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Abstract: Summary

A critical mechanism for maximizing reward is instrumental learning. In standard
instrumental learning models, action values are updated on the basis of reward
prediction errors (RPE), defined as the discrepancy between expectations and
outcomes. A wealth of evidence across species and experimental techniques has
established that RPE are signaled by midbrain dopamine neurons. However, the way
dopamine neurons receive information about reward outcomes remains poorly
understood. Recent animal studies suggest that the pedunculopontine nucleus (PPN),
a small brainstem structure considered as a locomotor center, is sensitive to reward
and sends excitatory projection to dopaminergic nuclei. Here, we examined the
hypothesis that the PPN could contribute to reward learning in humans. To this aim, we
leveraged on a clinical protocol that assessed the therapeutic impact of PPN deep
brain stimulation (DBS) in three patients with Parkinson's disease. PPN local field
potentials (LFP), recorded while patients performed an instrumental learning task,
showed a specific response to reward outcomes in a low frequency (alpha-beta) band.
Moreover, PPN DBS selectively improved learning from rewards but not from
punishments, a pattern that is typically observed following dopaminergic treatment.
Computational analyses indicated that the effect of PPN DBS on instrumental learning
was best captured by an increase in subjective reward sensitivity. Taken together,
these results support a causal role for PPN-mediated reward signals in human
instrumental learning.
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Summary: 

A critical mechanism for maximizing reward is instrumental learning. In standard 

instrumental learning models, action values are updated on the basis of reward prediction 

errors (RPE), defined as the discrepancy between expectations and outcomes. A wealth of 

evidence across species and experimental techniques has established that RPE are signaled 

by midbrain dopamine neurons. However, the way dopamine neurons receive information 

about reward outcomes remains poorly understood. Recent animal studies suggest that the 

pedunculopontine nucleus (PPN), a small brainstem structure considered as a locomotor 

center, is sensitive to reward and sends excitatory projection to dopaminergic nuclei. Here, 

we examined the hypothesis that the PPN could contribute to reward learning in humans. 

To this aim, we leveraged on a clinical protocol that assessed the therapeutic impact of PPN 

deep brain stimulation (DBS) in three patients with Parkinson's disease. PPN local field 

potentials (LFP), recorded while patients performed an instrumental learning task, showed 

a specific response to reward outcomes in a low frequency (alpha-beta) band. Moreover, 

PPN DBS selectively improved learning from rewards but not from punishments, a pattern 

that is typically observed following dopaminergic treatment. Computational analyses 

indicated that the effect of PPN DBS on instrumental learning was best captured by an 

increase in subjective reward sensitivity. Taken together, these results support a causal role 

for PPN-mediated reward signals in human instrumental learning.  

 

Keywords: reinforcement learning, reward prediction error, deep brain stimulation, local 

field potentials, peduncolopontine nucleus, dopamine, Parkinson’s disease 
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Introduction  

A fundamental mechanism through which animals learn to optimize their actions is 

instrumental learning. According to this mechanism, action values are updated on the basis 

of reward prediction errors (RPE), defined as the discrepancy between obtained and 

expected outcomes[1]. Decades of single-cell recording studies in non-human primates 

have demonstrated that RPE are signaled by midbrain dopamine neurons[2–5]. The link 

between RPE and dopamine has also been documented in humans, using 

electrophysiological or hemodynamic recording of dopaminergic nuclei[6,7], and 

pharmacological interference with dopaminergic transmission[8,9].  

Decisive advances on this question have come from recent experiments in rodents. 

Optogenetic techniques combined with electrophysiology in mice have shown that RPE 

signals in dopaminergic nuclei 1) are indeed emitted by dopamine neurons, 2) represent a 

similar subtractive function of outcome and expectation across neurons, and 3) are 

sufficient to trigger learning of associations between cues and outcomes[10–14]. However, 

less is known about the way dopamine neurons could possibly be informed about the 

components of RPE estimates – the representations of actual and expected rewards[15]. In 

particular, many investigations have focused on how information about reward, at the time 

of outcome, could be conveyed to dopamine neurons.   

One promising candidate for an excitatory input to dopaminergic nuclei is the 

peduncolopontine nucleus (PPN)[16,17]. Traditionally, the PPN, located in the upper part 

of the lateral mesencephalon, is considered as a part of the mesencephalic locomotor 

area[18–20], together with the cuneiform nucleus (CN). More recently, the role of the PPN 

in reward learning, and its tight connection with dopaminergic nuclei, have come into light. 

Indeed, the PPN sends glutamatergic and cholinergic projections to the ventral tegmental 

area (VTA) and substantia nigra pars compacta (SNpc) that are susceptible to activate 

dopamine neurons[21–25]. These afferent projections from the PPN to dopamine neurons 

were found to carry information about reward[26–29]. Moreover, activation of PPN 

cholinergic and glutamatergic neurons contributes to the reinforcement of actions[30,31], 

which is impaired by PPN inactivation or lesion[32–35]. 

While the case for the PPN contributing to reward learning (via dopamine neurons) is well 

established in animals (mostly rodents), it has not been examined so far in humans. The 

reason is that the PPN is a tiny midbrain group of neurons difficult to locate, access, record 
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or manipulate with indirect, non-invasive techniques [20]. Yet this opportunity has been 

offered by clinical trials assessing the therapeutic effect of PPN deep brain stimulation 

(DBS) on the motor symptoms of Parkinson’s disease (PD). By stimulating remaining 

neurons, the aim of DBS is to compensate for the partial PPN degeneration observed in 

PD[36,37]. The rationale for a beneficial impact on motor symptoms is two-fold: it might 

first activate remaining dopamine neurons, through the connections from PPN to VTA and 

SNpc, and second improve gait and postural disorders, due to its specific role in 

locomotion[38–41].  For the latter reason, PD patients recruited for PPN DBS trials suffer 

from the so-called axial symptoms (gait and postural disorders) that are poorly improved 

with dopatherapy or subthalamic nucleus stimulation, currently the standard target for DBS 

in PD[42–44]. The first clinical trials indeed reported some improvement of falls and 

freezing of gait in PD patients treated with PPN DBS[39,45,46].  

Here, we leveraged on a clinical trial conducted in Paris[47], to record and stimulate the 

PPN of three PD patients performing instrumental learning tasks. Our working hypothesis 

was that the PPN might contribute to instrumental learning by providing reward-related 

information to dopamine neurons. Two predictions at least could be derived from this 

hypothesis: 1) PPN activity should signal reward outcomes and 2) PPN DBS should 

improve reward learning, in the same way as dopatherapy would do.  

To test the first prediction, we recorded PPN local field potentials (LFP) while patients 

performed a first learning task, during the week following the implantation of DBS 

electrodes (Figure 1A, left). This first task was previously used in fMRI studies to 

distinguish between neural representations of choices (left vs. right hand movement) and 

their outcomes (reward vs. no reward)[48]. To test the second prediction, we examined 

choice behavior in a second learning task that patients performed several months after the 

surgery, once in the “on-DBS” and once in the “off-DBS” state (Figure 1A, right). This 

second task was previously used in pharmacological studies to specify the effect of 

dopaminergic drugs, as a selective improvement of reward learning, not punishment 

learning[9]. 
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Results 
 
PPN hemodynamic activity signals reward outcomes  

To explore whether the PPN region signals reward-related events, before turning to LFP in 

PD patients, we reanalyzed an fMRI dataset collected in healthy volunteers performing 

learning task 1, as reported previously[48]. This task involved choosing between two cues 

with either a left-hand or right-hand button press, and learning the probabilistic associations 

with monetary reward from the observation of choice outcomes (Figure 2A and Figure 

S1AB). It was thus designed to disentangle between neural representations of choice (left 

vs. right cue) and outcome (reward vs. no reward receipt). It had previously been used to 

dissociate neural correlates of reward and movement in both young and aged volunteers, 

and to assess learning performance in several clinical populations, including PD 

patients[48,51,52]. 

