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The doublet-spin nature of radical emitters is advantageous for applications in organic light-emitting 

diodes (OLEDs), as it avoids the formation of triplet excitons that limit the electroluminescence efficiency 

of non-radical emitters. However, radicals generally show low optical absorption and photoluminescence 

yields. Here we explain the poor optical properties of radicals based on alternant hydrocarbons, and 

establish design rules to increase absorption and luminescence yields for donor-acceptor-type radicals. We 

show that non-alternant systems are necessary to lift the degeneracy of the lowest energy orbital 

excitations; moreover, intensity borrowing from an intense high-lying transition by the low energy charge-

transfer excitation enhances the oscillator strength of the emitter. We apply these rules to design tris[2,4,6-

trichlorophenyl] methyl (TTM)-pyridoindolyl derivatives with high photoluminescence quantum yield 

(>90%). OLEDs based on these molecules showed pure-red emission with over 12% external quantum 

efficiency. These insights may be beneficial for the rational design and discovery of highly luminescent 

doublet emitters.  
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In general, closed-shell materials are employed in organic light-emitting diodes (OLEDs), where the 

electrons are paired and the molecular orbitals are filled up to the highest occupied molecular orbital (HOMO) 

by the Aufbau Principle. Following electrical excitation, electrons are injected into the lowest unoccupied 

molecular orbital (LUMO) and abstracted from the HOMO to form 25% singlet (spin-0) and 75% triplet (spin-

1) states. Given a singlet ground state, the well-known spin statistics problem dictates that the maximum 

electroluminescence (EL) efficiency is limited to 25% as singlet and triplet states are intrinsically bright and dark, 

respectively. In order to overcome this, triplet states have been brightened directly, by inclusion of transition 

metals for promoting phosphorescence via heavy metal-enhanced spin-orbit coupling1-3; and indirectly, by E-

type (or thermally activated delayed fluorescence, TADF4) and P-type delayed fluorescence (or triplet-triplet 

annihilation5,6). 

With organic radicals, a different approach to triplet management in OLEDs has emerged. Most applications 

of stable radicals have focused on their magnetic and electron transfer properties for molecular magnets7,8, 

batteries9, organic field-effect transistors (OFETs)10,11, improving conductivity of electrical devices12, charge 

mediators in solar cells13 and accelerating chemical reactions14. Reports of radical-based photo-15-19 and electro-

luminescence20-22 make them exciting prospects for the basis of next-generation optoelectronics. The singly 

occupied molecular orbital (SOMO) dictates that both the ground and first excited states must have doublet-spin 

character and that emission is totally spin allowed (see fluorescence, D1  D0)23-25. Further, the SOMO can 

eliminate triplets from the functional device physics in radical-based OLEDs, and our recent work showed that 

such OLEDs can be operated entirely within the doublet exciton manifold21. In some cases, non-Aufbau HOMO-

SOMO inversion of the frontier orbitals can be exploited for improved radical stability26. 

To date, success for radical-based OLEDs has been achieved by covalent attachment of electron donor 

groups to tris(2,4,6-trichlorophenyl)methyl (TTM) radicals and perchloro-substituted variants21,26. As radicals 

are associated with quenched luminescence by electron transfer and spin-exchange interactions, that TTM-donor 

derivatives can have such efficient light emission (photoluminescence quantum efficiency, PLQE = 85.6%) and 

nanosecond luminescence lifetimes (17.2 ns) is surprising, but highly attractive for OLED applications21. Current 

discussions on the nature of emission in these radicals are mainly derived from unrestricted Kohn Sham density 

functional theory (UKS-DFT), and highlight the HOMO-donor to SOMO-radical-acceptor electronic transition 

for the fluorescent doublet exciton (D1)27,28. These studies suggest that greater HOMO-SOMO overlap should 
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promote higher oscillator strength for more rapid radical emission. However, they do not address the fundamental 

reasons as to why TTM and similar radicals are dark, yet the TTM-donor derivatives can be bright? We shed 

light on this question and have formulated general design rules for obtaining luminescent radicals, demonstrating 

that significant orbital overlap is not a sufficient criterion. Our model allows us to make directed chemical 

alterations to TTM-carbazole derivatives to control the colour of the radicals, yielding pure red emitters that are 

optimised for the ‘red’ in red-green-blue displays. 

