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Abstract After nerve injury, myelin and Remak Schwann cells reprogram to repair cells

specialized for regeneration. Normally providing strong regenerative support, these cells fail in

aging animals, and during chronic denervation that results from slow axon growth. This impairs

axonal regeneration and causes significant clinical problems. In mice, we find that repair cells

express reduced c-Jun protein as regenerative support provided by these cells declines during

aging and chronic denervation. In both cases, genetically restoring Schwann cell c-Jun levels

restores regeneration to control levels. We identify potential gene candidates mediating this effect

and implicate Shh in the control of Schwann cell c-Jun levels. This establishes that a common

mechanism, reduced c-Jun in Schwann cells, regulates success and failure of nerve repair both

during aging and chronic denervation. This provides a molecular framework for addressing

important clinical problems, suggesting molecular pathways that can be targeted to promote

repair in the PNS.

Introduction
Among mammalian systems, peripheral nerve is often hailed as a prime example of a tissue with a

striking regenerative potential. Nerve injury triggers the reprograming of myelin and non-myelin

(Remak) Schwann cells to adopt a repair Schwann cell phenotype specialized to support regenera-

tion, and injured neurons activate a gene program that facilitates axon growth. Yet, paradoxically,

the clinical outcome of nerve injuries remains poor, and nerve damage constitutes a significant clini-

cal and economic burden. Remarkably, treatment of nerve injuries has not advanced significantly for

decades (Furey et al., 2007; Jonsson et al., 2013; reviewed in Fu and Gordon, 1995; Boyd and
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Gordon, 2003a; Höke, 2006; Allodi et al., 2012; Scheib and Höke, 2013; Doron-Mandel et al.,

2015; Jessen and Mirsky, 2016; Fawcett and Verhaagen, 2018; Jessen and Arthur-Farraj, 2019).

The question of why a potentially regenerative tissue fails to respond effectively to injury and

ensure clinical recovery is important both for promoting nerve repair, and also more generally. A

number of other systems with experimentally established regenerative capacity, for example, skin,

heart, and pancreatic islets, also fail to show clinically useful regenerative response to tissue damage

(Cohen and Melton, 2011; Eguizabal et al., 2013; Jessen et al., 2015).

In the case of peripheral nerves, recent work has highlighted two important factors that pre-

vent full expression of their regenerative potential. One is the age of the animal at the time of

injury, increasing age resulting in a marked decrease in regeneration. The other is the adverse

effect of chronic denervation on the nerve distal to injury, since this tissue gradually loses the

capacity to support axon growth as it lies denervated during the often extensive time it takes

regenerating axons to reach their targets. These two problems turn out to involve a common

factor, namely a repair Schwann cell failure, since both during aging and chronic denervation,

the denervated Schwann cells in the distal stump undergo molecular and morphological

changes that result in a striking functional deterioration of these important drivers of axonal

regeneration (reviewed in Verdú et al., 2000; Sulaiman and Gordon, 2009; Painter, 2017;

Jessen and Mirsky, 2019).

In the present work, we have tested whether the dysfunction of repair Schwann cells in these two

apparently unrelated situations relates to a common factor, namely a failure to activate or maintain

high levels of the transcription factor c-Jun. That this might be so, is based on our previous finding

that c-Jun, which is upregulated in Schwann cells in injured nerves, is a global amplifier of the repair

Schwann cell phenotype (Arthur-Farraj et al., 2012; reviewed in Jessen and Mirsky, 2016;

Jessen and Mirsky, 2019; Jessen and Arthur-Farraj, 2019), and on subsequent findings showing

that enhanced Schwann cell c-Jun promotes regeneration, both through nerve grafts and in vitro

(Arthur-Farraj et al., 2012; Huang et al., 2015; Huang et al., 2019).

The age-dependent decline in regenerative capacity of human and animal nerves is well estab-

lished (Pestronk et al., 1980; Tanaka and deF. Webster, 1991; Tanaka et al., 1992;

Graciarena et al., 2014; reviewed in Vaughan, 1992; Verdú et al., 2000; Ruijs et al., 2005). This is

associated with a reduced initial inflammatory response followed by enhanced chronic inflammation

(Scheib and Höke, 2016; Büttner et al., 2018). Interestingly, diminished regeneration is not caused

by age-dependent changes in neurons. Rather, aging results in subdued activation of the repair

Schwann cell phenotype after injury, including reduced c-Jun expression, resulting in regeneration

failure (Painter et al., 2014; reviewed in Painter, 2017).

The other major barrier to repair that we consider here is caused by long-term denervation

of nerves distal to injury. This is an important issue in human nerve regeneration (Ruijs et al.,

2005) and has been studied in some detail in rats, revealing that chronic denervation results in

reduced expression of repair-associated genes including Gdnf, Bdnf, Ntf3, and Ngfr, accompa-

nied by a dramatic reduction in the ability of denervated distal stumps to support regeneration

even of freshly transected axons (Fu and Gordon, 1995; You et al., 1997; Sulaiman and Gor-

don, 2000; Höke et al., 2002; Michalski et al., 2008; Eggers et al., 2010). There is direct evi-

dence for a comparable deterioration of repair cells and repair capacity during chronic

denervation of human nerves (Wilcox et al., 2020; reviewed in Ruijs et al., 2005). Chronic

denervation also results in reduced repair cell numbers and shortening of repair cells

(Benito et al., 2017; Gomez-Sanchez et al., 2017; reviewed in Jessen and Mirsky, 2019). Thus,

the repair phenotype is not stable but fades with time after injury, thereby contributing to the

poor outcome after nerve damage in humans.

