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A critical issue in operating massive open online courses (MOOCs) is the scalability of providing feedback.

Because it is not feasible for instructors to grade a large number of students’ assignments, MOOCs employ

peer grading systems. This study investigates the efficacy of that practice when student graders are rational

economic agents. We characterize grading as a process of (a) acquiring information to assess an assignment’s

quality and (b) reporting a score. This process entails a trade-off between the cost of acquiring information

and the benefits of accurate grading. Since the true quality is not observable, any measure of inaccuracy must

reference the actions of other graders, which motivates student graders to behave strategically. We present

the unique equilibrium information level and reporting strategy of a homogeneous group of student graders

and then examine the outcome of peer grading. We show how both the peer grading structure and the nature

of MOOC courses affect peer grading accuracy, and we identify conditions under which the process fails.

There is a systematic grading bias toward the mean, which discourages students from learning. To improve

current practice, we introduce a scale-shift grading scheme, theoretically examine how it can improve grading

accuracy and adjust grading bias, and discuss how it can be practically implemented.
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1. Introduction

Adoption of massive open online courses (MOOCs) has been spreading at a rapid pace, enabling a

large number of students to enroll as long as they can access the course materials online. MOOCs

deliver various courses (from highly quantitative to qualitative) through web-based technologies

such as video presentations, online communication forums, simulation games, and computer-based
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assessments. Many platforms (e.g., Coursera, edX, Udacity) have demonstrated the potential to

“scale” higher education, with some courses attracting more than 150,000 students (Balfour 2013,

Brinton et al. 2014). As educational institutions migrate towards online education during the

COVID-19 pandemic, and with increasing awareness of MOOCs, some experts predict that MOOCs

will play a more prominent role in post covid era education (Young 2020).

One of the main challenges of operating MOOCs is the scalability of providing feedback.1 Because

so many students enroll in these courses, it is physically impossible for an instructor (or even a

team of graders) to grade all of the assignments, and the most meaningful assignments in many

courses do not lend themselves to automated grading by computer (Khalil and Ebner 2014). Hence

peer grading is an essential tool for MOOC operators that need to grade complex, open-ended

assignments in courses whose students number in the tens or hundreds of thousands (Piech et al.

2013).

In a typical peer review process, students are provided with a rubric that specifies the evaluation

criteria to be followed when assessing the answers given to exam questions (Khalil and Ebner 2014,

Luaces et al. 2015), and sometimes the reviewers are trained and then tested for competency before

making any formal evaluations (Balfour 2013). The final score given to an assignment is usually

determined as the average of the corresponding peer grades given by the evaluators (Balfour 2013,

Luaces et al. 2015, Coursera 2018).

However, it is unclear whether peer grading systems deliver accurate assessments (Li et al. 2016).

Because student graders typically lack expertise in the subject matter of an assignment, their

assessment of its quality may be unreliable. Moreover, the heterogeneity of the graders’ backgrounds

and competence leads to subjectivity and biases (Luo et al. 2014). Most previous approaches to

improving the reliability of peer grading have involved creating (complex) algorithms to identify

and match graders and students in a way that minimizes predicted biases (Piech et al. 2013). Yet

1 We focus on the peer grading mechanism and its effect on administering a MOOC. Thus we ignore other issues

relevant to MOOCs, such as students’ intrinsic motivation to learn, content design, and dropout rates.
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little attention has been devoted to the behavior of peer graders, who may well act as rational

economic agents.2

We characterize grading as a process of assessing the quality of an assignment and reporting

a score. To assess quality, student graders must acquire information about the quality of the

assignment. The more information students acquire, the more accurate—but also more costly—

their assessment will be (Arrow 1996). Student graders are motivated to have their reported score

reflect the true quality of the assignment (absolute accuracy) as well as to have it be close to the

MOOC’s final reported grade (relative accuracy), which depends on the scores of other peer graders.

As a result, student graders will behave rationally when acquiring information. Also, “strategic”

graders (unlike “honest” graders) may find it in their interest to report scores that differ from their

assessed quality of an assignment. As economic agents, graders carefully balance costs and benefits

before determining their strategies for assessment and reporting (Falk and Ichino 2006).

Using our model, we first examine the current peer grading practice. We find the unique sym-

metric equilibrium information acquisition level and reporting strategy for a homogeneous group of

student graders. We then assess the resulting peer grading for inaccuracy, as measured by the mean

squared error (MSE), and the expected grade that an assignment would receive based on peer grad-

ing. We observe a systematic grading bias toward the mean, which tends to lower students’ learning

effort during the course. Both inaccuracy and bias are exacerbated when the student graders are

strategic rather than honest in their score reporting. We examine how course characteristics and

the peer grading structure affect the outcomes of peer grading.

With the aim of improving current practice in terms of grading inaccuracy (which calls for a

reduced MSE) and learning (to be addressed by de-biasing), we propose a scale-shift grading scheme

that generalizes the current peer grade aggregation practice (namely, a simple average). We assess

how much the scale-shift factor affects (a) the equilibrium level of information acquired by student

2 In MOOCs, ensuring that grades are submitted takes precedence over ensuring that graders do a good job. Thus,

students do not see their own grades until they have already graded the other students’ assignments (Coursera 2018).
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graders and (b) the reporting behavior of those graders. We find that a scale-shift grading scheme

can improve learning because it can eliminate not only strategic score reporting but also the bias

toward the mean. We examine the scale-shift factors that can minimize the MSE or eliminate the

bias, discuss how these can be practically implemented, and report on improvements to grading

accuracy and student learning based on simulation outcomes.

The rest of our paper proceeds as follows. Section 2 discusses how our model treats information

as a nonstatic variable instead of static variable as is often the case in the field of economics,

and reviews the related literature. Section 3 introduces the basic model, characterizes grading as

a process of information acquisition and reporting, and describes the economic trade-offs faced

by student graders. Section 4 analyzes the equilibrium information acquisition level and reporting

strategy of student graders as well as their effects on grading accuracy and expected grades, which

in turn impact students’ learning effort during the course. Section 5 presents the scale-shift grading

scheme and identifies the scale-shift factors that minimize the MSE or eliminate bias. We discuss

how these can be implemented in practice and their impact on peer grading accuracy and student

learning. Section 6 concludes with a brief summary of our work and some suggestions concerning

related research opportunities. All proofs are given in the Appendix.

2. Related Literature

Information has long been considered an important variable governing the behavior of economic

agents (Arrow 1984). Viewed as a signal that reduces uncertainty (about the state of the world),

renowned scholars have framed it as an economically interesting category of goods worthy of care-

ful enquiry. Arrow (1973) discusses information’s essential characteristics and Arrow and Radner

(1979) studies its role in a team setting.

Reflecting on the role played by information in the field of economics, Arrow (1996) points out

that information has largely been treated as a static variable, employed predominantly in the

agency setting with asymmetric information among economic agents. More specifically, informa-

tion is usually considered to be either available to an agent (who observes a random variable) or
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unavailable to an agent (who knows only its distribution). Arrow (1996) argues that information

has become much more “transient” in the sense that agents can now easily expend resources to

gain more information. He therefore calls for treating information as a continuous variable—much

as it is in such disciplines as mathematical statistics, decision theory, and communication engineer-

ing. Thus, in lieu of focusing on the consequences of information, as in information value theory

(Howard 1966), Arrow argues for examining the cost of acquiring information and what that cost

implies for the equilibrium economic behavior of agents.

To aid in this effort, Arrow (1996) presents a useful cost function for acquiring information;

this function is based on Shannon’s measure of information from communication engineering, and

it is consistent with the Bayesian normal sampling used in mathematical statistics and decision

analysis. We respond to Arrow’s call with the present study of peer grading in MOOCs, where

“grading” requires acquiring information about (and reporting) assignment quality, and a peer

grader is an economic agent who can determine how much information to acquire for the purpose

of reporting scores that are close to those reported by other graders.

Thus, a student grader’s grading accuracy can be evaluated in terms of how closely that student’s

grades resemble other submitted grades. This approach is related in spirit to the Keynesian beauty

contest (Keynes 1936), where each rational agent relies not only on their own opinion but also

on (inferred) public perception before making their decision. This concept is applied formally by

Morris and Shin (2002), who study the effect of public information when each rational agent

strives to choose an action that mimics the actions of others. In addition to reporting a grade, the

student graders in our model incur the cost of acquiring information used to assess the assignment

quality; hence, our model generalizes the model presented by Morris and Shin. Shleifer (1985) and

Savva et al. (2019) exploit the presumed rational behavior of economic agents (e.g., hospitals) to

examine how a regulator can incorporate the simple average of others’ actions (i.e., a yardstick) in

a mechanism designed to improve the odds of achieving the regulator’s objective—which usually

involves improved social welfare. In the present paper’s setting, we explain how the simple average
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grading scheme for an MOOC can be replaced with a scale-shift scheme to better meet the primary

objectives of peer grading: accurate and unbiased grades.

The scale-shift grading scheme bears some similarity to the common notion of curved grading in

that the initial evaluation of an assignment is transformed into a different final score in an order-

preserving manner. However, the critical difference is that while curved grading alters grades to fit a

predetermined distribution (e.g., the top 10% receive As, etc.), scale-shift grading does not do this.

Moreover, curved grading often takes place in a non-peer grading setting and negatively impacts

students’ learning by decreasing their motivation to learn (Michaels 1976), creating unhealthy

competitive classroom environments (Grant 2016), and/or harming students’ confidence and long-

term educational outcomes (Calsamiglia and Loviglio 2019). In contrast, we show that the scale-

shift factor improves student learning outcomes in a peer grading setting by improving the accuracy

and fairness of the peer grading outcome.

The efficacy of MOOC peer grading has been widely examined in the education literature. For

example, Falchikov and Goldfinch (2000) find that peer assessments better resemble faculty assess-

ments in academic courses than in professional courses, Cho et al. (2006) suggest that the aggregate

ratings of at least four peers on a piece of writing are as valid as instructor ratings, and Price et

al. (2016) show that using a web-based tool that facilitates peer review can produce accurate peer-

reviewed scores and motivate student learning. Recently, the computer science literature has paid

considerable attention to how to improve MOOC peer grading. For example, Piech et al. (2013)

develop an algorithm that matches graders to assignments based on student backgrounds and then

computes a composite assessment based on peer scores. Walsh (2014) introduces a method that

weights grades by the reliability scores of the grading agents, and Luaces et al. (2015) propose a

factorization model. All of these studies show how the proposed methods can improve the accuracy

of grading when using large data sets from courses offered by MOOCs (e.g., Coursera). Luo et al.

(2014) investigate the reliability of grades assessed by peers using data collected from Coursera;

these authors suggest that the reliability of peer grading can be improved by training students to be
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better graders. Given how difficult it is for student graders to assign precise cardinal scores, some

studies have examined ordinal peer evaluation mechanisms as well as their benefits and aggregation

methods (see, e.g., Shah et al. 2013, Raman and Joachims 2014). These studies focus on vetting

graders based on predicted skill level or bias, but they ignore the costs of grading and the graders’

balancing of how much effort to exert depending on those costs and the behavior of other graders.

Our framework complements these studies by addressing graders’ economic behavior, rather than

the effects of the heterogeneity of grader types.

A broad stream of literature in economics and education examines how the presence of peers

affects student learning. Researchers have shown, for example, that the presence of peers and

social interaction among peer learners can have a positive effect on their test scores (Sacerdote

2001, Zimmerman 2003, Calvo-Armengol et al. 2009). More recently, Zhang et al. (2017) find that

social interaction among students on an MOOC discussion board increases not only their test

participation rates but also their test scores. Our study presents a similar result in the context of

peer grading: an improved peer grading mechanism motivates learning.