 

 

Electronic structure considerations for radical-based luminescence 

The TTM radical has a weak absorption in the visible (ε = 850 M-1cm-1 at 544 nm)15, and a strong absorption 

in the UV (ε = 38150 M-1cm-1 at 374 nm). It is only weakly luminescent: with photoluminescence at 566 nm in 

CHCl3 (Fig. 1b), and measured photoluminescence quantum efficiency (PLQE) of 2.6% and radiative rate of 106 

s-1. These properties reflect the relatively weak extinction coefficient for the D0  D1 absorption in TTM, 

signifying a low oscillator strength for the lowest energy electronic transition which also translates to slow 

radiative emission in all solvents (Table S4 in SI 5). 

In fact, the TTM radical’s poor emissive properties are general features for alternant hydrocarbon systems 

where conjugated atoms can be divided into two sets and that no two atoms of the same set are directly linked. 

In such systems, the HOMO-SOMO and SOMO-LUMO energy gaps were proven to be identical29,30. The 

HOMO-SOMO |ΨhT
sT⟩ and SOMO-LUMO |ΨsT

lT⟩ TTM-based excitations are degenerate and also have identical 

dipole moments (Fig. 1c,1d). These two degenerate excitations are mixed by the electronic Hamiltonian to form 

an out-of-phase excitation at lower energy |D1⟩ with minimal oscillator strength (seen at 544 nm for TTM in 

Fig. 1b), and an in-phase combination at higher energy |D2⟩ with high oscillator strength (seen as an intense 

absorption for TTM at 374 nm). Although the previous researchers did not consider OLED applications, their 

proof suggests that it would be difficult to make an efficient radical emitter based on an alternant hydrocarbon29,30, 

since emission from D1 would be weak and associated with a slow radiative rate that would be outcompeted by 

non-radiative decay. The proof is based on an electronic structure model similar to Pariser-Parr-Pople theory31-34 

for closed-shell molecules, which has the simplicity of Hückel theory, but unlike Hückel theory also includes 

two-electron (Coulomb and exchange) interactions for accurate description of excited states. Note that the 
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HOMO-SOMO and SOMO-LUMO energy gap degeneracy is not necessarily found in density functional theory 

calculations which are usually employed to study the radicals’ electronic structure21,23,27. 

Fig. 1. Nature of light emission from radicals based on alternant and non-alternant hydrocarbons. 

a) Chemical structures of the TTM (alternant) and TTM-1Cz (non-alternant). b) Optical absorption (solid lines) 

and fluorescence (dotted lines) spectra of the TTM and TTM-1Cz radicals in CHCl3. c) Schematic molecular 

orbital diagram of the TTM and carbazole moieties in TTM-1Cz, with electron occupancy shown by half-headed 

arrows. d) Transition dipole moments (TDM) for HOMO-SOMO |ΨhT
sT⟩ and SOMO-LUMO |ΨsT

lT⟩ transitions in 

TTM (blue arrows), showing out-of-phase and in-phase combinations for the |D1(TTM)⟩ and |D2(TTM)⟩ excited 

states. Note that the indicated |ΨhT
sT⟩  and |ΨsT

lT⟩  excitations are one pair from a degenerate set; the other 

excitation pair has horizontal dipole moments. e) The weak CT transition dipole moment of TTM-1Cz is enhanced 

by intensity borrowing from the TTM moiety’s bright |D2(TTM)⟩ state. 

 

It is not a coincidence that the main route to stable and luminescent radicals has been by covalent attachment 

of electron-rich, non-alternant hydrocarbon groups to TTM and perchlorotriphenylmethyl (PTM), forming non-

alternant-donor-acceptor radicals15-18,21,26,27,35,36 (SI 6). Radicals should be synthesised with broken alternacy 

symmetry which, to the best of our knowledge, was not considered possible29,30. In TTM-1Cz ([4-(N-carbazolyl)-

2,6-dichlorophenyl]bis(2,4,6-trichlorophenyl)methyl15, Fig. 1c), considered a breakthrough molecule for radical 

luminescence, the D1 excited state is a carbazole HOMO (hCz) to TTM SOMO (sT) electronic transition with 

charge transfer (CT) character. The colour of light emission is then related to the hCz-sT energy gap (Fig. 1c), and 

is 687 nm in CHCl3 (Fig. 1b)15. Breaking the alternacy symmetry leads to a substantial increase in the extinction 
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coefficient of the lowest excited state of TTM-1Cz (3780 M-1cm-1, Fig. 1b) compared to TTM (850 M-1cm-1). A 

higher D1 transition dipole moment leads to roughly twenty- and four-fold increases in PLQE and radiative rates, 

respectively, for TTM-1Cz versus TTM in cyclohexane: 2% to 53% and 3.5 × 106 s-1 to 1.3 × 107 s-1. 

