29

ggz This corresponds to the interaction between hydrogen

bending and fluorinerending in the ortho position. The
value predicted haﬁjo%posite sign than the one quoted in the

1iteraturez

gF: This 1is the same as above with the two internal

p
coordinates in the para position. This time the negative sign
in the internal force constant in this study is the same as

the one predicted in the literaturezp
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The rest of the internal force constants were constrained
to zero. The above internal force constants were chosen
because of the relative large values associated with
them in the literaturezp. Initially. some of +them were
constrained to certain plausible values until a
satisfactory fit was achieved. In the next stage, all
the internal force constants associated with
s-trifluorobenzene in the 39 parameter force field were
included. This led to the construction of a 27 parameter force
field. It is obvious that this number of parameters is too
large compared with the number of observed data. Therefore,
some of the parameters were constrained to zero beginning
with ho, hgand hg .These three internal force constants were
chosen because it had been predicted in the 39 parameter
field that their values would be close to zero. This was
found to be true in the present analysis.

The removal of the three parameters led to the
construction of a 24 parameter force field which was
found to be ill-conditioned, when all of the parameters here
allowed to vary. After constraining several parameters to
zero and allowing the rest to wvary, the present 18
parameter force field was constructed. It should be noted
that further force constant adjustment calculations were
tried applying different constraints to individual
parameters in an attempt to find best wvalues for the
internal force constants, but a more satisfactory solution
could not be found. However, due to the essential complexity
and underdeterminacy of this problem, this solution is

regarded as a possible solution rather than the best one.
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4 .10 Out-0f-Plane Normal Coordinates For s-Trifluorobenzene

The out-of-plane normal vibrations of s-trifluorobenzene
are distributed among the irreducible representation as

follows:
F(Qv, non-planar) = 3a2 + 3e

In this case, there are 6 (3aé'+ 3e” ") assigned
fundamental frequencies for each isotopic species. Because of
the fact that there is a total of 12 independent
symmetry force constants controlling the out-of-plane
vibrations in it, the force field seems to be well behaved
even though only a total of seven internal symmetry
constants was used.

There are two published out-of-plane force field
calculations. In 1852, the earlier one was published43 which
was carried out with the purpose of finding out the wvalue
of the highest e " fundamental. In 198223, a 7-parameter
V.F.F. calculation similar to ours was carried out. One of
the aims of the present investigation was the computation of
out-of-plane normal coordinates for s-trifluorobenzene which
have not been reported before.

The internal coordinates are defined in Table 4.12.
The symmetry coordinates which were essentially the same as
the ones used before®® and also the internal force
constants and the symmetry force constants are 1listed
in Tables 4.13, 4.14, 4.15 respectively. A notation
consistent with the one wused for the planar vibrations
problem was adopted. All the calculations were carried out
with the ASYM20 program which is described in Appendix 3.

The number of observables compared with the number
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of independent parameters of the G.F.F. are summarised next.

Symmetry Number of independent Number of
Species parameters in G.F.F. observables
Ay’ Fi10 Fapr Fapr Fayq 6 vs
F31’ F32’ F33
Total = 6 Total = 6
E Faa> Fsqr Fs5, Fgy 6 vs
Fear Fgs Fgp
Total = 6 Total = 6
Total 12 12

4.11 Results And Discussion

A model force field of 7 parameters was used to see how

.

well our two more accurately measured a, frequencies were
reproduced. The calculated values for the frequencies, the
internal force constants, the symmetry force constants and
the normal coordinates are given in Tables 4.16 to 4.21. The
starting values for the internal force constants were taken
from the literature” .

As it is obvious from Tables 4.16 and 4.17, the observed
frequencies are reproduced quite well. However, there are
some discrepancies between our calculated symmetry force
constants and the ones quoted in the literature. The
symmetry force constants values attributed to Scherer, Evans
and Muelder”’ were calculated using the values for their
internal force constants. A more detailed analysis of

the situation follows:
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H: This corresponds to the fluorine bending diagonal
constant. The value that was obtained as a result of our
refinement process is about three times the value quoted by

Ferguson43 and twice the value quoted by Scherer 2

A: This corresponds to the hydrogen bending diagonal’
constant. Our value is of about the same order of magnitude
as the other one quoted in the literature23. Ferguson43

. 44
transferred the corresponding force constant from benzene .

B: This corresponds to the carbon torsional diagonal
constant. Again our value is of about the same order of
magnitude as Scherer'sza. Ferguson43 did not use any

value for the B constant. Instead, he transferred the

symmetry force constant in which B is involved from
benzene.
go: This internal force constant corresponds to the

interaction between a fluorine bending and a hydrogen bending
in the ortho position. The wvalues quoted 1in the

3,43

literaturez together with our value all agree with
respect to the negative sign of the constant. But our
absolute value is about three to four +times higher than

the ones quoted in the literature.

bo: This corresponds to the interaction between two <carbon
torsions in the ortho position. No value is quoted by Ferguson43,
He asgain transferred the relevant symmetry force constant
from benzene. The value quoted by Scherer23 is of the same

absolute order of magnitude as ours. However, they differ
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with respect to the signs, ours being negative.

c,t This constant corresponds to the interaction between a
fluorine bending and a carbon torsion in the ortho position. Once
again no value is quoted by Ferguson‘a, who either transferred
the relevant force constant from benzene (F:32 and F84)

or constrained it to =zero (F31 and F85) . He also

assumed that cok c, which 1is equivalent to the
assumption that the interaction between a fluorine motion

out of the plane and a non-planar ring deformation 1is

equal to the interaction between a hydrogen motion out of

the plane and a non-planar ring deformation. The

value quoted by Scherer23 is about half our value.

c,t This is an internal force constant which corresponds to
an interaction between a fluorine bending motion and a
carbon torsion in the ortho position. The value quoted by

Scherer23 once again is slightly lower than ours.

Due to the fact that both Scherer s force field?® and
ours reproduce the experimental frequencies reasonably well,
the discrepancies in the values of the internal force

constants are thought to arise from two reasons:

1. Due to the indeterminacy of the problem.

2. Due to the fact that different basic sets may have been

used.

In view of the above sources of uncertainty, we consider
our solution to be one of a whole family of alternative

solutions rather than the unique one.



Table 4.1

Definition Of Internal Displacement Coordinates
For s-Trifluorobenzene

increase in length of Ci—Hi bond
increase in length of Ci—Fi bond

increase in length of Ci—Ci+ bond

1
H
_ . I
increase in Ci_l-Ci—Ci+1 angle
F
. . I angle
increase 1in Ci—l_ci—ci+1

Ci-Hi bend, increase in angle between Ci—Hi

H.
i

|
€i-17%17 %541

.
2

and external bisector of

positive when Hi moves towards Ci—l'

C.-F. bend, increase in angle between C.-F.
i i F iTi
and external bisector of |l ;
€1-1%:7Ci41
positive when Fi moves towards Ci—l'
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Table 4.2
Symmetry Coordinates For s-Trifluorobenzene
S. 1 2 3 4 5 3) N s .
i i
s T 1 1 - - 371/2
1 1 ~1/2 i
52 1 1 1 - - 3 1.
-1/2 1
S, 1 1 1 1 1 1 6 R.
3 ~1/2 1
S4 1 1 1 - - B RGYi
-1 -1 -1 - - - Rgai
S i -1 1 -1 1 -1 e&¥Z g
2 5 ~1/2 i
SG 1 1 1 - - - 3 r@B.
-1/2 1 .
87 1 1 1 - - - 3 Gwi
Sga -1 2 -1 - - - g~1/2 r.
Sq 2 -1 -1 - - - g¥z g
a ~1/2 i
S -1 2 -1 -1 2 -1 12 R.
10a ~1/2 i
S -1 @ 1 - - - 2 r.f3.
11a ~1/2 7
S 4 1 -1 - - - 2 1w,
12a “1/2 i
Slﬁa 2 -1 -1 - - - 12 Rﬂyi
-1 2 -1 - - - Rgai
514a 1 e 1 1 e -1 2¥*F R,
_ B _ -1/2
2 -1 -1 24 R@Yi
1 -2 1 - - - R@a
S 1 8 -1 - - - 2~ 1/2 .
8b ~1/2 i
S ] -1 1 - - - 1.
Sb _1 1
Sl@b -1 @ 1 -1 @ 1 2--1/2 Ri
S -1 2 -1 - - - 6 T3,
11b ~1/2 @i
S12b 2 -1 -1 - - - 8—1 lgw
S13b a2 -1 1 - - - 2 R@Y
1 @ -1 - - - R o
~1/2 @
S 1 2 1 -1 2 -1 24 R.
14b ~3/2 i
- %] -1 1 - - - 2 R@Yi
-1 %] 1 - - - Rﬂai
Note: R, = eqm C-C bond length, rp = eqm C-H bond length, 1@

@

= eqm C-F bond length.



Internal Force Constant Notation For s-Trifluorobenzene

Table 4.3
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R i LF} Rg>i | Ba¥i| Tafi | lg*s
R. D h hE i if j F
i o) o) o o o) o
F . .F . .F
do m hm I In Im Im
| h hY i if i 5T
id! s} |8 p P P P
d
P
r. eF k KF 1 1F
i o o m o
eF k kF 1F
m P m P P
1. ond KE KE 1B 1F
i o o)
eF kF kF 1F 1F
m p m p mn
R« F £F n nf
B i o m o}
£ eF nf
m P P
, F F- F
Rgri F no n
F F- F
f n n
m P m
F
”
Ta*y G g6
F
g, gp
F
1@“1 GF
G
m
Note: Capital letters indicate diagonal force constants.
Also, o = ortho, m = meta, p = para.




