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Over the last 30 years, representationalist and dynamicist positions in the philosophy of
cognitive science have argued over whether neurocognitive processes should be viewed
as representational or not. Major scientific and technological developments over the
years have furnished both parties with ever more sophisticated conceptual weaponry.
In recent years, an enactive generalization of predictive processing – known as active
inference – has been proposed as a unifying theory of brain functions. Since then, active
inference has fueled both representationalist and dynamicist campaigns. However, we
believe that when diving into the formal details of active inference, one should be able
to find a solution to the war; if not a peace treaty, surely an armistice of a sort. Based on
an analysis of these formal details, this paper shows how both representationalist and
dynamicist sensibilities can peacefully coexist within the new territory of active inference.

Keywords: philosophy of cognitive science, free energy principle, active inference, embodiment,
representationalism

INTRODUCTION

This paper proposes a way to end the representation wars. Focusing on recent formal developments,
we aim to show that the concept of generative models as applied to the brain under active
inference accommodates a representationalist and a dynamicist (a.k.a. non-representational) view
of cognition. More precisely, we show that the architecture or configuration of neuronal pathways
under a (Markovian) generative model (for discrete state spaces) can – and generally speaking will –
realisze both representational and non-representational processes.

In Section 2 of this paper, to help readers unfamiliar with the notion of representation in the
philosophy of cognitive science, we present a heuristic overview of its history, focusing on salient
moments of its war over the past 30 years. Although this history is complex and more nuanced
than what we can present here, we believe that this discussion evinces some of the motivations
behind the notion of representation and its contestations. In Section 3, we present the architecture
of generative models’ representationalist pathways. This allows us to segue into a discussion of
dynamic pathways in Section 4. Section 5 discusses some worries. We then conclude in Section 6
with some brief remarks on good practice in the philosophy of cognitive science, when appealing
to the mechanics of active inference.

Note that we do not engage with debates concerning active inference per se, nor do we venture
into a philosophical justification of its use in cognitive neuroscience. Rather, we start from the
premise that active inference is a suitable theory, as evidenced by the large literature that evidences,
employs, argues for, and teaches its workings. For a comprehensive introduction and for a review of
the formal fundaments and empirical evidence, we refer the reader to Beal (2003), Bogacz (2017),
Buckley et al. (2017), Friston (2018), Keller and Mrsic-Flogel (2018), Parr et al. (2019).
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Also, note that the argument presented in this paper is of a
different kind than those currently available in the literature on
representationalism in predictive processing and active inference
(e.g., Clark, 2015a,c,b; Allen and Friston, 2016; Gładziejewski,
2016; Dolega, 2017; Kiefer and Hohwy, 2017), as it is not based
on an intuitive conceptual analysis, but rather on a formal,
analytic reading of the theory. The argument we present is
simple. We show that if one agrees with the sufficient criteria for
representationalism described in Section 2, then one is compelled
to agree with the claim made in this paper; namely, that formally,
representational and non-representational cognitive processes
can be implemented by the brain under active inference.
Given that active inference is a formal theory of functional
neuroanatomy, the debates on the representational nature of
brain processes concerning active inference should come to an
end. Thus, the upshot of this paper is to move forward the
philosophical debates on representationalism in active inference
and to enable practical debates about the varieties of possible
implementations of representational and non-representational
neuronal processes.

30 YEARS OF REPRESENTATION WARS

1980s Connectionism
As the story goes, until the 1990s, driven by advances in
computer science, the philosophy of cognitive science was
dominated by cognitivism and connectionism (e.g., Fodor,
1975; Churchland, 1989). Connectionism was presented as a
first attack on cognitivism – cognitivism being an attempt
at understanding the brain as a logical symbol manipulating
system. For connectionists, the brain should not be studied as
a symbol manipulating system, but rather, consistent with the
brain’s actual neurophysiology, as a set of hierarchically deployed
neural networks. The spirit of connectionism is still very much
alive today, such as in deep learning research (for a review see
LeCun et al., 2015).

Both cognitivism and connectionism deal with a view of
cognition as a problem-solving activity. And both paradigms have
typically invoked some notion of representation, with the main
difference being whether the representations had symbol-level
content or something softer, something contentful yet “sub-
symbolic” (for extensive discussion, see Clark, 1989, 1993).

Although these are different types of representations, each
involving different criteria, a cognitive process will – for the
purposes of this paper – be deemed representational whenever
that process can be said to fulfill the following sufficient
conditions (see Siegel, 2010; Hutto and Myin, 2013):

(i) The cognitive process is about something else
(a.k.a. aboutness).

(ii) The cognitive process has satisfaction conditions with
respect the thing it is about.

1990s Dynamicism
The 1990s marked the rise of embodied views in cognitive
science such as enactivism (Varela et al., 1991) and radical

embodied cognition (Chemero, 2009). Embodied approaches
were motivated by developments in the field of dynamical system
theory, which casts cognitive systems as coupled quantitative
variables, mutually changing interdependently over time (Van
Gelder, 1995; Thelen and Smith, 1996; Beer, 2000); one
variable being the organism, the other being the environment.
Dynamicism has been driven by two main criticisms of much
previous work (Thompson, 2007):

(1) Since the brain is embodied, we cannot abstract cognition
from the body, and consequently from the environment;

(2) Since representationalism posits the mediation of the
world and cognition by the mental manipulation of
representations, representationalism cannot genuinely
acknowledge embodiment.

Therefore, for these kinds of dynamicists – see Clark (1997) for
a more liberal approach – we should reject the representational
view of cognition altogether. Instead, cognition should be viewed
as a process of self-organization among the components of
the biological system performing the cognitive activity. These
components include the brain (internal states) and the body
and the environment (external states). On that view, cognition
is a homeostatic and allostatic process of attunement to cope
with environmental perturbations; a process of “coping, not
computing.”

