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Uncomputability of phase diagrams

Johannes Bausch® "™ Toby S. Cubitt?® & James D. Watson® 2%

The phase diagram of a material is of central importance in describing the properties and
behaviour of a condensed matter system. In this work, we prove that the task of determining
the phase diagram of a many-body Hamiltonian is in general uncomputable, by explicitly
constructing a continuous one-parameter family of Hamiltonians H(g), where ¢ € R, for
which this is the case. The H(g) are translationally-invariant, with nearest-neighbour cou-
plings on a 2D spin lattice. As well as implying uncomputablity of phase diagrams, our result
also proves that undecidability can hold for a set of positive measure of a Hamiltonian's
parameter space, whereas previous results only implied undecidability on a zero measure set.
This brings the spectral gap undecidability results a step closer to standard condensed matter
problems, where one typically studies phase diagrams of many-body models as a function of
one or more continuously varying real parameters, such as magnetic field strength or

pressure.
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hase transitions and phase diagrams have been a central

area of study in condensed matter physics for well over a

century. In particular, in the second half of the twentieth
century, interest in superconductors and topological phases
spurred work on quantum phase transitions: a discontinuous
change of a macroscopic observable happening at zero tempera-
ture due to the change in some non-thermal parameter!.

The phase diagrams for many materials have been well studied
both experimentally and theoretically. There exist numerous
algorithms that are heuristically effective at computing properties
of many-body quantum systems, such as the Density Matrix
Renormalisation Group for one-dimensional (1D) gapped sys-
tems or density functional theory>3. Classic toy models include
the 1D transverse field Ising Model, which is known to have a
transition from an unordered to ordered phase at a critical
magnetic field strengthl. Beyond that, materials with exotic
phases, such as topological insulators, or the fractional quantum
Hall effect are becoming increasingly important to understand as
they become more applicable to real-world applications®.

Yet, the quantum phase diagram for such systems can be
highly complex. Numerical simulations of quantum systems are
computationally difficult, and may even be intractable®’.
Experimentally and computationally one of the best studied is the
2D electron gas—a model for free electrons in semiconductors—
which is well known to exhibit a complex phase behaviour: the
system undergoes a large number of phase transitions, most
notably those associated with the quantum Hall effect. Indeed, the
phase diagrams of such systems are known to be incredibly rich,
with some producing Hoftstadter butterfly patterns with an
infinite number of phases®. All of these are important instances of
the general problem of computing the phase diagram of a
Hamiltonian, which classifies the system’s state with respect to a
macroscopic observable (such as global magnetisation), and with
respect to a parameter of the Hamiltonian (such as a transverse
field strength).

Quantum phase transitions are associated with the spectral gap
of the Hamiltonian closing. More precisely, a non-analytic change
in the ground state energy is a necessary (although not always
sufficient) condition for a phase transition to occur, and a closing
spectral gap is necessary (although not always sufficient) for a
non-analytic change in the ground state energy to occur. Cubitt,
Perez-Garcia and Wolf*10 showed that given a (finite) descrip-
tion of a translationally invariant, nearest-neighbour Hamiltonian
on a 2D square lattice, deciding whether it has a spectral gap or
not is at least as hard as solving the HaLtiNG ProBLEM. This was
subsequently extended to the case of 1D Hamiltonians!!.

In this work, we prove that no general algorithm for deter-
mining the phase diagram of a system can exist, even given
complete knowledge of the microscopic description of the sys-
tem’s interactions. To show this, we explicitly construct a con-
tinuous, one-parameter Hamiltonian H(¢) on 2D lattice with a
fixed, finite-dimensional local Hilbert space H, & Hp, for which
determining whether the low energy subspace below some energy
cut-off is supported entirely on the A or B subspace is undecid-
able (where it is guaranteed that one of the two cases holds on a
set of positive measure in the parameter space of the model).
With respect to the parameter ¢, the phase diagram determined
with respect to a macroscopic observable O,/ that measures
support on H, vs. Hy is thus uncomputable. This observable can
also be restricted to a single lattice site, with the same conclusion.