Aggregation of peer scores in the MOOC setting is similar to the aggregation of expert opin-

ions, concerning which (as mentioned by Arrow 1996) there is extensive research in the fields of

mathematical statistics and decision theory. Axiomatic treatments and rules for aggregating expert

forecasts or opinions exist (Bordley 1982, Clemen 1986, Clemen and Winkler 1990, Satopää 2014),

as well as studies of aggregating distributions that include the aggregation of point estimates (DeG-

root 1974, DeGroot and Mortera 1991, Abbas 2009). Some aggregation methods (e.g., a simple

average) have been criticized as inefficient (Granger 1989); more recently, Satopää (2019) gener-

alizes this view and shows that an aggregator that never strays beyond the smallest and largest

predictions is never efficient in practice. In the present study we consider student graders who

are not experts, so we focus on their equilibrium information acquisition level when they forecast

an assignment’s quality before aggregation. In addition, we study the scale-shift grading scheme

(a variation of the arithmetic mean), which allows the aggregation of peer grades to fall outside
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the graders’ range, thereby encouraging student graders to acquire more information and produce

more accurate assessments.

Finally, there is a related literature about providing incentives for agents to be truthful in equi-

librium. Prelec (2004) presents a scoring method for eliciting truthful subjective data in situations

where objective truth is unknowable. Miller et al. (2005) devise a scoring system intended to induce

honest feedback in the evaluation of products and vendors. To better understand large-scale eval-

uations of product or service reviews on online platforms, Dasgupta and Ghosh (2013) examine

the issue of incentivizing the crowd to exert the effort needed to provide good and truthful eval-

uations, Radanovic and Faltings (2015) discuss the solicitation of crowd-sourced opinions in the

context of product reviews on the web, Shnayder et al. (2016) introduce a “correlated agreement”

mechanism aimed at incentivizing participants to reveal truthful information, and Kamble et al.

(2018) describe a novel reward mechanism for eliciting honest responses from agents in the absence

of verifiability. However, research in this “truth serum” vein assumes that agents know the correct

answers and focuses on how agents can be induced to reveal those answers. In contrast, the agents

(student graders) in our study do not know the correct answers and so must acquire information in

order to assess the quality of assignments. We show that, despite the incentives of student graders

to report scores that differ from their respective true assessments, our proposed scale-shift grading

scheme can motivate them to report their scores truthfully.

3. Model

We consider an MOOC with a large number of students, each of whom must submit a final assign-

ment at the end of the course. We model this setting as a chronologically staged process; see

Figure 1. Students are learners during the course and graders after the course. To better focus

on how the economic behavior of graders affects learning, we assume that the students—as both

graders and learners—are homogeneous.

Before the course. The MOOC announces its peer grading policy. Each student is asked to grade

k randomly selected assignments, excluding the grader’s own assignment, so that each submitted
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Figure 1 Sequence of decisions

MOOC’s Decision 
Announce grading policy 
Ĝ based on k independent 

peer grades 

Student Graders 
For k assignments, acquire 
information (ρ) to assess 

quality and report grades (α). 

Student Learners 
Decide learning effort e, 
and turn in assignment 

with quality q(e) 

Before	course	 During	course	 After	course	

assignment will be independently evaluated by k students. The final grade for a given assignment

of true quality q, or Ĝ(G1, . . . ,Gk), depends on the k independent submitted grades G1, . . . ,Gk.

For example, if the final grade is simply an average of the grades received, then

Ĝ(G1, . . . ,Gk) =
1

k

k∑

i=1

Gi(q).

The submitted peer grades Gi(q) are stochastically increasing in quality, that is, a higher-quality

assignment is expected to receive a higher grade. Each grade depends on (a) the level of information

that each student grader decides to acquire and (b) the scores they decide to report.

During the course. As a learner, each student exerts learning effort e and submits an assignment

of quality q that depends on e as follows:

q(e) =
(
κ log(e) + θ

)
+ ε. (1)

This quality is concave increasing in the effort e. The more effort is exerted in learning, the higher

the expected quality of the assignment—although there are diminishing marginal quality returns

for the learning effort. The parameter κ represents the ease with which quality can be achieved

from new learning, and the parameter θ represents the quality derived from prerequisite knowledge.

(Any other concave increasing function can replace the logarithmic function that we use.) The term

ε ∼ N (0, σ2) signifies the inherent randomness in producing the assignment’s ultimate quality—

that is to say, more (resp. less) effort need not lead to a higher (resp. lower) quality assignment,

and the variance σ2 in that quality may reflect course characteristics. The assumption of normality

reflects the “bell curve” often observed in the grades of large classes.
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Student learners seek to maximize their expected grades, Ĝ, after accounting for effort:

max
e

E[Ĝ|q(e)]− e.

If e? denotes the optimal learning effort, the mean quality of the assignment is

µ,E[q(e?)] = κ log(e?) + θ.

After the course. As a grader, each student receives k randomly selected assignments to grade.

For each assignment, the student grader i assesses its quality and reports a score Gi. The student

who submitted the assignment will receive a final grade of Ĝ(G1, . . . ,Gk). We are interested in the

economics of peer grading during this stage, which we formalize next.

3.1. Model of Grading: Quality Assessment and Score Reporting

Suppose that a given assignment’s true quality is q and that if the instructor were to grade the

assignment, it would receive a grade identical to its quality. However, if student i grades the

assignment, then i’s lack of subject-matter expertise means that the assignment’s student-assessed

quality, Ai, may not reflect its true quality q. In this scenario, the instructor facilitates the grading

process by preparing a detailed evaluation rubric that indicates (or directly states) that the final

grade distribution should be normal with mean µ and variance σ2.

In our setting, in the spirit of the rational expectation equilibrium, we assume that the students

determine their learning effort and grading decisions based on their belief about the mean quality µ

of the assignments and that the realized mean quality is consistent with their belief. Moreover, the

MOOC can accurately predict the sample mean µ. This is a reasonable assumption in the recurring

MOOC setting we consider, for three reasons: students can observe past MOOC average scores

(which do not change much with large class sizes), the grading rubric can encourage or mandate

a mean, or the instructor can sample the grades after the course and announce the sample mean.

Thus, as we shall see, µ does not play an important role in our model of peer grading.
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Assessment of Quality. Assessing the quality of a given assignment amounts to an infor-

mation acquisition process for student graders, the accuracy of which depends on the information

level, ρi ∈ [0,1], that they decide to acquire. Given an assignment of quality q, the grade Ai(ρi)|q

assessed by student i satisfies

Ai(ρi)|q∼N ((1− ρi)µ+ ρiq, (1− ρ2i )σ2). (2)

That is, the quality assessment resembles an “anchor and adjustment” process. The more informa-

tion that is acquired by the student, the closer the assessed quality Ai will be to the assignment’s

true quality q, and the less variance there will be in submitted grades. If ρi = 0, then the student

acquires no information and assesses the quality as a random draw from N (µ,σ2), while at the

other extreme, if ρi = 1, then full information is acquired and so the assessed quality Ai is equal

to the true quality q.

The quality of the assignment is a random variable represented by upper case Q; after the grader

receives a specific assignment, its realized quality is represented by lower case q. (For simplicity,

we will write “|q” instead of “|Q = q”). Expression (2) corresponds to the marginal distribution

of the following bivariate normal distribution between the quality assessed by a student grader i,

Ai(ρi), and quality of assignment Q,3

(Ai(ρi),Q)∼N






µ

µ


 ,




σ2 ρiσ
2

ρiσ
2 σ2





 . (3)

Here, the information level ρi ∈ [0,1] corresponds to the correlation coefficient between the student-

assessed quality and the true quality. Empirical studies have found that the correlation between

peer and teacher grades can vary from 0.29 to 0.69 (Li et al. 2016).

For the purposes of grade aggregation, we also assume conditional independence between peer

graders—that is: given an assignment’s quality q, any two assessed qualities Ai|q and Aj|q provided

by student graders are uncorrelated with each other. Yet prior to knowing an assignment’s quality,

3 The variance of Q and Ai need not be identical. For simplicity, we assume that both are equal to σ2.
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Ai and Aj are correlated (by ρiρj) because both ρi and ρj are correlated with the underlying

quality q.4 Thus, (A1(ρ1),A2(ρ2), . . . ,Ak(ρk),Q)∼N (~µ,Σ), where ~µ∈Rk+1 and Σ∈R(k+1)×(k+1):

~µ=




µ

µ

...

µ

µ




, Σ =




1 ρ1ρ2 . . . ρ1ρk ρ1

ρ2ρ1 1 . . . ρ2ρk ρ2

...
...

. . .
...

...

ρkρ1 ρkρ2 . . . 1 ρk

ρ1 ρ2 . . . ρk 1




σ2.

Reporting the Score. Together with acquiring information, the student graders also decide

whether to make an accurate report about their assessed quality. A similar problem is examined

by Morris and Shin (2002), where agents employ a reporting strategy that takes the convex com-

bination of public and private signals in equilibrium. In much the same spirit, we consider a linear

reporting strategy that combines public information µ and private information Ai(ρi):

Gi = αiAi(ρi) + (1−αi)µ.

In other words, given an assignment to grade, a student grader has an additional lever αi ∈ [0,1]

that can substitute for information acquisition ρi. If αi = 1, then the reported score equals the

outcome of the assessment (i.e., we have truthful reporting); but if αi < 1, then the reported score

has been adjusted toward the sample mean µ. Hence we say that the higher αi is, the more truthful

the reporting. We consider two types of student graders, as described next.

Honest type. Graders of the honest type always report truthfully; that is, αi = 1 and Gi =Ai

for all i. In other words, these graders behave strategically only when determining their level ρi of

information to acquire about the assignment’s quality.

Strategic type. Graders of the strategic type behave strategically regarding both information

acquisition and reporting. That is, they behave strategically when deciding (ρ,α) and, in contrast

to the case of honest graders, the level αi ∈ [0,1] of reporting is determined by an equilibrium.

4 Cov(Ai,Aj) = E[(Ai − µ)(Aj − µ)] = E
[(
ρi(Q− µ) + εi

√
1− ρ2iσ

)(
ρj(Q− µ) + εj

√
1− ρ2jσ

)]
= E[ρi(Q− µ)ρj(Q−

µ)] = ρiρjE[(Q−µ)2] = ρiρjσ
2, where εi and εj are independent standard normal variables.
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In what follows, we examine the effects of strategic grading behavior by analyzing homogeneously

honest graders and homogeneously strategic graders separately. To make the reference to honest

or strategic graders explicit, we will use the subscript h or s, respectively, wherever appropriate.

However, for general usage we will omit the subscript.

3.2. Economics of Assessing and Reporting Grades

In this section we describe the economic trade-off facing each rational grader.

Cost of Information Acquisition. Information acquisition is costly, and how that cost is

modeled plays a significant role in determining the economic behavior of peer graders. Arrow (1996)

proposes two functional forms for the information acquisition cost C(ρ). One employs the Shannon

entropy measure of information,5 and the other relies on Bayesian normal sampling. Specifically,

Arrow (1996) suggests that the cost of acquiring information ρ, that is, C(ρ), should be proportional

either to the decrease in expected entropy (H(X)−E[H(X|ρ)]) or to the increase in precision τ

(, 1/σ2). This economic logic leads to two functional forms for C(ρ) that result in identical insights.

For the sake of brevity, we shall focus on the first illustrated form:6

Lemma 1 (Information Acquisition Cost (Arrow 1996)).

C(ρ) =−c log(1− ρ2), for some constant c.

The proportionality constant c represents the marginal cost of acquiring information. We next

examine this cost relative to the benefit of information acquisition.

