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An influential reinforcement learning framework proposes that
behavior is jointly governed by model-free (MF) and model-based
(MB) controllers. The former learns the values of actions directly
from past encounters, and the latter exploits a cognitive map of
the task to calculate these prospectively. Considerable attention
has been paid to how these systems interact during choice, but
how and whether knowledge of a cognitive map contributes to
the way MF and MB controllers assign credit (i.e., to how they
revaluate actions and states following the receipt of an outcome)
remains underexplored. Here, we examine such sophisticated
credit assignment using a dual-outcome bandit task. We provide
evidence that knowledge of a cognitive map influences credit as-
signment in both MF and MB systems, mediating subtly different
aspects of apparent relevance. Specifically, we show MF credit
assignment is enhanced for those rewards that are related to a
choice, and this contrasted with choice-unrelated rewards that
reinforced subsequent choices negatively. This modulation is only
possible based on knowledge of task structure. On the other hand,
MB credit assignment was boosted for outcomes that impacted on
differences in values between offered bandits. We consider mech-
anistic accounts and the normative status of these findings. We
suggest the findings extend the scope and sophistication of cog-
nitive map-based credit assignment during reinforcement learn-
ing, with implications for understanding behavioral control.

cognitive maps | reinforcement learning | decision making | model-based |
model-free

An extensive body of psychological and neuroscientific liter-
ature on dual-system reinforcement learning (RL) indicates

that behavior is governed by two distinct systems (1–17)—a rigid,
retrospective model-free (MF) system (18, 19) and a flexible,
prospective model-based (MB) system (18, 20). Unlike an MF
system, which tends to repeat actions with a past history of
success, an MB system relies on a cognitive map (CM) (21), that
is, a model detailing the structure of a decision-making environ-
ment, including how states, actions, observations, and rewards are
linked, to predict the impact of action choice on potential future
rewards. Recent research highlights competitive and cooperative
interactions between these systems, including speed accuracy trade-
offs (22), reliability-based arbitration (1, 23), and a plan-to-habit
strategy (24), with a focus on a prospective-planning role served by
the MB system during choice. Recently, we demonstrated another
influence of a CM (and thus, as we described it there, MB pro-
cesses) in guiding credit assignment (CA) to MF action-values
(i.e., affecting how MF values of actions and states are updated as
reward-outcomes are received) (25). However, by design, this in-
fluence was limited to unraveling the resolution of state uncertainty
for MF purposes, leaving broader aspects of the contribution of
CM-based processes to CA unexplored.
Here, we consider two potential complementary CM-based

modulators of CA. Both concern the causal structure of the rela-
tionship between options and outcomes. One involves the “related-
ness” of actual outcomes to an enacted choice, a retrospective effect

of a CM on MF CA. The second involves the “importance” of po-
tential outcomes during the deliberation process preceding a choice,
a prospective effect of a CM on MB CA.
“Relatedness” arises out of a complexity in assigning credit

when information about streams of rewards is provided that depends
only partly on the actions taken (unlike situations that involve
simple lotteries, for instance, when an action is directly followed by
the reward it occasions). An MF system, lacking structural causal
knowledge, is disposed to assign credit naively to a choice based
on the entire collection of ensuing outcomes, irrespective of
whether these outcomes were caused by, or related to, an actual
initiating action choice. By contrast, knowledge stored as a CM
can guide MF CA to favor action-related outcomes.
Take an example of a trader who deliberates purchasing one

of two available mutual funds: X, which invests in companies A
and B, or Y, which invests in companies A and C. Assume the
trader opts for X and then later receives positive information
about companies B and D. The trader might assign credit in an
MF manner to her/his past action (“buy X”), updating the ac-
tion’s cached value on the basis that positive consequences fol-
lowed that choice. However, only one component of those positive
consequences (that concerning company B) actually related to the
choice of fund X. We propose that MF CA is modulated by a CM
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such that a change in the action’s value will be affected mostly by
information about company B. More generally, relatedness de-
pends on a causal attribution of rewards to actions (26).
We consider a second modulator of CA, termed “importance,”

as a form of attentional effect. When deliberating between sev-
eral choice options, and taking into account their prospective
outcomes, it is often the case that certain outcomes (which we
dub “unimportant”) should not determine choice, as they are
common to all choice options. In contrast, other (“important”)
outcomes are distinctive to some choice options but not to others,
and these should be the main determinants of choice. A CM will
contain this type of information and direct attention to the latter
alone. We consider the possibility that when the outcomes of the
choice are observed, those that garnered more attention at choice
are favored in learning.
Consider our previous example where information about

companies B and D triggers a CA process that leads to positive
revaluation of these companies—a process useful for future MB
financial decisions related to these companies. We propose this
CA process can be biased by CM-based deliberations during
choice. Notably, the values of companies B and C were “important”
in the trader’s MB deliberation process (choosing a fund), as each is
unique to one fund. The values of companies A and D, on the other
hand, are less important, as these are either common to both choice
options (A) or altogether absent (D). We hypothesize that repre-
sentations of “important” components in a CM are activated more
strongly during choice, leading to them being revalued more when
information about choice outcomes are subsequently realized.
Thus, ceteris paribus, the increase in the trader’s evaluation of
company B will be higher than for company D, given the positive
information. This evaluation is then exploited by MB planning
processes for future choices.
To test these hypotheses, we developed a variant of our pre-

viously described dual-outcome bandit task (25). Participants
chose between pairs of bandits (i.e., lotteries) that led to dif-
ferent outcomes and received a stream of reward feedback
pertaining to choice-related, choice-unrelated, important, and
unimportant outcomes. Critically, there are two ways to value
bandits in this task. An MF controller treats each bandit holis-
tically, and, as described above, an MB controller predicts the
values of the bandits from knowledge of the outcomes to which
the bandits lead as provided by a putative CM. This distinction in
the structure of evaluations can then be generalized to the appor-
tioning of credit. We consider CA to a bandit to take the form of an
MF credit assignment (MFCA; since the MF system makes deci-
sions directly based on these values). Similarly, we consider CA to
the outcomes associated with the bandits to be an MB credit as-
signment (MBCA). To put this another way, the main distinction
between MFCA and MBCA in our task is that the former pertains
to a revaluation of actions, while the latter pertains to a revaluation
of latent causes for these actions (i.e., the ensuing outcomes).
In support of our hypothesis that MFCA is guided by a CM,

we found evidence that credit for choice-related and -unrelated
outcomes is assigned to actions in a different manner. We show
information about rewards actually related to chosen actions
alone positively impact on the value of those actions. Informa-
tion about rewards not related to chosen actions, on the other
hand, have an opposite effect. Second, we found that MBCA was
greater for choice outcomes that were “important” compared to
“unimportant” during choice deliberations. We discuss mecha-
nistic and normative accounts of these results.

Results
Behavioral Task. We designed a full-feedback variant of a dual-
outcome bandit task (25). The task was introduced under a cover
story. Participants were shown pictures of four different indi-
viduals and were then trained on the particular pair of vegetables
each person grew in his/her garden, ensuring full knowledge of

“task transition structure.” These vegetables were saleable with
stochastic success in a fictional village market. By design, each
person grew a unique pair of vegetables, with each individual
vegetable grown by two of these four people (Fig. 1A).
Following training, each participant played 392 bandit trials.