Time series of fMRI activity were regressed against a GLM with the moment of choice 

split between two regressors (left vs. right response) and the moment of feedback split 

between four regressors (two responses, left vs. right, by two outcomes, reward vs. no 

reward). Individual contrast estimates were extracted within the bilateral anatomical PPN 

masks (Figure S1C) taken from a three-dimensional histological atlas of the basal 

ganglia[51,52]. Contrast estimates were analyzed using a 3-way repeated-measures 

ANOVA with outcome (reward vs. no reward), choice (left vs. right) and the side of PPN 

ROI (left vs. right) as three within-subject factors. Only the main effect of reward was 

significant (F(1,19) = 12.7, p = 0.003), not the main effect of choice side (F(1,19) = 0.07, 

p = 0.79) or ROI side F(1,19) = 0.41, p = 0.53). There was no detectable significant 

interaction involving the ROI side (all p > 0.30), suggesting that choice was similarly 

represented in the ipsi and contralateral PPN, and that reward similarly affected PPN region 

ipsi or contralateral to the response side.  

We therefore pooled across the left and right PPN ROI for post-hoc analyses (Figure S1D). 

Consistently, we found that contrast estimates were significantly positive following reward 

outcomes (t(19) = 3.13, p = 0.006), but not after no reward outcomes (t(19) = 0.88, p = 

0.39), with a significant difference between the two events (t(19) = 3.58, p = 0.002). 

Contrast estimates were also significantly positive at the time of choice, for both ipsilateral 

and contralateral responses (ipsilateral: t(19) = 3.62, p = 0.0018, contralateral: t(19) = 3.33, 

p = 0.0035), with no significant difference between the two (t(19) = 0.254, p = 0.802). 
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The results provided preliminary evidence that PPN activity discriminates between reward 

and no reward outcomes but not between low-level features such as spatial location on the 

screen (left vs. right cue) or motor response (left-hand versus right-hand movement). 

However, this result may not be very specific, given that many brain regions were also 

activated by reward in this task[48]. Moreover, the normalization to the MRI brain template 

is never accurate enough to ensure that the voxels covered by the anatomical mask really 

fall within PPN borders. To confirm these preliminary results, while overcoming the 

limitations inherent to fMRI, we performed similar analyses on LFP recorded in the PPN 

of PD patients during the same task. 

 
PPN evoked potentials signal reward outcomes 

PD patients performed learning task 1 while LFP were recorded from electrodes implanted 

in the PPN, during the week following surgery. Analysis of behavioral performance showed 

that the global pattern of responses was similar to previous observations (Figure 2B). 

Choice rate was 47.8/52.2, 41.3/58.7, 60.9/39.1, and 26.8/73.2% for the left/right responses 

to the four pairs of cues (respectively with 75/75, 25/25, 75/25, and 25/75% reward 

probability). This pattern indicates that in asymmetrical pairs, the cue with the higher 

probability of reward (75%) was more frequently selected on average (in 67.1% of 

responses). This average correct choice rate was higher than in age-matched healthy 

volunteers (62.0%, Figure 2B), but lower than in young healthy volunteers (77.9%, Figure 

S1B). When comparing directly the proportion of left/right responses between 

asymmetrical pairs (75/25 vs. 25/75%), the difference was significant at the group level 

(p=0.032, two-tailed t-test). However, at the individual level, the same test suggested 

significant learning in patients 2 and 3, but not in patient 1. Formal comparison between 

groups was precluded by the small sample sizes and the differences in testing conditions 

(PD patients were tested during LFP recording in the hospital room just after a major 

neurosurgery). Anyway, following on previous studies[50], our main analyses were 

focused on the response to reward outcomes, which does not depend on learning 

performance (contrary to the contrast between cues associated with low vs. high reward 

probability).  

First, we tested whether LFP in the PPN would differ between left vs. right motor 

responses, and between reward vs. no reward outcomes, as we did in the fMRI data 
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analysis. LFP recordings were pooled across all contacts located within the PPN, left or 

right (Figure 1B). Fixed-effect analysis of time-frequency maps across PD patients 

indicated an increased activity around the time of choice (Figure 3A) in a low (alpha or 

beta) frequency band, which was also observed in each patient separately (Figure S2). 

However, there was no significant difference between ipsi and contralateral choice. On the 

contrary, a significant time-frequency cluster, again in a low-frequency band, was 

identified in the contrast between reward and no reward outcomes (Figure 3B). Inspection 

of individual time-frequency maps (Figure S3) revealed different patterns of activation in 

the different patients, with an overlap around the transition from alpha to beta band (10 to 

20Hz).  

Next, to better qualify this significant difference between reward and no reward outcomes, 

post-hoc tests were used to compare activity in this 10-20Hz band against zero. Results 

showed that the response to reward receipt, around 500ms following outcome onset, was 

significantly positive and survived a non-parametric cluster-wise correction for multiple 

comparisons (threshold at p = 0.05, two-tailed) both across all 15 contacts analyzed 

together (Figure 3C, left panel) and in each of the three patients (Figure 3C, right panel). 

The same test against zero, applied to trials ending with no reward outcomes, yielded no 

significant cluster of activity. We also checked that the difference between reward and no 

reward outcomes in the 10-20Hz band survived cluster-wise correction for multiple 

comparisons in each of the three patients. 

Last, we performed additional regressions of PPN LFP activity against variants of a GLM 

containing factors susceptible to influence the response to outcomes. In the basic version 

used above, this GLM only contained an indicator regressor for reward vs. no reward 

outcomes. To examine whether the response to reward outcomes would depend on the 

choice made (left or right), we included in the GLM two additional regressors modeling 

the choice side (ipsi or contralateral to the recording contact) and the interaction between 

choice side and reward outcome. As with the other variants, the cluster signaling reward 

outcomes in time-frequency maps (Figure S4A) was virtually unchanged, while the 

interaction with choice side yielded no significant cluster. Thus, there was no evidence that 

the response to reward outcomes was dependent on the motor response. 

Following a model-based approach, we added a regressor for reward expectation, to 

examine whether it would attenuate the response to outcomes, as it should do if the PPN 
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was signaling prediction errors. To model expected rewards, we fitted a basic Q-learning 

algorithm to behavioral choices (see Methods). This algorithm includes two functions: a 

learning function (delta rule), which updates cue values in proportion to outcome prediction 

errors and a choice function (softmax rule), which generates selection probabilities based 

on the difference between cue values. Reward expectation was modeled trial-by-trial as the 

expected value of the chosen option, generated using the fitted learning rate and the history 

of choices and outcomes. In time-frequency maps of regression estimates (Figure S4B), 

there was no significant cluster signaling reward expectation, while the cluster significantly 

signaling reward outcomes (vs. no reward) was similar to that obtained before (Figure 3B). 

Thus, only the outcome component of reward prediction errors (and not the expectation 

component) was reflected in PPN LFP activity. 

Because the null result with reward expectation could have arisen from poor modeling of 

behavioral choices, we also tried a model-free approach. The prediction tested here is that 

if the PPN was signaling prediction errors, then responses to reward outcomes should have 

been diminished during the course of learning sessions, as these outcomes became more 

and more expected. We therefore included trial number and the interaction between trial 

number and reward outcome as additional regressors in the GLM. Again, time-frequency 

maps of regression estimates (Figure S4C) identified a significant cluster signaling reward 

outcomes very similar to that obtained before (Figure 3B), but no significant cluster related 

to the interaction with trial number. There was therefore no evidence that the response to 

reward outcomes was changed with learning. Altogether, these results suggest that the PPN 

is sensitive to reward outcomes in a rigid way that seems unaffected by the progressive 

building of expectations. 

To recapitulate, LFP data analysis concurs with fMRI data analysis to show that PPN 

activity is sensitive to reward outcome in a learning task. However, this does not imply that 

PPN activity is causally involved in learning, i.e. in favoring choices that maximize reward 

outcome. To test this causal implication, we explored the effect of PPN DBS on choices in 

another instrumental learning task.  

 

PPN DBS selectively enhances learning from reward outcome 
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The same patients performed a second learning task, which was previously[9,53] used to 

dissociate the neural correlates of reward- and punishment-based learning (Figure 4A). In 

this task, subjects select between abstract cues, by pressing a button for the top cue (“Go” 

response) or not pressing (“NoGo” response) for the bottom cue, and then learn 

contingencies from observing the outcome of their choice. Each session presents 

intermingled pairs of cues, associated with either 80/20% probability of monetary reward 

(1€) or 80/20% probability of monetary punishment (-1€). Thus, the task involves learning 

to maximize reward with some pairs, and to minimize punishment with others.  

