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Streptococcus pneumoniae (the pneumococcus) carriage precedes invasive disease and

influences population-wide strain dynamics, but limited data exist on temporal carriage

patterns of serotypes due to the prohibitive costs of longitudinal studies. Here, we

report carriage prevalence, clearance and acquisition rates of pneumococcal serotypes

sampled from newborn infants bi-weekly from weeks 1 to 27, and then bi-monthly from

weeks 35 to 52 in the Gambia. We used sweep latex agglutination and whole genome

sequencing to serotype the isolates. We show rapid pneumococcal acquisition with

nearly 31% of the infants colonized by the end of first week after birth and quickly

exceeding 95% after 2 months. Co-colonization with multiple serotypes was consistently

observed in over 40% of the infants at each sampling point during the first year of life.

Overall, the mean acquisition time and carriage duration regardless of serotype was

38 and 24 days, respectively, but varied considerably between serotypes comparable

to observations from other regions. Our data will inform disease prevention and

control measures including providing baseline data for parameterising infectious disease

mathematical models including those assessing the impact of clinical interventions such

as pneumococcal conjugate vaccines.
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INTRODUCTION

The pneumococcus continues to kill >320,000 children under
5 years old every year globally despite the use of highly
effective serotype-specific pneumococcal conjugate vaccines
(PCV) (1). Nasopharyngeal pneumococcal carriage is an essential
precursor to invasive pneumococcal disease (2, 3). Furthermore,
important biological and ecological events such as evolution
and transmission of the pneumococcus occur during carriage
(4–6). These fundamental processes influence the population-
level characteristics of the strain types and serotypes including
the distribution, interactions, and phenotypes such as virulence,
vaccine escape, antimicrobial resistance, and immune evasion.
Therefore, understanding patterns of pneumococcal carriage
remains an essential component of pneumococcal epidemiology
for inferences and prediction of the strain dynamics.

Mathematical models are increasingly becoming useful for
investigating disease dynamics. This includes understanding
transmission patterns (7), antibiotic resistance (5, 8), and impact
of infant vaccination programs (9). The accuracy of these models
depends on the availability of reliable data to initialize the
parameters; therefore, it is crucial to conduct studies to generate
such required information. Such data include carriage dynamics
specifically time to and rates of acquisition/reacquisition, and
carriage duration and clearance rates of different strains. For
some pathogens, such as S. pneumoniae, the distribution of strain
types or serotypes varies geographically (10). Therefore, studies
to describe carriage dynamics should be conducted in different
countries to account for the geographical heterogeneity, which
may result in accurate inferences from the models.

Assessment of pneumococcal carriage dynamics requires
conducting both cross-sectional and longitudinal studies.
Cross-sectional carriage surveys are generally easier and
cheaper to conduct; therefore, are widely used to provide
a snapshot of pneumococcal populations. Conversely,
longitudinal studies are usually prohibitively expensive to
conduct since they require following up the participants
for a period of time. Few high-quality longitudinal studies
on pneumococcal carriage have been conducted to date in
infants from The Gambia (11, 12), Kenya (13), South Africa
(14), Thailand (15), and Papua New Guinea (16). However,
due to the geographical differences in serotype distribution
between settings, additional studies are required to capture
the characteristics of ≥100 known pneumococcal serotypes
and to better understand their geographical stability, and
heterogeneity between different settings (17, 18). Furthermore,
in some settings such as The Gambia, the majority of the
pneumococcal carriage studies have focused on describing the
carriage dynamics of only a few of the most common serotypes
(11, 12).

In this study, we used serotyping data from longitudinally
sampled pneumococcal isolates to assess acquisition,
reacquisition, carriage duration and clearance of serotypes
during the first year of life in newborn infants from a rural
setting in the Gambia, West Africa. Previous studies have shown
high carriage rates reaching 100% among infants in the Gambia,
which makes this setting ideal for this study (19).

