
of emerging high-dimensional technologies. In particular, single-cell methods offer 23 

considerable opportunities to analyse organoids at unprecedented scale and depth, 24 

enabling comprehensive characterisation of cellular processes and spatial 25 

organisation underpinning organoid heterogeneity. This review evaluates state-of-26 

the-art analytical methods applied to organoids, discusses the latest advances in 27 

single-cell technologies, and speculates on the integration of these two rapidly 28 

developing fields.  29 



Main Text 30 

Organoids at the Interface of Basic Biology and Translational Research 31 

Organoids are stem cell-based self-organising three-dimensional (3D) tissue 32 

models that are widely adopted as an intermediate culture system between 33 

traditional tissue culture and animal models. As a versatile experimental medium, 34 

organoids have been used to address diverse biological and clinical questions, 35 

ranging from basic stem cell and developmental biology [1,2] to disease modelling 36 

[3], drug screening [4,5], and rational design of personalised medicine [6]. 37 

 38 

Organoids can be generated from a variety of tissue origins, including adult stem 39 

cells, embryonic stem cells, induced pluripotent stem cells (iPSCs), and tumour 40 

biopsies [7]. In contrast to homogenous 2D cell lines and cell line-derived spheroids, 41 

organoids are self-organising heterocellular (see Glossary) systems capable of 42 

recapitulating physiologically relevant phenotypes of their tissue of origin [8]. When 43 

compared to animal models and clinical biopsies, the relative simplicity of 44 

organoids renders them more amenable to genetic modification, more compatible 45 



with high-throughput applications, and in general offers greater experimental 46 

flexibility [9] (Figure 1).  47 

 48 

Organoids are powerful biomimetic models able to recapitulate tissue architecture 49 

and functionality [7], but their utility has been limited by the availability of analytical 50 

tools that can generate representative and reproducible data from them. Traditional 51 

bulk technologies (e.g. western blotting, confocal microscopy) have been 52 

successfully applied to organoid research, but their low-dimensional readouts are 53 

unable to reveal finer details of organoid heterogeneity. To fully leverage the 54 

biological complexity of organoids, high-dimensional methodologies that enable 55 

the inspection of organoids at single-cell resolution are required. Here, we review 56 

state-of-the-art analytical methods that have been – or could be – applied to 57 

organoid research, evaluating their strengths and weaknesses in light of the 58 

biological questions being addressed. In particular, we will discuss the latest 59 

development in high-dimensional single-cell technologies and speculate on their 60 

integration into future organoid studies. 61 

 62 



Dimensionality of Data 63 

The concept of 'data dimensionality' can be ambiguous and warrants definition. 64 

Within the scope of this review, the distinction between low- and high-dimensional 65 

biological data concerns three aspects: 1) the number of cells analysed, 2) the 66 

number of parameters measured, and 3) the number of experimental conditions 67 

evaluated per assay (Figure 2). The dimensionality of a dataset is limited by its 68 

smallest dimension along these three axes. For example, bulk -omic analyses of 69 

organoid populations are considered low-intermediate dimensional due to the lack 70 

of single-cell resolution despite the richness of parameters being measured. 71 

Similarly, the dimensionality of florescent imaging approaches is limited by the 72 

number of parameters that can be measured per cell (typically <5). This definition 73 

also distinguishes high-dimensional and high-throughput applications — the latter 74 

not necessarily high-dimensional as the increased throughput may only be applied 75 

to one dimension. For example, high-throughput viability-based drug screens can 76 

measure a vast number of conditions but only with one parameter, live vs. dead. 77 

Finally, we do not consider multimodal analyses adding extra dimensions to our 78 



framework as extra modalities can be considered an extension of the parameter 79 

axis. 80 

 81 

There is a dichotomy of methods applied to organoid research: namely the 82 

‘population’ approach that considers organoids as constituents of a larger culture, 83 

and the ‘reductionist’ approach that treats organoids as self-organised cell 84 

assemblies. While the former is largely compatible with traditional bulk analysis 85 

(e.g. organoid viability drug screening [4,5]), the latter requires single-cell methods 86 

to capture organoid heterogeneity (e.g. cell-type and cell-state specific signalling 87 

analysis of organoids [10]) (Figure 2). No single tool is optimal for all applications 88 

