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Abstract

Survival models are frequently encountered in applications. In these models,

the response of interest, the time until a particular event occurs, is often right

censored. Most estimation methods assume that the event time and the censoring

time are stochastically independent and non-informative conditional on covariates.

However, these assumptions may be questioned. The aim of this thesis is to relax

these assumptions in a class of flexible parametric survival models, called survival

link-based additive models.

The assumption of non-informative censoring is relaxed by assuming that the

marginal survival functions of the event and censoring times have parameters in

common. In particular, we provide evidence on the efficiency gains produced by

the newly introduced informative estimator when compared to its non-informative

counterpart. The independence assumption is relaxed by modelling both the event

time and the censoring time simultaneously using copula functions. We provide

some preliminary arguments towards model identification although this topic is

very challenging and requires more future work.

In these survival link-based additive models, the baseline functions are esti-

mated non-parametrically by monotonic P-splines, whereas covariate effects are

flexibly determined using additive predictors that allow for a vast variety of effects.

Parameter estimation is reliably carried out within a penalised maximum likelihood

framework with integrated automatic multiple smoothing parameter selection. We

derive the
√
n-consistency and asymptotic normality of the estimators proposed

in this thesis. Their finite sample performance are investigated via Monte Carlo

simulation studies, and the approaches illustrated using two cases study based on

infants hospitalised for pneumonia as well as prostate cancer data. The R package

GJRM has been extended to incorporate the developments discussed in this thesis

to facilitate transparent and reproducible research.
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Impact statement

Survival models can be applied to many problems in different fields. For example,

Biostatistics, Demography, Operation Research, Health Insurance and Social Sci-

ences are examples of applied areas in which survival models appear frequently.

However, most estimation methods assume that the event and censoring times are

stochastically independent and non-informative conditional on covariates. There-

fore, given that the assumptions of non-informative censoring and independence are

often made for convenience and considering that models and methods introduced

in this thesis have been implemented in the R package GJRM (Marra & Radice,

2020b), the proposed methodology is likely to appeal the wider audience, both

inside and outside academia, wishing to estimate possibly more realistic survival

models or at least assess whether allowing for informative and dependent censoring

can produce more plausible results.

On the other hand, people working on industry or academia can use the methods

developed here as a starting point to build new methodologies in survival analysis,

or to apply them in their own field of expertise to solve real problems. Finally, the

developments contained in this thesis have been collected in the following papers:

• Dettoni R, Marra G, Radice R (2020), Copula Link-Based Additive Models

for Dependent Right-Censored Event Time Data. (Working paper).

• Dettoni R, Marra G, Radice R (2020), Generalized Additive Survival Mod-

els with Informative Censoring. Journal of Computational and Graphical

Statistics.
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Chapter 1

Introduction

1.1 Aims of the thesis

Survival models are frequently encountered in applications. In these models, the

response of interest, the time until a particular event occurs, is often right censored.

This means that only the lower bound between the event time, T1, and the censoring

time, T2, is recorded. Because of this, observations alone can not provide direct

information on the event of interest unless some assumptions are made. In the

latent survival time approach (e.g., Crowder, 1991), standard modelling techniques

assume that the observed and unobserved parts of the data are related via means

of the random variables y = min(T1, T2) ∈ R+ and δ = I(T1 < T2)) ∈ {0, 1}, where

I is the usual indicator function.

Within this framework, most estimation methods assume that T1 and T2 are

stochastically independent and non-informative conditional on covariates (e.g.,

Wu & Witten, 2019; Ma et al., 2014; Scheike & Zhang, 2003; Younes & Lachin,

1997; Cox, 1972). However, these assumptions may be questioned.(e.g., Dettoni

et al., 2020; Deresa & Van Keilegom, 2019; Xu et al., 2018; Lu & Zhang, 2012; Li

& Peng, 2015; Chen, 2010; Huang & Zhang, 2008; Zheng & Klein, 1995; Emoto
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& Matthews, 1990; Koziol & Green, 1976). If the event and censoring times are

assumed to be dependent, then survival models accounting for this feature of the

data face a problem of identification. In general, without additional assumptions,

it is not possible to identify the survival distribution from the censored data alone

or testing whether the censoring and survival mechanisms are independent (Tsiatis,

1975; Cox, 1959).

Censoring is informative when the censoring times contain information on the

parameters of the distribution of the event variable (Lagakos, 1979). In particular,

let us write the conditional probability density functions for the event and censored

times as fT1|z1(t|z1;γ1) and fT2|z2(t|z2;γ2), where z1 and z2 are vectors of covariates

of dimensions p1 and p2 respectively. If the vector of parameters γ1 and γ2 have

components in common then censoring is informative. In this case, the observable

data (y, δ, z1, z2) ∈ R+×{0, 1}×Rp1×Rp2 provide sufficient information to identify

the marginal survival functions of T1 and T2 (Berman, 1963).

In this thesis, we will extend a family of Survival Link-Based Additive Models

(e.g., Liu et al., 2018; Royston & Parmar, 2002; Shen, 1998; Younes & Lachin,

1997) by relaxing the assumptions of independence and non-informative censoring.

Our approach is based on the flexible and tractable proposal of Marra & Radice

(2020a), which compared with other parametric and non-parametric models (e.g.,

Deresa & Van Keilegom, 2019; Lu & Zhang, 2012; Chen, 2010; Zheng & Klein,

1995; Emoto & Matthews, 1990; Koziol & Green, 1976) has several advantages. In

particular, it can flexibly determine in a data driven manner the functional shapes

of the baseline and covariate effects, avoiding the need for numerical integration,

and easily allows for time-dependent effects via smooth interaction terms.

To deal with informative right censoring we assume that T1 and T2 are stochasti-

cally independent, then we propose a model where the parameters γ1 and γ2 in the

survival functions ST1|z1(t|z1;γ1) and ST2|z2(t|z2;γ2) have components in common.
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On the other hand, to account for dependent censoring, we propose to model the

strength of the association between the event and censoring times via the copula

structure C[ST1|z1(t|z1;γ1), ST2|z2(t|z2;γ2); θ], whose dependence parameter, θ, is

estimated from the data, and γ1 and γ2 do not have parameters in common.

As in Marra & Radice (2020a), in both models, baseline functions are non-

parametrically estimated using monotonic P-splines and covariate effects are flexibly

determined using additive predictors. Model fitting is based on an optimization

scheme that allows for the reliable simultaneous penalized estimation of all model’s

parameters. The performance of the proposals are demonstrated through Monte

Carlo simulation studies and relevant empirical applications. All the models and

methods introduced in this thesis have been implemented in the R package GJRM

(Marra & Radice, 2020b) to allow for transparent and reproducible research.

1.2 Outline

This thesis is organized as follows. In Chapter 2, a review of the essential concepts

of survival analysis is presented. In particular, we will discuss the main quantities

used in survival modelling such as the survival, hazard and cumulative hazards

functions. Then, the crucial problem of censoring and their causes are analysed,

along with a summary of univariate survival models. The last part of this chapter

focuses on the independent and non-informative censoring assumptions.

In Chapter 3, we present a summary of models that permit not only for different

assumptions about the nature of the covariate effects on the survival time, but also

where the baseline hazard and survival functions can be modelled in a flexible way.

Then, in the last part of the chapter, the survival link-based additive models are

discussed in detail

In Chapter 4, we introduce the informative right censoring model, where the

penalized log-likelihood estimation approach, and the
√
n-consistency and asymp-
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totic normality of the non-informative and informative estimators are provided.

Then the effectiveness of the proposed methodology is explored by means of a

simulation study, and illustrated on data about infants hospitalised for pneumonia.

In Chapter 5, we introduce a flexible copula regression survival model that

accounts for administrative and dependent right censoring, and provide some

preliminary identification arguments. Parameter estimation as well as the
√
n-

consistency and asymptotic normality of the dependent estimator are also discussed.

In the last sections, the finite sample properties of the estimator are investigated

via a Monte Carlo simulation study and the proposal illustrated using prostate

cancer data.

Finally, in Chapter 6, we give a summary of the main results, where some

related open topics for further work are also discussed.
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Chapter 2

Preliminary Concepts

In this chapter, a review of the essential concepts in survival analysis is provided.

In general, the response variable, the time until a specific event occurs, can be rep-

resented by many functions. However, three of them are of considerable importance

in applications: the survival function, the hazard function and the cumulative

hazard function. In what follows, these functions and the interrelations among

them are presented when the response of interest, T , is distributed continuously

over R+. Since the methods proposed in this thesis were built assuming that T is

a continuous variable, the survival, hazard and cumulative hazard functions for the

discrete case are presented in Appendix A.1. The product integral representation,

which incorporates discrete and continuous data at the same time, is also discussed

briefly in Appendix A.2. Then, the crucial problem of censoring and their causes

will be discussed. Next, a general summary of univariate survival models will be

given, where we focus on relevant splines-based methods. The last part of this

chapter focuses on the independent and non-informative censoring assumptions.
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2.1 Time to event functions

Let T be a non-negative random variable defined to represent the time until an

specific event occurs for an individual. In particular, time can be measured in

years, months, weeks, or days from the beginning of follow-up of an individual until

an event occurs. This event can be, for example, death because of a disease, relapse

from remission, recovery or any designated experience of interest that may occur

to an individual. In this section, it is assumed that T , the outcome of interest, is

distributed continuously over R+.

The survival function of T , denoted by ST (t), represents the probability of

surviving past time t. This can be defined as

ST (t) = P (T > t). (2.1)

In particular, ST (0) = 1, limt→∞ ST (t) = 0 and ST (t) = 1−FT (t), where FT (t) is the

cumulative distribution function. If FT (t) is differentiable, then fT (t) = −dST (t)
dt

and ST (t) =
∫ ∞
t
fT (u)du, where fT (t) is the usual probability density function for T ,

with fT (t) > 0 and
∫ ∞

0
fT (t)dt = 1. Furthermore, if τ1 ≤ τ2, then ST (τ1) ≥ ST (τ2).

This implies that ST (t) declines monotonically.

On the other hand, for all ε > 0, the hazard function of T , denoted by hT (t),

can be defined as

hT (t) = lim
ε→0

P (t < T ≤ t+ ε|T > t)
ε

. (2.2)

For each t, hT (t) represents the instantaneous rate at which subjects experience the

event of interest, given that they have survived up to time t. Moreover, hT (t) ≥ 0

for all t ≥ 0 and
∫ ∞

0
hT (t)dt =∞. The hazard function can also be written as

hT (t) = fT (t)
ST (t) . (2.3)
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This can be proved by noting that the numerator of equation (2.2) can be expressed

as P (t < T ≤ t + ε|T > t) = P (t < T ≤ t+ ε)
P (T > t) = FT (t+ ε)− FT (t)

1− FT (t) . Then, by

taking the limit as ε approaches to zero from above, and dividing FT (t+ ε)− FT (t)
1− FT (t)

by ε, we obtain hT (t) = limε→0
FT (t+ ε)− FT (t)

ε

1
1− FT (t) = fT (t)

1− FT (t) = fT (t)
ST (t) ,

as required.

Furthermore, since fT (t) = −dST (t)
dt

, another useful expression for the hazard

function is

hT (t) = − 1
ST (t)

dST (t)
dt

= −d logST (t)
dt

. (2.4)

On the other hand, the cumulative hazard function can be defined as

HT (t) =
∫ t

0
hT (u)du. (2.5)

This function measures the total amount of risk that has been accumulated up to

time t. Moreover, integrating (2.4) yields logST (t) = −
∫ t

0
hT (u)du. Then, solving

for ST (t), we obtain

ST (t) = exp
[
−
∫ t

0
hT (u)du

]
. (2.6)

Finally, using (2.5) and (2.6), we have

ST (t) = exp [−HT (t)] . (2.7)

Therefore, as shown in (2.7), ST (t) can also be written as a function of HT (t).

The survival, hazard and cumulative hazard functions when T is distributed

continuously over R+ are summarized in Table 2.1.

For example, suppose that T follows an exponential distribution, then hT (t) =

α > 0, fT (t) = α exp−αt, ST (t) = exp−αt and HT (t) = αt. However, if T has a

Weibull distribution, then hT (t) = αγ(αt)γ−1 for all t. This is monotone decreasing

if 0 < γ < 1, increasing if γ > 1, and reduces to the constant exponential hazard
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Function Definition Relationships

ST (t) ST (t) = P (T > t) ST (t) = exp [−HT (t)]

hT (t) hT (t) = limε→0
P (t < T ≤ t+ ε | T > t)

ε
hT (t) = fT (t)

ST (t)

HT (t)
∫ t

0
hT (u)du HT (t) = − lnST (t)

Table 2.1: Summary of the survival, hazard and cumulative hazard functions when
T is distributed continuously over R+. The last column shows the relationships
between them.
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Figure 2.1: fT (t), ST (t), hT (t) and HT (t) when T follows a Weibull distribution with parameters
α = 0.01 and γ = 1.5

if γ = 1. Moreover, fT (t) = γ(αt)γ−1 exp[−(αt)γ], ST (t) = exp[−(αt)γ] and

HT (t) = (αt)γ. The graphs for fT (t), ST (t), hT (t) and HT (t) when α = 0.01 and

γ = 1.5 are shown in Figure 2.1.

2.2 Censoring

Censoring is an unavoidable problem in survival analysis. This occurs when the

response of interest, T , can not be totally observed. In general, the occurrence

of censoring can be explained by the following reasons. First, individuals can be
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censored because the study ends before they have experienced the event of interest.

This situation is typically called administrative censoring. Second, individuals may

be censored because they are lost to follow up or withdraw from the study. Finally,

censoring can also be generated by competing risks, that is, the occurrence of

another event which precludes the main event of interest from occurring (Kalbfleisch

& Prentice, 2002).

Survival data may be right-censored, left-censored, or interval-censored. Right

censoring arises when the true survival time becomes incomplete at the right side

of the follow-up period. For this data, the complete survival time, has been cut off

(censored) at the right side of the observed survival time. Left-censoring occurs

when the true survival time of an individual is less than or equal to its observed

survival time. For example, suppose that a group of individuals are followed until

they become HIV positive, and an event is recorded when a individual first tests

positive for the virus. However, the exact time of first exposure to the virus

may not be known, and thus it is not known exactly when the event took place.

Therefore, the survival time is censored on the left side since the true survival

time, which ends at exposure, is shorter than the follow-up time, which ends when

the individual’s test is positive. Finally, interval censoring occurs if the true (but

unobserved) survival time of an individual is within a certain known specified time

interval. For example, suppose that an individual may have had two HIV tests,

and he or she was HIV negative at the time t1 of the first test and HIV positive at

the time t2 of the second test. In this case the true survival time occurred after

time t1 and before time t2. Therefore, the subject is interval-censored in the time

interval (t1, t2) (Kleinbaum & Klein, 2010). In this thesis we will only focus on

right censoring.
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2.3 Univariate survival models

One of the most widely used approaches to estimate the survival function when no

covariates are present is the nonparametric estimator proposed by Kaplan & Meier

(1958). This estimator is very useful for descriptive purposes and it is also the

basis to develop more advanced models. Although, it is often insightful to know

the shape of the hazard or survival functions, in most applications it is necessary

to incorporate covariates when modelling survival time.

In survival analysis, regression models are crucial and the existing literature

is vast (e.g., Kalbfleisch & Prentice, 2002; Andersen & Keiding, 2006). The

proportional hazards model of Cox (1972) is by far the most used regression

technique to model survival data. In this model, the hazard function is hT (t|z) =

h0(t) exp(zTγ), where h0(t) is an arbitrary unspecified baseline hazard function,

z is a covariate vector and γ is a vector of parameters. The exponential link

function makes the covariate effects multiplicative and assures non-negative rates.

Due to no structure being imposed on h0(t), the proportional hazards model is

remarkably flexible. The proportional hazards assumption corresponds to assuming

that the hazard ratio of two subjects with different time-constant covariate vectors

is constant over time. Estimation of γ can be undertaken using the partial log-

likelihood estimator. In particular, Cox (1972) showed that his proposed estimator

is consistent and asymptotically normally distributed. The proportional hazards

model can be extended to include time-dependent covariates (Kalbfleisch & Prentice,

2002).

Another approach is to consider failure time models (Cox, 1972), where log (T ) =

zTγ+ε. In this model, the effects of the covariates are defined to act multiplicatively

on T , or additively on log (T ). The hazard function can be written as hT (t|z) =

h0[t exp(−zTγ)] exp(−zTγ), where it is easily seen that the effects of the vector of

covariates (exp(−zTγ)) is multiplicative on t rather than on the baseline hazard



11 2.3. Univariate survival models

function. More specifically, there is an acceleration of h0(t) if exp(−zTγ) > 1 and

a deceleration if exp(−zTγ) < 1. Different continuous distributions on (−∞,∞)

for ε lead to different accelerated failure time models.

The proportional odds model (McCullagh, 1980; Bennett, 1983) is structurally

similar to the proportional hazard model, and can be used in similar situations. In

the proportional hazards model the hazard rates for different individuals have a

constant ratio to each other, while in the proportional odds model they converge

with time. This can be more useful than the notion of constant hazard ratio when

initial effects disappear with time (Bennett, 1983). The model can be written as[
1− ST (t|z)
ST (t|z)

]
=
[

1− ST (t)
ST (t)

]
exp(zTγ), and estimation of model‘s parameters can

be obtained by maximising the full likelihood (e.g., Rossini & Tsiatis, 1996; Shen,

1998; Yang & Prentice, 1999).

The additive models are very easy to work with and the survival function can

be easily estimated (Aalen, 1989; McKeague & Sasieni, 1994; Cortese & Scheike,

2008; Cortese et al., 2010). In these models, the hazard function can be written as

hT (t|z1, z2) = zT
1γ1(t) + zT

2γ2, where γ1(t) is a vector of functions that depend on

time. These models have the drawback that they could lead to negative hazards in

some time periods (Scheike & Zhang, 2003). The combined Cox–Aalen model (e.g.,

Scheike & Zhang, 2002; Zahl, 2003; Martinussen & Scheike, 2002; Shang & Wang,

2017), with hazard function hT (t|z1, z2) = [zT
1γ1(t)] exp(zT

2γ2), provides a flexible

extension of the proportional hazards model. In this approach, the covariates are

partitioned into those that lead to relative risk, z2, and those where additional

flexibility is needed, z1. Estimation of model’s parameters can be carried out

using an approximate maximum likelihood method or the generalized method of

moments.

Frailty models provide a suitable way to introduce random effects to account for

unobserved heterogeneity. In its simplest form, a frailty is an unobserved random
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factor that modifies multiplicatively the hazard function (e.g., Hougaard, 1984,

1986). For example, the proportional hazard frailty model with a multiplicative

ε > 0 (frailty) is given by hT (t|z, ε) = h0(t) exp (zTγ)ε. The frailty ε is a random

variable varying over the population which decreases (ε < 1) or increases (ε > 1)

the individual risk. Although, the multiplicative heterogeneity assumption is

particularly restrictive, it is mathematically convenient and more attractive than

an additive error, which can not assure non-negativity of T . A standard approach

involves assuming a distribution for ε, and then deriving the marginal distribution

of T (Hougaard, 1995).

Splines-based models are general enough to include many data structures and

they are easy to interpret due to their parametric nature. In these models, the

hazard and survival functions are approximated using splines functions which

yield smooth estimates and are intermediate in structure between parametric and

non-parametric models. These can be defined as piecewise polynomial of degree

q, the pieces join in the so called knots and fulfil continuity conditions for the

function itself and the first q − 1 derivatives (De Boor et al., 1978). The use of

splines functions to approximate the baseline hazard function was first introduced

by Anderson & Senthilselvan (1980) and Whittemore & Keller (1986) in the

context of a proportional hazard model and fixed knots. For example, Anderson

& Senthilselvan (1980) proposed a quadratic splines function with discontinuities

in the knots which is estimated using the penalized likelihood approach, while

Whittemore & Keller (1986) use a non-parametric likelihood estimator to estimate

the survival function for right censored data.

Gray (1992) uses cubic B-splines functions and a proportional additive hazard

model to study the effects of covariates on the hazard for time to recurrence

of breast cancer patients. For estimation, he uses a penalised partial likelihood

method and tests statistics that are similar to those used in standard likelihood
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analysis (Therneau et al., 1990). Hess (1994), Rosenberg (1995) and Herndon &

Harrell (1995) also proposed a cubic spline-based approach to approximate the

hazard function, while Kooperberg et al. (1995) employ linear splines functions and

their tensor products to estimate the log-hazard function conditional to covariates.

In all of these works, estimation of model‘s parameters is carried out by using the

maximum likelihood method.

2.4 Censoring assumptions

In all works discussed in the previous section, it was assumed that the censoring

mechanism is independent and non-informative. In this thesis, for independent

censoring we mean that T1 and T2 are stochastically independent (e.g., Kalbfleisch

& Prentice, 2002). However, this definition differs from the one generally used in

the multiplicative intensity model discussed, for example, in Aalen et al. (2008)

and Andersen et al. (2012), where censoring is said to be independent if the hazard

rate of the event of interest for the censored observations is equal to the hazard

rate for the uncensored ones.

On the other hand, censoring is informative when the censoring times, T2,

contain information on the parameters of the distribution of the event variable, T1

(e.g., Lagakos, 1979; Koziol & Green, 1976). For example, let us write the survival

functions for the event and censored times as ST1(t|z1;γ1) and ST2(t|z2;γ2). If the

vector of parameters γ1 and γ2 have components in common then censoring is

informative.

In addition to these assumptions, and for estimation purposes, most of the

standard modelling techniques (e.g., Dettoni et al., 2020; Marra & Radice, 2020a;

Deresa & Van Keilegom, 2019) use the latent survival time approach (e.g., Crowder,

1991). Under this approach, it is assumed that the observed and unobserved parts

of the data are related via means of the random variables y = min(T1, T2) ∈ R+
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and δ = I(T1 < T2)) ∈ {0, 1}, where I is the usual indicator function.

In the next chapter, we will focus on a class of flexible parametric survival

models, known as Survival Link-Based Additive Models.
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Chapter 3

Survival Link-Based Additive

Models

This chapter presents a summary of models that allow for different assumptions

about the nature of the covariate effects on the survival time, and where the

baseline hazard and survival functions can be modelled in a flexible form. The

general ideas of these models are employed to build survival link-based additive

models, which are analysed in the last part of the chapter.

3.1 Introduction

Generalized additive models have the form g[η(z)] = ∑J
j=1 f(zj), where g(·) is a

link function and f(z1), . . . , f(zJ) are smooth functions (e.g., Hastie & Tibshirani,

1986, 1990; Wood, 2017). In these models, for example, g[η(z)] might represent

the logistic transformation of the probability P (y = 1|z) in a logistic regression or

the regression function in a multiple regression. In fact, the generalized additive

models extend the whole family of generalized linear models g[η(z)] = zTγ (Nelder

& Wedderburn, 1972), where g[η(z)] is some transformation of the regression

function. Analogously, the conditional survival function can be modelled using
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smooth functions for time, covariates and time–covariate interactions via the model

g[ST (t|z)] = ∑J
j=1 f(xj), where f(xj) being f(t), f(z) or f(t, z) (e.g., Liu et al.,

2018; Marra & Radice, 2020a). Models like g[ST (t|z)] = ∑J
j=1 f(xj) belong to the

class of survival link-based additive models, and are the subject of this chapter. In

particular, we will focus on families of models that allow for different assumptions

about the nature of the covariate effects on the survival time, and also give flexibility

in modelling the baseline hazard and survival functions. Then, we will present a

summary of a particular class of these models: the survival link-based additive

models.

3.2 Summary of Survival Link-Based Additive

Models

In practical statistical modelling, we need flexibility to model not only the baseline

hazard and survival functions, but also the effects of covariates on the survival

time. Some models make specific assumptions about the nature of this effect. For

example, the proportional hazards and the proportional odds models specifically

assume that the covariates act multiplicatively on the baseline hazard, or the

baseline odds of survival, respectively. Since any specific assumption will not

always hold, families of models, such as the proposed by Etezadi-Amoli & Ciampi

(1987), Doksum & Gasko (1990) and Cheng et al. (1995) are particularly appealing.

Specifically, Etezadi-Amoli & Ciampi (1987) proposed a flexible model where

the baseline hazard function is approximated with a quadratic splines function and

model’s parameters are estimated using the maximum likelihood method. Their

conditional hazard function is modelled as hT (t|z) = exp(zTγ1)h0[exp(zTγ2)t],

where hT (t|z) reduces to the proportional hazards model if γ2 = 0 and to the

accelerate failure time model when γ1 = γ2. In the general case, z affects the
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survival by changing both the time scale by the factor exp(z>γ2), and the scale in

which the hazard is measured by the factor
[

exp(zTγ1)
exp(zTγ2)

]
.

On the other hand, the correspondence between models in binary data analysis

and continuous time survival analysis, and the correspondence between continuous

time survival models and linear transformation models have been spelled out

by Doksum & Gasko (1990). This can be seen by noting first that, in binary

regression analysis, the parameter of interest is ϕ(z) = P [I(A) = 1|z], where ϕ(z)

is the probability that an individual has a certain characteristic, A, conditional

to a covariate vector z, and I(·) is the indicator function. Thus, if t > 0 is

fixed and A = At = T ≤ t, then FT (t|z) = P (T ≤ t|z) is the same as ϕ(z),

since FT (t|z) = P [I(At) = 1|z] = ϕ(z). In addition, let us define the linear

transformation as

h(T ) = zTγ + ε, (3.1)

where h(·) is an increasing continuous function on some domainD, and ε is a random

error with continuous distribution function Υ with support (−∞,∞) (Doksum &

Gasko, 1990). Using this notation, the logistic regression model (Berkson, 1944) in

binary data analysis can be written as log
[

ϕ(z)
1− ϕ(z)

]
= zTγ or ϕ(z) = ΥL(−zTγ),

where ΥL(w) = [1 + exp (-w)]−1 is the logistic distribution. The corresponding

proportional odds model in continuous time survival data (Bennett, 1983) is

log
[

FT (t|z)
1− FT (t|z)

]
= −zTγ + logO(t), (3.2)

where O(t) is an increasing function on (0,∞] with O(0) = 0 and O(∞) = ∞.

In binary analysis, where t is fixed, O(t) is constant and logO(t) is absorbed

into the intercept term of zTγ. Let us define the odds function as O(t|z) =

FT (t|z)[1− FT (t|z)]−1. Then, using (3.2), O(t|z) = O(t) exp (−zTγ), where O(t)

is the baseline odds function. Therefore, model (3.2) can be written in logistic
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form (Bennett, 1983) as

FT (t|z) = ΥL(logO(t)− zTγ), t ≥ 0. (3.3)

It is easy to show that the proportional odds model for continuous survival data

given by (3.2) is a linear transformation model of the form (3.1). In particular,

note that

P [h(T ) ≤ t] = P [logO(t) ≤ t]

= P [T ≤ O−1(exp (t))] = FT [O−1(exp (t))|z],
(3.4)

with D = [0,∞), h(t) = logO(t) and Υ = ΥL. Using (3.4) and (3.3) we arrive at

P [h(T ) ≤ t] = ΥL(t − zTγ) which is another way of writing (3.1) when Υ = ΥL

(Prentice, 1978; Dabrowska & Doksum, 1988a,b; Doksum & Gasko, 1990).

These ideas can be used for the proportional hazards model (Cox, 1972). More

precisely, since hT (t|z) = fT (t|z)[1− FT (t|z)]−1, then HT (t|z) = − log [1− FT (t|z)].

Therefore, hT (t|z) = h0(t) exp(zTγ) is equivalent to

HT (t|z) = HT (t) exp (−zTγ), (3.5)

where HT (t) =
∫ t

0
hT (u)du. Model (3.5) is equivalent to log [− log [1− FT (t|z)]] =

log HT (t)− zTγ, which can also be written as

FT (t|z) = ΥE[log HT (t)− zTγ], (3.6)

where ΥE is the extreme value distribution ΥE(w) = 1− exp[− exp (w)]. Moreover,

if t is fixed, the constant log HT (t) can be absorbed in the intercept of zTγ, and the

binary model can be expressed as log [− log [1− ϕ(z)]] = zTγ or ϕ(z) = ΥE(−zTγ).

The connection between log [− log [1− ϕ(w)]] and the proportional hazards model
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can be found in McCullagh (1980). Due to (3.6), the proportional hazards model is

a linear transformation model of the form (3.1) with D = [0,∞), h(t) = log HT (t)

and Υ = ΥE. The connection between ΥE and the proportional hazards model was

observed by Kalbfleisch (1978) and Prentice (1978).

The binary probit model (Bliss, 1935) is Φ−1[ϕ(z)] = zTγ or ϕ(z) = Φ(−zTγ),

then for (t ≥ 0), the corresponding survival analysis model is Φ−1[FT (t|z)] =

Φ−1[FT (t)] − zTγ or FT (t|z) = Φ[Φ−1[FT (t)] − zTγ]. The corresponding linear

transformation model has D = [0,∞), h(t) = Φ−1[FT (t)] and Υ = Φ (Peto & Peto,

1972; Prentice, 1976; Pettitt, 1982, 1983).

In general, a binary regression model can be written as Υ−1[ϕ(z)] = −zTγ

or ϕ(z) = Υ(−zTγ) for a given continuous distribution function with support

(−∞,∞). Given (t ≥ 0), the corresponding survival model is Υ−1[FT (t|z)] =

h(t) − zTγ or FT (t|z) = ΥE[h(t) − zTγ], where h(t) is an increasing continuous

function on [0,∞) with h(0) = −∞ and h(∞) =∞. Since P [h(T ) ≤ t] = P [T ≤

h−1(t)] = FT [h−1(t)|z] = Υ(t− zTγ), a natural choice for h(t) is Υ−1[FT (t)]. The

equivalent linear transformation model is h(T ) = zTγ + ε, with ε ∼ Υ. Finally, if

zTγ is replaced by some other function f(z,γ), the correspondence between the

binary, survival, and transformation models would still be valid. These one-to-one

correspondences were also discussed for other models, such as the gamma-logit

model, the power family model and the log-linear model (Dabrowska & Doksum,

1988a,b; Doksum & Gasko, 1990).

In this line of analysis, Cheng et al. (1995) also considered a class of semi-

parametric transformation models, which include the proportional hazards and

proportional odds models as especial cases. Their model can be written as

g[ST (t|z)] = h(t) + zTγ, where g(·) is a known decreasing function, and h(·)

is a unspecified strictly increasing function, which maps [0,∞) onto (−∞,∞). If

g(S) = log[− log(S)], then g[ST (t|z)] = h(t) + zTγ reduces to the proportional
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hazards model and to the proportional odds model when g(S) = − log
[

S

1− S

]
. In

their approach, g[ST (t|z)] = h(t) + zTγ is equivalent to the linear transformation

model h(T ) = −zTγ + ε, with distribution function FS(s) = 1 − g(s)−1. As in

Doksum & Gasko (1990), if FS(s) = 1− exp[− exp(s)] the linear transformation

model is the proportional hazards model, while if FS(s) is the standard logistic

distribution, then h(T ) = −zTγ + ε becomes in the proportional odds model. The

parametric version of h(T ) = −zTγ+ε, with h(·) specified up to a finite-dimensional

parameter vector, has been discussed by Box & Cox (1964).

Within the parametric approach, Younes & Lachin (1997) proposed a flexible

link-based model for survival analysis that makes use of an arbitrarily defined link

function, g(·), to express the way by which the covariates act on the survival times.

The link function can be controlled by an additional parameter, yielding families

of models, such as the proportional hazards and the proportional odds models

when g(·) is the parametrized link function gϑ(S) = log
[
S−ϑ−1
ϑ

]
of Aranda-Ordaz

(1981). In particular, ϑ → 0 corresponds to the proportional hazard model and

ϑ = 1 to the proportional odds model. Their model is g[ST (t|z)] = g[S0(t)] + zTγ,

where S0(t) is the baseline survival function, which is approximated by B-splines

functions and determined by integration. Under the assumptions of independent

and non-informative censoring, the parameters of the model are estimated by

full maximizing likelihood. Other links, such as the probit link g(S) = −Φ−1(S)

(where Φ−1(·) is the inverse of the standard normal distribution), or other link

families, such as the asymmetric family g(S) = ϑ− S
S(1− S) can also be used in

this approach. A similar and computationally complex proposal was proposed by

Shen (1998), where sieve maximum likelihood and monotone splines functions are

used to estimate a general version of the proportional odds model. Within the

model proposed by Younes & Lachin (1997), Royston & Parmar (2002) developed

flexible parametric models based on the assumption of proportional hazards and
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proportional odds scaling of covariate effects via the parametric link of Aranda-

Ordaz (1981). In their proposal, g[S0(t)] is approximated using natural cubic

splines functions and full likelihood is performed for estimation.

These models have several practical advantages. In particular, they are esti-

mated by parametric maximum likelihood estimation, which allows for straight-

forward estimation and model comparisons; model formulation includes simple

and computationally efficient expressions for the survival and hazard functions

and several quantities of interest can be easily calculated from these models (for

example, odds ratios, time-dependent differences and standardized survival) that

are often difficult to estimate with non-parametric models. However, they also

have some drawbacks, including the need for model selection for smoothing across

time and covariates and restricted functional forms for the time effects (Liu et al.,

2018; Marra & Radice, 2020a).

Liu et al. (2018) propose a family of survival link-based additive models that

extend the parametric models proposed by Younes & Lachin (1997) and Royston

& Parmar (2002). In particular, their model associates the conditional survival

function ST (t|z;γ) with a linear predictor ξ(t, z;γ) through a specific link function,

g(·). In this approach, the design matrix B(t, z) is used to model the linear

predictor, that is: g[ST (t|z;γ)] = B(t, z)γ. In general, B(t, z) includes a baseline

function for time or a stratified set of baseline functions for time, and covariates

and interactions between time and covariates. Estimation is carried out using

penalized log-likelihood, which prevents over-fitting and allow for straightforward

estimation and model comparisons.