141

Symmetry Force Constants For s-Trifluorobenzene

Fi1 7

Foy =

Fop =

hy T I T T R T T B« R R > B = B B > B!
W 0 N NN ;s A W oW W
(03] (04} ~ (02} o N w o [N w N - W N p—t

11

o
[de]
w

108

188

1010

Lo B S £ S

118

)

118

b

1110

Table 4.4
E+2e
2eF+eF
p
EF+2eF
m
V204 4n +h )
o m p
QL/2(\F  F L F,
o m p
D+2d +2d +d
(8] m
2_1/2(—k+2k£ 2k +kF)
271/ 2 F ok g +2kF kF )
-1 -1 -1i +1F+1F+1F
(] m P [s] m P
F F _.F _.F

2 L (r+2r +FF-aefe2ef 2pF)
m o m p

D-2d +2d -d
o m p

1/2, . . .
2 / (-JO+Jm-Jp)

-1/2

= 2 (- h +2h_-h_)

nm
- p71/2 (—hF+2hF
(s} m

"0'11'0

)

= D-d -d_+d
o m p

1/21

= -3

m

41/2,F.
8]

1/2

= (3/2)7 (=343 )
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1389

1310

1311

1312

moom oMo om om om om o

1313

148

149

1410

1411

1412

T - T T > B T )

1413

i

1414

H

G—gm
31/21F
(o]
_31/2F
m
372y

F,_ F
€, g

GF gF

(-3

2 l/z(k—kF—k +kg)

2 V2086 okl e
o P
2-1 -i -
(-1 +21m 1p i +21

372y %k

O m
<3/2)1/2<n§ )
27 (F-£_+FF-2¢f F 42
o] m

1/2(h ~h)-k- kF

2—1[3 /2 (- hz F F

-n_)
¥

n

m

27 [3

-3/2,. _ _.F
2 (1 21 +1p 10+2
112 _
271312 a0 )=
“1..1/2 F_ F. .F
2 " [3 (- no nm)+Jo+
2 F
[3 (10—19-1O
27 [D+d _-d_-d _+4 (-

O m P

1/2, .F _.F . .
+3 ( 1O+1p 10+1p)]

F

-1
m p

+h” Yk +k
p o

Fy

F
fp)

F]

-k

+k +

F

-k

k
FF.
m P ]
F

F
1m-1p)
23 -3._1

m

F

ntio]
Y-F+f +F
F F

’U"Tj"o

23

F F
p
F

~-f
F

-F +3f +f +3fp

F

3
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Observed And Calculated Data For Planar

Table 4.5

s-Trifluorobenzene-h
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Vibrations Of

Observed Uncertainty Calculated Error
; v, 3076.0°° 31 3¢93.5 -17.5
52 1362.6%° 14 1363.6 -1.0
53 1612.4%° 10 1018.0 -5.6
;4 579.9%° 6 577.1 2.8
5 s _ _ 1304.6 -
Y _ _ 1173.8 -
v, _ _ 553.7 -
vg  3113.0 31 3086.2 26.7
vy  1629.0 16 1622.2 6.8
vig 1475.4 15 1472.9 2.5
v, 1127.6 11 1139.86 ~12.0
v, 996.3 10 1003.0 -6.7
513 502.4%° 5 497.6 4.8
514 324 .2%° 3 323.3 1.0
Tg -0.00(2) 2.00(2) -0.08(2) 0.00
Tq - - @.19 -
Ly -9.4 0.20 -0.18 -3.21
t,, -0.05 8.20 -0.02 2.03
{,, -0.35 8.05 -¢.38 2.03
t,5 -0.30°° 2.02 ~@.30 -0.00
{,, -90.20°° B.15 ~0.34 2.14
D, ©.1573 2.02 0.0932 ?.0641
Dig ~@.2948 2.10 -0.1540 -0.14089
Dp  ©@.1425 ?.10 0.0689 @.0736
Note: Wavenumbers are in cm_l, Coriolis coupling

constants

are dimensionless and centrifugal distortion constants are in

kHz.
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Table 4.6

Observed And Calculated Data For Planar Vibrations Of
s—Trifluorobenzene—d3

Observed Uncertainty Calculated Error
; v, 2319.2%° 23 2327.4 -8.2
v, 1359.7%° 14 1363.5 -3.7
53 969.2%° 10 957.4 11.8
E; 577.3%° 6 577.1 8.2
5 Vs - _ 1261.3 -
Ve _ _ 947 .7 -
vy _ _ 509.8 -
vy 2314.0%° 23 2312.4 1.6
Sg 1617.9°° 16 1621.5 -4.5
51@ 1425.8%° 14 1431.2 -6.2
le 1854 .¢%° 11 1044 .3 9.7
512 792.0%° 8 785.1 6.9
313 487.09%° 487.7 -9.7
514 322.4%° 319.8 2.8
(g -0.095%° ?.04 0.00(4) ©8.04(5)
lq _ _ ?.13 -
{ig -0.40%° 0.4 -3.24 -0.16
{14 g.092%° 2.082 2.02 2.00
{1y -0.40%° @.1 -3.32 -0.098
{13 -@.25%° 2.1 -0.30 2.05
{14 -@.25%° 8.05 -0.29 ?.04
D _ _ 2.0829 -
D g _ _ -3.1367 -
Dy _ _ @.0611 -

Note: See note at the bottom of Table 4.5.



Table 4.7

Model Force Field For Planar Vibrations
Of s-Trifluorobenzene
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Force Typical Best Dispersion
Constant Coefficient Value
2
D R? 7 . 460 @.455
E rf 5.881 3.115
EF 12 6.238 ?.315
F (Roal)z @.206 0.120
Fr (Royl)z 1.249 2.101
G (roﬁi)z @.758 ¢.023
GF (1Owi>2 1.748 2.208
d (R;R;) 0.468 @.093
hF R.1. g.346 @.201
(s} 1 1
i R R.o, 0.528 g.172
(8} 0o 1
ig r_R.f @.536 0.061
5F 1 R.o, 1.038 @.207
[s) o 1 1
F
Jm loRiwi+1 -0.457 g.183
k¥ R 1.7, 0.856 @.135
o 1 1
nt R 1 . o, g.191 ?.098
0O 0O 0 1 1
kE R 1.c. @.765 0.093
(e] o 1 1
k R r.o. ?.318 0.166
o 1 1
F
g, r 1 o, —0.015 0.023
F
g r 1 80, -0.088 2.0389

Note: All constants are in units of mdyn.A

1



Table 4.8

1486

Symmetry Force Constants For The Planar Vibrations
Of s-Trifluorobenzene

r Symmetry Best r Symmetry Best
Force Value Force Value
Constants Concstants

Ai F11 5.681 E’ F118 3 .000
F21 3 .000 F119 B . 000
F22 6.238 Flll@ -@.653
F31 3.000 F1111 @A.758
F32 ?.488 F128 3 .000
F33 7.928 F129 @.000
F41 -@.227 F121® -1.266
F42 -0.471 F1211 -0.073
F43 2.000 F1212 1.748
F44 @a.727 F138 @.228

Aé F55 5.119 F138 @.965
F65 -@.7585 FlBl@ -0.528
F86 @.758 F1311 7.000
F75 2.108 F1312 3.233
F78 -0.117 F1313 @.727
F77 1.749 F148 -@0.158

E’ F88 5.981 F148 @d.510
F98 0 .000 F1410 3 .209
Fgg 6.238 F1411 -0.268
F1®8 2 .0006 F1412 -0.105
Flﬂg -0 .2486 F1413 @.365
Fl@l@ 7.928 F1414 2.837

Note: All force constants are in units of mdyn.A—l.
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Table 4.9

Normal Coordinates

3 and —d3.

(Planar Vibration’s)(a,m,u,.‘)1/2

L Matrix Elements For ai

Of s-Trifluorobenzene -h

S_CBF3H3

vi(calculated) 38383.53 1363.58 1918.01 577.13

Q Q, Q3 9
s, 1.03 @.02 3.087 2.01
S, -g.01 @.35 @.04 -3 .10
s, -0.06 —g.21 @.16 -2.09
S, -3.26 @.56 0.78 @.22
s—CSFSD3
v, (calculated) 2327.39  1363.45 957. 44 577.08
Q Q, Q3 Q
S @.75 0.02 g.11 0.01
s, -3.01 @ .35 ?.03 _g.10
S -3.09 _g.21 @.15 -3.09
S, -@.39 @.57 ?.69 g.21
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Table 4.10

L Matrix Elements For a2 Normal Coordinates /
) 2

Of s-Trifluorobenzene —h3 and d (awnu

s-C.F_H

sFsts
v (calculated) 1304.64 1173.78 553.70
Qg 9 e
S 3. 40 g.21 -3.22
S ~@.39 3.98 _g.24
S -@.09 g.18 0.46
s-CgF D
v, (caleulated) 1261.32 947 .70 509.78
Qg Qg Q;
S @ .45 -0.07 ~3.19
S @20 3.73 -0.30

87 -¢.21 9.31 @.40
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Table 4.11

