DOI: 10.1002/((please add manuscript number)) Article type: Communication

Metal-Organic Frameworks Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Photocatalytic CO₂ Reduction to CH₄

Hao Wu, Xin Ying Kong, Xiaoming Wen, Siang-Piao Chai, Emma C. Lovell, Junwang Tang, Yun Hau Ng*

H. Wu, Prof. Y.H. Ng School of Energy and Environment City University of Hong Kong Tat Chee Avenue, Kowloon, Hong Kong, China E-mail: <u>yunhau.ng@cityu.edu.hk</u>

H. Wu, Emma C. Lovell, Prof. Y. H. Ng Particles and Catalysis Research Group School of Chemical Engineering The University of New South Wales Sydney, NSW 2052, Australia

X. Y. Kong, Prof. S-P. Chai Multidisciplinary Platform of Advanced Engineering Chemical Engineering Discipline, School of Engineering Monash University Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia

X. Wen

Centre for Translational Atomaterials Faculty of Science Engineering and Technology Swinburne University of Technology John Street, Hawthorn, VIC 3122, Australia

Prof. J. Tang Department of Chemical Engineering University College London Torrington Place, London WC1E 7JE (UK) **Abstract:** Improving the stability of cuprous oxide (Cu₂O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu₂O nanowires are encapsulated by metal-organic frameworks (MOFs) of Cu₃(BTC)₂ (BTC = 1,3,5-benzene tricarboxylate) using a surfactant-free method. Such MOFs not only suppresses the water vapor-induced corrosion of Cu₂O, but also facilitate charge separation and CO2 uptake, thus resulting into a nanocomposite representing times improved activity and stability for selective photocatalytic carbon dioxide (CO₂) reduction into methane (CH₄) under mild reaction conditions. Furthermore direct transfer of photogenerated electrons from the conduction band of Cu₂O to the LUMO level of non-excited Cu₃(BTC)₂ has been evidenced by time-resolved photoluminescence. This work proposes effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, lending to enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.

Mimicking the natural photosynthesis for capturing the gaseous CO_2 emissions and converting them into high-value-added chemicals is a potential capstone technology. The outstanding challenges remain in the design of efficient photocatalyst systems featuring (i) CO_2 capture on catalytic sites, (ii) photon-toelectron generation, (iii) charge separation and (iv) long-term stability.^[1–4]

Concerning photon-harvesting ability, Cu₂O is ordinarily endowed with efficient visible-light absorption and a conduction band position favorable for CO₂ reduction.^[5–7] However, its practical application is bounded by insufficient stability.^[8,9] To overcome this hindrance, we rationally encapsulated onedimensional (1-D) Cu₂O nanowires in the Cu based MOFs of Cu₃(BTC)₂. The strategy is built by the following reasons: 1) Cu-based MOFs as the protecting shell of the composite can protect unstable semiconductors inside from the water-vapor induced corrosion. 2) Integrating Cu₂O is capable of improving the visible-light absorption of MOFs (avoid using noble-metal photosensitiser); while MOFs with unsaturated coordinated single Cu sites can be the active components that reduce the energy barrier for CO₂ reduction and stabilize the reaction intermediates.^[10–16] 3) 1-D nanostructure contributes to a high surface-to-volume ratio, short lateral charge transport length, and low light-reflectivity, which usually demonstrates higher photocatalytic efficiencies.^[17–20] 4) The framework of Cu₃(BTC)₂ with good CO₂ absorption capacity can provide a dense CO₂ atmosphere for the reduction reactions.