Benefits of Information Acquisition and Reporting. The student graders have incentives

to acquire information. First, they have an intrinsic motivation to have their submitted score Gi

reflect the true quality q. We remark, however, that the true quality q of an assignment is not

5 The Shannon entropy of random variable X is defined as H(X),E[− log(f(X))], where f(·) denotes the probability

density function.

6 The other form leads to C(ρ) =−cρ2/(1−ρ2). Other more intuitive cost functions, such as a linear or quadratic cost

of information as well as ρ
1−ρ or − log(1− ρ), all lead to expressions that are not amenable to analysis and insights.
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observable—only the reported peer grade Ĝ can be observed. It follows that student graders also

have an extrinsic motivation for their submitted score Gi to be close to the MOOC’s reported grade

Ĝ(G1, . . . ,Gk). Thus, we have described two different forms of grading inaccuracies that student

graders seek to minimize, which we now define formally. We use the expected squared distance for

tractability.

Definition 1 (Absolute Error and Relative Error).

(i) The absolute error is E[(Gi−Q)2].

(ii) The relative error is E[(Gi− Ĝ)2].

Decisions of Student Graders. Observe that the relative error depends on other student

graders’ decisions—a dependence that induces student graders to behave strategically when deter-

mining (ρi, αi). Let ~α , (α1, . . . , αk) and ~ρ , (ρ1, . . . , ρk). Each student grader determines their

best-response grade assessment (ρi, αi) by solving

min
ρi,αi

C(ρi) +w1E
(
αiAi(ρi) + (1−αi)µ−Q

)2
+w2E

(
αiAi(ρi) + (1−αi)µ− Ĝ(~α, ~ρ )

)2
. (4)

The weights w1 and w2 respectively represent student graders’ intrinsic motivation to reduce the

absolute error and their extrinsic motivation to reduce the relative error.

If ρi were a constant, then (4) would be similar to the problem proposed by Morris and Shin

(2002). Those authors show that, when deciding on the costless reporting strategy αi, there is a

unique equilibrium linear grading strategy α?, and this equilibrium represents the unique equilib-

rium for all strategies. Our model generalizes Morris and Shin (2002)’s model by incorporating the

information acquisition decision ρi and its cost C(ρi).

4. Analysis

In this section we examine MOOCs’ current peer grading practice, which uses the simple average as

the aggregation method, and we discuss how the strategic (economic) behavior of student graders

affects the outcomes of that practice.
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An assignment’s final grade is the average of the grades assigned by k independent graders.

By (2), the assessed quality of an assignment with actual quality q is characterized by the following

random variable:

Ḡ(ρ1, . . . , ρk),
∑k

i=1Gi(ρi)

k
∼N

(
µ+ (q−µ)

∑k

i=1αiρi
k

,
σ2

k2

( k∑

i=1

α2
i (1− ρ2i )

))
.

Recall, from (4), that graders have an incentive to submit grades that are close to those submitted

by their peers. As a consequence, the strategies regarding both information acquisition ρi and the

score reporting αi depend on those of other students. Our first proposition establishes the existence

of a unique (and symmetric) equilibrium.

Proposition 1 (Unique Symmetric Equilibrium). Let Ĝ= Ḡ.

(i) If student graders are homogeneously of the honest type, then the following statements hold:

• If w1 > 0, then there exists a unique symmetric equilibrium information acquisition level

ρ?h ∈ (0,1).

• If w1 = 0, then one of the equilibria is the failure of peer grading: ρ?h = 0.7

(ii) If student graders are homogeneously of the strategic type, then the following statements hold:

• If c < σ2w2
1k

2/(w1k
2 +w2(k− 1)2), then there exist a unique symmetric equilibrium infor-

mation acquisition level and reporting strategy (ρ?s, α
?)∈ (0,1)× (0,1).

• If c≥ σ2w2
1k

2/(w1k
2 +w2(k− 1)2), then the failure of peer grading (ρ?s = α? = 0) is one of

the equilibria.

(iii) Furthermore, ρ?s ≤ ρ?h < 1 and α? ≤ ρ?s.

When student graders are honest in reporting scores, we observe that there is always a nonfailing

unique equilibrium provided that those graders have intrinsic motivation (w1 > 0). Absent intrinsic

motivation, peer grading fails—in which case, the MOOC’s peer grade Ĝh is uncorrelated with the

assignment’s true quality q. When student graders care about their submitted scores’ proximity

to the true quality, they seek to minimize the absolute inaccuracy and hence will acquire positive

7 To identify a nonfailing equilibrium, we treat as a failure any multiple equilibria involving failure.
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information; however, when they only care about their scores’ proximity to other graders, they are

not inclined to acquire costly information, and thus they submit scores that are uncorrelated to

the true qualities. That peer grading does not fail in practice (see, e.g., Li et al. 2016) suggests the

existence of intrinsic motivation—that is, of w1 > 0.

Similarly, when student graders are strategic in reporting their assessment, there exists a unique

nonfailing equilibrium if the marginal cost c is below a certain threshold. However, if that cost

is above the threshold, then peer grading fails and degenerates to a pure-strategy equilibrium in

which everyone reports the average grade, µ. In that event, Ĝs = µ, and there will be no variance

in the assessed grades.

Finally, we observe that student graders who are strategic about reporting acquire less informa-

tion than do honest graders, and they always report untruthfully.

The following corollary provides explicit expressions for the equilibrium when w2 = 0.

Corollary 1 (Effect of w1 and w2 on the Failure Regime). Suppose w1 > 0 and w2 = 0.

If c≤w1σ
2, then

ρ?h =

√
c2 + 4w2

1σ
4− c

2w1σ2
, ρ?s = α? =

(
1− c

w1σ2

)1/2

;

otherwise, peer grading fails, and ρ?h = ρ?s = α? = 0.

We observe that, in contrast to the case of no intrinsic motivation (w1 = 0), if there is no extrinsic

motivation (w2 = 0), then peer grading never fails for honest graders; it fails only when c≥ w1σ
2

for strategic graders (in line with the failure condition of Proposition 1(ii)). Moreover, equilibrium

information acquisition levels do not depend on the number k of peer graders, because relative

inaccuracy is costless (w2 = 0).

The realized peer grades as a function of quality are plotted in Figure 2, with the left and

right columns illustrating the peer grading outcome for homogeneously honest and homogeneously

strategic graders, respectively. The slope of the solid (red) lines represents the correlation between

an assignment’s quality Q and the MOOC’s peer grade Ĝ, and also corresponds to the equilibrium

information acquisition level ρ?h if graders are honest or to α?ρ?s if they are strategic. Moreover, the
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slope is less than 1 (45 degrees) and less for strategic graders (upper right panel) than for honest

graders (upper left panel). The figure’s lower panels correspond to a setting in which w1 = 0—

that is, when peer grading fails. In this setting, the reported MOOC peer grades are uncorrelated

with the actual quality even when the graders are honest reporters (lower left), whereas they are

uniformly µ when the graders are strategic reporters (lower right).

Figure 2 The realized MOOC peer grade (Ĝ) as a function of the true assignment quality (q).
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Figure 3 Four possible fixed points. Parameters: p̄A = p̄B = 15, lA = lB = 0.15, x = 5, �Q = 0; ⇠ = 3.5 (upper

left), ⇠ = 1.75 (rest); K = 0 (upper left and lower right), �K =�5 (lower left), K = 5 (upper right).

First, we observe that a lower ⇢? or ↵? leads to grading that is less accurate. Second, peer

grading exhibits a systematic bias toward the mean. Namely, q > µ implies E[Ĝ] < q and q < µ

implies E[Ĝ] > q. The implication of this latter observation is that a high-quality (resp. low-quality)

assignment is expected not to receive the high (resp. low) grade it deserves. That outcome can

be clearly seen in the upper right panel of Figure 2, where the variation in assignment quality q

(ranging mostly between 0 and 100 on the horizontal axis) is greater than the variation in realized

MOOC peer grades Ĝ (mainly between 30 and 70 on the vertical axis). Finally, we observe again

that, when student graders are strategic in reporting their scores, peer grading su↵ers in terms of

both accuracy and bias.

Note. The solid (red) line represents the expected MOOC peer grade E[Ĝ|q] as a function of the true assignment

quality q. The panels in the left and right columns plot results for graders who are respectively honest and strategic.

The slope corresponds to the correlation between Ĝ and Q: ρ?h = 0.85 (upper left panel); α?ρ?s = (0.63)(0.75) (upper

right panel); ρ?h = 0 (lower left panel); and ρ?s = α? = 0 (lower right panel). Parameters: µh = 56, µs = 50 (E[q(e?)] =

10 log(e?) + 35), w1 = 1, w2 = 1 (upper row panels), w1 = 0 (lower row panels), k= 3, σ= 15, and c= 100.
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From the MOOC’s perspective, reducing the difference between peer grades and the assignment’s

true quality is necessary in order to sustain the scalable peer grading practice. If the instructor

could replace peer grading, then the points on these graphs would be uniformly scattered along the

45-degree line. However, we can see that the peer grading average (solid red line) deviates from the

45-degree line and that there are additional variations around the peer grading average. These two

factors contribute to the inaccuracy of grading, which is measured by the MSE. From the students’

perspective, prior to taking the course, there is a need for assurance that the final grade Ĝ based

on peer grading will accurately reflect a high level of quality q. These considerations lead to our

next proposition.

Proposition 2 (Effect of Graders’ Strategic Behavior on the MOOC’s Reported Peer Grades).

(i) The inaccuracies in the reported grades as measured by the MSE are as follows:

E[(Ĝh−Q)2] = σ2

(
1− ρ?2h
k

+ (1− ρ?h)2
)
, E[(Ĝs−Q)2] = σ2

(
α?2(1− ρ?2s )

k
+ (1−α?ρ?s)2

)
.

In addition, E[(Ĝh−Q)2] is decreasing in ρ?h and E[(Ĝs−Q)2] is decreasing in both ρ?s and α?.

(ii) The expected peer grades for an assignment of quality q are as follows:

E[Ĝh|q] = (1− ρ?h)µ+ ρ?hq, E[Ĝs|q] = (1−α?ρ?s)µ+α?ρ?sq.

(iii) We have E[(Ĝs−Q)2]≥E[(Ĝh−Q)2] and E|[Ĝs|q]− q| ≥E|[Ĝh|q]− q|.

First, we observe that a lower equilibrium information acquisition level ρ? or less truthful report-

ing behavior α? leads to grading that is less accurate. Second, peer grading exhibits a systematic

bias toward the mean. Namely, q > µ implies E[Ĝ] < q, and q < µ implies E[Ĝ] > q. The impli-

cation of this latter observation is that a high-quality (resp. low-quality) assignment is expected

not to receive the high (resp. low) grade it deserves. That outcome can be clearly seen in the

upper right panel of Figure 2, where the variation in the assignment quality q (ranging mostly

between 10 and 90 on the horizontal axis) is greater than the variation in the realized MOOC

peer grades Ĝ (mainly between 30 and 70 on the vertical axis). Finally, we observe again that,
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when student graders are strategic in reporting their scores, peer grading suffers in terms of both

accuracy and bias.

From a student’s perspective, the peer grading’s bias toward the mean implies that a high-

quality assignment’s grade (E[Ĝh|q] or E[Ĝs|q]) would be discounted by the factor ρ?h (with honest

graders) or the factor α?ρ?s (with strategic graders). The knowledge of that bias may affect students’

motivation to exert learning effort during the course, as formalized next.

Corollary 2 (Effect of Bias toward the Mean on Learning).

(i) If graders are honest, then a student’s learning effort during the course is e?h = κρ?h.

(ii) If graders are strategic, then a student’s learning effort during the course is e?s = κα?ρ?s.