Finally, Marra & Radice (2020a) proposed a methodology to estimate joint

survival models where two survival link-based additive models are modelled by a

copula function, where all the model’s parameters can be specified as functions

of various types of covariate effects, and monotonic P-splines of transformations
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of the baseline survival functions are utilized to provide coherent marginal sur-

vival fits. Under the assumptions of independent and non-informative censoring,

their estimation approach consists of a carefully constructed optimization scheme

that allows for the simultaneous penalized maximum likelihood estimation of the

model’s parameters as well as for stable and efficient automatic multiple smoothing

parameter selection.

In the next chapter, we will use the approach of Marra & Radice (2020a) to

extend the class of univariate survival link-based additive models by relaxing the

assumption of non-informative censoring, but assuming that the censoring and the

event times are stochastically independent.



23

Chapter 4

Survival Link-Based Additive

Models with Informative

Censoring

In this chapter we introduce a class of flexible survival models which account for

the information provided by the censoring times. Survival functions are modelled

using generalised survival or link-based functions models and baseline functions

are estimated non-parametrically by monotonic P-splines. Covariate effects (such

as linear, nonlinear, random and spatial) are flexibly determined using additive

predictors. The performance of the proposed methodology is evaluated through a

Monte Carlo simulation study and an empirical application on data about infants

hospitalised for pneumonia. The relevant numerical computation can be easily

undertaken using the function gamlss() in the R package GJRM (Marra & Radice,

2020b) (see Appendix B.5 for some software details). Both, the simulation study

and the empirical application highlight the merits of the proposal.
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4.1 Introduction

Most of the related estimation techniques assume that the censoring scheme is

independent and non-informative conditional on covariates (e.g., Xue et al., 2018;

Ma et al., 2014; Scheike & Zhang, 2003; Younes & Lachin, 1997; Cox, 1972). In

many applications, however, these assumptions can at least be questioned (e.g.,

Xu et al., 2018, 2017; Li & Peng, 2015; Wang et al., 2015; Lu & Zhang, 2012;

Huang & Zhang, 2008; Zeng et al., 2004; Zheng & Klein, 1995; Slud & Rubinstein,

1983). If the event and censoring times are assumed to be dependent, then survival

models accounting for this feature of the data face a problem of identification. In

general, without additional assumptions, it is not possible to identify the survival

distribution from the censored data alone or testing whether the censoring and

survival mechanisms are independent (Tsiatis, 1975; Cox, 1959). However, if

censoring is informative, the observable data (y, δ) = {min(T1, T2), I(T1 < T2)},

where I is the usual indicator function, provide sufficient information to identify

the marginal survival functions of T1 and T2 (Kalbfleisch & Prentice, 2002).

Although dependent censoring is a well studied problem in the survival analysis

and competing risk literature (e.g., Emura & Chen, 2018; Crowder, 2012), the

specific literature analysing the problem of informative censoring is scarce, even

though ignoring it may have detrimental consequences on inferential conclusions

(e.g., Siannis et al., 2005; Lu & Zhang, 2012). In a seminal work, Koziol & Green

(1976) proposed an informative survival model where the hazard functions of T1

and T2 satisfy hT2(t) = phT1(t), for some constant 0 < p < 1. Since this model

did not incorporate covariates, it was further extended. For instance, Yuan (2005)

introduced a semiparametric Cox model estimated via profile likelihood in which,

for a given vector of covariates z, hT2(t|z) = %(t, z; γ)hT1(t|z), where % is a function

known up to a finite-dimensional parameter, γ. The purpose of % was to capture

the possible information contained in the censoring times. Lu & Zhang (2012)
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proposed a semi-parametric informative survival model where the baseline hazards

are estimated non-parametrically and the covariate effects parametrically. In their

approach, the hazard functions of T1 and T2 conditional on z are modelled using

hTυ(t|z) = h0,Tυ(t) exp(zTϕυ), where zTϕυ = zT
1γ0 + zT

2γυ, for υ = 1, 2.

The remainder of this chapter is organized as follow. In Section 4.2, we will

develop a flexible, general and tractable survival modelling framework where the

baseline functions are modelled non-parametrically via means of monotonic P-

splines, covariate effects are flexibly determined using additive predictors, and

informative censoring is accounted for. In Section 4.3, we propose a model fitting

based on an optimization scheme that allows for the reliable simultaneous penalized

estimation of all model’s parameters as well as for stable and fast automatic multiple

smoothing parameter selection. In this section, the
√
n-consistency and asymptotic

normality of the non-informative and informative estimators are also provided,

where we also show that the newly introduced informative estimator is more

efficient than its non-informative counterpart. Confidence intervals and p-values

are also provided in this section. Finally, in Sections 4.4 and 4.5, a Monte Carlo

simulation study highlights the merits of the proposal, and the modelling framework

is illustrated on data about infants hospitalised for pneumonia. The models and

methods introduced in the article have been implemented in the R package GJRM

(Marra & Radice, 2020b) to allow for transparent and reproducible research.

4.2 Methodology

In this thesis, only the case of right censored data is considered; the true event

time is not always observed, in which case censoring (lower) times are observed.

For individual i, where i = 1, . . . , n and n represents the sample size, let T1i and

T2i denote the true event and censoring times. Let also z>νi = (zν1i, . . . , zνKν i) be a

vector of baseline covariates of dimension Kν , where z> stands for the transpose of a
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vector z, ν = 1, 2 and z>i = (z1i, z2i). It is assumed that the (T1i, zi), for i = 1, ..., n,

are independently and identically distributed (i.i.d.). The censoring times, T2i,

are also assumed to be i.i.d. The distribution of T2 depends on z. In addition,

we assume that T1i and Ti2 are conditionally independent given zi, and that Ti1 is

informatively right censored by Ti2 through some covariates (Andersen & Keiding,

2006). We observe (yi, zi, δ1i), where yi = min{T1i, T2i} and δ1i = I(T1i ≤ T2i). We

also define δ2i = [1− δ1i]. Finally, ϕ is a generic vector of parameters, that can be

either α or γ as appropriate.

4.2.1 Survival functions

The survival function of Tνi taking values in (0, 1), conditional on zνi and ϕν , can

be expressed as

P (Tνi > tνi|zνi;ϕν) = STν (tνi|zνi;ϕν) = Gν [ξνi(tνi, zνi;ϕν)], (4.1)

where, for ν = 1, 2, ϕν and zνi represent generic vectors of coefficients and covariates,

respectively. The survival functions are specified using link-based models (see

Marra & Radice, 2020a, and references therein). That is, STν (tνi|zνi;ϕν) is defined

as Gν [ξνi(tνi, zνi;ϕν)], where Gν is an inverse link function. The set up of the two

ξ predictors is discussed in the detail in the next section. As conveyed by the

notation, ξ1i and ξ2i must include baseline functions of time. Different choices for

function Gν [ξνi(tνi, zνi;ϕν)] can be specified; some common examples are shown in

Table 4.1.

The cumulative hazard function, HTν , and the hazard function, hTν , are given
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Model Link g(S) Inverse link g−1(ξ) = G(ξ) G′(ξ)

Prop.hazards ("PH") log {− log(S)} exp {− exp(ξ)} −G(ξ) exp(ξ)
Prop.odds ("PO") − log

(
S

1−S

)
exp(−ξ)

1+exp(−ξ) −G2(ξ) exp(−ξ)

Probit ("probit") −Φ−1(S) Φ(−ξ) −φ(−ξ)

Table 4.1: Link functions implemented in GJRM. Φ and φ are the cumulative distribution and density
functions of a univariate standard normal distribution. Alternative links can be implemented. The
first two functions can be called log-log and -logit links, respectively.

by

HTν (tνi|zνi;ϕν) = − log Gν [ξνi(tνi, zνi;ϕν)],

hTν (tνi|zνi;ϕν) = −G
′
ν [ξνi(tνi, zνi;ϕν)]
Gν [ξνi(tνi, zνi;ϕν)]

∂ξνi(tνi, zνi;ϕν)
∂tνi

,
(4.2)

where G ′ν [ξνi(tνi, zνi;ϕν)] = ∂Gν [ξνi(tνi, zνi;ϕν)] / ∂ξνi(tνi, zνi;ϕν).

4.2.2 Additive predictors

This section provides details on the set up of the additive predictors used to model

the event and censoring times. To make the presentation simpler but without loss

of generality, the same design matrix is set up for the predictors. Note also that tνi

can be treated like a covariate. The main advantages of using additive predictors

are several types of covariate effects can be dealt with and that such effects can

be flexibly determined from the data without making strong parametric a priori

assumptions on their forms (Ruppert et al., 2003; Wood, 2017). Let us consider a

generic predictor ξνi ∈ R (where the dependence on the covariates and parameters

is momentarily dropped), and the overall covariate vector xνi, which contains zνi

and tνi. The additive predictors for the censoring and event times can be defined

generically as

ξνi = γν0 +
Kν∑
kν=0

sνkν (xνkν i), i = 1, . . . , n, (4.3)
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where γν0 ∈ R is an overall intercept, xνkν i denotes the kthν sub-vector of the

complete vector xνi and the Kν functions sνkν (xνkν i) represent generic effects which

are chosen according to the type of covariate(s) considered. Note that, in (4.3),

kν starts from 0 since the summation also includes a smooth function of time.

Each sνkν (xνkν i) can be represented as a linear combination of Jνkν basis functions

Qνkνjνkν (xνkν i) and regression coefficients γνkνjνkν ∈ R, that is (e.g., Wood, 2017)

sνkν (xνkν i) =
Jνkν∑
jνkν=1

γνkνjνkνQνkνjνkν (xνkν i). (4.4)

Therefore, equation (4.3) can be written as

ξνi = γν0 +
Kν∑
kν=0

Qνkν (xνkν i)>γνkν ,

where Qνkν (xνkν i) = {Qνkν1(xνkν i), . . . ,QνkνJνkν (xνkν i)}> and

γνkν = (γνkν1, . . . , γνkνJνkν )>. Furthermore, if Q>νiγν = ∑Kν
kν=0 Qνkν (xνkν i)>γνkν ,

γν = (γν0,γν0, . . . ,γνKν )> and Qνi = {1,Qν0(xν0i)>, . . . ,QνKν (xνKν )>}>, we

obtain

ξνi = Q>νiγν . (4.5)

Finally, if we define Qν = {Qν1, . . . ,Qνn}>, the complete system can be written

as

ξν = Qνγν .

If censoring is informative, some covariates in x1i must also appear in x2i. In

particular, let us define the vectors of informative and non-informative covariates

of dimensions Q and Qν as x0
i
> = (x0

1i, . . . , x
0
Qi) and x1

νi
> = (x1

ν1i, . . . , x
1
νQν i),

where Kν = Q + Qν . Informative censoring implies that some components of∑K1
k1=1 s1k1(x1k1i) must appear in ∑K2

k2=1 s2k2(x2k2i). Without loss of generality, we

assume that the first Q components in ∑K1
k1=1 s1k1(x1k1i) appear in

∑K2
k2=1 s2k2(x2k2i).
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That is,

K1∑
k1=1

s1k1(x1k1i) =
Q∑
q=1

sq(x0
qi) +

Q1∑
q1=1

s1q1(x1
1q1i)

K2∑
k2=1

s2k2(x2k2i) =
Q∑
q=1

sq(x0
qi) +

Q2∑
q2=1

s2q2(x1
2q2i)

. (4.6)

Therefore, using (4.6), equation (4.3) becomes

ξνi = αν0 +
Q∑
q=1

sq(x0
qi) +

Qν∑
qν=0

sνqν (x1
νqν i), (4.7)

where x0
qi and x1

νqν i denote the informative and non-informative sub-vectors of the

complete vectors x0
i and x1

νi respectively, and sνqν (x1
νqν i) = sν0(tνi) when qν = 0.

As before, in (4.7), each sνqν (x1
νqν i) can be approximated as a linear com-

bination of Jνqν non-informative basis functions Qνqνjνqν (x1
νqν i) and regression

coefficients ανqνjνqν ∈ R. In a similar manner, each sq(x0
qi) can be approximated

as a linear combination of Jq informative basis functions Qqjq(x0
qi) and regres-

sion coefficients α0qjq ∈ R. More specifically, sq(x0
qi) and sνqν (x1

νqν i) are given

by sq(x0
qi) = ∑Jq

jq=1 α0qjqQqjq(x0
qi) and sνqν (x1

νqν i) = ∑Jνqν
jνqν=1 ανqνjνqνQνqνjνqν (x1

νqν i),

and therefore (4.7) can be written as

ξνi = αν0 +
Q∑
q=1

Qq(x0
qi)>α0q +

Qν∑
qν=0

Qνqν (x1
νqν i)

>ανqν , (4.8)

where Qq(x0
qi)>α0q = ∑Jq

jq=1 α0qjqQqjq(x0
qi), Qνqν (x1

νqν i)>ανqν = ∑Jνqν
jνqν=1 ανqνjνqν

Qνqνjνqν (x1
νqν i), Qq(x0

qi) = {Qq1(x0
qi), . . . ,QqJq(x0

qi)}>, Qνqν (x1
νqν i) = {Qνqν1(x1

νqν i),

. . . ,QνqνJνqν (x1
νqν i)}>, α0q = (α0q1, . . . , α0qJq)> and ανqν = (ανqν1, . . . , ανqνJνqν )>.

To write equation (4.8) in a more compact way, we define Q0>
i α0 = ∑Q

q=1 Qq(x0
qi)>α0q

and Q1>
νi αν = ∑Qν

qν=0 Qνqν (x1
νqν i)>ανqν , where α0 = (α01, . . . ,α0Q)>, αν =

(αν0,αν0, . . . ,ανQν )>, Q0
i = {Q1(x0

1i)>, . . . ,QQ(x0
Qi)>}> and Q1

νi = {1,Qν0(x1
ν0i)>,
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. . . ,QνQν (x1
νQν )>}>. Therefore,

ξνi = Q0>
i α0 + Q1>

νi αν . (4.9)

If Q > 0 then censoring is informative and ∑Q
q=1 sq(x0

qi) can be estimated using

the information from both the censoring and event times. If Q = 0 (i.e., the

components in ∑K1
k1=1 s1k1(x1k1i) and ∑K2

k2=1 s2k2(x2k2i) are assumed all distinct)

then (4.8) reduces to the model with non-informative censoring defined in equation

(4.5).

Note that, for the case in which Q = 0, we have introduced the new parameter

vector γν to stress the difference between the parameters of the informative and

non-informative models. Some methods for determining the value of Q are discussed

in Appendix B.1.

Each ϕνkν has an associated quadratic penalty λνkνϕT
νkνQνkνϕνkν that allows

one to enforce specific properties on the kthν function, such as smoothness. Note that

each matrix Qνkν only depends on the choice of the basis functions. Smoothing

parameter λνkν ∈ [0,∞) controls the trade-off between fit and smoothness, and as

such it determines the shape of the related estimated smooth function. The overall

penalty can be defined as ϕT
νDνϕν , where Dν = diag(0, λν1Dν1, . . . , λνKνDνKν).

Smooth functions are typically subject to centering (identifiability) constraints

(see Wood (2017) for more details). Depending on the types of covariate effects

one wishes to model, several definitions of basis functions and penalty terms are

possible. Examples include thin plate, cubic and P- regression splines, Markov

random fields, random effects and Gaussian process smooths (Wood, 2017).
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To give a concrete example, consider the informative additive model

gν{Sν(tνi|z0
i , z1

νi)} = gν{Sν0(tνi)}+
Q∑
q=1

Qq(z0
qi)>α0q +

Qν∑
qν=1

Qνqν (z1
νqν i)

>ανqν ,

(4.10)

where gν : (0, 1) → (−∞,∞) is a differentiable and invertible link function (see

Table 4.1), Sν0(tνi) is a baseline survival function, and gν{Sν0(tνi)} is represented

using a smooth function of time, sν0(tνi). When the log-log link is chosen, equation

(4.10) yields the proportional hazards model

log{Hν(tνi|z0
i , z1

νi)} = log{Hν0(tνi)}+
Q∑
q=1

Qq(z0
qi)>α0q +

Qν∑
qν=1

Qνqν (z1
νqν i)

>ανqν ,

where Hν(tνi|z0
i , z1

νi) = − log{Sν(tνi | z0
i , z1

νi)} and log{Hν0(tνi)} = − log{Sν0(tνi)}

is the cumulative baseline hazard function. Analogously, equation (4.10) yields the

proportional odds model when the -logit link is chosen.

The hazard function defined in (4.2) requires the term ∂ξν(tνi, zνi,γν)/∂tνi

(ν = 1, 2) which, using (4.5), can be calculated as follows

∂ξν(tνi, zνi;γν)
∂tνi

= lim
ε→0

{
Qν(tνi + ε, zνi)−Qν(tνi − ε, zνi)

2ε

}T

γν = Qν(tνi, zνi)Tγν ,

(4.11)

where Qν(tνi, zν)T can be obtained either by a finite-difference method or analyti-

cally (if feasible). Note also that (4.11) must be positive to ensure that the hazard

functions are positive. This is achieved by modelling the time effects using B-splines

with coefficients constrained such that the resulting smooth functions of time are

monotonically increasing. In particular, let sν(tνi) = ∑Jν
jν=1 βνjνQνjν (tνi), where

the Qνjν are B-spline basis functions of at least second order built over the interval

[a, b], based on equally spaced knots, and βνjν are spline coefficients. A sufficient

condition for s′ν(tνi) ≥ 0 over [a, b] is that βνjν ≥ βνjν−1,∀j (e.g., Leitenstorfer
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& Tutz, 2006). Such a condition can be imposed by re-parametrizing the spline

coefficient vector so that βv = Γvϕ̃ν , where ϕ̃T
v = {ϕν1, exp(ϕν2), . . . , exp(ϕνJν )}

and Γν [κν1, κν2] = 0 if κν1 < κν2 and Γν [κν1, κν2] = 1 if κν1 ≥ κν2, with κν1 and

κν2 denoting the row and column entries of the respective matrix. Note that the

parameter vector to estimate is ϕT
ν = (ϕν1, γν2, . . . , ϕνJν ). The penalty term is set

up to penalise the squared differences between adjacent ϕνjν , starting from ϕν2,

using Dν = D�>ν D�ν where D�ν is a (Jν − 2)× Jν matrix made up of zeros except

that D�ν [κν , κν + 1] = −D�ν [κν , κν + 2] = 1 for κν = 1, ..., Jν − 2 (Pya & Wood,

2015). Matrix Qν , in equation (4.2.2), can absorb Γν . So, the non-informative

and informative additive predictors can be written as

ξνi = γν0 + Qν0(yi)> Γν0γ̃ν0 +
Kν∑
kν=1

Qνkν (xνkν i)>γνkν ,

ξνi = αν0 + Qν0(yi)> Γν0α̃ν0 +
Q∑
q=1

Qq(x0
qi)>α0q +

Qν∑
qν=1

Qνqν (x1
νqν i)

>ανqν .

(4.12)

The model set up described above has several advantages. For instance, it can

flexibly determine and in a data driven manner the functional shapes of the

baseline and covariate effects, avoids the need for numerical integration, easily

allows for time-dependent effects via smooth interaction terms, and can deal with

time-varying covariates in the usual manner. It is worth noting that the more

extensive use of parametric survival models in applications has been encouraged

by Cox; see the discussion in Reid (1994). Moreover, as pointed out for instance

by Hjort (1992), parametric approaches simplify somewhat model estimation and

comparison, easily allow for the visualization of the estimated baseline hazard

and survival functions, and allow us to calculate several quantities of interest and

their variances which would otherwise be difficult to obtain with a non-parametric

approach.

In this section, we have introduced Generalized Additive survival models with
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informative censoring. In the next section, we will propose a penalized likelihood

method to estimate the developed methodology.

4.3 Estimation approach

This section proposes a penalized likelihood method to estimate the parameters

of the developed model. Specifically, model fitting is based on an optimization

scheme that allows for the reliable simultaneous penalized estimation of all model’s

parameters as well as for stable and fast automatic multiple smoothing parameter

selection. The
√
n consistency and asymptotic normality of the non-informative

and informative estimators are derived, where the efficiency gains produced by

the newly introduced informative estimator when compared to its non-informative

counterpart is highlighted. The construction of confidence intervals and p-values

are discussed in the last part of this section.

4.3.1 Penalized maximum log-likelihood estimation

The data consist of {yi, δ1i, zi}, where yi = min{T1i, T2i} and δ1i = I(T1i ≤ T2i), for

i = 1, . . . , n. Let f(t1, t2|z) be the conditional joint distribution of (T1, T2) given

z. We can write P (T1 = yi, T2 > yi|zi) =
∫ ∞
yi
f(yi, t2|zi)dt2 and P (T1 > yi, T2 =

yi|zi) =
∫ ∞
yi
f(t1, yi|zi)dt1. Therefore, the conditional likelihood function of (yi, δ1i)

given zi, for all i = 1, ..., n, is

L =
n∏
i=1

[∫ ∞
yi

f(yi, t2|zi)dt2
]δ1i [∫ ∞

yi
f(t1, yi|zi)dt1

]δ2i

.

Below we provide the relevant details for the cases of informative and non-

informative censoring, which highlight the differences between the two estimators

and that are also required for the theoretical derivations in Section 4.3.3.

If it is assumed that T1i and Ti2 are conditionally independent given zi, then
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∫ ∞
yi
f(yi, t2|zi)dt2 = f1(yi|z1i;γ1)S2(yi|z2i;γ2) and

∫ ∞
yi
f(t1, yi|zi)dt1 = f2(yi|z2i;γ2)

S1(yi|z1i;γ1) when censoring is non-informative. However, if censoring is informa-

tive γ1 and γ2 would have some components in common. Since it was assumed that

the first Q components of γ1 are the same as the first Q components of γ2, we have

Q>νiγν = Q0>
i α0 + Q1>

νi αν . Using (4.1), (4.2), and ξνi(γν) and ξνi(α0,αν) as the

shorthand notation for ξνi(yi, zνi;γν) and ξνi(yi, zνi;α0,αν) respectively, the non-

informative and informative log-likelihood functions can be written, respectively,

as

`(γ) =
n∑
i=1

{
log G1 [ξ1i(γ1)] + δ1i log

[
−G

′
1 [ξ1i(γ1)]
G1 [ξ1i(γ1)]

∂ξ1i(γ1)
∂yi

]}

+
n∑
i=1

{
log G2 [ξ2i(γ2)] + δ2i log

[
−G

′
2 [ξ2i(γ2)]
G2 [ξ2i(γ2)]

∂ξ2i(γ2)
∂yi

]}
,

`(α) =
n∑
i=1

{
log G1 [ξ1i(α0,α1)] + δ1i log

[
−G

′
1 [ξ1i(α0,α1)]
G1 [ξ1i(α0,α1)]

∂ξ1i(α0,α1)
∂yi

]}

+
n∑
i=1

{
log G2 [ξ2i(α0,α2)] + δ2i log

[
−G

′
2 [ξ2i(α0,α2)]
G2 [ξ2i(α0,α2)]

∂ξ2i(α0,α2)
∂yi

]}
.

(4.13)

Our model specification allows for a high degree of flexibility in modelling survival

data. If an unpenalised estimation approach is employed to estimate γ = (γ>1 ,γ>2 )>

and α = (α>0 ,α>1 ,α>2 )>, then the resulting smooth function estimates are likely

to be unduly wiggly (e.g., Wood, 2017). Therefore, to prevent over-fitting, the

following functions are maximized

`p(γ) = `(γ)− 1
2γ
>Λγ, (4.14)

`p(α) = `(α)− 1
2α
>Λα, (4.15)

where `p(γ) and `p(α) are the non-informative and informative penalized log-

likelihoods. Moreover, Λ = diag(D1,D2), and D1 and D2 are overall penalties
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which contain λ1, λ2. The smoothing parameter vectors can be collected in the

overall vector λ = (λ>1 , λ>2 )>. Estimation of the models’ parameters and smoothing

coefficients is achieved by using a stable and efficient trust region algorithm with

integrated automatic multiple smoothing parameter selection (this will be discussed

in Section 4.3.2). This required working with first and second order analytical

derivatives which have been tediously derived as well as verified using numerical

derivatives. Their structures are shown below. Note that these results were also

required for the theoretical proofs presented in Section 4.3.3.

When censoring is non-informative, the gradient of (4.14) can be obtained as

∇γ`p(γ) = ∇γ`(γ)− γΛ,

where ∇γ`(γ) =
(
∇γ1`(γ)>, ∇γ2`(γ)>

)>
. The components of ∇γν`(γ) can

generically be calculated using the following expression

∇γνkν
`(γ) =


∑n
i=1

[
∆νiQ4ν0(yi) + ΩνiQ4

′

ν0 (yi)
]

if γνkν = γν0,

∑n
i=1

[
∆νiQνkν (xνkν i)

]
otherwise.

(4.16)

In (4.16), Q4ν0(yi) and Q4
′

ν0 (yi) are design vectors. Furthermore, Ωνi = δνi

(
∂ξνi
∂yi

)−1

and ∆νi =
[
G ′ν
Gν

+ δνi

(
G ′′ν
G ′ν
− G

′
ν

Gν

)]
, for all ν = 1, 2. The non-informative penalized

Hessian can be calculated as

∇γγ`p(γ) = ∇γγ`(γ)−Λ,
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where

∇γγ`(γ) =

∇γ1γ1`(γ) 0

0 ∇γ2γ2`(γ)

 .

Further, the elements of ∇γνγν`(γ) are calculated using

∇γνkνγν0`(γ) =
n∑
i=1

[
Qνkν (xνkν i)ΦνiQ4ν0(yi)>

]
,

∇γν0γνsν `(γ) =
n∑
i=1

[
Q4ν0(yi)ΦνiQνsν (xνsν i)>

]
,

∇γνkνγνsν
`(γ) =

n∑
i=1

[
Qνkν (xνkν i)ΦνiQνsν (xνsν i)>

]
,

∇γν0γν0`(γ) =
n∑
i=1

[
Q4ν0(yi)ΦνiQ4ν0(yi)> + ∆νiQ44ν0 (yi)−Q4

′

ν0 (yi)ΨνiQ4
′

ν0 (yi)>

+ ΩνiQ44
′

ν0 (yi)
]
.

(4.17)

In these sub-matrices Φνi = δνi

G ′′′ν
Gν
− G

′′2
ν

G ′2ν
− G

′′
ν

Gν
+ G

′2
ν

G2
ν

 and Ψνi =
δνi

(
∂ξνi
∂yi

)−2
.

In addition, Q44ν0 (yi) and Q44
′

ν0 (yi) are design diagonal matrices.

If the censoring is informative, the gradient of (4.15) can be calculated as

∇α`p(α) = ∇α`(α)−αΛ,

where ∇α`(α) =
(
∇α0`(α)>,∇α1`(α)>,∇α2`(α)>

)>
. To obtain ∇α0`(α) and

∇αν`(α), we use

∇α0`(α) =
n∑
i=1

[
Q0

i (∆1i + ∆2i)
]
,

∇ανkν
`(α) =


∑n
i=1

[
∆νiQι4

ν0 (yi) + ΩνiQι4′

ν0 (yi)
]

if ανkν = αν0,

∑n
i=1

[
∆νiQνkν (xνkν i)

]
otherwise,

(4.18)
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where Qι4
ν0 (yi) and Qι4′

ν0 (yi) are design vectors. The informative penalized Hessian

can be obtained as follow

∇αα`p(α) = ∇αα`(α)−Λ,

where

∇αα`(α) =


∇α0α0`(α) ∇α0α1`(α) ∇α0α2`(α)

∇α1α0`(α) ∇α1α1`(α) 0

∇α2α0`(α) 0 ∇α2α2`(α)

 .

Furthermore, ∇α0α0`(α) and the components of ∇ανα0`(α) and ∇α0αν`(α) are

obtained using

∇α0α0`(α) =
n∑
i=1

[
Q0

i (Φ1i + Φ2i)Q0
i

>]
,

∇α0ανqν `(α) =


∑n
i=1

[
Q0

iΦνiQι4
ν0 (yi)>

]
if ανqν = αν0,

∑n
i=1

[
Q0

iΦνiQνqν (x1
νqν i)>

]
otherwise,

∇ανqνα0`(α) =


∑n
i=1

[
Qι4

ν0 (yi)ΦνiQ0
i

>] if ανqν = αν0,

∑n
i=1

[
Qνqν (x1

νqν i)ΦνiQ0
i

>] otherwise.

(4.19)
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Finally, the elements of ∇αναν`(α) are calculated using

∇ανqναν0`(α) =
n∑
i=1

[
Qνqν (x1

νqν i)ΦνiQι4
ν0 (yi)>

]
,

∇αν0ανqν `(α) =
n∑
i=1

[
Qι4

ν0 (yi)ΦνiQνqν (x1
νqν i)

>
]
,

∇ανqνανrν `(α) =
n∑
i=1

[
Qνqν (x1

νqν i)ΦνiQνrν (x1
νrν i)

>
]
,

∇αν0αν0`(α) =
n∑
i=1

[
Qι4

ν0 (yi)ΦνiQι4
ν0 (yi)> + ∆νiQι44

ν0 (yi)−Qι4′

ν0 (yi)ΨνiQι4′

ν0 (yi)>

+ ΩνiQι44′
ν0 (yi)

]
.

(4.20)

As before, Qι44
ν0 (yi) and Qι44′

ν0 (yi) represent design diagonal matrices.

The derivations of the results reported here are given in Appendixes B.2 and

B.3.

Remark 1. The scores and Hessian components described in this section have

been implemented in a modular way, hence no substantial programming work will

be required to incorporate link functions not considered in this article. Furthermore,

quantities such as those defined in (4.16), (4.17), (4.18), (4.19) and (4.20), are

needed for the theoretical proofs provided in Section 4.3.3.

4.3.2 Algorithmic details

The optimization method used for the informative and non-informative estimator is

the trust region algorithm. In this method, model fitting is based on an optimization

scheme that allows for the reliable simultaneous penalized estimation of all model’s

parameters as well as for stable and fast automatic multiple smoothing parameter

selection. As already mentioned, ϕ is a generic vector of parameters, that can be

either α or γ as appropriate.

At iteration a, for a given vector ϕ and maintaining λ fixed at a vector of values,
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equations (4.14) or (4.15) (or generally, any of the models’ likelihoods considered

in the thesis) are maximized using

ϕ[a+1] = arg min
ε:‖ε‖≤Ξ[a]

¯̀
p(ϕ[a]),

where ¯̀
p(ϕ[a]) = −

{
`p(ϕ[a]) + ε>gp(ϕ[a]) + 1

2ε
>Hp(ϕ[a])ε

}
, gp(ϕ[a]) = g(ϕ[a]) −

Λϕ[a], Hp(ϕ[a]) = H(ϕ[a])−Λ. Vector g(ϕ[a]) consists of g0(ϕ[a]) = ∇ϕ0`(ϕ)|
ϕ0=ϕ[a]

0

and gν(ϕ[a]) = ∇ϕν`(ϕ)|
ϕν=ϕ[a]

ν
, and H(ϕ[a])l,j = ∇ϕlϕj`(ϕ)|

ϕl=ϕ
[a]
l
,ϕj=ϕ[a]

j
, where

l, j = 0, 1, 2 and ν = 1, 2. The euclidean norm is denoted by ‖·‖, and the ra-

dius of the trust region is represented by Ξ[a] which is adjusted through the

iterations. Close to the solution, the trust region algorithm behaves as a classic

Newton-Raphson unconstrained method (Nocedal & Wright, 2006).

Estimation of λ is achieved by adapting the general and automatic multiple

smoothing parameter estimation method of Marra et al. (2017) to the context of

the proposed survival models. The smoothing criterion is based on the knowledge

of g(ϕ) and H(ϕ). The main ideas and some useful results are given here.

To simplify the notation, gp(ϕ[a]), g(ϕ[a]), Hp(ϕ[a]) and H(ϕ[a]) are de-

noted as g[a]
p , g[a], H[a]

p and H[a]. First, it is necessary to express the param-

eter estimator in terms of g[a]
p and H[a]

p . To achieve this, a first order Tay-

lor expansion of g[a+1]
p about ϕ[a] is used, which yields the following expres-

sion: 0 = g[a+1]
p ≈ g[a]

p (ϕ[a+1] − ϕ[a])H[a]
p . After some manipulations, ϕ[a+1] =

(−H[a]+Λ)-1
√
−H[a]

[√
−H[a]ϕ[a]+

√
−H[a]

-1
g[a]

]
is obtained, which then becomes

ϕ[a+1] = (−H[a] + Λ)-1
√
−H[a]Z [a], where Z [a] = υ

[a]
Z + ξ

[a]
Z , υ[a]

Z =
√
−H[a]ϕ[a]

and ξ[a]
Z =

√
−H[a]

-1
g[a]. Eigenvalue decomposition is used to obtain the square

root of −H[a] and its inverse. Furthermore, from likelihood theory, ξ ∼ N (0, I)

and Z ∼ N (υN , I), where υZ =
√
−Hϕ0, ϕ0 is the true parameter vector and I

is the identity matrix. υ̂Z =
√
−Hϕ̂ = BZ is the predicted value vector for Z,
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where B =
√
−H(−H + Λ)-1√−H. Since our objective is to estimate λ so that

the smooth terms’ complexity which is not supported by the data is removed, the

following criterion is used

E
(
‖υZ − υ̂Z‖2

)
= E

(
‖Z −BZ‖2

)
− n̄ + 2tr(B), (4.21)

where n̄ = 2 n and tr(B) represent the number of effective degrees of freedom of

the penalized model. In applications, λ is estimated by minimizing an estimate of

equation (4.21), in other words

‖ ̂υZ − υ̂Z‖2 = ‖Z −BZ‖2 − n̄ + 2tr(B). (4.22)

The RHS of equation (4.22) depends on λ through B while Z is associated with

the un-penalized part of the model. Equation (4.21) is approximately equivalent

to the AIC (Akaike, 1973). This implies that λ is estimated by minimizing what

is effectively the AIC with number of parameters given by tr(B). Holding the

model’s parameter vector value fixed at ϕ[a+1], the following problem

λ[a+1] = arg min
λ

‖Z [a+1] −B[a+1]Z [a+1]‖2 − n̄ + 2tr(B[a+1]) (4.23)

is solved using the automatic efficient and stable computational method proposed

by Wood (2004). This approach uses the performance iteration idea of Gu (1992),

which is based on Newton’s method and can evaluate in an efficient and stable way

the components in (4.23) along with their first and second derivatives with respect

to log(λ), because the smoothing parameters can only take positive values.