Whilst the weak D1 transition for alternant radical systems is circumvented in TTM-1Cz and other donor-

acceptor-type radicals, since the D1 transition has significant charge-transfer character one might expect the 

oscillator strength to be inherently weak. To zeroth order, CT transitions are dark since the relevant orbitals do 

not overlap in space, and so ⟨D0(TTM−1Cz)
(0)

|𝜇̂|D1(TTM−1Cz)
(0)

⟩ = 0.37 However, to first order, the CT state can 

‘borrow intensity’ from TTM moiety’s bright |D2(TTM)
(0)

⟩ state. This phenomenon is supported experimentally: 

careful examination of Fig. 1b shows that, whilst the D1 extinction coefficient of TTM-1Cz is greater than that 

of TTM, there is a concomitant decrease in the intensity of the strong D2 transition at 374 nm from ε = 38150 M-

1cm-1 in TTM to 32670 M-1cm-1 in TTM-1Cz. More formally, using intensity borrowing perturbation theory38: 

|D1(TTM−1Cz)
(1)

⟩ = |D1(TTM−1Cz)
(0)

⟩ + 𝑋 |D2(TTM)
(0)

⟩      (1) 

where 

𝑋 =
⟨D2(TTM)

(0)
|𝑉̂|D1(TTM−1Cz)

(0)
⟩

𝐸(D
1(TTM−1Cz)
(0)

)−𝐸(D
2(TTM)
(0)

)
          

and 𝑉̂  corresponds to the electronic coupling perturbation Hamiltonian, and 𝐸(𝑦)  the energy for the 𝑦 =

D2(TTM)
(0)

 and D1(TTM−1Cz)
(0)

 states. Given the local excited and CT character for |D2(TTM)
(0)

⟩ and |D1(TTM−1Cz)
(0)

⟩ 

excitations, respectively, non-zero matrix elements for the mixing term are expected for orbital coefficients 

associated with atoms bonding the TTM and carbazole moieties. Approximating the electronic structure of the 

radical using Longuet-Higgins’ model37,38, 

⟨D2(TTM)
(0)

|𝑉̂|D1(TTM−1Cz)
(0)

⟩ ≈ −
1

√2
 𝛽𝐶𝑇∗,𝑖𝐶𝐶𝑧∗,𝑗 cos 𝜃,      

where 𝛽 is the Hückel hopping term; 𝜃 is the dihedral angle between radical and adjacent non-radical group; 

𝐶𝑇∗,𝑖 is the TTM HOMO coefficient of orbital i on joining atom T* (*carbon atom on TTM moiety, Fig. 1e), and 

likewise 𝐶𝐶𝑧∗,𝑗  for the carbazole HOMO coefficient of orbital j on joining atom Cz* (*nitrogen atom on 

carbazole moiety, Fig. 1e). Intuitively, the cosine term suggests that intensity borrowing – and therefore 

hybridisation of the excited states – is enhanced upon planarisation of the TTM-radical and carbazole-donor π-

systems. This consolidates the orbital delocalisation picture for radical-SOMO and donor-HOMO as presented 
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by Rovira and Cornil et al. 27. Analogously, intensity borrowing of oscillator strength can occur where the radical 

acts as an electron donor in D1, and now the relevant orbitals i and j would be TTM-LUMO (lT) and acceptor 

group LUMO. 

 In summary, we can formulate two general design rules for obtaining luminescent donor-acceptor-type 

radicals: i) the radical emitter should be a non-alternant hydrocarbon; ii) for intensity borrowing of oscillator 

strength in electron-donor/radical-electron-acceptor emitters, there must be significant orbital amplitudes on the 

atoms joining the radical HOMO and electron donor HOMO; alternatively, electron-acceptor/radical-electron-

donor species require significant orbital amplitudes on the atoms joining the radical LUMO and electron acceptor 

LUMO. 