On each trial, subjects were given 750 ms to make a choice be-
tween a random pair of individuals who shared one vegetable as
an outcome (and had one other unique vegetable outcome).
Next, all four vegetables (those related to the chosen individual
and those unrelated to him/her) were presented, one after the
other in a random order, and participants were informed whether
each vegetable had sold (Fig. 1B). Across the time course of the
experiment, the market “demand” for different vegetables
(i.e., the probabilities of being sold [rewarded]) were governed
by four independently drifting random walks (Fig. 1C). This in-
duced occasional changes in the ranking of the different persons
in terms of expected reward probabilities (SI Appendix, Fig. S1),
encouraging participants to learn continuously which actions are
better. Participants were informed that observing all four vege-
tables could inform them about market demands but that their
earnings on a trial would be based exclusively on the pair of
vegetables grown by the person they chose. Subjects were instructed
that their goal was to maximize their earnings. Participants earned a
notional £1 per choice-related sold vegetable (and £0 per non-
sold or choice-unrelated vegetable). Crucially, the reward-feed-
back stage did not provide an explicit indication about which
vegetables were choice related or the notional earnings on that
trial. Participants could, however, infer both of these based on
exploiting an internal-task transition-structure model (i.e., a
CM), which they learned during training. Henceforth, we refer to
sold/unsold vegetables as rewarded/unrewarded, disregarding
whether they were choice related or unrelated.

Basic Performance Indices. To assess whether subjects learnt the
underlying vegetable/person reward probabilities, we calculated
choice accuracy for each participant as the proportion of trials in
which the person with the higher-expected generating-reward
probability (i.e., mean of generating reward probabilities across
the vegetable pair associated with that person) was chosen. The
mean accuracy across participants was 0.555, significantly above
a 0.5 chance-level performance (t(41) = 6.79, P = 3e-8). In
comparison, the calculated accuracy rate achieved by an optimal
Bayesian learner was 0.82 (SI Appendix, Supplementary Methods).
To obtain a more fine-grained performance measure, which
controls for trial difficulty, for each participant, we ran a logistic
regression wherein the chosen display side (right = 1; left = 0)
was regressed on the contrast (Right − Left) in generating re-
ward probabilities for the two offered persons. This measure, which
we term “choice sensitivity,” was positive across participants (b =
1.71, t(41) = 6.36; P = 1e-7). Additionally, choice sensitivity and
accuracy strongly correlated (r = 0.96; P < 0.001). We acknowledge
our task was difficult based on the across-trials average absolute
difference in generating reward probabilities between pairs of of-
fered persons (a measure of choice difficulty) varying across par-
ticipants in the range 0.075 to 0.156, with a mean of 0.123. The
upshot is that despite this high task difficulty, participants never-
theless assigned credit in a manner that fostered reward acquisition.
We next characterize in greater detail the CA strategies participants
relied on, specifically MFCA and MBCA.

MFCA and MBCA.We follow closely a modeling approach described
in a previous study (25), which distinguishes how each putative
control system (MB andMF) updates its value estimates (i.e., assigns
credit) and contributes to choice performance. In brief, the MF
system uses observations of rewards associated with each person
from previous trials on which that person was selected to esti-
mate a current person value (denoted QMF). Thus, in a trial’s
choice phase, retrieved MF values (QMF-values) of the two people
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presented feed into a decision module. In a learning, reward-feed-
back phase, the MF system updates the QMF value of the chosen
person alone, a process we term MFCA. In the simplest form of
MFCA (in which there is no role for a CM), an MF system lacks

knowledge of state transitions, and hence, this QMF value is
updated to an equal extent according to information pertaining
to all four vegetables, irrespective of the fact that the subject only
receives rewards based on the two vegetables that the selected
person grows.
A more sophisticated form of MFCA allows a CM to guide the

learning process. Hence, it enacts a choice relatedness, such that
reward outcomes from vegetables related to the actual choice
(i.e., in this case, those grown by the chosen person) preferen-
tially (relative to choice-unrelated vegetables) change the QMF

value of a choice. For example, in the trial illustrated in Fig. 1B,
the choice-related tomato reward is predicted to reinforce the
MF value of the man with sunglasses to a greater extent than
each of the nonrelated lettuce and potato rewards.
By contrast, an MB system does not maintain and update

values for the people directly. Instead, at choice, it calculates
prospectively on-demand QMB values for each person in the pair
on an offer based on the arithmetic sum of the values of the two
vegetables that each grows:

QMB(person) = QMB(grown  vegetable  1)
+QMB(grown  vegetable  2). [1]

During the learning phase, an MB learner updates the values of
the various vegetables based on reward feedback such that the
value of each vegetable increases or decreases depending on
whether it sold. Henceforth, we refer to these updates as MBCA.
Importantly, unlike MFCA, which does not generalize credit
from one person to another, an MBCA will generalize across the
two people who share a common vegetable. Thus, when a tomato
is rewarded, QMB(tomato) increases such that during ensuing
calculations, the on-demand QMB values are assigned to both
tomato growers as, in the example, the man with sunglasses
and the child.
Another form of MBCA, which enacts our proposed impor-

tance hypothesis, does not treat all vegetables equally. For in-
stance, in the trial illustrated in Fig. 1B (see also Fig. 4A), the
vegetables fall into four categories: common to both the choice
options (the tomato, grown by both people), absent from the
choice options (the potato, grown by neither), exclusive to the
person ultimately chosen on that trial (the garlic, grown by the
man with sunglasses) alone, and counterfactual (i.e., uniquely
associated with the person not chosen on that trial) (the lettuce,
grown by the boy alone). Note that at choice time, the MB values
of the exclusive and counterfactual vegetables affect the MB
value contrast between the offered persons, as each vegetable
contributes to the MB value of one of the two offered persons
alone. On the other hand, the common vegetable contributes
equally to the MB values of both choice options, while the absent
vegetable contributes to neither value, and, hence, these vege-
tables do not affect the MB value contrast between the two of-
fered individuals. Given that attention should be paid to the
exclusive and counterfactual vegetables during choice, we pre-
dicted that exploitation of a CM would guide rewards for those
vegetables so as to influence their QMB values to a greater extent
and hence impact future MB choice.
To summarize our predictions, a finding that rewards per-

taining to choice-related vegetables reinforce the chosen per-
son’s MF value to a larger extent than choice-unrelated rewards,
would constitute evidence for CM guidance to MFCA. Likewise,
evidence that rewards to vegetables that were important to
choice reinforce MB values of these vegetables to a larger extent
as compared to nonimportant vegetables would provide evidence
of an “importance”-based modulation of MBCA.
In examining signatures of relatedness and importance-based

influences on MFCA and MBCA to people and vegetables re-
spectively, we first present “model agnostic” analyses, which focus

Fig. 1. Task structure. (A) Participants were introduced to four people and
learned which unique combination of two vegetables each grew. Each
vegetable was grown by two different people. When offered in a “village
market,” vegetables were sold probabilistically according to their demand.
(B) On each trial, participants were asked to choose one of a pair of ran-
domly offered people. At this point, participants discovered, for each veg-
etable, whether it sold, indicated by “Y” and “N,” respectively. In the current
example, the tomato, potato, and lettuce, but not the garlic, were sold.
Participant earned £1 per sale for each of the two vegetables that were
grown by the person they chose. Sales of choice-unrelated vegetables did
not contribute to earnings (in the illustrated trial, £1 is earned for the to-
mato). (C) One block of 56 trials is illustrated. Across trials, the market de-
mand for the four vegetables, determining sale probability, drifted
according to independent Gaussian random walks with reflecting bound-
aries at 0.2 and 0.8.
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on trial transitions (i.e., how trial n events affect choices on trial
n+1). These analyses are supported by validating simulations
using computational models, reported in SI Appendix, Figs.
S2–S4. A full description of these models is deferred to a
later section.
Signatures of MFCA to actions. Anticipating our model-agnostic
analysis results, we found that MFCA based on choice-related
outcomes is stronger than for unrelated outcomes, supporting
our hypothesis of CM guidance to MFCA. In the model-agnostic
analyses, we considered only trials, n+1, which offered as a
choice option of the person chosen on trial n (which we dub the
“repetition person”: in Fig. 2A, the man with sunglasses) against
another person (here, the child). We focused on these particular
trials because we are interested in how trial n rewards affect
choices on trial n+1. Because MFCA on a previous trial n affects
the value of the trial n–chosen person alone, we cannot measure
MFCA influences from trial n on trial n+1 unless the previously
chosen person is offered again. Of the terms above, two are well-
defined before the trial n+1 choice is made (Common: the to-
mato; Absent: the potato), but the other two, Exclusive and
Counterfactual, are not. Since we are considering choice repe-
tition, we define the terms Unique for the vegetable grown by the
repeated person alone and not the other person (in this case,
garlic), and Other for the vegetable grown by the alternative
person and not the repeated person (in this case, lettuce). The
Unique vegetable becomes Exclusive if a choice is repeated (the
man with sunglasses) or Counterfactual if the choice is not (and
the child is selected). Note also that since the trial n–chosen
person is offered on trial n+1, the Common and Unique out-
comes are necessarily related to the trial-n choice, whereas the
Other and Absent outcome are unrelated to the trial-n choice.
We tested the degree to which choice repetition on trial n+1