The methods for estimating ϕ and λ are iterated until the algorithm satisfies

the criterion
∣∣∣`(ϕ[a+1])− `(ϕ[a])

∣∣∣ / (0.1 +
∣∣∣`(ϕ[a+1])

∣∣∣) ≤ 10−7. Starting values are

obtained by fitting two non-informative models for the survival and censoring
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times.

In this section, we have presented a penalized likelihood approach to estimate

the parameters of the informative model, which is based on an optimization scheme

that allows for the reliable simultaneous estimation of all model parameters. In

the next section, we will analyse the theoretical properties of the non-informative

and informative estimators.

4.3.3 Asymptotic properties of γ̂ and α̂

In this section, we derive the
√
n consistency and asymptotic normality of the

non-informative and informative estimators, and shed light on the efficiency gains

produced by the newly introduced informative estimator when compared to its

non-informative counterpart. If the estimators are
√
n consistent,

√
n(ϕ̂ − ϕ0)

is bounded in probability (ϕ̂ − ϕ0 = Op(n−
1
2 )). Intuitively, this means that the

probability that
√
n(ϕ̂−ϕ0) takes on extreme values is small, implying that both

estimators will converge in probability to their true values at a rate of 1√
n
.

To study the asymptotic properties of γ̂ and α̂ two approaches can be used.

In the first approach, to obtain consistency, it must be assumed that the number

of knots increases with sample size n. In the other approach, we have to fix the

number and location of knots. In this case, as in parametric modelling, the number

of parameters is fixed, and the parameters can be estimated at the usual
√
n rates.

However, as in non-parametric modelling, the model is flexible enough to adapt to

regression functions of unknown form (Xingwei et al., 2010). In this work, we use the

fixed-knot asymptotic framework since it is closer to practical statistical modelling

(e.g., Vatter & Chavez-Demoulin, 2015, and references therein). In what follows, we

define Ŝν0(ϕ̂ν0) = Gν0[s(ϕ̂ν0)] as the short notation for Ŝν0(yi, ϕ̂ν0) = Gν0[s(yi, ϕ̂ν0)]

and ϕ0 as the true vector of parameters.

The informative penalized maximum log-likelihood estimator (IPMLE) can be
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defined as

α̂ = argmax
α∈Sα

`p(α),

and the non-informative counterpart (NPMLE) as

γ̂ = argmax
γ∈Sγ

`p(γ).

Theorem 1 (Asymptotic properties of the IPMLE estimator). Under assumptions

(A1)-(A8) in Appendix B.4.1,

(i) the informative penalized maximum log-likelihood estimator α̂ exists, is
√
n-consistent and

√
n(α̂−α0) d→ N

{
0, [I(α0)]−1

}
,

where I(α0) = E[−∇αα`(w;α0)] with w containing the response and covari-

ate vectors.

(ii) Ŝ10(α̂10) is asymptotically independent of Ŝ20(α̂20) and

√
n[Ŝν0(α̂ν0)− Sν0(α0

ν0)] d→ N
{
0,Σα0

ν0

}
, ν = 1, 2,

where Σα0
ν0

= G ′ν0[s(α0
ν0)]∇αν0s(α0

ν0)[I(α0
ν0)]−1∇αν0s(α0

ν0)>G ′ν0[s(α0
ν0)] and

I(α0
ν0) = E[−∇αν0αν0`(w;α0

ν0)].

Theorem 2 (Asymptotic properties of the NPMLE estimator). Under assumptions

(A1)-(A8) in Appendix B.4.1,

(i) the non-informative penalized maximum log-likelihood estimator γ̂ exists, is
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√
n-consistent and

√
n(γ̂ − γ0) d→ N

{
0, [I(γ0)]−1

}
,

where I(γ0) = E[−∇γγ`(w;γ0)] with w containing the response and covari-

ate vectors.

(ii) Ŝ10(γ̂10) is asymptotically independent of Ŝ20(γ̂20) and

√
n[Ŝν0(γ̂ν0)− Sν0(γ0

ν0)] d→ N
{
0,Σγ0

ν0

}
, ν = 1, 2,

where Σγ0
ν0

= G ′ν0[s(γ0
ν0)]∇γν0s(γ0

ν0)[I(γ0
ν0)]−1∇γν0s(γ0

ν0)>G ′ν0[s(γ0
ν0)] and

I(γ0
ν0) = E[−∇γν0γν0`(w;γ0

ν0)].

Theorem 3 (Efficiency of the IPMLE estimator). For ν = 1, 2, let γν = (γιν ,γnιν )>

be the informative and non-informative parameters of the non-informative model,

respectively. Under assumptions (A1)-(A8) in Appendix B.4.1, and if we further

assume that γnιν0 = αν0, then

ACov(α̂0) < ACov(γ̂ιν),

ACov(α̂ν) < ACov(γ̂nιν ),

where ACov(α̂0) = Σα0
0
, ACov(α̂ν) = Σα0

ν
, ACov(γ̂ιν) = Σγ0ι

ν
, and ACov(γ̂nιν ) =

Σγ0nι
ν

represent the asymptotic covariance matrices of α̂0, α̂ν , γ̂ιν and γ̂nιν respec-

tively.

The proofs of Theorems 1, 2 and 3 are given in Appendix B.4.2.

Remark 2. The fact that the informative and non-informative survival functions

are orthogonal (part (ii) of Theorems 1 and 2) suggests that the estimation algorithm

will yield more accurate parameter vector updates throughout the iterations (e.g.,
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Nocedal & Wright, 2006). Moreover, Theorem 3 shows that under informative

censoring it is possible to estimate the model’s coefficients more efficiently since

more information is exploited by the informative model.

The construction of confidence intervals and p-values are discussed in the next

section of this chapter.

4.3.4 Confidence intervals and p-values

As far as the construction of confidence intervals and p-values are concerned, for

practical purposes it is convenient to adapt to the current context the results

discussed in Marra et al. (2017).

In particular, at convergence, point-wise intervals for linear and non-linear

functions for both the non-informative and informative models parameters can be

obtained using the following Bayesian large sample approximation

ϕ ∼ N (ϕ̂,Σϕ̂), (4.24)

where Σϕ̂ = [Hp(ϕ̂)]-1. For generalised additive models, intervals derived using

equation (4.24) have good frequentist properties, since they account for both

smoothing bias and sampling variability (Marra & Wood, 2012). For the non-

informative and informative models, equation (4.24) can be verified using the

distribution of Z (described in Section 4.3.2), making the large sample assumption

that H(ϕ) can be treated as fixed, and making the usual prior Bayesian assumption

for smooth models ϕ ∼ N (0,Λ-1), where Λ-1 is the Moore-Penrose pseudoinverse

of Λ (Silverman, 1985; Wood, 2017). In equation (4.24), smoothing parameter

uncertainty is neglected. Nevertheless, according to Marra & Wood (2012) this is

not problematic if heavy over-smoothing is avoided so that the smoothing bias is

not a large proportion of the sampling variability. See also Marra et al. (2017) for
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an application of this approach to a more general smoothing spline context.

Following Pya & Wood (2015), confidence interval estimates for the monotonic

smooth terms in the models can be obtained using the distribution of ϕ̃ν0 (defined

in Section 4.2.2) since all smooth components would then depend linearly on ϕ̃ν0.

Such a distribution is

ϕ̃ν0 ∼ N ( ˆ̃ϕν0,Σϕ̃ν0),

where Σϕ̃ν0 = diag(Γν0) [Hp(ϕ̂ν0)]-1 diag(Γν0). The derivation of this result can

be found in Pya & Wood (2015).

P-values for the smooth components in the non-informative and informative

models are obtained by adapting the results discussed in Wood (2013) to the

present context, where Σϕ̃ν0 is used for the calculations. The reader is referred to

the above citation for the definition of reference degrees of freedom.

In this section, the asymptotic properties of the non-informative and informative

estimators were derived. We also shed light on the efficiency gains produced by

the informative estimator when compared to its non-informative counterpart. The

construction of confidence intervals and p-values were discussed in the last section.

In the next sections, we will evaluate the performance of the proposed methodology

through a Monte Carlo simulation study and an empirical application.

4.4 Simulation study

This section provides evidence on the empirical effectiveness of the proposed

methodology in recovering true linear effects, non linear effects and baseline

functions under informative censoring for three Data Generating Processes (DGPs).

The performance of the informative penalized maximum log-likelihood estimator

against that of its non-informative counterpart was also examined.
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(i) DGP1 (z1i non-informative, z2i informative and censoring rate of about 78%).

Event times, T1i, were generated from a proportional hazard model, while

censored times, T2i, were generated from a proportional odd model. These,

defined on the survival function scale, are given by

log [− log {S10(t1i)}] + α01 + α11z1i + s11(z2i),

log
[
{1− S20(t2i)}

S20(t2i)

]
+ α02 + α12z1i + s12(z2i),

(4.25)

where S10(t1i) = 0.72 exp (−0.4t2.41i ) + 0.28 exp (−0.1t1.01i ) and S20(t2i) = 0.99

exp (−0.1t2.22i ) + 0.01 exp (−0.4t1.12i ) (Crowther & Lambert, 2013). Covariate

z1i was generated using a binomial distribution and z2i using a uniform

distribution. As for the smooth functions, we used s11(z2i) = s12(z2i) =

−0.2 exp(3.2zi), whereas the parametric coefficients were: α01 = 0.25, α02 =

0.85, α11 = −2.0 and α12 = 1.8.

Sample sizes were set to 500, 1000 and 4000, and the number of replicates to

1000. Replicates in which the models did not converge were discarded and

replaced with additional ones. The models were fitted using gamlss() in

GJRM by employing the proportional hazard link ("PH") for the event times

and the proportional odd link ("PO") for the censoring times (see Appendix

B.5). The smooth components of z2 were represented using penalized low

rank thin plate splines with second order penalty and 10 bases (the default in

GJRM), and the smooths of times using monotonic penalized B-splines with

penalty defined in Section 4.2.2 and 10 bases. Note that smooth terms of

explanatory variables can also be represented using different spline definitions

(see Appendix B.5). In the case of one-dimensional smooth functions, all

definitions lead to virtually the same result as long as the amount of smoothing

is selected in a data-driven manner (e.g., Wood, 2017). For each replicate,
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curve estimates were constructed using 200 equally spaced fixed values in

the (0, 8) range for the baseline functions and (0, 1) otherwise.

Results: Regarding the estimates for α11 (the parameter of the non-informative

covariate), Figure 4.1 and Table 4.2 show that overall the mean estimates

for the IPMLE and NPMLE are very close to the respective true values and

improve as the sample size increases, and that the variability of the estimates

decreases as the sample size grows large.

As for the smooth effect of the informative covariate, Figures 4.2 and 4.3,

and Table 4.2 show that overall the true functions are recovered well by the

proposed estimation methods and that the results improve in terms of bias

and efficiency as the sample size increases. However, the IPMLE is more

efficient than the NPMLE for all sample sizes examined in the simulation

study; for example, for n = 500, 1000 the RMSE for the NPMLE is more

than twice as large as the IPMLE. Some gains in efficiency are also observed

for the baseline functions.

(ii) DGP2 (z1i informative, z2i informative and censoring rate of about 74%).

As for DGP1, T1i and T2i were generated using the model defined in (4.25).

However, in this case, the baseline survival functions were defined as S10(t1i) =

0.75 exp (−0.4t2.41i ) + 0.25 exp (−0.1t1.01i ) and S20(t2i) = 0.99 exp (−0.1t2.22i ) +

0.01 exp (−0.4t1.12i ). The informative covariates, z1i and z2i, were generated

using binomial and uniform distributions, respectively. Finally, s11(z2i) =

s12(z2i) = −0.2 exp(3.2zi), α01 = 0.25, α02 = 0.85 and α11 = α12 = −1.5.

Results: Similarly to DGP1, Figures B.1, B.8 and B.9, and Table B.1 (in

Appendix B.6) show that overall the mean estimates for the two estimators

are very close to the respective true values and improve as the sample size

increases. The variability of the estimates also decreases as the sample size
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(a) Informative Penalized Maximum Log-likelihood Estimator (IPMLE)
Bias RMSE

n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000
α11 -0.047 -0.013 -0.001 0.369 0.239 0.118
s11 0.036 0.028 0.013 0.161 0.114 0.061
h10 0.095 0.069 0.034 0.336 0.245 0.104
S10 0.027 0.024 0.018 0.071 0.054 0.033
(b) Non-informative Penalized Maximum Log-likelihood Estimator (NPMLE)

Bias RMSE
n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000

α11 -0.079 -0.015 -0.005 0.360 0.245 0.116
s11 0.085 0.069 0.046 0.383 0.206 0.118
h10 0.120 0.070 0.034 0.427 0.292 0.121
S10 0.034 0.025 0.017 0.086 0.068 0.039

Table 4.2: Bias and root mean squared error (RMSE) for the IPMLE and NPMLE
obtained by applying the gamlss() to informative survival data simulated ac-
cording to DGP1 characterised by a censoring rate of about 78%. Bias and
RMSE for the smooth terms are calculated, respectively, as n−1

s

∑ns
i=1 |¯̂si − si| and

n−1
s

∑ns
i=1

√
n−1
rep
∑nrep
rep=1 (ŝrep,i − si)2, where ¯̂si = n−1

rep

∑nrep
rep=1 ŝrep,i, ns is the number

of equally spaced fixed values in the (0, 8) or (0, 1) range, and nrep is the number of
simulation replicates. In this case, ns = 200 and nrep = 1000. The bias for the smooth
terms is based on absolute differences in order to avoid compensating effects when taking
the sum.
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Figure 4.1: Linear coefficient estimates obtained by applying gamlss() to informative survival
data simulated according to DGP1 which is characterised by a censoring rate of about 78%.
Circles indicate mean estimates while bars represent the estimates’ ranges resulting from 5%
and 95% quantiles. True values are indicated by black solid horizontal lines. Black circles and
vertical bars refer to the results obtained for n = 500, whereas those for n = 1000 and n = 4000
are given in dark gray and blue, respectively.
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Figure 4.2: Smooth function estimates for the IPMLE obtained by applying gamlss() to
informative survival data simulated according to DGP1 characterised by a censoring rate of about
78%. True functions are represented by black solid lines, mean estimates by dashed lines and
pointwise ranges resulting from 5% and 95% quantiles by shaded areas. The results in the first
row refer to n = 500, whereas those in the second and third rows to n = 1000 and n = 4000.
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Figure 4.3: Smooth function estimates for the NPMLE obtained by applying gamlss() to
informative survival data simulated according to DGP1 characterised by a censoring rate of about
78%. Further details are given in the caption of Figure 4.2.
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grows large. However, the IPMLE is significantly more efficient than the

NPMLE for all cases considered.

Computing times for the proposed approach were on average 8 seconds for

n = 4000 and around 5 seconds for n = 1000, 500. In addition, two DGPs (DGP3

and DGP4) with a different smooth function for z2i and with censoring rates of

about 47% and 29% respectively were explored (in Appendix B.6). These DGPs

suggested that the gain in efficiency of the IPMLE tends not to be too significant

when lower censoring rates are considered. Finally, for the above DGPs, we

explored the ability of information criteria such as the Akaike information criterion

(AIC) and the Bayesian information criterion (BIC), defined in Supplementary

Material B.1, to select the correct model. When doing this, we also considered the

informative estimator with incorrectly chosen set of informative covariates (e.g.,

for DGP1, in estimation, z1 was assumed to be informative instead of z2). For all

sample sizes and cases considered, based on AIC/BIC, the correct model is always

chosen.
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4.5 Empirical illustration

The modelling framework is illustrated using the data employed by Lu & Zhang

(2012), where the aim was to assess how several factors affect the contraction of

pneumonia in infants in the presence of informative censoring. According to the

World Health Organization (WHO), pneumonia accounted for 16% of all deaths of

children under five years old in 2015. The data set consists of 3470 annual personal

interviews conducted for the National Longitudinal Survey of Youth from 1979

through 1986 (NLSY, 1995). The response variable, yi, is the age, in months, at

which the infant was hospitalised for pneumonia, and 97.9% of this variable is right

censored.

The covariates considered in the modeling were age of the mother in years

(mthage), urban environment (urban = 1, rural = 0), region (1 = north-east,

2 = north central, 3 = south, 4 = west), poverty (1 = yes, 0 = no), whether

the infant had a normal birth weight as defined by weighting at least 5.5 pounds

(wmonth = 1 if yes and 0 otherwise), race (1 = white, 2 = black, 3 = other),

education (years of school of mother), month the child started to be on solid

food (sfmonth), average number of cigarettes smoked per week during pregnancy

(smoke = 0, 1 or 2) and alcohol used by mother during pregnancy (0, 1, 2),

where the higher the number the higher the frequency of alcohol consumption.

To capture the effect of housing crowding (since pneumonia is a communicable

disease), number of siblings of the child (nsibs) was considered and grouped in

three categories (0 for infants without siblings, 1 for infants with one to three

siblings, and 2 for more than three siblings.

To assess whether the censoring mechanism was informative, we employed

the AIC, BIC, and K-Fold Cross validation (ΥKCV) with K = 20 (decreasing or

increasing this value did not alter the conclusions); see Appendix B.1 for their

definitions. Since several combinations of covariates and link functions had to
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be considered, a number of models were tried out and the final models selected

using the above mentioned criteria. Table 4.3 shows the results for the chosen

models and supports the presence of informative censoring through the alcohol

and region variables (Model 3). Table 4.4 and Figure 4.4 present the results for

Model 3 and Model 1 (the latter neglects informative censoring).

Main findings: From a quick overall look at Table 4.4, the results exhibit a

smaller estimation uncertainty for the informative model. Analysing the table

in more detail, the coefficients of wmonth, nsibs1, nsibs2 are statistically

significant for both models. For instance, the expected hazard for infants with one

to three siblings is 2 times that for infants without siblings. Similarly, the expected

hazard is 7.3 times higher in infants with more than 3 siblings as compared to

infants with no siblings. The parameter of category alcohol1 of the alcohol

variable is statistically significant at the 10% level for the informative model and

is not significant for the non-informative model. The implication of this result is

that using the non-informative model the variable alcohol would most likely

be removed from the model, hence missing out on some potentially important

behavioral patterns. The survival and hazard curves are very similar across the two

models with the main difference that the informative approach yields considerably

less variable estimates (Figure 4.4). Our results are consistent with those of Lu

& Zhang (2012) who found that the censoring mechanism is informative in this

dataset, and that the informative model provides a better fit as compared to its

non informative counterpart.
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(a) Model 1 (NPMLE)
Linear Covariates Estimate Standard Error Z-value P-value

intercept -77.15 36.13 -2.135 0.033 >

alcohol1 0.324 0.309 1.048 0.294

alcohol2 -0.185 0.336 -0.551 0.582

nsibs1 0.697 0.261 2.670 0.008 >>

nsibs2 1.959 0.760 2.578 0.009 >>

region2 0.138 0.343 0.401 0.689

region3 -0.384 0.342 -1.121 0.262

region4 -0.490 0.437 -1.120 0.263

wmonth -0.809 0.294 -2.757 0.006 >>

Smooth Variables EDF Ref.DF Chi-square P-value
s(u) 7.747 8.619 101.71 <2e-16 >>>

s(mthage) 2.141 2.720 4.045 0.276

(b) Model 3 (IPMLE)
Linear Covariates Estimate Standard Error Z-value P-value

intercept -77.37 36.14 -2.141 0.032 >

alcohol1 0.077 0.046 1.665 0.096 �

alcohol2 -0.048 0.046 -0.046 0.295

nsibs1 0.685 0.259 2.641 0.008 >>

nsibs2 1.986 0.754 2.635 0.008 >

region2 0.035 0.056 0.626 0.531

region3 0.070 0.052 1.335 0.182

region4 0.041 0.059 0.688 0.492

wmonth -0.791 0.289 -2.739 0.006 >>

Smooth Variables EDF Ref.DF Chi-square P-value
s(u) 7.747 8.620 101.65 <2e-16 >>>

s(mthage) 2.119 2.692 3.741 0.31

Table 4.4: Estimation results of the non-informative and informative models
(Models 1 and 3, respectively, in Table 4.3) applied to pneumonia data. The
models were fitted using gamlss() in GJRM by employing the "PH-PH" link
functions combination. Furthermore, EDF and Ref.DF refer to the effective
degrees of freedom and reference degrees of freedom of the smooths. More
details can be found in Sections 4.3.2 and 4.3.4.
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Figure 4.4: Smooth function estimates and their corresponding 95% intervals for Model 1 (non-
informative model) and Model 3 (informative model) obtained by applying gamlss() in GJRM
to pneumonia data. The intervals have been obtained using the approach described in Section
4.3.4.

4.6 Concluding remarks

In this chapter, we have introduced generalized link-based additive survival models

with informative censoring and their potential was illustrated using simulated

and real data. The proofs of the
√
n-consistency and asymptotic normality of

the non-informative and informative estimators have been provided. Further, we

showed that the newly introduced informative estimator is more efficient than its

non-informative counterpart.

Important features of the modelling framework are that: the survival models

can account for informative censoring; the baseline functions are estimated non-

parametrically via means of monotonic P-splines, which allows one to obtain

coherent estimated survival functions; covariate effects are flexibly determined using

additive predictors; the optimization scheme allows for the reliable simultaneous

penalized estimation of all model’s parameters as well as for stable and fast

automatic multiple smoothing parameter selection; the models can be easily utilized
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using the freely available GJRM R package which allows for several modelling choice

as well as for transparent and reproducible research. Given that the assumption of

absence of informative censoring is often made for mathematical convenience as

well as lack of software, the proposed methodology is likely to appeal to researchers

in various fields wishing to estimate possibly more realistic survival models.

The next chapter will look into the feasibility of modelling jointly the event

and the censoring times, through a flexible bivariate copula model, where the aim

is to correct for dependent censoring.
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Chapter 5

Survival Link-Based Additive

Models with Dependent

Censoring

In this chapter, we propose a flexible regression survival model that accounts for

administrative and dependent right censoring, and provide preliminary arguments

towards model identification although this topic is very challenging and requires

more future work. The strength of the association between the event and censoring

times is modelled via a copula structure whose dependence parameter is estimated

from the data, and the margins are determined using link-based functions models.

Baseline functions are non-parametrically estimated using monotonic P-splines

and covariate effects are flexibly determined using additive predictors. Parameter

estimation is efficiently achieved within a penalised maximum likelihood framework,

and the consistency and asymptotic normality of the proposed estimator are also

derived under the assumption that the model is identified. The finite sample proper-

ties of the dependent estimator are investigated via a Monte Carlo simulation study,

and the proposal illustrated using prostate cancer data. The results highlight the
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effectiveness of the methodology proposed, and the relevant numerical computation

can be easily carried out using the function gjrm() in the R package GJRM (Marra

& Radice, 2020b). Although establishing formal identification will require more

future work, the practical performance of the proposed estimator suggests that the

approach can effectively and flexibly deal with dependent censoring.

5.1 Introduction

When time to event data are analysed, it is often assumed that the censoring

mechanism is independent, a strong assumption in many empirical situations.

Standard modelling techniques assume that the observed and unobserved parts

of the data are related via means of the random variables {y = min(T1, T2), δ =

I(T1 < T2)}, where I is the usual indicator function.

Most estimation methods assume that T1 and T2 are stochastically independent

(e.g., Cox, 1972; Ma et al., 2014; Scheike & Zhang, 2003; Wu &Witten, 2019; Younes

& Lachin, 1997). However, this assumption may be questioned. If individuals are

right censored because the study ends before they have experienced the event of

interest (a situation typically called administrative censoring) then it is reasonable

to make the assumption of independence. However, if individuals are lost to follow

up or withdraw from the study then the cause of this may be related to the event

time. For example, individuals may withdraw from a study because they are

showing side effects that need alternative treatments or because their condition

is worsening or may withdraw from a study because they are feeling healthy and

hence do not wish to continue with the treatment (e.g., Deresa & Van Keilegom,

2019; Moradian et al., 2019; Xu et al., 2018; Willems et al., 2018; Staplin et al.,

2015). Note that right censoring can also be generated by competing risks, that is,

the occurrence of another event which precludes the main event of interest from

occurring. Often, these mutually exclusive events are dependent. For instance,
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diabetes and hypertension are closely related as they share similar risk factors

such as vascular inflammation, arterial remodelling and obesity, among others

(Petrie et al., 2018). Ignoring the possible latent causes of censoring may lead to

misleading inference (e.g., Crowder, 1991; Siannis et al., 2005).

Let ST1,T2(t1, t2) be the joint survival function of (T1, T2) and fy,δ(y, ·) the sub-

density function of (y, δ). According to Tsiatis (1975), if T1 and T2 are dependent

then ST1,T2(t1, t2) is not identifiable from the sub-density function fy,δ(y, ·). That is,

given any joint survival function ST1,T2(t1, t2) with arbitrary dependence between

T1 and T2, there exists a different joint survival function S>
T1,T2(t1, t2), in which T1

and T2 are independent, that reproduces fy,δ(y, ·) precisely. Therefore, in order to

identify the joint distribution of T1 and T2, we need additional information about

their dependence. Several approaches have been proposed in the survival analysis

and competing risk literature to deal with dependent censoring (e.g., Crowder, 2012;

Emura & Chen, 2018). In a seminal work, Zheng & Klein (1995) proposed a copula

model to account for the dependence between T1 and T2, where the marginal

distribution of T1 is estimated non-parametrically. Their proposed estimator

is consistent and reduces to the Kaplan-Meier estimator when T1 and T2 are

independent. This approach was further investigated by Rivest &Wells (2001) in the

context of an Archimedean copula. Since this model did not incorporate covariates,

it was further extended (e.g., Braekers & Veraverbeke, 2005; Huang & Zhang,

2008; Chen, 2010; Sujica & Van Keilegom, 2018). Dependent censoring can also be

adjusted for via multiple imputation (Jackson et al., 2014), auxiliary information

(Scharfstein & Robins, 2002; Hsu et al., 2015) and the inverse probability censoring

weighted model (Robins & Finkelstein, 2000). Some scholars have exploited

parametric restrictions on the joint bivariate distribution of T1 and T2 (Basu &

Ghosh, 1978; Basu, 1988; Emoto & Matthews, 1990; Deresa & Van Keilegom,

2019). For example, Basu & Ghosh (1978), using a bivariate normal distribution



62 5.1. Introduction

for T1, T2, showed that the distribution of {y = min(T1, T2), δ = I(T1 < T2)}

identifies the bivariate joint distribution of the pair. This result was extended by

Deresa & Van Keilegom (2019) to include covariates. In particular, they do so by

employing a class of monotonic parametric transformations of the logarithm of the

survival and censoring times which are assumed to follow a multivariate normal

distribution. However, even when the functional form of the joint distribution of

T1 and T2 is known, the model’s parameters may or may not be identified by the

joint distribution of (Y, δ) (e.g., Basu, 1988; Rao, 1992).

Generally, there are not known global conditions for unique solutions of system

of non-linear equations, hence it is difficult to verify whether a nonlinear model is

globally identifiable (e.g., Koop et al., 2013; McCullagh, 2002; Koopmans & Reiersol,

1950). However, sufficient conditions for parametric and nonparametric local

identification are point-wise differentiability at ϑ0 (the true vector of parameters),

and a rank condition (e.g., Chen et al., 2014; Stanghellini et al., 2013). Stanghellini

et al. (2013) used rank conditions to show the local identifiability of discrete

graphical models with one latent variable. Chen et al. (2014) extended the rank

conditions to nonparametric and nonlinear structural models, and then used them

to identify, for example, non-separable quantile instrumental variable models

and semiparametric consumption-based asset pricing models. Furthermore, local

identification allows for the consistent estimation of the model’s parameters, and

is therefore sufficient for the parameter estimator to have the usual asymptotic

properties (Rao, 1992).

The remainder of this chapter is organized as follows. In Section 5.2, we will

propose a flexible regression survival model that accounts for administrative and

dependent right censoring, where the strength of the association between the event

and censoring times is modelled via a copula structure whose dependence parameter

is estimated from the data. Baseline functions are non-parametric and covariate



63 5.2. Model formulation

effects are flexibly estimated using the approach already discussed in Section 4.2.

Then, in Section 5.3, we provide some ideas to prove identification for the proposed

family of models. Parameter estimation as well as the consistency and asymptotic

normality of the proposed estimator are discussed in Sections 5.4 and 5.5. Finally,

in Sections 5.6 and 5.7, the finite sample properties of the dependent estimator

are investigated via a Monte Carlo simulation study, and the proposal illustrated

using prostate cancer data.

5.2 Model formulation

We consider the case of right censored data where the true event times are not always

recorded, in which case the censoring times are observed. For individual i, with

i = 1, 2, . . . , n where n is the sample size, let (T1i, T2i, T3i) denote a vector of event,

dependent censoring and administrative censoring times, respectively, and zi a

generic vector of individual characteristics. We observe yi = min {T1i, T2i, T3i} ∈ R+

and the corresponding censoring indicator functions δ1i = I {yi = T1i}, δ2i =

I {yi = T2i} and δ3i = (1− δ1i − δ2i).

Let T1i and T2i have conditional marginal survival functions generically expressed

as Sν(tνi|zνi;γν) = P (Tνi > tνi|zνi;γν) ∈ (0, 1), for ν = 1, 2, and conditional joint

survival function defined as S(t1i, t2i|zi;ϑ) = P (T1i > t1i, T2i > t2i|zi;ϑ). To link

T1i and T2i the following copula model is assumed

S(t1i, t2i|zi;ϑ) = C (S1(t1i|z1i;γ1), S2(t2i|z2i;γ2); θ) , (5.1)

where ϑ = (γ1,γ2, θ) ∈ Rp1 × Rp2 ×Θ, z1i and z2i are vectors of covariates (which

can be equal to zi but have not to) with associated coefficient vectors γ1 ∈ Rp1

and γ2 ∈ Rp2 of dimensions p1 and p2 and C : [0, 1]2 → [0, 1] is a uniquely defined

2-dimensional one-parameter copula function with coefficient θ ∈ Θ ⊆ R, capturing
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the conditional dependence of (T1i, T2i) (e.g., Nelsen, 2006; Marra & Radice, 2020a;

Sklar, 1973). Note that Θ depends on the choice of the copula structure; for

example, for the Gaussian copula we have that Θ = [−1, 1]. Table 5.1 displays the

copulae functions available in GJRM for practical modelling.

Copula C(p1, p2; θ) Range of θ Kendall’s τ

AMH ("AMH") p1p2
1−θ(1−p1)(1−p2) θ ∈ [−1, 1]

− 2
3θ2

{
θ + (1− θ)2

log(1− θ)}+ 1
Clayton ("C0")

(
p−θ1 + p−θ2 − 1

)−1/θ
θ ∈ (0,∞) θ

θ+2

FGM ("FGM") p1p2 {1 + θ(1− p1)(1− p2)} θ ∈ [−1, 1] 2
9θ

Frank ("F")
−θ−1 log {1 + (exp {−θp1} − 1)

(exp {−θp2} − 1)/(exp {−θ} − 1)}
θ ∈ R\ {0} 1− 4

θ
[1−D1(θ)]

Plackett ("PL")
(
Q−

√
R
)
/ {2(θ − 1)} θ ∈ (0,∞) −

Gaussian ("N") Φ2
(
Φ−1(p1),Φ−1(p2); θ

)
θ ∈ [−1, 1] 2

π
arcsin(θ)

Gumbel ("G0")
exp
[
−
{

(− log p1)θ

+(− log p2)θ
}1/θ

] θ ∈ [1,∞) 1− 1
θ

Joe ("J0")
1−

{
(1− p1)θ + (1− p2)θ

−(1− p1)θ(1− p2)θ
}1/θ θ ∈ (1,∞) 1 + 4

θ2D2(θ)

Student-t ("T") t2,ζ
(
t−1
ζ (p1), t−1

ζ (p2); ζ, θ
)

θ ∈ [−1, 1] 2
π

arcsin(θ)

Table 5.1: Definition of the copulae implemented in GJRM, with corresponding parameter range
of association parameter θ and relation between Kendall’s τ (which takes values in the customary
range [−1, 1]) and θ. Φ2(·, ·; θ) denotes the cumulative distribution function (cdf) of a standard
bivariate normal distribution with correlation coefficient θ, and Φ(·) the cdf of a univariate
standard normal distribution. t2,ζ(·, ·; ζ, θ) indicates the cdf of a standard bivariate Student-t
distribution with correlation θ and fixed ζ ∈ (2,∞) degrees of freedom, and tζ(·) denotes the
cdf of a univariate Student-t distribution with ζ degrees of freedom. D1(θ) = 1

θ

∫ θ
0

t
exp(t)−1dt

is the Debye function and D2(θ) =
∫ 1

0 t log(t)(1 − t)
2(1−θ)
θ dt. Quantities Q and R are given

by 1 + (θ − 1)(p1 + p2) and Q2 − 4θ(θ − 1)p1p2, respectively. The Kendall’s τ for "PL"
is computed numerically as no analytical expression is available. Counter-clockwise rotated
versions of copulae such as Clayton and Gumbel can be obtained using the following expressions:
C90 = p2 − C(1 − p1, p2), C180 = p1 + p2 − 1 + C(1 − p1, 1 − p2), C270 = p1 − C(p1, 1 − p2),
where the subscript indicates the degree of rotation and θ has been suppressed for simplicity
(e.g., Brechmann & Schepsmeier, 2013). Argument BivD of gjrm() in GJRM allows the user
to employ the desired copula function and can be set to any of the values within brackets next
to the copula names in the first column; for example, BivD = "J0". For Clayton, Gumbel
and Joe, the number after the capital letter indicates the degree of rotation required: the
possible values are 0, 90, 180 and 270.