Schwann cell reprograming after nerve injury involves upregulation of trophic factors and cyto-

kines, activation of EMT genes, and myelin autophagy for myelin clearance and downregulation

of myelin genes (Brushart et al., 2013; Arthur-Farraj et al., 2017; Clements et al., 2017;

reviewed in Gröthe et al., 2006; Chen et al., 2007; Gambarotta et al., 2013; Glenn and Tal-

bot, 2013; Jessen and Mirsky, 2016; Boerboom et al., 2017; Jessen and Arthur-Farraj, 2019;

Nocera and Jacob, 2020). Myelin and Remak Schwann cells also increase in length by two-to-

three fold and often branch as they convert to repair cells and form regeneration tracks,

Bungner bands, that guide regenerating axons (Gomez-Sanchez et al., 2017). The molecular
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signals involved in the decline of these repair-supportive features during aging and chronic

denervation have not been known.

The transcription factor c-Jun regulates the reprograming of myelin and Remak cells to repair

cells by accelerating the extinction of myelin genes, promoting myelin breakdown, and by amplifying

the upregulation of a broad spectrum of repair-supportive features, including the expression of tro-

phic factors. Accordingly, genetic removal of c-Jun from Schwann cells results in functionally

impaired repair cells and regeneration failure (Arthur-Farraj et al., 2012; Fontana et al., 2012;

reviewed in Jessen and Arthur-Farraj, 2019).

Here, we provide evidence that a common molecular mechanism, the dysregulation of c-Jun in

Schwann cells, is central to two major categories of regeneration failure in the PNS. The high levels

of Schwann cell c-Jun triggered by nerve injury in young animals are not achieved in older ones, and,

irrespective of age, the elevated c-Jun expression seen after injury steadily decreases during long-

term denervation. Importantly, we show that in both models of regeneration failure, genetically

restoring Schwann cell c-Jun levels in vivo also restores regeneration rates to that in controls. By

establishing c-Jun as an important regulator of the success and failure of nerve repair during aging

and chronic denervation this observation provides a common molecular framework for addressing

an important clinical problem, and suggests molecular pathways that can be targeted to promote

repair in the PNS.

Results

In aging animals, maintaining c-Jun levels in Schwann cells reverses age-
related defects in nerve regeneration
Age-dependent failure of nerve regeneration is accompanied by subdued elevation of c-Jun, a major

regulator of the repair cell phenotype (Painter et al., 2014). To test whether this reduction in c-Jun

controls the reduced capacity of these cells to support axon growth, we first compared c-Jun upre-

gulation in young and older WT mice (Figure 1A). Four days after transection, c-Jun protein levels in

the distal nerve stump in aged mice (8–10 months) were found to be ~50% lower than in young (6–8

weeks) mice.

To determine the functional significance of this, we studied MpzCre+;R26c-Junstopff/+ mice

(referred to as c-Jun OE/+ mice), which we generated previously (Fazal et al., 2017). In these

mice, c-Jun levels are enhanced in Schwann cells only. In western blots of uninjured adult sciatic

nerves of c-Jun OE/+ mice, c-Jun is elevated about seven fold compared to WT. While there is

a modest reduction in myelin thickness, nerve architecture and Schwann cell morphology are

normal (Fazal et al., 2017). We found that in c-Jun OE/+ mice, the age-dependent decline in

c-Jun protein levels after sciatic nerve cut was prevented, and that c-Jun levels in the distal

stump of young WT and aging c-Jun OE/+ mice were similar by western blots 4 days after cut

(Figure 1A). At the mRNA level, a non-significant trend towards lower c-Jun expression was

seen in 3-day cut nerves of aged WT nerves, while there was a significant elevation of c-Jun

mRNA in cut c-Jun OE/+ nerves as expected (Figure 1B). c-Jun levels seen in western blots

were confirmed in immunofluorescence experiments on 3-day cut nerves, using Sox10 antibodies

to selectively identify Schwann cell nuclei, and c-Jun antibodies (Figure 1C). In WT mice, older

nerves contained fewer c-Jun-positive Schwann cell nuclei and the labeling of the c-Jun-positive

nuclei was weaker, compared to young nerves. In aged c-Jun OE/+ nerves nuclear c-Jun was

restored to levels similar to those in young WT nerves.

Regeneration in young and aged WT mice and aged c-Jun OE/+ mice was compared using neu-

ron back-filling, a method that provides an optimal measure of regenerative capacity by determining

the number of neuronal cell bodies have regenerated axons through a nerve at a measured distance

distal to injury (Figure 1—figure supplement 1; Novikova et al., 1997; Boyd and Gordon, 2003b;

Catapano et al., 2016). Four days after sciatic nerve crush, retrograde tracer was applied to the dis-

tal stump 7 mm from the crush site. Seven days later, the animals were sacrificed and the number of

back-filled DRG and spinal cord motor neurons were counted. The results were comparable for both

neuronal populations (Figure 1D,E). The number of neurons regenerating through the distal stump

of aged WT mice was reduced by about 50% compared to young mice. In aged c-Jun OE/+ mice on
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Figure 1. Restoring Schwann cell c-Jun protein reverses the age-related decline in nerve regeneration. (A) Representative western blots of c-Jun in

young and aging WT nerves and aging c-Jun OE/+ nerves 3 days post-injury. The graph shows densitometric quantitation of the western blots. c-Jun

upregulation is impaired in WT aged nerves but restored in aged c-Jun OE/+ nerves. Data are normalized to young WT 3 days post-cut; *p<0.05,