Results

The quantum many-body systems we will consider are transla-
tionally invariant, nearest-neighbour, 2D spin-lattice models. The
Lx L square lattice with open boundary conditions will be

denoted as A(L); for brevity, we leave the lattice size implicit
whenever it is clear from the context. Each lattice site is associated
with a spin system with local Hilbert space of dimension d, c,
The spins are coupled with a nearest-neighbour, translationally
invariant Hamiltonian with local terms h®!, i € B(C? @ CY),
such that max{||h™"||,||h!||} <2. Since we are interested in
phase transitions—identified by a discontinuous change of a
macroscopic observable O4;p, which strictly speaking can only
occur in the thermodynamic limit of infinitely large lattices—we
will take the thermodynamic limit by letting L — oo. An alter-
native definition of a quantum phase transition is a non-analytic
change in the ground state energy!. This will also be satisfied with
our construction. The resulting Hamiltonian over the entire lat-
tice is then

L L-1

HYO =3 0D Wiy +

i=1 j=1 i=1

1
1 h(@j) 1)

(1)

1 L

-
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As well as being distinguished by the observable Oyp, the two
phases are also distinguished by the spectral gap of the Hamil-
tonian HA, defined as the difference between the smallest and
second smallest eigenvalue of the Hamiltonian:

AHMDY = A (HADY — A (HAD), (2)

As in ref. %, we then define a Hamiltonian to be gapped if there
exist y and Ly such that the spectral gap A(HA®)) >y for all L >
Lo; and gapless if the spectrum above the ground state becomes
dense in an interval [A,; (H*®),A_. (HMY) + ¢ for some ¢>0
in the thermodynamic limit (see Supplementary Definitions 1.1
and 1.2 for mathematically rigorous statements). Throughout the
paper, we will be using the notion of a continuous family of
Hamiltonians, which—loosely speaking—is a family of Hamilto-
nians {H;(¢)},.; such that each Hi(¢) = X;hi(¢), and the matrix
elements of h;(¢) depend continuously on ¢ (see Supplementary
Definition 1.3).

Our main result is an explicit construction of a one-parameter
continuous family of Hamiltonians, such that for all values ¢ € R
of the external parameter, the system is guaranteed to be in one of
two possible phases, distinguished by an order parameter given by
the ground state expectation value of a translationally invariant
macroscopic observable O,/5. However, determining which phase
the system is in is undecidable, hence the phase diagram of the
system as a function of ¢ is uncomputable. More precisely, we
prove the following theorem:

Theorem 2.1 (Phase Diagram Uncomputability) For any given
Turing Machine (TM), we can construct explicitly a dimension
d € N, d? x d? matrices a,a’, b, c,d and a d x d matrix m with the
following properties:

min

(i) a, c and m are diagonal with entries in 7.
(ii) d is Hermitian with entries in 7, + %Z.
. . 2
(iii) b has integer entries.
(iv)  is Hermitian with entries in 7.
(v) For any real number ¢ € R and any 0 <3 <1, which can be
chosen arbitrarily small, setting

hel = ¢ + B¢ independent of ¢,
hrow((P) — g +ﬁ(€ll +emp + efiﬂ(pr)’
we have ||[h%(¢)|| <2, ||k (@)|| < 1.

Define HAD) g5 in Eq. (1), and let Opp=L"23;c am;. Then,
given ¢ € [271,271+2717¢) with y € N, the following state-
ments hold:

e If TM halts on input 1, then for some €> 1, H(¢) is gapless in
the sense of Supplementary Definition 1.2, with a ground state
that is critical (i.e. with algebraic decay of correlations), and
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for all eigenstates |Vy) with energy (¥V3|H™(¢)| W) <1 it holds
that (¥5|0,/5|¥p) = 0.

e If TM is non-halting on input n and €=1, then HM¢) is
gapped in the sense of Supplementary Definition 1.1, with a
unique, product ground state |¥,) with (¥4]0, 5|¥,) = 1.

The undecidability of which of the two cases pertains follows
immediately from the undecidability of the Halting Problem, by
choosing TM to be a universal TM. For simplicity, we will refer to
the phases A and B determined by the value for the macroscopic
observable O4/p as the gapped and gapless phase, respectively.

As a consequence of the new Hamiltonian construction in this
paper, we also obtain the following result:

Corollary 2.2 For all ¢ € [0, 1], HA(go) is either in a phase with
a product ground state and a spectral gap =1, or it is in a gapless
phase with algebraic decay of correlations, where the two phases
are distinguished by the expectation value of a macroscopic
observable Ops. Moreover, there exists a subset SC [0, 1] with
Borel measure u(S) >0, such that even for computable ¢ €S,
determining the phase that HM¢) is in is uncomputable.

A less precise but simple interpretation of the above
corollary is:

Corollary 2.3 (informal) The phase diagram of H(¢) as a
function of its parameter ¢ is uncomputable.
A set of schematic phase diagrams is shown in Fig. 1.