Although Cu₂O possesses the appropriate band edge positions to realize CO and CH₄ production under visible-light irradiation,^[21] the CH₄ formation requires eight electrons which is more challenging than the CO production from a kinetic point of view.^[22] In this work, we describe a gaseous photocatalytic system with water vapor as the electron donor for selective CO₂ reduction to CH₄ using the composite of Cu₂O@Cu₃(BTC)₂ grown on copper mesh (CM). The transformed Cu₃(BTC)₂ shell of the composite photocatalyst sheet of Cu₂O@Cu₃(BTC)₂/CM shows a good affinity with the underlying Cu₂O and provides considerable surface areas for the CO₂ adsorption and reduction. Intriguingly, time-resolved photoluminescence (TRPL) measurements reveal the direct transfer of photogenerated electrons from the conduction band of Cu₂O nanowires to the non-excited Cu₃(BTC)₂ (LUMO level), inducing a long-lived

charge separated state following bandgap excitation. The resulting $Cu_2O@Cu_3(BTC)_2/CM$ composite achieves a selective reduction of CO_2 to CH_4 with significantly improved stability and an over 2-fold increase of yield compared to the bare Cu_2O/CM sample, under visible-light irradiation.

The Cu₂O@Cu₃(BTC)₂ core-shell nanowires were fabricated on porous CM, from its Cu₂O nanowires/CM precursor (details in the Experimental Section). Considering the relatively slow dissolving rate of Cu²⁺ from Cu₂O and the fast reaction kinetics of nucleation for Cu₃(BTC)₂, the Cu₂O nanowires were enwrapped by the framework of Cu₃(BTC)₂ (Scheme 1). The color of CM changed from reddishbrown to red and then green as shown in Figure 1a, suggesting the growth of Cu₂O and Cu₃(BTC)₂ on CM, respectively. Furthermore, Figure 1b-d show the top-view scanning electron microscope (SEM) images of CM, Cu₂O/CM, and Cu₂O@Cu₃(BTC)₂/CM samples, respectively, demonstrating the change of morphologies from the flat substrate to the nanowire structures. Both Cu₂O and Cu₂O@Cu₃(BTC)₂ nanowires have an average length longer than 8 μ m. A more detailed investigation was conducted by transmission electron microscopy (TEM). As shown in Figure 1e and 1f, the Cu₂O inner core with a diameter of ~400 nm and MOF outer shell with a thickness of ~300 nm were identified. The corresponding energy dispersive X-ray (EDX) line scan (Figure 1g) and mapping images (Figure 1h and 1i) further show that the solid Cu₂O has a higher intensity of Cu than the porous Cu₃(BTC)₂. The Cu₂O@Cu₃(BTC)₂ presents relatively higher intensities of Cu and O in the middle with an intensity of carbon (C) homogenously distributed over the outer layer, thus suggesting its core-shell structure.

The crystalline phases were confirmed by X-ray diffraction (XRD) shown in Figure 1j. Both Cu₂O/CM and Cu₂O@Cu₃(BTC)₂/CM samples presented diffraction peaks indexed to Cu₂O and Cu (JCPDS 080-7711). After the growth of Cu₃(BTC)₂, the peaks of Cu₃(BTC)₂ • hydrate in the range of 5-30° were appeared (JCPDS 064-0936). The hydrate in the structure is attributed to the coordinated water molecules in Cu₃(BTC)₂.^[23,24] As further determined by the Rietveld refinement, the weights of Cu₂O in Cu₂O/CM and Cu₂O@Cu₃(BTC)₂/CM samples are ~12.5 mg and ~8.7 mg, respectively. The UV-vis diffuse reflectance spectrum implies that the coating of Cu₃(BTC)₂ does not alter the band structure of Cu₂O for

harvesting visible-light (Figure S1). The slightly decreased light absorbance for Cu₂O@Cu₃(BTC)₂/CM sample is possibly caused by the partial transformation of Cu₂O during the topotactic synthesis.