All patients performed three sessions of the task in the "on-DBS" state and three sessions 

in the "off-DBS" state (Figure 1A). The first session was considered as a practice session, 

following on previous analyses in PD patients[53]. A fixed-effect analysis of choice 

behavior was conducted across the six remaining sessions, using a two-way repeated-

measures ANOVA with outcome valence (reward vs. punishment) and stimulation state 

(“on-DBS " vs. “off-DBS ”) as fixed factors. There were no main effects of outcome valence 

(F(1,5) = 1.17, p = 0.33) or stimulation (F(1,5) = 3.03, p = 0.14), but a significant valence 

by stimulation interaction: F(1,5) = 7.28, p = 0.043. 

Post-hoc analyses indicated that reward learning was significantly better in the on-DBS 

than in the off-DBS state (78  ±7% vs. 56  ±9%, t(5) = 2.86, p = 0.036), while there was 

no significant difference in punishment learning (59  ±7% vs. 58  ±7%, t(5) = 0.14, p = 

0.89). Also, there was no difference on global performance (across stimulation states) 

between reward and punishment learning (t(5) = 1.08, p = 0.33), as is usually observed in 

healthy volunteers[53]. This confirms that the two conditions were matched in difficulty, 

as the probabilistic contingencies were the same for reward and punishment outcomes.  

We ran several permutation tests to verify that the observed difference in reward learning 

between on-DBS and off-DBS states was not due to chance (see Methods). Next, we 

computed the probability to observe by chance a difference (on-DBS - off-DBS) larger than 

the observed one: we obtained p = 0.003 for reward learning and p = 0.401 for punishment 

learning. 

To check whether learning was affected by response type (Go vs. NoGo), we performed a 

three-way repeated-measures ANOVA with response type, learning condition and 

stimulation state as fixed factors on the data pooled across all three patients (12 sessions in 
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total). Only the condition by state interaction was significant (F(1,5) = 10.48, p = 0.02), all 

main effects and other interactions were not significant (all p-values > 0.14). These results 

confirm that there was no detectable bias in learning related to a potential motor difficulty 

in producing a Go response. Consistently, there was no significant difference in the rate of 

Go response between the on-DBS and off-DBS states, neither in the reward (on-DBS: 55.56 

±16.95%, off-DBS: 60.56 ± 17.18%, difference: t = -0.72, p = 0.50) or in the punishment 

condition (on-DBS: 43.33 ± 19.89%, off-DBS: 52.22 ±18.46%, difference t = -1.23, p = 

0.27). Thus, we found no evidence for an impact of PPN DBS in the capacity to produce a 

motor response in the learning task.  

Finally, we checked that the stimulation was affecting learning (i.e., choice improvement 

across trials) and not just the mean correct response rate. Linear regressions were performed 

to compare the slopes of cumulative obtained reward and cumulative avoided punishment 

(Figure 4B). There was a significant difference in slopes between off-DBS and on-DBS 

states for reward learning (t(5) = 3.245, p = 0.023) but not for punishment learning (t(5) = 

1.672, p = 0.155), with significant learning condition (reward vs. punishment) by 

stimulation state (on-DBS vs. off-DBS) interaction: t(5) = 3.011, p = 0.03. 

Examination of individual performance (Figure 4C) indicated that PPN DBS improved 

reward learning in all three patients, while the effect on punishment learning was 

inconsistent. However, these model-free analyses cannot specify which particular process 

was affected by PPN DBS, and whether it was the same across patients. To address this 

question, we fitted computational models to choice behavior.  

 

PPN DBS increases the subjective sensitivity to reward outcome  

To further explore the effect of PPN DBS on learning, we compared computational models 

in which the stimulation would affect different parameters. The null model is the standard 

Q-learning algorithm used to model the behavior in learning task 1, with a delta rule for 

learning and a softmax rule for choice[54]. This first model includes three parameters: the 

weights on reward and punishment prediction errors for value updating (learning rates 𝛼𝑅 

and 𝛼𝑃) and the weight on decision value for choice probability (inverse temperature 𝛽). 

All the other models are variants of this basic null model in which PPN DBS affects one 

target parameter specifically. Target parameters were multiplicative weights on reward or 
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punishment outcomes (𝐾𝑅 and 𝐾𝑃) in models 2 and 3,  learning rates (𝛼𝑅and 𝛼𝑃) in models 

4 and 5, and inverse temperature (𝛽) in model 6. 

Bayesian model selection identified model 2 as the most plausible in all three patients (with 

an exceedance probability of 0.95, see Table S3). The winning model was the same whether 

we used a fixed-effect model selection (assuming all patients implement the same model) 

or a random-effect model selection (assuming different patients can implement different 

models). In this winning model, each reward outcome has a weight of 1 in the off-DBS 

state, and a weight of 𝐾𝑅 in the on-DBS state. Moreover, posterior estimates for the reward 

sensitivity parameter 𝐾𝑅 were greater than 1 in all three patients (Figure 5A), suggesting 

that the subjective sensitivity to monetary reward was amplified by PPN DBS. Assuming 

that posterior distributions are gaussian, as is standard in Bayesian Variational 

Analysis[55], the probability of 𝐾𝑅  > 1 was 0.980, 0.907 and 0.996 for patients P1, P2 and 

P3, respectively. We also verified that in model 3, the subjective punishment sensitivity 

𝐾𝑃, capturing the effect of PPN DBS, was not significantly greater than 1 (Figure 5B). The 

mean posteriors for the other parameters of the winning model are provided in Table S4.    

To assess the quality of model fitting in the different conditions, we computed Pearson’s 

correlations across trials between observed and modeled correct choice rates (Figure S5). 

All correlations were significant (with p < 0.0001), with a similar explained variance (all 

r2 between 0.45 and 0.65) for reward and punishment learning, whether in the on-DBS or 

off-DBS states. We also checked that the model could reproduce the critical qualitative 

observation: a selective effect of PPN DBS on reward learning. We simulated the 𝐾𝑅-only 

model using individual best fitting parameters and performed the same analysis on 

simulated choices as with observed choices (Figure 5B). The two-way repeated-measures 

ANOVA with learning condition (reward vs punishment) and stimulation state (on-DBS 

vs. off-DBS) revealed a significant condition by state interaction (F(1,5) = 9.56, p = 0.03). 

As in observed choices, this interaction in simulated choices was qualified as a significant 

improvement in reward learning (t(5) = 3.39, p = 0.02) but not punishment learning (t(5) = 

1.33, p = 0.24). Thus, a selective increase in 𝐾𝑅 was the most plausible account for the 

impact of PPN DBS on instrumental learning. 
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Discussion 

 
In this study, we examined the hypothesis that the PPN may signal reward-related 

information and thereby contribute to reward learning in humans. Our two predictions were 

fulfilled: 1) PPN activity was responsive to reward outcome and 2) PPN DBS improved 

reward learning, specifically.  

The neural response to reward outcome was assessed first using fMRI data collected in 

healthy participants and then iEEG data collected in PD patients performing the same 

learning task. Both recording techniques showed increased activity for reward but not for 

no-reward outcomes. The contrast between reward and no-reward outcomes in fMRI data 

was strongly significant but not specific to the PPN. The same contrast in a whole-brain 

analysis (see [50]) yielded activation in several regions such as the ventromedial prefrontal 

cortex and ventral striatum. At the statistical threshold used here (without correction for 

multiple comparisons), the brain response to reward was even more widespread. Given the 

size of the PPN region and the uncertainty in the normalization to standard anatomical 

template, we cannot be sure that the observed response was generated in the PPN.  

The localization of recording electrodes in the native brain of PD patients offers better 

guarantee for accuracy. The response to reward outcome observed in LFP data was 

increased power in low-frequency (alpha-beta) bands. The timing was compatible with that 

of hemodynamic response, which is typically delayed by a few seconds. The frequency was 

low compared to the high-gamma activity that is classically considered as the LFP 

counterpart of cortical hemodynamic response[56–58], but common to LFP activity usually 

observed in the basal ganglia[59–61], including in the PPN of PD patients for motor 

signals[40,62]. It also overlaps with the low-frequency band (from 15 to 40 Hz) that is 

typically recommended and used for  PPN DBS[39,45,63], which is rather low compared 

to standard high-frequency stimulation of the subthalamic nucleus[64,65]. 