METHODS

Study Design and Participants
The Sibanor Nasopharyngeal Microbiome (SNM) study collected
nasopharyngeal swabs (n = 1,595) from 102 newborn infants
from 21 villages in the Gambia between September 2008 and
April 2009 as previously described (20). The infants were from
communities with and without exposure to the seven-valent PCV
(PCV7). Parents and guardians of the infants gave informed
consent before enrolling them into the study. Nasopharyngeal
swabs were then taken from the infants starting from the
first week after birth followed by swabs every 2 weeks until
6 months (weeks 1, 3, 5 to 27) and then every two months
until their first birthday (weeks 35, 43, and 52). Two-thirds
of the infants received PCV7 at 2, 3, and 4 months, and the
remaining third received at least 1 dose of PCV during the PCV7
implementation nationwide catch-up campaign. Nasopharyngeal
(NPS) specimens were stored in skim milk–tryptone-glucose
glycerol medium (STGG) and stored at −80◦C within 8 hours
of collection.

Sample Processing, Serotyping, and
Sequencing
For the isolation of S. pneumoniae, broth enrichment of
nasopharyngeal swab samples (NPS) using 5mL of Todd-
Hewitt broth (Oxoid, Basingstoke, UK) containing 5% yeast
extract with 1mL rabbit serum (TCS Biosciences Ltd, Botolph
Claydon, UK) was performed as described elsewhere (19). We
identified pneumococci by their morphology and optochin
sensitivity. Sterile saline suspensions of pneumococcal plate
sweeps (on gentamicin blood agar) were then used for
serotyping by latex agglutination which can detect multiple
serotypes (15). Latex agglutination was performed by capsular
and factor-typing sera (Statens Serum Institut, Copenhagen,
Denmark) as described previously (21). We also utilized
genotypically determined serotype information inferred
from whole genome sequencing data for some of the NPS
samples as previously described (22) through a collaboration
with the Global Pneumococcal Sequencing (GPS) project
(www.pneumogen.net) (23).

Statistical Analysis
We defined a colonization episode to be either the first
acquisition or re-acquisition of a serotype after clearance;
whereby clearance is referred to as the detection of negative
cultures for any serotype at two consecutive sampling points
as previously described (15). For episodes which commenced
at the first week after birth and terminating before week 27,
acquisition and clearance of the serotype was assumed to occur
at the mid-point between consecutive sampling points. From
week 35 to week 52 where samples were collected bi-monthly,
acquisition and clearance of serotypes was assumed to occur 1
week before and after detection to prevent overestimation of the
carriage duration.

We then fitted a time-to-event parametric model with
constant hazard rate (exponential distribution) to the data on
time until clearance of serotypes, to estimate the clearance
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rate as the hazard rate of each serotype. The carriage duration
was calculated as the inverse of the hazard rate. Similarly, the
acquisition rate and time to acquisition for the first and second
carriage episodes with a serotype were estimated as the hazard
rate and its inverse after fitting the parametric model to the
time until first acquisition data for each serotype. The differences
between time-to-event estimates were assessed using log-rank
test using non-parametric time-to-event models. We used the
survival version 2.42.3 to fit the parametric time-to-event model
(24, 25).

We also obtained point estimates for the carriage duration
of serotypes in other countries where similar studies were
conducted, namely Kenya (13) and South Africa (14). Correlation
between the estimates were assessed using the Pearson’s
correlation coefficient (ρ). The median differences between
carriage durations were assessed using Wilcoxon test for paired
samples. Graphs were plotted using ggplot2 version 3.3.2 (26)
while network visualization was done using Cytoscape version
3.8.1 (27). All the statistical analyses were conducted in R version
3.5.3 (28).