L Matrix Elements For e’ Normal Coordinates “L@
Of s-Trifluorobenzene —h3 and —d3-(amuL)

s-C6H3F3

vi(calc.) 3¥86.25 1622.18 1472.86 1139.61 1803.01 497.53 323.26

Q8 QS Ql@ Q11 QIZ Q13 Q14
S8 1.43 -8.02 -0 .06 3.00 -0.04 -0.02 8.01
S9 v.80 2.28 -9.11 -@.14 ¥.14 -0.08 -0.02
Sl@ B.85 3.29 @.32 0.14 -0.92 -0.902 2.901
Sll—O.G@ 0.34 -8.31 ?.83 .32 -0.02 @.06
812 @.29 .01 g.41 -@.83 .27 -0.02 7.16
513 .18 3.53 0.22 -@.85 @.31 @.37 -0.14
814—B.09 3.30 -@4.29 g.904 -0.24 2.03 ?.10

s—C6D3F3

vi(calc.) 2312.42 1621.49 1431.19 1044 .27 785.08 487.74. 318.82

Q Q Q

8 9 10 11 12 13 14
58 B3.75 -0.03 -0.10 @.085 -9.03 -0.02 B.01
Sg 8.01 @2.28 -80.12 -0.19 .92 -0.88 -0.02
Sl@ 2.23 g.28 @.33 3.08 0.3 -0.02 7.01
Sll—@.ﬂﬂ 8.35 -0.08 @.38 8.64 -0.05 2.87
812 @.15 -0 .00 8.39 -0.25 .10 -0.00 2.16
813 2.29 @.52 #.189 -0.25 @.16 #.35 -8.14
S,,-0.14 7.31 -@.27 @.21 -0.09 P.04 2.10
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Table 4.12

Definition Of The Out-0f-Plane Internal Displacement
Coordinates For s-Trifluorobenzene

The perpendicular displacement

of the ith hydrogen atom out of

the plane defined by the 2 adjacent
C-C bonds.

The perpendicular displacement

of the ith fluorine atom out of

the plane defined by the 2 adjacent
C-C bonds.

The out-of-plane ring bending
deformations which are regarded as
torsions around C-C bonds.
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Table 4.13

Out-O0f-Plane Symmetry Coordinates For s-Trifluorobenzene

ros; 1 2 3 4 5 6 N S5
08, 1 - 1 - 1 - g 1/2 1,6
- 1 - 1 - 1 12 r6¢i
s, 1 - 1 - 1 - 6 1,9,
- -1 - -1 - -1 12 r@¢i
S, 1 -1 1 -1 R | 8 Ry
S - - 1 ¢ -1 - 271 1,9
4a @ i
2 -1 - - - 1 9 r®¢i
Sg, - - 1 g -1 - 2 1,95
2 1 - - - -1 2 rp®s
Sga 1 2 -1 2 -1 12 RyTy
S, "2 - 1 - 1 - 127% e,
- -1 - 2 - -1 r_¢.
Se, -2 - 1 - 1 - 12712 10:?
5b @ i
- -1 - 2 - -1 B ry®;
Sgp 1 g -1 g -1 2 Ry7s

Note: Rg: equilibrium C-C bond length; ro = equilibrium C-H

bond length; 1@ = equilibrium C-F bond length.
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Table 4.14

Force Constant

Notation

(Qut-0f-Plane Vibrations)

152

1 &. r ¢. R =T
o 1 o1 o1
H, h a_,a c , c , cC
m o’ p o m
A, am co, cm, c
B, b, b b
o m p
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Table 4.15

Symmetry Force Constant Notation
(Out-0f-Plane Vibrations)

A, Fyq = (1/2)[(A+4g6+23m+zgé)+(H+2hm)]
Foy = (1/2)[(H+2h )-(A+a )]
Foy = (1/2){(A—4;0+23m—25é)+(H+2hm)]
F31 = °o+°p"°m‘go‘5§+gﬁ
F32 = —co—cp+cm~go—gp+gm
Fgg = B-2b_+2b -b_
Fay = (1/2)[A—Zg—am+2ap)+(H—hm)]
F54 = (1/2)[(~A+am)+(H—hm)]
Fee = (1/2)[(A+2§0-am-2§p)+(H—hm)]
Fo, = (31/2/2)(00—cp+go—€é)
Fgs = (31/2/2)<—co+cp+55—55)
Fgg = B-by~b +b_
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Table 4.18

Observed And Calculated Data For Out-0Of-Plane Vibrations
of s—Trifluorobenzene—h3 (ewd).

Observed Uncertainty Calculated Error
, i v, 848.13 g 841.83 6.3
v,  664.69 7 665.33 -2.6
53 207 .0%° 2 207.93 -@.3
.- 54 799.0%° 8 793.74 -1.7
55 598.¢2%° 8 594 .42 3.6
Cé 245 .8°%° 3 242 .35 3.5
Table 4.17

Observed And Calculated Data For Out-0Of-Plane Vibrations
of s—Trifluorobenzene—d3

Observed Uncertainty Calculated Error

5 vy 777.2%° 8 779.4 -2.2
v, 522.9°° 5 521.2 2.8

55 206.0°° 2 205.1 2.8

Eé 646.0°° 7 651.3 -5.3

ve 537.6%° 5 538.1 -0.5

v 231.3%° 2 234.5 -3.2

s
[e2]



Table 4.18
Model Force Field For Out-0f-Plane Vibrations
O0f s-Trifluorobenzene
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Force Typical Best Dispersion
Constant Coefficient Value
2
Q
H (18“1) #.845 3.070
A (r ¢. )2 @.433 @.087
@71
B (R T. )% G.254 0.018
(Ry7s . .
8, lgsirz¢i -0.218 @.020
2
b0 R@Tiri+1 -B.032 @ .0066
c, lgsiR@Ti 7A.2399 @.036
S -~
c, r@”iR@‘i @.213 9.211
Note: All constants are in units of mdyn.A_l.
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Table 4.18
Symmetry Force Constants For The Out-0f-Plane Vibrations
Of s-Trifluorobenzene

Symmetry Our Field E.Ferguson's43 J.R.Scherer 's”
Force
Constants

Aé’ Fll @.202 @.223 0.217
F21 3 .206 -3.023 3.916
F22 1.976 @.515 @.485
F31 -0.087 7] v.004
F32 -3.513 @.373 -0.234
F33 B.318 3.339 2.178

E’ F44 @.837 @.427 ?.418
F54 @.206 @ .906 0.016
F55 B.421 0.226 @.284
F64 @.446 -0.515 2.203
F85 @.076 ] -0.003
F88 0.286 @.757 0.1809

Note: All force constants are in units of mdyn.A_l.



Table 4.20
I, Matrix Elements For aé'

Of s-Trifluorobenzene -h3

1587

Normal Coordinates

and —d3.

(Out-0f-Plane Vibrations)

s—C6F3H3 s—CBF3D3

vi(calculated) 841.83 665.33 287.83 778.4 521.2 205.1
Ql QZ Q3 Ql Q2 QB
S1 -@.32 ©.48 @.36 -0.01 @.38 @.386
S2 1.22 @.35 -8.09 1.18 -2 .87 -9.03
83 1.38 1.42 -@.17 1.88 @ .84 -0.186
Table 4.21
L-Matrix Elements For e’  Normal Coordinates
Of s-Trifluorobenzene —h3 and —d3.
s—C8F3H3 s-CBFBD3

vi(calculated) 793.74 584.42 242.35

4y Qs g
s, 0.93 0.45 -@.35
S, ~0.52 -¢.56 @.14
Sg ~0.46 0.75 @.74

651.3 538.1 234.5

Y 9 G
0.94 -0.10 -0.33
¢.01 @.64 0.11

-@.87 -0.24 0.72

-1/2

Note: The units are (a.m.u.).
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Figure 4.2

Figures

Calculated Cartesian displacements
for the planar vibrations of

s—trifluorobenzene-hg.

Calculated Cartesian displacements
for the planar vibrations of

s—trifluorobenzene-dS.
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Figure 4.1
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165

Figure 4.2
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178

e (b)




171

Chapter 5§

Propynal: Preliminary Investigation Of The Mid-IR Spectrum

Of The C7H.CDO And C.D.CDO Species

2

Using FTIR Spectroscopy.
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5.1 Introduction

The infrared spectrum of CZH.CHO, CZD.CHO and CZH.CDO
species was first observed at low resolution by Brand and
Watson45,in 1960. In their paper, they completed the
vibrational assignments and quoted Corioclis constants for
the v7(a’),v11(a") pair of fundamentals for all three
species.

The infrared spectrum of the same species at 1low
resolution was also observed by King and Mou1e46 in 1961. They
also completed the vibrational assignments of the same three
species.

The assignments of the v7(a’),v1%(a”) fundamentals
were later corrected in Watson's thesis®‘in 1962.

In 1971, Klaboe and Kremer4aobserved the Raman spectrum of
the CZH.CHO species and confirmed the rectified assignment
for the v7(a’) and vll(a").

Finally, Takami and Shimada*and Takami and Suzuki®®
performed infrared-microwave double resonance experiments
using the 3.51 um He-Xe laser. As a result of their
experiments accurate assignments for the Qz(a') fundamentals
in CZH.CHO and CZD.CHO species wWere obtained.They also
performed rotational analysg@s for the same fundamentals for
the two species.

In this study, the mid-infrared spectrum of the
CZH.CDO was recorded at both low and high resolution using
FTIR techniques. Also, the mid-infrared spectrum of the
CzD.CDO species was recorded for the first time at both 1low
and high resolution . The primary objectives of this
investigation were the assignment of the fundamentals for
the CZD.CDO species and also the partial rotational
analysis of some of the observed fundamentals in the
mid-infrared spectrum of the two species.

The propynal molecule belongs to the CS point group.