2000s Active Inference Westphalia?
At the turn of the millennium, based on a Helmholtzian view
of embodied perception, the theory of active inference was
introduced as a realization of the free energy principle (Friston
et al., 2006, 2016; Friston, 2010). This enactive generalization
of predictive processing marked a paradigm shift in cognitive
science: active inference became a potential candidate to
meet the challenge of the grand unification of neurocognitive
functions (Clark, 2013). Since then, many enthusiasts have
leveraged active inference to attempt explanations of the
underlying computational processes of biobehavioral functions
such as action, perception, learning, attention, memory, decision
making, emotions, planning and navigation, visual foraging,
communication, social learning, and many more (Feldman and
Friston, 2010; Joffily and Coricelli, 2013; Friston and Frith,
2015; Friston et al., 2016; Mirza et al., 2016; Parr and Friston,
2017b; Constant et al., 2018a,b; Kaplan and Friston, 2018;
Badcock et al., 2019).

In line with much of Bayesian statistics, active inference claims
that the brain is fundamentally in the business of finessing
a generative model of the causes of its sensations; as if the
brain was a scientist, trying to infer the causal architecture of
its own relation to its world. Put another way, under active
inference, the brain is a dynamical system that models the
action-relevant causal structure of its coupling with the other
dynamical system that embeds it – the body and the environment
(i.e., the system generating its sensations). The mathematical
formalism of active inference describes neuronal dynamics as a
gradient flow that optimizes the evidence for a generative model
of the lived world. On this view, neuronal networks embodied
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by the brain form a set of nodes (modeling hidden states) and
edges (modeling conditional dependencies) of a probabilistic
(Bayesian) graphical model.

But active inference itself soon became contested ground
too. The cognitivist campaign claimed that “brains as generative
models” were “rich and reconstructive, detached, truth-seeking
inner representations” of the world (Hohwy, 2013, 2016);
others [such as Clark (2015c)] resisted by claiming that
generative models were in fact manifest as transient webs
of neuronal coupling that are cost-efficient, and sometimes
(though not always) freed from heavy-duty manipulation of
internal representations – generating actions that exploited
environmental opportunities by weaving themselves closely
to the opportunities provided by body and the world
(Clark, 2013, 2015c).

REPRESENTATIONAL PATHWAYS IN
ACTIVE INFERENCE

Active inference assumes that the brain entails1 a causal model of
the world (a.k.a. a generative model), whose structure represents
the components involved in the cognitive function of interest,
as well as the dynamics that realize that cognitive function.
Formally, these components and dynamics are expressed as a
Bayesian graphical model, with nodes and edges representing
the dynamic relations among components, and the structure of
which is assumed to map onto the neuroanatomy of neuronal
systems realizing any cognitive function. The cognitive function,
then, is realized by these dynamics – that play the role of
neuronal message passing in the service of belief updating (i.e.,
inference) that underwrites the cognitive function in question
(Friston et al., 2017a).

The representational interpretation of active inference is
employed to study cognitive functions that rely on dynamics
and components of the generative models that involve the
internal manipulation of representational content (e.g., beliefs
about hidden states of the world,2 including one’s body and
physiology) (Hohwy, 2013, 2019). The motivation for appealing
to representational generative models to explain perception and
action in active inference stems from the inverse nature of the
dual inference problems our brains solve (i.e., figuring “what
causes what” before inferring “what caused that”):

(i) Perceptual problem: The brain does not have direct access
to causes of sensations, nor is there a stable one-to-one
mapping between causes and sensations. For instance,
a sensory input (e.g., red sensation) may be caused by
multiple fluctuating causes (e.g., red jacket, red car, red

1The word “entails” has a particular meaning here because, strictly speaking, the
brain is viewed as performing inference under a generative model. Technically, the
generative model is just a probability distribution over the (unobserved) causes
of (observed) sensations. As such, the generative model only exists to the extent
that neuronal dynamics maximize the evidence for that model (for a discussion
see Ramstead et al., 2017).
2Hidden states are sometimes called latent states and refer to variables that cannot
be observed. There are effectively hidden behind observations and have to be
inferred as random variables.

traffic light). In the philosophical literature, this problem
is sometimes referred to as the black box, seclusion or
solipsism problem (Clark, 2013; Hohwy, 2016; Metzinger
and Wiese, 2017).

(ii) Action planning problem: All the brain can work with
are the sensory inputs it receives. If we are to engage
adaptive action, we must not only infer the causes of our
sensations (i.e., forming a sufficiently veridical perception –
or conception – of the world in which we currently find
ourselves), but we must also predict the consequences
of engaging in this or that action in the future. In the
philosophical literature, this problem is sometimes referred
to as the problem of mere versus adaptive active inference
(Bruineberg et al., 2016; Kirchhoff et al., 2018), and requires
action planning (c.f., planning as inference in machine
learning).

This means that under active inference, agents like us must
find a solution to infer, in an ill-posed setting, both the nature
of the cause of our sensations (e.g., the jacket, the traffic light,
or the car), and to infer what action will lead to outcomes that
are consistent with our model of the lived world (e.g., being on
the other side of the street vs. under the wheels of a car). Under
active inference, perception and action are explained as solutions
to these inverse problems – crucially, solutions that rest upon
optimizing exactly the same quantity, as we will see below.

Perception
Formally, the problem of indirect perception can be approached
as follows. Consider a sensory outcome o generated by a hidden
state (s). Taken together, these can be viewed as forming a joint
probability distribution (P(s,o)). The only quantity to which the
brain has access is a sensory consequence, not its cause. To
perceive things, the brain must reconstruct the hidden state or
cause (s), or rather its posterior probability; i.e., the probability of
the cause, after observing the sensory datum P(s|o).

Definitions of the constructs in this paper can be found in
Table 1 of Friston et al. (2016), Table 2 of Da Costa et al. (2020),
and in the Supplementary Information of Hesp et al. (2019).
A conceptual description of the technical notions employed in
this paper can be found in Box 2 of Veissière et al. (2020) –
reproduced here for convenience. We refer the reader to these
resources because the model considered in this paper rests on a
standardized formalism that has been detailed elsewhere. Note
that the model we present here can be understood solely on
the basis of a narrative description, and thus, can be viewed as
playing an iconic role.