Both fMRI and LFP activity remained insensitive to choices, meaning that they did not 

differ between left-hand and right-hand responses. Thus, the putative contribution of the 

PPN to instrumental learning would be to provide information about whether the action 

must be reinforced, not which action must be reinforced. Showing this dissociation was 

important because previous electrophysiological studies in rodents reported that PPN 

neurons encode both choice-related actions and reward outcomes[27,28]. The LFP 
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response recorded here is reminiscent of the reward signal conveyed by dopamine neurons, 

which is largely independent of the action to be reinforced, since it is equally observed 

during Pavlovian conditioning[66]. The independence from motor actions was also 

observed in the second learning task, where cues were chosen with either a Go or NoGo 

response. While PPN-DBS increased choice rate for the most rewarded cue, it did not 

increase the overall rate of Go responses. Thus, the contribution of the PPN to reward 

learning observed in our tasks seems independent from its role in motor processing that has 

been documented in previous studies[67,68].  

One remaining issue is whether the PPN would also encode outcome expectation, i.e. the 

other component of RPE. We found no trace of reward expectation in LFP activity, which 

should manifest as reduced positive RPE following rewards, and even negative RPE in the 

absence of reward. However, it was difficult to test in our patients, because their learning 

curves were somewhat erratic, such that their expectations about reward outcomes were 

difficult to estimate. Such a poor learning performance is commonly observed in PD[69–

73], and usually interpreted as a consequence of neuronal loss in dopaminergic nuclei, 

although it could also be attributed to PPN degeneration. If expectations remain low, 

outcomes remain surprising, such that it becomes difficult to distinguish between pure 

reward and RPE signals. Yet models of RPE computations in dopaminergic nuclei 

generally assume that expectation signals come from separate inputs and are subtracted 

from reward signals via GABAergic neurons[15]. In any case, what we can safely conclude 

is that PPN LFP signals the occurrence of reward outcomes. By this we do not mean that 

PPN LFP activity is proportional to reward value, which can only be assessed by varying 

reward magnitude, but simply that it selectively responds to reward and not to absence of 

reward. 

To our knowledge, this is the first evidence obtained in humans for the implication of the 

PPN in reward processing. It is nonetheless consistent with a wealth of evidence in animals 

(rodents mostly) that PPN neurons signal reward outcomes and send this information to 

dopamine neurons[26–29]. The next question is how reward-related information reaches 

the PPN in the first place. There are plenty of possibilities, given the richness of afferent 

inputs to the PPN established in non-human primates[68,74–76], coming from both the 

basal ganglia (such as the globus pallidus and subthalamic nucleus) and cortical areas (such 

as the ventromedial prefrontal and anterior cingulate cortex). Another remaining question 

is whether the PPN reward signals that we observed here in the human brain are indeed 
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conveyed to dopamine neurons. Even if this is the case, the PPN may not be the only 

provider of reward-related information to dopaminergic nuclei, given the number of 

candidate inputs to VTA and SNpc found in rodents[77,78]. To assess whether PPN reward 

signals have a sufficient impact to causally modulate learning abilities, we turned to DBS.  

Our results are in line with studies in rodents reporting that PPN stimulation enhances 

reinforcement[30,31]. In our task, the signature of PPN DBS was a selective improvement 

of reward learning, leaving punishment learning unaffected, hence excluding non-specific 

effects on attention or cognition. This signature has been previously observed following 

dopatherapy broadly speaking (mixing levodopa and dopamine receptor agonists) in both 

healthy participants and PD patients tested with various tasks, including the learning task 

used here[8,9,69–71]. The effect of PPN DBS on choice behavior was therefore compatible 

with an increase in dopamine release.  

Moreover, computational analysis showed that the effect was best captured by a model in 

which PPN DBS increases the subjective sensitivity to reward outcomes. The opposite 

computational effect (decreased reward sensitivity) was found with both dopamine 

blockers and ventral striatum degeneration in humans, again using the same task[9,53]. 

Thus, the computational analysis strengthened the hypothesis that PPN DBS improves 

choice behavior by increasing dopamine release in the striatum. One difficulty, however, 

is to explain how a tonic intervention like PPN DBS (or dopatherapy, for that matter) can 

boost the impact of reward outcome, known to be mediated by phasic dopamine signals. A 

possible explanation is that increasing tonic dopamine helps the phasic signal, supposed to 

be reduced in PD, to pass a threshold above which it can achieve efficient reinforcement of 

cortical-striatal synapses[79]. A subtly different explanation is that PPN excitatory inputs 

do not increase tonic activity but amplify the response of dopamine neurons to reward 

signals, which may come from other afferent regions. On a more cautious note, the 

similarity in the behavioral effects of PPN DBS and dopatherapy does not prove that they 

share common targets at the neural level. Even if less parsimonious, the possibility remains 

that the two treatments exert their actions through independent neural mechanisms. 

Our study has several limitations. An obvious limitation is the small number of patients 

who could be tested, due to an early ending of the clinical protocol, because of low 

benefit/risk tradeoff estimates in the first cases. Unfortunately, PPN DBS is still an 

experimental treatment, which has not reached the stage where it can be applied to large 
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cohorts of patients. The small sample size forced us to use fixed-effect analyses, which are 

common in non-human primate studies, but not in human clinical trials, for which random-

effect analyses are standard. Another consequence is that we were unable to balance the 

order of stimulation states across patients. However, the two patients who exhibited a 

greater effect of PPN DBS were tested first in the On state and then in the Off state, which 

discards the possibility of reward learning improvement being confounded with practice 

effects. Another limitation is that the role of PPN in reward learning was tested in PD 

patients, who suffer from loss of not only dopamine neurons but also PPN neurons. 

Moreover, the techniques used here cannot tell whether PPN response to reward, or the 

impact of PPN DBS on reward learning, were mediated by glutamatergic or cholinergic 

neurons. Also, regarding DBS effects, there may be some concerns about the selectivity of 

the cylindrical DBS electrodes when targeting small structures such as the PPN[80]. 

Finally, we did not assess the interactions with dopatherapy, which would have required to 

double all testing sessions (to compare conditions with and without medication). One may 

speculate that the impact of PPN-DBS could be potentiated by dopaminergic treatment[26].  

To conclude, we found evidence that PPN activity is sensitive to reward outcomes and that 

PPN stimulation boosts the subjective sensitivity to reward. These findings are consistent 

with the hypothesis raised from the literature in rodents that, in humans as well, the PPN 

might convey reward-related information to dopamine neurons. However, they are by no 

means a definitive proof that the hypothesis is correct: whether the reward signals observed 

in the PPN are actually used by dopamine neurons to compute RPE remains to be 

demonstrated. On a more clinical perspective, our findings suggest that the clinical impact 

of PPN DBS could go beyond the expected effects on gait and postural disorders. By 

boosting subjective reward sensitivity, PPN DBS could contribute to reduce the apathy that 

is commonly observed in PD, especially when dopatherapy is suppressed[65,81,82].  
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Figures Legends  

 

Figure 1. General overview of the study.  

A. Timeline of clinical and experimental events. PPN local field potentials were recorded 

using learning task 1, during the week following surgical implantation of DBS electrodes. 

Behavioral effects of PPN-DBS were tested several months later, using learning task 2, 

when patients came back to the hospital for clinical assessment. Learning task 2 was 

performed once in the off-DBS state and once in the on-DBS state, in a randomized order. 

B. Location of recording sites. Electrodes implanted in the three tested patients (P1 – red, 

P2 – blue and P3 – yellow) are inserted in a 3D reconstruction of the peduncolopontine 

nucleus (PPN, transparent purple) and cuneiform nucleus (CN, transparent green). White 

asterisks indicate active contacts used for DBS. 

See also Table S1 and Table S2.   

 

Figure 2. Instrumental learning performance.  

A. Example trial of learning task 1. Screenshots are shown from left to right, with durations 

in milliseconds. On every trial, subjects selected between left and right options represented 

by two visual cues, using their left-hand or right-hand index to press the corresponding 

button. The side of the selected cue (left in the example) was marked with a red pointer. 

Subjects could then observe the outcome of their choice (a 0.5€ reward or nothing) and 

update their estimates of cue-reward contingencies. Each session presented four different 

pairs of cues, associated with different combinations of reward probability (25/25, 75/75, 

75/25, 25/75 %). 