**p<0.005, ns, non-significant. Young UI WT n = 6, n = 5 for all other experimental groups. (B) RTqPCR analysis of 3-day cut nerves. Data normalized to

young WT 3 days post-cut.; **p<0.005, ns, non-significant, n = 4. (C) Representative images showing immunofluorescence of c-Jun in double labeling

with Schwann cell nuclear marker Sox10 in sections of the distal nerve stump in young and aging WT and aging c-Jun OE/+ mice 3 days post-cut. In the

graph, the results are quantitated by cell counting. In aging WT Schwann cells, c-Jun is reduced, but elevated to youthful levels in aging c-Jun OE/+

Schwann cells; **p<0.001, ns, non-significant. n = 3 for each experimental group. (D) Representative images showing Fluorogold-labeled sensory

neurons in L4 DRGs of young WT and aging WT and c-Jun OE/+ mice 1-week post back-filling following a 4-day crush injury. The graph shows

quantitation by cell counting. There is an age-related decrease in back-filled neurons in WT samples (p=0.0309), while the high number of regenerating

neurons in young WT mice is maintained in aging c-Jun OE/+ DRGs (p=0.0211). Unpaired Student’s t-test. Young WT n = 6, aging WT n = 5, aging

c-Jun OE/+ n = 6. (E) Representative images of Fluorogold-labeled motor neurons in young WT and aging WT and c-Jun OE/+ mice 1-week post back-

filling following a 4-day crush injury. The graph shows quantitation of the results. Counts of labeled motor neurons mirrors those of sensory neurons

since in WT mice, but not in c-Jun OE/+ mice, the number of back-labeled motor neurons decreases with age; ***p<0.001, **p<0.005, n = 6 for all

experimental groups. (F) Counts of calcitonin gene-related peptide (CGRP)+ regenerating axons 3 mm from crush injury of the sciatic nerve of young

Figure 1 continued on next page
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the other hand, regeneration of DRG and motor neurons was restored to levels similar to those in

young WT nerves.

In confirmation, counts of CGRP+ fibers in the sciatic nerve were performed 3 days after nerve

crush, 3 mm from the injury site (Figure 1F). The number of fibers were reduced in aged WT nerves

compared to young ones, but increased in the aged c-Jun OE/+ nerves.

These experiments confirm that the failure of repair cell function in older animals is accompanied

by failure to fully upregulate c-Jun in Schwann cells after injury (Painter et al., 2014). Importantly,

restoration of c-Jun elevation selectively in Schwann cells to that seen in young animals is sufficient

to restore nerve regeneration to youthful levels.

A mouse model of distal stump deterioration
We established a model of chronic denervation in mice, since previous studies have been carried out

in rats. Sciatic nerves were cut followed by deflection of the proximal stump to leave the distal

stump un-innervated for 1 week (short-term denervation) or 10 weeks (chronic denervation). mRNA

levels for genes associated with denervated Schwann cells (S100b, Ngfr, Gdnf, and sonic hedgehog

(Shh)) declined substantially between 1 and 10 weeks of denervation (Figure 2A). Western blots of

p75NTR (Ngfr) in the distal stump showed a rise to a maximum 1 week after injury and a decline

thereafter to <50% of peak levels at 10 weeks (Figure 2B) in line with that seen in rat (You et al.,

1997).

Regeneration through freshly cut and long-term denervated nerve stumps were compared by

back-filling of spinal cord motor neurons. For this, acutely cut (immediate repair) or 10-week dener-

vated tibial distal stumps were sutured to freshly cut peroneal nerves (Figure 2—figure supplement

1) Two weeks later, Fluorogold retrograde tracer was applied to the tibial stumps 4 mm distal to the

suturing site. One week after the application of tracer, the number of retrogradely labeled motor

neurons in the spinal cord was counted. Only about half as many spinal cord motor neurons pro-

jected into the 10-week denervated stumps compared to the acutely transected stumps (Figure 2C).

Failure of regeneration through 10-week denervated stumps was confirmed by immunohis-

tochemistry and counting of neurofilament-positive axons in similar experiments. Ten-week dener-

vated stumps contained many fewer regenerating neurofilament labeled axons than nerve stumps

sutured immediately after transection (Figure 2D).

Counting back-filled neurons following immediate repair or repair 1 week after transection,

revealed a similar number of regenerating neurons (Figure 2E). This shows that the capacity of the

distal stump to support regeneration declines between 1 and 10 weeks of denervation.

These experiments established a baseline for studying the effects of prolonged denervation on

the capacity of mouse repair Schwann cells to support neuronal regeneration.

c-Jun is downregulated in chronically denervated Schwann cells
We determined whether decline in Schwann cell c-Jun expression was involved in regeneration fail-

ure caused by chronic denervation, as seen during aging. Measuring c-Jun protein levels in distal

stumps showed strong elevation 3 days and 1 week after sciatic nerve cut followed by a decline

to ~40% of 1 week levels at 10 weeks (Figure 3A). We verified that the c-Jun shown in these western

blots represented c-Jun in Schwann cells, using mice with conditional c-Jun inactivation selectively in

Schwann cells (Arthur-Farraj et al., 2012; Figure 3B). Further, 1- and 10-week denervated stumps

were compared using double immunofluorescent labeling with c-Jun antibodies and Sox10 antibod-

ies to selectively identify Schwann cell nuclei. Ten-week denervated stumps showed many more

c-Jun negative, Sox10-positive nuclei, and the c-Jun labeling, where present, was also weaker

(Figure 3C).