Constructing the Hamiltonian. Using well-known methods
from the field of Hamiltonian complexity, it is possible to con-
struct a quantum many-body system whose lowest-energy
eigenstate represents the evolution of any desired computa-
tion!2. If we introduce a local term in the Hamiltonian that gives
additional energy to any state with overlap with the halting state
of the computation, we can arrange for states representing
computations that halt to pick up additional energy relative to
states representing computations that do not halt and open up a
gap in the spectrum. In this way, Turing’s well-known HALTING
ProBLEM can be transcribed into a property of the quantum
many-body system, namely whether or not it has a spectral gap.
Thus, determining whether the system has a spectral gap is at
least as hard as the Harting ProsLEM. Since the HALTING Problem
is known to be undecidable, determining whether the Hamilto-
nian is gapped or gapless is also undecidable. Conceptually, this is
how Cubitt, Perez-Garcia & Wolf, and Bausch et al.”~!! proved
the undecidability of the spectral gap.

[

il

The starting point for our construction is also the undecid-
ability of the Harring Prosiem!3: in brief, this states that
determining whether a universal (classical) TM (UTM) halts or
not on a given input is, in general, undecidable. In the quantum
computation setting, Cubitt, Perez-Garcia and Wolf® showed how
an input can be extracted from a phase in a quantum gate such as
U = diag(1, exp(27i¢)), using quantum phase estimation (QPE,
ref. 14), which outputs a binary expansion of ¢. The latter can
then be fed as input to a UTM. Thus, this combination of QPE
and UTM runs the UTM on any desired input encoded in ¢, and
the HaLTiNG ProBLEM for this combination is undecidable.

How do we reduce this QTM-based HALTING PROBLEM to a
result about phases in a many-body system? This is a culmination
of the following techniques from previous works. However, for
each one of them, significant obstacles must be overcome to prove
the uncomputability of phase diagrams .

1. The first necessary ingredient is a QTM-to-Hamiltonian
mapping, which allows the construction of local, transla-
tionally invariant couplings that result in a 1D spin chain
Hamiltonian whose ground state energy is exactly zero if
the encoded QTM does halts within a certain time interval;
or otherwise is positivel®>. Using such an QTM-to-
Hamiltonian mapping, a QTM running the QPE + UTM
computation described above is encoded into the spin chain
Hamiltonian, with ¢ now appearing as a parameter of the
resulting Hamiltonian. However, the energy difference
between the halting and non-halting cases decreases as
the time interval increases, meaning we need further
techniques to obtain a non-zero energy difference in the
thermodynamic limit.
A second ingredient is amplifying this penalty. In ref. ? this
is done by combining the QTM-to-Hamiltonian mapping
with an aperiodic tiling Hamiltonian, thereby ensuring that,
for each length of a computation, a fixed density of such
circuit-to-Hamiltonian instances are distributed across the
spin lattice. In this way, the ground state energy density is
zero iff the QTM-to-Hamiltonian mapping always has zero
energy, and thus depends on whether the QPE+ UTM
computation ever halts.

3. In ref. 1, point 2 is replaced by a so-called Marker
Hamiltonian. This in combination with a circuit-to-
Hamiltonian construction results in a ground state, which
partitions the spin chain into segments just large enough for
the UTM to halt, if it halts. Here, the segments do not have
a fixed length, but instead self-adjust to find their own

I I I I I
. 2—10 2—9 2—8 2—7 2—6

> ¢
2—0

I I I I I
275 974 973 9-2 9-l

Fig. 1 A selection of sample phase diagrams of the continuous family {HA(L)(p)3},, .» Written for a series of possible universal encoded Turing machines
varying from top to bottom, plotted against ¢ on the x-axis (note the log scaling). Blue means gapless (which is where the TM halts asymptotically on
input @) and yellow gapped (TM runs forever). At the points 27 for € IN, we can have a phase transition between gapped and gapless phases,
depending on the behaviour of the encoded TM; there is a positive measure interval above these points where the phase behaviour is consistent. The grey
sections are parameter ranges that we do not evaluate explicitly; there will be a phase transition at some point within that region if the bounding intervals
have different phases. The lighter yellow area indicates a changing gapped instance. In our construction, the gapless behaviour is more intricately
dependent on ¢, but the TM can be chosen such that both halting and non-halting phases cover an order one area of the phase diagram.
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length. In contrast to ref. , this has the effect that either all
encoded instances of computations halt, or none do.

4. The final step is the addition of an Ising-type coupling as in
refs. %16, which breaks the local Hilbert space up into
subspaces H, @ Hjp, and which ensures that the low-energy
spectrum is contained either entirely in the A or B
subspace, depending on the ground state energy density
just constructed. Since determining the ground state energy
density is uncomputable, it is also uncomputable to
determine whether the system is in phase A or B with
respect to the Hamiltonian parameter ¢.

