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Abstract

Rank-width of a graph G, denoted by rw(G), is a width parameter of
graphs introduced by Oum and Seymour (2006). We investigate the asymp-
totic behavior of rank-width of a random graphG(n, p). We show that, asymp-
totically almost surely, (i) if p ∈ (0, 1) is a constant, then rw(G(n, p)) =
⌈n3 ⌉ −O(1), (ii) if 1

n ≪ p ≤ 1
2 , then rw(G(n, p)) = ⌈n3 ⌉ − o(n), (iii) if p = c/n

and c > 1, then rw(G(n, p)) ≥ rn for some r = r(c), and (iv) if p ≤ c/n
and c < 1, then rw(G(n, p)) ≤ 2. As a corollary, we deduce that G(n, p) has
linear tree-width whenever p = c/n for each c > 1, answering a question of
Gao (2006).

Keywords: rank-width, tree-width, clique-width, random graph, sharp thresh-
old.

1 Introduction

Rank-width of a graph G, denoted by rw(G), is a graph width parameter introduced
by Oum and Seymour [10] and measures the complexity of decomposing G into a

∗The first author was supported in part by Samsung Scholarship. The second and third authors
were supported by SRC Program of Korea Science and Engineering Foundation(KOSEF) grant
funded by the Korea government (MOST)(No. R11-2007-035-01002-0). The third author was also
partially supported by TJ Park Junior Faculty Fellowship.

†choongbum.lee@gmail.com
‡jk87@kaist.ac.kr
§sangil@kaist.edu

1

http://arxiv.org/abs/1001.0461v1


tree-like structure. The precise definition will be given in the following section. One
fascinating aspect of this parameter lies in its computational applications, namely, if
a class of graphs has bounded rank-width, then many NP-hard problems are solvable
on this class in polynomial time; for example, see [2].

We consider the Erdős-Rényi random graph G(n, p). In this model, a graph
G(n, p) on a vertex set {1, 2, · · · , n} is chosen randomly as follows: for each un-
ordered pair of vertices, they are adjacent with probability p independently at ran-
dom. Given a graph property P, we say that G(n, p) possesses P asymptotically
almost surely, or a.a.s. for brevity, if the probability that G(n, p) possesses P con-
verges to 1 as n goes to infinity. A function f : N → [0, 1] is called the sharp
threshold of G(n, p) with respect to having P if the following hold: if p ≥ cf(n)
for a constant c > 1, then G(n, p) a.a.s. satisfies P and otherwise if p ≤ cf(n) and
c < 1, then G(n, p) a.a.s. does not satisfy P.

The following is our main result.

Theorem 1.1. For a random graph G(n, p), the following holds asymptotically al-
most surely:

(i) if p ∈ (0, 1) is a constant, then rw(G(n, p)) = ⌈n
3
⌉ − O(1),

(ii) if 1
n
≪ p ≤ 1

2
, then rw(G(n, p)) = ⌈n

3
⌉ − o(n),

(iii) if p = c/n and c > 1, then rw(G(n, p)) ≥ rn for some r = r(c), and

(iv) if p ≤ c/n and c < 1, then rw(G(n, p)) ≤ 2.

Since rw(G) ≤ ⌈ |V (G)|
3

⌉ for every graph G, (i) and (ii) of this theorem give a
narrow range of rank-width. Note that this theorem also gives a bound when p ≥ 1

2
,

since the rank-width of G(n, p) in this range can be obtained from the inequality
rw(G) ≤ rw(G) + 1.

Clique-width of a graph G, denoted by cw(G), is a width parameter introduced
by Courcelle and Olariu [3]. It is strongly related to rank-width by the following
inequality by Oum and Seymour [10].

rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1. (1)

Tree-width, introduced by Robertson and Seymour [11], is a width parameter
measuring how similar a graph is to a tree and is closely related to rank-width. We
will denote the tree-width of a graph G as tw(G). The following inequality was
proved by Oum [9]: for every graph G, we have

rw(G) ≤ tw(G) + 1. (2)

There have been works on tree-width of random graphs. Kloks [8] proved that
G(n, p) with p = c/n has linear tree-width whenever c > 2.36. Gao [6] improved
this constant to 2.162 and even conjectured that c can be improved to a constant
less than 2. We improve the above constant to the best possible number, 1, by the
following corollary, stating that there is the sharp threshold p = 1/n of G(n, p) with
respect to having linear tree-width.