Figure 1 continued

and aged WT mice, and of aging c-Jun OE/+ mice; ****p<0.0001, ***p<0.001. Young WT n = 5, aging WT and c-Jun OE/+ n = 6. All numerical data

are analyzed by one-way ANOVA with Tukey’s multiple comparison test and represented as means ± SEM. All scale bars: 100 mm.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Schematic representation of neuron backfilling.
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The decline in c-Jun and p75NTR expression after long-term denervation in vivo was mimicked in

purified Schwann cells in vitro. By western blots, cells that had been maintained ~6 weeks in vitro

(nine passages), contained less c-Jun and p75NTR protein compared to cells maintained ~10 days in

vitro (two passages) (Figure 3D). The levels of c-Jun mRNA also declined in long-term cultures

(Figure 3E). The reduction in c-Jun in Schwann cell nuclei was confirmed using double immunofluo-

rescent labeling with c-Jun and Sox 10 antibodies to identify Schwann cells (Figure 3F). These in
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Figure 2. The mouse model of chronic denervation. (A) Analysis of RNA sequencing data showing decrease in gene expression during chronic

denervation. (B) Representative western blot showing p75NTR expression in uninjured (UI) nerves and distal nerve stumps following 3 days, and 1, 3, 6,

8 and 10 weeks of denervation. The graph shows quantitation of the results. P75NTR peaks 1 week after injury and gradually declines during prolonged

denervation. Data normalized to 1 week after injury. One-way ANOVA with Dunnett’s multiple comparison test; **p<0.005, ***p<0.001. n = 4. (C)

Counts of back-filled Fluorogold-labeled regenerating motor neurons following immediate repair or chronic 10-week denervation show a decrease in

motor neuron regeneration into chronically denervated stumps. Unpaired Student’s t-test; **p=0.0020. n = 6 for each time point. (D) Counts of

neurofilament+ axons mirrors the decline in regeneration observed with chronic denervation shown in C. Counts were performed on transverse sections

taken 3 mm from the repair site1 week after repair. Unpaired Student’s t-test; ****p<0.0001. Immediate repair n = 5, chronic denervation n = 4. (E)

Counts of back-filled Fluorogold-labeled motor neurons showing similar numbers of regenerating neurons following immediate repair or repair after 1

week of denervation. Unpaired Student’s t-test; p=0.9. n = 3. All numerical data represented as means ± SEM.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Surgical procedures used to study regeneration after immediate repair and chronic denervation.
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Figure 3. c-Jun declines in the distal nerve stump during chronic denervation and long-term culture. (A) Representative Western blot of c-Jun in WT

uninjured (UI) nerves and distal stumps following 3 days and 1, 3, 6, 8, and 10 weeks of denervation. The graph quantitates the results, showing an initial

increase followed by a decline in c-Jun levels. Data normalized to 1 week post-injury. One-way ANOVA with Dunnett’s multiple comparisons test;

*p<0.05, **p<0.005, ****p<0.0001. n = 5. (B) Representative western blot comparing c-Jun expression 1 week after injury in WT and c-Jun cKO mice.

Figure 3 continued on next page
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vitro experiments suggest that the decline in c-Jun and p75NTR during chronic denervation is not

driven by endoneurial signals.

c-Jun downregulation during chronic denervation is prevented in c-Jun
OE/+ mice
The decline in c-Jun levels at the same time as repair cells lose capacity to support regeneration

raises the questions of whether the functional deterioration of these cells is partly a consequence of

c-Jun reduction, and whether repair cells, and regeneration through chronically denervated nerves,

would be maintained if c-Jun reduction was prevented.

We addressed this using the c-Jun OE/+ mice examined earlier in experiments on aging (previous

section; Fazal et al., 2017). The mice were 6–8 weeks old at the time of injury, corresponding to

young mice in the study on aging. One- and 3-week denervated distal stumps of c-Jun OE/+ and

WT mice contained similar c-Jun protein levels. However, at 10 weeks, when c-Jun had declined in

WT mice, c-Jun was maintained in c-Jun OE/+ mice at levels similar to those at 1 week (Figure 4A).

This was confirmed by double label c-Jun/Sox10 immunofluorescence (Figure 4B). This showed simi-

lar c-Jun nuclear labeling in 1-week denervated stumps of WT and c-Jun OE/+ mice, while at 10

weeks, WT nerves showed a reduced number of c-Jun-positive nuclei and decreased labeling inten-

sity. This decrease was prevented in c-Jun OE/+ nerves.

These experiments indicate that in 1- to 3-week cut nerves, the maximum capacity of Schwann

cells to express c-Jun protein is already reached in the WT, both genotypes showing a similar 80–

100 fold elevation after injury. During chronic denervation, these high expression levels fall substan-

tially in WT nerves, but not in c-Jun OE/+ nerves. The c-Jun OE/+ mice can therefore be used to test

whether the regeneration failure induced by chronic denervation is due to the failure to maintain

high c-Jun protein levels.

Maintaining c-Jun levels during chronic denervation prevents
regeneration failure
Regeneration thorough chronically denervated distal stumps of WT and c-Jun OE/+ mice was com-

pared using neuron back-filling. Acutely cut common peroneal nerves were sutured to acutely cut or

10-week denervated tibial nerves and allowed to regenerate for 2 weeks prior to application of Fluo-

rogold retrograde tracer. In WT mice, the number of DRG neurons projecting through 10-week cut

nerves was only about half that projecting through acutely cut nerves. In 10-week cut c-Jun OE/+

nerves, however, this drop was not seen (Figure 5A). Similar results were obtained for spinal cord

motor neurons (Figure 5B). Thus, both DRG and motor neurons regenerated as well through 10-

week denervated c-Jun OE/+ nerves as they did through acutely cut WT nerves, suggesting that

c-Jun OE/+ Schwann cells maintain their capacity to support regenerating neurons despite chronic

denervation. In confirmation, regeneration into 10-week denervated distal stumps of the tibial nerve

was examined with neurofilament staining, 1 week after the stumps were sutured to freshly cut pero-

neal nerves. Nearly three times more fibers were found in 10-week denervated c-Jun OE/+ nerves

compared to 10-week denervated WT nerves (Figure 5C). The number of fibers found in WT nerves

after immediate repair is shown in Figure 2D.