To infer this posterior probability, the brain learns the causal
(i.e., generative) model of the manner in which the world caused
the sensation. Learning here is a technical term. It refers to the
optimization of the parameters of a model – here the generative
model. The brain learns the parameters of hidden states causing
sensory outcomes; about which the brain may have prior beliefs.
These prior beliefs are part of the generative model entailed
by the brain. Hence, a generative model decomposes into prior
beliefs about hidden states and a likelihood of these hidden states,
given outcomes. One can easily follow this decomposition by
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FIGURE 1 | Elementary generative model for perception and the problem of indirect inference.

visualizing the graphical model that makes up the generative
model in Figure 1.

In an ideal scenario, the brain could use Bayes rule to infer the
true probability of the cause, by using the probability of the data,
known as model evidence or marginal likelihood:

P(s|o) =
P(s)P(o|s)

P(o)
(1)

The marginal likelihood P(o) refers to the probability of sensory
data averaged – or marginalized – over all possible hidden states:

P(o) =
∑

s
P(s, o) (2)

To represent the marginal likelihood and perform exact inference
(as in Equation 1), the marginalization that the brain would
have to perform would be intractable, as there may be a near
infinite number of causes with various probabilities for each
sensory datum. This is at the core of the inverse problem of
inference; direct calculation of the posterior probability of one’s
beliefs given sensory data P(s|o) is simply intractable. Thus, the
problem of indirect inference may be restated as follows: the
brain cannot access the true posterior probability over the causes
of its sensations because this requires evaluating an intractable
marginal likelihood. What the brain can do, however, is to
perform “approximate Bayesian inference” based on its prior
beliefs and the sensory data it receives.3 In active inference, the
“manipulation of content” rests on this method of inference
known as approximate Bayesian inference (Feynman, 1972;
Dayan et al., 1995; Beal, 2003).

3Approximate Bayesian inference should not be read as inference that is
approximate; rather, it should be read as inference that can be realized. Indeed, as
we will see later, exact Bayesian inference is a special case of approximate Bayesian
inference when certain conditions are met.

Approximate Bayesian inference allows the inversion of the
generative model to estimate the marginal likelihood via an
approximation to the true posterior over sensory causes (i.e.,
what the brain would do using exact Bayesian inference if
it had access to the marginal likelihood). Taking advantage
of Jensen’s inequality, the method of approximate Bayesian
inference involves the minimization of an upper bound on
(negative log) model evidence (a.k.a. surprisal), called variational
free energy. This bound is constructed by using an arbitrary
probability distribution4

Q(s) that is used to minimize the
variational bound – and the generative model P(s,o) :

F =
∑

Q(s) ln
Q(s)

P(s, o)

=
∑

Q(s) ln
Q(s)

P(s|o)
− ln P(o)

= EQ(s)

[
ln

Q(s)
P(s|o)

]
− ln P(o)

= D
Bound︷ ︸︸ ︷

[ Q(s)︸︷︷︸
Approximate

posterior

|| P(s|o)︸ ︷︷ ︸
True

posterior

] − ln P(o)︸︷︷︸
Marginal

likelihood

(3)

Equation 3 says that the free energy of our approximate
posterior (i.e., Bayesian) beliefs, given some sensory outcomes,
is the Kullback–Leibler divergence (D) from the true posterior
probability of external states, given the sensory input; minus
the (negative log) marginal likelihood. Estimating the marginal

4This arbitrary probability distribution is variously called an approximate
posterior, a recognition distribution or more simply a Bayesian belief.
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likelihood can be achieved by minimizing the free energy
functional of (Bayesian) beliefs and sensations:

Q(s) = arg min
s

F ⇒

Q(s) ≈ P(s|o)︸ ︷︷ ︸
True posterior

F ≈ − ln P(o)︸ ︷︷ ︸
Log evidence

(4)

The Kullback–Leibler (KL, or D here) divergence represents the
difference between the agent’s beliefs about external states Q(s),
and the true posterior probability over these states, given the
sensory data P(s|o). Any KL-divergence is always non-negative,
which means that as the free energy gets smaller (i.e., as we
minimize the functional) the divergence tends toward zero. This
means that minimizing free energy entails:

Marginal Likelihood Estimation (a.k.a. MLE, Beal, 2003) by
making free energy a tight upper bound on the (negative log)
marginal likelihood − ln P(o).

Perception (and learning) of external states by making the
approximate posterior Q(s) a good approximation of the true
posterior P(s|o).

Perception (and learning), then, is simply the process whereby
the approximate posterior Q(s) – parameterized or encoded by the
internal states of the brain – are made “statistically consistent”
with the true posterior distribution over the external states of the
world given sensory observations.

Note that there is some debate as to whether the reduction
of the Kullback–Leibler divergence is a representational
process (Kirchhoff and Robertson, 2018). Whether this process
is representational or not, the probability distributions it
manipulates are most certainly instances of representations (cf.
Badcock et al., 2019). The divergence between two probability
distributions can be said to be “right” or “wrong” with respect to
some satisfaction conditions (i.e., a reducing divergence is better
than an increasing divergence). Therefore, even if the process
per se (i.e., reduction of the divergence or evidence bound) is
non-representational, the components involved in this process
make that process one of “manipulation” of representations.
A similar theme is seen in Bayesian decision theory, game theory
and economics where the evidence bound can be interpreted
as leading to bounded rationality (i.e., approximate Bayesian
inference) (Friston et al., 2013). The rationality of decisions again
speaks to an inherent representationalism that underwrites the
“right” sort of decisions.

Now, depending on the structure (i.e., entailed knowledge) in
the generative model, approximate Bayesian inference not only
optimizes beliefs about the world “out there” but also beliefs
about the consequences of doing this or that. These beliefs
yield inference to the best action to engage (see below). As
we have seen, in the case of perception, approximate Bayesian
inference involves minimizing free energy, which is an upper
bound on (negative log) marginal likelihood. We now turn
to action planning as another instance of representational
cognitive process.

Action Planning
To account for action, one must start thinking about the
manner in which states of the world change over time. This
requires us to cast the generative model over multiple times
steps τ, into the future and how an action policy π (i.e.,
possible sequence of actions) may influence these the trajectory
of states when this or that policy is realized. Thus, our generative
models will have the form P(s,π,o) – to allow us to infer
future hidden states and associated outcomes oτ relative to a
policy π (see Figure 2). Here, for the sake of simplicity, we
will focus on a discrete formulation of the ensuing generative
model for action.