As mentioned, we require significant alterations to this
collection of ingredients. Concretely, the issue is that if we
encode an input ¢ to be extracted using error-free QPE, then we
require the circuit gates to depend explicitly on the binary length
of ¢, denoted |¢|. Consequently, the resulting matrix elements of
the Hamiltonian will also explicitly depend on |p|—a discontin-
uous function of ¢. To remove this dependence, we instead
perform the QPE procedure approximately, by using a universal
gate set that approximates all the gates depending on |¢|!7.
However, the constructions of Cubitt, Perez-Garcia & Wolf, and
Bausch et al.>!! crucially rely on the QPE expansion of ¢ to be
performed exactly; any errors destroy the constructions.

To overcome this obstacle, we first encode this approximate
QPE plus the evolution of a UTM in a QTM-to-Hamiltonian
mapping, which has positive energy iff the QPE-+ UTM
computation does not halt. We label the resulting Hamiltonian
Heomp. This is outlined in sections ‘Encoding computation in
Hamiltonians’, “The encoded computation’ and ‘From QTM to
Hamiltonian’ where the QTM-to-Hamiltonian mapping and the
computation it encodes are explained, respectively. A significant
novel technical contribution of this work is then a proof that the
Marker Hamiltonian used in ref. I! does, in fact, allow for some
leeway in the precision to which QPE is performed and can be
used to provide a correction for the energy penalty picked up as a
result of any errors in the QPE.

To generate the required energy correction, we consider a 2D
spin lattice and construct an underlying classical Hamiltonian,
which we denote H,, that partitions the lattice into a uniform
grid of squares. We note that the method from ref. ® would be
inappropriate for this construction as it would lead to an
accumulation of energies we cannot correct for without matrix
elements depending explicitly on |¢|. Within each square, the
ground state encodes the evolution of a classical TM (encoded as
a tiling problem akin to the ones used in refs. 1819), which will
calculate the energy correction necessary to offset the error
introduced by approximately performing QPE. The classical
Hamiltonian is then coupled to the Marker Hamiltonian. We
denote this combination HE).

Section ‘Classical tiling with quantum overlay’ describes the
ground state of the resulting Hamiltonian HE such that the halting
or non-halting behaviour together with the Marker Hamiltonian
determines whether the energy density of the constructed
Hamiltonian is non-negative (in the non-halting case) or negative
(in the halting case). Crucially, it is now robust with respect to the
errors present in the expansion of ¢ from the approximate QPE
procedure. Finally, in section ‘Uncomputability of the Phase
Diagram’, we show how Hcomp, Hg, and H®) are combined
mathematically to lift this undecidability of the ground state energy
density, to uncomputability of the phase diagram, using now-
standard techniques™ 116, For a mathematically rigorous derivation,
we refer the reader to the Supplementary information.

Encoding computation in Hamiltonians. A QTM can be
thought of as a classical TM, but where the TM head and tape

configuration can be in a superposition of states. The updates to
the QTM and tape configuration are then described by a transi-
tion unitary, U, describing the transitions of the QTM state and
tape, such that the state is updated via the map |y ) +— Ul|y)20.
Given a QTM, one can construct a local Hamiltonian that has a
ground state encoding the evolution of the computation®!?,
closely related to the Feynman-Kitaev Hamiltonian encoding
quantum circuits into Hamiltonians!?21. The ground state
encodes T steps of the computation, where T is a predefined
and fixed function of the Hamiltonian’s size determined by the
particular QTM-to-Hamiltonian mapping. The ground state of
such a Hamiltonian is called a history state and takes the form

T
%) :%;mw, 3)

where the state of the quantum TM at time step ¢ is |y,). The
ground state energy of the Hamiltonian can be made dependent
on aspects of the computation by adding a projector that
penalises certain computational states, and the resulting energy is
known to high precision?223.

The encoded computation. As in refs. %1, the computation we
wish to encode via such a QTM-to-Hamiltonian mapping will be
a pair of QTMs running in succession: the first will run QPE on a
quantum gate U, which outputs a number in binary, and the
second will be a UTM, which takes the output of the QPE as
input. The gate U, is encoded in the transition unitary U
describing the QTM, which is in turn encoded in the matrix
elements of the Hamiltonian. The energy of the Hamiltonian
encoding the computation will then be made dependent on
whether the computation halts or not, allowing us to relate its
ground state energy to the halting property.