We verified that the back-filling paradigm worked as expected in c-Jun OE/+ mice. First, peroneal

nerves in WT and c-Jun OE/+ mice were transected followed by immediate application of tracer to

the injured proximal stump. The number of back-filled DRG and motor neurons in c-Jun OE/+ mice

Figure 3 continued

The graph quantitates the results, showing upregulation of c-Jun in WT nerves but not in c-Jun cKO nerves, demonstrating that the c-Jun upregulation

after injury is Schwann cell specific. Data normalized to WT 1 week post-injury. Two-way ANOVA with Sidak’s multiple comparison test; ****p<0.0001.

n = 5. (C) Representative immunofluorescence images of c-Jun/Sox10 double labeling in transverse sections of the distal stumps 1 and 10 weeks after

cut. Boxed areas shown at higher magnification in right hand panels. Note loss of c-Jun protein from Schwann cell nuclei at 10 weeks (arrows). (D)

Representative Western blot of c-Jun and p75NTR in Schwann cell cultures after two or nine passages. The results are quantitated in the graphs,

showing decline in c-Jun and p75NTR with time in vitro. Data normalized to passage 2. Unpaired Student’s t-test; **p=0.0023, ***p=0.0007. n = 6 for

c-Jun, n = 7 for p75NTR. (E) qPCR analysis showing reduction in c-Jun mRNA in Schwann cultures following nine passages. Data normalized to passage

2. Unpaired Student’s t-test; *p=0.0299. n = 3. (F) c-Jun/Sox10 double labeling with nuclear marker DAPI after two or nine passages. Note decline of

nuclear c-Jun in passage 9 cells. All numerical data represent means ± SEM.
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was similar to that in WT animals (Figure 5D,E). This does not measure regeneration, but indicates

that a comparable number of DRG and motor neurons project through the normal uninjured pero-

neal nerve in the two mouse lines. Second, although c-Jun levels in WT and c-Jun OE/+ mice diverge

after 10 weeks of denervation, they are high, and similar, early after injury, when the capacity of WT

nerves to support regeneration is optimal. In line with this, the regeneration support provided by

WT and c-Jun OE/+ nerves was similar early after injury. Thus, in back-filling experiments no signifi-

cant difference was seen between WT and c-Jun OE/+ mice in the numbers of DRG or motor neu-

rons that regenerated through acutely transected distal stumps (immediate repair) when the tracer

was applied 2 weeks after transection/repair (Figure 5F and not shown). Similarly, comparable num-

bers of back-filled motor neurons were obtained in WT and c-Jun OE/+ mice when back-filling was

used to quantify regeneration 5 days after sciatic nerve crush (Figure 5G).

Together, these experiments indicate that under the conditions prevailing in the distal stump of

cut nerves, Schwann cells are unable to maintain high c-Jun levels in the long term. The resulting
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Figure 4. c-Jun expression is maintained in c-Jun OE/+ Schwann cells during chronic denervation. (A) Representative western blots of c-Jun in WT and

c-Jun OE/+ distal stumps after 1, 3, and 10 weeks of denervation. The results are quantitated in the graph. In contrast to WT nerves, c-Jun OE/+ nerves

maintain consistent levels of c-Jun during 10-week chronic denervation. Data normalized to WT 1 week post-injury. Two-way ANOVA with Sidak’s

multiple comparisons test; *p<0.05. n = 5. (B) Representative images showing c-Jun/Sox10 double immunofluorescence in transverse sections of WT

and OE/+ uninjured and injured distal stumps. The graph shows quantitation by cell counting. The c-Jun labeling of Sox10-positive nuclei in the two

genotypes is comparable at 1 week, but reduced at 10 weeks in WT nerves only. Two-way ANOVA with Tukey’s multiple comparison test; ***p<0.001.

n = 3. All numerical data represented as means ± SEM, all scale bars: 100 mm.
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Figure 5. The regenerative capacity of c-Jun OE/+ nerves is maintained during chronic denervation. (A) Representative images showing Fluorogold-

labeling of neurons in L4 DRGs of WT and c-Jun OE/+ mice after 2 weeks of regeneration into acutely transected (immediate repair) or chronically

denervated (10 weeks) distal stumps. Quantification by cell counting is in the graph. The number of back-filled DRG neurons following regeneration

through chronically denervated WT stumps was reduced, but maintained after regeneration through chronically denervated c-Jun OE/+ stumps. One-

Figure 5 continued on next page
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gradual reduction in c-Jun leads to deterioration of repair cell function, causing regeneration failure,

a failure that can be corrected by restoring c-Jun levels.

Improved regeneration in c-Jun OE+/-mice is unlikely to relate to
altered cell numbers
To test whether the differential regeneration rates could be due to altered cell numbers,

Schwann cell, macrophage and fibroblast nuclei were counted in tibial nerves by electron

microscopy.

In experiments comparing young and aging animals, cells in the distal stump were counted 4

days after nerve cut without regeneration. Schwann cell and macrophage numbers and density

were similar irrespective of genotype or age (Figure 6A–C). There was some decrease in fibro-

blast density in aged mice, but density and numbers were similar irrespective of genotype

(Figure 6D,E). In aged mice, transverse profiles of the tibial nerve were larger mainly because of

increased endoneurial connective tissue, but no difference was seen between the genotypes

(Figure 6F).