The structure of the graphical model in Figure 2 allows us to
work with a free-energy appropriate for outcomes that have yet
to be observed. This is known as expected free energy G (see Parr
and Friston, 2017a):

G(π, τ) =
∑

P(oτ|sτ)Q(sτ|π) ln
Q(sτ|π)

P(oτ, sτ|π)

=

∑
P(oτ|sτ)Q(sτ|π) ln

Q(sτ|π)

P(sτ|oτ, |π)P(oτ)

=

∑
P(oτ|sτ)Q(sτ|π) ln

Q(sτ|π)

P(sτ|oτ, |π)

−

∑
P(oτ|sτ)Q(sτ|π) ln P(oτ)

= EP(oτ|sτ)Q(sτ|π)

[
ln

Q(sτ|π)

P(sτ|oτ, π)

]
−EP(oτ|sτ )Q(sτ|π) ln P(oτ)

= −EQ(sτ|π)P(oτ|sτ)[ln P(oτ)]︸ ︷︷ ︸
Instrumental

+EQ(sτ|π)P(oτ|sτ)[ln Q(sτ|π)− ln P(sτ|oτ,π)]︸ ︷︷ ︸
Epistemic

(5)

In Equation 5, expected free energy of a policy at a given time
G(π,τ) decomposes into a pragmatic or instrumental term and an
epistemic term, also known as extrinsic and intrinsic values. The
pragmatic term, or extrinsic value constitutes the goal seeking
component of expected free energy (often referred to as expected
value or utility in psychology and economics) (Kauder, 1953;
Sutton and Barto, 1998). Extrinsic value is the expected value of a
policy relative to preferred outcomes that will be encountered in
the future ln P(oτ). In turn, the epistemic term, or intrinsic value
constitutes the information seeking component of expected free
energy. Intrinsic value is the expected information gain relative
to future states under a given policy (i.e., “what policy will best
guarantee the minimization of uncertainty in my beliefs about
the causal structure of the world?”). In visual neurosciences, this
is called salience and is a key determinant of epistemic foraging
or exploratory behavior (Itti and Baldi, 2009; Sun et al., 2011).
As such, it is sometimes referred to as intrinsic motivation (Ryan
and Deci, 1985; Oudeyer and Kaplan, 2007; Schmidhuber, 2010;
Barto et al., 2013); Schmidhuber, 2010). Selecting the policy that
affords the least expected free energy guarantees an adaptive
action, that is, that first consolidates knowledge about the world,
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FIGURE 2 | Minimal discrete state space generative model for action. Open circles are random variables (hidden states and policies). Gray filled circles are
observable outcomes. Squares are known variables, such as the model parameters. Cat refers to categorical distributions. The equations in the beige box (upper left)
specify the architecture of the generative model (for a complete description see Friston et al., 2017b). The likelihood matrix A specifies the probability of outcomes for
each combination hidden states s. The novelty of this generative model rests on the addition of a policy π that determines state transitions, represented by the
policy-dependent transition matrix Bπ,τ . The initial state is specified by D. The approximate posterior of the future hidden state sπ,τ at time t relative to the policy π is
found by evaluating the approximate posterior for the policy Q(π). This policy will be the one with the least expected free energy G=− ln P(π) that determines prior
beliefs about the policy being pursued; namely P(π) that can recovered from expected free energy, using the softmax operator σ (for a complete description see
Friston et al., 2017a). Note that the edges that link the policy and the transition matrices are undirected. This is important, as it means that the evaluation of expected
free energy requires a message from hidden states representations, thereby affording a representationalist pathway.

then optimizes – i.e., works toward – preferred outcomes. For a
complete discussion see Friston et al. (2015).

Summary: The Reason Why Perception
and Action Planning Rest on
Representational Processes
In summary, under active inference, action selection is a
process of manipulating representations about future states of
the world to maximize one’s knowledge and secure desired
(predicted) outcomes and sensory encounters. This inference or
belief updating about “what I am doing” rests on perceptual
inference. Perception, in turn, is a process of updating mental
representations of states of the world and their relationship
to sensory consequences, so as to make these representations
as consistent as possible with the true state of the world.
Hence, more generally, perception and action planning, under
active inference, are instances of representational processes. The
statistical structure of the likelihood mapping tells me that the
most likely cause of the sensory entry is the cause that my
belief represents; and put bluntly, minimizing uncertainty in
beliefs is for the most part what “forming a percept” is about. In
turn, action selection is an inference process that relies on these
optimized beliefs about sensory causes, and the consequences
of future moves in a rich and reconstructive fashion. Action
selection tells me that since I am a surprise or free energy
minimizing creature, I should selectively engage with the world
to minimize expected surprise or uncertainty. This requires me to
respond to epistemic affordances – to resolve uncertainty – while
securing familiar (i.e., a priori preferred) sensory outcomes. This
will minimize my uncertainty about future states and maximize
the utility of my action.

In active inference, the need for rich, representations involving
generative models stems directly from the problem of inverse
inference about causes and adaptive actions to resolve uncertainty
about those causes. The ill-posed nature of the inference
problem we face forces us to first “figure out for ourselves”

“what causes what?” before being able to zero-in on “what
caused that” (perception), and “I will cause that” (i.e., action
planning). This problem forces us to learn hierarchically (i.e.,
over multiple levels of prior beliefs) and temporally (i.e., over
multiple time steps, such as in Figure 2) deep generative models
(Friston et al., 2017c).

DYNAMIC PATHWAYS IN ACTIVE
INFERENCE

We turn now to the role of non-representational dynamics
in active inference. There is a technical sense in which an
austere, dynamicist reading of active inference is licensed in
a fundamental way. This follows because the representational
account above emerges from a certain kind of dynamics;
namely, gradient flows on variational and expected free energy
(cf. Ramstead et al., 2019). In other words, the cognitivist
functionality rests upon optimizing free energy and this
optimization is a necessary consequence of neuronal dynamics
that – not unlike a river flowing downhill – descend free
energy gradients – to find free energy minima where the
gradients are destroyed (Tschacher and Haken, 2007). Indeed,
the back story to active inference shows that this kind of
dynamical behavior is a necessary aspect of any self-organization
to nonequilibrium steady-state in any random dynamical system
that possesses a Markov blanket (Friston, 2013). On this
view, any system that possesses some attracting states has
dynamics that look “as if ” they are trying to minimize free
energy and therefore acquire a representational and teleological
interpretation (cf. Ramstead et al., 2019).