While design rule ii) can be loosely interpreted as orbital interaction of the donor/acceptor π-systems leading 

to mixing and light emission, orbital interaction alone is not sufficient for efficient luminescence if the emitter is 

still an alternant hydrocarbon. In other words, criterion i) must be satisfied as well as criterion ii). For example, 

if an alternant hydrocarbon such as tetracene is attached to TTM (SI 7, Fig. S4a), the resultant TTM-Tetracene 

radical will also be alternant. The result is that the lowest energy excitation in TTM-Tetracene, like TTM, is 

comprised of an out-of-phase combination of transition dipoles, and leads to a weak oscillator strength for light 

emission (SI 7). 

Our general design principles can be used in conjunction with molecular discovery methods to uncover new 

radical emitters, supporting the assessment of suitable candidates for more detailed quantum chemical 

calculations, and avoiding wasted efforts in synthesising inherently non-emissive radicals. 

 

Design of the pure-red radical emitter TTM-xPyID 

Following the theoretical framework above, we directed efforts to design a series of radicals with pure-red 

emission around 630 nm and Commission Internationale de L’Eclairage (CIE) chromaticity coordinates of 

[0.67,0.33]. From the simple picture in Fig. 1c, we previously noted that the emission energy of the TTM-1Cz 

radical is related to the hCz-sT energy gap. Consequently, the emission can be blue-shifted by either raising the 

energy of the TTM SOMO or lowering the energy of the carbazole HOMO, preferably with the smallest possible 

chemical alteration. Taking the latter approach, we considered singular aza-substitution of the TTM-1Cz 
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carbazole group, for which there are four symmetry-unique sites, leading to four TTM-pyridoindolyl derivatives: 

TTM-αPyID, TTM-βPyID, TTM-γPyID and TTM-δPyID (Fig. 2a). 

Fig. 2. Red emission design for TTM-based radicals. a) Chemical structures of the TTM-xPyID with 

carbazole aza-substitution at site x = α, β, γ, δ. b) The fluorescence spectra of the TTM-1Cz and aza-

substituted radicals (TTM-xPyID) in CHCl3. c) Blue shift of the emission versus carbazole HOMO orbital 

coefficient at aza-position (filled circles) and xPyID HOMO orbital energies (open squares). d) DFT-calculated 

HOMO energies and orbital coefficients for –Cz, -αPyID, -βPyID, -γPyID and –δPyID moieties (isovalue = 

0.035; red and blue denote different phases for the orbital wave function). 

 

The blue-shifting can be understood as the N atom’s higher electronegativity versus C leads to lowering the 

energy of the carbazole-HOMO upon aza-substitution, which increases the critical hCz-sT energy gap for 

photoluminescence. By first order perturbation theory in a Hückel framework, the blue shift of the TTM-xPyID 

photoluminescence versus TTM-1Cz follows: 

𝐸 = α ∑ |𝐶𝜈|2 = α𝜈 |𝐶aza|2           (2) 

where α is the change in the on-site energy (Hückel α term) following exchange of sp2-hybridised C and H to 

N, and 𝐶𝜈 is the HOMO coefficient of the 𝜈-substituted carbon atom. For the xPyID series, we have one site of 

aza-substitution with carbazole orbital coefficient denoted 𝐶aza. From Eq. 2, the largest blue-shift is therefore 

expected for aza-substitution at the sites with largest HOMO coefficients on carbazole, which can be evaluated 

by density functional theory (DFT) with KS method and B3LYP, 6-31G** (Fig. 2d). Here, the predicted blue-

shifting is TTM-αPyID ≈ TTM-γPyID > TTM-δPyID > TTM-βPyID. 
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We synthesised and characterised the TTM-xPyID radicals, details of which can be found in SI 1. Electron 

paramagnetic measurements verified the doublet-spin nature of these materials (SI 8). We find that singular aza-

substitution has a profound effect and blue-shifts the peak photoluminescence of 687 nm found for TTM-1Cz in 

CHCl3 (Fig. 2b), verifying our theoretical prediction. The experimentally-observed order of blue-shifting follows: 

TTM-γPyID (612 nm) > TTM-αPyID (620 nm) > TTM-βPyID (635 nm) > TTM-δPyID (643 nm), matching 

exactly the predictions from DFT calculations of substituted carbazole HOMO energies (Fig. 2d), and 

approximately those from a simple Hückel picture. 