The margins are specified using the link-based functions approach introduced
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in Section 4.1. That is,

Sν(tνi|zνi;γν) = Gν (ξνi(tνi, zνi;γν)) , (5.2)

where ξνi(tνi, zνi;γν) in R, represents the non-informative additive predictors for

T1i and T2i, whose set up was discussed in Section 4.2.2. To complete the model,

we recall the final expression for the additive predictor

ξνi = γν0 + Qν0(yi)> Γν0γ̃ν0 +
Kν∑
kν=1

Qνkν (xνkν i)>γνkν . (5.3)

In the next section, we will provide some identification arguments for the family

of models proposed in this section.
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5.3 Some identification arguments

The proposed model is defined by equations (5.1), (5.2) and (5.3), which are

collected below

S(t1, t2|z1, z2;ϑ) = C [S1(t1|z1;γ1), S2(t2|z2;γ2); θ] ,

Sν(tν |zν ;γν) = Gν [ξν(tν , zν ;γν)] ,

ξν(tν , zν ;γν) = γν0 + Qν(tν)> Γνγ̃ν +
Kν∑
kν=1

Qνkν (zνkν )>γνkν .

(5.4)

Assume that the pair (T1, T2) is generated by model (5.4) with parameter vector

ϑ0 = (γ0
1 ,γ

0
2 , θ

0) ∈ Rp1 × Rp2 ×Θ and that we only observe (y, δ1, δ2, z1, z2). On

the basis of the joint distribution of the latter vector, because in the current setting

it is not possible to observe simultaneously T1 and T2, identification of ϑ0 has to

be proved: two different sets of parameters imply different joint distributions of

(y, δ1, δ2, z1, z2) in an open neighbourhood of ϑ0.

Let us denote a particular realization of (y, δ1, δ2, z1, z2) as (t, l1, l2, z1, z2), and

also assume that the joint density function of vector (y, δ1, δ2, z1, z2) exists and

that, for l1, l2 = 0, 1, this is defined as

fy,δ1,δ2,z1,z2(t, l1, l2, z1, z2;ϑ) = fy,δ1,δ2,|z1,z2(t, l1, l2|z1, z2;ϑ)fz1,z2(z1, z2),

where fy,δ1,δ2,|z1,z2(t, l1, l2|z1, z2;ϑ) is the sub-density function of (y, δ1, δ2) con-

ditional on z1 and z2 for a given ϑ, which contains all the available sample

information about ϑ. In addition, let us define f1,0(ϑ), f0,1(ϑ) and f0,0(ϑ) as the

shorthand notations for fy,δ1,δ2|z1,z2(t, 1, 0|z1, z2;ϑ), fy,δ1,δ2|z1,z2(t, 0, 1|z1, z2;ϑ) and

fy,δ1,δ2|z1,z2(t, 0, 0|z1, z2;ϑ). If y = T1 then we have that

f1,0(ϑ) = lim
%→0

%−1P (t < T1 ≤ t+ %, T2 > T1, T3 > T1|z1 = z1, z2 = z2;ϑ).



67 5.3. Some identification arguments

If y = T2 then

f0,1(ϑ) = lim
%→0

%−1P (t < T2 ≤ t+ %, T1 > T2, T3 > T2|z1 = z1, z2 = z2;ϑ).

Finally, if y = T3 then

f0,0(ϑ) = lim
%→0

%−1P (t < T3 ≤ t+ %, T1 > T3, T2 > T3|z1 = z1, z2 = z2;ϑ).

In addition, we assume that

(B1) (T1, T2) and T3 are independent given z1 and z2.

(B2) The censoring by T3 is not informative for (T1, T2) given z1 and z2. This

implies that the distribution of T3 does not depend on ϑ = (γ1,γ2, θ) (e.g.,

Dettoni et al., 2020).

Tsiatis (1975) showed that the sub-densities can be obtained directly from the

joint survival function of the latent survival times. In the following, we provide

details on the calculation of fy,δ1,δ2|z1,z2(t, 1, 0|z1, z2;ϑ), fy,δ1,δ2|z1,z2(t, 0, 1|z1, z2;ϑ)

and fy,δ1,δ2|z1,z2(t, 0, 0|z1, z2;ϑ).

Theorem 4. Assume that (y, δ1, δ2, z1, z2) is observed, where y = min {T1, T2, T3},

δ1 = I {y = T1} and δ2 = I {y = T2}. If (B1) holds then the sub-densities can be

expressed as

f1,0(ϑ) =
[
−∂C {G1[ξ1(t, z1;γ1)],G2[ξ2(t, z2;γ2)]; θ}

∂G1[ξ1(t, z1;γ1)] G ′1[ξ1(t, z1;γ1)]∂ξ1(t, z1;γ1)
∂t

]

× ST3(t),

f0,1(ϑ) =
[
−∂C {G1[ξ1(t, z1;γ1)],G2[ξ2(t, z2;γ2)]; θ}

∂G2[ξ2(t, z2;γ2)] G ′2[ξ2(t, z2;γ2)]∂ξ2(t, z2;γ2)
∂t

]

× ST3(t),

f0,0(ϑ) =C {G1[ξ1(t, z1;γ1)],G2[ξ2(t, z2;γ2)]; θ} × fT3(t)
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Identification of the proposed model can be proved using different approaches

and assumptions. In particular, if the dependence parameter θ is fixed, then the

margins Gν [ξν(tν , zν ;γν)], and therefore γν in model (5.3) could in principle be

shown to be identified in the complete parameter space following, for instance,

Zheng & Klein (1995), Chen (2010) and Xu et al. (2018), although we have not

pursued this idea and hence it would have to be verified. However, identification

for the case where θ is estimated from the data is considerably more involved. For

example, Deresa & Van Keilegom (2019), following the results of Nádas (1971) and

Basu & Ghosh (1978), proposed a model in which the association parameter is

identified. In their approach, a class of monotonic parametric transformations of

the logarithm of the survival and censoring times are employed and the margins

assumed to follow a multivariate normal distribution. Since it is in general difficult

or not feasible to verify whether a nonlinear model is globally identifiable, one

can focus on a neighbourhood of ϑ and hence focus on local identification whose

definition is given below.

Definition. Let the complete parameter space be Sϑ = {(γ1,γ2, θ) : γ1 ∈

Rp1 , γ2 ∈ Rp2 , θ ∈ Θ} and ϑ = (γ1,γ2, θ) ∈ Sϑ be a p × 1 vector of parame-

ters, with p = p1 +p2 +1. Suppose that inference about ϑ is made on the basis of n

observations of (y, δ1, δ2, z1, z2) with sub-density function fy,δ1,δ2|z1,z2(·, ·, ·|z1, z2;ϑ).

Let Oϑ0 denotes an open neighbourhood of ϑ0. A point ϑ0 ∈ Sϑ is said to be

locally identified if for l1, l2 = 0, 1 and for almost every (t, z1, z2), the equality

fy,δ1,δ2|z1,z2(·, l1, l2|z1, z2;ϑ0) = fy,δ1,δ2|z1,z2(·, l1, l2|z1, z2;ϑ) implies ϑ0 = ϑ, for any

ϑ in Oϑ0 .

Theorem 5. Assume that, for l1, l2 = 0, 1, and for almost every (t, z1, z2),

fy,δ1,δ2|z1,z2(
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·, l1, l2|z1, z2;ϑ) is differentiable at ϑ0 and the rank of ∂fy,δ1,δ2|z1,z2(·, l1, l2|z1, z2;ϑ)
∂ϑ

at ϑ0 is equal to p, then ϑ0 is locally identified.

The proof of Theorems 4 and 5 are given in Appendix C.1.

Turning now to our model, since for l1, l2 = 0, 1 and for almost every (t, z1, z2),

fy,δ1,δ2|z1,z2(t, l1, l2|z1, z2;ϑ) is differentiable at ϑ0, its derivative with respect to ϑ

evaluated at ϑ0, can be written as

∂fy,δ1,δ2|z1,z2(t, l1, l2|z1, z2;ϑ)
∂ϑ

∣∣∣∣∣
ϑ0

=



∂fy,δ1,δ2|z1,z2(t, l1, l2|z1, z2;ϑ)
∂γ1

∂fy,δ1,δ2|z1,z2(t, l1, l2|z1, z2;ϑ)
∂γ2

∂fy,δ1,δ2|z1,z2(t, l1, l2|z1, z2;ϑ)
∂θ


ϑ0

.

Let C, Gν and ξν be the shorthand notations of C (G1(ξ1(t, z1;γ1)),G2(ξ2(t, z2;γ2)); θ),

Gν [ξν(t, zν ;γν)] and ξν(t, zν ;γν) respectively. Then, as shown in Appendix C.2,
∂f1,0(ϑ)
∂ϑ

∣∣∣∣∣
ϑ0
, ∂f0,1(ϑ)

∂ϑ

∣∣∣∣∣
ϑ0

and ∂f0,0(ϑ)
∂ϑ

∣∣∣∣∣
ϑ0

can be written as

∂f1,0(ϑ)
∂ϑ

∣∣∣∣∣
ϑ0

= −
[
∆1,∆1Q410(t)T + Ω1Q4

′

10 (t)T,∆1Q11(z11)T, . . . ,∆1Q1K1(z1K1)T,

Υ1,Υ1Q420(t)T,Υ1Q21(z21)T, . . . ,Υ1Q2K2(z2K2)T,Ψ1
∂2C

∂G1∂θ

]T

ϑ0
,

∂f0,1(ϑ)
∂ϑ

∣∣∣∣∣
ϑ0

= −
[
Υ2,Υ2Q410(t)T,Υ2Q11(z11)T, . . . ,Υ2Q1K1(z1K1)T,∆2,∆2Q420(t)T+

Ω2Q4
′

20 (t)T,∆2Q21(z21)T, . . . ,∆2Q2K2(z2K2)T,Ψ2
∂2C

∂G2∂θ

]T

ϑ0
,

∂f0,0(ϑ)
∂ϑ

∣∣∣∣∣
ϑ0

=
[
Ω1,Ω1Q410(t)T,Ω1Q11(z11)T, . . . ,Ω1Q1K1(z1K1)T,Ω2,Ω2Q420(t)T,

Ω2Q21(z21)T, . . . ,Ω2Q2K2(z2K2)T,
∂C

∂θ

]T

ϑ0
,
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where Ψν = ∂Gν
∂ξν

∂ξν
∂t

, ∆ν =
[
Ψν

∂2C

∂G2
ν

∂Gν
∂ξν

+ ∂C

∂Gν
∂G2

ν

∂ξ2
ν

∂ξν
∂t

]
, Ων =

[
∂C

∂Gν
∂Gν
∂ξν

]
and

Υν =
[
Ψν

∂2C

∂Gν∂Gω
∂Gω
∂ξω

]
, and Q4ν0(t), Q4

′

ν0 (t) and Qνkν (zνkν ) can be defined as

Q4ν0(t) =



∑Jν0
jν0=1Qν0jν0(t)[∑Jν0

jν0=2Qν0jν0(t)
]

exp (γν02)[∑Jν0
jν0=3Qν0jν0(t)

]
exp (γν03)

...

Qν0Jν0(t) exp (γν0Jν0)


, Qνkν (zνkν ) =



Qνkν1(zνkν )

Qνkν2(zνkν )

Qνkν3(zνkν )
...

QνkνJνkν (zνkν )


,

Q4
′

ν0 (t) =



∑Jν0
jν0=1Q′

ν0jν0(t)[∑Jν0
jν0=2Q′

ν0jν0(t)
]

exp (γν02)[∑Jν0
jν0=3Q′

ν0jν0(t)
]

exp (γν03)
...

Q′
ν0Jν0(t) exp (γν0Jν0)


.

for ν = 1, 2, ω = 1, 2 and ν 6= ω.

According to Theorem (5), in order to locally identify model (5.3), we should

prove that ∂f1,0(ϑ)
∂ϑ

∣∣∣∣∣
ϑ0
6= 0, f0,1(ϑ)

∂ϑ

∣∣∣∣∣
ϑ0
6= 0 and f0,0(ϑ)

∂ϑ

∣∣∣∣∣
ϑ0
6= 0 for almost every

(t, z1, z2), and that rank
[
∂fy,δ1,δ2|z1,z2(t, l1, l2|z1, z2;ϑ)

∂ϑ

∣∣∣∣∣
ϑ0

]
= p, for l1, l2 = 0, 1. This

can be achieved by proving that the following statements are true.
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Case 1: (l1, l2) = (1, 0) or (l1, l2) = (0, 1). For all ϕj ∈ R and j = 0, 1, 2, . . . , κ,

if
{

∆νϕ0 +
[

∆ν

Jν0∑
jν0=1

Qν0jν0(y) + Ων
Jν0∑
jν0=1

Q′
ν0jν0

(y)
]
ϕ1

+
[

∆ν

Jν0∑
jν0=2

Qν0jν0(y) + Ων
Jν0∑
jν0=2

Q′
ν0jν0

(y)
]

× exp (γν02)ϕ2 + · · ·+
[

∆νQν0Jν0(y) + ΩνQ′
ν0Jν0

(y)
]

exp (γν0Jν0)ϕι1 +
[

∆νQν11(zν1)
]
ϕι1+1

+ · · ·+
[

∆νQνKνJνKν (zνKν )
]
ϕι2 + Υνϕι2+1 +

[
Υν

Jω0∑
jω0=1

Qω0jω0(y)
]
ϕι2+2 +

[
Υν

Jω0∑
jω0=2

Qω0jω0(y)
]

× exp (γω02)ϕι2+3 + · · ·+
[

ΥνQω0Jω0(y)
]

exp (γω0Jω0)ϕι3 +
[

ΥνQω11(zω1)
]
ϕι3+1 + · · ·+[

ΥνQωKωJωKω (zωKω )
]
ϕκ−1 +

[
Ψν

∂2C

∂Gν∂θ

]
ϕκ = 0

}
, then ϕ0 = 0, ϕ1 = 0, ϕ2 = 0, . . . , ϕκ = 0.

Case 2: (l1, l2) = (0, 0).

if
{

Ω1ϕ0 +
[

Ω1

J10∑
j10=1

Q10j10(t)
]
ϕ1 +

[
Ω1

J10∑
j10=2

Q10j10(t)
]
× exp (γ102)ϕ2 + · · ·+

[
Ω1Q10J10(t)

]

× exp (γ10J10)ϕι1 +
[

Ω1Q111(z11)
]
ϕι1+1 + · · ·+

[
Ω1Q1K1J1K1

(z1K1)
]
ϕι2 + Ω2ϕι2+1+[

Ω2

J20∑
j20=1

Q20j20(t)
]
× ϕι2+2 +

[
Ω2

J20∑
j20=2

Q20j20(t)
]

exp (γ202)ϕι2+3 + · · ·+
[

Ω2Q20J20(t)
]

× exp (γ20J20)ϕι3 +
[

Ω2Q211(z21)
]
ϕι3+1 + · · ·+

[
Ω2Q2K2J2K2

(z2K2)
]
ϕκ−1 +

[
∂C

∂θ

]
ϕκ = 0

}
,

then ϕ0 = 0, ϕ1 = 0, ϕ2 = 0, . . . , ϕκ = 0.

This is a preliminary result and future research will focus on establishing conditions

that are not too restrictive for the links and copula functions implemented in this

work in order to prove these statements. If this does not prove successful then a

possible approach would be to work with a simpler version of the proposed class of

models that would allow to define realistic conditions more easily.

Remark 3. Local identification at one point in the parameter space does not ensure

that the model is locally identified everywhere in Sϑ. Also, local identifiability

everywhere in Sϑ is a necessary but not a sufficient condition for global identification.

It is worth noting that local identification still allows for consistent estimation of



72 5.4. Penalized estimation approach for the dependent censoring model

ϑ and it is sufficient to derive the asymptotic properties of the estimator ϑ̂; if the

sample size is sufficiently large then it is possible to limit the parameter space to a

neighbourhood of ϑ0 and rely on local identification (e.g., Hsiao, 1989).

5.4 Penalized estimation approach for the de-

pendent censoring model

Assuming that the model is identified, model fitting is undertaken via maximum

likelihood estimation. As pointed out in Section 5.3, since fz1,z2(z1, z2) does not

involve the model’s parameters, the likelihood function can be formulated using the

sub-density function fy,δ1,δ2,|z1,z2(t, l1, l2|z1, z2;ϑ). Let us assume that the observed

data consist of n i.i.d. replications {(yi, δ1i, δ2i, z1i, z2i)}ni=1 of (y, δ1, δ2, z1, z2).

This allows us to write the likelihood function for ϑ = (γ1,γ2, θ) as

L(ϑ) =
n∏
i=1

fy,δ1,δ2|z1,z2(yi, δ1i, δ2i|z1i, z2i;ϑ). (5.5)

Using the results in Theorem 4 and since (B2) implies that fT3(t) and ST3(t) can

be discarded from the likelihood, we can write

`(ϑ) =
n∑
i=1

δ1i log
−∂C {G1[ξ1(yi, z1i;γ1)],G2[ξ2(yi, z2i;γ2)]; θ}

∂G1[ξ1(yi, z1i;γ1)]

× G ′1[ξ1(yi, z1i;γ1)]∂ξ1(yi, z1i;γ1)
∂yi


+

n∑
i=1

δ2i log
−∂C {G1[ξ1(yi, z1i;γ1)],G2[ξ2(yi, z2i;γ2)]; θ}

∂G2[ξ2(yi, z2i;γ2)]

× G ′2[ξ2(yi, z2i;γ2)]∂ξ2(yi, z2i;γ2)
∂yi


+

n∑
i=1

δ3i log [C {G1[ξ1(yi, z1i;γ1)],G2[ξ2(yi, z2i;γ2)]; θ}] .

(5.6)
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The proposed model allows for a high degree of flexibility in modelling data.

Therefore, in order to prevent over-fitting, we maximize

`p(ϑ) = `(ϑ)− 1
2ϑ

TΛϑ, (5.7)

where `p is the penalized log-likelihood, Λ = diag(D1,D2, 1), and D1 and D2 are

overall penalties which contain λ1 and λ2 defined as λν = (λν1, . . . , λνKν )T for

ν = 1, 2. The smoothing parameter vectors can be collected in the overall vector

λ = (λT
1 ,λ

T
2 )T.

Given the flexibility and complexities of the proposed model, estimation of all

model’s parameters is carried out using the algorithm introduced in section 4.3.2,

by simply replacing ϕ by ϑ. Since this optimization scheme is based on first and

second order analytical derivatives, these have been tediously derived and reported

in Appendix C.2.

5.5 Theoretical properties of ϑ̂

In this section, we derive the
√
n consistency and asymptotic normality of the

dependent censoring estimator, assuming that the model is identified. As in Section

4.3.3, we use the fixed-knot asymptotic framework since it is closer to practical

statistical modelling. The construction of confidence intervals and p-values is

undertaken using the approach introduced in section 4.3.4.

Theorem 6. Under assumptions (C1)-(C8) in Appendix C.3, the parameter

estimator ϑ̂ = argmax
ϑ∈Sϑ

`p(ϑ) exists, is
√
n-consistent and

√
n(ϑ̂− ϑ0) d→ N

{
0, [I(ϑ0)]−1

}
,

where I(ϑ0) = E[−∇ϑϑ`(w;ϑ0)] with w containing the response and covariate
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vectors.

The proof of this result is given in Appendix C.3.

To construct the confidence intervals and p-values, we have used the approach

already introduced in Section 4.3.4, whose results straightforwardly extend to the

current context, by substituting ϕ by ϑ.

In the next chapter, we will investigate the finite sample properties of the

dependent estimator through a Monte Carlo simulation study. The proposed

estimator is also illustrated using prostate cancer data.

5.6 Simulation study

This section provides evidence on the empirical effectiveness of the proposed

methodology in recovering true linear effects, non linear effects, association param-

eters and baseline functions under dependent censoring for the Data Generating

Processes (DGPs) detailed in Table 5.2. The performance of the dependent cen-

soring penalized maximum log-likelihood estimator (DCPMLE) is compared to

that of its independent counterpart (ICPMLE; see Appendix C.4 for details on the

independent estimator).

For all the DGPs considered in the study, event times, T1i, were generated from

a proportional hazard model, while censored times, T2i, were generated from a

proportional odds model. These, defined on the survival function scale, are given

by

log [− log {S10(t1i)}] + γ01 + γ11z1i + s11(z2i),

log
[
{1− S20(t2i)}

S20(t2i)

]
+ γ02 + γ12z1i + s12(z2i),

(5.8)

where S10(t1i) = 0.80 exp (−0.4t2.51i ) + 0.20 exp (−0.1t1.01i ) and S20(t2i) =
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0.99 exp (−0.05t2.32i ) + 0.01 exp (−0.4t1.12i ) (e.g., Crowther & Lambert, 2013). Co-

variate z1i was generated using a binomial distribution and z2i using a uniform

distribution. The administrative censoring variable, T3, was generated from a

uniform distribution on [3, 8], independent of (T1, T2). The models were fitted

considering two levels of association. Details on the DGPs (in terms of copula

structure, parametric coefficients, smooth functions and association parameters)

and the proportion of observations for T1, T2 and T3 are provided in Table 5.2.

Sample sizes were set to 500 and 2000, and the number of replicates to 1000.

The models were fitted using gjrm() in GJRM by employing the proportional

hazard link ("PH") for the event times and the proportional odd link ("PO") for

the censoring times (see Appendix C.5 for some software details). The smooth

components of z1 and z2 were represented using penalized low rank thin plate

splines with second order penalty and 10 bases. Here, it is possible to employ

different spline definitions and related penalties (e.g., cubic regression splines and

P-splines). As explained, e.g., in Wood (2017), for uni-dimensional smooths of

continuous covariates, the specific choice of spline definition will not have an

impact on the estimated curves as long as smoothing parameter estimation is

reliably achieved. As for the number of basis functions, the chosen value of 10 is

arbitrary and based on the fact that it generally offers enough modelling flexibility

in applications. However, a sensitivity analysis using more bases was attempted

and there was no tangible change in the results apart from the computing time

which increased. The smooths of times were represented using monotonic penalized

B-splines with penalty defined in Section 4.2.2 and 10 bases. For each replicate,

curve estimates were constructed using 200 equally spaced fixed values in the (0, 7)

range for the baseline functions and (0, 1) otherwise.

(i) Parametric effects: Regarding the estimates for the parametric effects,

Figure 5.1, Figure C.14 (Appendix C.6), and Table 5.3 show that overall the
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mean estimates for the DCPMLE are very close to the respective true values

and improve as the sample size increases, and that the variability of the

estimates decreases as the sample size grows large. On the contrary, when

the ICPMLE is considered, there is a not negligible bias and this does not

disappear as the sample size grows large. This bias is even higher when τ is

equal to 0.7 (DGPs 1, 2 and 3). Furthermore, the RMSE of the ICPMLE

is considerably higher than the RMSE of the ICPMLE for all DGPs and

sample sizes examined in the simulation study as shown in Table 5.3.

(ii) Smooth effects: As for the smooth effect of the non-linear covariates, Figure

5.2 (third column), Figures C.15 to C.19 (third column) in Appendix C.6,

and Table 5.3 show that overall the true functions are recovered well by the

proposed estimation methods and that the results improve in terms of bias

and efficiency as the sample size increases. Furthermore, the RMSE of the

ICPMLE is higher than the RMSE of the ICPMLE for all DGPs and sample

sizes examined in the simulation study as shown in Table 5.3.

(iii) Survival and hazard functions: Figure 5.2 (first and third rows), Figures

C.15 to C.19 (first and third rows) and Table C.1 in Appendix C.6 show

that overall the true survival (first column) and hazard functions (second

column) for the DCPMLE are recovered well, and the results improve in

terms of bias and efficiency as the sample size increases. However, when the

ICPMLE is considered, Figure 5.2 (second and fourth rows), Figures C.15 to

C.19 (second and fourth rows) and Table C.1 in Appendix C.6, there is a not

negligible bias for the survival and hazard functions and the situation does

not improve as the sample size grows large. In addition, the DCPMLE is

more efficient than the ICPMLE for almost all the DGPs and samples sizes

examined in the simulation study.
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(iv) Kendall’s τ : Regarding the estimates for the Kendall’s τ , Figure 5.3, and

Figure C.20 and Table C.2 in Appendix C.6 show that overall the mean

estimates for τ in the DCPMLE are very close to the respective true values

and improve as the sample size increases, and that the variability of the

estimates decreases as the sample size grows large. The results are even

better in terms of bias and efficiency when τ is equal to 0.7 since it is easier

to detect the dependence between the margins.

−
3
.5

−
3
.0

−
2
.5

−
2
.0

−
1
.5

−
1
.0

γ̂DGP1DCPMLE
γ̂DGP1ICPMLE

γ̂DGP2DCPMLE
γ̂DGP2ICPMLE

γ̂DGP3DCPMLE
γ̂DGP3ICPMLE

Figure 5.1: Parametric effects (γ11) when DCPMLE (τ = 0.7) and ICPMLE are fitted by applying
the gjrm() function in GJRM to dependent censoring survival data simulated according to DGP1
(Clayton copula), DGP2 (Frank copula) and DGP3 (Gaussian copula) defined in Table 5.2. Circles
indicate mean estimates while bars represent the estimates’ ranges resulting from 5% and 95%
quantiles. True values are indicated by black solid horizontal lines. Black circles and vertical
bars refer to the results obtained for n = 500, whereas those for n = 2000 are given in blue

Computing times for the proposed approach were on average 10 seconds for

n = 2000 and around 5 seconds for n = 500. Finally, we would like to point

out that in this thesis we have reported the simulation results for a sub-group of

copulae; in our preliminary experiments we considered all the copulae listed in

Table 5.1 and the results were in line with those discussed in this section. These

results can be found in Appendix C.6 (DGPs 7 to 14). In particular, DGP13 and

DGP14 consider lower censoring rates of approximately 30% and 29% respectively.
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Figure 5.2: Estimates of the survival functions (first column, S10), hazard functions (second
column, h10) and smooth effects (third column, s11) for the DCPMLE (rows 1 and 3) and
ICPMLE (rows 2 and 4) obtained by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGP1 (Table 5.2). The results in the first and
second rows refer to n = 500, whereas that in the third and fourth rows to n = 2000. True
functions are represented by black solid lines, mean estimates by dashed lines and pointwise
ranges resulting from 5% and 95% quantiles by shaded areas.
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Figure 5.3: Kendall Tau coefficient (τ = 0.7) estimates obtained when DCPMLE is fitted by
applying the gjrm() function in GJRM to dependent censoring survival data simulated according
to DGP1 (Clayton copula), DGP2 (Frank copula) and DGP3 (Gaussian copula) defined in Table
5.2. Circles indicate mean estimates while bars represent the estimates’ ranges resulting from 5%
and 95% quantiles. True values are indicated by black solid horizontal lines. Black circles and
vertical bars refer to the results obtained for n = 500, whereas those for n = 2000 are given in
blue.
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DCPML: Parametric Effects (γ11) ICPMLE: Parametric Effects (γ11)
Bias RMSE Bias RMSE

DGP n=500 n=2000 n=500 n=2000 n=500 n=2000 n=500 n=2000

1 0.118 0.056 0.195 0.174 -0.774 -0.732 0.815 0.751

2 0.103 0.054 0.280 0.131 -0.949 -0.932 0.982 0.940

3 0.031 0.029 0.147 0.075 -0.319 -0.297 0.350 0.306

4 0.066 0.033 0.252 0.124 -0.310 -0.294 0.367 0.312

5 0.078 0.047 0.269 0.133 -0.418 -0.403 0.463 0.415

6 0.047 0.045 0.168 0.093 -0.189 -0.173 0.236 0.187

DCPML: Smooth Effects (s11) ICPMLE: Smooth Effects (s11)
Bias RMSE Bias RMSE

DGP n=500 n=2000 n=500 n=2000 n=500 n=2000 n=500 n=2000

1 0.029 0.017 0.149 0.076 0.052 0.043 0.158 0.090

2 0.032 0.017 0.147 0.075 0.053 0.051 0.159 0.094

3 0.031 0.018 0.132 0.069 0.026 0.032 0.139 0.080

4 0.034 0.017 0.147 0.075 0.048 0.035 0.154 0.084

5 0.033 0.020 0.147 0.077 0.043 0.036 0.151 0.085

6 0.034 0.020 0.137 0.071 0.026 0.021 0.140 0.074

Table 5.3: Bias and root mean squared error (RMSE) for parametric and smooth effects when
DCPMLE and ICPMLE are fitted by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to the DGPs 1 to 6 defined in Table 5.2. Bias
and RMSE for the smooth terms are calculated, respectively, as n−1

s

∑ns
i=1 |¯̂si − si| and

n−1
s

∑ns
i=1

√
n−1
rep
∑nrep
rep=1 (ŝrep,i − si)2, where ¯̂si = n−1

rep

∑nrep
rep=1 ŝrep,i, ns is the number of

equally spaced fixed values in the (0, 8) or (0, 1) range, and nrep is the number of simulation
replicates. In this case, ns = 200 and nrep = 1000. The bias for the smooth terms is based
on absolute differences in order to avoid compensating effects when taking the sum.
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5.7 Empirical illustration

The modelling framework is illustrated using data obtained from a randomized

clinical trial conducted to compare different levels of an active treatment for

prostate cancer (Byar & Green, 1980). These data have been analysed extensively

(e.g., Escarela & Carriere, 2003; Kleinbaum & Klein, 2010; Deresa & Van Keilegom,

2019). In total, 506 individuals with prostate cancer were randomized to receive

either a placebo or one of three dose levels of diethylstilbestrol (DES). The primary

event of interest, yi, is the time at which the patient died of prostate cancer.

Because of potentially fatal side effects of DES (e.g., cardiovascular-related or other

types of diseases), the analysis of the treatment must consider not only the death

time from prostate cancer but also that from other diseases.

Following Kleinbaum & Klein (2010), the clinically meaningful covariates were:

binary treatment (rx = 0 if the subject received a placebo or 0.2 mg of DES, and

1 if received 1.0 or 5.0 mg of DES); performance status (pf = 0 if normal, 1 if

there was limitation of activity); history of cardiovascular disease (hx = 0 for no

and 1 for yes); standardized weight (wt); hemoglobin in µg/100 ml (hg); age of

the patient at diagnosis (age); size of primary lesion estimated in cm2 from rectal

examination (sz); combined index of tumour stage and histological grade (sg).

After dropping all the patients with missing information, the dataset consists of

483 observations. In this sample, 125 patients died of prostate cancer during the

study period, 219 died of non-prostate cancer diseases (cardiovascular-related or

other diseases), while 139 were alive at the end of the study. Therefore, some

subjects were censored due to a competing risk (non-cancer death) and others

because they would be alive at the end of the study (administrative censoring).

Prostate cancer death and non-cancer death are assumed to be dependent, and

administrative censoring as being independent of everything else. Recall that the

aim is to assess the effect of DES on prostate cancer death while accounting for
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individual characteristics and dependence censoring.

Deresa & Van Keilegom (2019) analysed the same data using a fully parametric

regression approach based on the bivariate Gaussian distribution and parametric

monotone increasing transformations of the logarithm of the times variables. To

compare the magnitudes of the correlation parameters obtained employing the

technique of these authors and the method proposed in this paper, we fitted a

Gaussian copula model where the covariate effects were modelled parametrically

and the baselines using the monotonic spline approach detailed in this paper

with the same settings employed for the simulation study. Smoothing for the

baselines was implemented on the log-time scale which usually yields very smooth

fitted functions and hence it helps, for example, to reduce the chance of potential

artifacts in the estimated hazard functions (e.g., Royston & Parmar, 2002). Since

several combinations of link functions had to be considered, a number of models

were tried out and the final model selected using the AIC and BIC. Table C.6 in

Appendix C.7 shows the results for the fitted models and supports the presence of

dependent censoring. The chosen model (No1) exhibits an estimated correlation of

0.47 which is virtually identical to the correlation of 0.46 obtained by Deresa &

Van Keilegom (2019), and they are both statistically significant. Moreover, the

parameters for rx, hg, sz and sg are statistically significant in the two models.

Next, we model the covariate effects flexibly. We followed a similar process as

before (see Table C.7 in Appendix C.7). Table 5.4 and Figure 5.4 show the results

for the selected dependent censoring model (Model 7). For comparison purposes

we also fitted the model under the assumption of independence. Table 5.5 and

Figure 5.5 show these results (Model 9).

Main findings: From Tables 5.4 and 5.5, the results show a considerably

smaller estimation uncertainty for the dependent model (for example, the standard

error of rx for the independent censoring model is approximately 2.3 times higher
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Model 7 (DCPMLE)

Parametric Effects Estimate Standard Error Z-value P-value
intercept -8.352 0.614 -13.60 0.000 >>>

rx -0.224 0.085 -2.653 0.008 >>

hx 0.394 0.118 3.329 0.001 >>>

pf 0.399 0.161 2.484 0.013 >

sz 0.278 0.065 4.248 0.000 >>>

sg 0.217 0.066 3.298 0.001 >>>

Smooth Effects EDF Ref.DF Chi-square P-value
s(log(u)) 1.000 1.000 217.1 0.000 >>>

s(hg) 7.790 8.447 36.24 0.000 >>>

s(age) 5.173 6.231 19.27 0.005 >>

Kendall tau Estimate Confidence Interval
τ 0.841 (0.7,0.923)

Table 5.4: Estimation results of the dependent censoring model (Model 7 in
Table C.7, Appendix C.7) applied to prostate cancer data. The models were
fitted using the functions gamlss() and gjrm()in GJRM by employing the
"PH-PO" link functions combination. Furthermore, EDF and Ref.DF refer to the
effective degrees of freedom and reference degrees of freedom of the smooths.
More details can be found in Sections 4.3.2 and 4.3.4.