Lower values of ρ?h (and ρ?sα
?) reflect a higher grading bias towards the mean, in which case

students exert less learning effort. Also, based on Proposition 1(i), in environments with honest

graders, students exert more effort to learn, i.e., e?h > e?s. This can be observed in Figure 2. The

average assignment quality is higher when graders are honest (µh = 56, left column) compared to

when graders are strategic (µs = 50, right column).

We have shown that a higher equilibrium information acquisition level ρ? and truthful reporting

α? improve grading accuracy, reduce grading bias, and motivate student learning. In which situa-

tions, then, is peer grading most effective? What can an MOOC do to improve peer grading? We

develop some insight regarding these concerns by examining the properties of ρ?h, ρ?s, and α?.

Corollary 3 (Effects of k, w1, w2, c, and σ).

(i) ρ?h is increasing in k, σ, w1/c, and w2/c;

(ii) ρ?s and α? are increasing in σ and w1/c.

We observe that higher intrinsic motivation (w1) or lower marginal cost (c) leads students to

increase their level of information acquisition and also makes it more likely that they will report

truthfully. Moreover, a course exhibiting a higher standard deviation in quality (σ) also motivates

students to acquire more information, because higher variation in assignment quality requires
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student graders to adjust from the anchor (mean) to a greater degree if they are to improve both

relative and absolute accuracy.

It is interesting that the number k of peer graders and the extrinsic motivation w2 can each

have different effects on the equilibrium outcome depending on whether student graders are honest

or strategic in reporting their assessed scores. When student graders are honest, increasing these

parameters motivates them to acquire more information (part (i)). However, the same cannot

always be said when graders are strategic (part (ii)). The difference reflects these graders’ access

to an additional lever α, by which an increase in w2 or k encourages strategic reporting behavior

while reducing the cost of acquiring information. This dynamic is illustrated in Figure 3.

Figure 3 Effects of k (left panel) and w2 (right panel) as a function of grader type: honest or strategic.
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Note. Parameters: σ= 1, c= 0.38, w1 = 1, w2 = 2 (left panel), and k= 3 (right panel).

From the MOOC’s perspective, it is easy to alter the number k of graders. Moreover, the observ-

ability of Ĝ implies that an MOOC can affect the extrinsic motivation parameter w2 by keeping

track of graders’ accuracy and by rewarding accurate grading—either financially (e.g., giving dis-

counts on future course enrollments) or nonfinancially (e.g., offering recognition; see Gallus 2017).

The other factors w1, c, and σ are more difficult to influence. So if the student graders are honest,

then the MOOC can improve its peer grading by influencing k or w2. Any increase in k, how-

ever, results in each student i being required to grade more assignments. Because an MOOC will
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not want to overburden student graders (note that the grading burden k · C(ρi) increases with k

when graders are honest), k should be not be increased beyond an acceptable grading burden. In

contrast, if the student graders are strategic, the equilibrium information acquisition level ρ?s is

nonmonotonic in k and w2, making such a strategy less straightforward. Next, we present a grading

scheme that bypasses such challenges by improving peer grading dynamics more fundamentally.

5. The Scale-Shift Grading Scheme Ĝ

In the previous section, we showed that the peer grading policy based on the simple average Ḡ is

easy to implement, but suffers from inaccuracy and systematic bias. In this section, we propose a

practically implementable scale-shift grading scheme that can improve these shortcomings.

As motivation for the scale-shift grading scheme, suppose that an MOOC seeks to improve

grading accuracy so that the MSE E[(Q−Ĝ)2] is minimized or to de-bias grading so that E[Ĝ|q] = q.

Each of these objectives can be achieved by applying a simple linear transformation of the simple

average Ḡ as follows:

Lemma 2 (Ĝ That Minimizes the MSE or Eliminates Bias Given ρ).

(i) Minimize the MSE : Ĝ= µ+
kρ

α(1 + (k− 1)ρ2)
(Ḡ−µ).

(ii) Eliminate bias : Ĝ= µ+
1

αρ
(Ḡ−µ).

Observe that both cases take the functional form Ĝ= µ+ ξ · (Ḡ−µ). It is important to bear in

mind that an MOOC’s announcement of the scale-shift factor ξ will affect each student’s trade-

off (4) and the resulting equilibrium values of ρ?h and (ρ?s, α
?). Hence, the values kρ

α(1+(k−1)ρ2) and

1
αρ

do not achieve the respective aims. However, if the appropriate “scale-shift factor” ξ is applied,

the desired effects can be achieved, as illustrated in Figure 4. (The small red × marks and the

dotted red line represent the MOOC peer-grading outcome based on Ḡ; the blue circles and the

solid black line illustrate the adjusted grade that each sample point would have received if the

scale-shift factor ξ had been employed.) In the left panel, the moderate adjustment represented
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by ξ = 1.32 minimizes MSE; in the right panel, the larger shift in ξ = 1.38 helps re-adjust the grade

toward the 45-degree line, on which E[Ĝ|q] = q.

In what follows, we study the impact of announcing the scale-shift factor ξ on equilibrium grading

behavior, identify the appropriate scale-shift factors that minimize grading inaccuracy or eliminate

bias, and discuss the practical implementation challenges.

Figure 4 Effects of adjusting ξ.
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Note. The dashed (red) line represents the expected MOOC peer grade Ḡ as a function of the true assignment

quality q. The left panel illustrates the shift that minimizes grading inaccuracy, represented by the solid (black) line,

and the right panel, the de-biasing function, represented by the solid (black) line. Parameters: fully strategic graders

with ρs = 0.75, α? = 0.63, µ= 50, w1 = 1, w2 = 1, k= 3, σ= 15, and c= 100.

The next proposition summarizes how ξ affects a grader’s equilibrium level for information

acquisition and the reporting strategy.

Proposition 3 (Impact of ξ on Unique Symmetric Equilibrium).

(i) Suppose that student graders are honest. Then there exists a unique equilibrium information

acquisition level ρ?h(ξ), ξ ∈ (0, k). Moreover, ρ?h(ξ) is increasing-decreasing in ξ, and its maximum

value is achieved at ξ = k
2
.
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(ii) Suppose that student graders are strategic. Then there exist c̄(ξ), c(ξ), and c̄(ξ)≥ c(ξ) 8 such

that:

• if c < c(ξ), then there exists a unique symmetric equilibrium (ρ?s(ξ), α
?(ξ)) = (ρ?h(ξ),1);

• if c∈ [c(ξ), c̄(ξ)], then there exists a unique symmetric equilibrium (ρ?s(ξ), α
?(ξ)), where ρ?s(ξ)<

ρ?h(ξ) and α?(ξ)< 1;

• if c > c̄(ξ), then one equilibrium is the failure of peer grading (ρ?s = α? = 0).

Moreover, ρ?s(ξ) and α?(ξ) are increasing at ξ ≤ 1 and decreasing at ξ ≥ k.

Comparing this proposition to Proposition 1, there are two key observations that demonstrate

the benefit of having ξ > 1. First, we find that if the grading cost c is small enough, an appropriate

scale-shift factor can motivate strategic graders to report their scores truthfully, like their honest

counterparts. This outcome indicates that scale-shift grading can altogether eliminate the detri-

mental effects of graders’ strategic reporting behavior. Second, implementing a scale-shift factor

ξ > 1 can move peer grading out of its failure region (because the value of c̄(ξ) is increasing in ξ),

thus enabling peer grading to be applicable to a wider range of MOOC courses.

The impact of a scale-shift factor ξ > 1 on the information acquisition levels ρ?h(ξ) and ρ?s(ξ) and

on the reporting behavior α?(ξ) of student graders are illustrated in Figure 5. At ξ = 1, we have

α? < ρ?s < ρ?h < 1, relations that are consistent with Proposition 1. The equilibrium information

level ρ?h(ξ) for the honest type of grader is unimodal and symmetric, and its maximum is reached

at ξ = k/2; in contrast, the corresponding equilibrium information level ρ?s(ξ) for graders of the

strategic type is maximized either at ξ = k/2, when strategic reporting behavior disappears (left

panel of Figure 5), or at ξ > k/2 (right panel). Observe that ρ?h(ξ) ≥ ρ?s(ξ) for all ξ. The initial

increase occurs because the scale-shifted grade Ĝ places greater weight on each student grader’s

reported grade, which increases the variance of the aggregation from those grades. Minimizing

relative inaccuracy requires that the grader acquire more information (much as when the standard

deviation σ in grades is high). The eventual decrease in these values as ξ further increases is caused

8 Explicit expressions for c̄ and c are given in the proof in the Appendix.
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by the high cost of acquiring a large amount of information, which prompts the graders to reverse

their strategy. Observe that the decrease occurs for ξ < k, suggesting that it suffices to consider

ξ ∈ [1, k] for the remainder of this paper.

Figure 5 Comparison of honest and strategic graders under low (left panel) and high (right panel) grading costs.
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Note. When c is small, an increase in ξ induces strategic graders to report honestly. Parameters: k = 3, w1 = 1,

w2 = 1, σ= 1, c= 0.1 (left panel), c= 0.6 (right panel), and ξ ∈ (0, k).

The following result reports the impact of ξ on the grading accuracy and bias.

Proposition 4 (Effect of the Scale-Shift Factor ξ).

(i) The MSE depends on ξ as follows:

E[(Ĝh(ξ)−Q)2] = σ2

(
(ρ?h(ξ)ξ− 1)2 +

(1− ρ?h(ξ)2)ξ2

k

)
,

E[(Ĝs(ξ)−Q)2] = σ2

(
(α?(ξ)ρ?s(ξ)ξ− 1)2 +

(1− ρ?s(ξ)2)α?(ξ)2ξ2
k

)
.

(ii) The expected peer grade given to an assignment of quality q depends on ξ as follows:

E[Ĝh(ξ)|q] = (1− ρ?h(ξ)ξ)µ+ ξρ?h(ξ)q,

E[Ĝs(ξ)|q] = (1−α?(ξ)ρ?s(ξ)ξ)µ+ ξα?(ξ)ρ?s(ξ)q.

The next corollary reveals how the dynamics of ξ increases students’ incentive to exert learning

effort during the course.
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Corollary 4 (Effect of ξ on Learning e?).

(i) When graders are honest, the level of student learning is e?h(ξ) = κξρ?h(ξ).

(ii) When graders are strategic, the level of student learning is e?s(ξ) = κξα?ρ?s(ξ).

Using the expressions of Proposition 4, the scale-shift factors ξmseh and ξmses that minimize the

MSE for honest and strategic types of graders, respectively, can be represented as

ξmse
h , arg min

ξ

E[(Ĝh(ξ)−Q)2] and ξmse
s , arg min

ξ

E[(Ĝs(ξ)−Q)2].

Similarly, the scale factors ξdebh and ξdebs that eliminate bias for honest and strategic types of

graders, respectively, exist, as the next lemma shows.

Lemma 3 (Existence of ξdeb). The scale-shift factors ξdebh , min

{
ξ | ξ = 1

ρ?
h
(ξ)

}
and ξdebs ,

min

{
ξ | ξ = 1

α?(ξ)ρ?s(ξ)

}
that de-bias the grades always exist, provided that peer grading does not fail

(i.e., c < c̄). Moreover, ξdebs > ξdebh > 1.

We also remark that as long as peer grading does not fail, we can numerically observe that the scale-

shift factor that minimizes the MSE is smaller than the one that eliminates bias, i.e., ξmse
h < ξdebh

and ξmse
s < ξdebs .

For any ξ < ξdeb, as in the current peer grading scheme (ξ = 1), there is a bias toward the mean,

which implies that students will receive similar scores regardless of differences in the quality of

their respective assignments (or in their efforts). For example, if µ= 50, an assignment of quality

60 is expected to receive a score of 55 and one of quality 40 should receive a score of 45. However,

when ξ > ξdeb, there is a bias away from the mean that disproportionately rewards or penalizes

the students for (respectively) higher and lower quality assignments. In this case, an assignment of

quality 60 is expected to receive a score of 80 and one of quality 40 should receive a score of 20.