Phase estimation. Given a unitary matrix U, = (100e™), the
QPE algorithm takes as input the eigenvector corresponding to
the eigenvalue 7%, and outputs an estimate of ¢ in binary. If the
number of qubits on which the phase estimation is performed is
smaller than the number of bits required to express ¢ in full, the
algorithm is only approximate!4. Furthermore, if a finite gate set
is used, some of the required unitary gates in the algorithm must
be approximated rather than performed exactly!”. Hence, from
phase estimation, we get an output state consisting of a super-
position over binary strings:

@)= > Blx, (4)

xe{o0,1}"

where the amplitudes f3, are concentrated around those values for
which x= ¢ and rapidly drop off away from ¢. Details are in
Supplementary Note 2.

Universal QTM. We then feed the output [y(¢)) of this phase
estimation into the input of a universal TM, as in ref. %, which
then runs a computation that may or may not halt. By the well-
known undecidability of the Harring Prosiem!3, determining
whether the QTM halts for a given string is undecidable.

From QTM to Hamiltonian. Using the QTM-to-Hamiltonian
mapping described in section ‘Encoding computation in Hamil-
tonians’, the computation outlined above is mapped to a 1D,
translationally ~ invariant, nearest-neighbour = Hamiltonian
Heomp(9)'°, with a penalty for the non-halting case. It can be
shown that the ground state energy of Hcomp(¢) scales as

Amin(Hcomp((P)) ~ €(L)/pOlYL, (5)
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where

e(l) =Y B (6)

xeS(L)

The S, are the QPE coefficients in Eq. (4), and S(L) is the set of
inputs for which the universal TM does not halt within time T(L).

Since the 5, are concentrated around the binary expansion of
¢, if the latter encodes a halting instance, there will be a length L,
for which e(L) = 0 for all L > Ly; otherwise, ¢(L) = 1 for all L. This
immediately yields a Hamiltonian for which the ground state
energy is halting-dependent (and hence uncomputable). We refer
the reader to Supplementary Note 3 for details.

Tiling and classical computation. In Eq. (5), we see that the
difference between the Hamiltonian’s ground state energy in the
case where e(L) from Eq. (6) is ~1 or 0 decreases with the system
size L. Thus, the energy gap between the two cases goes to zero
irrespective of whether ¢ encodes a halting or non-halting
instance. To amplify this gap so that there is a finite energy gap
in the thermodynamic limit (as per points 2 and 3), we will
combine the Feynman-Kitaev Hamiltonian with a classical
Hamiltonian based on a Wang tiling that partitions the space
suitably to ensure a fixed density of computation instances is
spawned across the lattice. The result we achieve with this is an
energy gap opening up as L grows between the cases where €
takes different values.

A set of Wang tiles—square, 2D tiles with coloured sides, with
the rule that adjacent sides of neighbouring tiles in a tiling of the
plane must have matching colours—can be mapped to a classical
Hamiltonian: if tiles t; ¢; cannot be placed next to each other,
then we introduce a term [t;)(t;| into the Hamiltonian. The
overall Hamiltonian is the sum over all such local terms, such
that its ground state represents a tiling satisfying the tiling rules
(if such a tiling exists). If no such tiling exists, the ground state
energy is 1.

Similarly, it is well known that there exist tile sets that encode
the evolution of a classical TM1819 within a square grid: TM tape
configurations are represented by rows, such that adjacent rows
represent successive time steps of the TM (Fig. 2).

Fig. 2 The evolution of a classical TM can be represented by Wang tiles,
where colours of adjacent tiles have to match, and arrowheads have to
meet arrow tails of the appropriate kind. Here, the evolution runs from the
bottom of the square to the top, where it places a marker e on the boundary
as explained in section ‘Classical tiling with quantum overlay'. In this image,
the TM's evolution is contained in an individual square in the checkerboard
grid shown in the figure below.

We combine both Wang tiles and the TM tiling ideas by
constructing a tile set whose valid tilings have the following
properties:

1. A tiling pattern that creates a square grid across the lattice A
(much like a checkerboard). The side length of the grid
squares can be varied (provided all grid squares are the same
size) and still correspond to a valid tiling (depicted in Fig. 3).

2. Within each square of the grid, we use the tiles to encode a
TM that first counts the size of the square it is contained in,
and then outputs a marker o on the top border of the
square, where the placement of this marker is a function of
the size of the square (depicted in Fig. 2).

Having developed this tiling, we map it to a corresponding
tiling Hamiltonian, which we denote H,, such that its ground
states retain the properties of the valid tilings listed above. The
reader is referred to Supplementary Note 4 for details.