— the selection of experimental methods should always be determined by the 89 

biological question being addressed, and multiple tools may be needed to tackle 90 

the same problem from different angles. 91 

 92 

Low-intermediate Dimensional Organoid Analysis 93 

During the last decade, organoid technology has undergone unprecedented 94 

technical advances to occupy a unique niche at the interface of basic science and 95 



translational research (Figure 1). Despite its increasing complexity, the core idea of 96 

the technology is that organoids are miniature organs that can be used as proxies 97 

of their tissues of origin, recapitulating their histological and pathological 98 

characteristics. Given their role as tissue models, low-dimensional methods 99 

routinely used for analysing tissues have been applied to organoid characterisation 100 

and led to significant biological insights. 101 

 102 

Organoid Imaging 103 

In its simplest and most widely adopted form, organoids are cultured in an 104 

extracellular matrix (ECM) such as Matrigel, collagen, or polyethylene glycol (PEG) 105 

hydrogel [11]. The semi-transparency of the matrices allows direct inspection of 106 

organoids in a non-intrusive way, enabling direct interpretation of the state of an 107 

organoid culture. Since organoids self-organise, their morphology can be indicative 108 

of their interaction with the ECM [12] as well as key developmental processes such 109 

as proliferation, differentiation, and morphogenesis [1,13]. In addition, the internal 110 

structure of organoids can be reconstructed via tissue clearing followed by high-111 

resolution 3D imaging [14]. When applied to cerebral organoids, Renner and 112 



colleagues demonstrated the presence and interconnectivity of distinct ventral and 113 

dorsal neuroepithelia as well as timed generation of differentiated neurons, 114 

confirming that the spatial-temporal patterning events that govern human brain 115 

development can be recapitulated in organoids [15]. Recent developments in deep 116 

convolutional neural networks (CNNs) have been applied to automated 117 

recognition and quantification of human intestinal organoids from brightfield 118 

images [16]. Future iterations of such imaging methods will parse organoids with 119 

more complicated structural features or even track the development of organoids 120 

over time, ideally at single-cell resolution [17]. This will lead to more comprehensive 121 

and standardised morphological characterisation of heterogenous organoid 122 

populations. 123 

 124 

Morphological analysis reveals that organoids structurally resemble their tissue of 125 

origin [15]. In order to demonstrate that the cellular composition is also preserved, 126 

histological profiling (e.g., H&E) and immunostaining (e.g., immunohistochemical 127 

(IHC), immunofluorescence (IF)) are the most routinely used tools. Whole-mount 128 

staining represents the structural complexity of organoids but can be obscured by 129 



the thickness of the sample [14], while imaging of organoid-derived monolayers 130 

solves this problem and enables luminal access to the otherwise enclosed structure 131 

[18,19]. Extensive efforts have been made to validate the histological fidelity of 132 

organoids regarding cell-type and cell-state compared to the tissue being modelled 133 

(e.g., brain [20], stomach [21], lung [22], and various cancers [5,23–25]). Despite that 134 

such analysis can only describe 2D cross-sections of organoids irrespective of their 135 

3D complexity, histology remains the cornerstone of organoid characterisation and 136 

underlies the paradigm of using organoids as ex vivo tissue models.  137 

 138 

Advances in high-resolution microscopy enable 3D imaging of entire organoids 139 

with single-cell resolution, opening opportunities for the inspection of organoid 140 

morphology and composition in its native spatial context [1,14]. High-content 141 

imaging (HCI) empowered by florescent light-sheet microscopy has been applied 142 

to time-course characterisation of intestinal organoids, enabling accurate 143 

reconstruction of their developmental trajectory [1,26]. Although florescent read-144 

outs limit the number of parameters measured by IF, a major advantage of HCI is 145 

the large number of conditions that can be assessed (>1000s). When incorporated 146 



into existing high-throughput organoid imaging platforms [4], HCI will further 147 

improve the consistency and accuracy of phenotypic organoid characterisation. 148 

 149 

Organoid Bulk Analysis 150 

Imaging technologies are useful for the examination of organoids with spatial 151 

resolution, but biological insights obtained from low-parameter florescent imaging 152 

alone can be limited. The ease of retrieving organoids from ECM ensures that 153 

established methods in molecular biology, biochemistry, and bulk next-generation 154 

sequencing (NGS) technologies can be applied to the analysis of organoid 155 

populations with minimal requirement for protocol adaptation, offering easily 156 

accessible avenues for mechanistic investigation (Figure 2).  157 

 158 

Bulk analysis technologies are useful when the biological question is not 159 

confounded by sample heterogeneity. In the case of organoids, this could include 160 

mutational profiles of clonal cancer patient-derived organoids demonstrated by 161 

whole-genome sequencing (WGS) [5,27] and whole-exome sequencing (WES) [3,25], 162 

CRISPR/Cas mediated genome editing confirmed by real-time PCR [28] and 163 



western blotting [29], drug screening based on the measurement of organoid 164 

population viability [4,5], or directed organoid differentiation analysed by bulk -165 

omic technologies [30]. In each case, experimental variables alter the majority of 166 

cells in an organoid population and the parameter metric can therefore be detected 167 

by bulk technologies.  168 

 169 

Bulk analysis can generate a high-level overview of organoid cultures and can be 170 

used as an intermediate step to identify key biological questions that may require 171 

higher-dimensional follow-up. However, a major caveat of applying bulk analytical 172 

methods to organoids is that they flatten a high-dimensional biological system into 173 

a single-layered readout, leading to the loss of cell-type and cell-state specific 174 

information underpinning organoid heterogeneity. In order to fully understand the 175 

complexity of organoids and to unleash their potential as biomimetic tissue models, 176 