Learning e? increases with ξ and continues to do so until it reaches ξe?h , arg maxξ e
?
h(ξ) and ξe?s ,

arg maxξ e
?
s(ξ). However, these tend to be significantly larger (close to k= 3) than their respective

de-biasing points ξdebh and ξdebs . In other words, high learning effort can be achieved by creating
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a large bias away from the mean.9 However, implementing ξe? results in both highly inaccurate

and highly biased peer grading, making this an undesirable candidate for being a practically viable

scale-shift factor.

Thus, we will focus on the impact of implementing ξmse and ξdeb. Figure 6 illustrates the MSE

and the learning effort as a function of ξ. In both panels, the prevailing MSE and level of student

learning e? are represented at ξ = 1. As ξ increases, the MSE falls until ξ = ξmse, after which the

MSE increases, and the bias towards the mean decreases until it disappears at ξ = ξdeb, after which

bias away from the mean increases. Thus, the level of bias is smaller when ξmse is employed than

when ξ = 1. For honest graders (left panel), relative to the current practice (ξ = 1), implementing

ξmse improves both the MSE and learning, i.e., it achieves Pareto-efficient improvement, whereas

implementing ξdeb improves learning but hurts the MSE. For strategic graders (right panel), both

ξmse and ξdeb achieve Pareto-efficient improvements over the current practice.

Figure 6 The MSE (solid curve) and learning effort (dashed curve) when graders are honest (left panel) versus

strategic (right panel).
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types of graders are

⇠mse
h , argmin

⇠

E[(Ĝh(⇠)�Q)2], and ⇠mse
s , argmin

⇠

E[(Ĝs(⇠)�Q)2].

There exist scale-shift factors ⇠deb
h > 1 and ⇠deb

s > 1 that eliminate grading bias. The factors for

honest and strategic graders are, respectively,

⇠deb
h ,min

⇢
⇠ | ⇠ =

1

⇢?h(⇠)

�
, ⇠deb

s ,min

⇢
⇠ | ⇠ =

1

↵?(⇠)⇢?s(⇠)

�
.

What is the theoretical xiMSE and xideb? The adjustments made by these scale factors are

illustrated in Figure 6. The small red ⇥ marks represent sample points from Figure 2’s upper right

panel, and the dotted red line plots the average of those points. The blue circles—and solid black
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E[(Ĝs(⇠)�Q)2] = �2

✓
(↵?(⇠)⇢?s(⇠)⇠� 1)2 +

(1� ⇢?s(⇠)
2)↵?(⇠)2⇠2

k

◆
.

(ii) The expected peer grade given to an assignment of quality q depends on ⇠ as follows:
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E[Ĝh(⇠)|q] = (1� ⇢?h(⇠)⇠)µ + ⇠⇢?h(⇠)q,
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Note. Parameters: w1 = 1, w2 = 1, k= 3, σ= 15, and c= 100.

Comparing the two settings, we observe that the values of ξmseh and ξdebh are smaller than those

of ξmses and ξdebs , and their effects on the MSE and learning are smaller for honest graders. Recall

9 In fact, it can be shown that ξe? > ξdebh . Otherwise, because ξρ?h(ξ) is continuous in ξ and is also less than 1 at ξ = 1,

there must exist ξ̃ ≤ ξe?h < ξdebh such that ξe?h ρ
?
h(ξe?h )≥ 1—however, this is contradicted by the definition of ξdebh .
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from Corollary 3 that if the graders are honest types, then the equilibrium effort ρ?h increases with

both k and w2. Thus, for honest graders, increasing k or w2 to a certain extent should be an

effective alternative to implementing the scale-shift grading. For strategic graders, the effect of ξ

is stronger than for honest graders, but the effects of k and w2 are unclear. We conclude that a

scale-shift grading scheme should be considered if an MOOC suspects that its graders are reporting

their assessment strategically—which may be the case, for example, when the correlation between

assignment quality and assigned grades is low.

Next we discuss, within the bounds of our model assumptions, how the scale-shift grading policy

can be implemented in practice and also investigate the performance using a simulation study.

Implementation beyond our model assumptions (e.g., involving heterogeneous types of graders)

lies beyond the scope of this paper.

Practical Implementation

A key practical challenge of implementing the scale-shift grading policy is determining an appropri-

ate ξ. This is because the parameters for the peer graders’ tradeoff in information acquisition, i.e.,

the cost of acquiring information (c) and the intrinsic and external rewards for accurate grading

(w1, w2)–or more simply, w1/c and w2/c–are unobservable by the MOOC. (For notational simplic-

ity, we normalize c= 1 and use w1 and w2, respectively.) To be able to implement the scale-shift

grading, the MOOC must be able to estimate these.

Thus, the platform operator must first identify the MOOCs for which simple controlled experi-

ments can be conducted. These are the ones that run frequently (e.g., every quarter) with similar

student profiles and that produce similar assignment qualities. For the given courses, over subse-

quent running of the same course, the MOOC can run peer grading using different values of k. For

example, if k= 3 is currently being employed, then the MOOC can run a peer grading scheme with

k = 2 or k = 4, or both. Next, for each course, assuming that the instructor can recover the true

quality of the assignments, the MOOC can ask the instructor to grade a sample of the assignments

and submit the scores. The MOOC can then evaluate the correlations between the MOOC’s peer
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grades and the true assignment qualities that result from different values of k, or ρ̂(k). The MOOC

can then infer the most likely ŵ1 and ŵ2 via the maximum likelihood estimate, or

(ŵ1, ŵ2) = arg min
(w1,w2)

∑

k∈K

(
ρ̂(k)−α?(w1,w2|k)ρ?(w1,w2|k)

)2

,

where K represents the set of values of k that were used. Observe that |K| should be no less than 2

in order to estimate two parameters. Finally, using the estimated values of ŵ1 and ŵ2, the MOOC

can compute ξ̂mse or ξ̂deb and employ this in the next quarter.

In practice, it can be prohibitively costly or infeasible to run too many experiments. Given the

small data sample (2 or 3), the estimates (ŵ1, ŵ2) can result in a large variation and could lead

to shift-scale factors ξ̂mse or ξ̂deb that are different than their theoretical values. To gauge the

performance of the scale-shift policy in practice, we conduct a simulation study. We consider an

MOOC that runs every quarter, where N = 3,000 assignments are submitted at the end of the

course to be graded. We assume student graders with (w1,w2) = {0.01,0.01} and that the MOOC

seeks to implement the appropriate scale shift policy at k= 3.

We consider eight (2× 2× 2) different combinations of scenarios. The MOOC runs

• either one experiment (with k= 2) over one quarter or two experiments (with k= 2 and with

k= 4) over two consecutive quarters for each course;

• out of the 3,000 assignments, the instructor samples either n= 30 or n= 100 assignments and

submits their grades (reflecting their true qualities);

• the MOOC then employs either ξ̂mse or ξ̂deb.

For all scenarios, we conduct 1,000 iterations of the scale-shift policy implementation and report

the average values and the standard deviations (shown in brackets) for their estimates in Table 1.

First, we observe that the averages of the estimates of (ŵ1, ŵ2) are relatively close to the true

values (0.01,0.01). However, while the standard deviation of ŵ1 is relatively low (10% of the mean),

that of ŵ2 is high (100% of the mean). This is because the theoretical equilibrium values of α? and

ρ? are monotonic in w1/c, whereas they are not in w2/c (Corollary 3), which makes it easier to

estimate the former. The variation in the estimation leads to variations in the scale-shift factors ξmse
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Table 1 Scale-shift policy implementation results.

setup estimates minimize grading inaccuracy (MSE) eliminate systematic grading bias

K n ŵ1 ŵ2 ξ̂mse MSE e? µ %P ξ̂deb MSE e? µ %P

{2,3}
30 .010(.002) .015(.016) 1.35(.18) 51.4(19.6) 9.7(2.9) 57.2 .88 1.59(.41) 117.9(90.6) 12.3(5.1) 59.2 .53

100 .010(.001) .014(.013) 1.33(.14) 43.7(10.8) 9.3(2.3) 57.0 .98 1.48(.32) 82.5(68.7) 11.1(4.2) 58.4 .68

{2,3,4}
30 .010(.002) .015(.015) 1.34(.17) 49.2(16.7) 9.5(2.7) 57.1 .89 1.55(.39) 104.5(87.9) 11.8(4.8) 58.8 .61

100 .010(.001) .013(.011) 1.33(.13) 42.0(10.7) 9.4(2.1) 57.1 .97 1.46(.28) 72.7(60.2) 11.0(3.7) 58.4 .71

Theoretical ξ implementation: 1.32 31.8 6.9 54.3 - 1.38 33.8 7.3 54.8 -

Current practice (ξ = 1): 1 76.4 4.7 50 - 1 76.4 4.7 50 -

Note. µ= E[q(e∗)] = 10 log(e∗)+ 35.

and ξdeb. We observe that the average estimates of ξmse and ξdeb are greater than the theoretical

values. The variation in the estimates for ξmse is less than that for ξdeb because, by Lemma 2,

the former (which mimics the form kρ?

α?(1+(k−1)ρ?2)) is less sensitive to deviations in α? and ρ? than

the latter (which mimics the form 1
α?ρ?s

and is therefore highly sensitive). We observe that as the

number of experiments |K| or the number of instructor grades n increases, the variability in the

estimates decreases, and the average values of parameters approach the theoretical values.

Due to the overestimation of ξ, we observe that both the average MSE and the average learning

(e?) are greater than their theoretical values. Due to the convexity of the MSE with respect to ξ

(Figure 6), the variability of ξ̂ also contributes significantly to the increase in the expected MSE.

Compared to the base case of ξ = 1, when the scale-shift factor ξ̂mse is employed, improvement in

both the MSE and learning (i.e., Pareto-efficient improvement) is achieved 88%–98% of the time.

The MSE, while higher than the theoretical value (31.8), is significantly lower on average than

when a scale-shift policy is not employed (76.4); the increase in the learning effort results in an

increase in the average assignment quality (µ) of around 7 points. In contrast, when a scale-shift

factor ξ̂deb is employed, a Pareto-efficient improvement between 53% and 71% is achieved. The

average MSE is higher than the current practice with a significant standard deviation; the expected

improvement in learning effort results in an improvement of the average assignment quality by 8

to 9 points.
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In summary, for the assumptions of this section and resulting Table 1, we can recommend

practitioners to announce a peer grading scheme where a student’s grade would be determined not

by the simple average of peer grades, Ḡ, but a scale shifted grade µ+ 1.33 · (Ḡ−µ). Here, µ is the

predicted average grade (e.g., based on previous course outcomes), and the scale shift factor of 1.33

reflects ξmse (for any values of K and n considered). Doing so would induce more grading effort from

the student graders and result in greater learning in MOOCs. A more sophisticated methods for

eliciting or even influencing w1 and w2 can be further researched to make scale-shift grading scheme

more effective for MOOCs to improve the performance of peer grading. Nevertheless, relative to the

current peer grading practice, with moderate involvement of the instructors and experimentations

run by MOOCs, we believe that the scale-shift policy can be reliably implemented to achieve

simultaneous improvements in both peer grading accuracy and student learning outcomes.

6. Summary and Discussion

This paper treats information as a nonstatic variable (Arrow 1996), and examines how the cost of

acquiring information affects economic behavior in the context of online education. We present a

model of massive open online courses and develop insights into how peer grading performs under

the assumption that student graders are rational economic agents. To the best of our knowledge,

this is the first study to investigate how the accuracy of an MOOC’s peer grading scheme is affected

by graders’ economic behavior with regard to information acquisition.