Classical tiling with a quantum overlay. We now want to
combine the classical Hamiltonian encoding the Wang tiles, and
the quantum Hamiltonian encoding the HALTING PrROBLEM com-
putation, to create an overall Hamiltonian that has a large ground
state energy difference between the halting and non-halting cases,
without the ~1/poly(L) decay in Eq. (5). To do so, we split the
local Hilbert space of each lattice spin into a classical part H_ and
a quantum part H, © H, giving H =H.® (H, © H,), where
H. = {le)} just contains a filler state |e),. The ground state can
then be designed to be a product state of the form |C)_ ® ’l//0>eq’

where |C)_ is a valid classical tiling configuration—as described in

section ‘Tiling and classical computation’—and ‘1//0>eq is a
quantum state with the following properties:
1. We use the 1D Marker Hamiltonian from ref. !, and

couple its negative energy contribution to the size of each
grid square in the classical tiling and the placement of the «
marker. The negative energy each square contributes is a
determined by where the « marker is placed, and thus by
the action of the classical TM. We denote this combined
Hamiltonian H(E),

2. We effectively place the ground state of a Hamiltonian
Homp encoding the QPE plus universal TM along the top
edge of the square, by adding additional penalty terms to
the Hamiltonian that penalise the classical and quantum
layers to occur in this configuration elsewhere.

3. Everywhere not along the horizontal edge of a grid square
in H, is in the zero-energy |e), filler state in H, & H,.

As mentioned, the patterns in the degenerate ground space of
Hg, are checkerboard grids of squares with periodicity w x w,
where the integer square size w is not fixed.

By choosing the classical TM encoded in the tiling to place a o
marker at an appropriate point, we are able to tune the ground
state energy of HE) such that the total energy of a single w x w
square A in the checkerboard pattern is:

Amin(w) = Amin (H(EE) |A + Hcomp‘A)
>0 if e(w) = ¢,(w) Yw, (7)
{ <0

if e(w) <ey(w) Yw 2 wy,
where €y(w) is some cut-off point, wy is the halting length (recall
from the previous section that the runtime of the computation
encoded in the ground state depends on the size of the available
tape, i.e. the size of the checkerboard square edge that the TM
runs on), and where ;. (w,) = —8(w,) <0 for the halting length
Wy is a small negative constant.
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Fig. 3 Section of the checkerboard tiling Hamiltonian's ground state. The white squares form borders, and in the interior, we place tiles simulating the

evolution of a classical Turing Machine.

The Marker Hamiltonian’s energy bonus thus compensates for
the QPE approximation errors by lowering the energy by just
enough such that a halting instance has negative energy. On the
other hand, the energy of the non-halting instance remains large
enough that the energy of a single square remains positive!1-23,

Thus, provided e(w) is sufficiently small, the ground state of
Hy, + Heomp + H(EE)(Jrcouphng terms) is a checkerboard grid of
squares with a constant but negative energy density. Otherwise,
the ground state energy density of the lattice is lower bounded by
zero. Which of the two cases holds depends on determining
whether e(w) = e¢y(w) or <ey(w), which is undecidable; undecid-
ability of the ground state energy density follows. The reader is
referred to Supplementary Note 5 for more details.

We define the Hamiltonian formed by He, Heomp and H®
and the coupling terms as H,(¢). Assume ¢ encodes a halting
instance and set w = argmin {A,; (s) <0}, and A is a single
square of size wx w. Then, the ground state energy H,(¢) on a
grid A of size L x H is given by

a0 = |1 [ 2 a0 ®)

wl|w

Uncomputability of the phase diagram. To go from undecid-
ability of the ground state energy density, demonstrated at the
end of section ‘Classical tiling with quantum overlay’ to the
undecidability of the phase (and spectral gap), we follow
the approach of Cubitt, Perez-Garcia and Wolf’ by combining
H,(¢) with a trivial state [0) such that |0)“* has zero energy, and
the spectrum of H,(¢) is shifted up by +1 (Supplementary
Lemma 6.5). From this shift and Eq. (8) it can be shown that

Amm<Hu<(p)>{ ©)

Let h,(¢) denote the local terms of H,(¢), let h; be the local
terms of the critical XY model, and let |0) be a zero energy state,
such that the total Hilbert space is (H; ® H,) & {|0)}. Then, the
local terms of the total Hamiltonian HA(<p) are defined as

hi,m(q)) = |0><0|<i) ® (1 - ‘0><0D(i+1)
+(1 - |0><0D ® |0><0| i+1)

>1 in the non-halting case, and

— — 00 otherwise.