robust and cost-effective high-dimensional technologies are required. 177 

 178 

Organoid Research in the Era of Single-cell Technology 179 



Imaging and bulk analysis have given rise to considerable understanding of 180 

organoid biology, justifying their utility as ex vivo tissue surrogates. In many cases, 181 

however, information obtained with low-dimensional technologies can be 182 

inadequate, as they fail to address one of the most fundamental features of 183 

organoid cultures – their heterogeneity – at a sufficient level to generate 184 

informative biological insight (Figure 3a). Recent advances in high-dimensional 185 

single-cell technologies have enriched the toolbox for organoid analysis, enabling 186 

systematic characterisation of their cellular composition [31], developmental 187 

trajectory [1], -omic landscapes [2], and cell signalling profiles [10] (Figure 3b). Here 188 

we review the latest developments in single-cell technologies, reflect on the 189 

perspective of their application to organoid studies, and discuss ongoing efforts 190 

aimed at integrating these two complementary fields. 191 

 192 

Single-cell Technologies Coming of Age 193 

Complex biological processes performed by multicellular organisms are regulated 194 

by -omic level molecular networks across multiple modalities [32]. A cell's genome 195 

dictates its genetic composition, whereas the proteome describes executors of its 196 



biological functions. The epigenome determines the cell's identity and function, 197 

which is also reflected in its transcriptome. Single-cell technologies aim to generate 198 

-omic scale profiles, describe cross-omic regulatory relationships, and, when 199 

combined with genetic engineering, deduce the causality between genotype and 200 

phenotype – all at the resolution of individual cells [33]. As complex heterocellular 201 

systems comprising multiple cell-types and cell-states simultaneously, organoids 202 

are uniquely placed to benefit from advances in single-cell technologies.  203 

 204 

Over the past decade, single-cell technologies have undergone substantial 205 

development, leading to a variety of methods able to profile cellular phenotypes 206 

across different modalities (Figure 4). Among all technologies, single-cell RNA-207 

sequencing (scRNA-seq) is the most established and widely used. While early 208 

versions of scRNA-seq protocols required manual isolation of individual cells [34], 209 

the introduction of plate-based protocols greatly increased sample throughput 210 

from the order of 10s to 100s of cells (e.g., Smart-seq2 / Smart-seq3 [35,36], CEL-211 

Seq2 [37]), and such methods have been successfully applied to organoid cells [2]. 212 

Advances in microfluidics and nanotechnology led to the development and 213 



commercialisation of droplet-based scRNA-seq platforms such as Drop-seq [38] 214 

and inDrop [39], where 1000s of single cells are partitioned into discrete nanolitre 215 

droplets, their mRNA being released, barcoded, and used for pooled cDNA library 216 

construction. One of the key limitations of droplet-based methods is that they are 217 

designed for viable cells to achieve best data quality, meaning that they may not 218 

be suitable for applications where prompt processing of fresh samples is not always 219 

possible. However, it has been recently demonstrated that droplet-based methods 220 

can generate robust data from single nuclei [40,41] or methanol-fixed cells [42], 221 

making them applicable to challenging samples such as frozen tissues and 222 

organoids [43]. In addition, the development of the subnanolitre well-based 223 

method Seq-Well enables efficient single cell partitioning at lower sample input 224 

compared to droplet-based methods [44], making it especially suitable for organoid 225 

applications where the amount of starting material can be limited. 226 

 227 

Taking an alternative approach, combinatorial single-cell indexing platforms based 228 

on split-and-pool DNA-barcoding strategies (e.g., SPLiT-seq [45], sci-RNA-seq [46], 229 

and sci-RNA-seq3 [47]) were invented to circumvent the process of physical 230 



encapsulation of single cells, offering a highly scalable workflow to characterise 231 

transcriptomes in complex tissues. For example, using sci-RNA-seq3, Cao and 232 

colleagues profiled the transcriptome of more than 2 million single cells and 233 

constructed a comprehensive developmental trajectory of mouse embryos staged 234 

between 9.5 and 13.5 days of gestation [47]. It is worth noting that both SPLiT-seq 235 

and sci-RNA-seq are compatible with fixed materials by design [45–47], meaning 236 

that they should be compatible with intracellular protein assays that require fully 237 

permeabilised cells as input. All of these features make split-pool barcoding scRNA-238 

seq strategies particularly well suited to organoids. Moreover, the integration of 239 

combinatorial single-cell indexing with oligo-tag sample multiplexing (e.g., MULTI-240 

seq [48],  ClickTag [49]) will essentially eliminate the upper limit of the number of 241 

cells and conditions that can be analysed in a single scRNA-seq assay.  242 

 243 

In addition to the transcriptome, single-cell technologies have enabled deep 244 

profiling of the genome [50], the proteome [51], the methylome [52,53], histone 245 

modification profiles [54,55], chromatin accessibility landscapes [56,57], and 246 