Corollary 1.2. Let c be a constant and let G = G(n, p) with p = c/n. Then the
following holds asymptotically almost surely:
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(i) If c > 1, then rank-width, clique-width,and tree-width of G are at least c′n for
some constant c′ depending only on c.

(ii) If c < 1, then rank-width and tree-width of G are at most 2 and clique-width
of G is at most 5.

Proof. (i) follows Theorem 1.1 with (1) and (2). (ii) follows easily due to the theorem
by Erdős and Rényi [4, 5] stating that asympototically almost surely, each compo-
nent of G(n, p) with p = c/n, c < 1 has at most one cycle. It is straightforward to
see that such graphs have small tree-width, clique-width, and rank-width.

2 Preliminaries

All graphs in this paper have neither loops nor parallel edges. Let ∆(G), δ(G) be
the maximum degree and the minimum degree of a graph G respectively. For two
subsets X and Y of V (G), let EG(X, Y ) be the set of ordered pairs (x, y) of adjacent
vertices x ∈ X and y ∈ Y . Let eG(X, Y ) = |EG(X, Y )|. We will omit subscripts if
it is not ambiguous.

Let F2 = {0, 1} be the binary field. For disjoint subsets V1 and V2 of V (G),
let NV1,V2

be a 0-1 |V1| × |V2| matrix over F2 whose rows are labeled by V1 and
columns labeled by V2, and the entry (v1, v2) is 1 if and only if v1 ∈ V1 and v2 ∈ V2

are adjacent. We define the cutrank of V1 and V2, denoted by ρG(V1, V2), to be
rank(NV1,V2

).
A tree T is said to be subcubic if every vertex has degree 1 or 3. A rank-

decomposition of a graph G is a pair (T, L) of a subcubic tree T and a bijection L
from V (G) to the set of all leaves of T . Notice that deleting an edge uv of T creates
two components Cu and Cv containing u and v respectively. Let Auv = L−1(Cu)
and Buv = L−1(Cv). Under these notations, rank-width of a graph G, denoted by
rw(G), is defined as

rw(G) = min
(T,L)

max
uv∈E(T )

ρG(Auv, Buv),

where the minimum is taken over all possible rank-decompositions. We assume
rw(G) = 0 if |V (G)| ≤ 1.

The following lemma will be used later.

Lemma 2.1. Let G = (V,E) be a graph with at least two vertices. If rank-width of
G is at most k, then there exist two disjoint subsets V1, V2 of V such that

|V1| =
⌈n

2

⌉

, |V2| =
⌈n

3

⌉

, and ρG(V1, V2) ≤ k.

Proof. Let k = rw(G). Let (T, L) be a rank-decomposition of width k. We claim
that there is an edge e of T such that T \e gives a partition (A,B) of V (G) satisfying
|A| ≥ n/3, |B| ≥ n/3 and ρG(A,B) ≤ k. Assume the contrary. Then for each edge
e in T , T \e has a component Ce of T \e containing less than n/3 leaves of T . Direct
each edge e = uv from u to v if Ce contains u. Since this directed tree is acyclic,
there is a vertex t in V (T ) such that every edge incident with t is directed toward
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t. Then there are at most 3 components in T \ t and each component has less than
n/3 leaves of T , a contradiction. This proves the claim.

Given sets A,B as above, we may assume |A| ≥ n/2. Take V1 ⊆ A and V2 ⊆ B
of size ⌈n

2
⌉ and ⌈n

3
⌉, respectively. Then ρG(V1, V2) ≤ ρG(A,B) ≤ k.