Since there are six atoms in the molecule, the total
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number of vibrations is twelve - all of which are allowed

in the infrared. The structure of their representation is as

follows:

r(QV) = 8a” + 3a’’ (5.1)

The molecule is a near-symmetric prolate rotor. This can
be confirmed from Ray's asymmetry parameter 2

which is defined as follows:

* = (2B - A -C) / (A - C) (5.2)

For a prolate symmetric rotor B = C therefore 2 = -1, while for
an oblate symmetric rotor A = B therefore # = +1. By putting
A"" = 1.7268 cm Y, B"' = ©.159828 cm © and C°° = @.146@63

— for the C2

» parameter has a value of -#.98 which is very close to the

H.CDO species from the microwave study51, the

prolate symmetric rotor 1limit. It can be shown that the
same is true for the C2D.CDO species.

Even though 2 = -1, the molecule is asymmetric enough to
make the infrared bands characteristic of an asymmetric
rotor. Therefore, in (5.1) the a° modes are expected to give
type C bands while the a’ modes are expected to give
type A and type B hybrids.

The type A band correlates with a parallel band in
the prolate symmetric rotor limit and with a perpendicular
band in the oblate symmetric rotor 1limit. The type B
band correlates with a perpendicular band in both the
prolate and oblate symmetric rotor limits. Finally, the type
C band correlates with a perpendicular band in the prolate
symmetric rotor 1limit and with a parallel band in the oblate
symmetric rotor limit.

The survey spectra of the two species are given 1in
Figures 5.1 and 5.2. They were recorded at a resolution of
ca. 1 cm_1 in the range between 558 and 48080 cm_l. The same

multipass cell was used as 1in the case of
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s—trifluorobenzene—h3 with a total pathlength of 120
cm. The samples which were generously given by Simon
Edwards were used at a pressure of ca. 1 Torr. The
Bruker IFS spectrometer was again used with the MCT
detector cooled down to 77 K.

The fundamental frequencies for all four species are
listed in Table 5.1. They are compiled from earlier

47,49, 50

work , from a recent analysis of the &electronic
spectra by Edwards52 and from the present investigation.

5.2 Theory Of Asymmetric Rotors.

A minimum theory 1is given here, sufficient for
an understanding of the later discussions in this chapter.
Fuller treatments are given in standard texts®®

The rotational term values for asymmetric rotors,
excluding distortion constants are given by the following

expression:
F(J,T) = (1/2)(A4CHYI(J+1) + (1/2)(A—C)E(x)J . (5.3)

where »# is the asymmetry parameter defined by (5.2),
T takes the values J,J-1 ... @,-J and labels 1in order 2J+1
energy levels for a given J,
E(?t)J,T is a reduced energy term and is determined by the
diagonalization of a matrix whose elements depend only on J,
T and 2. The full diagonalization procedure can be
programmed for a computer for any value of 2. We use the
method described by Bennett, Ross and Wellsss.
The rest of the symbols have their usual meaning.

In the limiting symmetric rotor cases expression (5.3)
reduces to the following one:

F(J,K_l) = BJ(J+1) + (A—B)K_z_1 (5.4)
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F(J.K = BJ(J+1) + (C—B)Kf1 (5.5)

+1)

where K . refers to the prolate rotor limit and K+1 refers to

the oblaée rotor limit. K takes the values from -J...0...+J
and a particular level is labeled by J, K_4, K, {1 The
post-subscripts in K refer to the values of the asymmetry
parameter 2 in the two symmetric limits.

The selection rules for the three types of asymmetric
bands are as follows:
i. Type A bands: In the prolate symmetric rotor limit these

give rise to parallel bands with the selection rules:

K_l =@ ; A = %1 AK_l =0
K__1 =@ ; A = @,*1 ; AK-I =@ (5.6)
In the oblate symmetric rotor 1limit these give rise

to perpendicular bands with the selection rules:

A = @4,*1 AK+1 = *1 (5.7)

Therefore, the overall selection rules are a combination of
(5.8) and (5.7).

ii. Type B bands : In both the prolate and oblate symmetric
rotor limits these give rise to perpendicular bands. Therefore

the overall selection rules of such bands are:

= @,*1 ; = #1 ; =
AJ = @,%1 ; AK_, 1 58K, 1 (5.8)

iii. Type C bands : In the prolate symmetric rotor 1limit
these give rise to perpendicular bands with the selection

rules:

AJ =@, ¥1 ; AK_, = %1 (5.9)

In the oblate symmetric rotor limit these give rise tg

parallel bands with the selection rules:

K,y =8 ; A = %1 ; &K, =0
K,y #@ ; AT = @,%1 ; 8K, = 0 (5.19)



176

Therefore the overall selection rules are a combination of
(5.8) and (5.10).

These are the selection rules for the strong transitions
in asymmetric rotors. They are expected to be strong because
they are allowed transitions in both symmetric rotor 1limits.

Strictly in asymmetric rotors the selection rules for

AK_l and AK+1 relax to:
AK_l =@, *2, x4 ...
AK+1 = *1, *3, 5 ... (5.11)

However, the extra transitions are usually weak and
can often be ignored when the rotor is not too asymmetric.
The intensities of the transitions are expressed

as followsp:

In",n’ = C.gn.exp(—En,./ kT).]AI2 (5.12)
where n’” ",n’ are a summary of ground and excited states
constants,

C is nearly constant for a vibrational transition ,

gn is the multiplicity of the lower state of the transition
in an absorption

and |A| is the electric dipole transition matrix element
between the two states, which for an asymmetric rotor <can not
be expressed in a simple closed form. Its calculation
involves setting up a matrix of the a ggpriate symmetric

rotor guantities for a specific J" "= J° ( for all K wvalues)
and transforming these to an asymmetric rotor representation
using the eigenvectors of the reduced energy matrices

of the lower and upper states respectively . These
operations can easily be done with a computer. Programs used

in this work are outlined in Appendix 3.
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5.3 Second Order Coriolis Interaction Between
B And C Type Bands
Perturbations of this kind have been observed in the present
investigation and the rotational band contour program KONTUR
has been modified to include them (see Appendix 3).

In a prolate asymmetric rotor with a small wvalue of IA
(large value of A ) the perturbation term (—szz/IA) is 1large
and can produce important interactionssf'Additionally, if the
asymmetry parameter 2 = -1 (as in the case of propynal)
then asymmetric rotor effects can largely be ignored except
at very low K.

In the case of an interaction between two
fundamental vibrational levels where Qr b'4 QSD RA and Qr > TB’
QS o TC the two fundamental levels combine with the ground
state to give B and C type perpendicular bands. Assuming
that the molecule is close to a symmetric rotor about the
A-axis and k (K = ’k]) is considered a good quantum
number except for the 1lowest values, the
perturbation term (—szz/IA) will be diagonal in J and the

Hamiltonian factorises into 2x2 blocks of the type shown

below:
[v_=1,v_=0;J,k> |v =0,v_=1;J,k>
r s r s
vr + F(J,k) +2iACrSQrSk
(5.13)
Hermitian v, o+ F(J,k)

where vr, vS are the vibrational energies measured from the

ground vibrational state,

F(J,k) in this case denotes the rigid symmetric rotor
approximation to the rotational energy which 1is expressed

as follows:
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F(J,k) = BJ(J+1) + (A-B) k2 (5.14)

where E = (B+C)/2

and Q__= (1/2)[(v /v )% + (oo )12 (5.15)

In expression (5.15) it is worth noting that for vrk vs > Qrsz 1.

After diagonalising (5.13) the energy 1levels are given as

follows:
EL(J,k) = (1/2)(v 4w ) + F(J,k) * A (5.16)
_ 2 2.2.2 2 1/2
where Ak = { &7 + 16A"k Crsors 3} (5.17)
and & = vr - vs (5.18)
The perturbed wavefunctions are given as follows:
lv,> = 2y | - doyb v
[w > = —1crjkbk |wr> + ak|ws> (5.19)
where |wr>, |ws> denote the unperturbed vibrational
functions |v_=1,v_=0>, |v_=0,v_=1>,
r s r s
_ 1/2
ak = [(Ak + é)/ZAk]
_ _ 1/2
b, = (4, é)/2Ak]
and Ojk = (sign jrs)(sign k) = *1 which comes from the sign of

the crossterm in the original matrix.
Assuming vr>vs and for small values of k, the upper

energy levels E+ correlate strongly with vr and the lower

energy levels E correlate strongly with vS. For large
values of k the wavefunctions become strongly mixed and
1/2
ak’bk > (1/2) .
An energy level diagram for second order

Coriolis interactions between B and C type bands for the
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CS symmetry species to which propynal belongs is given in
Figure 5.3.

By combining (5.14) with (5.15) expressions can be
obtained for the line positions in the two observed bands.
Because of the fact that the perturbation is independent of
J, only the relative positions of the sub-band origins are
affected in the two bands. Therefore, the expressions for

the line positions are given as follows:

From (5.14) we have

F(J.K+1) - F(J.K) = BJI(J+1) - BI(J+1) + (A-B)K® - (A-B)K®

2(A-B)K + (A-B) = (A-B) * 2(A-B)X

I+

Therefore,

TP (v,) = (1/2) (v 4y ) + (A-B) * 2(A-B)K +
+ (1/2)[éz+16A2C L(K*1) 24172
TPQ (v ) = (1/2)(v v ) + (A-B * 2(A-B)K -
) 2 2.2 2 1/2
(1/2)[6%+168°C% 0% (K1) 24 (5.208)

where the upper and lower signs in the above expressions refer

to AK = +1 (r type) and AK = -1 (p type) transitions respectively.