depended on previous trial-n rewards for the structurally dif-
ferent vegetables reflecting trial n+1 categories. For example, a
“Common-outcome effect” refers to the effect a trial-n reward
(versus nonreward) to the common vegetable exerts on choice
repetition. These reward effects provide signatures for CA pro-
cesses that had occurred at the feedback phase of trial n. To test
a choice-relatedness hypothesis (i.e., that MFCA [on trial n] is
differentially affected by choice-related and choice-unrelated
outcomes), we compared signatures of MFCA for an outcome
that was either related to the trial-n choice or unrelated to that
choice as follows.

MFCA for a choice-related outcome. First, to assess MFCA for a
trial-n choice-related outcome, we assessed the common out-
come (which, as noted above, is related to the trial n choice)
effect. We showed previously (25) that a positive effect of the
Common outcome (in Fig. 2, the tomato) constitutes a signature
of MFCA. This is because an MB system would appraise that the
Common vegetable favors both trial n+1 choices and so should
not influence choosing between them (SI Appendix, Fig. S2 and
S4A for validating simulations). To illustrate, on trial n+1
(Fig. 2A), an MB system will calculate the value of the man with
sunglasses as the sum of tomato and garlic values and the value
of the child as the sum of tomato and lettuce values. Thus, the
contrast between the MB values for these two persons equals the
contrast between the garlic and lettuce values, which is invariant
with respect to the tomato value. The upshot is that the value of
the tomato, and particularly whether it was rewarded or unre-
warded on trial n, will not affect MB deliberations on the current
trial. In contrast, a trial-n Tomato reward (versus nonreward)
will reinforce the MF value of the chosen person alone (man
with sunglasses) and hence will affect MF choice tendencies.
Thus, a common outcome-reward effect will implicate MFCA on
trial n based on a common reward. Using a logistic mixed-effects
model (Methods), in which we regressed the probability of re-
peating the trial-n choice on the four outcomes on trial n (and on
outcome importance, as detailed below), we found (Fig. 2B) a

main effect for the Common vegetable (b = 0.55, t(1333) = 7.99,
and P = 3 × 10⁻15) in support of a conclusion that on trial n,
credit from a choice-related vegetable was assigned in an MF
manner to the person.

MFCA for a choice-unrelated outcome. Second, to assess MFCA for
a trial-n choice-unrelated outcome, we evaluated the effect of
the Absent vegetable (which, as noted above, is unrelated to the
trial n choice). Notably, a trial n reward (or lack thereof) for this
vegetable will not affect MB calculations on trial n+1 (as it does
not contribute to the calculated MB value of either of the offered
persons). Hence, an absent reward can only exert an effect on choice
via an MFCA pathway. Our logistic mixed-effects model revealed a
negative absent-outcome trend (b = −0.1, t(1333) = −1.77, and P =
0.078). Thus, there is no evidence that a trial-n choice-unrelated
reward reinforces positively the MF values of the chosen person.
Below, we revisit this issue further in the context of our com-
putational models. To anticipate our results, we found that credit
from a vegetable unrelated to choice is assigned significantly as a
negative quantity to the chosen person (i.e., decreases, rather
than increases, the MF value of the chosen person).

A CM guides MFCA to actions. To address our hypothesis that CM
guides MFCA, we compared the effects of the common (related)
and the absent (unrelated) outcomes (Fig. 2B). Crucially, the
Common effect was larger (b = 0.65, F(1,1333) = 48.35 and P =
6 × 10−12), in support of our hypothesis. Indeed, in the absence
of CM-based guidance, MFCA should be observed to an equal
extent for all outcomes (SI Appendix, Figs. S2 and S4C for
validating simulation).
Signatures of MBCA to outcomes. Prior to testing our second hy-
pothesis pertaining to importance-based MBCA, we show that
MBCA occurs for both choice-related and -unrelated vegetables.

MBCA for a choice-related outcome. To assess MBCA to a trial-n
choice-related outcome, we compared the Unique and the
Common reward effects on choice repetition. Note that both the
common and unique vegetables are related to the trial n choice.
However, unlike a common reward that fosters choice repetition
via an MF pathway alone (for reasons explained above), a unique
reward contributes to choice repetition via both the MF pathway
(reinforcing the trial n-chosen person, hence increasing the ten-
dency to repeat its choice) and the MB pathway (reinforcing of
the unique vegetable that can be obtained on trial n+1 only by
repeating the choice). Our logistic mixed-effects model revealed
that a choice-repetition effect of reward versus nonreward on
trial n was stronger for the Unique than the Common vegetable
(b = 0.51, F(1,1333) = 43.6, and P = 6 × 10−11; Fig. 2B). This
finding supports a conclusi on that MBCA occurs on trial n for
choice-related outcomes (SI Appendix, Figs. S2 and S4B for
validating simulations).

MBCA for a choice-unrelated outcome. Considering MBCA to trial-
n choice-unrelated outcomes, we found the Other vegetable ef-
fect was more negative than an Absent vegetable effect (b = −0.45,
F(1,1333) = 30.74, P = 4 × 10−8; Fig. 2B). This finding supports a
conclusion that on trial n, an MBCA occurs for outcomes unrelated
to choice (note that both the Absent and Other vegetables are
unrelated to the trial n choice). Indeed, while both outcomes in-
fluence choice repetition similarly via an MF pathway, Other, but
not Absent, rewards (versus nonrewards) on trial n contribute to
reducing choice repetition via an MB pathway since by not re-
peating the choice, one obtains the Other outcome (SI Appendix,
Figs. S2D and S4B for validating simulation). In sum, these results
support a conclusion that MBCA occurs for both (trial n) choice-
related and choice-unrelated outcomes. Additionally, the difference
between these two contrast effects, for the related and unrelated
outcomes, was nonsignificant (b = 0.06, F(1,1333) = 0.36, and P =
0.55), providing no support for the idea that the extent of MBCA to
outcomes differs as a function of choice relatedness.
MBCA is enhanced for important outcomes.Next, we tested our second
hypothesis, namely, that MBCA was enhanced for outcomes that
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were “important” during MB choice deliberations. We operational-
ized this prediction as Unique and Other outcome effects on choice
repetition being stronger when these outcomes were “important” on
trial n compared to being “unimportant.” For example, this implies
that the MB value of garlic (Unique) will increase to a greater extent
after receiving a reward on trial n if garlic was “important” versus
“unimportant” on that trial. This would then induce a stronger MB
effect on choice repetition on trial n+1. Thus, our hypothesis pre-
dicts a positive interaction between the Unique outcome and im-
portance on choice repetition and, for similar reasons, a negative
Other outcome × importance interaction.
To test these predictions, our logistic mixed-effects model

included an “Importance” indicator that captures whether the
(trial n+1) Unique and Other vegetables were “important” on
trial n. We found (Fig. 2B) a positive interaction effect between
“Importance” and the Unique outcome (b = 0.24, t(1333) = 2.22,
and P = 0.027). A simple effects analysis revealed that the
Unique outcome effect was positive when it was “unimportant”
(b = 0.94, F(1,1333) = 80.56, and P = 9 × 10−19) but even more
so when it was “important” (b = 1.17, F(1,1333) = 162.51, and
P = 3 × 10−35) on trial n. Similarly, we found a negative inter-
action effect between Importance and the Other outcome
(b = −42, t(1333) = −3.85, and P = 1 × 10−4) such that the simple
Other outcome effect was negative when it was “unimportant”
(b = −0.33, F(1,1333) = 14.91, and P = 1 × 10−4) but more so
when it was “important” (b = −0.75, F(1,1333) = 50.42, and P =
2 × 10−12) on trial n. These findings support the hypothesis that