The photocatalytic performance for gaseous CO_2 reduction was carried out in a continuous gas flow reaction system using water vapor as the electron donor (details in the Experimental Section). The main product is CH₄ for the prepared samples. Neither CO, C₂-C₄ nor H₂ were detected for all the tested systems (Figure S2a-c). In addition, control experiments were conducted under identical conditions (details in the Experimental Section). Negligible products of CO₂ reduction were observed in the controlled situations, which suggest that those parameters including visible light, CO₂, water vapor and photocatalyst are prerequisites for the photocatalytic gaseous CO₂ reduction to take place (Figure S2d). Also, the likelihood of photolysis from Cu₃(BTC)₂ could be excluded. In addition, the ¹³C isotope experiment reveals that CH₄ originates from the CO₂ reduction (Figure S3).

Figure 2a shows the time-dependent conversion yields of CO₂ into CH₄ using Cu₂O/CM and Cu₂O@Cu₃(BTC)₂/CM samples under visible-light irradiation. The Cu₂O@Cu₃(BTC)₂/CM sample attained a CH₄ yield of ~14.6 μ mol g⁻¹ for 8 hours, which is more than two times higher than that of Cu₂O/CM (~6.3 μ mol g⁻¹). The amount of oxygen generated with Cu₂O@Cu₃(BTC)₂/CM sample is close to two times of generated CH₄ (Figure S4), demonstrating that the electron source for the photocatalytic CO₂ reduction comes from the water oxidation. The solar-to-methane energy conversion efficiency (STM) of Cu₂O@Cu₃(BTC)₂/CM sample was determined to be 0.019% (detail in the Experimental Section). While the STM of Cu₂O/CM was only 0.010%. After reserving the samples for sixty-days in the atmospheric environment, the reusability of the prepared samples was investigated in other two-cycles under identical conditions. As shown in Figure 2a, the Cu₂O@Cu₃(BTC)₂/CM exhibited a fairly reproducible photocatalytic activity for all three cycles; while the drastically decreased performance of the bare Cu₂O/CM sample was observed. The accumulated gaseous photocatalytic activities for the Cu₂O@Cu₃(BTC)₂/CM and the Cu₂O/CM samples were presented in Table S1 and were normalized shown in Figure 2b. In contrast to the Cu₂O/CM sample, which lost more than 75% of its intrinsic activity.

the Cu₂O@Cu₃(BTC)₂/CM sample retained 81.3% of the original efficiency for the CH₄ production after three runs. XRD and Fourier transform infrared spectroscopy (FTIR) measurements were performed for the Cu₂O@Cu₃(BTC)₂/CM sample after the CO₂ reduction, which shows negligible change, thus indicating the crystal structure and the framework of Cu₂O@Cu₃(BTC)₂/CM retaining intact during the reactions (Figure S5a and S5b). While the bare Cu₂O/CM sample becomes amorphous, suggesting it is corroded after the reaction (Figure S5c). The improved stability induced by the Cu₃(BTC)₂ framework may be ascribed to the selective water vapor adsorption in the pore of Cu₃(BTC)₂, which avoids its direct contact to the exposed Cu₂O surface.^[9,10]

N₂ adsorption-desorption isotherms and CO₂ uptakes were firstly studied for the Cu₂O/CM and Cu₂O@Cu₃(BTC)₂/CM samples. The Cu₂O@Cu₃(BTC)₂/CM composite attained a Langmuir surface area of 13.2 m² g⁻¹, while the value of the bare Cu₂O/CM sample based on the total weight is less than 1 m² g⁻¹. More importantly, the maximum CO₂ uptake at room temperature based on the total weight for Cu₂O@Cu₃(BTC)₂/CM (2.0 cm³ g⁻¹) is almost sevenfold over that of the bare Cu₂O/CM (0.3 cm³ g⁻¹) sample (Figure 3a). The superiority of Cu₂O@Cu₃(BTC)₂/CM in CO₂ uptake is contributed by the porous composite structure with Cu₂O encapsulated inside the Cu₃(BTC)₂ framework rather than being assembled on the surface.