3 Rank-width of dense random graphs

In this section we will show that if 1
n
≪ min(p, 1−p), then the rank-width of G(n, p)

is a.a.s. ⌈n
3
⌉−o(n). Moreover, for a constant p ∈ (0, 1), rank-width of G(n, p) is a.a.s.

⌈n
3
⌉ − O(1). This bound is achieved by investigating the rank of random matrices.

The following proposition provides an exponential upper bound to the probability
of a random vector falling into a fixed subspace.

Proposition 3.1. For 0 < p < 1, let η = max(p, 1 − p). Let v ∈ Fn
2 be a random

0-1 vector whose entries are 1 or 0 with probability p and 1 − p respectively. Then
for each k-dimensional subspace U of Fn

2 ,

P(v ∈ U) ≤ ηn−k

Proof. Let B be a k × n matrix whose row vectors form a basis of U . By permut-
ing the columns if necessary, we may assume that the first k columns are linearly
independent. For a vector v ∈ Fn

2 , let v
(k) be the first k entries of v, and note that

P(v ∈ U) =
∑

w∈Fk
2

P(v ∈ U |v(k) = w)P(v(k) = w). (3)

Let u1, u2, · · · , uk be the row vectors of B. Observe that {u
(k)
j }kj=1 is a basis of Fk

2.

Thus, given v(k) = w =
∑k

i=1 ciu
(k)
i , we have v ∈ U if and only if v =

∑k
i=1 ciui.

This implies that given each first k entries of v, there is a unique choice of remaining
entries yielding v ∈ U . Thus for every w ∈ Fk

2, P(v ∈ U |v(k) = w) ≤ ηn−k.
Combining with (3), we obtain

P(v ∈ U) ≤ ηn−k
∑

w∈Fk
2

P(v(k) = w) = ηn−k,

and this concludes the proof.

Let M(k1, k2; p) be a random k1 × k2 matrix whose entries are mutually inde-
pendent and take value 0 or 1 with probability 1 − p and p respectively. Using
Proposition 3.1, we can bound the probability that the rank of M(⌈n

3
⌉, ⌈n

2
⌉; p) devi-

ates from ⌈n
3
⌉.

Lemma 3.2. For 0 < p < 1, let η = max(p, 1− p). Then for every C > 0,

P

(

rank
(

M
(⌈n

3

⌉

,
⌈n

2

⌉

; p
))

≤
⌈n

3

⌉

−
C

log2
1
η

)

< 2(
1

2
− 1

6
C)n.
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Proof. Let M = M(⌈n
3
⌉, ⌈n

2
⌉; p), α = ⌈ C

log2
1

η

⌉, and row(M) be the linear space

spanned by the rows of M . We may assume ⌈n
3
⌉ − α ≥ 0. Denote row vectors of M

by v1, v2, · · · , v⌈n
3
⌉. Note that rank(M) is at most ⌈n

3
⌉ − α if and only if there are

⌈n
3
⌉ − α rows of M spanning row(M). Thus

P
(

rank(M) ≤
⌈n

3

⌉

− α
)

≤
∑

I

P ({vi}i∈I spans row(M))

where the sum is taken over all I ⊆ {1, 2, · · · , ⌈n
3
⌉} with cardinality ⌈n

3
⌉ − α. Let

UI be the vector space spanned by row vectors {vi}i∈I . By Proposition 3.1, we get

P ({vi}i∈I spans row(M)) = P({vj : j /∈ I} ⊆ UI) ≤ (η⌈
n
2
⌉−⌈n

3
⌉+α)α,

since rows are mutually independent random vectors. Combining these inequalities,
we conclude that

P
(

rank(M) ≤
⌈n

3

⌉

− α
)

≤ 2⌈
n
2
⌉−1(ηα)⌈

n
2
⌉−⌈n

3
⌉+α ≤ 2

n
2 2−

n
6
C = 2(

1

2
− 1

6
C)n

because ⌈n
2
⌉ − ⌈n

3
⌉+ α ≥ n

6
and

(

⌈n
2
⌉

k

)

≤ 2⌈
n
2
⌉−1.