Model 9 (ICPMLE)
Parametric Effects Estimate Standard Error Z-value P-value

intercept -9.133 0.618 -14.79 0.000 >>>

rx -0.686 0.193 -3.557 0.000 >>>

hx 0.063 0.204 0.311 0.756

pf 0.422 0.267 1.581 0.114

sz 0.509 0.082 6.188 0.000 >>>

sg 0.617 0.099 6.227 0.000 >>>

Smooth Effects EDF Ref.DF Chi-square P-value
s(log(u)) 1.000 1.000 177.3 0.000 >>>

s(hg) 3.506 4.411 17.95 0.002 >>

s(age) 4.579 5.628 13.09 0.030 >

Table 5.5: Estimation results of the independent censoring model (Model 9 in
Table C.7, Appendix C.7) applied to prostate cancer data. The models were
fitted using the functions gamlss() and gjrm()in GJRM by employing the
"PH-PO" link functions combination. Furthermore, EDF and Ref.DF refer
to the effective degrees of freedom and reference degrees of freedom of the
smooths. More details can be found in Sections 4.3.2 and 4.3.4.
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than that of its dependent counterpart). Analysing the tables in more detail,

the coefficient of rx is statistically significant for both models. For instance, the

expected hazard for the treatment group is approximately 0.8 times the hazard

for the placebo group. Furthermore, the parameters rx, hx, pf, sz and sg

are statistically significant for the dependent censoring model. However, only

the parameters rx, sz and sg are statistically significant for the independent

censoring model. Tables 5.4 and 5.5 also show that s(u), s(hg) and s(age) are

statistically significant for both models, whereas Figures 5.4 and 5.5 display their

estimated functional forms along with the survival and hazard curves. The plots

show, for instance, that, after a certain point, the hazard of dying from prostate

cancer for the dependent censoring model decreases when the levels of hemoglobin

are higher.

The estimate for the association parameter is τ̂ = 0.841 and is statistically

significant. This is a strong association that will induce bias in the parameter

estimates if ignored. In fact, Figures 5.4 and 5.5 show that the survival and hazard

curves of the dependent censoring model have a substantially better fit than those

of its independent censoring counterpart.
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Figure 5.4: Smooth function estimates and their corresponding 95% intervals for the dependent
censoring model (Model 7 in in Table C.7, Appendix C.7) obtained by applying gjrm() in
GJRM to prostate cancer data. The intervals have been obtained using the approach described in
Section 4.3.4
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Figure 5.5: Smooth function estimates and their corresponding 95% intervals for the independent
censoring model (Model 9 in Table C.7, Appendix C.7) obtained by applying gjrm() in GJRM to
prostate cancer data. The intervals have been obtained using the approach described in Section
4.3.4
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5.8 Concluding remarks

In this chapter, we have introduced copula link-based additive models for dependent

censoring and their potential, illustrated using simulated and real data. Our ex-

tended simulation study suggests that the model is identified. The performance of

the dependent censoring penalized maximum log-likelihood estimator (DCPMLE)

was also compared to that of its independent counterpart which leads to substantial

bias in the estimates since it neglects the dependent censoring mechanism. Fur-

ther, we have also discussed the
√
n-consistency and asymptotic normality of the

dependent censoring estimator, under the assumption that the model is identified.

Important features of the modelling framework are that: the strength of the

association between the event and censoring times is modelled using a copula

structure and estimated in a way that is flexible and tractable at the same time;

the baseline functions are estimated non-parametrically via means of monotonic P-

splines, which allows one to obtain coherent estimated survival functions; covariate

effects are flexibly determined using additive predictors; the optimization scheme

allows for the reliable simultaneous penalized estimation of all model’s parameters

as well as for stable and fast automatic multiple smoothing parameter selection;

the models can be easily utilised using the freely available GJRM R package which

allows for several modelling choices.
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Chapter 6

Final Remarks

This thesis has been mainly motivated by the idea of relaxing assumptions on the

censoring mechanism in survival analysis. In particular, we aimed to broaden the

current applications by introducing two modelling frameworks that extend the class

of Survival Generalized Additive Models by allowing for informative and dependent

censoring. This work had two objectives: (i) to develop the theory needed for

estimating flexible and tractable informative and dependent censoring models; and

(ii) to implement the developed modelling frameworks in the R package GJRM,

hence allowing for transparent and reproducible research.

In Chapter 2, we made a review of the essential concepts in survival analysis,

where the most important representations of the response variable: the survival

function, the hazard function and the cumulative hazard function, were analysed.

Then, the crucial problem of censoring and their causes was discussed, along

with a general summary of univariate survival models, where the focus was on

splines-based methods. In the last part of this chapter, the independent and

non-informative censoring assumptions were discussed.

In Chapter 3, we presented a summary of models that allow for different

assumptions about the nature of the covariate effects on the survival time, and

where the baseline hazard and survival functions can be modelled in a flexible
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form. The general ideas of these models are employed to build survival link-based

additive models, which were discussed in the last part of the chapter.

Chapter 4, introduced a flexible survival modelling approach to account for

the information provided by the censoring times where the survival functions for

the censoring and event times were determined using link-based functions models.

Baseline functions were modelled non-parametrically by monotonic P-splines, and

covariate effects were flexibly determined using additive predictors. In this chapter,

a penalized likelihood method to estimate the informative model was proposed,

where model fitting was based on an optimization scheme that allows for the reliable

simultaneous penalized estimation of all model’s parameters as well as for stable and

fast automatic multiple smoothing parameter selection. Then, the
√
n consistency

and asymptotic normality of the non-informative and informative estimators were

derived, and shed light on the efficiency gains produced by the newly introduced

informative estimator when compared to its non-informative counterpart. The

construction of confidence intervals and p-values were also discussed, and the

performance of the proposed methodology was evaluated using a Monte Carlo

simulation study and an empirical application on data about infants hospitalised for

pneumonia. Both, the simulation study and the empirical application highlighted

the merits of the proposal. In addition, we explained how to fit the model proposed

by using the function gamlss() in the R package GJRM.

In Chapter 5, we proposed a flexible regression survival model that accounts

for administrative and dependent right censoring, and provided some identification

arguments. The strength of the association between the event and censoring times

is modelled via a copula structure whose dependence parameter is estimated from

the data. As before (Section 4.2.2), baseline functions are non-parametrically

estimated using monotonic P-splines and covariate effects are flexibly determined

using additive predictors. Parameter estimation as well as the consistency and
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asymptotic normality of the estimator were also presented. Finally, the finite

sample properties of the dependent estimator were investigated via a Monte Carlo

simulation study, and the proposal illustrated using prostate cancer data. These

results highlighted the effectiveness of the methodology proposed, and the relevant

numerical computation were easily carried out using the function gjrm() in the

R package GJRM (Marra & Radice, 2020b).

Although in this thesis we have only modelled right censored responses, it

is plausible to consider outcome types other than right censored. Therefore, an

interesting extension will be the incorporation of left and interval censored responses

in the models introduced in this thesis. These extensions will considerably increase

the scope and applicability of the modelling approach proposed. Future research

will also focus on extending the proposed informative model to include time varying

covariates, and on the construction of efficient schemes for selecting automatically

the set of informative covariates. All of these extensions will require the calculation

of the log-likelihood functions of the informative and dependent censoring models

and their respective score and Hessian components.

Finally, in order to locally identify the dependent censoring model introduced

in Chapter 5, we will work on establishing not too restrictive identifying conditions

for the links and copula functions implemented in this thesis.
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Appendix A

Supplements to Chapter 2

A.1 Discrete T

Survival data can also be measured as an interval. This could indicate, for example,

that a transition occurred in a particular period of time, but the exact time within

the period is not given (Kalbfleisch & Prentice, 2002). In particular, let T be a

discrete random variable taking values t1 < t2 < . . . . Then, the probability mass

function can be defined, for all i = 1, 2, ..., as fT (tj) = P (T = tj). This allows to

express the survival function as ST (t) =
∑
j|tj>t

fT (tj). In addition, for all j = 1, 2, ...,

the hazard function can be written as

hT (tj) = P (T = tj|T ≥ tj) = fT (tj)
ST (t−j ) , (A.1)

where ST (a−) = limt→a− ST (tj), since formally ST (t) equals P (T > t) rather than

P (T ≥ t). Equation (A.1) can be interpreted as the probability of T at tj, given

survival to time tj . Furthermore, the cumulative hazard function can be defined as

HT (t) =
∑
j|tj≤t

hT (tj).

On the other hand, the survival function can also be obtained from the hazard
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function through ST (t) = P (T > t) =
∏
j|tj≤t

[1 − hT (tj)]. This allows to represent

fT (tj) as fT (tj) = hT (tj)ST (t−j ), where ST (t−j ) =
i−1∏
j=1

[1− hT (tj)].

A.2 Discrete and continuous T

So far, we have introduced the crucial functions to represent the response variable,

T , assuming that this can be either continuous or discrete. When the distribution

of T have both discrete and continuous components, the survival function can

be represented using the product-integral function (Gill & Johansen, 1990). This

function, which is useful, for example, to deal with mixed distributions, is discussed

briefly in this section.

In particular, the general idea is that the hazard function can be built to include

the continuous and discrete hazard functions hT (t) and hT (tj), respectively. This

allows to write the cumulative hazard function as

H DC
T (t) =

∫ t

0
hT (u)du+

∑
j|tj≤t

hT (tj). (A.2)

H DC
T (t) is a right-continuous non-decreasing function, but it is not necessarily

differentiable, since by definition, the response variable is either continuous or

discrete. This also implies that the cumulative distribution function, FT (t), is not

necessarily a differentiable function, and therefore fT (t) = dFT (t)
dt

can not be valid.

Finally, the survival function that considers continuous and discrete outcomes

can be written as

SDCT (t) = exp
[
−
∫ t

0
hT (u)du

] ∏
j|tj≤t

[1− hT (tj)]. (A.3)

SDCT (t) is reduced to exp
[
−
∫ t

0 hT (u)du
]
in the continuous case and

∏
j|tj≤t

[1− hT (tj)]
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in the discrete case. For a proof, and a more theoretical explanation, see Gill &

Johansen (1990).
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Appendix B

Supplements to Chapter 4

B.1 Model selection

In practical situations, it is important to detect if∑K1
k1=1 s1k1(x1k1i) and

∑K2
k2=1 s2k2(x2k2i)

have components in common. This is basically a model selection problem and, to

this end, we propose using the AIC, BIC and K-Fold Cross validation criterion(
ΥKCV

)
. The AIC and BIC can be defined as

AIC = −2`(θ̂) + 2 EDF,

BIC = −2`(θ̂) + log(n) EDF,

where the log-likelihood is evaluated at the penalized parameter estimates and

EDF = tr(B̂) with B̂ defined in Section 4.3.2.

As for ΥKCV (Stone, 1974), we first randomly divide the set of observations in

K groups (folds) of approximately equal size. Each fold is then in turn treated as

a validation set, and the IPMLE for a given model is used to estimate the vector

of parameters α using the remaining K−1 folds. The so obtained estimates are
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denoted as α̂\k0 and α̂\kν , and the log-likelihood function is calculated as

`k(α̂\k) =
log G1

[
ξ1i(α̂\k0 , α̂

\k
1 )
]

+ δ1i log
−G ′1

[
ξ1i(α̂\k0 , α̂

\k
1 )
]

G1
[
ξ1i(α̂\k0 , α̂

\k
1 )
] ∂ξ1i(α̂\k0 , α̂

\k
1 )

∂yi


+
log G2

[
ξ2i(α̂\k0 , α̂

\k
2 )
]

+ δ2i log
−G ′2

[
ξ2i(α̂\k0 , α̂

\k
2 )
]

G2
[
ξ2i(α̂\k0 , α̂

\k
2 )
] ∂ξ2i(α̂\k0 , α̂

\k
2 )

∂yi

 ,

and ΥKCV given by

ΥKCV =
K∑
k=1

`k(α̂\k). (B.1)

We choose the model which maximizes (B.1). The same procedure is used when

ΥKCV is calculated for the non-informative model. In such a case we have

`k(γ̂\k) =
log G1

[
ξ1i(γ̂\k1 )

]
+ δ1i log

−G ′1
[
ξ1i(γ̂\k1 )

]
G1
[
ξ1i(γ̂\k1 )

] ∂ξ1i(γ̂\k1 )
∂yi


+
log G2

[
ξ2i(γ̂\k2 )

]
+ δ2i log

−G ′2
[
ξ2i(γ̂\k2 )

]
G2
[
ξ2i(γ̂\k2 )

] ∂ξ2i(γ̂\k2 )
∂yi

 ,

and therefore ΥKCV = ∑K
k=1 `k(γ̂\k).

B.2 Informative and non-informative Scores

If censoring is informative then γ1 and γ2 would have some components in common.

Because the first Q components of γ1 are the same as the first Q components of

γ2, we have

Q>νiγν = Q0>
i α0 + Q1>

νi αν .
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Therefore, defining α = (α>0 ,α>1 ,α>2 )>, the informative penalized log-likelihood

function can be written as

`p(α) = `(α)− 1
2α
>Λα, (B.2)

where `(α) is defined as

`(α) =
n∑
i=1

{
log G1 [ξ1i(α0,α1)] + δ1i log

[
−G

′
1 [ξ1i(α0,α1)]
G1 [ξ1i(α0,α1)]

∂ξ1i(α0,α1)
∂yi

]}

+
n∑
i=1

{
log G2 [ξ2i(α0,α2)] + δ2i log

[
−G

′
2 [ξ2i(α0,α2)]
G2 [ξ2i(α0,α2)]

∂ξ2i(α0,α2)
∂yi

]}
.

The gradient of equation (B.2) can be calculated as

∇α`p(α) = ∇α`(α)−αΛ,

where ∇α`(α) =
(
∇α0`(α)>,∇α1`(α)>,∇α2`(α)>

)>
. The expressions ∇α0`(α),

∇α1`(α) and ∇α2`(α) can be obtained as ∂`(α)
∂α0

=
[
∂`(α)
∂α011

· · · ∂`(α)
∂α0QJQ

]>
, ∂`(α)
∂α1

=[
∂`(α)
∂α111

· · · ∂`(α)
∂α1Q1J1Q1

]>
and ∂`(α)

∂α2
=
[
∂`(α)
∂α21

· · · ∂`(α)
∂α2Q2J2Q2

]>
. In particular, the

scalar derivatives of ∇α0`(α), ∇α1`(α) and ∇α2`(α) can be calculated as

∂`(α)
∂α0j

=
n∑
i=1

{
G′1
G1

∂ξ1i

∂α0j

}
+

n∑
i=1

δ1i

{[
−G
′
1
G1

∂ξ1i

∂yi

]−1 [
−G
′′
1
G1

∂ξ1i

∂α0j

∂ξ1i

∂yi
+ G

′2
1
G2

1

∂ξ1i

∂α0j

∂ξ1i

∂yi
− G

′
1
G1

∂2ξ1i

∂yi∂α0j

]}

+
n∑
i=1

{
G′2
G2

∂ξ2i

∂α0j

}
+

n∑
i=1

δ2i

{[
−G
′
2
G2

∂ξ2i

∂yi

]−1 [
−G
′′
2
G2

∂ξ2i

∂α0j

∂ξ2i

∂yi
+ G

′2
2
G2

2

∂ξ2i

∂α0j

∂ξ2i

∂yi
− G

′
2
G2

∂2ξ2i

∂yi∂α0j

]}

=
n∑
i=1

{
G′1
G1

∂ξ1i

∂α0j
+ δ1i

[
G′′1
G′1

∂ξ1i

∂α0j
− G

′
1
G1

∂ξ1i

∂α0j
+ ∂2ξ1i

∂yi∂α0j

(
∂ξ1i

∂yi

)−1
]}

+
n∑
i=1

{
G′2
G2

∂ξ2i

∂α0j
+ δ2i

[
G′′2
G′2

∂ξ2i

∂α0j
− G

′
2
G2

∂ξ2i

∂α0j
+ ∂2ξ2i

∂yi∂α0j

(
∂ξ2i

∂yi

)−1
]}

=
n∑
i=1

{
∂ξ1i

∂α0j

[
G′1
G1

+ δ1i

(
G′′1
G′1
− G

′
1
G1

)]
+ ∂ξ2i

∂α0j

[
G′2
G2

+ δ2i

(
G′′2
G′2
− G

′
2
G2

)]}

=
n∑
i=1

{
∂ξ1i

∂α0j
∆1 + ∂ξ2i

∂α0j
∆2

}
,

(B.3)
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∂`(α)
∂α1j

=
n∑
i=1

{
G′1
G1

∂ξ1i

∂α1j

}
+

n∑
i=1

δ1i

{[
−G
′
1
G1

∂ξ1i

∂yi

]−1 [
−G
′′
1
G1

∂ξ1i

∂α1j

∂ξ1i

∂yi
+ G

′2
1
G2

1

∂ξ1i

∂α1j

∂ξ1i

∂yi
− G

′
1
G1

∂2ξ1i

∂yi∂α1j

]}

=
n∑
i=1

{
G′1
G1

∂ξ1i

∂α1j
+ δ1i

[
G′′1
G′1

∂ξ1i

∂α1j
− G

′
1
G1

∂ξ1i

∂α1j
+ ∂2ξ1i

∂yi∂α1j

(
∂ξ1i

∂yi

)−1
]}

=
n∑
i=1

{
∂ξ1i

∂α1j

[
G′1
G1

+ δ1i

(
G′′1
G′1
− G

′
1
G1

)]
+ ∂2ξ1i

∂yi∂α1j
δ1i

(
∂ξ1i

∂yi

)−1
}

=
n∑
i=1

{
∂ξ1i

∂α1j
∆1 + ∂2ξ1i

∂yi∂α1j
Ω1

}
,

(B.4)

∂`(α)
∂α2j

=
n∑
i=1

{
G′2
G2

∂ξ2i

∂α2j

}
+

n∑
i=1

δ2i

{[
−G
′
2
G2

∂ξ2i

∂yi

]−1 [
−G
′′
2
G2

∂ξ2i

∂α2j

∂ξ2i

∂yi
+ G

′2
2
G2

2

∂ξ2i

∂α2j

∂ξ2i

∂yi
− G

′
2
G2

∂2ξ2i

∂yi∂α2j

]}

=
n∑
i=1

{
G′2
G2

∂ξ2i

∂α2j
+ δ2i

[
G′′2
G′2

∂ξ2i

∂α2j
− G

′
2
G2

∂ξ2i

∂α2j
+ ∂2ξ2i

∂yi∂α2j

(
∂ξ2i

∂yi

)−1
]}

=
n∑
i=1

{
∂ξ2i

∂α2j

[
G′2
G2

+ δ2i

(
G′′2
G′2
− G

′
2
G2

)]
+ ∂2ξ2i

∂yi∂α2j
δ2i

(
∂ξ2i

∂yi

)−1
}

=
n∑
i=1

{
∂ξ2i

∂α2j
∆2 + ∂2ξ2i

∂yi∂α2j
Ω2

}
,

(B.5)

where ξνi = ξνi(α0,αν), ∆ν =
[
G ′ν
Gν

+ δνi

(
G ′′ν
G ′ν
− G

′
ν

Gν

)]
and Ων = δνi

(
∂ξνi
∂yi

)−1

. The

last terms of equations (B.3), (B.4) and (B.5) allow to express ∇α0`(α), ∇α1`(α)

and ∇α2`(α) as follow

∇α0`(α) =
n∑
i=1

[
∆1

∂ξ1i

∂α0
+ ∆2

∂ξ2i

∂α0

]
,

∇α1`(α) =
n∑
i=1

[
∆1

∂ξ1i

∂α1
+ Ω1

∂2ξ1i

∂yi∂α1

]
,

∇α2`(α) =
n∑
i=1

[
∆2

∂ξ2i

∂α2
+ Ω2

∂2ξ2i

∂yi∂α2

]
,

where, for all i = 1, ..., n and ν = 1, 2, ∂ξνi
∂α0

=
[
∂ξνi
∂α011

· · · ∂ξνi
∂α0QJQ

]>
, ∂ξνi
∂αν

=[
∂ξνi
∂αν11

· · · ∂ξνi
∂ανQνJνQν

]>
and ∂2ξνi

∂yi∂αν
=
[

∂2ξνi
∂yi∂αν11

· · · ∂2ξνi
∂yi∂ανQνJνQν

]>
. These ex-
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pressions can be calculated using the design vectors defined in Section 2.2 as

∂ξνi
∂α0

=
(
Q1(x0

1i)>, . . . ,QQ(x0
Qi)>

)>
= Q0

i ,

∂ξνi
∂yi

= lim
ε→0

{
Qν0(yi + ε)−Qν0(yi − ε)

2ε

}>
Γν0α̃ν0 = Q′ν0(yi)>Γν0α̃ν0,

∂ξνi
∂ανqν

=


Qι4

ν0 (yi) if ανqν = αν0

Qνqν (x1
νqν i) otherwise,

∂2ξνi
∂yi∂ανqν

=


Qι4′

ν0 (yi) if ανqν = αν0

0 otherwise,

where Q′ν0(yi) can be conveniently obtained using a finite-difference method.

Moreover, we define the design vectors Qι4
ν0 (yi) and Qι4′

ν0 (yi) as

Qι4
ν0 (yi) =



∑Jν0
jν0=1Qν0jν0(yi)[∑Jν0

jν0=2Qν0jν0(yi)
]

exp (αν02)[∑Jν0
jν0=3Qν0jν0(yi)

]
exp (αν03)]

...

Qν0Jν0(yi) exp (αν0Jν0)


Qι4′

ν0 (yi) =



∑Jν0
jν0=1Q′

ν0jν0(yi)[∑Jν0
jν0=2Q′

ν0jν0(yi)
]

exp (αν02)[∑Jν0
jν0=3Q′

ν0jν0(yi)
]

exp (αν03)]
...

Q′
ν0Jν0(yi) exp (αν0Jν0)


.

On the other hand, when censoring is non-informative the penalized log-

likelihood function is

`p(γ) = `(γ)− 1
2γ
>Λγ, (B.6)
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where `(γ) can be written as

`(γ) =
n∑
i=1

{
log G1 [ξ1i(γ1)] + δ1i log

{
−G

′
1 [ξ1i(γ1)]
G1 [ξ1i(γ1)]

∂ξ1i(γ1)
∂yi

}}

+
n∑
i=1

{
log G2 [ξ2i(γ2)] + δ2i log

{
−G

′
2 [ξ2i(γ2)]
G2 [ξ2i(γ2)]

∂ξ2i(γ2)
∂yi

}}
.

The gradient of (B.6) can be calculated as

∇γ`p(γ) = ∇γ`(γ)− γΛ,

where ∇γ`(γ) =
(
∇γ1`(γ)>, ∇γ2`(γ)>

)>
. In addition, ∇γ1`(γ) and ∇γ2`(γ) can

be calculated as ∂`(γ)
∂γ1

=
[
∂`(γ)
∂γ111

· · · ∂`(γ)
∂γ1K1J1K1

]>
and ∂`(γ)

∂γ2
=
[
∂`(γ)
∂γ211

· · · ∂`(γ)
∂γ2K2J2K2

]>
.

Furthermore, the scalar derivatives of ∇γ1`(γ) and ∇γ2`(γ) can be obtained as

∂`(γ)
∂γ1j

=
n∑
i=1

{
G′1
G1

∂ξ1i

∂γ1j

}
+

n∑
i=1

δ1i

{[
−G
′
1
G1

∂ξ1i

∂yi

]−1 [
−G
′′
1
G1

∂ξ1i

∂γ1j

∂ξ1i

∂yi
+ G

′2
1
G2

1

∂ξ1i

∂γ1j

∂ξ1i

∂yi
− G

′
1
G1

∂2ξ1i

∂yi∂γ1j

]}

=
n∑
i=1

{
G′1
G1

∂ξ1i

∂γ1j
+ δ1i

[
G′′1
G′1

∂ξ1i

∂γ1j
− G

′
1
G1

∂ξ1i

∂γ1j
+ ∂2ξ1i

∂yi∂γ1j

(
∂ξ1i

∂yi

)−1
]}

=
n∑
i=1

{
∂ξ1i

∂γ1j

[
G′1
G1

+ δ1i

(
G′′1
G′1
− G

′
1
G1

)]
+ ∂2ξ1i

∂yi∂γ1j
δ1i

(
∂ξ1i

∂yi

)−1
}

=
n∑
i=1

{
∂ξ1i

∂γ1j
∆1 + ∂2ξ1i

∂yi∂γ1j
Ω1

}
,

(B.7)

∂`(γ)
∂γ2j

=
n∑
i=1

{
G′2
G2

∂ξ2i

∂γ2j

}
+

n∑
i=1

δ2i

{[
−G
′
2
G2

∂ξ2i

∂yi

]−1 [
−G
′′
2
G2

∂ξ2i

∂γ2j

∂ξ2i

∂yi
+ G

′2
2
G2

2

∂ξ2i

∂γ2j

∂ξ2i

∂yi
− G

′
2
G2

∂2ξ2i

∂yi∂γ2j

]}

=
n∑
i=1

{
G′2
G2

∂ξ2i

∂γ2j
+ δ2i

[
G′′2
G′2

∂ξ2i

∂γ2j
− G

′
2
G2

∂ξ2i

∂γ2j
+ ∂2ξ2i

∂yi∂γ2j

(
∂ξ2i

∂yi

)−1
]}

=
n∑
i=1

{
∂ξ2i

∂γ2j

[
G′2
G2

+ δ2i

(
G′′2
G′2
− G

′
2
G2

)]
+ ∂2ξ2i

∂yi∂γ2j
δ2i

(
∂ξ2i

∂yi

)−1
}

=
n∑
i=1

{
∂ξ2i

∂γ2j
∆2 + ∂2ξ2i

∂yi∂γ2j
Ω2

}
,

(B.8)

where ξνi = ξνi(γν). The last terms of equations (B.7) and (B.8) allow ∇γ1`(γ)
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and ∇γ2`(γ) to be expressed as

∇γ1`(γ) =
n∑
i=1

[
∆1

∂ξ1i

∂γ1
+ Ω1

∂2ξ1i

∂yi∂γ1

]

∇γ2`(γ) =
n∑
i=1

[
∆2

∂ξ2i

∂γ2
+ Ω2

∂2ξ2i

∂yi∂γ2

]
,

where ∂ξνi
∂γυ

=
[
∂ξνi
∂γν11

· · · ∂ξνi
∂γνKνJνKν

]>
and ∂2ξνi

∂yi∂γν
=
[

∂2ξνi
∂yi∂γν11

· · · ∂2ξνi
∂yi∂γνKνJνKν

]>
for all i = 1, ..., n and ν = 1, 2. Furthermore, ∂ξνi(γν)

∂yi
, can be generically calculated

using

∂ξνi(γν)
∂yi

= lim
ε→0

{
Qν0(yi + ε)−Qν0(yi − ε)

2ε

}>
Γν0γ̂ν0 = Q′ν0(yi)>Γν0γ̂ν0,

where Q′ν0(yi) can also be calculated using a finite-difference method. The design

vectors for ∂ξνi(γν)
∂γν

and ∂2ξνi(γν)
∂yi∂γν

can be obtained using

∂ξνi(γν)
∂γνkν

=


Q4ν0(yi) if γνkν = γν0

Qνkν (xνkν i) otherwise,

∂2ξνi(γν)
∂yi∂γνkν

=


Q4

′

ν0 (yi) if γνkν = γν0

0 otherwise.

Finally, we have that

Q4ν0(yi) =



∑Jν0
jν0=1Qν0jν0(yi)[∑Jν0

jν0=2Qν0jν0(yi)
]

exp (γν02)[∑Jν0
jν0=3Qν0jν0(yi)

]
exp (γν03)]

...

Qν0Jν0(yi) exp (γν0Jν0)


Q4

′

ν0 (yi) =



∑Jν0
jν0=1Q′

ν0jν0(yi)[∑Jν0
jν0=2Q′

ν0jν0(yi)
]

exp (γν02)[∑Jν0
jν0=3Q′

ν0jν0(yi)
]

exp (γν03)]
...

Q′
ν0Jν0(yi) exp (γν0Jν0)


.
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B.3 Informative and non-informative Hessians

The informative penalized Hessian can be obtained as

∇αα`p(α) = ∇αα`(α)−Λ,

where ∇αα`(α) is

∇αα`(α) =


∇α0α0`(α) ∇α0α1`(α) ∇α0α2`(α)

∇α1α0`(α) ∇α1α1`(α) ∇α1α2`(α)

∇α2α0`(α) ∇α2α1`(α) ∇α2α2`(α)

 . (B.9)

In addition, ∇αυακ`(α) = ∂2`(α)
∂αυ∂α>κ

, for all υ = 0, 1, 2 and κ = 0, 1, 2. This

expression is calculated using

∇αυακ`(α) =



∂2`(α)
∂αυ11∂ακ11

. . .
∂2`(α)

∂αυ11∂ακQκJκQκ

. . .
. . . . . .

∂2`(α)
∂αυQυJυQυ∂ακ11

. . .
∂2`(α)

∂αυQυJυQυ∂ακQκJκQκ


.

Since α1 appears only in ξ1i(α0,α1) and α2 only in ξ2i(α0,α2), then ∇α1α2`(α) =

∇α2α1`(α) = 0. Hence, (B.9) can be written as

∇αα`(α) =


∇α0α0`(α) ∇α0α1`(α) ∇α0α2`(α)

∇α1α0`(α) ∇α1α1`(α) 0

∇α2α0`(α) 0 ∇α2α2`(α)

 . (B.10)
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In equation (B.10), the scalar derivatives of ∇α0α0`(α), ∇α1α0`(α), ∇α0α2`(α),

∇α1α1`(α) and ∇α2α2`(α), can be calculated as

∂2`(α)
∂α0j∂α0k

=
n∑
i=1

{
G′′1
G1

∂ξ1i

∂α0j

∂ξ1i

∂α0k
− G

′2
1
G2

1

∂ξ1i

∂α0j

∂ξ1i

∂α0k
+ G

′′′
1
G1

δ1i
∂ξ1i

∂α0j

∂ξ1i

∂α0k
− G

′′2
1
G′21

δ1i
∂ξ1i

∂α0j

∂ξ1i

∂α0k

− G
′′
1
G1
δ1i

∂ξ1i

∂α0j

∂ξ1i

∂α0k
+ G

′2
1
G2

1
δ1i

∂ξ1i

∂α0j

∂ξ1i

∂α0k
+ G

′
1
G1

∂2ξ1i

∂α0j∂α0k
+ G

′′
1
G′1
δ1i

∂2ξ1i

∂α0j∂α0k
− G

′
1
G1
δ1i

∂2ξ1i

∂α0j∂α0k

}

+
n∑
i=1

{
G′′2
G2

∂ξ2i

∂α0j

∂ξ2i

∂α0k
− G

′2
2
G2

2

∂ξ2i

∂α0j

∂ξ2i

∂α0k
+ G

′′′
2
G2

δ2i
∂ξ2i

∂α0j

∂ξ2i

∂α0k
− G

′′2
2
G′22

δ2i
∂ξ2i

∂α0j

∂ξ2i

∂α0k

− G
′′
2
G2
δ2i

∂ξ2i

∂α0j

∂ξ2i

∂α0k
+ G

′2
2
G2

2
δ2i

∂ξ2i

∂α0j

∂ξ2i

∂α0k
+ G

′
2
G2

∂2ξ2i

∂α0j∂α0k
+ G

′′
2
G′2
δ2i

∂2ξ2i

∂α0j∂α0k
− G

′
2
G2
δ2i

∂2ξ2i

∂α0j∂α0k

}

=
n∑
i=1

{
∂ξ1i

∂α0j

∂ξ1i

∂α0k

[(
G′′1
G1
− G

′2
1
G2

1

)
+ δ1i

(
G′′′1
G1
− G

′′2
1
G′21
− G

′′
1
G1

+ G
′2
1
G2

1

)]

+ ∂ξ2i

∂α0j

∂ξ2i

∂α0k

[(
G′′2
G2
− G

′2
2
G2

2

)
+ δ2i

(
G′′′2
G2
− G

′′2
2
G′22
− G

′′
2
G2

+ G
′2
2
G2

2

)]}

=
n∑
i=1

{
∂ξ1i

∂α0j

∂ξ1i

∂α0k
Φ1 + ∂ξ2i

∂α0j

∂ξ2i

∂α0k
Φ2

}
,

(B.11)

∂2`(α)
∂α0j∂α1k

=
n∑
i=1

{
G′′1
G1

∂ξ1i

∂α0j

∂ξ1i

∂α1k
− G

′2
1
G2

1

∂ξ1i

∂α0j

∂ξ1i

∂α1k
+ G

′′′
1
G1

δ1i
∂ξ1i

∂α0j

∂ξ1i

∂α1k
− G

′′2
1
G′21

δ1i
∂ξ1i

∂α0j

∂ξ1i

∂α1k

− G
′′
1
G1
δ1i

∂ξ1i

∂α0j

∂ξ1i

∂α1k
+ G

′2
1
G2

1
δ1i

∂ξ1i

∂α0j

∂ξ1i

∂α1k
+ G

′
1
G1

∂2ξ1i

∂α0j∂α1k
+ G

′′
1
G′1
δ1i

∂2ξ1i

∂α0j∂α1k
− G

′
1
G1
δ1i

∂2ξ1i

∂α0j∂α1k

}

=
n∑
i=1

{
∂ξ1i

∂α0j

∂ξ1i

∂α1k

[(
G′′1
G1
− G

′2
1
G2

1

)
+ δ1i

(
G′′′1
G1
− G

′′2
1
G′21
− G

′′
1
G1

+ G
′2
1
G2

1

)]}

=
n∑
i=1

{
∂ξ1i

∂α0j

∂ξ1i

∂α1k
Φ1

}
,

(B.12)