It can be shown5? that the vibration line strengths M;—and M

can be obtained as follows:

2 .2 2 .2 _
M+ = aK Mr + bK HS + OCaKbKM M
.2 2 2 .2
M = bK Mr + aK MS * ( KbKH M (5.21)
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where Mr, MS are the unperturbed vibrational transition

moments in the B and C axes,

o( denotes the sign of (rs

and the upper and lower signs refer to &K = +1 and AK = -1
transitions respectively.

The first two terms on the right hand side of
expression (5.21) lead to a transfer of intensity from the
stronger to the weaker band at high K. The third term leads
to an asymmetry of intensity about the band centre in both
bands.

Since ayg » bK > @ the asymmetry is determined by the sign
of CrS(Mr)(MS). In other words, for the fundamental bands

L Soefen gy

considered here the sigg/ the ‘following expression:

z b'q y
(€2 _>(dr*/da ) (dr¥/da,) (5.22)

If expression (5.22) has a positive sign in front of it, we
have a positive perturbation. In that case, the p-type
sub-bands of the high frequency band and the r-type ones of
the low frequency band are enﬂwnaél, and the r-type sub-bands
of the high frequency band and the p-type ones of the 1low
frequency band are depleted.

On the other hand, if expression (5.22) has a negative
sign in front of it, we have a negative perturbation and the

converse intensity perturbation is observed.
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5.4 The vy Band Of CZH.CDO

The vl(a') band of CZH.CDO is due to a C-H stretching
vibration. The band extends from about 3300 om_1 to about
3350 cm © with the band centre at 3325.42 cm ! as can be
seen in Figure 5.4. At low resolution it looks 1like an A
type band with a central maximum & branch and P and R
wings. At a relatively high resoclution of @.48 cm—l,
the central maximum branch remains unresolved, but the P
and R branches are sufficiently resolved to allow assignment
of J values

A prominent peak to low frequency of the band centre
is due to a “sequence band” of the type vi+vj-vj discussed
in the third chapter. The two primary candidates for vj are
the two low frequency vibrations vg(a') = 201.5 cm_; 1due
to C-C=C in plane vibration and vlz(a") = 249.89 cm due
to C-C=C out of plane vibration. The rotational fine
structure of such a “sequence band’ could interfere with the
rotational fine structure of the main band producing a
"beating’ phenomenon. Finally, we must recognise that in
principle the in-plane vibrations of propynal give rise to
A/B hybrid bands and so some type B structure might be present.

The method which was used in the analysis of +this band

can be divided into the following steps:

a. An initial non-linear least squares analysis was performed
utilising the observed transitions with their J° 7, AJ
assignments. Then, by using similar P and R branch
expressions to the case of a symmetric rotor parallel band, a
rough value for the g = (B+C)/2 constant for the upper state

was obtained
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3. This wvalue together with accurate ground state
constants from the microwave study of the same species by
Costain and Morton®'were then used as data for the Mainir
program . The transitions with their full AJ, AK_1 and AK+1
assignments were also included in the relevant datafile. A
full least squares analysis was then performed using
the full Hamiltonian, taking into account the asymmetry
of the molecule. As a result, calculated 1line positions
together with new rotational constants for the wupper
state were derived. This analysis only provides B° because
of the nature of the transitions used. The A" constant is a
trial value and was not solved for, since there is no
information in the observed data to allow a better estimate

for this constant.

¥. The new upper state rotational constants were then used as
input data for the Kontur program which produced a simulated
band contour, without taking into account any effects due to
"sequence bands’ . These could include some shifting to the
line positions. Then, a series of calculations was performed
increasing the type B component until a best fit with
the observed spectrum was achieved. It was found that the
tvpe B component was no more than 5% of the total band

intensity.

The observed and calculated 1line positions together
with their assignments are given in Table 5.2 and the
rotational constants which were used in the computer
simulation of the band contour are given in Table &5.3. The
observed and calculated band contours are given 1in Figure
5.4. As can be seen from that Figure the agreement between

the observed and calculated band contours is satisfactory.
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5.5 The »_ Band Of CZH.CDO

5

The vs(a’) band of CZH.CDO is due to a C-D in pla§§
rocking vibration. The band extends from about 1030 cm to
about 1132 cm—lwith the band centre at 1878.96 cm_las can be
seen in Figure 5.5. At low resolution the band is
characterised by a central minimum with P and R branches.

At the relatively high resolution of £.088 cm—1 the P and

R branches are partially resolved revealing detailed

fine structure which was found to be due to the A type
component of the band. Also, a relatively simple K structure
is present in the wings of the band which was found to be due
to the B type component of the band. This structure 1is
sufficiently resolved to allow assignment of K values.

The R branch of the main band is slightly perturbed by
the présence of at least one other band which extends from
about 1115 cm—1 to about 1140 cm—l. The band centre of that
weaker band is at 1127 cm-l. That second band seems also
to be an A/B hybrid type combination band. Once
again there 1is also the possibility of the presence
of “sequence bands’ perturbing the centre of the main
band, as was the case for the vy band of the same species.

The vs(a’) band of CZH.CDO appears to be a hybrid since
both type A and type B features were present.

The method which was used in the analysis of this band

can be divided into the following steps:

o, Initial trial computer simulations were performed starting
with the excited rotational constants from the analysis of
the », band. Initially only the A" rotational constant was

1
allowed to vary. When a relatively satisfactory match with
the observed band was accomplished, the g’ and also the
individual B’ and C° rotational constants were allowed to

vary until an optimum set of upper state rotational
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constants was found. All these simulations were carried out
for a purely type A band ,which as it was noted above, was
found to be the dominant component of the centre of the
hybrid band. Then, further simulations were carried out
by increasing the type B component , which contributes to
the sharp features in the wings of the band, and
decreasing the type A component by the same amount. After
a satisfactory mixture of the two components was found, the
excited state rotational constants were again allowed to
vary, until the calculated K structure of the B component
matched roughly the observed structure. The type A component
was found to be 8@% * 5% of the total band intensity.

3. 1t can be shown that the positions of the Q@ heads for the
P and R branches o¢f a perpendicular band are given by

the following formula, in the symmetric rotor approximation:

r,p - 1 _RY© -
QJK = {vo + (A-B) DK} s

1+

{2(A-B) " - 4DK}K +

+

[(A-B) - (A—g)”—SDk}Kzi

1+

{—4D}'{}K3 +

o+

{—DK+DK')K4 (5.23)

whers the upper sign refers to the R branch and the lower
sign refers to the P branch.

The DK centrifugal distortion constants for the ground
and excited states were found to play a crucial role
in the calculation of the Q@ heads. This is due to the
relatively high values associated with these constants for
these species which are of the order of 18-4 cm_l.

In calculating the positions of the Q-heads, trial values

of the rotational constants were used and the DK constants
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were set to zero. The differences between the observed
Q-heads and those calculated from the simulated spectrum were

fitted into a fourth order polynomial whose coefficients

were:
a = correction in LN

b = 24(A-B)°

c = AS(A-B)

d = —4Dk

e :—Dk + Dk' (5.24)

where A refers to the difference between observed and
calculated values and & refers to the difference between
ground and excited state rotational constants. The
effects of the centrifugal distortion constants were
ignored in the coefficients a, b, ¢, in this 1initial

iteration.

. The refined A" and Dk constants were then used for a
final iteration of the solution procedure. Dk'was taken from
the microwave determination of the ground state constants
and Dk was calculated from coefficient e. Within
experimental error, this value of Dk agreed with the value
obtained from coefficient d.

The observed and calculated 1line positions together
with their assignments are given in Table 5.4 and the
rotational constants used in the final computer simulation of
the contour are given in Table 5.5. The observed and
calculated band qpntours are given 1in Figure 5.5. The
agreement between the observed and calculated K structure
in the wings of the band is satisfactory. Also, the overall

fine structure in the centre of the band seems to be

reproduced quite well.
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5.6 The vB, vl@ Pair Of Bands Of CZH.CDO.

The %J(a’) band of CZH.CDO species is due to a C-C
stretching vibration. The band extends from about 8584 cm
to about 820 cm-lwith the band centre at 876.5 cﬁl as can

be seen in Figure 5.6. At low resolution the band is

-1

characterised by a central minimum with P and R branches. At

1

the relatively high resolution of @.88 cm -~ the two branches

are partially resolved revealing detailed rotational
structure which was found to be due to the A type
component. Unfortunately, unlike the v5(a’) band no
sharp features were present in the wings of the band.
Nevertheless, the overall band could not be reproduced
satisfactory without the addition of some B type component.

The central maximum of the vlg(a") band whif? is due to a
C-Dout of plane wagging vibration lies at 848 c¢m E;ightly
higher than the previously reported value of 841 cm_l. In
fact, there is a weaker peak at 841 cm_1 which we assign to
a “sequence band’ ™ of the vlg(a”) band. The vlz(a") is a
purely type C band. After a series of computer simulations for
the observed band, it was found that the vs(a’) band is a
hybrid of an A type band (ca. 70%) and a B type band (ca.
39%). In Watson's thesis*’a I Coriolis constant is
predicted of ca. ©@.40 assuming that the two bands interact
with each other. Although such an interaction 1is expected,
we have found in this case no evidence on the basis of our
simunlations for such a strong interaction. Consequently, it
was assumed that { could be set to @ pending the availability
of higher resolution spectra.

The rotational constants which were used in the computer
simulation of the band contour are given in Table 5.86.
The observed and calculated band contours are given in
Figure 5.6. The overall agreement between the observed and

calculated vs(a') band is found to be satisfactory.
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Pair Of Bands Of C.H.CDO.