Investigating the current peer grading practice allowed us to identify a unique equilibrium infor-

mation acquisition level and the reporting strategy of student graders. We present results regarding

how course characteristics and the peer grading scheme affect not only this equilibrium, but also

the inaccuracy of the peer grading (as measured by the mean squared error). We also find that peer

grading exhibits a systematic grading bias toward the mean, a trend that discourages the students

who observe it from exerting a learning effort during the course. Both grading inaccuracy and bias

increase—and so learning is compromised—when student graders are strategic in reporting their

assessments.
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To improve the current peer grading practice, we introduce the scale-shift grading scheme. We

demonstrate that this scheme can discourage strategic score reporting behavior, improve grading

accuracy, and be used to eliminate bias (and perhaps even to create bias away from the mean)—

improvements that will motivate student learning. We identify scale-shift factors that improve on

the current practice along both dimensions and in a Pareto-efficient manner. Finally, our results

establish that the scale-shift grading scheme is more effective when student graders are strategic

(rather than honest) in reporting their assessments. We discuss how the grading scheme can be

implemented and offer insights concerning its practical reliability.

Our model and insights offer some directions for future research. First, our results are based on

the assumption that students are homogeneous in terms of their unfamiliarity with the subject of

the assignments they are grading. In reality, however, some students might know the material well

and thus be able to grade accurately and with less costly effort. Although we believe that such

heterogeneity would not alter our main insights, understanding its effects is crucial for the fine-

tuning of any peer grading policy. A second direction involves accurately estimating the parameters

(including additional parameters for the case of heterogeneous graders). There is a rich literature in

the field of computer science that addresses the effects of grader heterogeneity and how those effects

can be estimated to improve the accuracy of peer grading mechanisms. It would be worthwhile to

explore combining such methods with our economic insights about rational peer grading behavior

in order to generate a deeper understanding of peer grading and how best to design a (scale-shift)

peer grading scheme that can be implemented.
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Satopää, V. A., J. Baron, D.P. Foster, B.A. Mellers, P.E. Tetlock, L.H. Ungar. 2014 Combining multiple

probability predictions using a simple logit model. International Journal of Forecasting, 30(2): 344–356.

Savva, N., T. Tezcan, O. Yildiz. 2019. Can yardstick competition reduce waiting times? Management Science,

65(7): 3196–3215.

Shah, N.B., J.K. Bradley, A. Parekh, M. Wainwright, K. Ramchandran. 2013. A case for ordinal peer-

evaluation in MOOCs, NIPS Workshop on Data Driven Education, Dec. 2013.

Shleifer, A. 1985. A theory of yardstick competition. RAND Journal of Economics, 16(3): 319–327.

Shnayder, V., A. Agarwal, F. Frongillo, D. Parkes. 2016. Informed truthfulness in multi-task peer prediction.

Proceedings of the 2016 ACM Conference on Economics and Computation, 179–196. Maastricht, The

Netherlands.

Walsh, T. 2014. The PeerRank method for peer assessment. Proceedings of the 21st European Conference on

Artificial Intelligence (ECAI), 909–914.



Author: Article Short Title
Article submitted to Operations Research; manuscript no. OPRE-2018-05-288.R3 35

Young, Jeffery, R. 2020. Will COVID-19 lead to another MOOC moment? Ed Surge, Higher Education, March

25, 2020. https://www.edsurge.com/news/2020-03-25-will-covid-19-lead-to-another-mooc-moment

Zhang, D., G. Allon, J.A. Van Mieghem. 2017. Does social interaction improve learning outcomes? Evi-

dence from field experiments on massive open online courses. Manufacturing & Services Operations

Management. 19(3): 347–367.

Zimmerman, D.J. 2003. Peer effects in academic outcomes: evidence from a natural experiment. Review of

Economic and Statistics, 85(1): 9–23.



Author: Article Short Title
36 Article submitted to Operations Research; manuscript no. OPRE-2018-05-288.R3

Appendix

Proof of Lemma 1. We first focus on deriving the first cost function. Without any information,

assessment is A∼N (µ,σ2), and the Shannon entropy is

E[− log(f(A))] =

∫ ∞

−∞
− log

(
1√
2πσ

exp

(
(x−µ)2

2σ2

))
f(x)dx

= log
(√

2πσ
)∫ ∞

−∞
f(x)dx−

∫ ∞

−∞

(x−µ)2

2σ2
f(x)dx= log(σ) +

log(2π)− 1

2
.

With information level ρ, we have A|ρ∼N (µ+ ρ(q−µ), (1− ρ2)σ2), and the Shannon entropy is

E[− log(f(A|ρ))] = log
(√

1− ρ2σ
)

+
log(2π)− 1

2
.

Applying Arrow’s cost function now yields

C(ρ) = c̄(E[− log(f(A))]−E[− log(f(A|ρ))]) = c̄
(

log(σ)− log
(√

1− ρ2σ
))

= c log(1− ρ2),

where c, c̄/2.

Proof of Proposition 1 (and Corollary 1). We prove this proposition for general ξ, or for Ĝ=

µ+ξ(Ḡ−µ). All results hold when ξ = 1. We first consider the honest type, then the strategic type

of graders.

(i) Honest Reporting. First we analyze the setting in which α= 1 and Gi =Ai for all i. With

regard to absolute inaccuracy: since Gi|q is Normally distributed with mean (1− ρi)µ+ ρiq and

variance (1− ρ2i )σ2, it follows that

E[(Q−Gi)
2] =E

{
E
[
(Q−Gi)

2|Q
]}

=E[(1− ρi)2(µ−Q)2 + (1− ρ2i )σ2] = 2(1− ρi)σ2.

As for relative inaccuracy, we have

ξḠ−Gi =
ξ

k

∑

∀`

G`(ρ`)−Gi(ρi) =
ξ

k

∑

` 6=i

G`(ρ`) +

(
ξ

k
− 1

)
Gi(ρi)

Conditional on Q= q, the Gi|q, i= 1,2, . . . , k are independent Normal distributions N ((1−ρi)µ+

ρiq, (1− ρi)σ2). Therefore,

Ĝ−Gi|q∼N
(

(q−µ)

(
ξ
∑
∀` ρ`
k

− ρi
)
,
ξ2σ2

k2

∑

` 6=i

(1− ρ2`) +

(
ξ− k
k

)2

σ2(1− ρ2i )
)
.

and

E
[
(Ĝ−Gi)

2|q
]

= V ar[Ĝ−Gi|q] +
(
E[Ĝ−Gi|q]

)2

=
ξ2σ2

k2

∑

` 6=i

(1− ρ2`) +

(
k− ξ
k

)2

σ2(1− ρ2i ) + (q−µ)2
(
ξ
∑
∀` ρ`
k

− ρi
)2

.
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A priori, student i does not know the assignment’s quality. Hence,

E[(Ĝ−Gi)
2] =E

{
E
[
(Ĝ−Gi)

2|Q
]}

=E

{
ξσ2

k2

∑

` 6=i

(1− ρ2`) +

(
k− ξ
k

)2

σ2(1− ρ2i ) + (Q−µ)2
(
ξ
∑
∀` ρ`
k

− ρi
)2
}

=
ξ2σ2

k2

∑

` 6=i

(1− ρ2`) +

(
k− ξ
k

)2

σ2(1− ρ2i ) +E
{

(Q−µ)2
}(ξ∑∀` ρ`

k
− ρi

)2

= σ2

(
ξ2

k2

∑

` 6=i

(1− ρ2`) +

(
k− ξ
k

)2

(1− ρ2i ) +

(
ξ
∑
∀` ρ`
k

− ρi
)2
)
.

For a given assignment, grader i (of k peer graders) acquires the information level ρi that

minimizes C(ρi) +w1E [(Gi−Q)2] +w2E
[
(Gi− Ĝ)2

]
, or

min
ρi
−c log(1− ρ2i ) +w1(1− ρi)σ2

+w2σ
2

[
ξ2

k2

∑

6̀=i

(1− ρ2`) +

(
k− ξ
k

)2

(1− ρ2i ) +

(
ξ
∑
∀` ρ`
k

− ρi
)2]

.

The second-order derivative with respect to ρi is 2c(1 + ρ2i )/(1− ρ2i )2 > 0; the objective is therefore

a convex function in ρi. The first-order condition (FOC) is

2cρi
1− ρ2i

−w1σ
2 + 2w2σ

2
ξ
∑

l 6=i ρl

k

ξ− k
k

= 0. (A-1)

We search for symmetric equilibrium such that

2cρi
1− ρ2i

=w1σ
2 + 2w2σ

2ρi
ξ(k− ξ)(k− 1)

k2
.

This equilibrium is the solution on [0,1] of a cubic function

F (ρ), ck2ρ− (1− ρ2)σ2(k2w1 + (k− 1)(k− ξ)ξρw2) = 0. (A-2)

When w1 = 0, one of the equilibria is ρ?h = 0. If w2 > ck2/(ξ(k − 1)(k − ξ)σ2), then there is

another symmetric equilibrium ρ?h =
(

1− ck2

ξ(k−1)(k−ξ)w2σ2

)1/2

. If w1 > 0, then F (0) =−w1k
2σ2 < 0

and F (1) = ck2 > 0, which guarantees the existence of at least one solution on (0,1).

∂F

∂ρ
= ck2 +σ2((3ρ2− 1)(k− 1)(k− ξ)ξw2 + 2k2ρw1),

ρ
∂F

∂ρ
−F = σ2(2(k− 1)(k− ξ)ξρ3w2 + k2(1 + ρ2)w1)> 0.

As a result, ∂F
∂ρ
> 0 provided that F (ρ) = 0. We conclude that F (ρ) cannot have more than one

zero point on [0,1] and that there is a unique zero point ρ?h. At the optimal solution ρ?h, we have
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F
′
(ρ?h)> 0. In other words, as long as w1 > 0, the symmetric equilibrium ρ?h is the unique solution

to the cubic function (A-2).

By the implicit function theorem,

∂ρ?h
∂c

=− ∂F/∂c

∂F/∂ρ

∣∣∣∣
ρ=ρ?

h

< 0.

Since
∂F (ρ)

∂w1

=−k2(1− ρ2)σ2 < 0 and
∂F (ρ)

∂w2

=−(k− 1)(k− ξ)ρ(1− ρ2)σ2 < 0,

it follows that

dρ?h
dw1

=− ∂F (ρ)/∂w1

∂F (ρ)/∂ρ

∣∣∣∣
ρ=ρ?

h

> 0 and
dρ?h
dw2

=− ∂F (ρ)/∂w2

∂F (ρ)/∂ρ

∣∣∣∣
ρ=ρ?

h

> 0.

That means that the optimal solution ρ?h increases with both w1 and w2. Similarly, ∂F (ρ)

∂σ
=−2(1−

ρ2)σ(w2ξ(k− 1)(k− ξ)ρ+w1k
2)< 0, which implies that ρ?h increases with σ, and ∂F (ρ)

∂c
= k2ρ > 0,

which implies that ρ?h decreases with c. We are now in a position to check the monotonicity of ρ?h

on k. From the equality

∂F (ρ)

∂k
=−2(1− ρ2)σ(w2ξ(k− 1)(k− ξ)ρ+w1k

2),

we can derive

2F (ρ)− k∂F (ρ)

∂k
= ρ(1− ρ2)ξ(k+ (k− 2)ξ)w2σ

2 > 0.

Since F (ρ?h) = 0, it follows that
∂F (ρ?h)

∂k
< 0. Therefore, ρ?h is increasing in k.