RESULTS

Overall, 1,553 samples from 98 out of 102 newborn infants
recruited in the SNM study were analyzed (Figure 1 andTable 1).
We identified 80 pneumococcal serotypes naturally colonizing
the infants, and pneumococcal-culture positivity rate was 79.3%

(1,232/1,553). The mean number of serotypes detected per
infant was ≈9 (range: 3–15) while an average of ≈9 carriage
episodes (range: 2–15) were detected per infant. By counting
each serotype once per episode, serotypes associated with the
most carriage episodes were 19A (11.4%), 6A (8.74%), non-
typeable strains (NT) (5.71%), 15B/C (4.90%), 19F (3.85%), 23B
(4.31%), 34 (3.61%), 21 (3.26%), 35B (3.26%), and 11A (3.03%)
(Supplementary Figure 1). All the infants experienced at least 1
carriage episode during the first year of life. Approximately 31%
of the infants were colonized within the first week of life but
the prevalence increased rapidly to 95% by 2 months and nearly
100% by 12 months (Figure 2A). We then assessed the temporal
prevalence of colonization with multiple serotypes during the
first year of life. The multiple colonization rate was >40% by
12 months (Figures 2B,C). The proportion of infants carrying
multiple serotypes started to plateau approximately 10 weeks
after birth mirroring the pattern seen for the overall prevalence
of serotypes colonizing the infants. Some serotypes appeared to
co-colonize the same infant, for example 6A and 19A, NT and
38, 23B and 9L, 6B and NT (Figure 3).

The time to acquisition of any serotype was 24.1 days [95%
confidence interval (CI): 19.7–29.3], and the overall carriage
duration was 38.0 days (95% CI: 35.5–40.6) (Figures 4A–C).
These implied overall pneumococcal acquisition and clearance
rates of 0.042 (95% CI: 0.034–0.051) and 0.026 (95% CI:
0.025–0.028) episodes/day, respectively. We then assessed
clearance, acquisition and the reacquisition of individual

FIGURE 1 | Flow diagram showing the number of infants and pneumococcal samples included in the analysis. The infants in community 1 were from PCV-unexposed

(unvaccinated) villages and received PCV7 after 6 months (control group). The infants in community 2 were also from PCV-unexposed (unvaccinated) and they

received PCV7 at 2, 3, and 4 months (direct impact of vaccination). The infants from community 3 came from PCV-exposed (vaccinated) villages and they received

PCV7 at 2, 3, and 4 months (direct impact of vaccination and herd immunity).
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TABLE 1 | Characteristics of the infants enrolled in the study.

Characteristic Frequency (%)

Sex Male 52.04 (51/98)

Female 47.96 (47/98)

Mother’s age 16–20 18.37 (18/98)

21–30 45.92 (45/98)

31–40 35.71 (35/98)

Place of birth Health center 14.29 (14/98)

Home 51.02 (50/98)

Hospital 34.69 (34/98)

Type of birth Vaginal 100.00 (98/98)

Timing of birth Full term 98.98 (97/98)

Premature 1.02 (1/98)

Vaccination* Community 1 32.65 (32/98)

Community 2 29.59 (29/98)

Community 3 37.76 (37/98)

Number of siblings 0 14.29 (14/98)

1 16.33 (16/98)

2 19.39 (19/98)

3 12.24 (12/98)

4–9 37.76 (37/98)

Vaccinated sibling Yes 5.10 (5/98)

No 94.90 (93/98)

*The infants in community 1 were from PCV-unexposed (unvaccinated) villages and

received PCV7 after 6 months (control group). The infants in community 2 were also

from PCV-unexposed (unvaccinated) and they received PCV7 at 2, 3, and 4 months

(direct impact of vaccination). The infants from community 3 came from PCV-exposed

(vaccinated) villages and they received PCV7 at 2, 3, and 4 months (direct impact of

vaccination and herd immunity).

serotypes (Figures 4A–C, Supplementary Table 1 and
Supplementary Figures 2–8). The mean carriage duration
of different serotypes ranged from 13.9 to 69.3 days. Serotypes
6B, 4, 13, 23F, and 19F showed longest the carriage durations,
and therefore, lowest clearance rates while serotypes with the
shortest carriage durations included 1, 5, and 47F (Table 2). The
quickest time to first acquisition was associated with serotypes
18, 48, and 47 in contrast delayed acquisition was associated with
serotypes 10A, 19C, and 16A.