B. Behavioral performance of PD patients (N=3) during LFP recordings in hospital settings 

and aged healthy volunteers (N=8) tested in a previous study[49]. Histograms show the 

choice rate observed with the four pairs of cues associated to varying reward probability 

(light gray: symmetrical pairs, dark grey: asymmetrical pairs). Although patients tended to 

prefer responding with the right hand (to the two symmetrical pairs), the pattern of 

behavioral performance was qualitatively similar to that of controls, with higher choice rate 
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for more rewarded cues (within the two asymmetrical pairs). Error-bars are inter-session 

S.E.M. 

See also Figure S1. 

 

Figure 3. PPN potentials evoked by reward.  

A. Time-frequency decomposition of response to choice (top panels) and outcome (bottom 

panels). Color code indicates power observed in each time-frequency bin of the map. Power 

was corrected for baseline measure (over a -500 to 0ms time window prior to fixation 

onset). Maps were averaged over all sessions and all available electrodes in all three 

patients. Only the contrast between reward and no-reward outcomes yielded significant 

differences, not the contrast between ipsi- and contra-lateral choice. 

B. T-value map of the difference between reward and no reward outcomes. The only 

significant cluster (p < 0.05 after correction for multiple comparisons) was identified in a 

low-frequency band. Color code indicates the T-value for each time-frequency bin within 

the cluster. Dotted horizontal lines indicate the 10-20Hz band width explored in part D.   

C. Time course of 10-20Hz activity following reward outcome onset, averaged over 

patients (left panel) or separately for each patient (right panel). Responses to no reward 

outcomes have been omitted in individual plots for the sake of visibility. Thick lines show 

time points at which activity is different from 0 (p< 0.05, after cluster-wise correction for 

multiple comparisons). Shaded area around the group mean represents inter-session S.E.M. 

See also Figure S2-S4. 

 

 

Figure 4. Behavioral effects of PPN DBS.  

A. Example trials of learning task 2. Screenshots are shown from left to right, with 

durations in milliseconds. On every trial, subjects selected either the upper or lower cue, 

by pressing or not pressing a response button (Go or NoGo response). The selected cue was 

indicated with a red frame. Subjects could then observe the outcome of their choice (a 1€ 

reward, -1€ punishment, or nothing) and update their estimates of cue-outcome 
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contingencies. Each session presented novel pairs of cues, associated with either 80/20% 

reward probability (vs. nothing, as in top screenshots) or 80/20% punishment probabilities 

(vs. nothing, as in bottom screenshots).    

B. Cumulative learning curves (left panel: cumulative reward obtained; right panel: 

cumulative punishment avoided) observed in the On (dark red and blue) and Off (light red 

and blue) PPN stimulation states. Dots represent real data fitted using linear regression and 

averaged across sessions and patients. Shaded areas are inter-session S.E.M. The slope of 

reward accumulation was specifically increased by PPN-DBS. * p < 0.05 (paired two-tailed 

t-tests), n.s. not significant.  

C. Correct choice rates observed for reward (red) and punishment (blue) learning in the Off 

and On stimulation states. Histograms show group means and dots represent the three 

patients. The performance of healthy volunteers tested in a previous study[53] is shown as 

a reference point. Error bars represent inter-session S.EM. for patients ’data and inter-

subject S.EM. for healthy volunteers. * p < 0.05 (paired two-tailed t-tests), n.s. not 

significant.  

 

Figure 5. Computational account of PPN DBS effects.  

A. Posterior estimates of subjective reward and punishment sensitivity parameters (𝐾𝑅 and 

𝐾𝑃), estimated from models 2 and 3, where these parameters captured the effect of PPN 

DBS (relative to the Off state, where reward and punishment outcomes were assigned a 

reference weight of 1). Error bars represent the standard deviation of the individual 

posterior distribution.  Reward sensitivity (𝐾𝑅), more than punishment sensitivity (𝐾𝑃), was 

increased way above 1 in the On state. 

B. Average simulated performance for reward (red) and punishment (blue) learning 

conditions in “Off” and “On” stimulation states. Black dots are patients’ data averaged 

across all “On” and “Off” sessions. Error bars represent inter-session SE for human data 

and simulations. * p < 0.05 (paired two-tailed t-tests), n.s. – not significant.  

See also Figure S5 and Tables S3-S4. 
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STAR Methods 
 
 
RESOURCE AVAILABILITY 
 
Lead Contact 
 
Further information and requests for resources should be directed to and will be fulfilled 

by the Lead Contact, Mathias Pessiglione (mathias.pessiglione@gmail.com) 

 

 
Materials Availability 
 
This study did not generate new unique reagents. 
 
 
Data and Code Availability 
 
The raw dataset supporting the current study has not been deposited in a public repository 

due to ethical regulations but synthetic dataset and Matlab codes are available on request 

to corresponding authors. 

 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 
Patients 

Six patients with idiopathic Parkinson disease were recruited for a clinical trial aiming to 

assess the effects of PPN DBS on gait and balance disorders (trial #NCT020555261)[47]. 

As explained in the clinical report, two patients withdrew from the trial at an early stage 

due to surgery complications[47]. For technical reasons, data collection could not be 

completed in one patient, who was therefore not included in the final analysis, for which 

were retained the other 3 patients (2 females, mean age 60, range 46-70). Demographic and 

clinical characteristics are given in Table S1.  

All patients gave their informed written consent to the participation in all parts of the study, 

for which they received no financial compensation. The study protocol was approved by 

local ethic committee (Comité de Protection des Personnes d’Ile-de-France, Paris 6).  

 

METHOD DETAILS 

mailto:mathias.pessiglione@gmail.com
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Behavioral data collection 

Patients performed two instrumental learning tasks, the first one (task 1) during LFP 

recording and the second one (task 2) 4 and 6 months after the surgery (Figure 1).  Learning 

task 2 was assessed in two double-blind conditions: "on-DBS" and "off-DBS". Patients 1 

and 3 performed task 2 in the On-Off order, whereas patient 2 did it in the reverse Off-On 

order, as well as excluded patient 4. Both tasks were presented using Cogent 2000 Matlab 

Toolbox (Wellcome Department of Imaging Neuroscience, London, UK)[83].  

Task 1  

Patients performed a version of the probabilistic instrumental learning task used in previous 

fMRI studies to dissociate the neural correlates of reward and movement[48–50][48]. Each 

session contained four pairs of visual cues from the Agathodaimon font. Each cue was 

associated with either 25 or 75% chance of getting 50 cents or nothing. The four pairs were 

associated with different combinations of reward probabilities: 25/25, 75/75, 25/75 and 

75/25%. Task sessions were independent from each other and patients had to relearn new 

cue – outcome contingencies in every session. Each session contained 96 trials in total.  

On every trial, patients had to make a choice between left and right cues presented 

simultaneously on the screen (Figure 2A). Patients had 3000ms to make their choice and 

had to keep pressing the button with her left or right index finger until the red pointer 

appeared on the screen below the selected cue indicating the choice for 500ms. Afterwards, 

a screen with feedback information (50 cents or 0 cents) appeared for 3000ms, before the 

onset of the next trial. If no response was made after 3000ms, the trial ended with a negative 

feedback and the next trial began. Patients were told that cues differed in probability of 

being rewarded and were encouraged to accumulate as much money as possible. However, 

they were not given any explicit information about the structure of the task and had to adjust 

their choices by trial and error. The difference between left- or right-hand choices in the 

asymmetrical pairs (75/25 and 25/75%) compared to symmetrical pairs (25/25 and 75/75%) 

indicated learning. Before the 3 test sessions, patients performed a short training session to 

familiarize themselves with the task.  
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Task 2  

The same patients performed twice, (once On and once Off PPN DBS), two months apart, 

a task that involved learning from monetary gains and losses, used in previous fMRI and 

patient studies[9,53] (Figure 4A). All patients performed three sessions of the task in both 

“on-DBS" and “off-DBS” states, each session presenting novel cues to be learned. As in 

task 1, patients made binary choices between two visual cues, but this time each cue was 

associated with either a monetary gain (1€) or a monetary loss (-1€). In the reward 

condition, one cue was associated with 80% chance of winning 1€ and 20% of winning 

nothing, while the other cue had reverse contingencies. Symmetrically, in the punishment 

condition, one cue was associated with 80% chance of losing 1€ and 20% of losing nothing, 

and vice-versa for the other cue. A third "neutral" pair of cues did not result in any financial 

outcome and served as a motor control. Each session presented one pair of reward cues, 

one pair of punishment cues, and one neutral pair. The reward and punishment trials were 

thus intermixed within a session. 