While there are interesting issues that attend the distinction
between a purely dynamical formulation of active inference –
and a representationalist reading in terms of dynamics and
information geometry – we will consider non-representationalist
formulations. These formulations speak to notions of extended
and embedded optimization, which call upon hierarchical
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dynamics that consider the dynamical exchange between an
agent and its (physiological, evolutionary, and cultural) econiche.
Accordingly, the dynamic pathways in generative models under
active inference – examples appear below – do not appeal to the
manipulation of representations of hidden states of the world
to explain the cognitive processes underlying the behavior they
generate. Dynamic pathways can be exemplified by application
to a specific class of unplanned action – more specifically
enculturated action (more on that below) – that does not rest on
the manipulation of rich webs of internal representations. Rather,
heuristically, the dynamicist view is a view of action that only
requires processing “something as doing,” such that the “doing”
(e.g., action sequences or realized policies) is directly conditioned
upon the “something” (e.g., sensory observation). In the recent
literature on active inference, this sort of action has been coined
“deontic” action (Constant et al., 2019).

Deontic Action
Deontic actions are actions for which the underlying policy has
acquired a deontic value; namely, the shared, or socially admitted
value of a policy (Constant et al., 2019). A deontic action is guided
by the consideration of “what would a typical other do in my
situation.” For instance, stopping at the red traffic light at 4 am
when no one is present may be viewed as such a deontically
afforded action.5

Central to our agenda, deontic actions are processed through
different mappings in the generative model. Technically, deontic
value is the likelihood of a policy given an observation ln P(oτ|π)

that grounds posterior beliefs about policies.6 This likelihood
is an empirical prior which constitutes expected free energy.
The deontic value ln P(oτ|π) effectively supplements or supplants
the likelihood of outcomes under different states P(oτ|sτ) (see
Figure 3). From the point of view of the generative model, this
means that if I am pursuing this policy then these outcomes
are more likely (e.g., when I stop doing something, I am likely
to see a stop sign). From the point of view of inference, this

5Note that not every deontic action need be socially sanctioned; or rather, we
humans have the ability to socially sanction ourselves. For instance, one might
come up with a solo practice; a habit that is all mine, such as putting a sock on the
doorknob to stop me leaving without my keys. After some time, I might forget why
I put a sock on my doorknob, until the day where for some reason my habit fails
me. Coming back home, realizing that I forgot my key, and explaining the situation
to myself, I will realize that I forgot my key because I should have put the sock on
the doorknob. I might think, “this is what someone ‘like me’ would and should
have done!.” In the active inference literature, so far, sociality has been framed in
two distinct ways (Vasil et al., 2020). (i) As the fact of having some Bayesian beliefs
about the manner in which the social world causes certain inputs that we receive in
certain social settings; beliefs that people external to me and “like me” would have
(i.e., sharing similar generative models). (ii) As the learning of a deontic likelihood
based on sensory entries that have been generated by people external to me and by
people “like me.” In both cases, the two criteria for sociality are (i) the externality
of the cause, and (ii) the fact that that cause is “like me.” There is a sense in which
actions that are caused by me and that loop into the world so as to generate sensory
entries suppose a cause that is external to me (e.g., my physical action), and that is
caused by someone “like me” (i.e., me, literally). This allows, under active inference,
to conceive of aspects of sociality (e.g., acting based on what “one should do”) that
arise from interaction with oneself, even when alone. Such a “self-social inference”
is rendered possible by the fact that my brain (my internal states) are conditionally
independent from my active states (e.g., my body) despite being mine in the sense
of generating reliable, recurrent, and predictable inputs (Constant et al., 2018b).
6Example, when I see the sock on my night table, I put it in my pocket.

means that if I see these deontic outcomes, I will infer I am
doing this (e.g., if I see a stop sign, I will stop). Put simply,
a deontic action is an available (i.e., plausible) policy that is
triggered by a sensory input, and which leads directly to an
internally consistent action. Crucially, this means that deontic
action selection bypasses representational beliefs about states of
the world and associated sensory consequences.

The computational architecture of deontic action is a clear
candidate to implement a form of dynamicism under active
inference. In effect, the information processing underlying
deontic action eludes the two sufficient conditions of
representationalism presented in Section 2:

(i) Since they involve the inversion of a policy-outcome
mapping, instead of state-outcomes mappings, deontic
processes do not entail a propositional attitude involving
the mediation of manipulations of one’s (Bayesian) beliefs
standing for sensory causes in the world. Deontic processes
do not have “aboutness.”

(ii) Success conditions in epistemology are about the way an
agent’s act (e.g., an assertion, or another kind of speech act)
needs to relate to the states of the world toward which it is
directed for it to work. This means that usually, what the
agent (or her brain) is seeking to optimize isn’t the issue.
Under active inference, however, one ought to consider
active brain processes and success conditions that do not
relate to the external world per se. Brain processes can
arbitrate between successful or unsuccessful alternatives
with respect to the internal generative model per se, such
as in the case of action planning, where action policies
are compared in terms of the free energy – under the
generative model – expected in the future. This means
that success conditions can be given with respect to the
generative model per se, not the world generating the
observation (a.k.a. generative process). This is a subtle, yet
crucial point, which becomes apparent when considering
the probability distributions involved in various inference
processes in the brain. For instance, when inferring hidden
states (i.e., perceiving), the true posterior (P) approximated
by the approximate posterior (Q) is the true posterior
probability of the agent’s beliefs, not of the cause of the
agent’s observations. “Getting it right,” in that case, again,
is about getting it right with respect to one’s own beliefs;
e.g., successfully exploring the state space of one’s own
model of the world. This means that under active inference,
there are two layers of success involved, one defined over
the model, and one defined over the agent-world coupling
(which corresponds to a more traditional epistemological
point of view).