chromosome conformation [58] at varying coverage and throughput (Figure 4a). 247 



The maturation of these methods provides unique opportunities for integrative 248 

single-cell analysis, giving rise to holistic representations of cell-type and cell-state 249 

at the resolution of individual cells (Figure 4b). For example, by integrating scRNA-250 

seq, scATAC-seq and the split-pool barcoding strategy, Zhu and colleagues 251 

performed high-throughput single-cell profiling of the transcriptome and 252 

chromatin accessibility of fetal mouse forebrains. The multimodal approach allowed 253 

developmental trajectories to be inferred from regulatory relationships between 254 

cis-regulatory elements (CRE) and their putative target genes, which is not feasible 255 

when scRNA-seq or scATAC-seq is used alone or at lower throughput [59]. 256 

Although extremely powerful and high-dimensional, data generated from multi-257 

omic single-cell assays are usually sparse with limited coverage of the modals of 258 

interest [60] – this presents unique challenges and opportunities for computational 259 

approaches (refs [33] and [61] provide comprehensive reviews of this topic). To our 260 

knowledge, no multi-omic studies have been reported from organoids, suggesting 261 

the existence of an uncharted territory and exciting possibilities for new biological 262 

discoveries (Figure 4a).  263 

 264 



Although spatial-organisation and CRISPR-mediated genome editing are not 265 

classically considered as cellular modalities, recent efforts have pioneered 266 

integrative methods that can bring contextual and functional insight into high-267 

dimensional single-cell analysis [62–65] (Figure 4b). Spatial -omic technologies have 268 

been successfully applied to cerebral organoids [66], showing promise for high-269 

dimensional organoid characterisation in their native context. Of note, scRNA-seq 270 

occupies the central position in existing multimodal -omic technologies (Figure 4b), 271 

due to the ease of efficient RNA capture and cDNA amplification. We expect future 272 

multimodal technologies employing direct or indirect incorporation of oligo tags 273 

to label additional cellular modalities, making them capturable, amplifiable, and 274 

ultimately sequenceable [64,65]. Finally, from the perspective of data analysis, cell-275 

type information acquired from scRNA-seq can be used as a reference to interpret 276 

the other modalities, further highlighting its pivotal role in multi-omic technologies 277 

[33]. 278 

 279 

Data Analysis for Single-cell -Omic Technologies 280 



Single-cell technologies generate high-dimensional data that necessitates the 281 

development of novel data analysis pipelines (Figure 5a). As guidelines for single-282 

cell -omic data analysis have been extensively covered elsewhere (e.g., scRNA-seq 283 

[67,68], scDNA-seq [69], and scATAC-seq [70]), we will focus our discussion on 284 

approaches particularly relevant to organoid studies. 285 

 286 

Given the sparsity and increased dimensionality of single-cell datasets, one of the 287 

key steps of single-cell data analysis is feature selection based on data variance, 288 

aiming at increasing signal-to-noise ratio and reducing computational burdens 289 

[33,68]. The selection of meaningful biological features can be further aided by 290 

principal component analysis (PCA), which, together with t-SNE (t-distributed 291 

stochastic neighbour embedding) and UMAP (Uniform Manifold 292 

Approximation and Projection), make the most widely used dimensionality 293 

reduction tools to facilitate data visualisation and summarisation [68]. Different 294 

dimensionality reduction methods have different strengths and weaknesses. For 295 

example, t-SNE resolves distinct cell populations but fails to preserve global 296 

structure of the data, which can be readily represented by UMAP [71]. Given that 297 



organoids often contain differentiation trajectories, dimensional reduction 298 

techniques that maintain global structure are often preferable. Additional 299 

algorithms have been developed to preserve both local and global distances (e.g., 300 

SPRING [72], PHATE [73]), with the application of SPRING to human cerebral 301 

organoids successfully revealing development trajectories from pluripotent stem 302 

cells to cortical neurons [2]. The typical data analysis step following dimensionality 303 

reduction is to organise cells into clusters based on similarities of their measured 304 

profiles, where graph-based community detection methods such as the Louvain 305 

algorithm (and the improved Leiden algorithm [74]) are predominantly used. Using 306 

prior-knowledge databases as a reference, clusters can be annotated with specific 307 

cell-types and cell-states determined by differential gene expression, and then be 308 

used as anchor points for downstream data interpretation. Collectively, these 309 

computational methods can be used to clearly resolve discrete cell-types and cell-310 

states in single-cell organoid data.  311 

 312 

One of the most established applications of scRNA-seq analysis is lineage 313 

reconstruction via pseudotime analysis (e.g., PAGA [75], Slingshot [76]) and RNA 314 



velocity estimation [77]. The key assumption of these algorithms is that the 315 

biological system of interest contains cells encompassing a continuous 316 

developmental trajectory, which is also a definitive character of organoids. More 317 

specifically, the selection of pseudotime analysis methods depends on the structure 318 

of the expected trajectories (e.g. linear, bifurcating, or tree-shaped) [78]. For 319 