On every trial, patients had 4000ms to make a choice between the upper and lower cues: 

they pressed a button to select the upper one or did nothing to select the lower one (Figure 

4A). The chosen cue was highlighted on the screen for 500ms and then the outcome was 

shown for 3000ms. Again, patients were told to maximize their payoffs, without any detail 

about how gain and loss conditions were distributed over cues.  

 

Computational models 

To get deeper insight about the effects of PPN-DBS on learning, we built up several 

variations of a basic Q-learning model. In all models, monetary gains and losses were coded 

as 1 and -1 and Q-values were initiated at 0.5 and -0.5 for reward and punishment learning 

conditions, respectively. Chosen Q-values at time t were updated proportionally to the 

prediction error, according to the Rescorla-Wagner learning rule:  

(1)  𝑄𝑡+1 = 𝑄𝑡 + 𝛼 ∗ (𝑂𝑢𝑡𝑐𝑜𝑚𝑒 − 𝑄𝑡), 

where 𝛼  is a learning rate (between 0 and 1) that was set separately for reward and 

punishment learning conditions. The choice was implemented using a softmax rule:   
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(2)  𝑃𝑢𝑝 = 1
1+exp (−𝛽(𝑄𝑢𝑝−𝑄𝑑𝑜𝑤𝑛))

 , 

where 𝑃𝑢𝑝 is the probability of choosing the upper cue and 𝛽 is an inverse temperature 

parameter that adjusts for the stochasticity of choice. This basic Q-learning model (model 

1) included three free parameters that were independent from the stimulation. We next 

constructed several specifications of this model that made different predictions about the 

effects of PPN DBS on reward and punishment learning.  

As we were interested in finding the parameter that best captures the difference in learning 

between on-DBS and off-DBS states, we focused on models where stimulation impacts 

only one parameter, and excluded models with combinatory effects on several parameters. 

First, we included a multiplicative sensitivity parameter that could modulate subjective 

perception of reward 𝐾𝑅 (model 2) or punishment 𝐾𝑃 (model 3) under PPN DBS. It was set 

to 1 in Off sessions but was allowed to vary between 0 and infinity in On sessions.  

(3)  𝑄𝑡+1 = 𝑄𝑡 + 𝛼𝑅 ∗ (𝑲𝑹 ∗ 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 − 𝑄𝑡), where  

 

{0 <  𝐾𝑅 < 𝐼𝑛𝑓 | 𝐷𝐵𝑆 = 1
𝐾𝑅 = 1               | 𝐷𝐵𝑆 = 0 

 

These parameters capture potential differences in the sensitivity to reward or punishment 

outcomes and adjust both the slope and plateau of learning curves.  

In the next two models, we assumed that stimulation primarily affected learning rate for 

either reward 𝛼𝑅(model 4) or punishment 𝛼𝑃 (model 5) and thereby by adjusted the slope 

of learning curves without affecting the plateau.  

(4)  𝑄𝑡+1 = 𝑄𝑡 + 𝜶𝑹 ∗ (𝑂𝑢𝑡𝑐𝑜𝑚𝑒 − 𝑄𝑡), where 

 

{ 𝜶𝑹 = 𝜶𝑹 𝑶𝑵 | 𝐷𝐵𝑆 = 1
𝜶𝑹 = 𝜶𝑹 𝑶𝑭𝑭 | 𝐷𝐵𝑆 = 0 

 

Finally, we included a model where the effect of the stimulation was independent from 

outcome valence but instead changed choice stochasticity by affecting the inverse 

temperature parameter β (model 6).  

(5) 𝑃𝑢𝑝 = 1
1+exp (−𝛽∗(𝑄𝑢𝑝−𝑄𝑑𝑜𝑤𝑛))

, where 
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{ 𝛽 = 𝛽𝑂𝑁 | 𝐷𝐵𝑆 = 1
𝛽 = 𝛽𝑂𝐹𝐹 | 𝐷𝐵𝑆 = 0 

 

 

All models except model 1 had four free parameters in total.   

We inverted all 6 models, for ach patient separately, using the Variational Bayes approach 

under the Laplace approximation[55,84] implemented via a customary-built MatLab 

toolbox (available at http://mbb-team.github.io/VBA-toolbox/). This is an iterative method 

that approximates model evidence, which is difficult to track analytically, using variational 

free energy[85]. Model evidence represents a trade-off between accuracy (goodness of fit) 

and complexity (number of parameters). Model inversion was computed using the same 

priors for parameters shared across all models, and the same variance for parameters meant 

to capture the effect of PPN DBS. The most plausible effect of PPN DBS was selected 

using a random-effect model comparison, which assumes that different patients might 

implement different models [84,86]. A fixed-effect analysis (i.e., just summing model 

evidence over the three patients) yielded similar results. 

To verify that the winning model was able to reproduce the observed effect of PPN DBS, 

we used it to simulate choices in 12 learning sessions, keeping the best-fitting individual 

parameters, and performed the same analysis as with observed choices. To assess the 

quality of fit, we also computed Pearson’s correlations across trials, including all 6 On and 

6 Off sessions between observed and simulated correct choice rate (Figure S5).   

  

LFP data collection  

Surgical procedure 

Details of the surgical procedure and localization of the PPN target regions were previously 

reported[40,47]. Individual localization of the PPN target area was determined using both 

direct MRI navigation and a 3D histological atlas of the basal ganglia deformed to match 

the T1-weighted preoperative MRI88. The localization of the definitive DBS electrodes was 

performed using postoperative helicoidal CT scans registered to the preoperative T1-

weighted MRI scans[52]. Local field potentials were recorded from the bilateral definitive 

DBS electrodes (model 3389, Medtronic Neurological division), with four cylindrical 

platinum-iridium contacts (1.27 mm in diameter and 1.5mm in length, 0.5 mm separation). 
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Signals were amplified, low-pass filtered at 250Hz and sampled at 512 Hz (Basis BE 

System, EB Neuro S.p.A).  

PPN-DBS parameters  

Contacts and parameters of the stimulation for each patient are reported in Table S2. 

Clinical effects of PPN DBS with and without L-dopa treatment have been described in 

details[47]. All patients were stimulated bilaterally and were withdrawn from the 

dopaminergic medication for at least 12 hours prior to the testing session.  

 

fMRI data collection  

To explore whether the PPN region encodes reward-related variables, we first analyzed the 

data collected in healthy controls (N = 20, 11F, age between 19 and 31) who performed the 

same instrumental learning task as PD patients (task 1) in the fMRI scanner. Data were 

preprocessed and analyzed using statistical parametric mapping (SPM8) software 

(Wellcome Trust Center for Neuroimaging, London, UK)[87]. Structural T1-weighted 

images were corregistered to the mean functional EPI, segmented and normalized to the 

standard anatomical template. Preprocessing of the EPI time series was identical to that 

reported in previous fMRI studies[48,50], including spatial realignment and normalization 

using the same transformation as structural images, except that we skipped the final spatial 

smoothing of the data to avoid blurring the BOLD signal between the PPN and its 

neighbors. The PPN region of interest (Figure S1A) was defined from a digital atlas of 

subcortical structures[51,52] mapped onto individual normalized brain scans. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

All statistical analyses were conducted using customary-built scripts and statistical toolbox 

in MATLAB (R2020a, Natick, Massachusetts: The MathWorks Inc.). All statistical details 

can be found in the results section and/or figure legends.  

Behavioral data analysis 

Task 1  
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Due to the small number of patients (N = 3), second-level statistical tests assessed fixed 

effects, with one data point per session, ignoring the differences between individuals. Two 

patients performed three sessions of the task. The last session in patient 1 was excluded 

from the analysis due to a large number of trials with no responses (> 30%). The remaining 

8 sessions all had a proportion of missed trials below 15% (8.42 ±5.31% on average). 

To assess performance in learning (Figure 2B), we compared the proportion of left/right 

responses between asymmetrical pairs (25/75 vs. 75/25).  

Task 2  

We defined a correct response as choosing the best cue in the reward learning condition 

and avoiding the worst cue in the punishment condition. Performance in the first session 

was much lower than in the two subsequent sessions for each of the three patients, as was 

observed in other clinical populations performing the same task[53]. We therefore 

considered this first session as a practice session and did not include it in the main 

behavioral data analysis that is based on 12 sessions in total (6 on-DBS and 6 off-DBS). 