To deeply understand the origin of the enhanced performance induced by encapsulating Cu₂O into the framework of Cu₃(BTC)₂, we inspected the charge movement by recording photoluminescence (PL) spectra of the Cu₂O/CM and Cu₂O@Cu₃(BTC)₂/CM thin films. Compared to the bare Cu₂O sample, the PL spectrum shows a decreased peak intensity at 500 nm and a new peak created between 600-700 nm for the Cu₂O@Cu₃(BTC)₂ composite (Figure 3b). The Cu₃(BTC)₂ has been reported to be a wide-bandgap semiconductor with the lowest unoccupied molecular orbital (LUMO) position of -3.7 eV vacuum energy level, which is slightly lower than the conduction band energy position of Cu₂O (-3.2 eV).^[17,21,25] The well-aligned energy levels are likely to facilitate the electron transfer from the conduction band of Cu₂O to the LUMO level of Cu₃(BTC)₂, thus quenching the bandgap luminescence of Cu₂O. As shown in Figure

S6, the increased electrochemical active surface area (ECSA) of Cu₂O@Cu₃(BTC)₂/CM, compared to the bare Cu₂O/CM, also suggests that the induced electrons transport between Cu₂O and Cu₃(BTC)₂ is permissible. When no CO₂ molecules exist in the testing environment, the energetic electrons stayed on the LUMO level of Cu₃(BTC)₂ are favorably recombined with the holes left on the valence band of Cu₂O,^[26] thus generating a new PL peak following bandgap excitation (inset of Figure 3a). The energy difference of 0.5 eV between the conduction band of Cu₂O and LUMO of Cu₃(BTC)₂ is well consistent with the PL peak difference (500 nm to 630 nm for 0.51 eV), which strongly suggest such an electron transfer and recombination. It is may arguable that the decreased PL peak is caused by the decreased light absorption upon the decoration of Cu₃(BTC)₂. Further insights into the dynamic charge transfer were revealed by TRPL (Figure 3c). The PL decay curves were fitted with a bi-exponential function (details in the Experimental Section) and compared at 500 nm and 630 nm emissions. The Cu₂O sample shows a calculated average lifetime of 0.28 ns at 500 nm emission, while no signal was detected at 630 nm emission. Intriguingly, the average lifetime of Cu₂O@Cu₃(BTC)₂ at 630 nm (2.47 ns) is significantly longer than that at 500 nm emission (0.27 ns) and Cu_2O (0.28 ns). The evidently longer lifetime indicates the significantly longer lifetime for the excited electrons attained by Cu₂O@Cu₃(BTC)₂ due to a slow recombination process between LUMO and valance band in Cu₂O@Cu₃(BTC)₂, which could be ascribed to the weakened interaction strength, overlap of the wavefunctions between the holes residing in Cu₂O and the electrons in surface-bound Cu₃(BTC)₂, in agreement with the steady-state PL results. Although charge semiconductor/semiconductor,^[27] interaction residing between such of carriers semiconductor/metal,^[28] or semiconductor/metal-complex^[29] have been reported in the literature, direct transfer of photogenerated electrons from the conduction band of semiconductor to the non-excited MOFs (LUMO level) is reported for the first time. Such charge transfer is benefited from the well-aligned energy levels as well as the good affinity between Cu₂O and Cu₃(BTC)₂. The long-lived electrons localized in the Cu₂O@Cu₃(BTC)₂ hybrid nanostructure could be beneficial for the CO₂ reduction reactions.

In summary, $Cu_2O@Cu_3(BTC)_2$ composite photocatalysts have been synthesized by a surfactant-free method. Encapsulating Cu_2O nanowires into the framework of $Cu_3(BTC)_2$ showed an enhanced gaseous

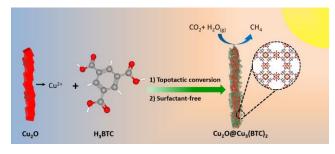
photocatalytic activity and stability for the selective CO₂ reduction to CH₄. Enlarged surface area and higher CO₂ uptakes were introduced by Cu₃(BTC)₂, which offered a dense CO₂ atmosphere for the reactions. Steady-steady and time-resolved PL collectively revealed that Cu₃(BTC)₃ being actively involved enables effective charge separation in Cu₂O. This study extends the understanding of the relationships between MOFs and metal oxides beyond their conventional physisorption/chemisorption type of interactions to now include charge separation (when energy levels are well aligned). These findings will stimulate future endeavour to develop highly efficient organic-inorganic hybrid photocatalysts.