5.7 The v7,v11 2

The v7(a’) band of CZH.CDO species is due to a C-H
1

rocking vibration. The band extends from about 598 cm - to
about 670 cm_lwith the central minimum at 651.17 cm_l.As
can be seen in Figure 5.7 this band appears to be 1807 B type
band. It exibits a typical K structure in the P branch.

Close to this band is the vll(a") band of the same

species,due to a C-H out of plane wagging vibration. It
extends from about 878 cm_1 to about 744 t::m_l with the
central maximum at 692.67 cm L. The v1,(a”’) band is a

purely type C one which exibits a typical K structure in
the r branch. At low resolution the p branch of the C
band and the r branch of the B band remain unresolved, while
at the relatively high resolution of ©.08 cm“1 these are
both resolved revealing their strongly perturbed K
structures.

We have analysed the v7,v11 pair of bands by making a
series of computer simulations. They are a good example of a
Coriolis interaction between B and C types of bands. The
theory behind this type of interaction was covered 1in
the relevant section of this chapter.In the present case, it
was found that the interaction between the two bands 1is a
strong one with a { Coriolis constant of ©.82. The sign
of the Coriolis constant is determined from the relative
intensities of the p and r branches of the two bands. In
the present case, the p type sub-bands of the high frequency
C type band and the r type sub-bands of the 1low frequency
B type band are enk@yﬁﬂ while the r type sub-bands of the
C type band and the p type sub-bands of the B type band are
depleted. Therefore, according to the convention described
earlier, we have a positive perturbation which means that
the vibrational angular momentum and the effective charge are

rotating in the same sense when the two vibrations



188

are excited classically with a 9g° phase shift54.

From the computer simulations an optimum set of
parameters was found. A relatively prominent feature could
not be reproduced at ca. 667 cm_l. This could be due to
another band. Also, the appearance of the observed r branch
of the B type band seems to be more complicated than the
calculated one. Finally, "hot bands’ are also present and can
be seen near the prominent band centre of the C type band.
These "hot bands’ could give rise to a secondary, weaker K
structure which can ,in fact, be observed in the r branch
of the C type band and the p branch of the B type band.

The observed and calculated 1line positions together
with their assignments are given in Table 5.7. The rotational
constants which were used in the computer simulation of the
band contour are given in Table 5.8. The observed and
calculated band contours are given in Figure 5.7. The
agreement between the observed and the calculated spectra
with respect to the p and r branches of the C type band and
the p branch of the B type band 1s excellent. The
agreement between the observed and the calculated spectra
with respect to the r branch of the B type band is
satisfactory. The remaining discrepancies await spectra at

higher resolution.

5.8 Other Observed Fundamentals Of CZH.CDO.

There are another three fundamentals which were observed
in the mid-IR spectrum of the CZH.CQO species.

The vz(a') band which is due to a C-D stretching
vibration with a band centre at 2119 cm—1 and the v3(a') band
which is due to a C=C stretching vibration with a band

centre at 2104.5 cm—1 can be seen in Figure 5.8. Both of
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them seem to be hybrids of A and B type bands. In both cases,
the A type component seems to be the predominant one but
the B type component seems to be significant too. The
evidence of the presence of the A type component comes
from the central maxima of the two bands while the evidence
of the presence of the B type component comes from the
apparent K structure. Again, there are also “hot bands’
which complicate the appearance of the spectrum. Another
major complication is the fact that the two bands are very
close to each other. As a result, the P branch of the vz(a’)
band is buried underneath the R branch of the vs(a’) band
and there may be Coriolis interaction between the bands. The
theory of this type of interaction has not been examined
here and these bands await further investigation.

Another fundamental band which was observed was the
u4(a’) band which is due to a C=0 stretching vibration with a
band centre at 1678 cm_l. Unfortunately, the spectrum was
partially obscured by the presence of HZO lines.
Nevertheless, its overall appearance indicated that it is
an A/B type hybrid band, as expected.

These three bands have been stored digitally for further

analysis.

Pair Of Bands Of C_,D.CDO.

5.9 The DB’UIZ 2

The vs(a’) band of CZD.CDO species is due to a C-C i
stretching vibration. The band extends from about 830 cm to
about 910 cm—1 with the band centre at 870.0 cm_1 as can be
seen in Figure 5.8. At low resolution the band is
characterised by a central minimum with P and R branches.
At the relatively high resolution of .08 cm_1 the two

branches are partially resolved revealing detailed
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rotational structure which , as for the CZH.CDO species,
was found to be due to the A type component. Yet again
no sharp features were present in the wings of the band.
Nevertheless, the overall band could not be reproduced
satisfactorﬁb without the addition of a B type component.

The central maximum of the vlg(a”) band which is
due to a C—D2 (see note at the bottom of Table 5.1) out of
plane wagging vibration, lies at 848 cm~1. The vlg(a") band
is a purely type C band.

After a series of computer simulations with the observed
band it was found that the vs(a') band is a hybrid of B85%
type A band and 35% type B band. Again, as in C2H.CDO, it
was assumed that there was a negligible Coriolis
interaction between vs(a’) and vlz(a”) bands, so ( was
set to 0.

The rotational constants which were used in the
computer simulation of the observed vs(a’) band are given in
Table 5.8. The observed and calculated band contours are
given in Figure 5.9.

The overall agreement between the observed and

calculated vs(a’) bands is found to be satisfactory.

5.10 Other Observed Fundamentals Of The CZD.CDO.

There are another four fundamentals which were observed in
the mid-IR spectrum of the C2
The vz(a') band is due to a C-D stretching wvibration.

2
It extends from about 2060 cm_1 to about 2166 cm_1 with a

D.CDO species.

band centre at 2110 cm—las can be seen in Figure 5.140. It is
an almost 100% type B band which seems relatively
unperturbed.

The v3(a') band 1s due to a C=C stretching vibration.
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1 1

It extends from about 1950 cm -~ to about 281@ cm - with a
band centre at 1984 cm—1 as seen in Figure 5.11 . There is
also a possible prominent "hot band’” at 1980 cm_l. This band
seems to be an almost 100% type A band.

The v4(ai) band which is due to a gic stretching
vibration with a band centre at 1683 cm was again
partially obscured by the presence of HZO lines.

Finally, the v5(a’) band which is due to a C-D, out of

2
plane rocking vibration, extends from about 1050 em™ Y to 1120
cm_1 with a band centre at 1871 cm_1 and is seen in Figure
5.12. This band has the appearance of an A/B hybrid type
band. The spectrum seems to be complicated by the presence
of a strong feature at 18909 cm_l possibly due to "~ another
unassigned band.

These four bands have been stored digitally to await

futher analysis.

5.11 Suggested Further Work

Apart from the rotational analysis of the remaining
observed bands for the two species described in sections 5.8
and 5.10, it would be useful to:

a. Study the spectrum at longer absorption path lengths using
the same MCT detector in order to observe the vl(a') band
of C,D.CDO species and the vs(a’) band of the C,H.CDO and

2 2
CzD.CDO species which seem to be relatively weak.

3. Use a far-infrared detector to observe the low
frequency vg (a’”) and vlz(a") bands of the two species and
more importantly the v7(a’),v11(a”) Coriolis interacting

pair of bands of the C.D.CDO species.

2

7. Record the spectrum at higher resoclution for a complete
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analysis of all the fine structure in these bands.
Unfortu%nately, the Bruker spectrometer used for this
work has an ultimate resolution of ©.063 cm_l but even

this was unattainable due to mulfunction of the
instrument.

The present partial rotational analysis should provide

a starting point for further work.
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Table 5.1

Fundamental Wavenumbers For Propynal

r v mode v/cm_1

C,H.CHO  C,D.CHO  C,H.CDO  C,D.CDO
v, C-H stretching 33267  26@5*7 3325.42 -
v, C-H,stretching 2858.231°72857.888° 2119 2110
vy C=C stretching 210647 19777 2104 .5 1984
v, C=0 stretching 1696.9%7 1697.8*7 1678 1689
vg C-H,rocking 138947 1387.6%° 1878.96 1871
vg C-C stretching 843.7"7 933.6*7 876.5 870
v, C-H, rocking 650.8°7 587.9*7 651.17  507.97°
vg C-C=0 bending 613.7*7 6@89.9*7 611.9*7 687°%
vy C-C=C bending 205.3*7  195.68*7  201.8° 192.8°
v g C-H wagging 281.2%*" 98@.9*7 848 849
vy, C-H wagging 692.7%7 548.8*7 692.87 542.5°°
v,, C-C=C bending 260.6%7  248.5*7 248.9%*7 237.1%°