Note that including this first session in the analysis would not change the overall pattern of 

choice behavior.    

In order to assess the effects of learning condition (reward vs. punishment) and stimulation 

state (on-DBS vs. off-DBS), we ran a two-way repeated-measures ANOVA on session-

wise mean correct choice rate, thus considering state and condition as fixed factors, and 

session as a random factor. The ANOVA was followed with planned pair-wise comparisons 

using two-tailed t-tests between performance in on-DBS vs. off-DBS states, separately for 

reward and punishment conditions. Additionally, to test for interaction with motor 

responses, we ran a three-way repeated-measures ANOVA on mean correct choice rate 

with learning condition (reward vs. punishment), stimulation state (on-DBS vs. off-DBS), 

and response type (Go vs. NoGo) as fixed factors, and session as a random factor.  

Because the number of data points is low for parametric tests to be robust, we also 

performed a permutation test (N = 10000), to compute the probability that the observed 

results were due to chance level. On each permutation, the on-DBS/off-DBS session labels 

were randomly flipped and the differences between on-DBS and off-DBS learning 

performance were recomputed, separately for the reward and punishment conditions. 
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Significance was assessed as the proportion of permutations where the On-Off difference 

was positive and above the observed difference in actual performance.   

In order to provide reference points for the learning performance observed in our three 

patients, we also report performance in young healthy volunteers (N = 20, 8F, mean age 

43.6  ±2.8), as well as age-matched controls (N = 20, 8F, mean age 43.6  ±2.8) tested 

previously with the same task[48,49][53]. We did not make any statistical comparisons 

between groups because sample size was too small.   

To quantify learning dynamics, we fitted a linear regression model to the trial-by-trial 

cumulated points won or lost, separately for reward and punishment learning conditions 

and for “on-DBS” and “off-DBS” states. On every trial, the cumulative point was increased 

by one when the outcome was a reward and decreased by one when it was a punishment. 

To show whether the balance was progressing over trials, we regressed these cumulative 

scores against trial number, separately for each of the 12 sessions. We next performed a 

two-way repeated-measures ANOVA with learning condition and stimulation states as 

fixed factors on the slopes (regression weights). 

 

LFP data analysis 

Preprocessing  

Bipolar recordings were first computed between the adjacent contacts for each electrode 

by subtracting the signal of more ventral from more dorsal contact resulting in three (0-1, 

1-2 and 2-3) contacts per side, with the 0-1 contact being the most ventral and 2-3 being 

the most dorsal. Notch filter was applied at 50 Hz to remove the line noise and data were 

band-pass filtered between 2 and 95 Hz. All sessions in each patient were manually 

examined for artifacts and trials with amplitudes above 500 mV or greater than 4SD of the 

amplitude distribution across sessions were removed. Contacts with artifacts in more than 

70% of trials were excluded, leading to a total of 15 contacts available for analysis. The 

contacts included in the final dataset for each patient are reported in Table S2.  

Time-frequency decomposition  

Preprocessed data were z-scored separately for each bipolar recording, prior to the spectral 

decomposition, to obtain comparable values across contacts. Spatiotemporal frequency 
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maps were obtained using the multi-taper method implemented in Chronux Matlab 

library[88] http://chronux.org/. For each bipolar contact, power was calculated in 300ms 

sliding window with a 30ms step and 6 orthogonal tapers with a time bandwidth product 

equal to 5. Trial-by-trial spectrograms were normalized to the baseline fixation window 

(500ms) prior to the presentation of choice options and converted to decibels (dB).  

Statistical analysis   

Due to the small number of patients (N = 3), second-level statistical tests assessed fixed 

effects, with one data point per contact, ignoring the differences between individuals.  

To test for the presence of reward-related signals in PPN LFP, we defined a window from 

-500ms to +2000ms around outcome display and split the time-frequency series between 

reward and no reward trials. At the first level, we computed the contrast between reward 

and no reward trials for each contact, resulting in 15 time-frequency maps. These contrast 

maps were then brought to a second-level analysis across contacts and tested against zero 

at every frequency and every time point.  

To correct for multiple comparisons, i.e. testing over 47 frequencies (2:5:95 Hz) at 50 time 

points (-500:60:2500 ms), we used a cluster-based permutation test using the script routines 

implemented in the Fieldtrip signal processing toolbox for Matlab[89,90]. First, t-values 

were computed at every frequency and time point and the threshold for cluster selection 

was set to the 97.5 quintile of the t-distribution (two-tailed t-test with alpha-level of 0.05). 

Clusters were selected on the basis of their unsigned t-value, and constructed on the basis 

of temporal and spatial continuity, separately for positive and negative t-values. Cluster-

level t-statistic was computed as the sum of t-values within the cluster. The permutation 

distribution was based on a maximum (unsigned) cluster-level statistic. Only clusters that 

had a Monte-Carlo p-value less than 0.025 (5% chance that the shuffled t-value exceeded 

the true t-value for a given cluster with a two-tailed test) were considered significant and 

are shown on Figure 3B. Importantly, this test informs about whether activity was different 

between reward and no reward conditions at each time-frequency point, but not about the 

directionality of the difference.  

To further specify the observed difference in LFP activity, we extracted the (baseline-

corrected) power time series within the significant frequency band, separately for reward 

and no-reward trials. The aim of this post-hoc analysis was to qualify the significant 
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difference as driven by increased or decreased activity following reward vs. no reward 

outcomes. For each trial, power time series were averaged across all contacts, either at the 

individual or group level (Figure 3C). To test for a response to reward outcomes, the power 

at each time point was compared to zero, using again a permutation tests to correct for 

multiple comparisons[89]. In each permutation, the power sign was flipped in half the trials, 

picked at random, and the t-value was recomputed based on the shuffled data. The 

procedure was repeated for a total of 10,000 permutations, providing the distribution of t-

values under the null hypothesis (no response to reward). The test was deemed significant 

if the observed t-value exceeded that obtained by chance in more than 95% of permutations 

and for at least 8 consecutive time points.  

 To explore whether other variables such as reward expectation, trial number or choice side 

would affect LFP activity, we regressed trial-by-trial time-frequency maps against GLM 

that included these variables and their interaction with outcomes (coded 1 for reward and 

zero for no reward). Second-level statistical tests were then conducted as for the simple 

contrast between reward and no reward outcomes, employing the same permutation 

procedure to correct for multiple comparisons. 

 

fMRI data analysis  

At the subject level, we constructed a GLM with two regressors for button presses split 

between left- and right-hand choices and four regressors for outcome onsets split between 

left- and right-hand choices and between reward vs. no-reward outcomes. All six regressors 

were modeled as stick functions with duration set to zero and convolved with the canonical 

hemodynamic response. Regressors of no interest included the six motion parameters. We 

next extracted subject-by-subject the beta estimates at the moment of choice and outcome 

for all contrasts, which were averaged over all voxels within the bilateral masks delineating 

the PPN.  

Choice-related response was analyzed using repeated-measures ANOVA with choice side 

(left vs. right) and PPN anatomical ROI side (left  vs. right) as within-subject factors. 

Outcome-related response was analyzed using repeated-measures ANOVA with outcome 

(reward vs. no-reward), choice (left vs. right), and PPN anatomical ROI side (left vs. right) 

as within-subject factors.    
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
   
   
   
   
   
Bacterial and Virus Strains  
   
   
   
   
   
Biological Samples   
   
   
   
   
   
Chemicals, Peptides, and Recombinant Proteins 
   
   
   
   
   
Critical Commercial Assays 
   
   
   
   
   
Deposited Data 
   
   
   
   
   
Experimental Models: Cell Lines 
   
   
   
   
   
Experimental Models: Organisms/Strains 

Key Resource Table



 

Human patients with Parkinson’s disease  N/A N/A 
   
   
   
   
   
Oligonucleotides 
   
   
   
   
   
Recombinant DNA 
   
   
   
   
   
Software and Algorithms 
Cogent 2000 Matlab Toolbox  [83]  http://www.vislab.ucl.

ac.uk/cogent_2000.p
hp 

Fieldtrip  [90]  https://www.fieldtript
oolbox.org/ 

Chronux Matlab library [88]  http://chronux.org/. 
Statistical Parametric Mapping Toolbox for fMRI data 
analysis (SPM8)  

[87]  https://www.fil.ion.ucl
.ac.uk/spm/ 

   
Other 
Custom scripts for data analyses  The custom Matlab 

codes are available on 
request to 
corresponding 
authors. 