We then assessed whether time to acquisition and
reacquisition of serotypes from birth were similar (Figure 5 and
Table 2, Supplementary Table 1 and Supplementary Figure 9).
There were no differences in the time to acquisition and
reacquisitions of the same serotype from birth were similar
except for serotypes 6A, 23F, and NT, which are known pediatric
serotypes (29, 30) (Figure 5C and Supplementary Figure 10C).
Similarity of the carriage duration after initial colonization was
also investigated. No differences were observed for all serotypes
except for serotype 11A, which showed longer carriage durations
after reacquisition as compared to the initial (P = 0.0026)
(Figure 5D and Supplementary Figure 10D). Furthermore,
the carriage duration and time to first acquisition of serotypes
between PCV-exposed and unexposed communities were also
similar (Supplementary Figures 9, 10).

We then assessed whether serotypes acquired earliest
had the longest carriage duration (Figures 6A,B). There was
no association between carriage duration and time to first
acquisition (ρ=−0.127, P= 0.381). In contrast, serotypes which
were more prevalent were likely to be carried for longer durations
than those carried for short durations (ρ = 0.404, P = 0.003),
but there was no association between carriage prevalence and
time to initial acquisition of serotypes (ρ = −0.047, P = 0.745)
(Figures 6C,D).

We compared the points estimates for the carriage duration of
serotypes in the present study and similar studies in infants from
Kenya (13) and South Africa (14) (Figures 6E,F). The carriage
duration estimates fromThailandwere available for few serotypes
only as such were excluded (15). A weak correlation was observed
between carriage duration of serotypes between the Gambia and
South Africa (ρ = 0.302, P = 0.118), and the Gambia and Kenya
(ρ = 0.357, P = 0.094).

DISCUSSION

We have described the carriage duration and acquisition
patterns of pneumococcal serotypes during the first year of
life in the Gambia. We show high and rapid colonization
of newborn infants, one third of which carried multiple
serotypes. Colonization rates exceeded 20% one week after
birth mostly due to serotypes 6A, 34, and NTs. Such early
acquisition of certain serotypes may reflect rapid loss of
maternally derived immunity (31, 32). Carriage duration of
serotypes varied greatly but serotypes carried for longer duration
such as 6B were not necessarily acquired earlier in life than
serotypes carriage for short durations such as serotype 1. We
also found that time from birth to first acquisition and to
first reacquisition from birth were similar, which suggests
continuous exposure leading to reacquisition of serotypes,
possibly among household contacts. The absence of differences
for the time to acquisition and carriage duration of serotypes
among the infants from vaccinated, vaccine-exposed and
unvaccinated communities could be indicative of relatively low
herd immunity from PCV7 roll-out at the time of the study.
Our findings provide a detailed description of the pneumococcal
carriage dynamics in The Gambia, which complements
previous pneumococcal carriage studies in the same
setting (11, 12).

Since the prevalence of serotypes in carriage varies between
countries (10), this may affect how the strains interact and
compete in different settings, which may influence carriage
dynamics within hosts. By comparing durations between the
Gambia (this study), Kenya (13) and South Africa (14), we
show that carriage duration is stable geographically for the
majority of serotypes although substantial heterogeneity
was observed for some serotypes, potentially reflecting
variability in local selective pressures. Our study also
provides carriage duration estimates for serotypes whose
carriage duration were previously unknown in our setting
including serotypes 5, 7F, 39, 9A, 40, 28F, and 12F (13–15).
Availability of this information will lead to reliable inferences
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FIGURE 2 | Temporal prevalence of pneumococcal serotypes during the first year of life. (A) Proportion of infants colonized with any serotype at each sampling point.

(B) Proportion of infants co-colonized with multiple serotypes at each sampling point. (C) Proportion of infants colonized by a different number of serotypes at each

sampling point. The estimates are shown at bi-weekly sampling points from weeks 1 to 27, and then bi-monthly sampling intervals from weeks 35 to 52.

for mathematical models for assessing the population effects
of clinical interventions such as PCVs and antibiotics in our
geographical setting.