Note: Hz refers to the hydrogen in CHO group while H1

refers to the hydrogen in CZH group. Also, u7—v9 and ”11‘”12

fundamentals for the CZD.CDO species have been taken from

Edward s electronic analysis of the spectrum52
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Table 5.2
Observed And Calculated Lines For vl(a') Fundamental Band
Of C,H.CDO (cwl)
J’ K;l K;l J’ K:i K;i »(0Obs.) »(0bs.-Calec.)
74 5 69 75 5 79 33006 .38 B3.33
73 5 68 74 5 69 3301.286 @.20
72 5 67 73 5 68 33@1.58 .12
71 5 66 72 5 87 3301.94 0.07
% 5 B85 71 5 66 3302 .30 @.03
69 5 B4 7% 5 65 3302.82 -0.03
B8 5 63 B9 5 64 3302.96 -0.06.
67 5 62 88 5 63 33@33.32 -9.086
66 5 61 B7 5 62 3303.8686 -0.08
65 5 80 866 5 61 3324 .00 -0.14
84 S 58 865 5 69 3384 .32 -@.12
83 5 58 64 5 58 3304 .65 -9.13
62 & 57 63 5 58 3304 .99 -0.14
61 5 58 62 5 57 3305.31 -0.16
B8 5 55 61 5 56 3305.866 -7.14
58 5 54 68 b 55 33835.98 -@.186
58 5 53 59 5 54 3306.32 -6.15
57 5 52 58 5 53 3306.71 -@.08
56 5 51 57 5 52 3387.88 -2.05
55 5 15Y%4] 56 S 51 3307.41 -0 .06
54 &5 48 55 & 50 33@7.75 -B.65
53 5 48 54 5 49 3388.07 -0.06
52 5 47 53 5 48 3308.40 -0 .86
51 § 46 52 5 47 3308.75 -0.04
58 5 45 51 § 486 3308.06 -0 .06
48 5 44 56 5 45 3309.40 -0.05
48 5 43 483 5 44 3308.73 -@.06
47 5 42 48 5 43 3310 .04 -0.88
48 5 41 47 5 42 3310.38 -0 .87
45 5 40 46 5 41 3310.71 -@.97
43 5 38 44 5 39 3311.34 -7.10
42 5 37 43 5 38 3311.68 -0.08
41 5 386 42 5 37 3311.99 -@.11
44 5 35 41 5 36 3312.29 -0.13
38 5 34 44 5 35 3312.61 - .14
38 5 33 39 5 34 3313.07 -p.91
37 5 32 38 5§ 33 3313.38 -0.02
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J’ K;l K;l S K;i K;i v»(0Obs.) v(0Obs.-Cale.)
36 5 31 37 5 32 3313.72 -9.01
35 5 3@ 36 S 31 3313.96 -0.10
34 5 29 35 S 39 3314.28 -2.03
33 5 28 34 5 29 3314.62 -0.09
32 5 27 33 5 28 3314.87 -0.06
31 5 286 32 o 27 3315.27 -0.08
3@ 5 25 31 5 28 3315.60 -@.87
289 5 24 33 5 25 3315.92 -0.08
28 9 23 289 5 24 3316.25 -0.97
27 5 22 28 S 23 3316.57 -0.87
26 5 21 27 5 22 3316.88 -0.28
25 5 20 26 5 21 3317.20 -0.08
24 5 18 25 5 20 3317.52 -0.08
23 5 18 24 5 19 3317.83 -0.08
22 5 17 23 5 18 3318.15 -0.08
21 5 16 22 5 17 3318.47 -0.08
20 5 15 21 5 16 3318.78 -8.08
19 5 14 286 5 15 3318.19 -2.08
18 5 13 18 5 14 3319.43 -0.07
17 5 12 18 5 13 3318.73 -0.08
16 5 11 17 5 12 3320 .06 -0.06
15 5 10 16 5 11 3320.38 -0.06
14 5 8 18 3 19 3328.76 2.01
13 5 8 14 5 g 3321.09 0.23
12 5 7 13 S5 8 3321.39 2.02
11 5 6 12 5 7 3321.71 B.82
18 5 5 11 5 6 3322.01 8.01
g & 4 18 5 S 3322.34 2.03
8 S 3 8 5 4 3322.65 B.83
7 5 2 8 5 3 3322.94 2.01
6 5 1 7 5 2 3323.26 @.02
5 95 %) 6 S 1 3323.62 2.087
8 5 3 7 5 2 3327.88 .26
g 5 4 8 5 3 3328.17 2.85
18 5 5 9 5 4 3328.47 2.85
11 5 6 18 5 S 3328.77 0.04
12 5 7 11 5 B 3329.06 @.23
13 5 8 12 5 7 3329.36 2.23
14 5 S 13 5 8 3329.66 0.03
15 5 10 14 5 S 3329.96 @.43
16 5 11 15 5 10 3338.26 2.983
17 5 12 16 5 11 333@.56 B.04
18 5 13 17 S 12 3332.87 0.85
19 5 14 18 5 13 3331.17 2.06
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J’ K;l K;l s K;i K;i »(0bs.) v(0Obs.-Calc.)
28 5 15 18 5 14 3331.45 2.3
21 5 16 280 5 15 3331.74 @.43
22 5 17 21 5 186 3332.06 B.85
23 95 18 22 5 17 3332.36 2.06
24 5 19 23 S 18 3332.66 .06
25 5 20 24 5 19 3332.93 0.04
26 5 21 25 5 20 3333.23 0.04
27 5 22 286 5 21 3333.52 2.04
28 5 23 27 5 22 3333.82 2.05
29 5 24 28 5 23 3334 .88 0.02
38 5 25 28 5 24 3334 .38 0.01
31 5 26 33 5 25 3334 .66 g.01
32 5 27 31 6 26 3334.95 2.01
33 5 28 32 5 27 3335.24 -0.01
34 5 28 33 5 28 3335.51 -0.83
35 5 30 34 S 29 3335.78 -0.03
36 S 31 35 5 30 3336.49 -0.982
37 5 32 36 5 31 3336.35 -0 .04
38 S 33 37 S 32 3336.65 -0.03
38 5 34 38 5 33 3336.88 -0.98
48 5 35 39 S5 34 3337.13 -2.13
41 S 36 40 S 35 3337.43 - -9.12
42 5 37 41 5 36 3337.80 -0.04
43 S 38 42 5 37 3338.05 -2.87
44 S 39 43 S 38 3338.38 -0.83
45 5 40 44 5 39 3338.70 2.00
46 5 41 45 5 40 3338.97 -8.01
47 5 42 46 5 41 3339.26 -0.01
48 S 43 47 5 42 3339.53 -90.03
49 5 44 48 5 43 33338.80 -0.04
88 5 45 483 5 44 3340 .97 -0.086
51 5 46 58 5 45 3348.33 -0.893
52 5 47 51 5 46 3340.59 -9.12
53 5 48 52 5 47 3340.883 -0.10
54 5 49 53 S 48 3341.186 -@.12
55 5 50 54 5 49 3341.41 -8.16
56 5 51 858 5 L%} 3341.68 -2.18
57 5 52 56 5 51 3341.94 -8.21
58 5 53 57 5 52 3342.26 -0.18
59 5 54 58 5 53 3342.48 -8.25
68 5 558 58 5 54 3342.75 -0.27
61 S 56 B0 S 55 3342.896 -0.34
62 5 57 61 5 56 3343.25 -8.34
63 S 58 62 & 57 3343.52 -0.35
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J’ K;l K;l N K;i K;i v(0bs.) v(0Obs.-Calec.)
64 5 58 63 5 58 3343.75 -0.40
65 S 60 64 O a8 3343.98 -0.435
66 S 61 65 5 60 3344 .24 -0 .46
67 S 62 66 oS 61 3344 .50 -0.47
68 5 63 867 5 62 3344 .76 -0.46
68 5 64 68 S 63 3345.03 -0 .44
7@ S 65 69 5 64 3345.30 -0.42
71 5 66 7@ 5 65 3345.53 -0.42
72 5 67 71 S 66 3345.75 -0.42
73 5 68 72 S 67 3346.85 -6.32
74 5 69 73 5 68 3346.31 -0.26
75 5 70 74 S 69 3346.56 -8.18
76 5 71 75 5 70 3346.82 -0.09
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Derived Constants For vl(a’) Fundamental Band

Of CZH.CDO.

Parameter Derived Value
Type A 95%-100%
Type B 0-5%
W om~ ! 3325.42

.. -1 s1
A "/cm 1.7268
afl*/cm'1 0.0048
B “/em 1 ?.159828>*
a?/cm-l -3.001699
T ¢.146063>*
af/cm'l 0.082158

-1
o/cm ?.038
A

= standard deviation



Observed And Calculated Lines For vs(a’) Fundamental Band

Of C.H.CDO (ewit)

Table 5.4
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2
J’ K;l J’ Kli »(0bs.) v(0Obs.-Calec.)
29 5} 29 4 1494 .19 a.67
29 6 29 5 1887 .60 -3.03
29 7 29 6 1161 .11 -@.85
29 8 29 7 1104 .66 -p.94
29 g 29 8 1188.23 -8.92
29 10 28 g 1111.89 @2.02
29 11 29 10 1115.28 7.01
29 12 29 11 1118.78 7.06
28 13 29 12 1122.20 g.12
28 5 28 6 1862.84 -@.81
28 6 28 7 1060 .68 -0.01
28 7 28 8 1857.36 -@.05
28 8 28 g 1854 .75 -@.084
28 g 28 10 1852.16 -3.05
28 10 28 11 1448.66 -@.81
28 11 28 12 1047 .08 -@.045
28 12 28 13 1844 .61 2.900
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Table 5.5

Derived Constants For vs(a') Fundamental Band

Of C,H.CDO.
Parameter Derived Value
Type A 75-85%
Type B 15-25%
uo/cm‘1 1678.96
ag/cm_l -0.0392
ag/cm—l —0.002247
ag/cm—l @ .002558
Dk’/cm_l 2 .000102>"
Bg/cm—l -0 .000076

-1

co/cm ?.056

Note: See note at the bottom of Table 5.3 , BK = Dk’—Dk.