Supporting Information

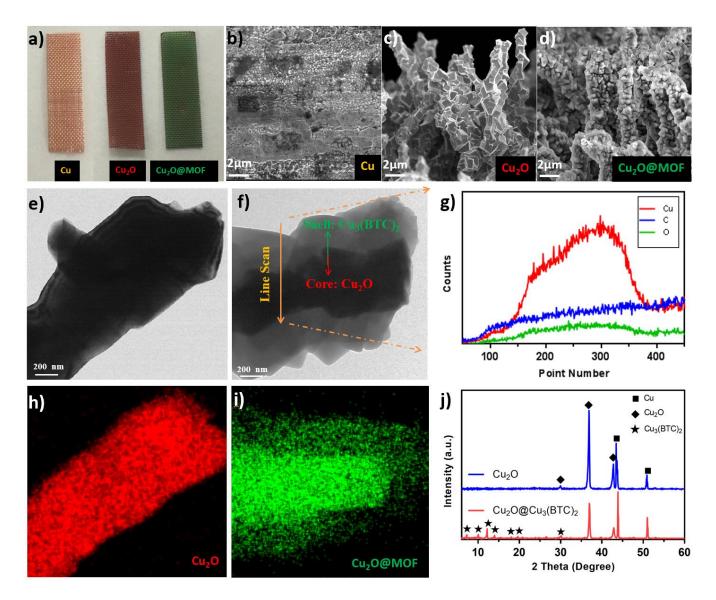
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgments

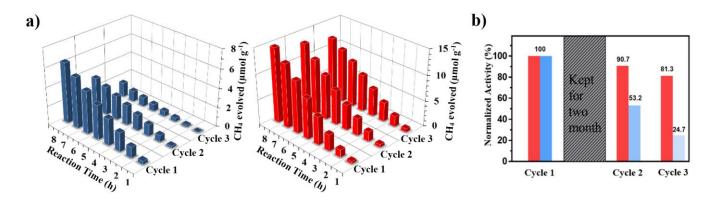
This project was financially supported by the Australian Research Council Discovery Project (DP180102540). The authors appreciate the facilities and technical support provided by the UNSW Mark Wainwright Analytical Centre.


Received: ((will be filled in by the editorial staff)) Revised: ((will be filled in by the editorial staff)) Published online: ((will be filled in by the editorial staff))

Keyword: carbon dioxide fixation, charge transfer, metal-organic frameworks, nanostructures, photosynthesis