In the experiments on chronic denervation, cells were counted in the distal stumps 2 and 10

weeks after cut without regeneration 5 mm from the injury site. There were ~250 Schwann cell

nuclei in 2-week stumps, representing a ~2.5-fold increase from uninjured nerves (Fazal et al.,

2017; Figure 6G). In the WT, Schwann cell numbers declined by ~30% during chronic denerva-

tion. This drop was prevented in c-Jun OE/+ nerves (Figure 6G). The density of macrophages

was similar irrespective of genotype or length of denervation (Figure 6H), with numbers declin-

ing, irrespective of genotype, during chronic denervation (Figure 6I). Two weeks after injury,

fibroblast density in WT and c-Jun OE/+ mice was similar. Fibroblast density was elevated in 10-

week stumps of WT, but not c-Jun OE/+, mice (Figure 6J). Fibroblast numbers remained

unchanged between genotypes following denervation (Figure 6K). Chronically denervated

stumps of both genotypes had reduced nerve area, although this difference was less evident in

c-Jun OE/+ nerves (Figure 6L).

These counts indicate that altered cell numbers are not a significant reason for improved regener-

ation in aged c-Jun OE/+ nerves. In chronically denervated nerves, the normal loss of Schwann cells

in WT nerves is prevented in c-Jun OE/+ nerves. Even in 10-week WT stumps, however, cell numbers

remain well above those in uninjured nerves (see Discussion).

Shh signaling supports c-Jun expression
Seeking mechanisms that promote c-Jun expression in denervated Schwann cells, we considered sig-

naling by Shh, a gene that is not expressed in developing Schwann cells or in intact nerves, but

strongly upregulated in repair Schwann cells after injury (Lu et al., 2000; Zhou et al., 2000; Arthur-

Farraj et al., 2012; Hsin-Pin et al., 2015). First, we analyzed Shh cKO mice, in which Shh is selec-

tively inactivated in Schwann cells and in which nerve ultrastructure appears normal as expected (J

Svaren unpublished). We found that in the mutants, c-Jun protein and phosphorylated c-Jun were

decreased in the distal stump of 7-day transected sciatic nerve (Figure 7A,B). Levels of p75NTR

Figure 5 continued

way ANOVA with Tukey’s multiple comparison test; **p<0.005, *p<0.05, ns non-significant. WT immediate repair and chronic denervation n = 6, OE/+

chronic denervation n = 8. (B) Representative images showing Fluorogold- labeling of back-filled motor neurons in WT and c-Jun OE/+ mice after 2

weeks of regeneration into acutely transected (immediate repair) or chronically denervated distal stumps. Quantification is in the graph, showing that

compared to immediate repair, the number of labeled neurons is reduced after regeneration through chronically denervated WT stumps, but not after

regeneration through chronically denervated c-Jun OE/+ stumps. One-way ANOVA with Tukey’s multiple comparison test; **p<0.005. WT immediate

repair and chronic denervation n = 6, c-Jun OE/+ chronic denervation n = 8. (C) Counts of neurofilament+ immunofluorescent fibers in the distal stump

1 week after repair following chronic denervation of WT and c-Jun OE/+ nerves. In parallel experiments, the number of neurofilament+ fibers in WT

nerves after immediate repair was about 200 (see Figure 2D). Unpaired Student’s t-test; *p=0.0334. WT n = 4, c-JunOE/+ n = 3. (D, E) Counts of

Fluorogold-labeled sensory (D) and motor (E) neurons in WT and c-Jun OE/+ mice following transection with immediate application of tracer. The

number of back-filled sensory (p=0.1872) and motor (p=0.7153) neurons is similar. Unpaired Student’s t-tests, n = 3 for each experimental condition. (F)

The number of back-filled sensory neurons in WT and c-Jun OE/+ mice is similar after transection followed by immediate repair. Unpaired Student’s

t-test; p=0.9195. n = 3. (G) The number of labeled motor neurons in WT and c-Jun OE/+ mice is similar when tracer was applied 5 days after sciatic

nerve crush. Unpaired Student’s t-test; p=0.312. WT n = 5, c-Jun OE/+ n = 4. All numerical data represented as means ± SEM, all scale bars: 100 mm.
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Figure 6. Cell number and nerve size in injured WT and c-Jun OE/+ nerves Cell nuclei were counted in whole transverse profiles of the tibial nerve, 5

mm from the injury site, using the electron microscope. (A) Schwann cell numbers in young and aged WT and c-Jun OE/+ nerves. (B) Macrophage

density and (C) number in young and aged WT and c-Jun OE/+ nerves. (D) Fibroblast density and (E) number in young and aged WT and c-Jun OE/+

nerves: *p<0.05. (F) Whole transverse profiles of the tibial nerve were measured for the nerve area of young and aged WT and c-Jun OE/+ nerves;

Figure 6 continued on next page
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protein, which is positively regulated by c-Jun in Schwann cells (Arthur-Farraj et al., 2012), were

also reduced 7 days after injury in the mutants (Figure 7C). Substantiating these observations, two

Shh signaling agonists, SAG and purmorphamine, upregulated c-Jun protein in purified Schwann cell

cultures (Figure 7D,E). This was confirmed using c-Jun/Sox10 double immunolabeling (Figure 7F).

SAG also increased the expression of two c-Jun target genes that promote nerve regeneration Bdnf

and Gdnf (Figure 8A,B). Further, SAG promoted another effect of c-Jun, that of enhancing the elon-

gated bi- or tri-polar shape in vitro that reflects the elongation and branching of repair cells in vivo

(Arthur-Farraj et al., 2012; Gomez-Sanchez et al., 2017; Figure 8C).

