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Abstract—A novel spherical convolution is defined
through the sifting property of the Dirac delta on the
sphere. The so-called sifting convolution is defined by
the inner product of one function with a translated
version of another, but with the adoption of an alter-
native translation operator on the sphere. This trans-
lation operator follows by analogy with the Euclidean
translation when viewed in harmonic space. The sifting
convolution satisfies a variety of desirable properties
that are lacking in alternate definitions, namely: it
supports directional kernels; it has an output which
remains on the sphere; and is efficient to compute. An
illustration of the sifting convolution on a topographic
map of the Earth demonstrates that it supports direc-
tional kernels to perform anisotropic filtering, while its
output remains on the sphere.

Index Terms—Convolution, 2-sphere, spherical har-
monics.

I. Introduction

MANY fields in science and engineering measure
data on spherical manifolds, such as computer

graphics [1], planetary science [2], geophysics [3], quantum
chemistry [4], cosmology [5], and computer vision [6], [7],
[8]. Possible extensions to signal processing techniques
developed in the Euclidean domain may be transferred
to the spherical domain. The convolution is an important
signal processing technique between two signals defined on
the 2-sphere, which is central to filtering — an integral
part of spherical analyses.
Many definitions of spherical convolutions exist in the

literature. A spherical convolution operator would ideally
exhibit a variety of desirable properties — such a spherical
convolution would accept directional inputs (i.e. functions
that are not invariant under azimuthal rotation), whilst
having the output remain on the sphere. Moreover, the
convolution would be efficient to compute. Existing con-
volutions such as the isotropic convolution (e.g. [9], [10],
[11]) and the left convolution [11], [12] restrict themselves
to an axisymmetric kernel (i.e. kernels that are invariant
under azimuthal rotation). The directional convolution has
an output which is not on the sphere (e.g. [9], [13]). Lastly,
the commutative anisotropic convolution [14], [15] and the
directional convolution are computationally demanding. No
existing spherical convolution satisfies all three desirable
properties.

This letter presents an alternative spherical convolution,
the sifting convolution, defined through the sifting property
of the Dirac delta — in analogy to the Euclidean definition.
The convolution is anisotropic in nature and supports
directional kernels. The output remains on the sphere, even

when both inputs are directional. Moreover, the convolution
is efficient to compute, and is commutative up to a complex
conjugate.
The remainder of this letter is as follows. Section II

includes some mathematical preliminaries and reviews
existing spherical convolutions in the literature. Section III
introduces the proposed sifting convolution. Section IV
presents a demonstration of the convolution with a direc-
tional kernel. Lastly, Section V sets out some concluding
remarks.

II. Mathematical Background and Problem
Formulation

A. Mathematical Preliminaries

1) Signals on the Sphere: Consider a complex valued
square-integrable function f(ω) on the 2-sphere S2 = {ω ∈
R3 : ‖ω‖ = 1}. Here ω = (θ, φ) parameterise a point on
the unit sphere, where θ ∈ [0, π] is the colatitude and
φ ∈ [0, 2π) is the longitude. The functions f(ω) form the
Hilbert Space L2(S2). The complex inner product induces
a norm ‖f‖ =

√
〈f |f〉. Signals on the sphere are functions

with a finite induced norm.
2) Spherical Harmonics: The spherical harmonics are

the complete orthonormal set of basis functions of the
Hilbert space L2(S2). By the completeness of spherical
harmonics, any f ∈ L2(S2) may be decomposed as

f(ω) =
∞∑
`=0

∑̀
m=−`

f`mY`m(ω), (1)

where f`m are the spherical harmonic coefficients given
by f`m = 〈f |Y`m〉. The phase convention adopted here is
Y ∗`m = (−1)mY`(−m) such that f∗`m = (−1)mf`(−m) for a
real field. One often considers signals on the sphere with a
bandlimit of L, i.e. signals such that f`m = 0, ∀` ≥ L; and
adopts the shorthand notation

∑
`m =

∑L−1
`=0

∑`
m=−`.