References

- [1] J. L. White, M. F. Baruch, J. E. Pander, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, et al., *Chemical Reviews* **2015**, *115*, 12888–12935.
- [2] Y.-F. Song, L. Tan, S.-M. Xu, Z. Wang, Y. Xu, X. Wang, X. Hao, S. Bai, C. Ning, Y. Wang, et al., *Angewandte Chemie International Edition* **2019**, *58*, 1860–11867.
- [3] N. Li, J.-J. Liu, Z.-F. Xin, Y.-L. Teng, Y.-Q. Lan, L.-Z. Dong, J. Liu, *Angewandte Chemie International Edition* **2019**, 5226–5231.
- [4] S. Wang, M. Xu, T. Peng, C. Zhang, T. Li, I. Hussain, J. Wang, B. Tan, *Nature Communications* **2019**, *10*, 676.
- [5] P. Wang, H. Wu, Y. Tang, R. Amal, Y. H. Ng, *The Journal of Physical Chemistry C* **2015**, *119*, 26275–26282.
- [6] X. Chang, T. Wang, P. Zhang, Y. Wei, J. Zhao, J. Gong, *Angewandte Chemie International Edition* **2016**, *55*, 8840–8845.
- [7] Y. A. Wu, I. McNulty, C. Liu, K. C. Lau, Q. Liu, A. P. Paulikas, C. J. Sun, Z. Cai, J. R. Guest, Y. Ren, et al., *Nature Energy* 2019, 4, 957–968.
- [8] C. Y. Toe, Z. Zheng, H. Wu, J. Scott, R. Amal, Y. H. Ng, *Angewandte Chemie International Edition* **2018**, *57*, 13613–13617.
- [9] H. Wu, Z. Zheng, C. Y. Toe, X. Wen, J. N. Hart, R. Amal, Y. H. Ng, *Journal of Materials Chemistry A* **2020**, *8*, 5638–5646.
- [10] A. L. Wu, Y. Mu, X. Guo, W. Zhang, Angewandte Chemie International Edition 2019, 58, 9491– 9495.
- [11] M. ElCheikh Mahmoud, H. Audi, A. Assoud, T. H. Ghaddar, M. Hmadeh, *Journal of the American Chemical Society* **2019**, *141*, 7115–7121.
- [12] A. M. Abdel-Mageed, B. Rungtaweevoranit, M. Parlinska-Wojtan, X. Pei, O. M. Yaghi, R. J. Behm, *Journal of the American Chemical Society* 2019, 141, 5201–5210.
- [13] L. Shi, T. Wang, H. Zhang, K. Chang, J. Ye, Advanced Functional Materials 2015, 25, 5360– 5367.
- [14] H. X. Zhang, Q. L. Hong, J. Li, F. Wang, X. Huang, S. Chen, W. Tu, D. Yu, R. Xu, T. Zhou, et al., *Angewandte Chemie International Edition* **2019**, *58*, 1752–11756.
- [15] J. Jiao, R. Lin, S. Liu, W.-C. Cheong, C. Zhang, Z. Chen, Y. Pan, J. Tang, K. Wu, S.-F. Hung, et al., *Nature Chemistry* **2019**, *11*, 222–228.
- [16] R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H. L. Jiang, J. Jiang, Q. Zhang, Y. Xie, et al., Advanced Materials 2014, 26, 4783–4788.
- [17] C.-Y. Lin, Y.-H. Lai, D. Mersch, E. Reisner, *Chemical Science* 2012, *3*, 3482.
- [18] Z. Zhang, R. Dua, L. Zhang, H. Zhu, H. Zhang, P. Wang, ACS Nano 2013, 7, 1709–1717.
- [19] J. Luo, L. Steier, M. K. Son, M. Schreier, M. T. Mayer, M. Grätzel, *Nano Letters* 2016, 16, 1848–1857.


- [20] H. Wu, H. L. Tan, C. Y. Toe, J. Scott, L. Wang, R. Amal, Y. H. Ng, *Advanced Materials* **2019**, 1904717.
- [21] X. Deng, R. LI, S. Wu, L. Wang, J. Hu, J. Ma, W. Jiang, N. Zhang, X. Zheng, C. Gao, et al., Journal of the American Chemical Society 2019, 141, 10924–10929.
- [22] X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, *Nature Energy* **2019**, *4*, 690–699.
- [23] L. Alaerts, E. Séguin, H. Poelman, F. Thibault-Starzyk, P. A. Jacobs, D. E. De Vos, *Chemistry A European Journal* **2006**, *12*, 7353–7363.
- [24] L. Jiao, Y. Wang, H. L. Jiang, Q. Xu, Advanced Materials 2017, 1703663, 1–23.
- [25] K. T. Butler, C. H. Hendon, A. Walsh, *Journal of the American Chemical Society* **2014**, *136*, 2703–2706.
- [26] S. M. Kobosko, J. T. Dubose, P. V Kamat, ACS Energy Letters 2019, 5, 221–223.
- [27] J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, Advanced Materials 2019, 31, 1802981.
- [28] R. Jiang, B. Li, C. Fang, J. Wang, Advanced Materials 2014, 26, 5274–5309.
- [29] A. Nakada, R. Kuriki, K. Sekizawa, S. Nishioka, J. J. M. Vequizo, T. Uchiyama, N. Kawakami, D. Lu, A. Yamakata, Y. Uchimoto, et al., ACS Catalysis 2018, 8, 9744–9754.