example, in order to identify the branch point between budding organoids and 320 

enterocysts, Serra and colleagues analysed the development of intestinal organoids 321 

using Wishbone [79], an algorithm designed to infer bifurcating trajectories that is 322 

well suited to their biological process of interest [1]. Finally, deep profiling of 323 

ligand-receptor expression and interaction enabled by algorithms such as  324 

CellPhone DB [80], CellChat [81], and NicheNet [82]  has enabled inference of cell-325 

cell communication in complex tissues [83,84]. Such methods will also be highly 326 

applicable to organoid co-cultures, where the key considerations will involve the 327 

selection of physiologically relevant cell-types to be modelled, the determination 328 

of the number of cells to be sequenced and the sequencing depth, and the 329 

inclusion of meaningful and comparable monoculture controls. 330 

 331 



For multi-omic technologies, the integration of different modalities (e.g. RNA and 332 

protein) can be performed at the data acquisition and/or data analysis stage(s) 333 

(Figure 5b). As each modality emphasises a particular aspect of the underlying 334 

biology, independent analysis of multiple modalities may produce conflicting 335 

identifications of cell clusters that will confound downstream analysis [33]. Various 336 

methods have been developed to enable joint analysis of multimodal datasets (e.g., 337 

LIGER [85], MOFA+ [86]), primarily based on the assumption that data obtained 338 

from multiple molecular layers of the same cells or biological replicates should 339 

share common manifold structures [33,87]. Additional measures have been taken 340 

to address the sparsity of data generated from single-cell experiments [67]. Taken 341 

together, the interweaving development of experimental procedures and data 342 

analysis approaches will lead to comprehensive single-cell representations of 343 

complex biological systems including organoids in the coming years.   344 

 345 

High-dimensional Single-cell Organoid Analysis 346 

The heterogenous composition of organoids makes them a natural use case of 347 

single-cell technologies. When the biological process of interest is only present in 348 



subpopulations of an organoid culture, the ability to obtain single-cell readout is 349 

not only informative but essential. For example, Grün and colleagues reported the 350 

first single-cell transcriptomic profiles of murine small intestinal organoids and 351 

identified a rare type of Reg4-expressing enteroendocrine cells that are 352 

undetectable if the organoids are homogenised and analysed as a bulk sample [31]. 353 

Using a series of CRISPR-engineered colorectal cancer (CRC) organoid models, Han 354 

and colleagues performed scRNA-seq and demonstrated that microenvironmental 355 

TGF-β signalling can induce YAP/TAZ-dependent transcriptional reprogramming 356 

and lineage reversion, ultimately leading to Wnt independence – a mechanistic 357 

insight not easily obtainable from bulk analysis [29]. Moreover, by implementing 358 

iTracer, an inducible lineage recording system coupling CRISPR/Cas9 genomic 359 

scarring and spatial scRNA-seq, He and colleagues analysed the dynamics of cell 360 

fate commitment during cerebral organoid regionalisation with spatial-temporal 361 

resolution [66]. 362 

 363 

In addition to intra-organoid heterogeneity, the complexity of organoid cultures 364 

can be further increased by co-culture with heterotypic cell-types. Single-cell 365 



technologies are particularly useful for analysing organoid co-cultures, where the 366 

resolution of cell-type-specific information is essential for meaningful downstream 367 

analysis. While traditional flow cytometry is usually sufficient to retrieve cell-type 368 

and cell-state information from organoids and organoid co-cultures [88,89], recent 369 

developments in mass cytometry have enabled high-dimensional analysis of cell-370 

type, cell-state, and post-translational modifications (PTMs) in one multiplexed 371 

experiment. This has led to the discovery of novel connections between epithelial 372 

cell-intrinsic and extrinsic signalling in a CRC tumour microenvironment organoid 373 

co-culture model [10]. 374 

 375 

Beyond the characterisation of heterogeneity, comprehensive profiling of organoids 376 

enabled by single-cell technologies can also be used as a benchmark tool to 377 

evaluate their physiological relevance and, where the phenotypic similarity can be 378 

faithfully established, generate extrapolatable understanding of healthy and 379 

diseased tissues. For example, Velasco and colleagues performed scRNA-seq 380 

analysis of 21 human dorsal forebrain organoids derived from four independent 381 

iPSC lines, demonstrating cross-organoid reproducibility in cell-type composition 382 



and developmental trajectory,  as well as their striking similarity to endogenous 383 

fetal brains [20]. Transcriptomic comparison of organoids with their tissue of origin 384 

has also been applied to the intestine [31],  the lung [22], the kidney [90], and the 385 

gastrula [91]. scRNA-Seq will likely become a routine quality control procedure for 386 

newly established organoid models. In the context of disease modelling, single-cell 387 

analysis has been used to demonstrate the physiological relevance of organoids 388 