The second layer allows us to know when a generative
model isn’t fit for purpose – e.g., in cases of mental disorders,
where behavioral outcomes are maladaptive with respect to
the individual’s environment. Those two layers of success are
apparent in the fact that one can perform (Bayes) optimal
inference while generating suboptimal behavior because of
suboptimal (prior) beliefs (Corlett and Fletcher, 2014). Deontic
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FIGURE 3 | Dynamic pathway. This graphical generative model is the same as the one presented in Figure 2. However, it incorporates deontic value, which is read
here as a dynamic pathway.

processes conform to success conditions of this second layer.
They do not have success conditions qua brain processes,
but rather have success condition qua agent-world coupling
processes. They are simple observation-action loops; not
rich and reconstructive policy selection loops. This is so
because deontic processes circumnavigate the computation of
expected free energy, which as we have seen, is used to
compare different policies with respect to their ability to
maximize instrumental and epistemic values. Under active
inference, the maximization of these values such as captured
by expected free energy (G) is the success condition of non-
deontic action selection in the brain. This construction means
that inferences about states of the world – that admit a
representationalist interpretation – are now replaced by direct
action, without any intervening inference or representation of the
consequences of action.

Having said this, the dual aspect architecture in Figure 3
means that the representationalist and dynamic pathways can
happily live side-by-side, mutually informing each other – but
both are sufficient for enactive engagement with the niche on
their own. The distinction between the pathways – or routes to
(subpersonal) action selection have some important implications.
For example, deontic action circumnavigates expected free energy
and therefore precludes planning as (active) inference. This
means that under active inference, systems employing deontic
strategies do not need to plan courses of action into the future.
They simply act on the basis of the observation. Furthermore,
in the absence of inference about hidden states, there could
be no phenomenal opacity.7 For instance, this speaks directly
to the sort of actions experts perform (e.g., athletes), which
are often complex, though, for which experts do not seem to
plan ahead (i.e., “in the head”). Such skilled actions seem to
yield very little phenomenal opacity (e.g., as when the athlete
responds, “I don’t know, I just did it in the flow of action,” or
“we simply executed the game plan,” when interviewed about her
game winning shot).

7In the sense that there would be no opportunity to optimize the precision of the
likelihood mapping between hidden states and outcomes that, in active inference,
is usually associated with (covert) mental action and attention (Limanowski and
Friston, 2018).

Deontic Action as a Reflex?
The sort of “automatized” deontic behavior underwritten by
dynamic pathways in the generative model might strike one
as being conceptually close to the sort of cognitive processes
underlying reflexes and other (homeostatic) functions processed
through the autonomic nervous system. The computational
pathway of deontic action indeed looks very much like a close
control loop – secured by robust causal regularities in the
world generating reliable sensory inputs – akin to a reflex
processed at the brainstem and spinal cord level, but this time,
processed in a “constructed local world” (Constant et al., 2019;
cf. Ramstead et al., 2016). Under active inference, motoric
and autonomic reflexes are framed as an action that manages
the sensory signal that comes from within the system that
generated it; e.g., suppression of interoceptive prediction error
(Pezzulo et al., 2015).

Autonomic reflexes facilitate homeostatic regulation by
engendering series of events necessary for the activity of the
agent; e.g., salivation facilitates ingestion by easing the passing
of the food. In this sense, they can be regarded as allostatic in
nature. Similarly, one can think of sequences of deontic actions
that facilitate social, affective, and emotional regulation; e.g., the
outcome generated by the red traffic light triggers a stop, which
facilitates reaching in my pocket to grab my phone to check
my notifications (which itself might trigger salivation). For some
enculturated agents, such a sequence of “social reflexes” may be
necessary to pass through the day.

Now, the reader might worry that deontic action ends up
being as unexciting as “digestive cognition.” But rest reassured,
deontic action has been used to account for complex behavioral
phenomena like social conformity: a.k.a., deference to the socially
approved norm learnt through social influence or learning (Asch,
1955), and cooperative decision-making: a.k.a. decision-making
under fairness psychology – as evidenced by the human tendency
to zero in on fair decisions in economic games when compared
to non-human animals (for a review see Henrich, 2015). Deontic
action – as a social reflex – facilitates social interactions by easing
the coordination among humans, if you will.

Deontic action is explained in terms of the circular causality
between outsourcing decision-making to trusted others in the
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form of deontic cues (material or agential) – indicating the
locally adaptive action – and learning the underlying cue-
policy mappings. The “closed” control loop, then, comprises the
enculturated agent and regularities in her (social) environment.
In effect, deontic cues are defined as such because they represent
a reliable informational aggregate of “what would a creature like
me would do in this situation.” These cues consolidate over
development and through the modification of the environment
by generations of other enculturated agents (i.e., creatures like
me) (Constant et al., 2019).

Once the action afforded by these cues is learnt, there is
no need for computing future states and associated outcomes;
these are secured by the configuration of the cultural setting.
For instance, in Canada, you can trust stopping or crossing,
according to the deontic cue afforded by the traffic light – because
the traffic light has come to represent what others typically do
at an intersection – perhaps not in France though. And when
faced with an uncertain outcome in an economic game (e.g.,
“if I don’t know what the opponent will do and my reward
depends on her response, should I share or should I maximize
my gain?”), you can trust that the fair option is the one the
other is most likely to select since you’ve been socialized as a
“typical other,” presumably, just as the other did (for a review see
Veissière et al., 2019).

Note that there is nothing new to the idea of reflex-like
complex behavior. There is a long history of well-known concepts
in cognitive psychology that covers what is at stake in the
notion of deontic action (e.g., fast vs. slow thinking, autonomic
vs. controlled processing, or the reflex arc of pragmatist
psychologists). While we do not have the space to elaborate,
one could note that contribution of deontic action to cognitive
psychology represents only a small formal reinterpretation
of the active inference framework. Further work should be
done to anchor the notion of deontic action into its rich
intellectual heritage.