∂2`(α)
∂α0j∂α2k

=
n∑
i=1

{
G′′2
G2

∂ξ2i

∂α0j

∂ξ2i

∂α2k
− G

′2
2
G2

2

∂ξ2i

∂α0j

∂ξ2i

∂α2k
+ G

′′′
2
G2

δ2i
∂ξ2i

∂α0j

∂ξ2i

∂α2k
− G

′′2
2
G′22

δ2i
∂ξ2i

∂α0j

∂ξ2i

∂α2k

− G
′′
2
G2
δ2i

∂ξ2i

∂α0j

∂ξ2i

∂α2k
+ G

′2
2
G2

2
δ2i

∂ξ2i

∂α0j

∂ξ2i

∂α2k
+ G

′
2
G2

∂2ξ2i

∂α0j∂α2k
+ G

′′
2
G′2
δ2i

∂2ξ2i

∂α0j∂α2k
− G

′
2
G2
δ2i

∂2ξ2i

∂α0j∂α2k

}

=
n∑
i=1

{
∂ξ2i

∂α0j

∂ξ2i

∂α2k

[(
G′′2
G2
− G

′2
2
G2

2

)
+ δ2i

(
G′′′2
G2
− G

′′2
2
G′22
− G

′′
2
G2

+ G
′2
2
G2

2

)]}

=
n∑
i=1

{
∂ξ2i

∂α0j

∂ξ2i

∂α2k
Φ2

}
,

(B.13)
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∂2`(α)
∂α1j∂α1k

=
n∑
i=1

{
G′′1
G1

∂ξ1i

∂α1j

∂ξ1i

∂α1k
− G

′2
1
G2

1

∂ξ1i

∂α1j

∂ξ1i

∂α1k
+ G

′′′
1
G1

δ1i
∂ξ1i

∂α1j

∂ξ1i

∂α1k
− G

′′2
1
G′21

δ1i
∂ξ1i

∂α1j

∂ξ1i

∂α1k

− G
′′
1
G1
δ1i

∂ξ1i

∂α1j

∂ξ1i

∂α1k
+ G

′2
1
G2

1
δ1i

∂ξ1i

∂α1j

∂ξ1i

∂α1k
+ G

′
1
G1

∂2ξ1i

∂α1j∂α1k
+ G

′′
1
G′1
δ1i

∂2ξ1i

∂α1j∂α1k
− G

′
1
G1
δ1i

∂2ξ1i

∂α1j∂α1k

+ ∂3ξ1i

∂yi∂α1j∂α1k
δ1i

(
∂ξ1i

∂yi

)−1
− ∂2ξ1i

∂yi∂α1k

∂2ξ1i

∂yi∂α1j
δ1i

(
∂ξ1i

∂yi

)−2
}

=
n∑
i=1

{
∂ξ1i

∂α1j

∂ξ1i

∂α1k

[(
G′′1
G1
− G

′2
1
G2

1

)
+ δ1i

(
G′′′1
G1
− G

′′2
1
G′21
− G

′′
1
G1

+ G
′2
1
G2

1

)]

+ ∂2ξ1i

∂α1j∂α1k

[
G′1
G1

+ δ1i

(
G′′1
G′1
− G

′
1
G1

)]
− ∂2ξ1i

∂yi∂α1k

∂2ξ1i

∂yi∂α1j

[
δ1i

(
∂ξ1i

∂yi

)−2
]

+ ∂3ξ1i

∂yi∂α1j∂α1k

[
δ1i

(
∂ξ1i

∂yi

)−1
]}

=
n∑
i=1

{
∂ξ1i

∂α1j

∂ξ1i

∂α1k
Φ1 + ∂2ξ1i

∂α1j∂α1k
∆1 −

∂2ξ1i

∂yi∂α1k

∂2ξ1i

∂yi∂α1j
Ψ1 + ∂3ξ1i

∂yi∂α1j∂α1k
Ω1

}
,

(B.14)

∂2`(α)
∂α2j∂α2k

=
n∑
i=1

{
G′′2
G2

∂ξ2i

∂α2j

∂ξ2i

∂α2k
− G

′2
2
G2

2

∂ξ2i

∂α2j

∂ξ2i

∂α2k
+ G

′′′
2
G2

δ2i
∂ξ2i

∂α2j

∂ξ2i

∂α2k
− G

′′2
2
G′22

δ2i
∂ξ2i

∂α2j

∂ξ2i

∂α2k

− G
′′
2
G2
δ2i

∂ξ2i

∂α2j

∂ξ2i

∂α2k
+ G

′2
2
G2

2
δ2i

∂ξ2i

∂α2j

∂ξ2i

∂α2k
+ G

′
2
G2

∂2ξ2i

∂α2j∂α2k
+ G

′′
2
G′2
δ2i

∂2ξ2i

∂α2j∂α2k
− G

′
2
G2
δ2i

∂2ξ2i

∂α2j∂α2k

+ ∂3ξ2i

∂yi∂α2j∂α2k
δ2i

(
∂ξ2i

∂yi

)−1
− ∂2ξ2i

∂yi∂α2k

∂2ξ2i

∂yi∂α2j
δ2i

(
∂ξ2i

∂yi

)−2
}

=
n∑
i=1

{
∂ξ2i

∂α2j

∂ξ2i

∂α2k

[(
G′′2
G2
− G

′2
2
G2

2

)
+ δ2i

(
G′′′2
G2
− G

′′2
2
G′22
− G

′′
2
G2

+ G
′2
2
G2

2

)]

+ ∂2ξ2i

∂α2j∂α2k

[
G′2
G2

+ δ2i

(
G′′2
G′2
− G

′
2
G2

)]
− ∂2ξ2i

∂yi∂α2k

∂2ξ2i

∂yi∂α2j

[
δ2i

(
∂ξ2i

∂yi

)−2
]

+ ∂3ξ2i

∂yi∂α2j∂α2k

[
δ2i

(
∂ξ2i

∂yi

)−1
]}

=
n∑
i=1

{
∂ξ2i

∂α2j

∂ξ2i

∂α2k
Φ2 + ∂2ξ2i

∂α2j∂α2k
∆2 −

∂2ξ2i

∂yi∂α2k

∂2ξ2i

∂yi∂α2j
Ψ2 + ∂3ξ2i

∂yi∂α2j∂α2k
Ω2

}
,

(B.15)
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where Φν = δνi

G ′′′ν
Gν
− G

′′2
ν

G ′2ν
− G

′′
ν

Gν
+ G

′2
ν

G2
ν

 and Ψν =
δνi

(
∂ξνi
∂yi

)−2
. Collecting the

last terms of (B.11), (B.12), (B.13), (B.14) and (B.15), we obtain

∂2`(α)
∂α0∂α>0

=
n∑
i=1

{
Φ1

∂ξ1i

∂α0

[
∂ξ1i

∂α0

]>
+ Φ2

∂ξ2i

∂α0

[
∂ξ2i

∂α0

]>}
,

∂2`(α)
∂α0∂α>ν

=
n∑
i=1

{
Φν

∂ξνi
∂α0

[
∂ξνi
∂αν

]>}
,

∂2`(α)
∂αν∂α>ν

=
n∑
i=1

{
Φν

∂ξνi
∂αν

[
∂ξνi
∂αν

]>
+ ∆ν

∂2ξνi
∂αν∂α>ν

− Ψν
∂2ξνi
∂yi∂αν

[
∂2ξνi
∂yi∂αν

]>
+ Ων

∂3ξνi
∂yi∂αν∂α>ν

}
,

where

∂2ξνi
∂αν∂α>ν

=



∂2ξνi(αν)
∂αν11∂αν11

. . .
∂2ξνi(αν)

∂αν11∂ανQνJνQν

. . .
. . . . . .

∂2ξνi(αν)
∂ανQνJνQν ∂αν11

. . .
∂2ξνi(αν)

∂ανQνJνQν ∂ανQνJνQν


,

∂3ξνi
∂yi∂αν∂α>ν

=



∂3ξνi(αν)
∂yi∂αν11∂αν11

. . .
∂3ξνi(αν)

∂yi∂αν11∂ανQνJνQν

. . .
. . . . . .

∂3ξνi(αν)
∂yi∂ανQνJνQν ∂αν11

. . .
∂3ξνi(αν)

∂yi∂ανQνJνQν ∂ανQνJνQν


.

In particular, the design sub-matrices of ∂2ξνi
∂αν∂α>ν

and ∂3ξνi
∂yi∂αν∂α>ν

are calculated

using

∂2ξνi(α0,αν)
∂ανqν∂α

>
νsν

=


Qι44

ν0 (yi) if ανqν = ανsν = αν0

0 otherwise,

∂3ξνi(α0,αν)
∂yi∂ανqνα

>
νsν

=


Qι44′

ν0 (yi) if ανqν = ανsν = αν0

0 otherwise,
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where Qι44
ν0 (yi) and Qι44′

ν0 (yi) are defined as

Qι44
ν0 (yi) =


∂2ξνi

∂αν0jν0∂αν0kν0

=
[∑Jν0

jν0 Qν0jν0(yi)
]

exp (αν0jν0) if j = k 6= 1

∂2ξνi
∂αν0jν0∂αν0kν0

= 0 otherwise,

Qι44′
ν0 (yi) =


∂3ξνi

∂yiαν0jν0∂αν0kν0

=
[∑Jν0

jν0 Q
′
ν0jν0(yi)

]
exp (αν0jν0) if j = k 6= 1

∂3ξνi
∂yiαν0jν0∂αν0kν0

= 0 otherwise.

On the other hand, the non-informative penalized Hessian is

∇γγ`p(γ) = ∇γγ`(γ)−Λ.

Since ξ1i(γ1) and ξ2i(γ2)) do not have parameters in common, ∇γγ`(γ) can be

written as

∇γγ`(γ) =

∇γ1γ1`(γ) 0

0 ∇γ2γ2`(γ)

 ,

where ∇γνγν`(γ) = ∂2`(γ)
∂γν∂γ>ν

. This expression can be obtained using

∇γνγν`(γ) =



∂2`(γ)
∂γν11∂γν11

. . .
∂2`(γ)

∂γν11∂γνKνJνKν

. . .
. . . . . .

∂2`(γ)
∂γνKνJνKν ∂γν11

. . .
∂2`(γ)

∂γνKνJνKν ∂γνKνJνKν


.
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Furthermore, the scalar derivatives of ∇γ1γ1`(γ) and ∇γ2γ2`(γ) are

∂2`(γ)
∂γ1j∂γ1k

=
n∑
i=1

{
G′′1
G1

∂ξ1i

∂γ1j

∂ξ1i

∂γ1k
− G

′2
1
G2

1

∂ξ1i

∂γ1j

∂ξ1i

∂γ1k
+ G

′′′
1
G1

δ1i
∂ξ1i

∂γ1j

∂ξ1i

∂γ1k
− G

′′2
1
G′21

δ1i
∂ξ1i

∂γ1j

∂ξ1i

∂γ1k

− G
′′
1
G1
δ1i

∂ξ1i

∂γ1j

∂ξ1i

∂γ1k
+ G

′2
1
G2

1
δ1i

∂ξ1i

∂γ1j

∂ξ1i

∂γ1k
+ G

′
1
G1

∂2ξ1i

∂γ1j∂γ1k
+ G

′′
1
G′1
δ1i

∂2ξ1i

∂γ1j∂γ1k
− G

′
1
G1
δ1i

∂2ξ1i

∂γ1j∂γ1k

+ ∂3ξ1i

∂yi∂γ1j∂γ1k
δ1i

(
∂ξ1i

∂yi

)−1
− ∂2ξ1i

∂yi∂γ1k

∂2ξ1i

∂yi∂γ1j
δ1i

(
∂ξ1i

∂yi

)−2
}

=
n∑
i=1

{
∂ξ1i

∂γ1j

∂ξ1i

∂γ1k

[(
G′′1
G1
− G

′2
1
G2

1

)
+ δ1i

(
G′′′1
G1
− G

′′2
1
G′21
− G

′′
1
G1

+ G
′2
1
G2

1

)]

+ ∂2ξ1i

∂γ1j∂γ1k

[
G′1
G1

+ δ1i

(
G′′1
G′1
− G

′
1
G1

)]
− ∂2ξ1i

∂yi∂γ1k

∂2ξ1i

∂yi∂γ1j

[
δ1i

(
∂ξ1i

∂yi

)−2
]

+ ∂3ξ1i

∂yi∂γ1j∂γ1k

[
δ1i

(
∂ξ1i

∂yi

)−1
]}

=
n∑
i=1

{
∂ξ1i

∂γ1j

∂ξ1i

∂γ1k
Φ1 + ∂2ξ1i

∂γ1j∂γ1k
∆1 −

∂2ξ1i

∂yi∂γ1k

∂2ξ1i

∂yi∂γ1j
Ψ1 + ∂3ξ1i

∂yi∂γ1j∂γ1k
Ω1

}
,

(B.16)

∂2`(γ)
∂γ2j∂γ2k

=
n∑
i=1

{
G′′2
G2

∂ξ2i

∂γ2j

∂ξ2i

∂γ2k
− G

′2
2
G2

2

∂ξ2i

∂γ2j

∂ξ2i

∂γ2k
+ G

′′′
2
G2

δ2i
∂ξ2i

∂γ2j

∂ξ2i

∂γ2k
− G

′′2
2
G′22

δ2i
∂ξ2i

∂γ2j

∂ξ2i

∂γ2k

− G
′′
2
G2
δ2i

∂ξ2i

∂γ2j

∂ξ2i

∂γ2k
+ G

′2
2
G2

2
δ2i

∂ξ2i

∂γ2j

∂ξ2i

∂γ2k
+ G

′
2
G2

∂2ξ2i

∂γ2j∂γ2k
+ G

′′
2
G′2
δ2i

∂2ξ2i

∂γ2j∂γ2k
− G

′
2
G2
δ2i

∂2ξ2i

∂γ2j∂γ2k

+ ∂3ξ2i

∂yi∂γ2j∂γ2k
δ2i

(
∂ξ2i

∂yi

)−1
− ∂2ξ2i

∂yi∂γ2k

∂2ξ2i

∂yi∂γ2j
δ2i

(
∂ξ2i

∂yi

)−2
}

=
n∑
i=1

{
∂ξ2i

∂γ2j

∂ξ2i

∂γ2k

[(
G′′2
G2
− G

′2
2
G2

2

)
+ δ2i

(
G′′′2
G2
− G

′′2
2
G′22
− G

′′
2
G2

+ G
′2
2
G2

2

)]

+ ∂2ξ2i

∂γ2j∂γ2k

[
G′2
G2

+ δ2i

(
G′′2
G′2
− G

′
2
G2

)]
− ∂2ξ2i

∂yi∂γ2k

∂2ξ2i

∂yi∂γ2j

[
δ2i

(
∂ξ2i

∂yi

)−2
]

+ ∂3ξ2i

∂yi∂γ2j∂γ2k

[
δ2i

(
∂ξ2i

∂yi

)−1
]}

=
n∑
i=1

{
∂ξ2i

∂γ2j

∂ξ2i

∂γ2k
Φ2 + ∂2ξ2i

∂γ2j∂γ2k
∆2 −

∂2ξ2i

∂yi∂γ2k

∂2ξ2i

∂yi∂γ2j
Ψ2 + ∂3ξ2i

∂yi∂γ2j∂γ2k
Ω2

}
.

(B.17)

The last terms of equations (B.16) and (B.17) allow to express ∇γ1γ1`(γ) and
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∇γ2γ2`(γ) as

∇γνγν`(γ) =
n∑
i=1

{
Φνi

∂ξνi
∂γν

[
∂ξνi
∂γν

]>
+ ∆νi

∂2ξνi
∂γν∂γ>ν

−Ψνi
∂2ξνi
∂yi∂γν

[
∂2ξνi
∂yi∂γν

]>

+ Ωνi
∂3ξνi

∂yi∂γν∂γ>ν

}
,

where

∂2ξνi
∂γν∂γ>ν

=



∂2ξνi(γν)
∂γν11∂γν11

. . .
∂2ξνi(γν)

∂γν11∂γνKνJνKν

. . .
. . . . . .

∂2ξνi(γν)
∂γνKνJνKν ∂γν11

. . .
∂2ξνi(γν)

∂γνKνJνKν ∂γνKνJνKν


,

∂3ξνi
∂yi∂γν∂γ>ν

=



∂3ξνi(γν)
∂yi∂γν11∂γν11

. . .
∂3ξνi(γν)

∂yi∂γν11∂γνKνJνKν

. . .
. . . . . .

∂3ξνi(γν)
∂yi∂γνKνJνKν ∂γν11

. . .
∂3ξνi(γν)

∂yi∂γνKνJνKν ∂γνKνJνKν


.

In addition, the design sub-matrices of ∂
2ξνi(γν)
∂γν∂γ>ν

and ∂3ξνi(γν)
∂yi∂γν∂γ>ν

can be obtained

using the following equations

∂2ξνi(γν)
∂γνkν∂γ

>
νsν

=


Q44ν0 (yi) if γνkν = γνsν = γν0

0 otherwise,

∂3ξνi(γν)
∂yi∂γνkνγ

>
νsν

=


Q44

′

ν0 (yi) if γνkν = γνsν = γν0

0 otherwise,
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where Q44ν0 (yi) and Q44
′

ν0 (yi) can be calculated as

Q44ν0 (yi) =


∂2ξνi

∂γν0jν0∂γν0kν0

=
[∑Jν0

jν0 Qν0jν0(yi)
]

exp (γν0jν0) if j = k 6= 1

∂2ξνi
∂γν0jν0∂γν0kν0

= 0 otherwise,

Q44
′

ν0 (yi) =


∂3ξνi

∂yiγν0jν0∂γν0kν0

=
[∑Jν0

jν0 Q
′
ν0jν0(yi)

]
exp (γν0jν0) if j = k 6= 1

∂3ξνi
∂yiγν0jν0∂γν0kν0

= 0 otherwise.

B.4 Proofs of Theorems 1, 2 and 3

B.4.1 Assumptions

This section provides the proofs of Theorems 1, 2 and 3 stated in Section 2.4.

First, we establish the main set of assumptions (regularity conditions and vanishing

penalties), then the main results are presented.

Since the same set of assumptions are used to proof Theorems 1 and 2, we use

ϕ to represents the generic vector of parameters, where ϕ = α in Theorem 1 and

ϕ = γ in Theorem 2. The generic log-likelihood function can be written as

`(ϕ) =
n∑
i=1

log
[
[fT1(yi|z1i;ϕ1)ST2(yi|z2i;ϕ2)]δi [fT2(yi|z2i;ϕ2)ST1(yi|z1i;ϕ1)](1−δi)

]
.

(B.18)

Let us define `(ϕ) = ∑n
i=1 logω(wi;ϕ), where

ω(wi;ϕ) =
[
[fT1(yi|z1i;ϕ1)ST2(yi|z2i;ϕ2)]δi [fT2(yi|z2i;ϕ2)ST1(yi|z1i;ϕ1)](1−δi)

]
,wi =

(yi, z>1i, z>2i)> ∈ R+×Rp1×Rp2 , and R+ = (0,∞). Moreover, zi = (z>1i, z>2i)> ∈ Rp1×

Rp2 , `(wi;ϕ) = logω(wi;ϕ), `n(ϕ) = n−1∑n
i=1 `(wi;ϕ), ∇ϕ`(wi;ϕ) = ∂`(wi;ϕ)

∂ϕ
,

∇ϕ`n(ϕ) = ∂`n(ϕ)
∂ϕ

, ∇ϕϕ`(wi;ϕ) = ∂2`(wi;ϕ)
∂ϕ∂ϕ>

and ∇ϕϕ`n(ϕ) = ∂2`n(ϕ)
∂ϕ∂ϕ>

. The

penalised log-likelihood is `p(ϕ) = `n(ϕ)− 1
2ϕ
>Λϕ.

Set of Assumptions 1 [Regularity conditions and vanishing penalty]
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(A1) The true parameters vector ϕ0 is in the interior of Sϕ ⊆ Rp, which is a

compact set, and Oϕ0 is an open neighbourhood around ϕ0.

(A2) For all wi, ω(wi;ϕ) is continuous in ϕ. Also, ω(wi;ϕ) is measurable in wi

for all ϕ ∈ Sϕ.

(A3) The model is identified. That is, for any ϕ in Sϕ and for almost every w,

ω(w;ϕ) = ω(w;ϕ0) implies ϕ0 = ϕ. In addition, E{supθ∈Sϕ|`(wi;ϕ)|} <

∞.

(A4) For all wi, ω(wi;ϕ) is three times continuously differentiable in ϕ in an open

neighbourhood around ϕ0. That is ω(wi;ϕ) ∈ C3(Oϕ0)

(A5)
∫
supϕ∈Oϕ0 ‖∇ϕ`(wi;ϕ)‖ dwi < ∞ and

∫
supϕ∈Oϕ0 ‖∇ϕϕ`(wi;ϕ)‖ dwi <

∞.

(A6) Forϕ ∈Oϕ0 , I(ϕ0) = Cov{∇ϕ`(wi;ϕ)} = E{{∇ϕ`(wi;ϕ0)−E[∇ϕ`(wi;ϕ0)]}

{∇ϕ`(wi;ϕ0)− E[∇ϕ`(wi;ϕ0)]}>} exists and is positive-definite.

(A7) For all 1 ≤ e, f, h ≤ p+ 1, there exist a function φ : R+ × Rp1 × Rp2 −→ R

such that, for ϕ ∈ Oϕ0 and wi ∈ R+ × Rp1 × Rp2 ,
∣∣∣∣∣ ∂3`(wi;ϕ)
∂ϕe∂ϕf∂ϕh

∣∣∣∣∣ ≤ φ(wi),

with E[φ(wi)] <∞.

(A8) The penalties vanish as the sample size n goes to infinite. That is λ =

o(n−1/2)1.

In addition, the following lemmas are required to prove Theorems 1, 2 and 3.

Lemma 1. Let s(w,ϕ) be a continuously differentiable function, a.s. dw, on ϕ ∈

Oϕ0 .

If
∫
supϕ∈Oϕ0

∥∥∥∥∥∂s(w,ϕ)
∂ϕ

∥∥∥∥∥ dw <∞, then for ϕ ∈ Oϕ0 ,
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(i)
∫
s(w,ϕ)dw is continuously differentiable.

(ii)
∫

[∂s(w,ϕ)/∂ϕ]dw = ∂[
∫
s(w,ϕ)dw]/∂ϕ.

Proof. Newey & McFadden (1994, Lemma 3.6).

Lemma 2. If Assumptions (A1)-(A7) hold, then

(i) E[∇ϕ`(w;ϕ0)] = 0

(ii) E[−∇ϕϕ`(w;ϕ0)] = I(ϕ0)

Proof.

(i) Since ω(w;ϕ) is a hypothetical density, its integral is unity:

∫
ω(w;ϕ)dy = 1.

This is an identity, valid for any ϕ ∈ Sϕ. Differentiating both sides of this

identity with respect to ϕ, we obtain

∂

∂ϕ

∫
ω(w;ϕ)dy = 0.

Then, by (A4), (A5) and Lemma 1, the following expression is obtained

∂

∂ϕ

∫
ω(w;ϕ)dy =

∫ ∂

∂ϕ
ω(w;ϕ)dy. (B.19)

By the definition of the score, we have

∇ϕ`(w;ϕ)ω(w;ϕ) = ∂

∂ϕ
ω(w;ϕ).

The last equation can be substituted into (B.19) to obtain

∫
∇ϕ`(w;ϕ)ω(w;ϕ)dy = 0. (B.20)
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This holds for any ϕ ∈ Oϕ0 , in particular, for ϕ0. Setting ϕ = ϕ0, we have

∫
∇ϕ`(w;ϕ0)ω(w;ϕ0)dy = E[∇ϕ`(w;ϕ0)|z] = 0.

Then, by applying the law of total expectations, we obtain

E[∇ϕ`(w;ϕ0)] = E{E[∇ϕ`(w;ϕ0)|z]} = 0,

as required.

(ii) Differentiating both sides of (B.20) and by (A4), (A5) and Lemma 1, we

have ∫ ∂

∂ϕ>
[∇ϕ`(w;ϕ)ω(w;ϕ)]dy = 0. (B.21)

The integrand of (B.21) can be written as

∂

∂ϕ>
[∇ϕ`(w;ϕ)ω(w;ϕ)] = ∇ϕϕ`(w;ϕ)ω(w;ϕ)+∇ϕ`(w;ϕ)∇ϕ`(w;ϕ)>ω(w;ϕ).

We can substitute the last expression into (B.21) to obtain

−
∫

∇ϕϕ`(w;ϕ)ω(w;ϕ)dy =
∫

∇ϕ`(w;ϕ)∇ϕ`(w;ϕ)>ω(w;ϕ)dy (B.22)

By setting ϕ = ϕ0, (B.22) can be written as

E[−∇ϕϕ`(w;ϕ0)|z] = E[∇ϕ`(w;ϕ0)∇ϕ`(w;ϕ0)>|z].
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Then, by applying the law of total expectations, we obtain

E{E[−∇ϕϕ`(w;ϕ0)|z]} = E{E[∇ϕ`(w;ϕ0)∇ϕ`(w;ϕ0)>|z]}.

E[−∇ϕϕ`(w;ϕ0)] = E[∇ϕ`(w;ϕ0)∇ϕ`(w;ϕ0)>].

E[−∇ϕϕ`(w;ϕ0)] = I(ϕ0)

as required.

Lemma 3. Let r ∈ R+, and Or be the surface of a sphere with radius rn−1/2 and

center ϕ0, that is Or = {ϕ ∈ Sϕ : ϕ = ϕ0 + n−1/2r, ‖r‖ = r}. For any ε > 0,

there exist r such that P
(
sup
ϕ∈Or

`p(ϕ) < `p(ϕ0)
)
≥ 1− ε, when n is large enough.

Proof. We define n`p(ϕ)− n`p(ϕ0) = n`n(ϕ)− n`n(ϕ0)− n
2 [ϕ>Λϕ−ϕ0>Λϕ0].

A Third Order Taylor expansion around ϕ0 yields

n`p(ϕ)− n`p(ϕ0) = n∇ϕ`n(ϕ0)>(ϕ−ϕ0) + n

2 (ϕ−ϕ0)>∇ϕϕ`n(ϕ0)(ϕ−ϕ0)

− nϕ0>Λ(ϕ−ϕ0)

+ n

6
∑
e

∑
f

∑
h

(ϕ−ϕ0)e(ϕ−ϕ0)f (ϕ−ϕ0)h
∂3`n(ϕ̄)

∂ϕe∂ϕf∂hϕ
− n

2 (ϕ

−ϕ0)>Λ(ϕ−ϕ0).

(B.23)

Let ϕ = ϕ0 + n−1/2r ∈ Or. Then (B.23) becomes in

n`p(ϕ)− n`p(ϕ0) = n1/2∇ϕ`n(ϕ0)>r + 1
2r
>∇ϕϕ`n(ϕ0)r

+ n−1/2

6
∑
e

∑
f

∑
h

rerfrh
∂3`n(ϕ̄)

∂ϕe∂ϕf∂hϕ

− n1/2ϕ0>Λr − 1
2r
>Λr,

where ϕ̄ lies between ϕ0 and ϕ0 + n−1/2r. By (A5), Lemma 2(i) and the CLT,

n1/2∇ϕ`n(ϕ0) d→ N [0, I(ϕ0)]. Therefore, |n1/2∇ϕ`n(ϕ0)>r| = Op(1) ‖r‖. By



113 B.4. Proofs of Theorems 1, 2 and 3

Lemma 2(ii) and the LLN, n1/2∇ϕϕ`n(ϕ0) p→ −I(ϕ0), which, by the continu-

ous mapping theorem, yields 1
2r
>∇ϕϕ`n(ϕ0)r p→ −1

2r
>I(ϕ0)r. Thus, by (A6),

1
2r
>∇ϕϕ`n(ϕ0)r ≤ −1

2ζmin ‖r‖2, where ζmin > 0 is the smallest eigenvalue of I(ϕ0).

By (A7) and the LLN,
∣∣∣∣∣ ∂3`n(ϕ̄)
∂ϕe∂ϕf∂ϕh

∣∣∣∣∣ ≤ 1
n

∑n
1 φ(wi)

p→ E[φ(wi)] <∞. This fact

and the Cauchy-Schwarz inequality imply that∣∣∣∣∣n−1/2

6
∑
e

∑
f

∑
h rerfrh

∂3`n(ϕ̄)
∂ϕe∂ϕf∂hϕ

∣∣∣∣∣ p→ 0. Finally, by (A8) we have that∣∣∣n1/2ϕ0>Λr
∣∣∣ p→ 0 and

∣∣∣12r>Λr
∣∣∣ p→ 0. Therefore, combining all of these results, we

obtain

n`p(ϕ)− n`p(ϕ0) ≤ Op(1) ‖r‖ − 1
2ζmin ‖r‖2 (B.24)

for large enough n. Since the choice of ϕ was arbitrary, (B.24) becomes in

sup
ϕ∈Or

n`p(ϕ)− n`p(ϕ0) ≤ C,

where C = Op(1) ‖r‖ − 1
2ζmin ‖r‖2. This implies that P

(
sup
ϕ∈Or

`p(ϕ) < `p(ϕ0)
)
≥

P (C < 0). Finally, for all ε > 0, there exists a ‖r‖ ∈ R+ such that P [C < 0] ≥ 1−ε,

then P
(
sup
ϕ∈Or

`p(ϕ) < `p(ϕ0)
)
≥ 1− ε, as required.

Lemma 4. (Delta Method). Suppose that ϕn is a sequence of k-dimensional

random vectors and ϕ0 be a constant k-vector such that
√
n(ϕn −ϕ0) d→ N (0,Ω)

for some k × k matrix Ω. Let g : Rk → Rl be continuously differentiable at ϕ0.

Then

√
n(g(ϕn)− g(ϕ0) d→ N (0, GΩG>)

where G = ∂g(ϕ)
∂ϕ>

∣∣∣∣∣
ϕ=ϕ0

is the l × k Jacobian matrix.

Proof. Hayashi (2000, Lemma 2.5).
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B.4.2 Theorems 1, 2 and 3

Theorem 1 (Asymptotic properties of the IPMLE estimator).

Proof.

(i) By (A1), (A2) and Gourieroux & Monfort (1995, Property 24.1), there exists

a well defined measurable function α̂ that solves the optimization problem

in equation (31). Due to Lemma 3, the informative censoring penalized log-

likelihood function has a local maximum α̂ in the interior of a sphere centered

on α0. Then, ‖α̂−α0‖ = Op(n−1/2), implying that α̂ is a
√
n-consistent

estimator.

To prove the asymptotic normality of the informative censoring penalized

likelihood estimator, we take the derivative of the log-likelihood function in

equation (31) to obtain

0 = ∇α`n(α̂)−Λα̂. (B.25)

Applying a second order Taylor expansion to equation (B.25) yields

0 = ∇α`n(α0)−Λα0 + ∇αα`n(α0)(α̂−α0)−Λ(α̂−α0) + ∆, (B.26)

where the last term is defined as

∆ =


(α̂−α0)>[∇2∇α`n(ᾱ)]1(α̂−α0)

...

(α̂−α0)>[∇2∇α`n(ᾱ)]p(α̂−α0)

 , (B.27)

and ᾱ lies between α0 and α̂, therefore ‖ᾱ−α0‖ ≤ ‖α̂−α0‖. We can
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rewrite equation (B.26) to obtain

0 = ∇α`n(α0)−Λα0 + ∇αα`n(α0)(α̂−α0)−Λ(α̂−α0) + ∆p(α̂−α0),

(B.28)

where ∆p is defined as

∆p =


(α̂−α0)>[∇∇αα`n(ᾱ)]1

...

(α̂−α0)>[∇∇αα`n(ᾱ)]p

 .

By multiplying the right hand side of (B.28) by
√
n, we obtain

[∇αα`n(α0)−Λ + ∆p]
√
n(α̂−α0) =

√
n[Λα0 −∇α`n(α0)]. (B.29)

Assumption (A8) yields Λ p→ 0 and Λα0 p→ 0. By assumption (A7), we obtain

∆p
p→ 0. By Lemma 2(i), (A5) and the CLT, n1/2∇α`n(α0) d→ N [0, I(α0)].

Furthermore, by Lemma 2(ii) and the LLN, n1/2∇αα`n(α0) p→ −I(α0).

Finally, by Slutsky’s theorem, we obtain

√
n(α̂−α0) d→ N

{
0, [I(α0)]−1

}
,

as required.

(ii) Under Theorem 1,
√
n(α̂−α0) d→ N {0, [I(α0)]−1}. In particular, for α̂ν0

∈ α̂ we have
√
n(α̂ν0 −α0

ν0) d→ N {0, [I(α0
ν0)]−1}. In addition, S : Rk → R

is continuously differentiable at α0
ν0, with gradient defined as ∇αν0S(α0

ν0) =
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G ′ν0[s(α0
ν0)]∇αν0s(α0

ν0). Then, we can apply Lemma 4 to obtain

√
n[Ŝν0(α̂ν0)− Sν0(α0

ν0)] d→N
{
0,G ′ν0[s(α0

ν0)]∇αν0s(α0
ν0)[I(α0

ν0)]−1

×∇αν0s(α0
ν0)>G ′ν0[s(α0

ν0)]
}
.

Furthermore, we know that ∇α1α2`(α) = 0, therefore E[−∇α1α2`(α0)] = 0.

This also implies that E[−∇α10α20`(α0)] = 0, which means that α10 and α20

are independent. Then, S(α10) and S(α20) are also independent, as required.

Theorem 2 (Asymptotic properties of the NPMLE estimator).

Proof. This proof follows similar arguments of Theorem 1.

Theorem 3 (Efficiency of the IPMLE estimator).

Proof. For ν = 1, 2, we define γν = (γιν ,γnιν )> so that Q>i γν = Q0>
i γ

ι
ν + Q1>

νi γ
nι
ν .

Where γιν = (γι>ν1 , ...,γ
ι>
νQ)> and γnιν = (γnι>ν(Q+1), ...,γ

nι>
νQν )> are the informative and

non-informative parameters of the non-informative model respectively. Thus, by

Assumption (A6) and Lemma 2(ii), I(γ0) can be written as

I(γ0) =



Iγι1 Iγι1γnι1
0 0

Iγnι1 γι1
Iγnι1

0 0

0 0 Iγι2 Iγι2γnι2

0 0 Iγnι2 γι2
Iγnι2


, (B.30)

where Iγιν = I(γ0ι
ν ), Iγnιν = I(γ0nι

ν ) and Iγινγnιν = I(γ0nι
ν ,γ0ι

ν ). Taking the inverse
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of (B.30), we obtain

[I(γ0)]−1 =



Σγ0ι
1

Σγ0ι
1 γ

0nι
1

0 0

Σγ0nι
1 γ0ι

1
Σγ0nι

1
0 0

0 0 Σγ0ι
2

Σγ0ι
2 γ

0nι
2

0 0 Σγ0ι
2 γ

0nι
2

Σγ0nι
2


, (B.31)

where Σγ0ι
ν

= [Iγιν − Iγινγnιν I−1
γnιν
Iγnιν γιν ]−1, Σγ0ι

ν γ
0nι
ν

= −Σγ0ι
ν
Iγινγnιν I−1

γnιν
, Σγ0nι

ν γ0ι
ν

=

−I−1
γnιν
Iγnιν γινΣγ0ι

ν
and Σγ0nι

ν
= I−1

γnιν
+ I−1

γnιν
Iγnιν γινΣγ0ι

ν
Iγινγnιν I−1

γnιν
.