 In order to evaluate our predictions more quantitatively, in Fig. 2c we plot the experimentally-observed blue 

shift 𝐸 against the square of the HOMO coefficient from Eq. 2 (filled circles), and against the DFT-calculated 

pyridoindolyl HOMOs from Fig. 2d (open squares). The crude Hückel predictions are improved by DFT 

calculations of the -xPyID HOMO energies, as the former approach does not account for orbital structure changes 

following substitution. Full electronic structure calculations for the TTM-xPyID radicals are given in SI 9, and 

reproduce the same general trends found for the -xPyID fragments in Fig. 2c,d. 

In favour of light emission, aza-substitution also leads to much enhanced photoluminescence quantum yield 

in CHCl3 for TTM-αPyID (91%), TTM-βPyID (89%), TTM-γPyID (32%) and TTM-δPyID (99%) vs TTM-1Cz 

(5%). This trend is observed for the TTM-xPyID series in all solvents (SI 4) when compared with TTM-1Cz 

(apart from TTM-γPyID instability). Favourably, aza-substitution yields decreased non-radiative rates compared 

to TTM-1Cz due to the Energy Gap Law (SI 5), as reduced non-adiabatic coupling occurs with increasing sT-hCz 

energy gap. 

It is noteworthy that the PLQEs of TTM-xPyID radicals are mostly independent of solvent polarity (SI 4, 

Table S1). From Eq. 1, we can see that D1 of TTM-xPyID radicals is a hybridised local and charge transfer 

(HLCT) excited state which originates from intensity borrowing39. This suggests that the local excited nature of 

D1 also plays an important role besides the CT character in donor-acceptor radical emitters. More detailed 

discussion of solvent polarity effects can be found in SI 5. Additionally, our general model for the donor-acceptor-

type radical’s electronic structure is supported by protonation studies of TTM-βPyID which reversibly alter the 

nature of D1 emission: switching the radical from electron acceptor to donor, and the emitter from SOMO-

HOMO-type to LUMO-SOMO-type (SI 10). 
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Performance of TTM-xPyID radical-based light-emitting diodes 

High PLQE, good photo- and redox- stabilities (SI 11,12), and nanosecond light emission around 612-643 

nm, make these molecules ideal candidates for pure-red emitters of commercial interest in display technologies. 

Devices were fabricated using the traditional OLED approach of high vacuum deposition (< 10-7 Torr) whereby 

the radical-containing emissive layers were evaporated at < 150°c for the radicals, lower than the 95% 

temperature stability point (SI 13). From a series of chemical composition tests to determine the purity of 

deposited radical films, we confirmed the suitability of the vacuum deposition method for these materials (SI 14). 

The overall stability of the radicals may be attributed to some protection from photocyclisation reactions, deterred 

by the CT nature of the excited state40-42. The OLED architecture used for the TTM-xPyID series was (Fig. 3a): 

ITO / MoO3 (3 nm) / TAPC (40 nm) / 4% TTM-xPyID in TPBi (30 nm) / B3PYMPM (60 nm) / LiF (0.8 nm) / 

Al (100 nm). 

Fig. 3. Optoelectronic performance of the TTM-xPyID radical-based OLEDs. a) Device architecture for 

OLEDs based on the TTM-xPyID series. b) EQE-current density, c) EL spectra (inset photograph of TTM-βPyID 

device), d) current density-voltage and e) luminance-voltage curves for TTM-xPyID OLEDs. f) Time-resolved PL 

plots for TTM-βPyID OLEDs at 0V, 5V, 6V, 8V, 10V and 12V (200 kHz, 2µs electrical pulse). A 407 nm laser 

pulse (200 kHz, 50 ps pulse width) was synchronised to arrive in the middle of each electrical pulse. The PL plots 

have been normalised following subtraction of EL contributions. 