+HH (@)@1Y @ 1I) + 1V @ 11 @ B+

The result is the following: the overall spectrum of the
Hamiltonian is

H"(9)) = {0} U (spec (H,(9)) + spec (H,)) UG,

where G C [1, ). To understand this, we consider the two cases.
If a non-halting instance is encoded A, = 0 in Eq. (7), then
H,(¢)—from Eq. (9)—has ground state energy lower-bounded by
1; the ground state of the overall Hamiltonian is the trivial zero

spec (

energy classical product state [0)®*, and HA has a constant
spectral gap. If A, <
energy diverging to —eo. We further note that the critical XY
model has a dense spectrum with zero ground state energy, hence
from the H,; term we obtain a dense spectrum above the ground
state?%. As a result, the Hamiltonian becomes gapless and has a
highly entangled ground state with algebraically decaying
correlations.

Since the existence of a halting length w, in Eq. (7) is
undecidable, discriminating between A ;, = 0 or <—|d| is also
undecidable. This implies determining whether the Hamiltonian
is in the critical, quantum-correlated phase or the trivial product
state gapped phase is undecidable as well.

As HM(¢) is a continuous function of ¢, there exist finite
measure regions for which all values of ¢ have the same ground
state and for which there is no closing of the spectral gap, which
delineates the two phases. Setting IT, := |O><0|<'), the observable
Ops =L 2%,cATl; has expectation value 1 when in the state
10)*A®) and 0 in the other case. This is true even if the observable
is restricted to a finite geometrically local subset of the lattice. We
refer the reader to Supplementary Note 6 for more details.

Discussion
Our result proves the undecidability of the phase and spectral gap
for a continuous, one-parameter family of Hamiltonians on a
two-dimensional lattice. An immediate consequence is that there
is no algorithm that can compute a Hamiltonian’s phase diagram
in general, even given a complete description of its microscopic
interactions.

Qualitatively, this brings the results close to classic condensed
matter models, for example, the transverse Ising model described

by the Hamiltonian Hrypy =37 J>0§i)0g) + gozia,(f). Here, the

real parameter ¢ determines the strength of an external magnetic
field. Its phase diagram comprises an ordered and a disordered
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phase, with an order parameter given by the macroscopic

observable Oppy = 3 jzil o¥) corresponding to the global mag-
netisation per spin. In the ordered phase, the ground state
expectation value [(Oppy)| =1. In the disordered phase, the
ground state expectation value is 0. Both these phases have a non-
zero spectral gap in the thermodynamic limit. At the critical point
¢ = 1 between the two phases, the system is gapless and exhibits
criticality.

As mentioned previously, we can take as the order parameter
the macroscopic observable O, g zﬁzjﬂ(’), where HE@ is a
projector onto the local Hilbert space H, on lattice site j. This
definition yields a familiar picture: for those ¢ such that H(¢) is in
the A phase, we prove that the ground space is non-degenerate
with (Osp) =1. In the B phase, all ground states have an
expectation value (O,/p) =0 with respect to this observable.
Thus, phases A and B are distinguished by an order parameter
given by a macroscopic observable O,,p, and the system under-
goes a (first-order) phase transition between these as ¢ varies.

However, unlike the Ising model, in our case, one phase (phase
A, say) is gapped, but the other (phase B) is a gapless phase. This
gapped vs. gapless phase transition has further phenomenological
consequences. For instance, a transition between A and B implies
a transition from exponential decay of correlations to long-range
correlations with algebraic decay of correlation functions. In fact,
something stronger holds in our case: in the gapped phase, the
ground state is a product state and all connected correlation
functions are strictly zero.

If we define a phase diagram of a k-parameter Hamiltonian as a
normalised parameter space [0, 1]%, which maps out the different
phases as a function of the parameters at each point p € [0, 1]%,
then previous undecidability results®!! do not imply uncompu-
tablity of phase diagrams, for multiple reasons. There, as here, the
matrix elements of the local interactions of the Hamiltonian H(¢)
depend on an external parameter ¢, which determines the
gappedness of the Hamiltonian. However, importantly, in the
previous constructions, the matrix elements also depend on the
binary length of ¢, denoted |¢|, which is a discontinuous function
of . A consequence of this, it is not possible to define a mean-
ingful phase diagram for these Hamiltonians over the required
parameter range. This significantly limits the implications one
can draw from previous spectral gap undecidability results, in
particular for quantum phase diagrams, which are one of the
main reasons for caring about spectral gaps in the first place.

Although the construction developed herein proves undecid-
ability between phases defined by O/g, the result can be extended
to more general phase diagrams by a small modification to the
construction. If we modify the Hamiltonian by introducing two
terms h_x and hy, which are Hamiltonians that, respectively, have
and do not have the ground state property X in the thermo-
dynamic limit (specifically, in Eq. (10) defining the Hamiltonian,
we replace [0)(0| and h,; with h_x and hy), then the new overall
Hamiltonian will have two phases, one of which has property X
and another which does not. Determining which of the two
properties holds is undecidable.