MBCA is enhanced for “important” versus “unimportant” out-
comes (SI Appendix, Figs. S2 and S4D for validating simulation).
Note, the main effects for both Common and Absent outcomes
reported earlier were not qualified by interactions with “Im-
portance” (both P > 0.2; Fig. 2B). Thus, there is no evidence that
MFCA is modulated by “importance” (note that if the Unique
and Other vegetables are important, then the Common and
Absent vegetables are unimportant and vice versa).
Further evidence that importance modulates MBCA. Given the nature
of learning, the strongest effects of outcomes on a trial are
expected to be evident on the very next trial. In order to probe
MFCA, we have so far concentrated our model-agnostic analyses
on the half of the trial-to-trial transitions for which trial n+1
featured the trial n choice. However, no such restriction is nec-
essary to probe MBCA since outcomes on trial n affect choices
on trial n+1 even when the person chosen on trial n is not on
offer. To address this limitation, we performed an additional
analysis that provided a signature of enhanced MBCA for im-
portant outcomes, one based on all trial transitions (Fig. 2C). By
design, on each trial (n+1), the two offered individuals grow one
vegetable in common, and each grows one unique vegetable (to
avoid confusion, here we call these two vegetables distinctive).
Rewards for these (trial n+1) distinctive vegetables administered
on trial n will increase the tendency to choose the corresponding
persons on trial n+1 via an MB pathway. If, as hypothesized,
MBCA is enhanced for important outcomes, then these reward

Fig. 2. Signatures of MFCA and MBCA. (A) We analyzed a subset of trials that included on trial n+1 the person chosen on trial n. For clarity, we represent
people by their associated pair of vegetables; in the actual experiment, participants saw images of the people alone. Places for nonchosen persons on trial n
are left empty. We classified the four outcomes as Common, Unique, Other, and Absent. (B) Empirical effects on choice repetition. The positive Common-
outcome main effect is a signature of MFCA to the chosen person based on choice-related outcomes. The positive difference between the Unique and
Common effects is a signature of MBCA to choice-related outcomes. Similarly, the positive difference between the Absent and Other (labeled O) effects is a
signature of MBCA to choice-unrelated outcomes. The difference between the effects of the Common and Absent outcomes is a signature of CM guidance to
MFCA. The interactions between outcome-importance (labeled I) and Unique and Other outcomes are signatures that MBCA is enhanced for important,
relative to nonimportant, outcomes (Fig. S2 and S4 for validating simulations). (C) Empirical regression effects of a trial n reward (versus nonreward) for the
vegetable distinctive to the trial n+1 right-side (R1) or left-side (R2) person on right-side choices. The interaction of these rewards with the importance
(denoted I) of these two vegetables on trial n is a signature of importance-based modulation of MBCA (SI Appendix, Fig. S3 for validating simulations). Error
bars correspond to SEM across participants calculated separately in each condition (n = 42). *P < 0.05, ***P < 0.001. Red asterisks correspond to contrasts of
effects. P values were calculated based on mixed-effects logistic regression models.
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effects should be stronger when the two distinctive vegetables
were important versus unimportant on trial n.
To test this prediction, we used a mixed-effects logistic model

(Methods) to regress the display side of the chosen person (right =
1; left = 0) on whether his/her distinctive vegetable was previously
(trial n) rewarded (denoted R1), whether the other (left side)
person’s distinctive vegetable was previously rewarded (denoted
R2), and whether these two vegetables were important on the
previous trials (denoted I). We found that a previous reward to
each person’s distinctive vegetable increased the probability to
choose that person (Right: b = 0.5, t(134) = 7.93, and P = 4 ×
10−14; Left: b = −0.52, t(134) = −9.67, and P = 2 × 10−19) and
that critically, these effects were stronger when the two distinc-
tive vegetables were important on the previous trial, as evident
from the interactions between rewards and importance (Right:
b = 0.16, t(134) = 2.15, and P = 0.032; Left: b = −0.16,
t(134) = −2.35, and P = 0.02). Notably, whereas MFCA influ-
ences could account for the reward effects, influences of MBCA
alone account for the interactions with importance (SI Appendix,
Figs. S3 and S4E for validating simulations). These findings con-
verge with those reported in the previous section and again support
our hypothesis that MBCA is enhanced for important outcomes.

Computational Modeling. The behavioral analyses we report above
are limited in so far as they consider the effects on adjacent trials
alone, whereas the actions of RL agents are subject to influences
from an entire task history. To address this limitation, we tested
a series of computational models that were fitted to the entire
dataset and specified the likelihood of choices based on the
entire choice history. Furthermore, computational modeling
allowed us to characterize MBCA and MFCA processes with a
finer resolution by probing potential interactions between choice
relevance and importance.
We modeled choices as arising from a mixture of MB and MF

contributions. In our full model, each outcome (Common, Ab-
sent, Exclusive, and Counterfactual, see Fig. 4A) was endowed
with two CA parameters that contributed to updates of MF
person values and MB vegetable values (Methods) and were free
to vary. For example, the MFCA Absent parameter prescribes
the extent to which the MF value of a chosen person increases/
decreases during the feedback stage, when the absent vegetable
is sold/not sold. Similarly, the MBCA Counterfactual parameter
controls the extent to which the MB value of the counterfactual
vegetable increases/decreases during the feedback stage when
this vegetable is sold/not sold. Critically, this model supports
good parameter recovery (SI Appendix, Supplementary Methods and
Figs. S5 and S6), allowing us to probe estimated CA parameters to
test our hypotheses. Note, the Common and Exclusive parameters
pertain to choice-related outcomes. Similarly, the Exclusive and
Counterfactual parameters pertain to important outcomes as the
values of these outcomes contribute to a contrast between MB
values of the two offered persons during choice.
First, to validate use of our model, we conducted ablation

studies, creating a set of five submodels by knocking out different
cognitive aspects of CA processes in the full model, allowing us
to test the following set of hypotheses that each component does
not contribute to performance in our task: 1) To test the hy-
pothesis of no MFCA contribution in our task, we formulated a
“pure MB” submodel, which set all four MFCA parameters to 0;
behaviorally, this model should not predict our model-agnostic
signatures pertaining to MFCA. 2) Similarly, to test the hy-
pothesis of no MBCA contribution to performance, a “pure MF”
submodel was formulated, which set all four MBCA parameters
to 0; behaviorally, this model should not predict our model-ag-
nostic signatures pertaining to MBCA. 3) To test the hypothesis
that MFCA may affect performance without guidance from a
CM, we formulated a “no CM guidance for MFCA” submodel.
This forced all four MFCA parameters to be equal; behaviorally,

this model should not predict model-agnostic signatures in which
there is enhanced MFCA for related as compared to unrelated
outcomes. 4) To test the hypothesis that unrelated rewards do
not affect MFCA, a “no MFCA for unrelated choice outcomes”
submodel was formulated, which constrained the MFCA parame-
ters for the choice-unrelated (i.e., Absent and Counterfactual)
outcomes to 0; behaviorally, this model should not predict a model-
agnostic signature pertaining to negative MFCA for unrelated
outcomes (note models 3 to 4 included the four MBCA parame-
ters). 5) To test the hypothesis that MBCA is not modulated by
outcome importance, we formulated an “egalitarian MBCA” sub-
model, which constrained all four MBCA parameters to be equal
(note this model still had the four-parameter MFCA component);
behaviorally, this model should not predict our model-agnostic
signatures pertaining to importance-based modulation of MBCA.
We compared each of these submodels in turn to our full