3) Dirac Delta: The Dirac delta on the sphere sat-
isfies the following normalisation and sifting properties,
respectively:

∫
S2 dΩ(ω) δ(ω) = 1 and 〈δω′ |f∗〉 = f(ω′),

where δω′(ω) represents the Dirac delta rotated to some
ω′ = (θ′, φ′). The harmonic expansion of the Dirac delta is

δω′(ω) =
∑
`m

Y ∗`m(ω′)Y`m(ω), (2)

which follows trivially by the sifting property.
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4) Rotation of a Signal on the 2-Sphere: The Euler
angles may parameterise three-dimensional rotations with
ρ = (α, β, γ) ∈ SO(3), where α ∈ [0, 2π), β ∈ [0, π],
and γ ∈ [0, 2π). The rotation operator Rρ consists of
the sequence of rotations: (i) γ rotation about the z-axis;
(ii) β rotation about the y-axis; and (iii) α rotation about
the z-axis. The rotation of a function on the sphere is
defined by (Rρf)(ω) = f(R−1

ρ ω), where Rρ is the three-
dimensional rotation matrix corresponding to Rp. The
spherical harmonic coefficients of a rotated function read

(Rρf)`m =
∑̀

m′=−`
D`
m′m(ρ)f`m′ , (3)

where D`
m′m(ρ) are Wigner D matrices which form the

2`+ 1-dimensional representation of the rotation group for
a given `.

B. Spherical Convolutions

The conventional convolution between two functions on
two-dimensional Euclidean space Rn is

(f ? g)(x) =
∫
R2

dy f(x− y)g(y), (4)

where x, y ∈ Rn. The convolution is commutative
f ? g = g ? f . A spherical counterpart of the convolution
is required for functions defined on the sphere. Alternative
definitions of such a convolution exist in the literature but,
while already useful, lack certain desirable properties.

The properties desired in the spherical extension of the
convolution include: (i) the support of directional kernels;
(ii) an output which remains on the sphere; and (iii) efficient
computation. A convolution is considered computationally
efficient here if its computational cost is no greater than
the cost of fast spherical harmonic transforms, i.e. O(L3)
(e.g. [12], [16]). Formulations of spherical convolutions
exist in the literature but none satisfy all these properties.
A summary of existing spherical convolutions and their
properties follows.

1) Isotropic Convolution: In real space the isotropic
convolution (e.g. [9], [10], [11]) is

(f � g)(ω) =
∫
S2

dΩ(ω′) f(ω′)(Rωg)∗(ω′), (5)

which in harmonic space becomes (e.g. [9])

(f � g)`m =
√

4π
2`+ 1f`mg

∗
`0. (6)

The isotropic convolution has the following properties:
(i) does not support directional kernels since g(ω) must
be axisymmetric; (ii) an output which remains on the
sphere; and (iii) efficient computation since it is a product
in harmonic space.

2) Left Convolution: The definition of the left convolu-
tion [11], [12] in real space is

(f � g)(ω) =
∫

SO(3)

dρ(ρ) f(ρη)g(ρ−1ω), (7)

where η is the north pole, and dρ(ρ) = sin β dα dβ dγ
is the usual invariant measure on SO(3). The harmonic
representation of this convolution is

(f � g)`m = 2π
√

4π
2`+ 1f`mg`0, (8)

As the harmonic representations suggest, the isotropic and
left convolutions are closely related, as elaborated in [11].
Hence, the properties are similar. The left convolution has
the following properties: (i) does not support directional
kernels since g(ω) must be axisymmetric; (ii) an output
which remains on the sphere; and (iii) efficient computation
since it is a product in harmonic space.

3) Directional Convolution: Rotations on the sphere are
the spherical counterpart of translations in the Euclidean
domain in real space. Hence, the standard directional
convolution is

(f ~ g)(ρ) =
∫
S2

dΩ(ω) f(ω)(Rρg)∗(ω). (9)

Upon expanding in harmonic space, this becomes (e.g. [9],
[13])

(f ~ g)(ρ) =
∑
`m

∑̀
m′=−`

f`m
(
D`
m′m(ρ)g`m′

)∗
, (10)

and hence, the output is on SO(3). Fast algorithms exist [9],
[13], [17], [18] but the convolution remains less efficient than
a spherical harmonic transform. The directional convolution
has the following properties: (i) does support directional
kernels; (ii) an output which does not remain on the sphere
due to the 3D rotation of the kernel; and (iii) expensive
computation.