Summary: Deontic Actions Rest on
Dynamic Processes
In summary, for proponents of dynamicism, generative models
are not rich and reconstructive internal models. Rather, they
are fast and frugal. If internal representations play a role at
all, that role is thin and simple. As we have seen above,
a rich and reconstructive internal model is one in which
multiple trajectories of hidden states (with different precisions –
more on that below) would be entertained before selecting
the action. The fast and frugal alternative is the one that
underwrites deontic action. Hence, for enculturated, deontically
constrained agents like us, “what may often be doing the work
[in generative models] is a kind of perceptually maintained
motor-informational grip on the world: a low-cost perception-
action routine that retrieves the right information just-in-
time for use, and that is not in the business of building up
a rich inner simulacrum” (Clark, 2015c, p. 11). This low-
cost perception action routine corresponds to the web of
deontic, or dynamic pathways learnt through enculturation
(Constant et al., 2019).

WORRIES ABOUT RICH SETTINGS FOR
SHALLOW STRATEGIES?

Although computationally viable under active inference, our
description of fast and frugal dynamic pathways based on deontic
value might still raise some conceptual worries. In this section, we
provide a brief discussion of some such worries.

First Worry
One might worry that even deontic actions have to be selected
through inferring the current context. The agent might need first
to figure out if the context renders deontic action the most apt
response. This worry raised by representationalists [e.g., Hohwy
(2019)] might be a problem for the kind of account developed
in this paper, and elsewhere [for example, Clark (2015a)]. For
even the selection of frugal dynamic strategies would require
the on-going inference afforded by a rich inner model, able to
determine when such strategies are warranted – and override
them when necessary. In other words, the recruitment of the right
transient webs of deontic activity, at the right time, is itself a
high-grade cognitive achievement where the inner model plays,
representationalists argue, a necessary and ongoing role. The
upshot is a worry that truly ecumenical accounts may be hostage
to “a potential tension. . .. between allowing and withholding a
role for rich models” (Hohwy, 2019). For surely (so the argument
goes) the active inference agent must repeatedly infer when she is
in a situation where some low-cost deontic response is viable. In
effect, according to representationalists, setting and learning the
confidence of prior beliefs through perceptual processes – such as
described in Section 2 (a.k.a. precision, or gain control on sensory
evidence, or prediction error) – needs to be a principled response,
and that implicates the rich inner model even when the selected
strategy is itself a frugal one.

In active inference, the mapping between causes (e.g., states
and policies) and consequences (e.g., sensory outcomes) are
parameterized in terms of probabilistic mappings that necessarily
have a precision. In other words, the contingencies implicit in
likelihood mappings can have different degrees of reliability,
ambiguity, or uncertainty. For instance, if my child starts running
toward the sea, as she gets further away (and closer to the water),
my beliefs about whether she is in danger of drowning will
become increasingly imprecise. Then, to disambiguate (hidden)
states of affairs, I might plan an epistemic, representational
strategy: running after my child to ensure she doesn’t go into
the water without supervision. Had I known that my child would
start running toward danger, I could have restrained her. After
multiple visits at the beach, this might become my deontic,
automatic, dynamic strategy (e.g., setting foot on the sand causes
my arm to grab my child).

This means that the more “representationalist” picture of
the continuous rational influence of planning, we claim, is
subtly mistaken. For example, suppose I am playing table-tennis
well. My context sensitive “precision settings” are all apt, no
unexpected circumstances arise (alien invasions, etc.). In such
circumstances, I harvest a flow of expected kinds of prediction
errors. These get resolved, in broadly predictable ways, as play
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unfolds without pushing far up the processing hierarchy. But
if “unexpected surprises” [for more on this distinction, see Yu
and Dayan (2005)] occur, some errors are more fundamentally
unresolved and get pushed higher. This provides the seed for
re-organizing the precision of various likelihood mappings to
lend more weight to different kinds of (internal, external, and
action-involving) information. That, we suggest, is how we can
remain constantly poised (e.g., Sutton’s (2007) compelling work
on expert cricket) for nuance, even while behaving in the fast,
fluent manner of a “habit machine.” In a deep sense, we exist in
that moment as a habit machine – that is nonetheless constantly
poised to become another transient machine should the need
arise. This speaks to the coalition between representational and
dynamic pathways illustrated in Figure 3.

Put another way, wherever possible, simple “habit” systems
should guide behavior, dealing with expected prediction error
fluently and fast. But where these fail, or where a change of
context indicates the need, more and more knowledge-intensive
resources (internal and external) can be assembled, via new waves
of precision-weighting, to quash any outstanding prediction
errors (i.e., free energy) – see Pezzulo et al. (2015) for a complete
argument. Hence, we should not deny that there really is, in
advanced minds, what representationalists correctly describes as
“immense storage of causal knowledge” (Hohwy, 2019). But via
moment by moment, self-organizing, free energy minimizing
kinetics, we manifest as a succession of relatively special-purpose
brain-body-world devices, strung together by those shifting
but self-organizing webs of precision-weighting. Importantly,
it is self-organizing around free energy that itself delivers the
subsequent precision variations that recruit the “next machine.”
There is no precision-master sitting atop this web, carefully
deciding moment by moment just how to assign precision –
there’s just the generative model itself.

Second Worry
At this point a new version of representationalist worry may
arise. For it may seem that precision estimates – the roots
of each episode of re-structuring – are cognitively expensive
and purely inner-model-bound. But this too – or so we have
been arguing – is subtly mistaken. If we shift perspectives
and timescales, we can see the human-built cognitive niche as
itself a prime reservoir, both of achieved precision estimations
and of tools for cheaply estimating precisions on-the-fly. And
once learnt, they allow non-representation involving deontic
action pathway (e.g., positioning cheap cues in the world such
as warning triangles around a broken-down vehicle). These
otherwise arbitrary structures attract attention and act as local
proxies for precision [e.g., Roepstorff et al. (2010), Paton et al.
(2013), Hutchins (2014)]. Urgent fonts, food packaging, and
priestly robes all provide handy shortcuts for our precision
estimating brains. Squint just a little bit and much of the human-
built world – including all those patterned social practices such
as stopping at red traffic lights – can be seen as a bag of tricks for
managing precision estimation and epistemic trust (Fonagy and
Allison, 2014; Parr and Friston, 2017a). And, as we behave in the
present niche, we gradually alter it, “uploading” (Constant et al.,
2018b) more and more of our individual and collective precision

estimations into persisting (transmissible) material and social
structures. These, in turn, alter the inner models that individuals
need to command to negotiate their worlds.