(ii) Strategic Reporting. Now we analyze the case where Gj = (1−αj)µ+αjAj, αj ∈ [0,1] is the

score that student j reports. The reported grade is (1− ξ)µ+ ξḠ. Given all other graders chooses

ρ,α, the objective of student 1 choosing ρ1, α1 is

min
ρ1,α1

O=−c log(1− ρ21) +w1E[(G1−Q)2] +w2E
[(

(1− ξ)µ+ ξ(G2 + . . .+Gk)/k−G1(k− ξ)/k
)2]
.

We know A1|q ∼ N ((1 − ρ1)µ + ρ1q, (1 − ρ21)σ2), which means that G1 − q|q ∼ N
(
(1 − α1ρ1)µ +

α1ρ1q− q,α2
1(1− ρ21)σ2

)
. To find the absolute inaccuracy, we have

E[(G1− q|q)2] = ((1−α1ρ1)µ+α1ρ1q− q)2 +α2
1(1− ρ21)σ2.

Therefore,

E[(G1−Q)2] =E[E[(G1−Q)2|Q]] = ((1−α1ρ1)µ+α1ρ1µ−µ)2 + (1−α1ρ1)
2σ2 +α2

1(1− ρ21)σ2

= (1− 2α1ρ1 +α2
1)σ

2.
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Next, to find the relative inaccuracy,

E[Ĝ−G1|q] =

(
αρξ

k− 1

k
−α1ρ1

k− ξ
k

)
(q−µ),

V ar[Ĝ−G1|q] =

(
(k− ξ)2
k2

α2
1(1− ρ21) +

k− 1

k2
ξ2α2(1− ρ2)

)
σ2.

Therefore,

E[(Ĝ−G1)
2] =E

[
(E[Ĝ−G1|Q])2 +V ar[Ĝ−G1|Q]

]

=

(
α1ρ1

k− ξ
k
−αρξ k− 1

k

)2

E[(µ−Q)2] +

(
(k− ξ)2
k2

α2
1(1− ρ21) +

k− 1

k2
ξ2α2(1− ρ2)

)
σ2

=
(
(α1ρ1(k− ξ)2−αρξ(k− 1))2 + (k− ξ)2α2

1(1− ρ21) + (k− 1)ξ2α2(1− ρ2)
) σ2

k2
.

Since ∂2O
∂α2

1
= 2σ2(w2(k−ξ)2+w1k

2)

k2
> 0, the objective is convex. Given ρ1, ρ, and α, from the FOC with

respect to α1, we can solve out

α1 = ρ1
αρw2ξ(k− 1)(k− ξ) +w1k

2

w2(k− ξ)2 +w1k2
. (A-3)

If we substitute α1 into the objective function, then the second-order derivative with respect to ρ1 is

2c(1 + ρ21)

(1− ρ21)2
− 2σ2(w2ρα(k− 1)(k− ξ)ξ+w1k

2)2

w1k4 +w2k2(k− ξ)2
;

this expression is positive provided that

c >
σ2(1− ρ21)2(w2ρα(k− 1)(k− ξ)ξ+w1k

2)2

k2(1 + ρ21)(w1k2 +w2(k− ξ)2)
. (A-4)

Note that the positive definite Hessian matrix requires the same above condition. The FOC with

respect to ρ1 is
2cρ1

1− ρ21
− 2α1σ

2

(
w1 +

w2αρξ(k− 1)(k− ξ)
k2

)
= 0. (A-5)

Assuming symmetric equilibrium, ρ1 = ρ and α1 = α. Using (A-3), we solve out

α=
ρw1k

2

w1k2 +w2(k− ξ)(k(1− ρ2ξ)− (1− ρ2)ξ) .

Now suppose that α is an interior solution. Then, substituting α into (A-5) gives

2ρ

1− ρ2
(
c− k2σ2w2

1(1− ρ2)(w2(k− ξ)2 +w1k
2)

(w2(k− ξ)(k(1− ρ2ξ)− (1− ρ2)ξ) +w1k2)2

)
= 0,

an equation with three roots. The local minimality of ρ = 0 requires that (A-4) be satisfied for

ρ1 = ρ= 0. That is, we must have

c >
σ2w2

1k
2

w2(k− ξ)2 +w1k2
.
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We now check that ρ1 = 0 is indeed the minimizer under the above condition. When ρ= α= 0,

(A-3) becomes α1 = ρ1
w1k

2

w1k2+w2(k−ξ)2
. The objective becomes

−c log(1− ρ21) +w1σ
2w2(k− ξ)2 +w1k

2(1− ρ21)
w2(k− 1)2 +w1k2

.

The first-order derivative with respect to ρ1 is

2ρ1

(
c

1− ρ21
− σ2w2

1k
2

w2(k− ξ)2 +w1k2

)
,

which is positive on (0,1) provided that c ≥ σ2w2
1k

2

w2(k−ξ)2+w1k2
. Therefore, the optimal ρ1 = 0. Yet if

c <
σ2w2

1k
2

w2(k−ξ)2+w1k2
, then the first-order derivative is negative at ρ1 = 0, and so ρ = 0 is not an

equilibrium.

We continue checking the FOC’s other roots. Let Aξ(ρ), k2σ2w2
1(1−ρ

2)(w2(k−ξ)2+w1k
2)

(w2(k−ξ)(k(1−ρ2ξ)−(1−ρ2)ξ)+w1k2)2
. Since

Aξ(1) = 0 and Aξ(ρ)≥ 0 on [0,1], it follows that Aξ(ρ) = c must has a solution in the range (0,1)

as long as

0< c<Aξ(0) =
σ2w2

1k
2

w2(k− ξ)2 +w1k2
.

Denoting ρ2 by ρ2; then algebra shows that Aξ(ρ)−c= 0 is a quadratic function of ρ2 with two roots:

ρ± =
2cw2(k− 1)(k− ξ)ξ(w2(k− ξ)2 +w1k

2)± k3/2w1σ
(√

∆−
√
kσw1(w2(k− ξ)2 +w1k

2)
)

2cw2
2(k− 1)2(k− ξ)2ξ2 ,

where

∆ = (w2(k− ξ)2 +w1k
2)
(
kσ2w2

1(w2(k− ξ)2 +w1k
2) + 4c(k− 1)(k− ξ)ξw2(w2(k− ξ)(ξ− 1)− kw1)

)
.

Using the subscripts “+” and “−” to denote (respectively) the larger and smaller root, we can

write their product as

ρ+ρ− =
((k− ξ)2w2 + k2w1) (c((k− ξ)2w2 + k2w1)− k2σ2w2

1)

c(k− 1)2(k− ξ)2ξ2w2
2

.

Since c <
σ2w2

1k
2

w2(k−ξ)2+w1k2
, we have ρ+ρ− < 0. It follows that ρ+ > 0 and ρ− < 0 and also that ρ+ is

the unique solution in (0,1). Therefore, the unique equilibrium is ρ?s =
√
ρ+ if

α? =
ρ?sw1k

2

w1k2 +w2(k− ξ)(k(1− ρ?2s ξ)− (1− ρ?2s )ξ)
∈ (0,1).

Note that when ξ = 1, we have α? = w1k
2ρ?s

w1k2+w2(k−1)2(1−ρ?2s )
≤ ρ?s.

When ξ is general, α? ∈ (0,1) is equivalent to

H(ρ?s),w2ξ(k− 1)(k− ξ)ρ?2s +w1k
2ρ?s −w1k

2−w2(k− ξ)2 < 0. (A-6)
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If ξ ≥ k, H(ρ?s)< 0 when ρ?s ∈ [0,1]. If ξ < k, H(ρ?s) has one positive and one negative roots. (A-6)

requires ρ?s to be in between of the two roots, and therefore

0≤ ρ?s < ρ̃,
√
k4w2

1 + 4ξ(k− 1)(k− ξ)w2((k− ξ)2w2 + k2w1)− k2w1

2ξ(k− 1)(k− ξ)w2

. (A-7)

When ξ < k (including ξ = 1), we have

∂α?

∂ρ?s
=
w1k

2((k− ξ)(k− ξ+ (k− 1)ξρ?2s )w2 + k2w1)

(w1k2 +w2(k− ξ)(k(1− ρ?2s ξ)− (1− ρ?2s )ξ))2
> 0.

If ρ?s = 0 then α? = 0, and if ρ?s = 1 then α? = kw1
kw1−(ξ−1)(k−ξ)w2

. If 0< ξ ≤ 1, then 0<α? ≤ 1, which

implies that ρ̃≥ 1; if 1< ξ < k then, as ρ?s increases from 0 to 1, the value of α? either increases

to infinity before ρ?s reaches 1, or increases continuously to exceed 1 at ρ?s = 1, which implies that

ρ̃ < 1. The condition (A-7) confirms α? is increasing in ρ?s on [0, ρ̃).

Next we prove that ρ?s is decreasing in c on [0, ρ̃), which is equivalent to showing that A
′
ξ(ρ)< 0.

A
′

ξ(ρ) =
2k2ρσ2w2

1((k− ξ)2w2 + k2w1)A1

A3
2

,

where A1 = −(k − ξ)(k + (1− ρ2)ξ + k(ρ2 − 2)ξ)w2 − k2w1, and A2 = k2w1 − (k − ξ)(ξ(1− ρ2) +

k(ρ2ξ− 1))w2. We have

A1 +A2 =−2(1− ρ2)(k− ξ)(k− 1)ξw2 < 0.

Therefore, A1 and A2 cannot both be positive. Next, A1 < 0 requires w1 >
(k−ξ)w2

k2
(k(2− ρ2)ξ −

ξ(1− ρ2)− k); A2 < 0 requires w1 <
(k−ξ)w2

k2
((ξ(1− ρ2) + k(ρ2ξ− 1))w2). Since (k−ξ)w2

k2
(k(2− ρ2)ξ−

ξ(1− ρ2)− k)− (k−ξ)w2
k2

((ξ(1− ρ2) + k(ρ2ξ − 1))w2) = 2 (k−ξ)w2
k2

ξw2(k− 1)(1− ρ2)> 0. Therefore, it

is impossible to have A1 < 0 and A2 < 0. That means, A1 and A2 must have opposite signs and

A
′
ξ(ρ)< 0. Condition (A-7) is therefore equivalent to c > c̃, where

c̃=Aξ(ρ̃).

Similarly, we investigate the monotonicity of ρ?s on σ and w1 . Because Aξ is increasing in σ, the

implicit function theorem implies that ∂ρ?s
∂σ

< 0. When ξ = 1,

∂Aξ
∂w1

=
k2(1− ρ2)σ2w1(k

4w2
1 + 2(k− 1)4(1− ρ2)w2

2 + 3(k− 1)2k2(1− ρ2)w1w2)

((k− 1)2(1− ρ2)w2 + k2w1)3
> 0.

Therefore, ∂ρ?s
∂w1

< 0 when ξ = 1.

We further investigate the corner solution where α? = 1, in which case the equilibrium would be

exactly the same as that in the honest reporting setting. Here ρ?h is the solution on [0,1] of the
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cubic function (A-2). Given that all others choose α= 1, sustaining this corner solution requires

that (A-3) be no smaller than 1:

ρ?h
ρ?hw2ξ(k− 1)(k− ξ) +w1k

2

w2(k− ξ)2 +w1k2
≥ 1 ⇐⇒ w2ξ(k− 1)(k− ξ)ρ?2h −w1k

2(1− ρ?h)− (k− ξ)2w2 ≥ 0.

This statement is complementary to (A-6), and it is equivalent to

1>ρ?h ≥ ρ̃. (A-8)

From

F (ρ̃) = ck2ρ̃− (1− ρ̃2)σ2(k2w1 + (k− 1)(k− ξ)ξρ̃w2) = 0,

we find the corresponding c as follows:

c̃=
(1− ρ̃2)σ2(k2w1 + (k− 1)(k− ξ)ξρ̃w2)

k2ρ̃

It is easy to verify that the above c̃ is exactly Aξ(ρ̃), which makes sure the conditions are consistent.