On the other hand, by Assumption (A6) and Lemma 2(ii), I(α0) can be written

as

I(α0) =


Iα0 Iα0α1 Iα0α2

Iα1α0 Iα1 0

Iα2α0 0 Iα2

 , (B.32)

where Iα0 = I(α0
0), Iαν = I(α0

ν), Iα0αν = I(α0
0,α

0
ν) and Iανα0 = I(α0

ν ,α
0
0).

Taking the inverse of (B.32), yields

[I(α0)]−1 =


Σα0

0
Σα0

0α
0
1

Σα0
0α

0
2

Σα0
1α

0
0

Σα0
1

0

Σα0
2α

0
0

0 Σα0
2

 , (B.33)

where Σα0
0

= [Iα0 − Iα0α1I−1
α1 Iα1α0 − Iα0α2I−1

α2 Iα2α0 ]−1, Σα0
0α

0
ν

= −Σα0
0
Iα0ανI−1

αν ,

Σα0
να

0
0

= −I−1
αν Iανα0Σα0

0
and Σα0

ν
= I−1

αν + I−1
αν Iανα0Σα0

0
Iα0ανI−1

αν .

Thus, by (4.16), (4.17), (4.18), (4.19), (4.20) and using that γnιν0 = αν0, we

obtain Iα0 = Iγι1 +Iγι2 , Iα0αν = Iγινγnιν , Iανα0 = Iγnιν γιν and Iαν = Iγnιν . This and

the fact that Σ−1
α0

0
and Σ−1

γ0ι
ν

are positive definite matrices, imply that [Σγ0ι
ν
− Σα0

0
]

is positive definite. Therefore, Σα0
0
< Σγ0ι

ν
. Using this reasoning, we conclude that

Σα0
0α

0
ν
< Σγ0ι

ν γ
0nι
ν

, Σα0
να

0
0
< Σγ0nι

ν γ0ι
ν

and Σα0
ν
< Σγ0nι

ν
, as required.
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The proof of Lemma 3 in the context of informative and non-informative

censoring models was adapted from Xingwei et al. (2010) and Vatter & Chavez-

Demoulin (2015). The proofs of the asymptotic normality (part (i) of Theorems 1

and 2) are based on Vatter & Chavez-Demoulin (2015).

B.5 Software details: gamlss() function

The models proposed in this article can be employed via the gamlss() function

in the R package GJRM (Marra & Radice, 2020b). As an example, consider the

following call

eq1 <- u ~ s(u, bs = "mpi") + z1 + s(z2),

eq2 <- u ~ s(u, bs = "mpi") + z1 + s(z2),

out <- gamlss(list(eq1, eq2), data = data, surv = TRUE,

margin = "PH", margin2 = "PH",cens = delta, informative = "yes",

inform.cov = c("z1")),

where eql and eq2 are the two additive predictors of the dependent censoring

model. In these equations, s(u, bs = "mpi") represents the monotonic P-

spline function which models a transformation of the baseline survival function. As

for s(z2), the default is bs = "tp" (penalized low rank thin plate spline) with

k = 10 (number of basis functions) and m = 2 (order of derivatives). However,

argument bs can also be set to, for example, cr (penalized cubic regression spline),

ps (P-spline) and mrf (Markov random field), to name but a few. In the gamlss

function, surv = TRUE indicates that a survival model is fitted. The arguments

margin ="PH" and margin2 ="PH" specify the link functions for the survival

and censoring times, respectively. Table 4.1 shows the possible choices for the

links that have been implemented for this article. In this example, we specify
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the proportional hazard link ("PH") for the two equations. Argument cens =

delta is a binary censoring indicator; this variable has to be equal to 1 if the

event occurred and 0 otherwise. Finally, informative = "yes" indicates that

we are fitting a survival model with informative censoring, and inform.cov =

c("z1") specifies the set of informative covariates.

B.6 Additional simulation results for DGP2, DGP3

and DGP4

In DGP3, z1i is informative, z2i is informative and a mild censoring rate (about

47%) is considered. T1i and T2i were generated using the model defined in equation

(4.25). The baseline survival functions were defined as S10(t1i) = 0.8 exp (−0.4t2.51i )+

0.2 exp (−0.1t1.01i ) and S20(t2i) = 0.99 exp (−0.05t2.32i ) + 0.01 exp (−0.4t1.12i ). The

informative covariates, z1i and z2i, were generated using a binomial and a uniform

distribution respectively. Also, s11(z2i) = s12(z2i) = sin(2πzi), α01 = −0.10,

α02 = −0.25 and α11 = α12 = −1.5.

The main findings are:

• Figure B.1 and Table B.2 show that overall the mean estimates for the two

estimators are very close to the respective true values and improve as the

sample size increases. However, even though the variability of the estimates

(IPMLE and NPMLE) decreases as the sample size grows large, the IPMLE

is slightly more efficient than the NPMLE in recovering the true linear effects

for all sample sizes examined here. In particular, the RMSE of the IPMLE is

slightly smaller than the RMSE of the NPMLE for all sample sizes considered.

• Figures B.2 and B.3, and Table B.2 show that overall the true functions are

recovered well by the IPMLE and NPMLE and that the results improve in
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Figure B.1: Linear coefficient estimates obtained by applying gamlss() to informative survival
data simulated according to DGP3 characterised by a censoring rate of about 47%. Circles
indicate mean estimates while bars represent the estimates’ ranges resulting from 5% and 95%
quantiles. True values are indicated by black solid horizontal lines. Black circles and vertical bars
refer to the results obtained for n = 500, whereas those for n = 1000 and n = 4000 are given in
dark gray and blue, respectively.

terms of bias and efficiency as the sample size increases. Furthermore, the

IPMLE is slightly more efficient than the NPMLE in recovering the non-linear

covariate effects for all sample sizes examined in this section (Table B.2).

However, this gain in efficiency by the IPMLE is not too significant when a

mild censoring rate (47%) is examined.

In DGP4, z1i is informative, z2i is informative and it is considered a low

censoring rate (about 29%). T1i and T2i were generated using also the model

defined in equation (4.25). The baseline survival functions were defined as S10(t1i) =

0.8 exp (−0.4t2.41i ) + 0.2 exp (−0.1t1.01i ) and S20(t2i) = 0.99 exp (−0.065t2.32i ) +
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Figure B.2: Smooth function estimates for the IPMLE obtained by applying gamlss() to
informative survival data simulated according to DGP3 characterised by a censoring rate of about
47%. True functions are represented by black solid lines, mean estimates by dashed lines and
pointwise ranges resulting from 5% and 95% quantiles by shaded areas. The results in the first
row refer to n = 500, whereas those in the second and third rows to n = 1000 and n = 4000.
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Figure B.3: Smooth function estimates for the NPMLE obtained by applying gamlss() to
informative survival data simulated according to DGP3 characterised by a censoring rate of about
47%. Further details are given in the caption of Figure B.2.
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0.01 exp (−0.4t1.12i ). The informative covariates, z1i and z2i, were generated using

a binomial and a uniform distribution respectively. Also, s11(z2i) = s12(z2i) =

sin(2πzi), α01 = −0.10, α02 = −0.25 and α11 = α12 = −0.15.

The main findings are:

• Figure B.4 and Table B.3 show that overall the mean estimates for the two

estimators are very close to the respective true values and improve as the

sample size increases. However, as for DGP3, the IPMLE is slightly more

efficient than the NPMLE in recovering the true linear effects for all sample

sizes examined here.

• Figures B.5 and B.6, and Table B.3 show that in general the true functions

are recovered well by the IPMLE and NPMLE and that the results improve

in terms of bias and efficiency as the sample size increases. Furthermore, the

IPMLE is slightly more efficient than the NPMLE in recovering the non-linear

covariate effects for all sample sizes examined in this section (Table B.3).

However, this gain in efficiency by the IPMLE is not too significant when a

low censoring rate (29%) is examined.
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Figure B.4: Linear coefficient estimates obtained by applying gamlss() to informative survival
data simulated according to DGP4 characterised by a censoring rate of about 29%. Further
details are given in the caption of Figure B.1.
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Figure B.5: Smooth function estimates for the IPMLE obtained by applying gamlss() to
informative survival data simulated according to DGP4 characterised by a censoring rate of about
29%. Further details are given in the caption of Figure B.2.

(a) Informative Penalized Maximum Log-likelihood Estimator (IPMLE)
Bias RMSE

n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000
α11 -0.024 -0.014 -0.006 0.138 0.100 0.049
s1 0.039 0.025 0.012 0.154 0.114 0.059
h10 0.084 0.048 0.035 0.262 0.144 0.083
S10 0.028 0.020 0.017 0.063 0.050 0.031
(b) Non-informative Penalized Maximum Log-likelihood Estimator (NPMLE)

Bias RMSE
n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000

α11 -0.045 -0.017 -0.007 0.208 0.144 0.071
s1 0.085 0.068 0.044 0.191 0.206 0.111
h10 0.085 0.057 0.033 0.195 0.292 0.083
S10 0.027 0.021 0.015 0.058 0.068 0.033

Table B.1: Bias and root mean squared error (RMSE) for the IPMLE and NPMLE
obtained by applying the gamlss() to informative survival data simulated according to
DGP2 characterised by a censoring rate of about 74%. Further details are given in the
caption of Table 4.2.
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Figure B.6: Smooth function estimates for the NPMLE obtained by applying gamlss() to
informative survival data simulated according to DGP4 characterised by a censoring rate of about
29%. Further details are given in the caption of Figure B.2.

(a) Informative Penalized Maximum Log-likelihood Estimator (IPMLE)
Bias RMSE

n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000
α11 -0.012 -0.006 0.003 0.121 0.058 0.045
s1 0.031 0.021 0.015 0.124 0.091 0.051
h10 0.040 0.027 0.026 0.135 0.088 0.058
S10 0.003 0.008 0.015 0.057 0.047 0.030
(b) Non-informative Penalized Maximum Log-likelihood Estimator (NPMLE)

Bias RMSE
n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000

α11 -0.022 0.001 0.007 0.140 0.100 0.050
s1 0.036 0.027 0.014 0.142 0.104 0.055
h10 0.037 0.027 0.027 0.131 0.089 0.056
S10 0.004 0.008 0.017 0.065 0.047 0.032

Table B.2: Bias and root mean squared error (RMSE) for the IPMLE and NPMLE
obtained by applying gamlss() to informative survival data simulated according to
DGP3 characterised by a censoring rate of about 47%. Further details are given in the
caption of Table 4.2.
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Figure B.7: Linear coefficient estimates obtained by applying gamlss() to informative survival
data simulated according to DGP2 which is characterised by a censoring rate of about 74%.
Further details are given in the caption of Figure B.1.
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Figure B.8: Smooth function estimates for the IPMLE obtained by applying gamlss() to
informative survival data simulated according to DGP2 characterised by a censoring rate of about
74%. Further details are given in the caption of Figure B.2.

(a) Informative Penalized Maximum Log-likelihood Estimator (IPMLE)
Bias RMSE

n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000
α11 -0.003 -0.004 0.000 0.100 0.071 0.035
s1 0.023 0.019 0.011 0.117 0.086 0.045
h10 0.055 0.041 0.046 0.134 0.150 0.129
S10 0.033 0.010 0.013 0.049 0.051 0.038
(b) Non-informative Penalized Maximum Log-likelihood Estimator (NPMLE)

Bias RMSE
n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000

α11 -0.001 -0.003 0.000 0.108 0.078 0.038
s1 0.029 0.023 0.013 0.127 0.093 0.049
h10 0.059 0.040 0.046 0.186 0.152 0.129
S10 0.014 0.010 0.013 0.066 0.053 0.039

Table B.3: Bias and root mean squared error (RMSE) for the IPMLE and NPMLE
obtained by applying gamlss() to informative survival data simulated according to
DGP4 characterised by a censoring rate of about 29%. Further details are given in the
caption of Table 4.2.
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Figure B.9: Smooth function estimates for the NPMLE obtained by applying gamlss() to
informative survival data simulated according to DGP2 characterised by a censoring rate of about
74%. Further details are given in the caption of Figure B.2.
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Appendix C

Supplements to Chapter 5

C.1 Proofs of Theorems 4 and 5

Theorem 4 (Sub-densities)

Proof. Let us write the generic sub-survival function as Sy,δ1,δ2|z1,z2(t, l1, l2|z1, z2) =

P (Tj > t, ∩
k 6=j
Tk > Tj|z1 = z1, z2 = z2), where j, k = 1, 2, 3. Similarly, for % > 0,

Sy,δ1,δ2|z1,z2(t+ %, l1, l2|z1, z2) = P (Tj > t+ %, ∩
k 6=j
Tk > Tj|z1 = z1, z2 = z2). There-

fore, [Sy,δ1,δ2|z1,z2(t, l1, l2|z1, z2)− Sy,δ1,δ2|z1,z2(t+ %, l1, l2|z1, z2)] can be defined as

P (t < Tj ≤ t+ %, ∩
k 6=j
Tk > Tj|z1 = z1, z2 = z2) =

[Sy,δ1,δ2|z1,z2(t, l1, l2|z1, z2)− Sy,δ1,δ2|z1,z2(t+ %, l1, l2|z1, z2)].
(C.1)

Let ψ be an arbitrary positive number such that 0 < % < ψ. The definition of

Sy,δ1,δ2|z1,z2(t, l1, l2|z1, z2) implies that (C.1) has a lower and an upper bound. The

lower bound can be written as

P (t < Tj ≤ t+ %, ∩
k 6=j
Tk > t+ ψ|z1 = z1, z2 = z2) =

[ST1,T2,T3|z1,z2(t, t+ ψ, t+ ψ|z1, z2)− ST1,T2,T3|z1,z2(t+ %, t+ ψ, t+ ψ|z1, z2)].

(C.2)
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Similarly, the upper bound can be defined as

P (t < Tj ≤ t+ %, ∩
k 6=j
Tk > t|z1 = z1, z2 = z2) =

[ST1,T2,T3|z1,z2(t, t, t|z1, z2)− ST1,T2,T3|z1,z2(t+ %, t, t|z1, z2)].
(C.3)

Dividing (C.1), (C.2) and (C.3) by % and also taking the limit as %→ 0, we obtain,

for all ψ > 0,

fy,δ1,δ2|z1,z2(t, l1, l2|z1, z2) ≥ ∂

∂tj
P (Tj > tj, ∩

k 6=j
Tk > t+ ψ|z1 = z1, z2 = z2)

∣∣∣
tj=t

,

fy,δ1,δ2|z1,z2(t, l1, l2|z1, z2) ≤ ∂

∂tj
P (Tj > tj, ∩

k 6=j
Tk > t|z1 = z1, z2 = z2)

∣∣∣
tj=t

,

(C.4)

where fy,δ1,δ2|z1,z2(t, l1, l2|z1, z2) = lim%→0 %−1P (t < Tj ≤ t + %, ∩
k 6=j
Tk > Tj|z1 =

z1, z2 = z2). In addition, by taking the limit as ψ → 0, we obtain

fy,δ1,δ2|z1,z2(t, l1, l2|z1, z2) = − ∂

∂tj
P (Tj > tj, ∩

k 6=j
Tk > t|z1 = z1, z2 = z2)

∣∣∣
tj=t

. (C.5)

On the other hand, because of A1, fy,δ1,δ2|z1,z2(t, 1, 0|z1, z2;ϑ), fy,δ1,δ2|z1,z2(t, 0, 1|z1, z2;ϑ)

and fy,δ1,δ2|z1,z2(t, 0, 0|z1, z2;ϑ) can be written as

f1,0(ϑ) = lim
%→0

%−1P (t < T1 ≤ t+ %, T2 > t|z1 = z1, z2 = z2;ϑ)P (T3 > t),

f0,1(ϑ) = lim
%→0

%−1P (t < T2 ≤ t+ %, T1 > t|z1 = z1, z2 = z2;ϑ)P (T3 > t),

f0,0(ϑ) = lim
%→0

%−1P (t < T3 ≤ t+ %)P (T1 > t, T2 > t|z1 = z1, z2 = z2;ϑ).

(C.6)
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Furthermore, if we use (C.5), equation (C.6) can be expressed as

f1,0(ϑ) = − ∂

∂t1
P (T1 > t1, T2 > t|z1 = z1, z2 = z2)

∣∣∣
t1=t

ST3(t),

f0,1(ϑ) = − ∂

∂t2
P (T1 > t, T2 > t1|z1 = z1, z2 = z2)

∣∣∣
t2=t

ST3(t),

f0,0(ϑ) = P (T1 > t, T2 > t|z1 = z1, z2 = z2;ϑ)fT (t),

where ST3(t) = P (T > t) and fT (t) = %−1P (t < T3 ≤ t + %). Finally, since

S(t1, t2|z;ϑ) = C [S1(t1|z1;γ1), S2(t2|z2;γ2); θ] and Sν(tν |zν ;γν) = Gν [ξν(tν , zν ;γν)],

we obtain

f1,0(ϑ) =
[
−∂C {G1[ξ1(t, z1;γ1)],G2[ξ2(t, z2;γ2)]; θ}

∂G1[ξ1(t, z1;γ1)] G ′1[ξ1(t, z1;γ1)]∂ξ1(t, z1;γ1)
∂t

]

× ST3(t),

f0,1(ϑ) =
[
−∂C {G1[ξ1(t, z1;γ1)],G2[ξ2(t, z2;γ2)]; θ}

∂G2[ξ2(t, z2;γ2)] G ′2[ξ2(t, z2;γ2)]∂ξ2(t, z2;γ2)
∂t

]

× ST3(t),

f0,0(ϑ) =C {G1[ξ1(t, z1;γ1)],G2[ξ2(t, z2;γ2)]; θ} × fT3(t),

as required.

Remark 4. The proof that fy,δ1,δ2|z1,z2(t, l1, l2|z1, z2) can be calculated directly

from the joint survival function of the latent survival times (equation (C.5)) is due

to Tsiatis (1975). His result was formulated in the context of competing risks when

no covariates are included.

Theorem 5 (Local Identification Condition)

Proof. Let us define fy,δ1,δ2(ϑ) and f ′
y,δ1,δ2(ϑ) as the shorthand notations of

fy,δ1,δ2|z1,z2(·, l1, l2|z1, z2;ϑ) and ∂fy,δ1,δ2|z1,z2(·, l1, l2|z1, z2;ϑ)
∂ϑ

∣∣∣∣∣
ϑ=ϑ0

, respectively. Since,

by hypothesis, we know that the rank of f ′
y,δ1,δ2(ϑ) is equal to p, the matrix
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f ′y,δ1,δ2(ϑ)f ′y,δ1,δ2(ϑ)T is symmetric and the nonnegative square root φ of its smallest

eigenvalue φ2 is positive. Therefore, for h ∈ Rp, we have that
∥∥∥f ′

y,δ1,δ2(ϑ)h
∥∥∥ ≥ ‖φh‖,

where ‖·‖ is the euclidean norm. On the other hand, because fy,δ1,δ2(ϑ) is differen-

tiable at ϑ0, we have

lim
h→0

∥∥∥fy,δ1,δ2(ϑ0 + h)− fy,δ1,δ2(ϑ0)− f ′
y,δ1,δ2(ϑ)h

∥∥∥
‖h‖

= 0.

This implies that there exists a ε > 0 such that, for all ‖ϑ− ϑ0‖ < ε, with ϑ 6= ϑ0,

we have ∥∥∥fy,δ1,δ2(ϑ)− fy,δ1,δ2(ϑ0)− f ′
y,δ1,δ2(ϑ)(ϑ− ϑ0)

∥∥∥
‖ϑ− ϑ0‖

< φ.

Let us write
∥∥∥fy,δ1,δ2(ϑ)− fy,δ1,δ2(ϑ0)− f ′

y,δ1,δ2(ϑ)(ϑ− ϑ0)
∥∥∥∥∥∥f ′

y,δ1,δ2(ϑ)(ϑ− ϑ0)
∥∥∥ =

∥∥∥fy,δ1,δ2(ϑ)− fy,δ1,δ2(ϑ0)− f ′
y,δ1,δ2(ϑ)(ϑ− ϑ0)

∥∥∥
‖ϑ− ϑ0‖

‖ϑ− ϑ0‖∥∥∥f ′
y,δ1,δ2(ϑ)(ϑ− ϑ0)

∥∥∥ .

Since ‖ϑ− ϑ0‖∥∥∥f ′
y,δ1,δ2(ϑ)(ϑ− ϑ0)

∥∥∥ ≤ 1
φ
, then

∥∥∥fy,δ1,δ2(ϑ)− fy,δ1,δ2(ϑ0)− f ′
y,δ1,δ2(ϑ)(ϑ− ϑ0)

∥∥∥∥∥∥f ′
y,δ1,δ2(ϑ− ϑ0)

∥∥∥ <

1. This implies that fy,δ1,δ2(ϑ) 6= fy,δ1,δ2(ϑ0). Therefore ϑ0 is locally identified on

the neighbourhood {ϑ ∈ S : ‖ϑ− ϑ0‖ < ε}, as required.

Remark 5. This result follows from the implicit function theorem, and can be

found in (e.g., Chen et al., 2014; Stanghellini et al., 2013; Bekker, 1989). In

particular, we have adapted the proof proposed by Chen et al. (2014) to our case.

Remark 6. As pointed out by Bekker & Wansbeek (2001), local identification

is related to the existence of a consistent estimator. That is, if ϑ0 is locally

not identified, there exist vectors ϑ arbitrarily close to ϑ0 with ϑ0 6= ϑ and
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fY,δ|z1,z2(·, l|z1, z2;ϑ0) = fY,δ|z1,z2(·, l|z1, z2;ϑ) for l = 0, 1 and for almost every

(y, z1, z2). Therefore, in general, exact knowledge of fY,δ|z1,z2(·, l|z1, z2;ϑ0) is not

sufficient to distinguish between ϑ0 and ϑ. Suppose that ϑ̂ is an estimator of ϑ. Its

limit distribution is a function of fY,δ|z1,z2(·, l|z1, z2;ϑ0), therefore exact knowledge

of this distribution function is not enough to distinguish between ϑ0 and ϑ. This

means that ϑ0 can not be expressed as a function of the large sample distribution

of ϑ̂. In particular, ϑ0 can not be expressed as the probability limit of ϑ̂. On

the contrary, if ϑ0 is locally identified, and if the parameter space is restricted to

a sufficiently small open neighbourhood of ϑ0, fY,δ|z1,z2(·, l|z1, z2;ϑ0) corresponds

uniquely to a single value ϑ0 = ϑ.

C.2 Dependent censoring Score and Hessian

In this section, the detailed derivations of the Score and the Hessian for the

dependent censoring model are presented.

C.2.1 Dependent censoring Score

First, let us define f1,0(ϑ), f0,1(ϑ) and f0,0(ϑ) as the shorthand notations for

fy,δ1,δ2|z1,z2(t, 1, 0|z1, z2;ϑ), fy,δ1,δ2|z1,z2(t, 0, 1|z1, z2;ϑ) and fy,δ1,δ2|z1,z2(t, 0, 0|z1, z2;ϑ).

As discussed in section 4, the penalised log-likelihood function of ϑ = (γ1,γ2, θ) is

`p(ϑ) = `(ϑ)− 1
2ϑ

TΛϑ, (C.7)

`(ϑ) =
n∑
i=1

[δ1i log f1,0(ϑ) + δ2i log f0,1(ϑ) + δ3if0,0(ϑ)] , (C.8)
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f1,0(ϑ) = −∂C {G1[ξ1(t, z1;γ1)],G2[ξ2(t, z2;γ2)]; θ}
∂G1[ξ1(t, z1;γ1)] G ′1[ξ1(t, z1;γ1)]∂ξ1(t, z1;γ1)

∂t
,

f0,1(ϑ) = −∂C {G1[ξ1(t, z1;γ1)],G2[ξ2(t, z2;γ2)]; θ}
∂G2[ξ2(t, z2;γ2)] G ′2[ξ2(t, z2;γ2)]∂ξ2(t, z2;γ2)

∂t
,

f0,0(ϑ) = C {G1[ξ1(t, z1;γ1)],G2[ξ2(t, z2;γ2)]; θ} .

(C.9)

Then, the penalised score, ∇ϑ`p(ϑ), of (C.7) can be calculated as

∇ϑ`p(ϑ) = ∇ϑ`(ϑ)− ϑΛ, (C.10)

∇ϑ`(ϑ) =
n∑
i=1

[
δ1i

f1,0(ϑ)
∂f1,0(ϑ)
∂ϑ

+ δ2i

f0,1(ϑ)
∂f0,1(ϑ)
∂ϑ

+ δ3i

f0,0(ϑ)
∂f0,0(ϑ)
∂ϑ

]
. (C.11)

For l1, l2 = 0, 1, we can write

∂fl1,l2(ϑ)
∂ϑ

=



∂fl1,l2(ϑ)
∂γ1

∂fl1,l2(ϑ)
∂γ2

∂fl1,l2(ϑ)
∂θ


. (C.12)

Then, (C.20) becomes in

∇ϑ`(ϑ) =
n∑
i=1

δ1i

f1,0(ϑ)



∂f0,1(ϑ)
∂γ1

∂f0,1(ϑ)
∂γ2

∂f0,1(ϑ)
∂θ


+

n∑
i=1

δ2i

f0,1(ϑ)



∂f0,1(ϑ)
∂γ1

∂f0,1(ϑ)
∂γ2

∂f0,1(ϑ)
∂θ


+

n∑
i=1

δ3i

f0,0(ϑ)



∂f0,0(ϑ)
∂γ1

∂f0,0(ϑ)
∂γ2

∂f0,0(ϑ)
∂θ


.

(C.13)
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In particular, for f1,0(ϑ), we have



∂f1,0(ϑ)
∂γ1

∂f1,0(ϑ)
∂γ2

∂f1,0(ϑ)
∂θ


= −



∂2C

∂G2
1

∂G1

∂ξ1

∂G1

∂ξ1

∂ξ1

∂t

∂ξ1

∂γ1
+ ∂C

∂G1

∂G2
1

∂ξ2
1

∂ξ1

∂t

∂ξ1

∂γ1
+ ∂C

∂G1

∂G1

∂ξ1

∂ξ2
1

∂t∂γ1

∂2C

∂G1∂G2

∂G1

∂ξ1

∂G2

∂ξ2

∂ξ1

∂t

∂ξ2

∂γ2

∂2C

∂G1∂θ

∂G1

∂ξ1

∂ξ1

∂t


.

(C.14)

Similarly, f0,1(ϑ), we obtain



∂f0,1(ϑ)
∂γ1

∂f0,1(ϑ)
∂γ2

∂f0,1(ϑ)
∂θ


= −



∂2C

∂G2∂G1

∂G1

∂ξ1

∂G2

∂ξ2

∂ξ2

∂t

∂ξ1

∂γ1

∂2C

∂G2
2

∂G2

∂ξ2

∂G2

∂ξ2

∂ξ2

∂t

∂ξ2

∂γ2
+ ∂C

∂G2

∂G2
2

∂ξ2
2

∂ξ2

∂t

∂ξ2

∂γ2
+ ∂C

∂G2

∂G2

∂ξ2

∂ξ2
2

∂t∂γ2

∂2C

∂G2∂θ

∂G2

∂ξ2

∂ξ2

∂t


.

(C.15)

Finally, if f0,0(ϑ) is observed, then



∂f0,0(ϑ)
∂γ1

∂f0,0(ϑ)
∂γ2

∂f0,0(ϑ)
∂θ


=



∂C

∂G1

∂G1

∂ξ1

∂ξ1

∂γ1

∂C

∂G2

∂G2

∂ξ2

∂ξ2

∂γ2

∂C

∂θ


. (C.16)

If we define Ψν = ∂Gν
∂ξν

∂ξν
∂t

, ∆ν =
[
Ψν

∂2C

∂G2
ν

∂Gν
∂ξν

+ ∂C

∂Gν
∂G2

ν

∂ξ2
ν

∂ξν
∂t

]
, Ων =

[
∂C

∂Gν
∂Gν
∂ξν

]

and Υν =
[
Ψν

∂2C

∂Gν∂Gω
∂Gω
∂ξω

]
,

with ν = 1, 2, ω = 1, 2 and ν 6= ω, equations (C.14), (C.15) and (C.16) can be
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written as



∂f1,0(ϑ)
∂γ1

∂f1,0(ϑ)
∂γ2

∂f1,0(ϑ)
∂θ


= −



∆1
∂ξ1

∂γ1
+ Ω1

∂ξ2
1

∂t∂γ1

Υ1
∂ξ2

∂γ2

Ψ1
∂2C

∂G1∂θ


,



∂f0,1(ϑ)
∂γ1

∂f0,1(ϑ)
∂γ2

∂f0,1(ϑ)
∂θ


= −



Υ2
∂ξ1

∂γ1

∆2
∂ξ2

∂γ2
+ Ω2

∂ξ2
2

∂t∂γ2

Ψ2
∂2C

∂G2∂θ


,



∂f0,0(ϑ)
∂γ1

∂f0,0(ϑ)
∂γ2

∂f0,0(ϑ)
∂θ


=



Ω1
∂ξ1

∂γ1

Ω2
∂ξ2

∂γ2

∂C

∂θ


.

(C.17)

In addition, ∂ξν(γν)
∂γν

and ∂
2ξν(γν)
∂t∂γν

can be calculated using the following expressions

∂ξν(γν)
∂γνkν

=


Q4ν0(t) if γνkν = γν0

Qνkν (zνkν ) otherwise,

∂2ξν(γν)
∂t∂γνkν

=


Q4

′

ν0 (t) if γνkν = γν0

0 otherwise,
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where, Q4ν0(t), Q4
′

ν0 (t) and Qνkν (zνkν ) can be defined as

Q4ν0(t) =



∑Jν0
jν0=1Qν0jν0(t)[∑Jν0

jν0=2Qν0jν0(t)
]

exp (γν02)[∑Jν0
jν0=3Qν0jν0(t)

]
exp (γν03)

...

Qν0Jν0(t) exp (γν0Jν0)


, Qνkν (zνkν ) =



Qνkν1(zνkν )

Qνkν2(zνkν )

Qνkν3(zνkν )
...

QνkνJνkν (zνkν )


,

Q4
′

ν0 (t) =



∑Jν0
jν0=1Q′

ν0jν0(t)[∑Jν0
jν0=2Q′

ν0jν0(t)
]

exp (γν02)[∑Jν0
jν0=3Q′

ν0jν0(t)
]

exp (γν03)
...

Q′
ν0Jν0(t) exp (γν0Jν0)


.

Therefore, for ν = 1, 2, ω = 1, 2 and ν 6= ω, ∆ν
∂ξν
∂γν

+ Ων
∂ξ2

ν

∂t∂γν
, Υν

∂ξω
∂γω

and

Ων
∂ξν
∂γν

can be written as

∆ν
∂ξν
∂γν

+ Ων
∂ξ2

ν

∂t∂γν
= −



∆ν

∆νQ4ν0(t) + ΩνQ4
′

ν0 (t)

∆νQν1(zν1)
...

∆νQνKν (zνKν )


, Υν

∂ξω
∂γω

= −



Υν

ΥνQ4ω0(t)

ΥνQω1(zω1)
...

ΥνQωKω(zωKω)


,

Ων
∂ξν
∂γν

=



Ων

ΩνQ4ν0(t)

ΩνQν1(zν1)
...

ΩνQνKν (zνKν )


.

(C.18)
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C.2.2 Dependent censoring Hessian

The Hessian for the dependent censoring model can be written as

∇ϑϑ`p(ϑ) = ∇ϑϑ`(ϑ)−Λ, (C.19)

∇ϑϑ`(ϑ) =
n∑
i=1

[
δ1i

f1,0(ϑ)
∂2f1,0(ϑ)
∂ϑ∂ϑT −

δ1i

f1,0(ϑ)2
∂f1,0(ϑ)
∂ϑ

∂f1,0(ϑ)
∂ϑ

T]

+
n∑
i=1

[
δ2i

f0,1(ϑ)
∂2f0,1(ϑ)
∂ϑ∂ϑT −

δ2i

f0,1(ϑ)2
∂f0,1(ϑ)
∂ϑ

∂f0,1(ϑ)
∂ϑ

T]

+
n∑
i=1

[
δ3i

f0,0(ϑ)
∂2f0,0(ϑ)
∂ϑ∂ϑT −

δ3i

f0,0(ϑ)2
∂f0,0(ϑ)
∂ϑ

∂f0,0(ϑ)
∂ϑ

T]
.