After injury, Shh-dependent enhancement of c-Jun is likely to be mediated by Shh derived from

Schwann cells, which are the major source of Shh in injured nerves. In support of such an autocrine

hedgehog signaling loop, cyclopamine alone, which blocks cellular responses to Shh, downregulated

c-Jun protein and sharply suppressed c-Jun phosphorylation in cultured Schwann cells (Figure 8D).

Together these observations show that Shh promotes Schwann cell c-Jun expression in vitro and

in vivo, and support the idea that injury triggers an autocrine Shh signaling loop to elevate c-Jun in

repair cells.

Analysis of gene expression in distal nerve stumps of WT and c-Jun OE/
+ mice
Young and aging mice.

RNA sequence analysis was performed on uninjured and 3-day cut sciatic nerves of young (6–

8 weeks) and aged (11–12 months) WT mice, and aged c-Jun OE/+ mice. Global gene expres-

sion was analyzed comparing (i) uninjured nerves, (ii) 3-day cut nerves, and (iii) the injury

response (3-day cut vs uninjured) in young and aged mice (Figure 9—figure supplement 1A).

In uninjured WT nerves, out of 15,995 genes present, 1477 genes were differentially

expressed between young and aged mice. Of these, 1154 were upregulated and 323 downregu-

lated in aging mice compared to young ones (FC >2; and FDR 0.05) (Supplementary file 1 A;

Supplementary file 2 A). We tested whether the 173 genes we previously identified as c-Jun-

regulated injury genes (Arthur-Farraj et al., 2012) were implicated in these age-dependent dif-

ferences. In the present data set, 138 of the 173 genes were present (Supplementary file 3).

They showed a strong enrichment among the 1477 genes differentially expressed between

young and aging mice (Figure 9A).

In 3-day cut WT nerves, of 17,334 genes present, 398 genes were differentially expressed

between young and aging mice. Of these, 268 were upregulated and 130 downregulated in aging

nerves (Supplementary file 1 B; Supplementary file 2 B). This gene set contains candidate genes

responsible for the difference in regeneration support provided by young and aged Schwann cells

(Painter et al., 2014) and present experiments. In agreement with Painter et al., 2014, trophic fac-

tors such as GDNF, BDNF, NGF, erythropoietin, and FGF were not among the differentially

expressed genes. This suggests that expression of trophic factors often implicated in regeneration

may not explain different regeneration between young and aged mice. The 138 c-Jun-regulated

injury genes (Supplementary file 3; Arthur-Farraj et al., 2012) were highly enriched among the

age-regulated genes (Figure 9A).

Examining the injury response (3-day cut vs uninjured nerve), 822 genes showed significant differ-

ence when young and aging WT mice were compared (Supplementary file 1 C; Supplementary file

2 C). The 138 c-Jun-regulated injury genes were strongly enriched among these 822 genes

(Figure 9A).

Figure 6 continued

**p<0.005. For counts in A-F, n = 4 for each condition. (G) Schwann cell numbers in 2- and 10-week cut nerves of WT and c-Jun OE/+ mice; *p<0.05,

**p<0.005, ****p<0.0001. (H) Macrophage density and (I) number in 2- and 10-week cut nerves of WT and c-Jun OE/+ mice; **p<0.005, ***p<0.001. (J)

Fibroblast density and (K) number in 2- and 10-week cut nerves of WT and c-Jun OE/+ mice; *p<0.05, **p<0.005. (L) Whole transverse profiles of the

tibial nerve were measured for the nerve area of 2- and 10-week cut nerves of WT and c-Jun OE/+ mice; *p<0.05, ****p<0.0001. For counts in G-L, 2-

week WT and c-Jun OE/+ n = 7, 10-week WT and c-Jun OE/+ n = 5. All number data represented as means ± SEM analyzed by two-way ANOVA with

Tukey’s multiple comparison test.

The online version of this article includes the following source data for figure 6:

Source data 1. Cell counts and measurements relating to Figure 6.
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Figure 7. Sonic hedgehog promotes c-Jun activation in Schwann cells in vivo and in vitro. (A) Representative western blot showing c-Jun expression in

WT and Shh cKO (cKO) nerves 3 and 7 days after cut. Quantitation is shown in the graph where the data are normalized to WT 3 days post-cut. Two-

way ANOVA with Sidak’s test; *p<0.05. n = 5 for each genotype. (B) Representative Western blot showing c-Jun and phosphorylated c-Jun (p-c-Jun) in

WT and Shh cKO distal nerve stumps 7 days post-cut. Quantitation is shown in the graph where the data are normalized to WT 7 days post-cut.

Unpaired Student’s t-test; **p=0.0014, n = 5 for each genotype. (C) Representative western blot showing p75NTR protein in WT and Shh cKO nerves 7

days post-cut. The graph shows quantitation of the results. Data are normalized to WT 7 days post-injury. Unpaired Student’s t-test; ****p=<0.0001.

n = 5 for each genotype. (D) Representative western blot showing c-Jun in Schwann cell cultures exposed to SAG for 48 hr. (Veh: DMSO vehicle).

Quantitation is shown in the graph where the data are normalized to vehicle. One-way ANOVA with Dunnet’s test; *p<0.05, **p<0.005. n = 6. (E)

Representative western blot showing c-Jun in Schwann cell cultures exposed to purmorphamine for 48 hr. Quantitation is shown in the graph where the

Figure 7 continued on next page
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Gene set enrichment analysis (GSEA) on the above conditions showed that the 138 c-Jun

genes were highly enriched among the genes downregulated in aging uninjured nerves and in

aging 3-day cut nerves (Figure 9—figure supplement 1B,C). When the injury response (3-day

cut vs uninjured) of young and aging WT mice was analyzed, the strongest enrichment of c-Jun

genes was observed in genes upregulated in young nerves (Figure 9—figure supplement 1D).