We can summarize our results so far as follows.

1. If Aξ(0)≤Aξ(ρ̃):

• if 0< c<Aξ(0), then the equilibrium is α? = 1, ρ?s = ρ?h;

• if c >Aξ(0), then α? = ρ?s = 0 is one equilibrium.

2. If Aξ(0)>Aξ(ρ̃):

• if 0< c≤Aξ(ρ̃), then the equilibrium is α? = 1, ρ?s = ρ?h;

• if Aξ(ρ̃)< c<Aξ(0), then the equilibrium is α? < 1, ρ?s =
√
ρ+;

• if c >Aξ(0), then α? = ρ?s = 0 is one equilibrium.

Next we show that, if α? < 1, then ρ?s <ρ
?
h. Since all students in this scenario choose α?, it follows

that ρ?s should satisfy the FOC with respect to ρ. That is:

F (ρ,α?), ck2ρ−α?(1− ρ2)σ2(α?(k− 1)(k− ξ)ξρw2 + k2w1) = 0.

Since F (0, α?) =−α?k2σ2w1 < 0 and F (1, α?) = ck2 > 0, there exists at least one zero point.

∂F

∂α?
=−(1− ρ2)σ2(2α?(k− 1)(k− ξ)ξρw2 + k2w1)< 0,

∂F

∂ρ
= ck2 +α?σ2((3ρ2− 1)α?(k− 1)(k− ξ)ξw2 + 2k2ρw1),

ρ
∂F

∂ρ
−F = α?σ2(2α?(k− 1)(k− ξ)ξρ3w2 + k2(1 + ρ2)w1)> 0.

Hence ∂F
∂ρ
> 0 provided that F (ρ,α?) = 0. There can be no more than a single zero point on [0,1],

and the unique zero point is ρ?s. From the implicit function theorem, we have

∂ρ?s
∂α?

=− ∂F/∂α?

∂F/∂ρ

∣∣∣∣
ρ=ρ?s

> 0.
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Therefore, if α? < 1, then we have ρ?s <ρ
?
h.

Finally, we explore the boundary parameters. In the case of honest reporting, if w2 = 0 and

w1 > 0 then solving F (ρ) = 0 in (A-2) gives

ρ=

√
c2 + 4w2

1σ
4− c

2w1σ2
.

If w1 = 0 and w2 >
ck2

σ2(k−1)2 , then F (ρ) > 0 on [0,1]. In this case, the equilibrium grading effort

level is 0; otherwise, solving F (ρ) = 0 yields ρ= 0 and ρ=
√

1− ck2

wσ2ξ(k−ξ)(k−1)— each of which is

an equilibrium.

In the case of strategic reporting, if w2 = 0 and w1 > 0 then ρ+ (as defined in proof of Propo-

sition 1) is ρ+ = 1 − c
w1σ2

. So as long as c < w1σ
2, the equilibrium is ρ =

√
ρ+; otherwise, the

equilibrium is 0. It now follows from (A-3) that ρ = α. When w1 = 0, since the failure condition

c≥ σ2w2
1k

2

w2(k−ξ)2+w1k2
= 0 is always valid; hence ρ?s = α? = 0 is one equilibrium. �

Proof of Proposition 2. When the student grades choose ρ and α, each student reports Gi ∼
N (µ+αρ(q−µ), α2(1− ρ2)σ2). The aggregate grade is then

Ĝ∼N
(
µ+ ξαρ(q−µ),

ξ2α2(1− ρ2)
k

σ2

)
.

Therefore,

E[(Ĝ−Q)2] = σ2

(
ξ2α2(1− ρ2)

k
+ (ξαρ− 1)2

)
.

Substituting for α and ρ and then setting ξ = 1 gives E[(Ĝh−Q)2] and E[(Ĝ− f −Q)2]. If ξ = 1,

then

∂E[(Ĝ−Q)2]

∂ρ
=

2ασ2(αρ(k− 1)− k)

k
< 0,

∂E[(Ĝ−Q)2]

∂α
=

2σ2(α(ρ2(k− 1) + 1)− kρ)

k
;

both of these expressions are nonpositive because α? ≤ ρ?s (by Proposition 1). We also know that

ρ?h ≥ ρ?s, from which it follows that E[(Ĝs−Q)2]≥E[(Ĝh−Q)2].

E[(Ĝ|q)− q] = (αρ− 1)(q−µ).

Thus, q > µ implies E[Ḡ]< q, and q < µ implies E[Ḡ]> q. Finally, ρ?h ≥ ρ?s implies that E
∣∣[Ĝs|q]−q

∣∣≥
E
∣∣[Ĝh|q]− q

∣∣. �
Proof of Proposition 2. Given ρ and α, the expected grade is E[Ĝ] = µ + κξρα(q − µ). The

utility of a student who exerts learning effort e is

µ+κξρα(log(e)−µ)− e,

and the optimal learning effort level is e? = κξρα. Substituting ρ, α, and ξ = 1 now yields parts (i)

and (ii) of the proposition. �
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Proof of Corollary 3. The monotonicity on these parameters is established in the proof of

Proposition 1. �
Proof of Lemma 2. (i) Given ρ, the MSE is

E[(Ĝ−Q)2] = σ2

(
ξ2α2(1− ρ2)

k
+ (ξαρ− 1)2

)
.

We can use the FOC to derive the optimal ξ = kρ
α(1+(k−1)ρ2) . Alternatively, the conditional expecta-

tion E[Q|G1, . . . ,Gk] minimizes the MSE. From Bayes’ rule we deduce that

fQ|G1(ρ1)=g1,G2(ρ2)=g2,...,Gk(ρk)=gk(q) =
fQ(q)fA1|Q(a1), . . . , fAk|Qk(ak)

f(A1(ρ1) = a1,A2(ρ2) = a2, . . . ,Ak(ρk) = ak)
,

where aj = (gj −µ)/α+µ.

Since fQ(q) = 1√
2πσ

exp
(
− (q−µ)2

2σ2

)
, fAi|Q(ai) = 1√

2π(1−ρ2i )σ
exp

(
− (ai−µ−ρi(q−µ))2

2(1−ρ2i )σ
2

)
, it follows that

fQ|A1(ρ)=a1,A2(ρ)=a2,...,Ak(ρ)=ak(q)∼ exp

(
−(q−µ)2

2σ2
−

k∑

i=1

(ai−µ− ρi(q−µ))2

2(1− ρ2i )σ2

)

∼ exp

(
µX
2σ2

X

)

We can find

µX =

∑k

i=1
ρi

1−ρ2i
ai +

(
1−∑k

i=1
ρi

1+ρi

)
µ

1 +
∑k

i=1

ρ2i
1−ρ2i

= µ+

∑k

i=1
ρi

1−ρ2i

gi−µ
αi

1 +
∑k

i=1

ρ2i
1−ρ2i

.

When all the graders choose the same ρ and α, we have

E[Q |G1(ρ) = g1,G2(ρ) = g2, . . . ,Gk(ρ) = gk] =
ρ
∑k

i=1 ai + (1− (k− 1)ρ)(1− ρ)µ

1 + (k− 1)ρ2
= µ+

ρ
∑k

i=1
gi−µ
α

1 + (k− 1)ρ2

= µ+
kρ

α(1 + (k− 1)ρ2)
(Ḡ−µ).

(ii) Given assignment quality q, if ρ? 6= 0 (i.e., if peer grading does not fail) then eliminating bias

requires that E[Ĝ|q] = q. That is, we must have

µ+ ξ((1−αρ)µ+αρq−µ) = q⇒ ξ =
1

αρ
. �

Proof of Proposition 3. This proof for the first and second parts are integrated into the proof

of Proposition 1. The the monotonicity statement, we have

∂F (ρ)

∂ξ
=−ρ(1− ρ2)(k− 1)(k− 2ξ)w2σ

2,

which is negative when ξ < k/2 or positive when ξ > k/2. Therefore, ρ? is increasing in ξ when

ξ < k/2 but decreasing in ξ when ξ > k/2. This means that ξ = k/2 does maximize ρ?h.
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Next we show that ρ?s(ξ) is increasing in ξ at ξ ≤ 1 and deceasing in ξ at ξ ≥ k. If α? = 1, then

ρ?s = ρ?h and the statement is true. If α? < 1, it follows from the proof of Proposition 1 that ρ?s is the

unique solution on [0,1] to Aξ(ρ) = c, and that Aξ(ρ) is decreases with ρ when 0< c<
k2σ2w2

1
(k−ξ)2w2+k2w1

.

We next show that Aξ(ρ) is decreasing in ξ at ξ ≤ 1 and increasing in ξ at ξ ≥ k. Since α? is

increasing in ρ?s, we know that α? is also decreasing in ξ at ξ ≤ 1 and increasing in ξ at ξ ≥ k.

∂Aξ
∂ξ

=
2k2(1− ρ2)σ2w2

1w2A3

A3
2

,

where A3 = k2(k + (k − 1)kρ2 − ξ − 2(k − 1)ρ2ξ)w1 + (1 + (k − 1)ρ2)(k − ξ)3w2, and recall A2 =

k2w1 − (k − ξ)(ξ(1 − ρ2) + k(ρ2ξ − 1))w2 is defined previously. When ξ > k or ξ < 1, since (k −
ξ)(ξ(1− ρ2) + k(ρ2ξ − 1))< 0, we have A2 > 0. When ξ > k, both summands of A3 are negative,

hence A3 < 0, implying
∂Aξ
∂ξ

< 0; when 0< ξ < 1, both summands of A3 are positive, hence A3 > 0,

implying
∂Aξ
∂ξ

> 0. �
Proof of Proposition 4. The proof is integrated into the proof of Proposition 2. �
Proof of Corollary 4. Parts (i) and (ii) follow directly Proposition 2. For part (iii), observe that

if ξdebh > ξe?h , then ξe?h ρ
?
h(ξe?h )≥ 1. �

Proof of Lemma 3. From the proof of Proposition 1 it follows that, given ξ, both ρ?i (i= h, s)

and α? are decreasing in c. Therefore, ξρ?h and ξρ?sα
? are decreasing in c. We need to show that,

when c is small enough, maxξ ξρ
?
h > 1 and maxξ ξρ

?
sα

? > 1. It is sufficient to establish that, when c

is sufficiently small, ξρ?h > 1 and ξρ?sα
? > 1 at ξ = k.

In the case of honest reporting, if ξ = k then the FOC is

F (ρ) = ck2ρ− (1− ρ2)σ2k2w1 = 0. We solve ρ?h =

√
c2 + 4w2

1σ
4− c

2w1σ2
.

ρ?h is decreasing in c and limc↓0 ρ
?
h = 1. Therefore there exists an c̃ such that ρ?h = 1/k. And when

c < c̃, ρ?hk > 1. For strategic graders, if ξ = k then the FOC is

c=Aξ(ρ) =w1σ
2(1− ρ2) =⇒ ρ?s =

√
1− c

w1σ2
=⇒ lim

c↓0
ρ?s = 1.

Since

α? = min

{
1,

ρ?sw1k
2

w1k2 +w2(k− ξ)(k(1− ρ?2s ξ)− (1− ρ?2s )ξ)

}
,

we have limc↓0α
? = 1. Therefore, limc↓0 ξρ

?
s(ξ)α

?|ξ=k = k > 1. From Corollary 3, both ρ?s and α? are

decreasing in c, there exists an c̃ such that ρ?sα
? = 1/k. When c < c̃, kρ?sα

? > 1.

Finally, for a given ξ we can write

ρ?h ≥ ρ?s =⇒ ξdebs ρ?h ≥ ξdebs ρ?sα
? = 1

Therefore, ξdebh ≤ ξdebs . �
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