Third Worry
A final representationalist worry may be that fast and frugal, non-
representational deontic action could simply not yield adaptive
behavior in a highly volatile world like ours and thus may
lead to suboptimal, maladaptive decision making (e.g., decision
making that fails to generate action that succeeds with respect to
environmental challenges); especially, if our generative models of
precision are not apt for a volatile world (Parr et al., 2018a,b).
Consequently, one should favor explanations based on rich
reconstructing planning. This is a fair worry; a fair worry for
humans in general, not for the dynamicists’ perspective, though.
Indeed, humans learn to generate deontic actions that do not
always lead to the “Machiavellian,” or perhaps “Darwinian” utility
maximizing option relative to the current environment; we miss
steps and fall down the stairs, forget to stop on the red, develop
disorders such as PTSD that makes us misperceive threats, and
generate many more maladaptive traits (Badcock et al., 2017;
Cornwell et al., 2017; Peters et al., 2017). The tricks humans
employ – to minimize the potential cost of normal maladaptive
actions – is not to plan more “in the head,” but to plan more
“in the world;” e.g., making sure that the synchronization of
the traffic lights is consistent with the traffic flow at different
hours of the day. This “planning the world” solution stabilizes
the environment to enable the acquisition (i.e., learning through
representationalist processes) of cheap deontic action shared
among “cultural” conspecifics – “people enculturated like me,
on a 9–5 schedule” (Constant et al., 2018a,b). Under that view,
in certain situations, one can dispense with rich models that
“stand-in for that world for the purposes of planning, reasoning,
and the guidance of action” (Clark, 2015c, p. 6). In a word, for
enculturated, deontically construed agents like us, the world is
often “our shared” best model.

Now, it might be rightfully argued that the deontic route,
even if it were to be non-representational, would still need
representational processes to be acquired. We agree Borrowing
from Shaun Gallagher (comment during the 2020 XPECT
conference), it seems that what is at stake in the representation
war is not whether there are or aren’t representations. Rather,
the problem is to know whether they play a role in cognition or
not. We are claiming that under active inference, it makes sense
to assume that sometimes they do, and that sometimes (after
sufficient learning) they don’t – at least, sometimes they don’t
anymore. Given sufficient learning there might often be no need
to infer what is the right (most likely) thing to do. One can then
simply operate with the deontic route which involves committing
to the sensory outcome afforded by the environment.

CONCLUSION: BURY THE HATCHET, OR
USE IT TO CARVE A NEW PATH(WAY)

This paper offers a mathematically informed reading of
generative models that could accommodate both richly
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representationalist and dynamicist views of cognition. We
asked whether cognition under active inference is a richly
representational or a dynamic process, reliant on simple cues
and couplings. The answer was both. We first presented the
representational model of action and perception that involves
parameters A and B, whose evaluation, so we argued, corresponds
to a process that would be deemed representational given a
minimal definition of representations. Then, based on that
definition, we described an alternative model for action that
does not rest on A and B, and thus, could be viewed as
bypassing representational processes. We then outlined – and
responded to – some of the possible philosophical critiques of
the deontic model.

What remains unclear, however, is whether particular
cognitive processes underlying certain behavior are
representational or not. To debate on that based on active
inference, one ought to take the hatchet, and ask whether a
new theoretical path(way) in generative models should be carved
out. Indeed, any debate in the philosophy of cognitive science
appealing to active inference (and its kin such as predictive
processing, the Bayesian brain, and predictive coding) should
clarify at the outset the manner in which the cognitive process
of interest may be implemented in the generative model, and
what are the components of the graphical model involved in the
process. Clarifying at the outset the architecture of the generative
model of interest should be sufficient to settle the technical
dimension of the debate.

Such good practice would allow researchers to save time and
energy by simply showing the manner in which the cognitive
process of interest may be already implemented by existing
neurocomputational architecture. In effect, the name of the game
with active inference is to show how cognitive processes can be
expressed as rearrangements or decompositions of the free energy
functional and the architecture it implements in the graphical
model; i.e., to show the manner in which the dynamics of the
process of interest are built in the free energy formalism, that
is, the manner in which the formalism unifies the process of
interest as a special case of free energy minimization. Researchers
could first explore the currently available generative models
(relevant material is all freely available either in theoretical
articles or as part of the Statistical Parametric Mapping 12
MATLAB toolbox). If the literature on the cognitive function of
interest is not yet available, researchers could consider this a great
opportunity for “getting their hands dirty” and proposing novel
architectures that could account for the cognitive process and the
associated behavior they want to characterize (Montague et al.,
2012; Schwartenbeck and Friston, 2016). Ideally, these novel
architectures should complement existing data on neuroanatomy
and hierarchical neural dynamics (Friston et al., 2017b,c).

Finally, a limitation of the current paper is that we do
not know yet what existing neurophysiology implements the
dynamicist pathway we describe in Section 3. We have shown
that dynamicism has a computational grip when implemented in
the theory of active inference. However, one has yet to propose
candidate neural correlates, which is a research enterprise for
neuroscience made possible on the basis of an implementable
processing theory such as the one discussed in this paper. Thus,
despite the lack of empirical evidence, we consider settling
the general active inference debate about representationalism a
major development; since it is a first step toward scientifically
informed debates on the representational nature of specific
pathways, which could then feedback to further strengthen future
philosophical discussions and inform research trajectories.
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GLOSSARY OF TERMS AND EXPRESSIONS

Expression Description

{s,o,π} External or latent states, sensory states or observations, and active states, plans or polices

P(o,s) Generative model: i.e., a probabilistic specification of how external states cause sensory states

Q(s) Posterior (Bayesian) belief about external states

Q(sτ |π) Predictive (Bayesian) belief about future states, under a particular policy or plan

F Variational free energy – an upper bound on the surprisal of sensory states

G(π,τ) Expected free energy – an upper bound on the surprisal of sensory states in the future

=(o)=− ln P(o) Surprisal or self-information

D[Q(s)||P(s)]=EQ[ln Q(s)−ln P(s)] Relative entropy or Kullback–Leibler divergence

P(o|π)=� Deontic value, or likelihood of observations under a given policy
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