Proposition 3.3. Let η = max(p, 1− p) and n ≥ 2. Then

P

(

rw(G(n, p)) ≤
⌈n

3

⌉

−
12.6

log2
1
η

)

< 2−0.015n.

Proof. LetG = G(n, p), S = {NV1,V2
: |V1| = ⌈n

2
⌉, |V2| = ⌈n

3
⌉ for disjoint V1, V2 ⊆ V (G)}

and let µ = minN∈S rank(N). By Lemma 2.1, we have µ ≤ rw(G). Thus it suffices
to show that

P

(

µ ≤
⌈n

3

⌉

−
12.6

log2
1
η

)

< 2−0.015n.

For each N ∈ S, let AN be the event that rank(N) ≤ ⌈n
3
⌉ − 12.6

log2
1

η

. Note that

P

(

µ ≤
⌈n

3

⌉

−
12.6

log2
1
η

)

= P(
⋃

N∈S

AN ) ≤
∑

N∈S

P(AN).

By Lemma 3.2, we have P(AN) ≤ 2−1.6n. Notice also that |S| ≤ 3n. Therefore,

P

(

µ ≤
⌈n

3

⌉

−
12.6

log2
1
η

)

≤ 3n2−1.6n < 2−0.015n.

The main theorem directly follows from this proposition.

Theorem 3.4. Asymptotically almost surely, G = G(n, p) satisfies the following:

(i) if p ∈ (0, 1) is a constant, then ⌈n
3
⌉ − O(1) ≤ rw(G) ≤ ⌈n

3
⌉, and

(ii) if 1
n
≪ min(p, 1− p), then ⌈n

3
⌉ − o(n) ≤ rw(G) ≤ ⌈n

3
⌉.
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4 Rank-width of sparse random graphs

In this section we investigate the rank-width of G(n, p) when p = c/n for some
constant c > 0. Note that Proposition 3.3 does not give any information when
p = c/n and c is close to 1. As mentioned in the introduction, the linear lower
bound of rank-width in this range of p is closely related to a sharp threshold with
respect to having linear tree-width. We show that, when p = c/n,

(i) if c < 1, then rank-width is a.a.s. at most 2,

(ii) if c = 1, then rank-width is a.a.s. at most O(n
2

3 ) and,

(iii) if c > 1, then there exists r = r(c) such that rank-width is a.a.s. at least rn.

Erdős and Rényi [4, 5] proved that if c < 1 then G(n, p) a.a.s. consists of trees
and unicyclic (at most one edge added to a tree) components and if c = 1 then

the largest component has size at most O(n
2

3 ). Therefore, (i) and (ii) follow easily
because trees and unicyclic graphs have rank-width at most 2.

Thus, (iii) is the only interesting case. When c > 1, G(n, p) has a unique
component of linear size, called the giant component. Hence, in order to prove a
lower bound on the rank-width of G(n, p), it is enough to find a lower bound of the
rank-width of the giant component.

We need some definitions to describe necessary structures. Let G = (V,E)
be a connected graph. For a non-empty proper subset S of V (G), let dG(S) =
∑

v∈S degG(v). The (edgewise) Cheeger constant of a connected graph G is

Φ(G) = min
∅6=S(V (G)

eG(S, V (G) \ S)

min(dG(S), dG(V (G) \ S))
.

Remark. In [1], the following alternative definition of the Cheeger constant of a

connected graph G is used. For a vertex v, let πv =
degG(v)
2|E(G)|

and for vertices v and w
of G, define

pvw =

{

1/ degG(v) if v and w are adjacent,

0 otherwise.

For a subset S of V (G), let πG(S) =
∑

v∈S πv. Thus dG(S) = 2|E(G)|πG(S). In [1],
the Cheeger constant of a graph G is defined alternatively as

min
0<πG(S)≤ 1

2

1

πG(S)

∑

i∈S,j /∈S

πipij.