[5,92] and to justify their use as avatars of personalised medicine [5,93]. However, 389 

it is important to note that while organoids generally display remarkable 390 

resemblance to their tissue of origin, discrepancies do exist due to suboptimal 391 

modelling of the native microenvironment and/or long-term in vitro propagation, 392 

which can provide insight for the refinement of organoid culture protocols [94–96] 393 

but also hold implications for the development and evaluation of organoid-based 394 

personalised therapies [93,84]. Thus, while single-cell technologies are an excellent 395 

way to analyse organoids, they can also be used to improve the biomimetic 396 

accuracy of organoid cultures in the future [96]. 397 

 398 

Concluding Remarks and Future Perspectives 399 



Over the past decade, organoid technology has undergone considerable growth 400 

and revolutionised basic science and translational research. Traditional low-401 

dimensional techniques provide useful tools to demonstrate the physiological 402 

relevance of organoids and to justify their utility, while advances in single-cell 403 

technologies hold promise to enable high-dimensional organoid characterisation 404 

at unprecedented scale and depth. Although extensive integration of single-cell 405 

technologies to organoid research is yet to be accomplished (Figure 4a), there is 406 

little reason why the frontiers of the two fields cannot be jointly extended as both 407 

technical and biological challenges are being actively addressed (see Outstanding 408 

Questions). 409 

 410 

Substantial efforts have been made to improve the reproducibility of organoid 411 

cultures [97] and to leverage their experimental flexibility [10,98]. The fidelity of 412 

organoids can be increased via refinements of the culture condition [95] and culture 413 

format (e.g., organ-on-a-chip [99,100]). As a result, organoids are becoming 414 

increasingly accurate and versatile biomimetic models, providing unique 415 



opportunities for single-cell technologies where a highly amenable experimental 416 

system is key to generating biological insights. 417 

 418 

Single-cell technologies are often pioneered using solution-phase model systems 419 

such as peripheral blood mononuclear cells (PBMCs). Application of single-cell 420 

technologies to organoids requires that high-quality single-cell suspensions can be 421 

generated from the cultures without compromising the underlying biology. This 422 

can be challenging for solid-phase 3D organoids but remediable if fixed samples 423 

can be used as the input of downstream single-cell experiments [42].Meanwhile, 424 

the latest developments in single-cell technologies highlight increased sample 425 

throughput [47,59], increased data modality [33,67], and improved compatibility 426 

with challenging samples [45–47]. Unfortunately, most single-cell technologies fail 427 

to couple the high-dimensional -omic analysis with robust functional assays, and 428 

we anticipate the development of such methods to be a primary challenge for the 429 

field going forward. 430 

 431 



Organoids combine the complexity of tissues with the flexibility of cell lines and 432 

are therefore uniquely positioned to leverage emerging high-dimensional 433 

technologies. Through the future application of multiplexed multimodal single-cell 434 

technologies, we expect high-dimensional analysis of biomimetic cultures to 435 

revolutionise the study of healthy and diseased tissues.  436 
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Glossary 696 

ATAC-seq (assay for transposase-accessible chromatin using sequencing): a 697 

method to assess genome-wide chromatin accessibility by inserting sequencing 698 

adapters into open chromatin with the hyperactive mutant Tn5 transposase. 699 

Biomimetic: synthetic systems or methods that mimic biological processes. 700 

BS-seq (bisulfite-sequencing): a method to determine the pattern of DNA 701 

methylation by treating DNA with bisulfite prior to sequencing. Bisulfite converts 702 

cytosine residues to uracil but leaves 5-methylcytosine residues unaffected. 703 

cis-regulatory elements (CRE): non-coding DNA sequences that regulate the 704 

transcription of neighbouring genes, such as promoters, enhancers, and silencers. 705 

Convolutional neural networks (CNNs): a branch of machine learning algorithms 706 

inspired by the organisation of the animal visual cortex. A convolutional neural 707 

network consists of an input and an output layer, as well as multiple hidden layers. 708 

CRISPR / Cas (clustered regularly interspaced short palindromic repeats / 709 

CRISPR associated protein): a genetic engineering technology derived from the 710 

adaptive immune system of bacteria. 711 



CUT&RUN (cleavage under targets and release using nuclease): a method that 712 

uses a target-specific primary antibody and a protein A—protein G-micrococcal 713 

nuclease (pAG-MNase) to profile protein-DNA interactions. 714 

Data dimensionality: a metric of experimental methods determined by the number 715 

of cells, parameters, and experimental conditions being evaluated per assay. 716 

Extracellular matrix (ECM): a 3D macromolecular network providing structural 717 

support to cells.  718 

Heterocellular: a culture / population comprising different cell-types. 719 

High-content imaging (HCI): high-throughput automated image acquisition and 720 

analysis workflows that enable extraction of quantitative multi-parametric data at 721 

the single-cell resolution. 722 

Louvain algorithm: a graph-based unsupervised method to detect communities 723 

from large networks via modularity maximisation. 724 

Mass cytometry: a single-cell cytometric method that utilises rare-earth metal 725 