Our study has some limitations. Although our serotyping
approach detected colonization with multiple serotypes,
it did not quantify their abundance and may have missed
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FIGURE 3 | Network graph showing co-colonization of pneumococcal strains among Gambian infants. The width of the edges connecting a pair of nodes (or

serotypes) in the network is proportional to the number of co-occurrences of the pair of serotypes at the same sampling point in the same infant. The shades of color

from light green to indigo for each connecting line in the network correspond to the number of detected serotype co-occurrences ranging from 0 to 20.

less abundant serotypes. To generate a better picture of co-
colonization of serotypes, future studies should utilize other
high resolution techniques including microarray and deep
sequencing of plate sweeps enriched for the pneumococcus
(33, 34). Due to the small sample size, our study was not powered
to detect potential synergistic or antagonistic interactions
between co-carried serotypes on carriage duration of each
serotype. In addition, larger sample sizes are needed to obtain

robust estimates for rare serotypes. Lastly, the observed
carriage duration of serotypes sampled at non-consecutive
time points such as serotypes 1, 5, 16A, 41, 19C, 9N, and
47F may have been slightly overestimated. This may be
due to the assumption that colonization episodes start and
terminate at the midpoint between consecutive sampling
periods i.e., acquisition at 1 week before detection and 1
week after last detection. Therefore, caution is required
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FIGURE 4 | The Kaplan-Meier survival curves and exponential fit to the longitudinal pneumococcal carriage data. The plots show (A) duration from acquisition to

clearance of all serotypes, (B) time until first acquisition of any serotype and (C) time until second acquisition or reacquisition of any serotype. The black curve

represents the Kaplan-Meier estimates while the yellow line is the fitted survival curve. The rate parameter in the exponential model is shown at the top of the plots

(A–C) represents the mean clearance, acquisition and reacquisition rate, respectively. The inverse of the rate in plots A, B and C equates to mean the carriage

duration, time until first acquisition and reacquisition of any serotype, respectively.

FIGURE 5 | Carriage dynamics of pneumococcal serotypes in Gambian infants. Graph showing (A) carriage duration, (B) time to first acquisition, (C) time to

acquisition from birth for the first and second colonization episode with the serotype, (D) carriage duration for the first and second colonization episode with

the serotype.
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FIGURE 6 | Relationship of carriage estimates of pneumococcal serotypes in Gambian infants. (A) Scatter plot showing carriage duration and time to first acquisition.

(B) Scatter plot showing carriage duration, second acquisition (reacquisition). (C) Scatter plot showing carriage duration and frequency of serotype/episode, (D) time

to first acquisition and frequency of serotypes. (E) Scatter plot showing carriage duration of serotypes in the Gambia and Kenya. (F) Scatter plot showing time to

acquisition of serotypes in the Gambia and South Africa.
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TABLE 2 | Carriage duration, initial acquisition and reacquisition times of pneumococcal serotypes in the among Gambian infants.

Serotype Number of

episodes

Prevalence

(%)

Carriage duration in days Time from birth to

first acquisition in

days (95% CI)

Time from birth to

reacquisition in days

(95% CI)

All episodes (95% CI) First episode (95%

CI)

Second episode

(95% CI)