201

Table 5.8

Best Fit Constants For vB(a’) Fundamental Band

of CZH.CDO.
Parameter Best Fit Value
Type A 65-75%
Type B 25-35%
_1 -

v /cm 876.5
aé/cm”l -0.0632
ag/cm‘l @ .0009
aS/en? 0 .0009

Note: See note at the bottom of Table 5.3.
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Table 5.7

Observed And Calculated Lines For v7(a’),v11(a") Pair

Of Fundamental Bands Of C H.CDO.(Cmf)

2

J K;l P K:i v(0Obs.) v(0Obs.-Calc.)
24 4 24 3 706 .90 -@.01
24 5 24 4 711.95 -0 .85
24 6 24 5 717.25 -4 .88
24 7 24 6 722.73 -3.08
24 8 24 7 728.34 -@.13
24 g 24 8 734.03 -3.20
24 3 24 4 683.30 ¢g.01
24 4 24 5 681.81 @.13
24 5 24 6 680 .64 @.08
24 6 24 7 679.70 9.083
24 7 24 8 678.96 ?.09
24 8 24 g 678.39 -9.091
24 g 24 10 677.94 -0 .83
24 10 24 11 677.55 -@3.106
24 3 24 4 637.62 -3.061
24 4 24 5 632.83 -0.85
24 5 24 6 627 .84 -@.186
24 6 24 7 622.59 -@.15
24 7 24 8 617.186 -f.16
24 8 24 g 611.54 -@.22
24 g 24 10 606 .03 -9.082
24 10 24 11 600 .42 -0.084
24 11 24 12 5394 .86 3.7
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Table 5.8

Best Fit Constants For 97(a’),v11(a”) Pair

O0f Fundamental Bands Of C2H.CD0.

Parameter Best Fit Value
Type B 196%
v, /on ! 651.17
Type C 180%
-1
vll/cm 682.87
- A -1

a7,11/cm -@.4114

B -1
a7’11/cm -0.08008
ag’ll/cm_l @.0011
C7’11 @3.92+3.01
& /c:m_1 41.5

7,11 :

Note: See note at the bottom of Table 5.3, 67’11 = vll—v7.
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Best Fit Constants For vs(a') Fundamental Band

0f C,D.CDO.
Parameter Best Fit Value
Type A 60-70%
Type B 30-407%
v_/en” ! 870 .0
A" /em ) 1.7837>
ag /em™! -0.0632
B""/cm™ 1 @.147739°
g /om” ! 0.0009
c”/em ! @.135747°*
of sen”! ?.0009

Note: See note at bottom of Table 5.3.
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Figure 5.3
Second Order Coriolis Interaction Between B And C Type Bands
For A Prolate Asymmetric Rotor Belonging
To The Cs Point Group

K-
4 K’
4
3 “*-‘
T 3
2 A’
2
1
1
a
r P J’
4 Q Q,
K"
4
3
A”
2
1
2
I
Note : a. The pre-superscript to @ (AJ = @) indicates the

value of AK. In this case AK can be either +1 ,-1 which is
indicated by p,r. The post-subscript to @ indicates the value
of K°° as it is obvious from the diagram.

3. In theory, all the energy levels (except K=0) are
doublets but in practice only for the first 1levels these

doublets are sufficiently resolved.
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Appendix 1

Subroutine For The Calculation Of l1-Resonance

In Symmetric Rotors.
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Appendix 2

Program For The Construction Of A Pictorial Representation

Of The Cartesian Displacements For s-Trifluorobenzene.
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K TAV_LADUNRANTS =1989 A

THIS PPUSRAM CONSIRICTS A PICTARTAL ’t’RFSEJTATIPN
OF THz. ATSMIC DLISPLACCVENTS FOP EACH w2 n 1ALl

MONE FOR. TRAIFLUURVAINZENE, _

IT IS A M3DIFICATLG GF Af; ZARLIER. PRGSRAM AHICH
NID TAE SAML FOx [WALIAE.

CU™MON- PO3C4N),C20S(4u), Ya4¥I(cN)

BIVENSTSN PN CI90D), FREQ(3S)

TiNPUT NUMBER JF A[24S, MUMRIR OF A0GES, SCA_E

QEAD(-‘SQJ n INMS , NSNDES, UKALS
NAZMATOUS*¢

MURp =yA o xMuNCE

YUTH-LnU.v

YuTa=300.4u

THPUT THE AavzMy“sElS
REAL(5,3%)(FRZNDLT),1=1,%MUNLS)
(V]

0y '-1,‘Arnns

J1 J2+1
=jgl2t+t2

INPUT THE EulllLL3RT M CUOKDIMATZIS
READCS,ITIVAVI( L), (PN5(J),I=01,12)
THPUT THE ATNWTIC OIZPLACEMEWTS ~DRi EACH MOR4AL vODE

,.o
0G 2 [=
3CIU§5:35)(U6J3(‘)r<nI NORD, YA2)
=1+
QEAD(5,33) COPIS(<), <=4,H0RD,\Na2)
COMTTAOE
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CALL v&ul
CALL DEVOAP(XUTM,YDIY,N)
Ju 3 I=10¥MUDCS
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CPO5 (112300
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00 5 v=1,NA¢Z
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FRELTSFRELCL) -
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CONTINGE =
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FORMAT (T4, 0F13,0) )
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iy
£ 1R X
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Appendix 3
Computer Programs Used In The Present Study

1.PLLBAND program: The PLLBAND program, which was first
described by Barnardlg, calculates and plots parallel and
perpendicular band contours for symmetric rotors. It has been
modified specifically for interactive use for the PYRAMID
computer system at UCL, utilising the GINO graphics

library. The general form of the program is as follows:

Input Data: «. Number of bands to be superimposed,

scale(cm-l/cm), marks/cm_l, transmission maximum, y-height/cm.

7. T emperature in Kelvin, contour interval,
contour linewidth (Lorentzian), contour minimum, contour

maximum, contour origin.

Y. Ground state Coriolis constants, excited state
Coriolis constants, maximum intensity.

&, Limit on J,K and order of axis.

£. Ground state rotational constants, excited

state rotational constants.

Output: Calculated band contour.

2. ASYM20 program: All our force field calculations were
performed using the ASYM20 program which was written by
Duinker and Mills*®* and was kindly provided to us by
Professor Mills. The general form of the program is as

follows:
Input Data: a. Number of different isotopic species, number

of atoms in the molecule, number of each symmetry species.

3. Number of refinement cycles, number of observed

Coriolis constants, number of observed centrifugal distortion
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constants, factor used to multiply the indicated corrections
to the parameters at the end of the first cycle. The factor

is gradually increased and reaches 1 in the last cycle.

r. The axis used for the calculation of the
centrifugal distortion constants and the refinement of the
constants. (A-axis, B-axis or C-axis), symmetric or
asymmetric reduction used in the refinement of the

distortion constants.

S&. Force constants which are already symmetrised or

contants which are not going to be symmetrised.

£. Values of elements of the Z matrix together

with their positions in it.

oTt. Cartesian coordinates of each atom.

. Number of internal coordinates, number of
non-redundant or symmetry coordinates, number of bond
stretches, number of angle bends, number of out of plane

bends, number of torsions.

n. Identification of atoms taking part in a

specific internal coordinate.
§. U matrix.
t. Atom weights of each atom in the molecule.

ta Observed wavenumbers with uncertainties,
[weight = 1/(uncertainty)2], Coriolis constants, x, v or =2z
axis, normal modes coupled with uncertainties [weight =

1/(uncertainty)2, distortion constants with uncertainties.

OQutput: Calculated values for frequencies, Coriolis

constants, distortion constants together with Cartesian



228

displacements, normal coordinates, refined parameters and
symmetry force constants. Also, several other matrices
can be printed 1if required (e.g. Jacobian matrices
etc.).

3. KONTUR program: This program which is based on an
original one of Pierce55 constructs simulated band contours
for A or B or C or hybrid type bands of an asymmetric rotor
molecule utilising the GINO graphics 1library (see
PLLBAND program). It was modified recently by Parkin ° to
include second order Coriolis interactions 1like, for
instance, between B and C type bands in prolate asymmetric
rotors. The input and output of data has been
approximately the same form as for the PLLBAND program

discussed in Chapter 2 so it will not be repeated here.

4. MAINIR program: This program uses the so called A
matrix formulation to sixth order for centrifugal distortion
by Watson® . The rotational constants are determined by the
method of least squares from a set of input transitions.
Energy levels can also be calculated either from the least
squares treatment or from input constants. Finally, the
frequencies from these energy levels can be computed according
to set selection rules. The energies are calculated
by diagonalisation of the asymmetric rotor matrices. The

general form of the datafile used is as follows:

o, Number of data sets, data in MHz or cm_1 or

both, relative weight for data.

3. Provision for least squares treatment, number
of constants to be fitted (from 2 to 31), full or reduced

output, maximum frequency difference for least squares.
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¥. Constants to be fitted include the following

( for both upper and lower states) : Bx’ By, Bz’ DJ, DJK’
DK’ etc., vibrational frequency. Note : Bx = B, By = C, Bz =
A for a near prolate asymmetric rotor while Bx = A, By = B,
Bz = C for a near oblate asymetric rotor.

&. Provision for calculation of energy levels,

first J value, last J value, K maximum.

£. Provision for calculation of frequencies, type

of band (all combinations are possible).

or. Specified selection rules if required (ie AJ
or AK_1 or AK+1), frequencies by band type or ordered
frequencies or both, lower frequency limit, upper frequency
limit.

[. Transitions which are specified as follows:
I% K4 Kiyn 377 K20 Kigs
mean of two unresolved components, weight for line frequency.

resolved member of K doublet or

The output includes the observed and calculated transitions

and the new constants derived from the least squares analysis.
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