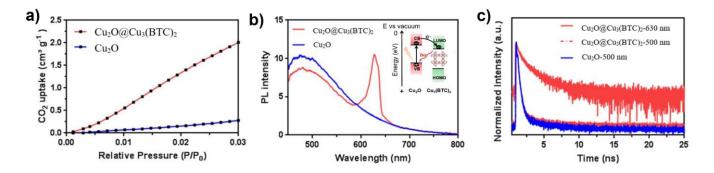

Scheme 1. Illustration of the synthetic route towards $Cu_2O@Cu_3(BTC)_2$ core-shell nanowires through a surfactant-free topotactic conversion strategy for selective gaseous photocatalytic carbon dioxide reduction to methane.

Figure 1. a) Real sample images and SEM images of Cu meshes in the synthesis process, from left to right: b) original Cu mesh, c) Cu₂O nanowires, and d) Cu₂O@Cu₃(BTC)₂ hybrid nanoarrays. TEM images of e) Cu₂O, f) Cu₂O@Cu₃(BTC)₂, and g) the corresponding line scan of Cu₂O@Cu₃(BTC)₂. EDX mapping of the Cu element for h) Cu₂O and i) Cu₂O@Cu₃(BTC)₂. j) XRD pattern of Cu₂O/CM and Cu₂O@Cu₃(BTC)₂/CM. *MOF shown in the figures stands for the Cu₃(BTC)₂ framework.

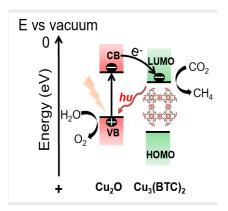

Figure 2. Photodurability tests for the Cu₂O/CM (blue) and Cu₂O@Cu₃(BTC)₂/CM (red) samples for recycling CO₂ photocatalytic reduction under visible-light irradiation (λ >400nm): a) Time course of the photocatalytic CH₄ production and b) normalized activity (%) of the CH₄ production for each cycle. No CO or alcohol products were found for any samples.

Figure 3. a) CO₂ adsorption behaviors of Cu₂O/CM and Cu₂O@Cu₃(BTC)₂/CM samples. The curves are plotted based on the total weights of materials. b) Steady-state photoluminescence (PL) and c) time-resolved PL of Cu₂O/CM and Cu₂O@Cu₃(BTC)₂/CM. The signals of time-resolved PL are monitored and compared at 500 nm and 630 nm separately. Inset: schematic illustration of corresponding energy band positions for photoexcited electron transfer in the Cu₂O@Cu₃(BTC)₂ core-shell nanostructures. CB-conduction band, VB-valence band, LUMO-lowest unoccupied molecular orbital, and HOMO-highest occupied molecular orbital.

COMMUNICATION

 Cu_2O nanowires are decorated with $Cu_3(BTC)_2$ by a surfactant-free method. The $Cu_2O@Cu_3(BTC)_2$ coreshell structure offers enlarged active surfaces and prolonged lifetime of separated electrons for CO_2 reduction into CH_4 , exhibiting enhanced gaseous photocatalytic activity and stability compared to the bare Cu_2O .

Hao Wu, Xin Ying Kong, Xiaoming Wen, Siang-Piao Chai, Emma C. Lovell, Junwang Tang, Yun Hau Ng*

Page No. – Page No.

Metal-Organic Frameworks Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Photocatalytic CO₂ Reduction to CH₄