 

The performance of TTM-xPyID-based devices are given in Fig. 3b-e. We were able to translate favourable 

photoluminescence properties to highly efficient OLEDs with maximum EQE value over 12%: TTM-αPyID 
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(max EQE = 9.6%, peak = 629 nm); TTM-βPyID (12.2%, 649 nm); TTM-γPyID (2.9%, 616 nm); TTM-δPyID 

(9.5%, 641 nm). The EQE values (≥10%) signify the state of the art for radical-based OLEDs with doublet 

emission in the visible range, and are higher than the conventional singlet-triplet spin statistics limit (EQE = 6-

8%; from 25% singlet yield, 100% PLQE and 25-33% light out-coupling). Importantly, the EL spectra were 

found to match up well with pure-red CIE coordinates [0.67,0.33]: TTM-αPyID [0.66,0.34]; TTM-βPyID 

[0.67,0.32]; TTM-γPyID [0.61,0.37]; TTM-δPyID [0.67,0.33]. See Fig. 3b and 3c for EQE-current density 

profiles and EL spectra, which show a step change in OLED performance and significant blue-shift with respect 

to TTM-1Cz19. Note that the EL spectra do not exhibit TPBi-host emission at any voltage (SI 15), supporting a 

charge trapping rather than host-to-radical dopant energy transfer mechanism for emission. The voltage-current 

density-luminance curves are plotted in Fig. 3d and 3e, and further information on the devices can be found in SI 

15. Being organic materials, the TTM-xPyID radical emitters also offer the opportunity for low-cost and low-

energy, ink-type fabrication of devices. We fabricated solution-processed OLEDs based on TTM-βPyID with 

reasonably high efficiency of up to 4.0% (SI 16). 

The current radical-based OLEDs do not sustain their maximum EQE values well beyond the turn on. The 

critical current density J0 which corresponds to device performance at half the maximum EQE is 0.3–0.4 mA/cm2 

for the TTM-αPyID, TTM-βPyID, TTM-γPyID and TTM-δPyID devices (Fig. 3b). As the radicals have 

nanosecond lifetimes associated with radiative emission, reduced exciton quenching in efficiency roll-off should 

be possible in improved devices when compared with the microsecond emission and excited state lifetimes found 

for phosphorescent, triplet fusion and TADF devices43. 

PL transients were recorded for electrically driven TTM-βPyID OLEDs to probe the exciton quenching 

mechanisms in devices with relevant charge and exciton densities for operation44. From these studies, we can 

identify the relative contributions to roll-off by exciton-exciton quenching (D1 + D1  Dx + D0), exciton-charge 

annihilation (D1 + e–/h+  D0 + e*/h*), charge imbalance and electric field effects43. In these studies, TTM-

βPyID devices (Fig. 3a) were subjected to 2 µs electrical pulses at 200 kHz, with varied voltage from 5 to 12 V 

(corresponding to current densities of µA/cm2–mA/cm2, Fig. 3d). A 407 nm laser pulse was synchronised to 

arrive in the middle of each electrical pulse. As would be expected, increasing voltage leads to an increased EL 

signal over which the PL transients are superimposed (SI 17, Fig. S21). Following subtraction of the EL signals, 

we found that the normalised transients obtained at different applied voltages could be perfectly overlaid (Fig. 
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3f). This provides evidence that exciton-exciton quenching should not be the cause of the roll-off, and also rules 

out exciton-charge annihilation and electric field effects (on the nanosecond emission timescale); all of these 

mechanisms would have led to decreasing PL transient lifetimes with increasing voltage/current density. 

Significant exciton-exciton quenching was additionally ruled out from the PL intensity power dependence for 

TTM-βPyID films (SI 18). 

We therefore attribute the roll-off in the radical devices to charge imbalance. As we noted in our previous 

work21, electrical excitation of radicals for light emission requires electron and hole injection into the SOMO and 

HOMO respectively. One possible loss mechanism would be the scenario of both electrons and holes being 

injected onto the SOMO, which would lead to no electroluminescence. Overcoming such losses, in combination 

with the avoided spin statistics limit and more rapid nanosecond emission lifetimes than microsecond 

phosphorescent and TADF materials, will lead to further opportunities to advance the state of the art for radical-

based OLEDs and organic electronics. 