coupled antibodies along with the high-mass accuracy of mass spectrometry. 726 

Modality: refers to cellular molecules such as DNA, RNA, and proteins in the 727 

context of single-cell -omic technologies. 728 



Multimodal: data of multiple modalities, e.g., of DNA and RNA. 729 

Next-generation sequencing (NGS): high-throughput DNA sequencing 730 

technologies applying the concept of massively parallel processing (e.g., Illumina 731 

sequencing). 732 

Omic: collective description of large numbers of cellular molecules such as genes, 733 

proteins, and RNAs. 734 

Organ-on-a-chip: three-dimensional cell culture platforms empowered by 735 

microfluidics and nanotechnologies that simulate mechanics and physiological 736 

activities of entire organs and organ systems. 737 

Peripheral blood mononuclear cells (PBMCs): heterocellular leukocyte samples 738 

mainly comprising lymphocytes and monocytes.  739 

Principal component analysis (PCA): an unsupervised linear transformation 740 

method used for dimensionality reduction and data visualisation. 741 

Pseudotime analysis: methods to extract latent temporal information from high-742 

dimensional datasets followed by mapping cells onto the reconstructed trajectories. 743 

RNA velocity: a high-dimensional vector that predicts future states of single cells 744 

based on profiles of unspliced and spliced mRNA.  745 



t-SNE (t-distributed stochastic neighbour embedding): a non-linear 746 

dimensionality reduction algorithm used for data visualisation that resolves distinct 747 

clusters from high-dimensional datasets. 748 

UMAP (uniform manifold approximation and projection): a non-linear 749 

dimensionality reduction technique for data visualisation that preserves the global 750 

structure of high-dimensional datasets.  751 



Figure Legends 752 

Figure 1 – Organoid Culture Overview. 753 

Organoids occupy a unique position in existing experimental biological systems. 754 

When compared to traditional cell lines and cell line-derived spheroids, organoids 755 

are 3-dimensional culture systems able to self-organise and therefore ensure higher 756 

physiological relevance. Organoids can be generated from primary tissues but offer 757 

greater experimental flexibility, as they are more compatible with high-throughput 758 

applications and more amenable to genetic modification. The strengths of the 759 

organoid technology enable its application in diverse fields such as drug screening, 760 

disease modelling, developmental biology, and personalised medicine. 761 

 762 

Figure 2 – Low-dimensional versus High-dimensional Organoid Analysis. 763 

Organoid analysis can be performed at the population or the single-cell level, 764 

generating data with increasing dimensionality. Data dimensionality is determined 765 

by three independent factors: 1) the number of cells, 2) the number of parameters, 766 

and 3) the number of conditions being analysed per assay. In general, analyses of 767 

organoid populations (e.g., microscopy, bulk molecular analysis, bulk -omic analysis, 768 



and viability screen) are considered low-intermediate dimensional as they cannot 769 

generate single-cell readout. In contrast, cytometry, high-content imaging, and 770 

single-cell -omic technologies can provide high-dimensional biological insight on 771 

a cell-by-cell basis. IHC, immunohistochemistry; IF, immunofluorescence; ChIP-seq, 772 

chromatin immunoprecipitation-sequencing [101]; CUT&RUN, cleavage under 773 

targets and release using nuclease [98]; ATAC-seq, assay for transposase-accessible 774 

chromatin using sequencing [98,102]; BS-seq, bisulfite-sequencing [103,104]. 775 

 776 

Figure 3 – Comparison of Organoid Analytical Methods. 777 

(a) Organoid cultures exhibit heterogeneity at various levels. While the inter-culture 778 

variability introduced by technical (e.g., protocol, experimental batch) or biological 779 

(e.g., tissue of origin) differences can be captured by low-dimensional methods 780 

such as microscopy and bulk analysis, single-cell analysis is required to generate 781 

high-dimensional insight into intra-organoid heterogeneity including information 782 

of cell-type and cell-state. (b) Different analytical methods are capable of profiling 783 

the phenotypes of organoids at different levels of detail. When compared to 784 

microscopy and low-dimensional bulk analysis, single-cell methods can generate 785 
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holistic representations of organoid phenotypes including viability, cellular 786 

composition, spatial patterning, -omic profile, developmental trajectory, and cell-787 

cell communication. 788 

 789 

Figure 4 – Overview of Single-cell Technologies. 790 

(a) Overview of existing single-cell technologies demonstrating the throughput and 791 

the number of parameters being measured, as well as the modality / modalities 792 

being analysed. Notably, among all the techniques available, only scRNA-seq, 793 

scATAC-seq, smFISH, and CyTOF have been reported with organoid studies, 794 

highlighting gaps in the application of single-cell technologies to organoid research. 795 

(b) Overview of existing multi-omic single-cell technologies and their integration 796 

with spatial resolution and CRISPR-mediated genetic modification. The nodes 797 

represent the modality of interest with the multimodal technologies labelling the 798 

connecting edges. CEL-seq, cell expression by linear amplification and sequencing 799 