model using a bootstrap generalized-likelihood ratio test (25, 27)
(SI Appendix, Supplementary Methods). In brief, this method is
based on classical statistical hypothesis testing, where for model
comparisons, a sub model serves as the H0 null hypothesis and
the full model as the alternative H1 hypothesis. We verified also
that our model comparison method was suitably powered to
reject each of the submodels at the group level (SI Appendix,
Supplementary Methods). Below, we report for each model both
the number of participants for which it was rejected (note our task
was not designed to have high power for individual participants), as
well as a “group-level” test, for rejecting the null hypothesis that all
participants rely on the submodel. Note rejecting the submodel at
the group level supports an inference that a subset of participants
rely on the submodel, but it does not imply the full model is more
prevalent in the subject population (we used a different approach
for assessing the prevalence of the various submodels—see below).
First, we rejected both the pure MB (group level P < 0.001; 23

individuals, P < 0.05; Fig. 3A) and the pure MF (group level: P <
0.001; 13 individuals; Fig. 3B) submodels. These results are
consistent with both MBCA and MFCA processes contributing
to choice in our task. Second, we rejected the “no CM guidance
for MFCA” submodel (group P < 0.001; 20 individuals; Fig. 3C),
supporting our hypothesis that a CM guides MFCA (below, we
show MFCA was higher for related- than unrelated-choice out-
comes). Third, we rejected the “no MFCA for unrelated-choice
outcomes” submodel (group, P < 0.001; eight individuals; Fig. 3D),
supporting a conclusion that MFCA occurs for unrelated vegetables
(below, we show that this CA is negative). Finally, we rejected the
“egalitarian MBCA” submodel (group, P = 0.021; three individuals;
Fig. 3E), supporting the conclusion that outcome differs in their
extent of MBCA (below, we show that MBCA is boosted for im-
portant outcomes). Additionally, we verified that unlike the full
model, which predicted all the model-agnostic signatures presented
above, each of its submodels failed to predict a subset of these
effects (SI Appendix, Figs. S2–S4).
Assessing model prevalence. While the above model comparisons
allowed us to reject each submodel in favor of the full model for
a subset of participants, they do not address a question per-
taining to the prevalence of different models in the population.
For the latter question, we used a robust hierarchical Bayesian
model selection approach, which takes account of interindividual
heterogeneity, treating models as random effects that could
differ across subjects (28, 29) (SI Appendix, Supplementary Meth-
ods). Fig. 3F presents the posterior expected probability of each
model in the population (these are normalized concentration
parameters from the posterior Dricihlet distribution; SI Appen-
dix, Supplementary Methods). Pooling together the various hybrid
models, which include contributions from both MBCA and
MFCA, revealed about 41% of the population is expected to rely
on pure MFCA processing, another 27% rely on pure MBCA
processing, and the remaining 32% is expected to exploit a form
of Hybrid control (Fig. 3G). We also calculated protected
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Fig. 3. Model-comparison results. (A) Results of the bootstrap-GLRT model comparison for the pure MBCA submodel. The blue bars show the histogram of
the group twice log-likelihood improvement (model versus submodel) for synthetic data simulated using the submodel (10,000 simulations). The blue line
displays the smoothed null distribution (using MATLAB’s “ksdensity”). The red line shows the empirical group twice log-likelihood improvement. A total of
0 out of the 10,000 simulations yielded an improvement in likelihood that was at least as large as the empirical improvement. Thus, the submodel can be
rejected with P < 0.001. (B–E) Same as A but for the pure MFCA (P < 0.001), the no CM guidance for MFCA (P < 0.001), the no MFCA for choice-unrelated
outcome (P < 0.001), and the egalitarian MBCA (P = 0.019) submodels. (F) The posterior expected probabilities of the different models in the population,
obtained using on hierarchical Bayesian model selection method. “Full”: Full model. MBCA/MFCA: pure MBCA. MFCA submodels: No CM. MF: no CM guidance
for MFCA submodel. Egal MB: Egalitarian MBCA submodel. NU MFCA: No MFCA for unrelated-choice outcomes submodel. (G) Posterior expected model
probabilities in the population when pooling together the various Hybrid models (Full; NO CM MF; Egal MB; and NU MFCA). (H) Protected exceedance
probabilities for the various models.
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exceedance probabilities, that is, the probabilities that each model is
the most prevalent model in the population (taking into account
that apparent difference in model-frequencies may be due to
“chance”; Fig. 3H). The protected exceedance probabilities for the
pure MFCA, pure MBCA, and egalitarian MBCA were 0.86, 0.11,
and 0.03, respectively, and nearly zero for the other models.

Analyses based on CA model parameters. We next probed whether
MBCA and MFCA parameters varied as a function of whether
an outcome on a trial was “important” (Exclusive and Counter-
factual) or “unimportant” (Common and Absent) for MB choice
deliberations and whether it was related (Common and Exclusive)
or unrelated (Counterfactual and Absent) to the choice (Fig. 4A).
The following analyses rely on maximal likelihood (ML) param-
eters for the full model, an approach justified by the fact that each
of our submodels can be viewed as an instance of the full model.
For example, if a participant is characterized by the pure MBCA
submodel, then at the same time, he/she is characterized by the
full model with MFCA equal to 0. Hence, the full model com-
prises a unifying measurement tool for assessing CA patterns,
disregarding model heterogeneity between participants. We note,
however, the prevalence of the full model in the population was
estimated to be very low (Fig. 3F). Thus, we supplement our
analysis using a Bayesian averaging (BA) approach that takes into
account heterogeneity across participants in generating models.
In our first analysis, we tested our hypothesis pertaining to CM

guidance to MFCA, regressing, using a mixed-effects model, the
four ML MFCA full-model parameters for each participant (4 ×
42 parameters in total) on indicators specifying whether a pa-
rameter pertained to importance (I) and choice-relatedness (R)
outcomes (SI Appendix, Supplementary Methods). We found a
positive main effect for choice “relatedness” (b = 0.76, t(164) =
7.16, and P = 3 × 10−11). Neither the main effect for “impor-
tance” (b = −0.02, t(164) = −0.41, and P = 0.686) nor the in-
teraction between “importance” and “relatedness” (b = 0.08,
t(164) = 0.7, and P = 0.484) were significant (Fig. 4B). These
results support our conclusion that a CM guides MFCA such that
rewards for related outcomes reinforce MF values of a chosen
bandit more than unrelated rewards. Strikingly, whereas MFCA
for choice-related vegetable was positive (b = 0.61, F(1,164) =
65.88, and P = 1 × 10−13), it was negative for choice-unrelated
vegetables (b = −0.15, F(1,164) = 8.43, and P = 0.004). Thus, not
only do choice-unrelated outcomes not provide positive rein-
forcement, but they actually reinforce choices negatively.
A similar mixed-effects model for the MB system (SI Appendix,

Supplementary Methods), used to test our hypothesis pertaining to
importance modulation on MBCA, revealed a positive main effect
for “importance” (b = 0.13, t(164) = 2.48, and P = 0.014). Neither
the main effect for choice “relatedness” (b = 0.08, t(164) = 1.28,
and P = 0.204) nor the interaction between “importance” and
“relatedness” (b = −0.05, t(164) = −0.65, and P = 0.519) were
significant (Fig. 4C). Furthermore, MBCA was positive for both
“important” (b = 0.28, F(1,164) = 25.04, and P = 1 × 10−6) and
“unimportant” (b = 0.15, F(1,164) = 9.38, and P = 0.003) out-
comes. These results support our hypothesis that choice deliber-
ations based on a CM bias MBCA. Indeed, while MBCA occurs
for both important and unimportant outcomes, it is enhanced for
the latter. Furthermore, when we calculated a separate impor-
tance-based modulation effect on MBCA for related (contrast:
Exclusive − Common MBCA parameters) and unrelated out-
comes (contrast: Counterfactual − Absent MBCA parameters),
we found a positive correlation between the two (r = 0.38, P =
0.012; SI Appendix, Fig. S10). Thus, importance-based modulation
of MBCA is coordinated across related and unrelated outcomes.
Additionally, we verified that the interpretation of our two effects
pertaining to outcome relatedness and importance are not con-
founded by parameter trade-offs (SI Appendix, Supplementary
Methods and Figs. S7–S9), and we found no evidence that either
MFCA or MBCA patterns were influenced by occasional

transition-structure reminders (SI Appendix, Supplementary
Methods and Fig. S11).
Converging evidence based on BA of parameters. As explained above,
to address participant heterogeneity we also ran our mixed-ef-
fects models (for MBCA and MFCA) for parameters that were
estimated based on BA. For each participant, parameters were
averaged across models with weights corresponding to posterior
model probabilities (SI Appendix, Supplementary Methods). We
found strong positive correlations (all r > 0.8) between the full
model’s ML CA parameters and the corresponding BA param-
eters. Importantly, the mixed-effect models for the BA param-
eters supported the very same conclusions about CA in both
systems (SI Appendix, Fig. S12).