4) Commutative Anisotropic Convolution: The definition
of the commutative anisotropic convolution [14], [15] is

(f ⊕ g)(ω) =
∫
S2

dΩ(ω′) (R(φ,θ,π−φ)f)(ω′)g(ω′), (11)

which on expansion reads

(f ⊕ g)(ω) =
∑
`m

∑̀
m′=−`

D`
m′m(φ, θ, π − φ)f`m′g∗`m. (12)

The limitation here is that one must specify the initial
rotation as γ = π − α in order for the convolution to
be commutative. The complexity of the convolution is
O(L3 logL), and hence, it is less efficient than a spherical
harmonic transform. The convolution has the following
properties: (i) it supports directional kernels; (ii) an
output which remains on the sphere; and (iii) expensive
computation.
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TABLE I
Properties of spherical convolutions.

Anisotropic S2 Output Efficient

Isotropic 7 3 3

Left 7 3 3

Directional 3 7 7

Commutative Anisotropic 3 3 7

Sifting (this work) 3 3 3

C. Problem Formulation
Table I presents a summary of the spherical convolutions

discussed and their properties. No existing definition of
a spherical convolution has all the desired properties dis-
cussed in Section II-B. In this work, the sifting convolution,
which satisfies all desirable properties, is presented.

III. Sifting Convolution
This work defines the sifting convolution which permits

directional kernels, whose output remains on the sphere and
is efficient to compute. Moreover, it is commutative up to a
complex conjugate. The sifting convolution is constructed
using a novel translation operator defined on the sphere.

A. Translation Operator
In real space, the rotation operator on the sphere is the

usual analogue of the translation operator in the Euclidean
setting. One may define an alternative operator, Tω, which
follows as the analogue of the Euclidean setting but in
harmonic space. This translation is in contrast to the
standard rotation as it considers two angles rather than
three and thereby its output remains on the sphere. In
practice the translation operator is defined as a product
of basis functions. In the Euclidean setting, e.g. R, the
complex exponentials φu(x) = exp{iux}, with x, u ∈ R
form the standard orthonormal basis. A shift of coordinates
defines the translation of the basis functions: φu(x+ x′) =
φu(x′)φu(x), with x′ ∈ R and where the final equality
follows by the standard rule for exponents. The definition
of the translation of the spherical harmonics on the sphere
follows by analogy with the representation as a product of
basis functions:

(Tω′Y`m)(ω) ≡ Y`m(ω′)Y`m(ω), (13)

where ω′ = (θ′, φ′).
This leads to a natural harmonic expression for the

translation of a general arbitrary function f ∈ L2(S2)

(Tω′f)(ω) =
∑
`m

f`mY`m(ω′)Y`m(ω), (14)

implying
(Tω′f)`m = f`mY`m(ω′). (15)

This translation operator is considered further in Sec-
tion III-C to build greater intuition.

B. Convolution Operator
With a translation operator to hand, one may define the

sifting convolution on the sphere of f, g ∈ L2(S2) in the
usual manner by the inner product

(f } g)(ω) ≡ 〈Tωf |g〉 , (16)

noting the use of the alternative translation operator
defined in Section III-A.
In harmonic space this simplifies to the product

(f } g)`m = f`mg
∗
`m, (17)

as

(f } g)(ω) = 〈Tωf |g〉

=
∫
S2

dΩω′) (Tωf)(ω′)g∗(ω′)

=
∫
S2

dΩ(ω′)
∑
`m

f`mY`m(ω′)Y`m(ω)
∑
`′m′

g∗`′m′Y ∗`′m′(ω′)

=
∑
`m

f`mg
∗
`mY`m(ω). (18)

Since the harmonic representation of the convolution is
simply a product (again by analogy with the harmonic
representation of the Euclidean convolution), it is efficient
to compute. Note that harmonic multiplication has been
considered before [11]; although it has been used here to
define a new anisotropic convolution operator, introducing
a conjugation and elaborating a real space interpretation.

C. Translation Interpretation
One may show that the translation operator is simply a

(sifting) convolution of a function with the shifted Dirac
delta function:

(f } δω′)(ω) =
∑
`m

f`mY`m(ω′)Y`m(ω)

= (Tω′f)(ω), (19)

by noting Eq. (17) and where the final equality follows by
Eq. (14). The sifting convolution and translation are thus
natural analogues of the respective operators defined in
Euclidean space.

D. Properties
The sifting convolution has all the desired properties

discussed in Section II-B, namely, the convolution accepts
directional inputs, has an output which remains on the
sphere, and is efficient to compute. Table I summarises the
properties of the sifting convolution and compares them
to the properties of alternative spherical convolutions.