We can easily see that these definitions are equivalent as follows:

Φ(G) = min
∅6=S(V (G)

eG(S, V (G) \ S)

min(dG(S), dG(V (G) \ S))
= min

0<πG(S)≤ 1

2

eG(S, V (G) \ S)

dG(S)

= min
0<πG(S)≤ 1

2

1

πG(S)

∑

i∈S,j /∈S

πipij,

where the second equality follows from the fact that πG(S) + πG(V (G) \ S) = 1.
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Benjamini, Kozma and Wormald [1] proved the following theorem.

Theorem 4.1 (Benjamini, Kozma and Wormald [1]). Let c > 1 and p = c/n. Then
there exist α, δ > 0 such that G(n, p) a.a.s. contains a connected subgraph H such
that Φ(H) ≥ α and |V (H)| ≥ δn.

Remark. The above theorem is a consequence of [1, Theorem 4.2]. The graph H
in Theorem 4.1 is the graph RN (G) in [1, Theorem 4.2], which proves that RN(G)
is a.a.s. an α-strong core of G. This means that RN (G) is a subgraph of G with
Φ(RN (G)) ≥ α by the definitions given in Section 2.2 and Section 3 of [1]. The
condition |V (H)| ≥ δn is not explicit in [1, Theorem 4.2]. However this fact fol-
lows from [1, Lemma 4.7], because RN(G) must have more vertices than its kernel
K(RN(G)) (the definition of kernel is given in [1, Section 4]). Note that n̂ in [1,
Lemma 4.7] satisfies n̂ = Ω(n) by the remark following [1, Lemma 4.1]. The proof
of Theorem 4.2 given in [1, Section 5] also mentioned this fact explicitly.

A graph H with the property as in Theorem 4.1 is called an expander graph.
The simple restriction of Φ(H) being bounded away from 0 provides a strikingly
rich structure to the graph as in Theorem 4.1. Interested readers are referred to the
survey paper [7].

By using this expander subgraph H , we will show that G(n, p) must have large
rank-width when p = c/n and c > 1. Before proving this, we need a technical lemma
which allows us to control the maximum degree of a random graph G(n, p).

Lemma 4.2. Let c > 1 be a constant and p = c/n. Then for every ε > 0, there
exists M = M(c, ε) such that G = G(n, p) a.a.s. has the following property: Let X
be the collection of vertices which have degree at least M . Then the number of edges
incident with X is at most εn.

Proof. Let V = V (G). Let M be a large number satisfying

∞
∑

k=M

k
ck

(k − 1)!
<

ε

2
. (4)

For each v ∈ V , define a random variable Yv = deg(v) if deg(v) ≥ M and Yv = 0
otherwise. Then by (4),

E[Y 2
v ] =

n−1
∑

k=M

k2P(deg(v) = k)

≤

n−1
∑

k=M

k2

(

n− 1

k

)

( c

n

)k

≤

∞
∑

k=M

k
ck

(k − 1)!
<

ε

2
.

(5)

Since Yv ≤ Y 2
v , we also have E[Yv] ≤ ε/2. Note that the number of edges incident

with X is at most
∑

v∈V Yv. Hence, it is enough to prove a.a.s. Y =
∑

v∈V Yv ≤ εn.
Observe that E[Y ] ≤ ε

2
n. Moreover, the variance of Y can be computed as

E[(Y − E[Y ])2] =
∑

v∈V

(

E[Y 2
v ]− E[Yv]

2
)

+
∑

v 6=w∈V

(

E[YvYw]− E[Yv]E[Yw]
)

≤ εn+
∑

v 6=w∈V

(

E[YvYw]− E[Yv]E[Yw]
)

,
(6)

7



where for each v, w ∈ V, v 6= w,

E[YvYw]− E[Yv]E[Yw]

=

n−1
∑

k,l=M

kl
(

P(deg(v) = k, deg(w) = l)−P(deg(v) = k)P(deg(w) = l)
)

.