The relationship between CA properties. We explored the rela-
tionships between five measures of CA. For each participant, we
calculated four measures based on the ML full-model parame-
ters: overall levels of MBCA (an average of all four MBCA
parameters), overall level of MFCA (an average of all four
MFCA parameters), CM guidance to MFCA (the contrast between
average MFCA parameters for related and unrelated outcomes),
and importance-based modulation of MBCA (the contrast between
average MBCA parameters for important and unimportant out-
comes). The fifth measure was our model-agnostic measure of
choice sensitivity. Pairwise correlation between these measures (SI
Appendix, Fig. S13) revealed a positive correlation between MBCA
and choice sensitivity (r = 0.34, P = 0.027), which is expected be-
cause, as we show below, MBCA is an effective way to learn to
make good choices. Additionally, we found a positive correlation
between the overall level of MFCA and CM guidance to MFCA
(r = 0.38, P = 0.012). Neither of these correlations survived a
Bonferroni correction for multiple (10 in this case) hypotheses.

The Normative Status of CM Guidance to CA. Our findings raise
important questions regarding the effects of the reported mod-
ulations of CA (based on a CM) on the acquisition of reward.
We therefore simulated agents performing our task under dif-
ferent regimes and over broad ranges of CA parameters (broader
than the empirical ranges for MFCA and MBCA parameters in
our task: −1.25 to 2.32 and −0.9 to 1.7, respectively; SI Appendix,
Supplementary Methods for simulated parameter ranges). For each
agent, we calculated a standardized measure of reward earnings
defined as the excess earnings over a random guessing policy,
relative to the excess earning of an omniscient “oracle agent” that
is rewarded according to the expected reward of the better of the
two bandits (SI Appendix, Supplementary Methods). We address
MFCA and MBCA agents in turn (SI Appendix, Supplementary
Methods for full simulation details).
CM guidance to MFCA enhances earnings. To assess whether guidance
from a CM is instrumental for MFCA, we simulated reward earnings
for various regimes of MFCA. Fig. 5A displays standardized earnings
of pure MFCA agents for different combinations of MFCA pa-
rameters for related (R: common= exclusive; x axis) and for the ratio
between unrelated (UR: counterfactual = absent) and related
outcomes (y axis). First, as expected, in the absence of guidance
from a CM (bottom row of panel), when CA for related and
unrelated outcomes are equal, earnings match those of a random
choice policy (standardized earnings are 0) because the MF
system lacks reliable information to distinguish between the
values of the different individuals. As the unrelated MFCA pa-
rameters decrease (moving upward in the panel) manifesting
guidance from a CM, standardized earnings increase. Earnings
are maximized when these parameters are negative and equal in
magnitude to the related MFCA parameters. Fig. 5B displays
standardized earnings for a regime in which MFCA is positive
and negative for related and unrelated outcomes, respectively.
For any value of “total MFCA” (R+|UR|), earnings are maxi-
mized when all MFCA parameters are equal in magnitude. Thus,
to the extent one relies on MFCA, guidance from a CM and
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negative CA from unrelated outcomes enhance earnings. We also
found that MBCA is optimized when CA for related and unrelated
outcomes are equal (SI Appendix, Fig. S14 A and B) (i.e., MBCA
doesn’t benefit from modulation based on choice relatedness).
Importance-based MBCA is costly in our task. Next, we asked whether
importance-based modulation fosters earnings. Following the
same design as Fig. 5B, Fig. 5C displays standardized earnings
for pure MB agents for different combinations of MBCA pa-
rameters for important (I: exclusive = counterfactual) and un-
important (UI: common = absent) outcomes. For any value of
“total MBCA” (I + UI), we find that earnings are maximized
when the two MBCA parameters are equal (i.e., when the trade-
off between important and unimportant MBCA is resolved in an
equal split). Thus, importance-based modulation of MBCA is costly.
However, in each trial of our task, we present a random pair of

individuals. Consequentially, current-state importance does not
predict future-state importance. In more ecological environ-
ments, we might expect the importance of task aspects for de-
cisions would enjoy positive temporal autocorrelation, such that
currently important aspects are more likely also to be important
for subsequent decisions. These are the very circumstances that
importance-based modulation of MBCA should improve per-
formance. Fig. 5D presents standardized earnings in a modified
version of our task in which trial sequences were constructed
such that outcome importance was positively autocorrelated
across trials. As expected, we find standardized earnings are
maximized when MBCA for important outcomes is higher than
for unimportant outcomes. Thus, importance-based MBCA
might reflect prolonged adaptation to more ecological environ-
ments. Finally, we also found that importance-based modulation
of MFCA does benefit earning in our task (SI Appendix, Fig.
S14 C and D). However, in the modified version of the task, an
MFCA modulation based jointly on relatedness and importance
boosts earnings (SI Appendix, Fig. S14 E and F).

MBCA outperforms MFCA in earnings. Finally, we assess which of the
two forms of CA is more instrumental for reward acquisition.
Fig. 5E displays standardized earnings for hybrid agents who
engage in both MB and MF control as a function of the “total
CA” across both systems and the proportion of MFCA (which is
equivalent to the relative reliance on MF control). For any value
of total CA, earnings are maximized when the MF system is si-
lent, that is, when the trade-off between the systems is resolved
in pure reliance on MB control.
In summary, we find that MB control outperforms MF control

with respect to earnings. However, to the extent that one relies
on MF control and guidance from a CM, manifesting in negative
CA for unrelated outcomes is beneficial. Furthermore, whereas
importance-based modulation of MBCA is inefficient in our
task, it can be instrumental in environments characterized by the
temporal consistency of important task states. We discuss these
findings in greater detail below.

Discussion
We recently described a dual-outcome bandit task (25) that
distinguishes holistic information about a choice (identified here
with the person) from more granular information pertaining to
outcomes of that choice (identified with the vegetables). This
task allows us to dissociate MB from MF influences on decisions,
enabling an examination of the influence of knowledge inherent
in a CM (30–33), over MBCA and MFCA. Here, using a version
of the task in which full feedback about outcomes is provided, we
examined whether, and how, CM-based processes resolve this
overexuberant information by modulating MF and MB learning.
We first show that a CM guides MFCA. This supports the

notion that an MF system, which retrieves cached action values
during choice without reference to task transition structure can,
when assigning credit to past actions, be guided by a CM. Many
previous experimental investigations simplified greatly the

Fig. 4. Signatures of MF and MB CA. (A) During a post-choice reward-feedback stage, outcomes were designated as Common, Exclusive, Counterfactual, and
Absent. Two outcomes were choice-related (R) and two are were “important” (I) with respect to MB deliberations. (B) MFCA parameters based on the full
model. The choice-relatedness effects demonstrate CM-based guidance of MFCA. Furthermore, the mean negativity for choice-unrelated outcomes implicates
negative MFCA for choice-unrelated outcomes. (C) Similar to B but for the MB system. The “importance” main effects show that MBCA is enhanced for
important outcomes. Error bars correspond to SEM across participants calculated separately in each condition (n = 42). *P < 0.05, ***P < 0.001. P values were
calculated based on mixed-effects logistic regression models.