The translation preserves symmetries, which means that
any symmetry that exists in the initial kernel definition will
be present after the translation. Thus, one must be careful
when choosing a kernel for a convolution to ensure it has the
desired properties when translated, e.g. spatial localisation.
To perform anisotropic smoothing that is localised (the
usual interpretation), the translated kernel also needs to be
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(a) Re{(Tω′fA)(ω)}
0

1

(b) Re{(Tω′fB)(ω)}

Fig. 1. A harmonic Gaussian translated to some ω′ = (θ′, φ′)
(bandlimited at L = 128). Panel (a) corresponds to a more elongated
kernel fA, where (σ`, σm) = (102, 101); whereas panel (b) corresponds
to a more symmetric kernel fB , where (σ`, σm) = (101, 101). The
colour is between zero and one, reflecting the scaled intensity of the
field.

localised. If the kernel has, say, even azimuthal symmetry,
when it is translated to ω′ = (θ′, φ′) it will have a localised
component both at φ′ and −φ′. While this is not a problem
per se, for the usual interpretation of smoothing one would
desire a localised component at φ′ only. This can be
achieved by ensuring the original kernel does not exhibit a
symmetry that would lead to multiple localised components
once translated. The harmonic Gaussian introduced in
Section IV satisfies the desired property.

IV. Numerical Illustration
This section demonstrates the effect of the sifting

convolution through the application of a directional kernel
to an example signal on the sphere.
Define the harmonic Gaussian as a two-dimensional

Gaussian in harmonic space by

f`m = exp
(
−
(
`2

2σ2
`

+ m2

2σ2
m

))
. (20)

In effect, this function is the standard axisymmetric
Gaussian in ` modulated by a Gaussian in m. Note this
function is not real — if required one can define only the
positive m components and impose reality by the conjugate
symmetry relationship in harmonic space. The function is
directional, and hence, is useful in illustrating the effect of
the sifting convolution on the sphere. All later computations
use the SSHT1 code [16].
Consider two differently sized harmonic Gaussians on

the sphere to see the effect on the sifting convolution. Fig. 1
shows both an elongated (left panel) and symmetric (right
panel) translated harmonic Gaussian.
To study the effect of the sifting convolution, consider

the Earth Gravitational Model EGM2008 dataset [19].
This dataset is the topographic map of the Earth. Fig. 2
presents the dataset up to an order of L = 128. The sifting
convolution is then performed between the Earth represen-
tation and the harmonic Gaussian with the resultant plot
given in Fig. 3. As expected, when the elongated kernel is
considered, as shown in the left panel, the result exhibits
greater anisotropic smoothing than when considering the

1http://astro-informatics.github.io/ssht/

0

1

Fig. 2. EGM2008 dataset centred on a view of South America
(bandlimited at L = 128). The colour is between zero and one,
reflecting the scaled intensity of the field.

0

1

(a) Re{(fA } g)(ω)}
0

1

(b) Re{(fB } g)(ω)}

Fig. 3. The real part of the sifting convolution between the EGM2008
dataset and the harmonic Gaussian, rotated to view of South America
(bandlimited at L = 128). Panel (a) corresponds to a more elongated
kernel fA, where (σ`, σm) = (102, 101); whereas panel (b) corresponds
to a more symmetric kernel fB , where (σ`, σm) = (101, 101). As
expected, the resultant sifting convolved Earth map exhibits greater
anisotropic smoothing in panel (a) than in panel (b). It is clear that the
sifting convolution supports directional kernels to perform anisotropic
filtering (smoothing), while the output remains on the sphere. The
colour is between zero and one, reflecting the scaled intensity of the
field.

symmetric kernel, as shown in the right panel. It is clear
that the sifting convolution supports directional kernels to
perform anisotropic filtering (smoothing), while the output
remains on the sphere.

V. Conclusion

This work presents the sifting convolution on the sphere
and demonstrates its application. The convolution accepts
directional functions as inputs, has an output which
remains on the sphere, and is efficient to compute. The
sifting convolution is defined in the usual manner through
the inner product but with an alternative translation
operator on the sphere. This follows by analogy with
the Euclidean translation when viewed as a convolution
with a shifted Dirac delta function. An illustration of
the sifting convolution on the topographic map of the
Earth demonstrates that it supports directional kernels to
perform anisotropic filtering, while its output remains on
the sphere. Convolutions are an important part of signal
processing techniques, hence, the sifting convolution can
play an integral role in constructions of alternate spherical
analysis techniques, which is the focus of future work.
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