47F 3 0.35 12.83 (4.14, 39.79) 12.83 (4.14, 39.79) – 143.5 (46.28, 444.93) –

41 3 0.35 14 (4.52, 43.41) – – – –

19B 4 0.47 14 (5.25, 37.3) 14 (5.25, 37.3) – 159.25 (59.77, 424.31) –

47 4 0.47 14 (5.25, 37.3) 14 (4.52, 43.41) – 98 (31.61, 303.86) –

47A 4 0.47 14 (5.25, 37.3) 14 (5.25, 37.3) – 73.5 (27.59, 195.83) –

5 4 0.47 14 (5.25, 37.3) 14 (5.25, 37.3) – 189 (70.94, 503.57) –

10F 5 0.58 14 (5.83, 33.64) 14 (5.83, 33.64) – 144.2 (60.02, 346.44) –

16A 5 0.58 14 (5.83, 33.64) 14 (5.83, 33.64) – 266 (110.72, 639.07) –

36 6 0.7 14 (6.29, 31.16) 14 (6.29, 31.16) – 79.33 (35.64, 176.59) –

19C 11 1.28 14 (7.75, 25.28) 14 (7.75, 25.28) – 211.27 (117, 381.5) –

1 8 0.93 15.75 (7.88, 31.49) 15.75 (7.88, 31.49) – 94.5 (47.26, 188.96) –

9N 7 0.82 16 (7.63, 33.56) 16.33 (7.34, 36.36) – 175 (78.62, 389.53) –

8 5 0.58 16.8 (6.99, 40.36) 16.8 (6.99, 40.36) – 112 (46.62, 269.08) –

28F 7 0.82 17.5 (8.34, 36.71) 17.5 (8.34, 36.71) – 110.5 (52.68, 231.79) –

NT 49 5.71 19.79 (14.95, 26.18) 21.46 (15.62, 29.49) 14 (7.75, 25.28) 107.67 (78.35, 147.97) 233.55 (129.34,

421.71)

35F 4 0.47 21 (7.88, 55.95) 21 (7.88, 55.95) – 168 (63.05, 447.62) –

11D 3 0.35 23.33 (7.53, 72.35) 23.33 (7.53, 72.35) – 182 (58.7, 564.3) –

18C 7 0.82 24 (11.44, 50.34) 25.67 (11.53, 57.13) – 79.33 (35.64, 176.59) –

3 8 0.93 24.94 (12.47, 49.87) 17.5 (8.34, 36.71) – 116.5 (55.54, 244.37) –

11B 8 0.93 26.25 (13.13, 52.49) 28 (13.35, 58.73) – 190 (90.58, 398.55) –

38 9 1.05 26.44 (13.76, 50.82) 24.5 (12.25, 48.99) – 145.25 (72.64, 290.44) –

23A 13 1.52 26.92 (15.63, 46.37) 28 (15.9, 49.3) – 116.08 (65.92, 204.4) –

12F 8 0.93 28 (14, 55.99) 28 (14, 55.99) – 117.25 (58.64, 234.45) –

40 11 1.28 29.27 (16.21, 52.86) 30.8 (16.57, 57.24) – 154.7 (83.24, 287.52) –

9V 8 0.93 29.75 (14.88, 59.49) 32 (15.26, 67.12) – 169 (80.57, 354.5) –

7F 4 0.47 31.5 (11.82, 83.93) 31.5 (11.82, 83.93) – 187.25 (70.28, 498.91) –

17F 11 1.28 31.5 (17.44, 56.88) 31.85 (17.14, 59.19) – 196.35 (105.65,

364.93)

–

18A 6 0.7 32.08 (14.41, 71.41) 32.08 (14.41, 71.41) – 51.92 (23.32, 115.56) –

48 6 0.7 32.67 (14.68, 72.71) 36.4 (15.15, 87.45) – 70 (29.14, 168.18) –

34 31 3.61 34.1 (23.98, 48.48) 35.48 (24.66, 51.06) – 117.31 (81.52, 168.81) –

9A 7 0.82 35 (16.69, 73.42) 35 (16.69, 73.42) – 118 (56.25, 247.52) –

19F 33 3.85 35.64 (25.33, 50.13) 35 (24.47, 50.06) 42 (13.55, 130.22) 168.47 (117.79,

240.95)

231 (74.5, 716.23)

15A 18 2.1 35.78 (22.54, 56.79) 29.65 (18.43, 47.69) – 146.18 (90.87, 235.14)

15B/C 42 4.9 36.17 (26.73, 48.94) 32.28 (23.28, 44.75) 59.5 (26.73,

132.44)

181.42 (130.86, 251.5) 249.67 (112.17,

555.73)