Moran et al. PNAS | 9 of 12
Human subjects exploit a cognitive map for credit assignment https://doi.org/10.1073/pnas.2016884118

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 U

C
L 

Li
br

ar
y 

S
er

vi
ce

s 
on

 J
an

ua
ry

 2
5,

 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016884118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016884118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016884118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016884118/-/DCSupplemental
https://doi.org/10.1073/pnas.2016884118


problem of associating actions with outcomes, for instance, by
providing relevant rewards and/or state information immediately
after each action. In such cases, MFCA can exploit factors such
as temporal contiguity (26), rendering CM-based guidance nuga-
tory. CM-based guidance for MFCA, however, becomes crucial in
complex real-life situations when reward feedback pertaining to a
past action is either delayed or promiscuously available. Without
such guidance, an attribution of outcomes is impossible.
In the context of our task, in the absence of CM guidance,

MFCA must be equally affected by choice-related and -unrelated

outcomes. In striking contrast to this, we found that action-re-
lated and -unrelated outcomes reinforced MF action values
positively and negatively, respectively. In our computational treat-
ment, CM-based guidance is achieved by modulating the extent of
updates of MF values based on outcomes according to the out-
come structure of actual choices. One could equally imagine the
operation of an architecture such as DYNA (9, 34), in which the
MB system trains an MF system by generating offline, hypo-
thetical, replay-, or preplay-based (35–37) MB episodes from
which an MF system learns as if they were actualized. Notably,
had the MF system been fully trained by DYNA, then it would
have mimicked perfectly the MB system and we would not have
found evidence for MFCA effects.
The negative choice-unrelated MFCA effect might reflect an

MF attempt to learn relative rather than absolute action values
(38). Conceivably, action-unrelated rewards serve to signal that
one’s chosen action may be inferior to other potential actions.
Hence, an MF penalty is imposed on the current action—a
process that can boost exploration of alternative actions. This
could operate in the absence of MB inference as to which actions
led to these unrelated rewarding outcomes. Alternatively, neg-
ative choice-unrelated MFCA might reflect a process by which
choice-unrelated rewards contextualize choice-related rewards,
akin to divisive normalization (39). According to this account,
MFCA is driven solely by choice-related outcomes, but those
related outcomes are conceived as more/less valuable when un-
related outcomes are unrewarded/rewarded. Future research
should examine the cognitive underpinnings and the neural
implementation of this negative reinforcement.
By stark contrast with updates to MF values, MB values were

affected almost equally by outcomes that were related, or un-
related, to choice. However, unlike MF values, MB updates were
seemingly affected by the decision-making processes associated
with a choice, with a greater effect seen for outcomes a CM could
discriminate as being determinative (Exclusive and Counterfac-
tual) compared to those that were not (Common and Absent). We
suggest this fits with the idea that MB deliberation differentially
activates, or primes, components of a CM based on their “im-
portance” and that such state activation facilitates CA. Hypo-
thetically, other variables, such as the number of times a state
was incorporated into previous action plans, could similarly con-
tribute to a gradient of activation over a CM. Future studies
should examine which variables affect state activation and how
they affect the extent of CA. A rather different possibility is that
“importance”-based MBCA is mediated by an attentional pro-
cess whereby important outcomes capture more attention during
outcome presentation. Again, it will be of interest to probe these
attentional influences on MBCA, for example, by presenting
outcomes in parallel rather than serially and measuring the level
of attention allocation to different outcomes (40, 41).
Our findings raise subtle questions as to the benefits of the ob-

served CM-based modulations of MBCA and MFCA. Using model
simulations, we find a rich picture. First, to the extent that one relies
on MFCA, guidance from a CM that manifests in negative CA for
choice-unrelated outcome is instrumental for simulated earnings.
Furthermore, we found that simulated earnings were maximal when
MFCA for related and unrelated outcomes were equal in magni-
tude but reversed in sign. Empirically, however, the positivity of
MFCA to related outcomes in our task was larger than the nega-
tivity of MFCA to unrelated outcome (beta = 0.23, t(164) = 6.28,
P = 3 × 10−9; Fig. 4B), suggesting participants relied too little on
negative MFCA to unrelated outcomes.
However, we also found that, as is the case in some variants of

the two-step task (42, 43), reliance on MB control in our task is
more profitable than MF control. Nevertheless, a conclusion that
reliance on the latter is nonnormative is premature given the
relative cognitive costs and/or computational accuracy of MF
control (44). Furthermore, although importance-based modulation

Fig. 5. Simulated reward earnings for various regimes of CA parameters.
(A) Standardized earning of simulated pure-MF agents (colorbar; SI Ap-
pendix, Supplementary Methods) are displayed as a function of MFCA for
related (R) outcomes (abscissa; values greater than 0) and the ratio between
MFCA for unrelated (UR) and related outcomes (ordinate). Earnings are
maximized when the ratio is −1 (i.e., when MFCA for unrelated outcome is
negative and equal in magnitude to the MFCA for related outcomes). (B)
Standardized earning for pure-MF agents as a function of total MFCA for
related and unrelated outcomes (abscissa) and the proportion of unrelated
MFCA (ordinate). Here, MFCA is positive and negative for related and un-
related MFCA, respectively (hence an absolute value is applied to MFCA UR).
Earnings are maximized when the proportion of MFCA for unrelated out-
come is 0.5 (i.e., when related and unrelated MFCA are equal in magnitude
and opposite in sign). (C) Standardized earning for pure-MB agents as a
function of total MBCA for important (I) and unimportant (UI) outcomes
(abscissa) and the proportion of unimportant MBCA (UI). Earnings are
maximized when the proportion of MBCA for unimportant outcomes is 0.5
(i.e., when MBCA is equal for both outcome types). (D) Same as C but for a
modified variant of the task wherein outcome importance is positively cor-
related across trials. (E) Standardized earning for hybrid MB–MF agents as a
function of total CA (MB+MF; abscissa) and the proportion of MFCA (ordi-
nate, which is equivalent to the proportion of MF control). Earnings are
maximized when the proportion of MBCA is 1 (i.e., for pure reliance on MB
control). Each data point in each panel is based on 10,000 simulations of
synthetic experimental sessions. Magenta asterisks mark the maximal earn-
ing in each column. However, if the maximal earnings were not significantly
higher than earnings in the central row of that column, we also marked the
central row (hence some columns feature two asterisks).
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of MBCA is not instrumental to profits in our task, it is helpful in
more ecological environments where the importance of task states
is temporally consistent (rather than being random as in our task).
In such instances, state importance signals a need to maintain more
accurate state-value representations (45). Thus, to the extent that
CA for important and unimportant outcomes trade off, it should be
diminished for “unimportant” relative to “important” outcomes.
We acknowledge that the various CM-based influences on

MFCA and MBCA found at a group level will not necessarily all
co-occur within individual participants. Indeed, our Bayesian
analysis of model prevalence revealed that about 70% of the
population is expected to engage in either pure-MFCA or pure-
MBCA processing. Future studies can help illuminate how
agents arbitrate between the various CM-based strategies as well
as the situational variables (e.g., time pressure during choice and/
or during feedback) which might influence this arbitration and
the expression of individual difference in strategy selection.
In sum, our results encourage a generalized view of model-based

processing. That is, instead of focusing narrowly on the sort of
prospective reasoning of the sort that underlies planning, it suggests
a broader perspective on the types of operations supported by a
CM, where these include retrospective inference of state uncer-
tainty (25) and the filtering of online experiences. Our findings
suggest that a CM which exploits the full range of these operations
can shape best the precise impact of reward feedback. A critical
next step is to characterize and quantify the cognitive costs incurred
by MB and MF control as well as by CM-based modulation of
learning. These will allow a better understanding of the cognitive
process underlying arbitration between these control strategies and
will facilitate a development of a framework to assess the benefits
and beneficial interaction of these processes.