In conclusion, we have shown how unexpectedly luminescent organic radicals can be constructed from the 

well-known, but dark, TTM radical by breaking the alternant hydrocarbon nature of its π-system and lifting the 

HOMO-SOMO and SOMO-LUMO energy gap degeneracy. Aza-substitution of the carbazole moiety in TTM-

1Cz boosted the radicals’ photoluminescence properties to over 90% PLQE and blue-shifted its emission by up 

to 220 meV in CHCl3. From the TTM-xPyID series, we fabricated devices with up to 12% electroluminescence 

EQE and excellent matching of the ideal red CIE [0.67,0.33] coordinate. These materials are promising 

candidates for radical-based red light in red-green-blue displays. More generally, we can summarise two design 

considerations for obtaining luminescent donor-acceptor-type radicals: i) the radical emitter must be a non-

alternant hydrocarbon; ii) intensity borrowing from higher energy transitions can increase the oscillator strength 

of charge-transfer-type emission. The open-shell radicals’ charge-transfer-type excited states appear similar to 

that of closed-shell TADF materials which also have donor-acceptor motifs. However, there is a trade-off 

between high oscillator strength and low spin-exchange interaction for efficient reverse intersystem crossing from 

dark triplet to bright singlet excitons in TADF materials, which require strong and weak overlap of the donor and 

acceptor wavefunctions, respectively. This does not apply to donor-acceptor-type radicals because the lowest 

excited state is bright, thus intersystem crossing from dark to bright states is not necessary. The search for doublet 

materials geared to blue and green light emission will benefit from the theoretical concepts presented here which 
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provides guidelines for the discovery and utilisation of new radical motifs for next-generation display and lighting 

applications. 
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Methods 

 

Synthesis of the TTM-xPyID radicals 

The first stage of the TTM-xPyID synthesis required the preparation of TTM according to the previous report15. 

Next the pyridoindole groups (9H-pyrido[2,3-b]indole = αPyID, 9H-pyrido[3,4-b]indole = βPyID, 5H-

pyrido[4,3-b]indole = γPyID and 5H-pyrido[3,2-b]indole = δPyID) were added to TTM in a mixture of DMF 

with Cs2O3, yielding a mixture of TTM-xPyID radicals and hydrogenated precursors, HTTM-xPyID. The 

precursors were then deprotonated by KOtBu to obtain the carbanion variants, which were finally oxidised by p-

chloroanil to obtain the target radicals: TTM-αPyID, TTM-βPyID, TTM-γPyID and TTM-δPyID. Full details of 

the synthesis can be found in SI 1. 

 

Photophysics 

Ultraviolet-visible (UV-vis) absorption spectra were recorded using a Shimadzu UV-2550 spectrophotometer. 

Photoluminescence (PL) spectra of the radicals were obtained with a Shimadzu 5301PC 

spectrofluorophotometer. An Edinburgh Instruments fluorescence spectrometer (FLS980) was used to measure 

the PL lifetimes and quantum yields of radicals in solution. 

 

Electronic structure calculations 

DFT calculations were performed with the ORCA package45 (version 4.0.1.2) using the B3LYP functional and 

6-31G** basis set. For the open-shell radicals, unrestricted Kohn Sham (UKS) method was employed and the 

geometries were optimised in vacuo. The D1 excited state was evaluated by UKS-time-dependent-DFT with the 

Tamm-Dancoff approximation.  

 

Device fabrication and characterisation 

The radical organic light-emitting diodes (OLEDs) were fabricated by vacuum deposition processing (pressure 

< 6 x 10-7 Torr) using an Angstrom Engineering EvoVac 700 system. 

Current density-voltage-electroluminescence (J-V-EL) characteristics were measured using a Keithley 2400 

sourcemeter, Keithley 2000 multimeter and calibrated silicon photodiode. The EL spectra were recorded by an 

Ocean Optics Flame spectrometer. The transient PL and EL studies on radical-based films and OLEDs were 
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conducted on a time-correlated single photon counting (TCSPC) setup: Edinburgh Instruments Life Spec system 

with Hammamatsu photomultiplier tube. A function generator (8116A Hewlett Packard) was used for electrical 

excitation; a picosecond 407 nm laser (PicoQuant 407, pulse width = 50 ps) was used for optical excitation. The 

electrical and optical excitation pulses for OLED measurements were synchronised by a digital delay generator 

(Stanford Research Systems, DG 645), which also triggered the TCSPC setup. 