[37]; CITE-seq, cellular indexing of transcriptomes and epitopes by sequencing [105]; 800 

CyTOF, cytometry time-of-flight [106]; dsciATAC-seq, droplet single-cell assay for 801 

transposase-accessible chromatin using sequencing [57]; ECCITE-seq, expanded 802 



CRISPR-compatible cellular indexing of transcriptomes and epitopes by sequencing 803 

[64]; G&T-seq, genome and transcriptome sequencing [107]; IMC, imaging mass 804 

cytometry [106]; MERFISH, multiplexed error-robust fluorescence in situ 805 

hybridization [62]; REAP-seq, RNA expression and protein sequencing assay [108]; 806 

scATAC-seq, single-cell assay for transposase-accessible chromatin using 807 

sequencing [56]; scBS-seq, single-cell bisulfite sequencing [109]; scChIP–seq, single-808 

cell chromatin immunoprecipitation followed by sequencing [54]; sciATAC-seq, 809 

single-cell combinatorial indexing assay for transposase-accessible chromatin using 810 

sequencing [110]; sci-CAR , single-cell combinatorial indexing chromatin 811 

accessibility and mRNA sequencing [111]; sci-MET, single-cell combinatorial 812 

indexing for methylation analysis [53]; sci-RNA-seq, single-cell combinatorial 813 

indexing RNA sequencing [46,47]; SCI-seq, single-cell combinatorial indexed 814 

sequencing [50]; sciMAP-ATAC, single-cell combinatorial indexing on microbiopsies 815 

assigned to positions for the assay for transposase accessible chromatin [112]; 816 

scM&T-seq, single-cell methylome and transcriptome sequencing [113]; scNMT-817 

seq, single-cell nucleosome, methylation and transcription sequencing [114]; 818 

scNOMe-seq, single-cell nucleosome occupancy and methylome sequencing [115]; 819 



SCoPE-MS, single cell proteomics by mass spectrometry [51]; scTrio-seq, single-cell 820 

triple omics sequencing [116]; seqFISH+, sequential fluorescence in situ 821 

hybridization+ [63]; Slide-seq [117,118]; smFISH, single-molecule fluorescence in 822 

situ hybridization [31,119]; SNARE-seq, single-nucleus chromatin accessibility and 823 

mRNA expression sequencing [120]; snmC-seq, single methylcytosine sequencing 824 

[52]; SPLiT-seq, split-pool ligation-based transcriptome sequencing [45]; 825 

uliCUT&RUN, ultra-low input CUT&RUN [55]. 826 

 827 

Figure 5 – Single-cell Data Analysis. 828 

(a) Overview of the unimodal single-cell data analysis workflow. Raw data from 829 

single-cell experiments undergo data pre-processing to generate normalised count 830 

matrices, followed by feature selection and dimensionality reduction to enable data 831 

visualisation. Cells can be clustered and annotated to facilitate downstream data 832 

interpretation. Depending on the modality being analysed, the data can be used 833 

to perform genomic analysis (e.g., mutational analysis, copy number variation (CNV) 834 

identification, and lineage tracing), epigenomic analysis (e.g., chromatin accessibility 835 

profiling, cis-regulatory element (CRE) identification, and pseudotime estimation), 836 



as well as transcriptomic analysis (e.g., cell-type identification, developmental 837 

trajectory reconstruction, and inference of cell-cell communication). (b) Multimodal 838 

datasets can be generated from separate or joint experiments and analysed 839 

independently or integratively. Challenges in both experimental procedures and 840 

data analysis workflows are being actively addressed to ultimately enable holistic 841 

multi-omic characterisation of single cells.  842 



Outstanding Questions 1 

x What are the bottlenecks that limit the physiological relevance of organoids 2 

to be further improved? 3 

x Can high-dimensional technologies be used to improve the biomimetic 4 

accuracy of organoids as tissue models? 5 

x Can multimodal single-cell technologies reveal novel phenotypes in 6 

organoids? 7 

x Can single-cell analysis of organoid co-cultures be used to model cell-cell 8 

communication in tissues? 9 

x Is it possible to combine -omic technologies with robust functional assays?  10 

x Is there an upper limit of the number of modalities that can be measured 11 

simultaneously in organoids? 12 

x Can single-cell technologies be used to generate spatial-temporal -omic 13 

profiles of live organoids? 14 

Outstanding Questions



Highlights 1 

x Organoids are heterocellular biomimetic tissue models transforming basic 2 

science and translational research.  3 

x Traditional low-dimensional methods have provided remarkable biological 4 

insights when applied to organoid research. However, to fully unleash the 5 

potential of organoids as ex vivo tissue models, high-dimensional technologies 6 

are needed. 7 

x Single-cell technologies enable the study of cellular processes across multiple 8 

modalities at considerable scale and depth, leading to significant progress in 9 

organoid biology. 10 

x Advances in experimental procedures as well as data analysis approaches open 11 

opportunities for the integration of single-cell technologies and organoid 12 

research. 13 

Highlights
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