Let qk = P(deg(v) = k|vw /∈ E(G)) = P(deg(v) = k + 1|vw ∈ E(G)), for distinct
vertices v, w in G(n, p). Notice that, given either vw ∈ E(G) or vw /∈ E(G), Yv and
Yw are independent. Thus, we deduce the following:

E[YvYw]− E[Yv]E[Yw]

=
n−1
∑

k,l=M

kl
(

pqk−1ql−1 + (1− p)qkql − (pqk−1 + (1− p)qk)(pql−1 + (1− p)ql)
)

≤ p
n−1
∑

k,l=M

kl(qk−1ql−1 + qkql)

≤ 2p
n−1
∑

k=M−1

(k + 1)qk

n−1
∑

l=M−1

(l + 1)ql ≤
ε2

n
.

Last inequality follows from (4), since similarly as done in (5) we get

n−1
∑

k=M−1

(k + 1)qk =

n−1
∑

k=M−1

(k + 1)

(

n− 2

k

)

( c

n

)k

≤

∞
∑

k=M

k
ck−1

(k − 1)!
<

ε

2c

and c > 1. Thus, by (6), we proved that the variance σ2 of Y is at most (1 + ε)εn.
Finally, using Chebyshev’s inequality and the fact E[Yv] ≤ ε/2, we show that

P
(

Y > εn
)

≤ P
(

Y ≥ E[Y ] +
εn

2

)

≤
σ2

ε2n2/4
≤

1 + ε

εn/4
,

which concludes the proof.

The following lemma will be used in the proof of the main theorem.

Lemma 4.3. Let A be a matrix over F2 with at least n non-zero entries. If each
row and column contains at most M non-zero entries, then rank(A) ≥ n

M2 .

Proof. We apply induction on n. We may assume n > M2. Pick a non-zero row w
of A. We may assume that the first entry of w is non-zero, by permuting columns if
necessary. Now remove all rows w′ whose first entry is 1. Since the first column has
at mostM non-zero entries, we remove at most M rows including w itself. Hence, we
get a submatrix A′ with at least n−M2 non-zero entries. By induction hypothesis,

rank(A′) ≥
n−M2

M2
≥

n

M2
− 1.

By construction, w does not belong to the row-space of A′ and therefore

rank(A) ≥ rank(A′) + 1 ≥
n

M2
.
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Theorem 4.4. For c > 1, let p = c/n. Then there exists r = r(c) such that a.a.s.
rw(G(n, p)) ≥ rn.

Proof. Denote G(n, p) by G. Let α, δ be constants from Theorem 4.1, and H be the
expander subgraph also given by Theorem 4.1. Let W = V (H) and let (W1,W2) be
an arbitrary partition of W such that |W1|, |W2| ≥ |W |/3. Then since Φ(H) ≥ α
and H is connected, we have

α ≤
eH(W1,W2)

min(dH(W1), dH(W2))
≤

eH(W1,W2)

min(|W1|, |W2|)
≤

eG(W1,W2)

|W |/3
.

Thus eG(W1,W2) ≥
αδ
3
n. By Lemma 4.2, there exists M such that the number of

edges incident with a vertex of degree at least M is at most αδ
6
n. Let W ′

1 = W1 \X
and W ′

2 = W2 \X . Since eG(W
′
1,W

′
2) ≥

αδ
6
n, NW ′

1
,W ′

2
has at least αδ

6
n entries with

value 1. Moreover, NW ′

1
,W ′

2
has at most M entries of value 1 in each row and column.

Hence, we can use Lemma 4.3 to obtain

αδ

6M2
n ≤ ρG(W

′
1,W

′
2) ≤ ρG(W1,W2).

Since W1,W2 are arbitrary subsets satisfying |W1|, |W2| ≥ |W |/3, this implies that
the induced subgraph G[W ] has rank-width at least αδ

6M2n by Lemma 2.1. Therefore,
rank-width of G is at least αδ

6M2n.

Corollary 4.5. Let c > 1 and p = c/n. Then there exists t = t(c) such that a.a.s.
tw(G(n, p)) ≥ tn.
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