16F 24 2.8 36.9 (24.73, 55.05) 29.75 (19.59, 45.18) – 153.84 (101.3, 233.64) –

22A 12 1.4 38.5 (21.86, 67.79) 35 (18.83, 65.05) – 114.8 (61.77, 213.36) –

14 25 2.91 38.5 (26.01, 56.98) 35.18 (22.44, 55.16) 49 (22.01, 109.07) 119.92 (76.49, 188.01) 123.2 (51.28, 295.99)

23B 32 3.73 40.47 (28.62, 57.23) 34.74 (23.82, 50.66) 71.4 (29.72,

171.54)

113.56 (77.87, 165.59) 173.6 (72.26, 417.08)

(Continued)
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TABLE 2 | Continued

Serotype Number of

episodes

Prevalence

(%)

Carriage duration in days Time from birth to

first acquisition in

days (95% CI)

Time from birth to

reacquisition in days

(95% CI)

All episodes (95% CI) First episode (95%

CI)

Second episode

(95% CI)

10A 17 1.98 41.18 (25.6, 66.24) 44.8 (27.01, 74.31) – 196.93 (118.72,

326.66)

–

11A 26 3.03 41.46 (28.23, 60.89) 24.82 (16.34, 37.69) 133 (49.92,

354.37)

168.95 (111.25,

256.59)

206.5 (77.5, 550.2)

6A 75 8.74 43.12 (34.39, 54.07) 45.03 (34.97, 58) 35.47 (21.38,

58.83)

110.72 (85.97, 142.59) 199.5 (118.15, 336.85)

21 28 3.26 43.38 (29.95, 62.82) 41.85 (28.05, 62.44) 52.5 (19.7,

139.88)

117.98 (79.08, 176.02) –

35B 28 3.26 46.5 (32.11, 67.35) 38.92 (26.3, 57.6) 109.67 (35.37,

340.03)

166.88 (112.76,

246.97)

126 (40.64, 390.67)

39 7 0.82 47 (22.41, 98.59) 38.5 (17.3, 85.7) – 130.67 (58.7, 290.85) –

20 10 1.17 47.95 (25.8, 89.12) 56.44 (28.22, 112.85) – 115.94 (57.98, 231.83) –

9L 15 1.75 54.13 (32.64, 89.79) 54.25 (30.81, 95.53) 53.67 (17.31,

166.4)

99.17 (56.32, 174.62) –

19A 98 11.42 56.18 (46.09, 68.48) 63.53 (50.43, 80.04) 35.81 (24.38,

52.59)

134.02 (106.38,

168.84)

181 (118.01, 277.6)

23F 14 1.63 57.5 (34.05, 97.09) 59.18 (32.77, 106.86) 51.33 (16.56,

159.16)

105.64 (58.5, 190.75) 221.67 (71.49, 687.29)

13 24 2.8 59.5 (39.88, 88.77) 57.27 (37.71, 86.98) – 160.36 (105.59,

243.55)

–

4 5 0.58 63 (26.22, 151.36) 63 (26.22, 151.36) – 176.4 (73.42, 423.81) –

6B 17 1.98 85.85 (53.37, 138.1) 90.25 (53.45, 152.38) 65.33 (21.07,

202.57)

84.25 (49.9, 142.25) 149.33 (48.16, 463.02)

Cells marked by “–” designate serotypes where no or very few data points (<3) were available for analysis.

when interpreting the estimated carriage duration for
these serotypes.

The implementation of higher-valency PCVs has led
to remarkable changes in the pneumococcal populations
in Sub Saharan Africa (35–38) and globally (39–42). Our
study provides the first comprehensive analysis of temporal
carriage dynamics of pneumococcal serotypes in West Africa,
which will enhance our understanding of the epidemiology
in infants, an age group associated with the greatest risk
of pneumococcal diseases and mortality, to inform future
prevention and control strategies. Furthermore, our findings
will provide baseline data for parameterising mathematical
models for infectious diseases to assess and forecast
population-level effects of PCVs and antibiotic resistance in
the region.
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