Furthermore, the algorithmic uncomputability of the phase
diagram problem implies axiomatic independence of the pro-
blem?>. That is, for any consistent formal system with a recursive
set of axioms, there exists a Hamiltonian of the form given in
Theorem 2.1 such that determining the phase diagram from the
given axioms is not possible.

There are other consequences: a common technique in
numerical condensed matter physics to estimate the phase of a
physical system is to take the Hamiltonian on an L x L lattice,
calculate the phase for this lattice size by some numerical means,
and then extrapolate its phase to the thermodynamic limit. This is

justified by the assumption that as long as L is sufficiently large,
the system already displays the behaviour of the thermodynamic
limit. In ref. 10 it was shown that this assumption is not justified
in all cases, as the phase may without warning appear completely
different at some arbitrarily large and uncomputably system size.
Leading to the phenomenon of sized-driven phase transitions
explored in ref. 16, Our result further extends this to show that
attempting to compute the phase diagram by extrapolating from
some finite-size system may not reflect the phase diagram in the
thermodynamic limit.

We note, however, that our result only establishes uncom-
putability for certain highly complex and artificially constructed
Hamiltonians. Furthermore, the Hamiltonians constructed by our
techniques are necessarily frustrated. For many commonly
occurring Hamiltonians—particularly those with small local
Hilbert space dimension—determining the phase may well be
rigorously decidable. For example, using techniques from
refs. 2627, as done for example in ref. 28, completely solves the
case of frustration-free, nearest-neighbour 1D qubit chains.

As aforementioned, previous gap undecidability results®!!
required the explicit inclusion of the binary length of ¢, that is,
l@], as matrix elements of the form

229l or e im2

It is clear that one cannot vary ¢ along a continuous path
between two points ¢; and ¢, while keeping the length of its
binary expansion |¢| fixed at all points along the path. Moreover,
varying ¢ and |¢| separately breaks the construction. As a result,
it is impossible to draw a phase diagram with respect to the
parameter ¢ for the Hamiltonians of refs. >11.

Phase transitions are typically defined as points at which there
is a non-analyticity in the ground state energy (or some associated
order parameter) with respect to continuous changes in ¢. If one
were to view || as an explicitly discontinuous function of ¢, the
ground state may no longer analytically depend on ¢ even at
points where the system is gapped. As such it is unclear if it is
even meaningful to define a phase or phase transition for the
models presented in refs. >!l. In addition, Hamiltonians
depending discontinuously on a continuously varying parameter
are not typically encountered in physics.

The family of Hamiltonians we construct in this work is truly
continuous, that is, we define our local terms h,,(¢) for arbitrary
¢ € R, thus even irrational numbers with infinitely long binary
expansions are perfectly fine as instances of our problem set-up.
This brings us qualitatively closer to models of Hamiltonians of
real systems, where the parameter varied will typically be some
physical property, such as an applied magnetic field, which can be
varied continuously.

Since Theorem 2.1 shows that for any ¢ there exists a small
finite interval around ¢ for which the phase of the Hamiltonian is
the same, we have a notion of stability of undecidability under
perturbations to ¢—something that was not the case in previous
results. However, it is not clear if there is any stability of the
Hamiltonian’s properties with respect to perturbations in arbi-
trary matrix elements. Stability of undecidability under arbitrary
local perturbations to the Hamiltonian remains a challenging but
important topic for future research, but one that has yet to be
fully resolved even for simple models such as the Ising model.
Finally, it important to emphasise that the Hamiltonian con-
structed here is highly artificial, in the sense that it has an
unnaturally large local Hilbert space dimension and highly
complex, specifically tailored interactions. While size-driven
phase transitions have been discovered in much simpler mod-
els!®, and recent results in Hamiltonian complexity theory29-32
show that related complexity-theoretic properties can also occur
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in far simpler models, it remains an open question whether
undecidability occurs in any remotely natural Hamiltonians.

Ongoing research directions both in Hamiltonian complexity
and computability focus on reducing the physical dimensionality
of the system, reducing the local Hilbert space dimension and
choosing physical interactions comparable to those seen in phy-
sical systems. A further route of investigation would be to
determine how difficult it is to compute phases for systems of
finite size, rather than in the thermodynamic limit, for some
suitable definition of phase in the finite-size setting.

Received: 10 March 2020; Accepted: 4 December 2020;
Published online: 19 January 2021
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