N/A 
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Figure S1. PPN hemodynamic response to reward. Related to Figure 2. 

A. Example trial of learning task 1 (same as Figure 2). Screenshots are shown from left to right, with durations 
in milliseconds. On every trial, subjects selected between left and right options represented by two visual 
cues, using their left-hand or right-hand index to press the corresponding button. The side of the selected cue 
(left in the example) was marked with a red pointer. Subjects could then observe the outcome of their choice 
(a 0.5€ reward or nothing) and update their estimates of cue-reward contingencies. Each session presented 
four different pairs of cues, associated with different combinations of reward probability (25/25, 75/75, 75/25, 
25/75 %). 

B. Behavioral performance of young healthy volunteers (N=20) tested during fMRI data acquisition. 
Histograms show the choice rate observed with the four pairs of cues associated to varying reward probability 
(light gray: symmetrical pairs, dark grey: asymmetrical pairs). Even if the pattern of behavioral performance 
was similar to that of PD patients, young healthy volunteers were better at learning which cue was more 
rewarded (for the two asymmetrical pairs in dark grey). Error-bars are inter-subject S.E.M. The plot is 
reproduced with permission from[S1].  

C. Sagittal view showing the localization of the PPN (purple) and adjacent CN (green) masks taken from an 
histological atlas of the basal ganglia[S2]. Masks are superimposed on the average T1 of healthy volunteers 
(N = 20) who performed learning task 1 in the MRI scanner, normalized to the MNI brain template. 

D. Contrast estimates for ipsilateral vs. contralateral choice (left panel) and reward vs. no reward outcome 
(right panel). Regression estimates were extracted from bilateral PPN masks, contrasted at the subject level 
and then tested at the group level. Dots correspond to individual subject estimates. Hemodynamic activity 
was increased at the time of choice, but unaffected by response side. It was also increased at the time of 
outcome, specifically when reward was delivered.  Error bars are inter-subject S.E.M. *** p < 0.001, ** p < 
0.01, n.s. not significant.  
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Figure S2. Individual time-frequency maps of choice-evoked activity. Related to Figure 3. 

Color code indicates power observed in each time-frequency bin of the map. Power was corrected for baseline 
measure (over a -500 to 0ms time window prior to fixation onset). Although increased activity was observed 
in the alpha-beta band around choice onset in all three patients, there was no significant difference between 
ipsi- and contra-lateral responses.  
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Figure S3. Individual time-frequency maps of outcome-evoked activity. Related to Figure 3. 

Color code indicates power observed in each time-frequency bin of the map. Power was corrected for baseline 
measure (over a -500 to 0ms time window prior to fixation onset). Higher activity in the alpha-beta band 
following reward outcome was observed in all three patients.  
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Figure S4. PPN potentials evoked by reward in alternative regression analyses. Related to Figure 3.    

Time-frequency maps show T-values of the contrast between reward and no reward outcomes, in a GLM that 
also contained choice side (ipsi or contralateral to the recording contact) plus its interaction with reward 
outcome in A, reward expectation (chosen Q-value) in B, and trial number (within sessions) plus its 
interaction with reward outcome in C. Maps were averaged over all sessions and all available contacts in all 
three patients. Color code indicates the T-value obtained in each time-frequency bin of the map. Plain colors 
delineate the significant cluster (p < 0.05 after correction for multiple comparisons), whereas more 
transparent colors denote non-significant bins. None of the additional regressors yielded any significant 
activation, and the significant cluster signaling reward outcomes was similar in all cases.  
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Figure S5. Quality of model fitting. Related to Figure 5. 

Scatter plots show inter-trial Pearson’s correlations between observed and modeled correct choice rates for 
reward and punishment learning in the On and Off stimulation states.  PPN DBS effects were captured by the 
winning model with modulation of the subjective sensitivity to reward KR.  Solid lines are linear regression 
fits; shaded areas indicate 95% confidence intervals around linear regression estimates. Percentage of 
explained variance (r2 estimates) is provided separately for every condition.  
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Patients Gender,Age Disease 
duration 
(years) 

UPDRS 
score  

On/Off 

L-dopa 
dosage 
(mg) 

MMS 
score 

MDRS 
score 

WCST 
score 

1 F, 70  18 16/45 570 25 140 15 

2 F, 64  10 19/38 1050 25 141 12 

3 M, 46  12 19/50 1300 27 139 20 

 

Table S1.  Demographic and clinical characteristics of patients. Related to Figure 1. 

UPDRS - Unified Parkinson’s disease rating scale, part III (range: 0 – 108; higher score indicates worse motor 
function; On and Off scores indicate motor performance with and without levodopa); medication dosage is 
expressed as levodopa equivalent; MMS - Mini-Mental State examination (range: 0 – 30); MDRS - Mattis 
Dementia Rating Scale (range 0 – 144); WCST - Wisconsin Card Sorting Test (range 0 – 20). For MMS, 
MDRS and WCST, higher score indicates better cognitive functioning.  

 

 

Patients 

Bipolar 
contacts used 
in LFP data 

analysis 
Total 

number of 
contacts 
available  

Contacts used 
for DBS 

Coordinates in mm of 
the stimulated contacts  

(+ Left, - Right)  

Stimulation 
parameters  

F(Hz) / P(ms) / 
A(V)  

Left  Right  
Left 

 
Right L D H  

Left  
 

Right 

1 
0-1 
1-2 
2-3 

0-1 
1-2 
2-3 

6  0-1 + 1-2 +  3.4  
-5.6 

8.7 
7.8 

-1.4 
-1.6 

40/60/ 
3.1 

40/60 
3.1 

2 1-2 
2-3 

1-2 
2-3 4 3-2 +  2-3 +  3.2 

-5.2 
8.7 
9.2 

-2.5 
-5.4 

40/60/ 
1.2 

40/60/ 
0.8 

3 0-1 
2-3 

0-1 
1-2 
2-3 

5 0-1 +   1-0 +  3.6 
-2.2 

6.3 
7.8 

-3.5 
-4.6 

20/30/ 
1.3 

20/60/ 
2.4 

 

Table S2. PPN electrodes and stimulation characteristics. Related to Figure 1. 
LFP activity was computed as the difference between recordings from two adjacent electrodes, going from 
more ventral (contact 0) to more dorsal (contact 3). Lower indices for bipolar contacts indicate more ventral 
contact location. The coordinates of the stimulated contacts are given in millimeters from midline:  L - 
laterality (– right side, + left side), D – ventro-dorsal distance from the floor of the fourth ventricle, H – 
rostro-caudal distance from a ponto-mesencephalic junction to the inferior colliculi caudal margin (– above 
this line, + below this line). Reproduced with permission from[S3].   



 

 

Patients Model 0 Model KR Model KP Model DR Model DP Model E 

1 -166.52 -156.13 -167.10 -169.38 -168.58 -158.61 

2 -178.16 -175.86 -177.92 -178.58 -178.60 -178.11 

3 -104.92 -96.09 -108.01 -106.43 -107.05 -105.51 

Summed -449.53 -428.09 -453.03 -454.40 -454.24 -442.23 

Expected  
Frequency 0.0417 0.7916 0.0417 0.0417 0.0417 0.0417 

Exceedance 
Probability  0.0098 0.9478 0.0100 0.0085 0.0117 0.0122 

 

Table S3. Results of Bayesian model comparison. Related to Figure 5. 

The top four rows indicate approximated model evidence for each of the six models fitted to individual 
choices and summed across patients for the fixed-effect model selection (lower values indicate better fit). The 
two rows at the bottom indicate expected frequencies and exceedance probabilities obtained from random-
effect model selection.  

 

 

Patients Reward  
learning rate  

Punishment 
learning rate  

Softmax  
inverse choice 
temperature 

KR reward sensitivity 
scaling parameter 

1 0.22 0.26 1.23 2.43 

2 0.47 0.60 3.57 2.09 

3 0.70 0.61 0.39 2.89 

 

Table S4. Fitted computational parameters. Related to Figure 5.  

Lines show for the three patients the mean of each free parameter posterior distribution, obtained with the 
best-fitting model where PPN DBS only modulated reward sensitivity (𝐾𝑅).  
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