Methods
Participants. A total of 44 participants were recruited from the SONA subject
pool (https://uclpsychology.sona-systems.com/Default.aspx?ReturnUrl=/) with
restrictions of having normal or corrected vision, being nondyslexic, being a
UK-based student, and being born after 1981. The study was approved by the
University College London Research Ethics Committee (Project ID 9929/002).
Subjects gave written informed consent before the experiment.

Experimental Procedures. Participants were first familiarized with four pic-
tures of persons and learned which pair of vegetables each person grows
[pictures of persons and vegetables were adopted from previous studies (46,
47)]. Each vegetable was grown by two different individuals, and each
person grew a unique pair of vegetables. The mapping between persons and
vegetables was created randomly anew for each participant and remained
stationary throughout the task. After learning, participants were quizzed
about which vegetables each person grew and about which person they
would choose to obtain a target vegetable. Participants iterated between
learning and quiz phases until they achieved perfect quiz performance
(100% accuracy and RT [reaction time]) < 3,000 ms for each question).

After learning, participants played eight practice-bandit trials to verify
that they understood the task. These practice trials proceeded as described
below with the sole difference that no time limit was imposed on a choice.
They next played seven blocks, each comprising 56 bandit trials. On each
trial, a pair from the four persons were offered for choice, and participants
had 750 ms to choose one of these objects (left or right mouse click). Offered
persons always shared one vegetable in common. This defined four person
pairs, each presented on 14 trials (per block) in a random order. Following a
choice, participants saw sequentially, and in random order, whether each of
the four vegetables that the chosen person grows was sold or not. Partici-
pants earned a notational £1 per sale of each of the two vegetables that
were grown by the person they chose (they earned no money for the two
nonrewarded vegetables). Importantly, the feedback stage indicated to
participants neither which pair of vegetables were grown by their chosen
person nor their earning on that trial. The sale probabilities (“demands”) of
the four vegetables evolved across trials according to four independent
Gaussian-increment random walks with reflecting boundaries at P = 0.2 and
P = 0.8 and an SD of 0.03 per trial. A new random walk was created for each
block of trials, and the four random walks were initialized with a random
permutation of (0.2, 0.4, 0.6, and 0.8).

After each block was completed, participants had a forced 1-min (minimum)
break. After the break, participants were informed that all vegetable reward
probabilities were reset to new values, and, therefore, they should form new
impressions of these when the task resumes. Additionally, at the beginning of
blocks 1 and 4, participants received refresher training on the transition structure.

The task lasted about 60 min. Participants were paid £8 per hour plus a
performance-based bonus, which was calculated based on the total amount
of earned rewards on three randomly sampled trials.

Data Analysis. Two participants were excluded from data analyses due to
disengagementwith the task. One participant used the same response key for
98% of the trials, and the other switched the response key on 86% of trials.
The remaining 42 participants were the targets for the analysis.

Model-Agnostic Analysis for MB and MF Contribution to Choice. Our model-
agnostic analyses were conducted using logistic mixed-effect models (imple-
mented with MATLAB’s function “fitglme”) with participants serving as random
effects with a free covariance matrix. In our first analysis, we used only trials n+1
that offered for choice the trial n–chosen person. Our regressors COMMON
(Common vegetable), UNIQUE (Unique vegetable), ABSENT (Absent vegetable),
and OTHER (Other vegetable) coded whether trial n outcomes were rewarding
(coded as +0.5 for reward and −0.5 for nonreward); the regressor IMPORTANCE
coded whether the UNIQUE and OTHER outcomes were important on the pre-
vious trial n (+0.5 for important and −0.5 for unimportant); and the regressed
variable REPEAT indicated whether the choice on the focal trial n+1 was re-
peated. PART coded the participant contributing each trial. The model, in Wil-
kinson notation, was REPEAT ∼ IMPORTANCE × (COMMON + UNIQUE + ABSENT
+ OTHER) + (IMPORTANCE × (COMMON + UNIQUE + ABSENT + OTHER)|PART).
We used an F-test to examine contrasts on fixed effects.

We performed an additional analysis relying on all trial-to-trial transitions.
On each trial (n+1), the two offered persons shared one vegetable in com-
mon, and each had one unique vegetable. The regress variable CHOOSE_-
RIGHT indicated whether the person offered on the right side of the display
was chosen (trial n+1), and our regressors were R1 and R2, coding whether
the unique vegetables of the right-side and left-side persons were rewarded
on the previous trial n (coded as +/−0.5), and IMPORTANCE, coding whether
these two vegetables were important on trial n (coded as ±0.5). PART coded
the participant contributing each trial. The model, in Wilkinson notation,
was CHOOSE_RIGHT ∼ IMPORTANCE × (R1 + R2) + (IMPORTANCE × (R1 + R2)|
PART). We used an F-test to examine whether any of the fixed-effects in-
teractions with importance were significant. If this F-test was significant, we
proceeded to examine the significance of the individual interaction terms
(R1 × IMPORTANCE, R2 × IMPORTANCE). Similarly, we used F-tests to ex-
amine whether any of the reward effects were significant. If the F-test was
significant, we examined the significance of the individual terms (R1, R2).

Computational Models. We formulated a hybrid RL model to account for the
series of choices for each participant. In the model, choices are contributed by
both the MB and MF systems. The MF system caches a QMF value for each
person, subsequently retrieved when the person is offered for choice. Dur-
ing learning, following reward feedback, rewards from the various vege-
tables (Common, Exclusive, Counterfactual, and Absent; these assignments
are the contribution of MB information to MFCA) are used to update the
QMF value for the chosen person as follows:

QMF(chosen  person)←   (1 − fMF )*QMF(chosen  person) + cMF
common*rcommon

+ cMF
exclusive*rexclusive +   cMF

counter*rcounter + cMF
absent*rabsent ,

[2]

where the “c”s are four free MFCA parameters corresponding to the four
outcome types, the “r”s are the rewards for the four outcome types (codes
as 1 for reward or −1 for nonreward), and fMF(between 0 and 1) is a free
parameter corresponding to forgetting in the MF system. The MF values of
the three nonchosen persons were subject to forgetting:

QMF(non  choen  person)← (1 − fMF )*QMF(non  chosen  person). [3]

Unlike MF, the MB system maintains QMB values for the four different
vegetables. During choices, the QMB value for each offered person is calcu-
lated based on the transition structure:

QMB(person) = QMB(veg  1) +QMB(veg  2). [4]

Following a choice, theMB system updates theQMB values of each of the four
observed vegetable based on its own reward:
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QMB(vegetable)←   (1 − fMB)*QMB(vegetable) + cMB
type*rtype, [5]

where fMB (between 0 and 1) is a free parameter corresponding to forget-
ting in the MB system, “type” is the vegetable’s outcome type designation
(Common, Exclusive, Absent, or Counterfactual), and cMB

common, c
MB
exclusive, c

MB
counter , c

MB
absent

are four free MBCA parameters.
Our model additionally included progressive perseveration for chosen

persons. After each trial, the perseveration values of each of the four persons
updated according to

PERS(person)← (1 − fP)*PERS(person) + pr*1person=chosen, [6]

where 1person=chosen is the chosen person indicator, pr is a free perseveration
parameter, and fP(between 0 and 1) is a free perseveration-forgetting
parameter.

During choice, a net Q value was calculated for each offered person:

Qnet(person) = QMB(person) +QMF(person) + PERS(person). [7]

The Qnet values for the two persons offered for choice are then injected into

a softmax choice rule such that the probability to choose an option is as
follows:

Prob(person) = eQnet (person)

e[Qnet (person)+Qnet(other  person)]. [8]

QMF and PERS person values and QMB vegetable values were initialized to
0 at the beginning of each experimental block.

Data Availability. The data that support the findings of this study and data
analysis code have been deposited in the Open Science Framework (OSF)
and are available in the following link: https://osf.io/ydrv7/?view_
only=c0c00083077d45e18f7997d53172150e.
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