(C.20)

For l1, l2 = 0, 1, we can write

∂2fl1,l2(ϑ)
∂ϑ∂ϑT =



∂2fl1,l2(ϑ)
∂γ1∂γT

1

∂2fl1,l2(ϑ)
∂γ1∂γT

2

∂2fl1,l2(ϑ)
∂γ1∂θ

∂2fl1,l2(ϑ)
∂γ2∂γT

1

∂2fl1,l2(ϑ)
∂γ2∂γT

2

∂2fl1,l2(ϑ)
∂γ2∂θ

∂2fl1,l2(ϑ)
∂θ∂γ1

∂2fl1,l2(ϑ)
∂θ∂γ2

∂2fl1,l2(ϑ)
∂θ2


. (C.21)

For f0,0(ϑ), we have

∂2f0,0(ϑ)
∂γν∂γT

ν

=
[
∂2C

∂G2
ν

(
∂Gν
∂ξν

)2
+ ∂C

∂Gν
∂G2

ν

∂ξ2
ν

]
∂ξν
∂γν

[
∂ξν
∂γν

]T
+ ∂C

∂Gν
∂Gν
∂ξν

∂2ξν
∂γν∂γT

ν

∂2f0,0(ϑ)
∂γν∂γT

ω

= ∂2C

∂Gν∂Gω
∂Gν
∂ξν

∂Gω
∂ξω

∂ξν
∂γν

[
∂ξω
∂γω

]T

∂2f0,0(ϑ)
∂γν∂θ

= ∂2C

∂Gν∂θ
∂Gν
∂ξν

∂ξν
∂γν

∂2f0,0(ϑ)
∂θ2 = ∂2C

∂θ2

(C.22)
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For f1,0(ϑ) and f0,1(ϑ), let us write fl1,l2(ϑ)l1 6=l2 = − ∂C
∂Gν

∂Gν
∂ξν

∂ξν
∂t

. Then, for

ν = 1, 2, ω = 1, 2 and ν 6= ω, we have

∂2fl1,l2(ϑ)l1 6=l2
∂γν∂γT

ν

=−
{[

∂3C

∂G3
ν

(
∂Gν
∂ξν

)3∂ξν
∂t

+ 2∂
2C

∂G2
ν

∂G2
ν

∂ξ2
ν

∂Gν
∂ξν

∂ξν
∂t

+ ∂2C

∂G2
ν

∂G2
ν

∂ξ2
ν

∂Gν
∂ξν

+ ∂C

∂Gν
∂G3

ν

∂ξ3
ν

]

× ∂ξν
∂γν

[
∂ξν
∂γν

]T

+
[
∂2C

∂G2
ν

(
∂Gν
∂ξν

)2∂ξν
∂t

+ ∂C

∂Gν
∂2Gν
∂ξ2

ν

]
∂2ξν

∂γν∂γT
ν

+
[
∂C

∂Gν
∂Gν
∂ξν

]
∂3ξν

∂t ∂γν∂γT
ν

+
[
2∂

2C

∂G2
ν

(
∂Gν
∂ξν

)2
+ ∂C

∂Gν
∂2Gν
∂ξ2

ν

]
∂ξν
∂γν

[
∂2ξν
∂t∂γν

]T}

∂2fl1,l2(ϑ)l1 6=l2
∂γω∂γT

ω

=−
{[

∂3C

∂Gν∂G2
ω

(
∂Gω
∂ξω

)2∂Gν
∂ξν

∂ξν
∂t

+ ∂2C

∂Gν∂Gω
∂G2

ω

∂ξ2
ω

∂Gν
∂ξν

∂ξν
∂t

]
∂ξω
∂γω

[
∂ξω
∂γω

]T

+
[

∂2C

∂Gν∂Gω
∂Gω
∂ξω

∂Gν
∂ξν

∂ξν
∂t

]
∂2ξω

∂γω∂γT
ω

}

∂2fl1,l2(ϑ)l1 6=l2
∂γν∂γT

ω

=−
{[

∂3C

∂Gν∂G2
ω

(
∂Gν
∂ξν

)2∂Gω
∂ξω

∂ξν
∂t

+ ∂2C

∂Gν∂Gω
∂G2

ν

∂ξ2
ν

∂Gω
∂ξω

∂ξν
∂t

]
∂ξν
∂γν

[
∂ξω
∂γω

]T

+
[

∂2C

∂Gν∂Gω
∂Gν
∂ξν

∂Gω
∂ξω

]
∂ξν

∂t ∂γν

[
∂ξω
∂γω

]T}

∂2fl1,l2(ϑ)l1 6=l2
∂γν∂θ

=−
{[

∂3C

∂G2
ν∂θ

(
∂Gν
∂ξν

)2∂ξν
∂t

+ ∂2C

∂Gν∂θ
∂G2

ν

∂ξ2
ν

∂ξν
∂t

]
∂ξν
∂γν

+
[
∂2C

∂Gν∂θ
∂Gν
∂ξν

]
∂2ξν
∂ t∂γν

}

∂2fl1,l2(ϑ)l1 6=l2
∂γω∂θ

=−
[

∂3C

∂Gν∂Gω∂θ
∂Gω
∂ξω

∂Gν
∂ξν

∂ξν
∂t

]
∂ξω
∂γω

∂2fl1,l2(ϑ)l1 6=l2
∂θ2 =−

[
∂3C

∂Gν∂θ2
∂Gν
∂ξν

∂ξν
∂t

]
(C.23)
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In addition, ∂2ξν
∂γν∂γ>ν

and ∂3ξν
∂t ∂γν∂γ>ν

can be obtained using the following equations

∂2ξν
∂γνkν∂γ

>
νsν

=


Q44ν0 (t) if γνkν = γνsν = γν0

0 otherwise,

∂3ξν
∂t∂γνkνγ

>
νsν

=


Q44

′

ν0 (t) if γνkν = γνsν = γν0

0 otherwise,

where Q44ν0 (t) and Q44
′

ν0 (t) can be calculated as

Q44ν0 (t) =


∂2ξν

∂γν0jν0∂γν0kν0

=
[∑Jν0

jν0 Qν0jν0(t)
]

exp (γν0jν0) if j = k 6= 1

∂2ξν
∂γν0jν0∂γν0kν0

= 0 otherwise,

Q44
′

ν0 (t) =


∂3ξν

∂tγν0jν0∂γν0kν0

=
[∑Jν0

jν0 Q
′
ν0jν0(t)

]
exp (γν0jν0) if j = k 6= 1

∂3ξν
∂tγν0jν0∂γν0kν0

= 0 otherwise.

C.3 Proof of the asymptotic properties of ϑ̂

This section provides the proof of the asymptotic properties of ϑ̂. This follows the

same arguments to prove the asymptotic properties of α̂ and γ̂ (Theorems 1 and 2

in Appendix C). Let us write the log-likelihood function as

`(ϑ) =
n∑
i=1

log
[
fy,δ1,δ2|z1,z1(yi, δ1i, δ1i|z1i, z2i;ϑ)

]
. (C.24)

Let `n(ϑ) = n−1∑n
i=1 log f(wi,ϑ), where f(wi,ϑ) = fy,δ1,δ2|z1,z1(yi, δ1i, δ1i|z1i, z2i;ϑ)

with wi = (yi, z>1i, z>2i)> ∈ R+×Rp1 ×Rp2 , and R+ = (0,∞). Moreover, `(wi;ϑ) =

log f(wi,ϑ), ∇ϑ`(wi;ϑ) = ∂`(wi;ϑ)
∂ϑ

, ∇ϑ`n(ϑ) = ∂`n(ϑ)
∂ϑ

, ∇ϑϑ`(wi;ϑ) = ∂2`(wi;ϑ)
∂ϑ∂ϑ>
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and ∇ϑϑ`n(ϑ) = ∂2`n(ϑ)
∂ϑ∂ϑ>

. The penalised log-likelihood is `p(ϑ) = `n(ϑ)− 1
2ϑ
>Λϑ.

Finally, ϑ0 denotes the true vector of parameters.

Set of Assumptions 2 [Regularity conditions and vanishing penalty]

(C1) The true parameters vector ϑ0 is in the interior of Sϑ ⊆ Rp, which is a

compact set, and Oϑ0 is an open neighbourhood around ϑ0.

(C2) For all wi, f(wi;ϑ) is continuous in ϑ. Also, f(wi;θ) is measurable in wi

for all ϑ ∈ Sϑ.

(C3) The model is identified. That is, for l1, l2 = 0, 1 and for almost every

(t, z1, z2), fy,δ1,δ2|z1,z2(t, l1, l2|z1, z2;ϑ0) = fy,δ1,δ2|z1,z2(t, l1, l2|z1, z2;ϑ) implies

ϑ0 = ϑ, for any ϑ in Sϑ. In addition, E{supϑ∈Sϑ |`(wi;ϑ)|} <∞.

(C4) For all wi, f(wi;ϑ) is three times continuously differentiable in ϑ in an open

neighbourhood around ϑ0. That is f(wi;ϑ) ∈ C3(Oϑ0).

(C5)
∫
supϑ∈Oϑ0 ‖∇ϑ`(wi;ϑ)‖ dwi <∞ and

∫
supϑ∈Oϑ0 ‖∇ϑϑ`(wi;ϑ)‖ dwi <∞.

(C6) For ϑ ∈Oϑ0 , I(ϑ0) = Cov{∇ϑ`(wi;ϑ)} = E{{∇ϑ`(wi;ϑ0)−E[∇ϑ`(wi;ϑ0)]}

{∇ϑ`(wi;ϑ0)− E[∇ϑ`(wi;ϑ0)]}>} exists and is positive-definite.

(C7) For all 1 ≤ e, f, h ≤ p, there exists a function φ : R+×Rp1 ×Rp2 −→ R such

that, for ϑ ∈ Oϑ0 and wi ∈ R+ × Rp1 × Rp2 ,
∣∣∣∣∣ ∂3`(wi;ϑ)
∂ϑe∂ϑf∂ϑh

∣∣∣∣∣ ≤ φ(wi), with

E[φ(wi)] <∞.

(C8) The penalties vanish as the sample size n goes to infinite. That is λ =

o(n−1/2)1.

Theorem 6 (Asymptotic properties of the DCPMLE estimator).

Proof. See the proof of Theorem 1 in Appendix C.
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C.4 Independent censoring log-likelihood func-

tion

In this section we show how the sub-densities functions are built when it is assumed

that the censoring mechanism is stochastically independent. Then we will use

these sub-densities to construct the log-likelihood function.

Suppose that Y = min {T1, T2, T3} ∈ R+, and the censoring indicators δ1 =

I {Y = T1} and δ2 = I {Y = T2} are observed. If we assume that the censoring is

independent, the sub-density function fY,δ1,δ2|z1,z2(·, ·, ·|z1, z2;γ) of (Y, δ1, δ2) given

(z1, z2) = (z1, z2) and γ, when Y = T1, can be written as

fY,δ1,δ2|z1,z2(t, 1, 0|z1, z2;γ) = P (Y = t, δ1 = 1, δ2 = 0|z1 = z1, z2 = z2;γ),

= P (T1 = t, T2 > t, T3 > t|z1 = z1, z2 = z2;γ),

= fT1|z1(t|z1;γ1)P (T2 > t|z2;γ2)P (T3 > t),

= fT1|z1(t|z1;γ1)ST2|z2(t|z2;γ2)ST3(t).

(C.25)

Similarly, when Y = T2, we obtain

fY,δ1,δ2|z1,z2(t, 0, 1|z1, z2;γ) = P (Y = t, δ1 = 0, δ2 = 1|z1 = z1, z2 = z2;γ),

= P (T1 > t, T2 = t, T3 > t|z1 = z1, z2 = z2;γ),

= fT2|z2(t|z2;γ1)P (T1 > t|z1;γ2)P (T3 > t),

= fT2|z2(t|z2;γ1)ST1|z1(t|z1;γ2)ST3(t).

(C.26)
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Finally, if Y = T3, then

fY,δ1,δ2|z1,z2(t, 0, 0|z1, z2;γ) = P (Y = t, δ1 = 0, δ2 = 0|z1 = z1, z2 = z2;γ),

= P (T1 > y, T2 > t, T3 = t|z1 = z1, z2 = z2;γ),

= P (T1 > t|z1;γ1)P (T2 > t|z2;γ2)fT3(t),

= ST1|z1(t|z1;γ1)ST2|z2(t|z2;γ2)fT3(t).

(C.27)

On the other hand, the joint density of (Y, δ1, δ2, z1, z2) can be written as fY,δ1,δ2z1,z2 =

fY,δ1,δ2|z1,z2fz1,z2 . Since fz1,z2 does not involve the model parameters, the likelihood

function can be formulated using the conditional density fY,δ1,δ2|z1,z2 . Let us assume

that the data consist of n random i.i.d. replications {(yi, δ1i, δ2i, z1i, z2i)}ni=1 of

(Y, δ1, δ2, z1, z2). This allows us to write the likelihood function for γ =
(
γT

1 ,γ
T
2

)T

as

L(γ) =
n∏
i=1

{[
fY,δ1,δ2|z1,z2(yi, 1, 0|z1i, z2i;γ)

]δ1i [
fY,δ1,δ2|z1,z2(yi, 0, 1|z1i, z2i;γ)

]δ2i

×
[
fY,δ1,δ2|z1,z2(yi, 0, 0|z1i, z2i;γ)

]1−δ1i−δ2i
}
.

Using (C.25), (C.26) and (C.27), we obtain

L(γ) =
n∏
i=1

{[
fT1|z1(yi|z1i;γ1)ST2|z2(yi|z2i;γ2)ST3(yi)

]δ1i

×
[
fT2|z2(yi|z2i;γ2)ST1|z1(yi|z1i;γ1)ST3(yi)

]δ2i

×
[
ST1|z1(yi|z1i;γ1)ST2|z2(yi|z2i;γ2)fT3(yi)

]1−δ1i−δ2i
}
.

(C.28)

Since hTν |zν (yi|zνi;γν) = fTν |zν (yi|zνi;γν)
STν |zν (yi|zνi;γν)

and ST3(yi) does not involve γ1 and γ2,
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the logarithm of equation (C.28) can be written as

`(γ) =
n∑
i=1

(δ1i + δ2i) log G1 [ξ1(yi, z1i;γ1)] + δ1i log
[
−G

′
1[ξ1(yi, z1i;γ1)]
G1[ξ1(yi, zνi;γ1)]

∂ξ1(yi, z1i;γ1)
∂yi

]

+ (1− δ1i − δ2i) log G1 [ξ1(yi, z1;γ1)]

+ (δ1i + δ2i) log G2 [ξ2(yi, z2i;γ2)] + δ2i log
[
−G

′
2[ξ2(yi, z2i;γ2)]
G2[ξ2(yi, z2i;γ2)]

∂ξ2(yi, z2i;γ2)
∂yi

]

+ (1− δ1i − δ2i) log G2 [ξ2(yi, z2;γ2)]
.

(C.29)

Finally, if (C.29) is rearranged, then

`(γ) =
n∑
i=1

log G1 [ξ1(yi, z1i;γ1)] + δ1i log
[
−G

′
1[ξ1(yi, z1i;γ1)]
G1[ξ1(yi, zνi;γ1)]

∂ξ1(yi, z1i;γ1)
∂yi

]

log G2 [ξ2(yi, z2i;γ2)] + δ2i log
[
−G

′
2[ξ2(yi, z2i;γ2)]
G2[ξ2(yi, z2i;γ2)]

∂ξ2(yi, z2i;γ2)
∂yi

].

C.5 Software details: gjrm() function

The models proposed in Section 5.6 can be employed via the gjrm() function

in the R package GJRM (Marra & Radice, 2020b). As an example, consider the

following call

eq1 <- u ~ s(u, bs = "mpi") + z1 + s(z2),

eq2 <- u ~ s(u, bs = "mpi") + z1 + s(z2),

out <- gjrm(list(eq1, eq2), data = data, surv = TRUE,

margins = c("PH", "PH"),cens1 = delta1, cens2 = delta2,

cens3 = 1-delta1-delta2, Model = "B",

BivD = "N", dep.cens = TRUE, gamlssfit = TRUE),
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where eql and eq2 are the two additive predictors of the dependent censoring

model. In these equations, s(u, bs = "mpi") represents the monotonic P-

spline function which models a transformation of the baseline survival function. As

for s(z2), the default is bs = "tp" (penalized low rank thin plate spline) with

k = 10 (number of basis functions) and m = 2 (order of derivatives). However,

argument bs can also be set to, for example, cr (penalized cubic regression

spline), ps (P-spline) and mrf (Markov random field), to name but a few. In

the gjrm function, surv = TRUE indicates that a survival model is fitted. The

arguments margin ="PH" and margin2 ="PH" specify the link functions for

the survival and censoring times, respectively. Table 4.1 shows the possible choices

for the links that have been implemented for this article. In this example, we

specify the proportional hazard link ("PH") for the two equations. The arguments

cens1 = delta1, cens2 = delta2 and cens3 =1-delta1-delta2 are

binary censoring indicators. In particular, cens1 = delta1 has to be equal

to 1 if the event occurred and 0 otherwise. Similarly, cens2 = delta has

to be equal to 1 if the dependent censoring occurred and 0 otherwise. When

both cens1 = delta1 and cens1 = delta2 are equal to zero, the argument

cens3 =1-delta1-delta2 captures the administrative censoring observations.

The option Model = "B" indicates that the model is bivariate. Argument BivD

= "N" represents the type of bivariate survival copula employed. The choices

considered in this work are Normal ("N"), Frank ("F"), Clayton ("C0"), Joe

("J0"), Student ("T"), Farlie-Gumbel-Morgenstern, ("FGM"), Ali-Mikhail-Haq

("AMH"), Plackett ("PL"), Gumbel ("G0") and Student-t ("T"). Moreover, if

dep.cens = "TRUE" then the dependence censored model is employed. Finally,

if gamlssfit = TRUE then gamlss univariate models are also fitted. This is

useful for obtaining starting values, for instance.
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C.6 Additional simulation results for DGP1 to

DGP14

DCPML: Survival Functions (S10) ICPMLE: Survival Functions (S10)
Bias RMSE Bias RMSE

DGP n=500 n=2000 n=500 n=2000 n=500 n=2000 n=500 n=2000

1 0.006 0.003 0.024 0.013 0.020 0.010 0.037 0.016

2 0.005 0.002 0.025 0.012 0.018 0.020 0.037 0.027

3 0.005 0.003 0.024 0.012 0.021 0.021 0.037 0.027

4 0.005 0.002 0.025 0.013 0.020 0.022 0.037 0.028

5 0.005 0.002 0.024 0.013 0.017 0.019 0.035 0.026

6 0.004 0.002 0.024 0.013 0.018 0.019 0.035 0.026

DCPML: Hazard Functions (h10) ICPMLE: Hazard Functions (h10)
Bias RMSE Bias RMSE

DGP n=500 n=2000 n=500 n=2000 n=500 n=2000 n=500 n=2000

1 0.039 0.022 0.100 0.052 0.071 0.085 0.115 0.098

2 0.038 0.022 0.119 0.053 0.063 0.078 0.115 0.098

3 0.036 0.022 0.097 0.051 0.069 0.082 0.107 0.093

4 0.037 0.021 0.101 0.054 0.067 0.082 0.112 0.095

5 0.033 0.021 0.096 0.052 0.059 0.071 0.118 0.098

6 0.038 0.023 0.126 0.053 0.062 0.075 0.107 0.091

Table C.1: Bias and root mean squared error (RMSE) for the hazard and survival functions
when DCPMLE and ICPMLE are fitted by applying the gjrm() function in GJRM to
dependent censoring survival data simulated according to DGPs 1 to 6 defined in Table 5.2.
Bias and RMSE for the smooth terms are calculated, respectively, as n−1

s

∑ns
i=1 |¯̂si−si| and

n−1
s

∑ns
i=1

√
n−1
rep
∑nrep
rep=1 (ŝrep,i − si)2, where ¯̂si = n−1

rep

∑nrep
rep=1 ŝrep,i, ns is the number of

equally spaced fixed values in the (0, 8) or (0, 1) range, and nrep is the number of simulation
replicates. In this case, ns = 200 and nrep = 1000. The bias for the smooth terms is based
on absolute differences in order to avoid compensating effects when taking the sum.
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DCPMLE: Kendall Tau (τ)
Bias RMSE

DGP n=500 n=2000 n=500 n=2000

1 0.051 0.015 0.095 0.040

2 0.052 0.019 0.108 0.043

3 0.063 0.031 0.102 0.048

4 0.053 0.023 0.137 0.059

5 0.066 0.035 0.169 0.075

6 0.086 0.065 0.199 0.105

Table C.2: Bias and root mean squared error
(RMSE) for the Kendall Tau obtained by apply-
ing the gjrm() function in GJRM to dependent
censoring survival data simulated according to
DGPs 1 to 6 defined in Table 5.2.

DCPML: Parametric Effects (γ11) ICPMLE: Parametric Effects (γ11)
Bias RMSE Bias RMSE

DGP n=500 n=2000 n=500 n=2000 n=500 n=2000 n=500 n=2000

7 -0.019 0.004 0.144 0.073 -0.082 -0.069 0.161 0.098

8 -0.060 0.005 0.150 0.065 -0.127 -0.087 0.200 0.108

9 0.122 0.067 0.325 0.153 -1.588 -1.546 1.634 1.556

10 0.029 0.024 0.149 0.069 -0.293 -0.278 0.330 0.287

11 0.095 0.051 0.347 0.160 -1.210 -1.163 1.248 1.173

12 0.013 0.027 0.137 0.074 -0.296 -0.282 0.328 0.291

13 0.001 0.006 0.111 0.054 -0.035 -0.032 0.116 0.063

14 0.010 0.015 0.116 0.058 -0.050 -0.044 0.124 0.072

DCPML: Smooth Effects (s11) ICPMLE: Smooth Effects (s11)
Bias RMSE Bias RMSE

DGP n=500 n=2000 n=500 n=2000 n=500 n=2000 n=500 n=2000

7 0.030 0.017 0.139 0.071 0.033 0.023 0.140 0.073

8 0.028 0.017 0.119 0.071 0.032 0.026 0.120 0.075

9 0.028 0.018 0.151 0.077 0.042 0.039 0.164 0.091

10 0.029 0.019 0.129 0.067 0.041 0.051 0.147 0.090

11 0.032 0.019 0.153 0.077 0.048 0.045 0.161 0.092

12 0.028 0.019 0.130 0.036 0.028 0.036 0.140 0.081

13 0.024 0.016 0.126 0.064 0.018 0.010 0.125 0.065

14 0.031 0.019 0.126 0.068 0.020 0.014 0.125 0.067

Table C.3: Bias and root mean squared error (RMSE) for parametric and smooth effects when
DCPMLE and ICPMLE are fitted by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGPs 7 to 14 defined in Table 5.2. Further
details are given in the caption of Table C.1.
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DCPML: Survival Functions (S10) ICPMLE: Survival Functions (S10)
Bias RMSE Bias RMSE

DGP n=500 n=2000 n=500 n=2000 n=500 n=2000 n=500 n=2000

7 0.003 0.003 0.024 0.012 0.016 0.017 0.035 0.025

8 0.004 0.004 0.022 0.012 0.022 0.020 0.037 0.027

9 0.005 0.002 0.025 0.013 0.023 0.021 0.037 0.028

10 0.005 0.002 0.024 0.012 0.021 0.020 0.037 0.027

11 0.005 0.002 0.025 0.013 0.020 0.019 0.037 0.027

12 0.004 0.002 0.023 0.012 0.021 0.021 0.037 0.028

13 0.003 0.003 0.023 0.012 0.021 0.021 0.036 0.027

14 0.004 0.003 0.024 0.012 0.018 0.019 0.035 0.026

DCPML: Hazard Functions (h10) ICPMLE: Hazard Functions (h10)
Bias RMSE Bias RMSE

DGP n=500 n=2000 n=500 n=2000 n=500 n=2000 n=500 n=2000

7 0.030 0.019 0.138 0.049 0.056 0.065 0.128 0.092

8 0.031 0.022 0.069 0.052 0.080 0.072 0.103 0.097

9 0.039 0.022 0.148 0.053 0.054 0.069 0.124 0.089

10 0.032 0.021 0.093 0.050 0.065 0.074 0.111 0.095

11 0.039 0.021 0.108 0.052 0.060 0.053 0.114 0.091

12 0.033 0.020 0.920 0.050 0.073 0.082 0.105 0.096

13 0.030 0.022 0.890 0.050 0.072 0.080 0.100 0.091

14 0.036 0.024 0.102 0.050 0.062 0.073 0.101 0.089

Table C.4: Bias and root mean squared error (RMSE) for the hazard and survival functions
when DCPMLE and ICPMLE are fitted by applying the gjrm() function in GJRM to
dependent censoring survival data simulated according to DGPs 7 to 14 defined in Table
5.2. Further details are given in the caption of Table C.1.



150 C.6. Additional simulation results for DGP1 to DGP14

DCPMLE: Kendall Tau (τ)
Bias RMSE

DGP n=500 n=2000 n=500 n=2000

7 -0.026 -0.004 0.110 0.057

8 -0.031 0.008 0.142 0.048

9 0.068 0.027 0.115 0.049

10 0.064 0.033 0.109 0.050

11 0.052 0.018 0.123 0.049

12 0.032 0.028 0.100 0.046

13 0.012 0.025 0.169 0.061

14 0.074 0.076 0.226 0.117

Table C.5: Bias and root mean squared error
(RMSE) for the Kendall Tau obtained by applying
the gjrm() function in GJRM to dependent censor-
ing survival data simulated according to DGPs 7 to
14 defined in Table 5.2.
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Figure C.1: Parametric effects (γ11) when DCPMLE (τ = 0.7) and ICPMLE are fitted by
applying the gjrm() function in GJRM to dependent censoring survival data simulated according
to DGP7 (FGM copula), DGP8 (AMH copula) and DGP9 (Gumbel copula) defined in Table 5.2.
Circles indicate mean estimates while bars represent the estimates’ ranges resulting from 5% and
95% quantiles. True values are indicated by black solid horizontal lines. Black circles and vertical
bars refer to the results obtained for n = 500, whereas those for n = 2000 are given in blue.
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Figure C.2: Parametric effects (γ11) when DCPMLE (τ = 0.7) and ICPMLE are fitted by
applying the gjrm() function in GJRM to dependent censoring survival data simulated according
to DGP10 (Joe copula), DGP11 (Plakett copula) and DGP12 (Student copula) defined in Table
5.2. Further details are given in the caption of Figure C.1.
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Figure C.3: Parametric effects (γ11) when DCPMLE and ICPMLE are fitted by applying the
gjrm() function in GJRM to dependent censoring survival data simulated according to DGP13
(Gaussian copula and τ = 0.7) and DGP14 (Gaussian copula and τ = 0.4) defined in Table 5.2.
Further details are given in the caption of Figure C.1.
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Figure C.4: Estimates of the survival functions (first column, S10), hazard functions (second
column, h10) and smooth effects (third column, s11) for the DCPMLE (rows 1 and 3) and
ICPMLE (rows 2 and 4) obtained by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGP7 (Table 5.2). The results in the first and
second rows refer to n = 500, whereas that in the third and fourth rows to n = 2000. True
functions are represented by black solid lines, mean estimates by dashed lines and pointwise
ranges resulting from 5% and 95% quantiles by shaded areas.
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Figure C.5: Estimates of the survival functions (first column, S10), hazard functions (second
column, h10) and smooth effects (third column, s11) for the DCPMLE (rows 1 and 3) and
ICPMLE (rows 2 and 4) obtained by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGP8 (Table 5.2). Further details are given in the
caption of Figure C.4.
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Figure C.6: Estimates of the survival functions (first column, S10), hazard functions (second
column, h10) and smooth effects (third column, s11) for the DCPMLE (rows 1 and 3) and
ICPMLE (rows 2 and 4) obtained by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGP9 (Table 5.2). Further details are given in the
caption of Figure C.4.
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Figure C.7: Estimates of the survival functions (first column, S10), hazard functions (second
column, h10) and smooth effects (third column, s11) for the DCPMLE (rows 1 and 3) and
ICPMLE (rows 2 and 4) obtained by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGP10 (Table 5.2). Further details are given in
the caption of Figure C.4.
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Figure C.8: Estimates of the survival functions (first column, S10), hazard functions (second
column, h10) and smooth effects (third column, s11) for the DCPMLE (rows 1 and 3) and
ICPMLE (rows 2 and 4) obtained by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGP11 (Table 5.2). Further details are given in
the caption of Figure C.4.
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Figure C.9: Estimates of the survival functions (first column, S10), hazard functions (second
column, h10) and smooth effects (third column, s11) for the DCPMLE (rows 1 and 3) and
ICPMLE (rows 2 and 4) obtained by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGP12 (Table 5.2). Further details are given in
the caption of Figure C.4.
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Figure C.10: Estimates of the survival functions (first column, S10), hazard functions (second
column, h10) and smooth effects (third column, s11) for the DCPMLE (rows 1 and 3) and
ICPMLE (rows 2 and 4) obtained by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGP13 (Table 5.2). Further details are given in
the caption of Figure C.4.
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Figure C.11: Estimates of the survival functions (first column, S10), hazard functions (second
column, h10) and smooth effects (third column, s11) for the DCPMLE (rows 1 and 3) and
ICPMLE (rows 2 and 4) obtained by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGP14 (Table 5.2). Further details are given in
the caption of Figure C.4.
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Figure C.12: Kendall Tau coefficient (τ = 0.7) estimates obtained when DCPMLE is fitted by
applying the gjrm() function in GJRM to dependent censoring survival data simulated according
to DGP7 (FGM copula), DGP8 (AMH copula), DGP9 (Gumbel copula), DGP10 (Joe copula),
DGP11 (Plakett copula) and DGP12 (Student copula) defined in Table 5.2. Circles indicate mean
estimates while bars represent the estimates’ ranges resulting from 5% and 95% quantiles. True
values are indicated by black solid horizontal lines. Black circles and vertical bars refer to the
results obtained for n = 500, whereas those for n = 2000 are given in blue.
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Figure C.13: Kendall Tau coefficient estimates obtained when DCPMLE is fitted by applying the
gjrm() function in GJRM to dependent censoring survival data simulated according to DGP13
(Gaussian copula and τ = 0.7) and DGP14 (Gaussian copula and τ = 0.4) defined in Table 5.2.
Further details are given in the caption of Figure C.12.
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Figure C.14: Parametric effects (γ11) when DCPMLE (τ = 0.4) and ICPMLE are fitted by
applying the gjrm() function in GJRM to dependent censoring survival data simulated according
to DGP4 (Clayton copula), DGP5 (Frank copula) and DGP6 (Gaussian copula) defined in Table
5.2. Further details are given in the caption of Figure C.1.
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Figure C.15: Estimates of the survival functions (first column, S10), hazard functions (second
column, h10) and smooth effects (third column, s11) for the DCPMLE (rows 1 and 3) and
ICPMLE (rows 2 and 4) obtained by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGP2 (Table 5.2). Further details are given in the
caption of Figure C.4.
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Figure C.16: Estimates of the survival functions (first column, S10), hazard functions (second
column, h10) and smooth effects (third column, s11) for the DCPMLE (rows 1 and 3) and
ICPMLE (rows 2 and 4) obtained by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGP3 (Table 5.2). Further details are given in the
caption of Figure C.4.



164 C.6. Additional simulation results for DGP1 to DGP14

0 1 2 3 4 5 6 7

0
.0

0
.6

t1

S
1

0

0 1 2 3 4 5 6 7

0
.0

1
.0

t1

h
1

0
0.0 0.4 0.8

−
1
.5

0
.0

1
.5

z2

s
1

1

 DCPMLE and Sample Size = 500

0 1 2 3 4 5 6 7

0
.0

0
.6

t1

S
1

0

0 1 2 3 4 5 6 7

0
.0

1
.0

t1

h
1

0

0.0 0.4 0.8

−
1
.5

0
.0

1
.5

z2

s
1

1

  ICPMLE and Sample Size = 500 

0 1 2 3 4 5 6 7

0
.0

0
.6

t1

S
1

0

0 1 2 3 4 5 6 7

0
.0

1
.0

t1

h
1

0

0.0 0.4 0.8

−
1
.5

0
.0

1
.5

z2

s
1

1

  DCPMLE and Sample Size = 2000 

0 1 2 3 4 5 6 7

0
.0

0
.6

t1

S
1

0

0 1 2 3 4 5 6 7

0
.0

1
.0

t1

h
1

0

0.0 0.4 0.8

−
1
.5

0
.0

1
.5

z2

s
1

1

  ICPMLE and Sample Size = 2000 

Figure C.17: Estimates of the survival functions (first column, S10), hazard functions (second
column, h10) and smooth effects (third column, s11) for the DCPMLE (rows 1 and 3) and
ICPMLE (rows 2 and 4) obtained by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGP4 (Table 5.2). Further details are given in the
caption of Figure C.4.
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Figure C.18: Estimates of the survival functions (first column, S10), hazard functions (second
column, h10) and smooth effects (third column, s11) for the DCPMLE (rows 1 and 3) and
ICPMLE (rows 2 and 4) obtained by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGP5 (Table 5.2). Further details are given in the
caption of Figure C.4.
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Figure C.19: Estimates of the survival functions (first column, S10), hazard functions (second
column, h10) and smooth effects (third column, s11) for the DCPMLE (rows 1 and 3) and
ICPMLE (rows 2 and 4) obtained by applying the gjrm() function in GJRM to dependent
censoring survival data simulated according to DGP6 (Table 5.2). Further details are given in the
caption of Figure C.4.
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Figure C.20: Kendall Tau coefficient (τ = 0.4) estimates obtained when DCPMLE is fitted by
applying the gjrm() function in GJRM to dependent censoring survival data simulated according
to DGP4 (Clayton copula), DGP5 (Frank copula) and DGP6 (Gaussian copula) defined in Table
5.2. Further details are given in the caption of Figure C.12.
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Figure C.21: Smooth function estimates and their corresponding 95% intervals for Model 8 in
Table C.7 obtained by applying gjrm() in GJRM to prostate cancer data. The intervals have
been obtained using the approach described in Section 4.3.4.

C.7 Model Selection and Additional Results for

Section 5.7

Model Link T1 Link T2 τ AIC BIC

1 PH PH 0.472 3615.50 3727.02

2 PH probit 0.422 3616.59 3728.05

3 PH PO 0.455 3617.85 3729.39

4 PH PH - 3618.96 3730.15

5 PH probit - 3620.28 3731.60

6 PH PO - 3621.28 3732.57

Table C.6: Values of the model selection criteria (AIC and BIC)
for the best dependent (Models 1, 2 and 3) and indepen-
dent (Models 4, 5 and 6) censoring models fitted to the real
data application in Section 5.7. The dependent censoring mod-
els were fitted using a Gaussian copula and all the covariates
were included parametrically. The models were fitted using the
functions gamlss() and gjrm() in GJRM.
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