While c-Jun genes are also upregulated in aged nerves post-injury, their enrichment was not as

high as in young nerves.

Figure 7 continued

data are normalized to vehicle. One-way ANOVA with Dunnet’s test; *p<0.05. n = 3. (F) Representative immunofluorescence images showing increased

c-Jun labeling of Sox10-positive Schwann cell nuclei after 48 hr incubation with SAG compared to vehicle (DMSO). Scale bar: 100 mm.
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Figure 8. Sonic hedgehog plays a role in c-Jun activation in Schwann cells via autocrine signaling. (A, B) qPCR showing mRNA expression of (A) Bdnf

*p=0.0314 and (B) Gdnf *p=0.0382 in Schwann cell cultures incubated for 48 hr with SAG. Data normalized to vehicle. Unpaired Student’s t-tests. n = 4

for each condition. (C) Differential interference contrast (DIC) microscopy showing changes in Schwann cell morphology after 48 hr incubation with

purmorphamine (DMSO vehicle). Scale bar: 50 mm. Graphs depict changes in cell area, roundness and length/Harea following incubation with

purmorphamine, demonstrating enhancement of elongated morphology. One-way ANOVAs with Tukey’s multiple comparison test ***p<0.001. n = 3,

each experiment involving measurement of 100 cells per condition. (D) Representative Western blots showing c-Jun and phosphorylated c-Jun in

cultured Schwann cells after 48 hr incubation with cyclopamine alone (DMSO vehicle). The graphs show quantitation of the blots. Data are normalized

to vehicle. One-way ANOVA with Dunnet’s multiple comparisons test; **p<0.005; ***p<0.001. n = 3. All numerical data represented as means ± SEM.
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Figure 9. Bioinformatics analysis of RNA seq. data from young and aged nerves. (A) Over-representation analysis showing enrichment of c-Jun-

regulated genes in various WT injury paradigms. p=3.2�10�8 for UI young vs aged; p=1�10 x �7 for 3-day cut young vs aged; p=2.3�10�13 for the

injury response. p-Values computed by one-sided Fisher’s exact test. (B) GO terms downregulated and (C) upregulated in uninjured nerves of aged WT

mice (absolute fold change >2 and FDR < 0.05). (D) GO terms downregulated and (E) upregulated in the injury response of aged WT mice (absolute

Figure 9 continued on next page
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These correlations between enrichment of c-Jun-regulated genes and Schwann cell age suggest

that the c-Jun-regulated repair program is disproportionately vulnerable during the aging process.

Gene ontology (GO) analysis showed that in aged uninjured WT nerves, downregulated genes

were largely involved in lipid metabolism, as well as myelination, while genes involved in the immune

system were prominent among those upregulated (Figure 9B,C; reviewed in Melcangi et al., 1998;

Melcangi et al., 2000; Büttner et al., 2018). Similar analysis of the injury response (3-day cut vs

uninjured) showed reduced activation of immune genes in aged WT nerves (Scheib and Höke,

2016; Büttner et al., 2018). In aged nerves, MAPK pathways were also suppressed while lipid

metabolism and Schwann cell differentiation genes were enhanced (Figure 9D,E). Together this indi-

cates suppressed Schwann cell reprogramming and repair cell activation in nerves of older WT mice.

Testing the effects of enhanced c-Jun expression on the aged injury response, we found that path-

ways associated with protein processing and maturation were upregulated in aged c-Jun OE/+

nerves compared with aged WT nerves (Figure 9F).

To further determine genes that may contribute to the restoration of regeneration in aged c-Jun

OE/+ mice, the injury responses in young and aged WT mice and aged c-Jun OE/+ mice were com-

pared (Figure 9G). Of particular interest are the 303 genes that show significant injury response in

young WT mice but not in aging WT mice, but are again significantly regulated by restoring c-Jun to

youthful levels in aging c-Jun OE/+ mice (Supplementary file 2 D).

Among the 138 c-Jun-regulated genes, we looked for a correlation between a failure and restora-

tion of gene expression on the one hand, and failure and restoration of regeneration on the other. In

3-day cut aged WT nerves, where regeneration fails, 16 c-Jun-regulated genes were differentially

expressed compared to 3-day cut young WT nerves. Four of these, Aqp5, Gpr37L1, Igfbp2, and

Olig1, were restored in aged c-Jun OE/+ nerves, where regeneration is restored (Figure 9H). Thus,

in aging mice, both regeneration failure and the expression defect of these four genes was restored

to levels in young mice, by elevating c-Jun levels.

Chronic denervation.

Gene expression was examined in uninjured nerves and in 1 and 10-week cut sciatic nerves of WT

and c-Jun OE/+ mice (Figure 10—figure supplement 1A). Expression of 1581 genes changed sig-

nificantly during chronic denervation (Supplementary file 4; Supplementary file 2 E). In 10-week

cut nerves, 601 of these genes were downregulated, including genes associated with repair cells

such as Gdnf, Shh, and Ngfr, while 980 genes were upregulated. The 138 c-Jun-regulated genes

showed a highly significant 5.8-fold enrichment (p=2.2�10�16) among the 1581 genes regulated dur-

ing chronic denervation. GSEA enrichment analysis showed that c-Jun genes were some of the most

downregulated genes during chronic denervation. (Figure 10—figure supplement 1B).

GO analysis showed that the major genes downregulated during chronic denervation in WT

nerves involved the cell cycle, DNA replication, and repair. Glial cell differentiation genes and MAPK

pathways, potential activators of c-Jun, were also suppressed (Figure 10A). Chronic denervation

involved a prominent upregulation of neuro-glia signaling genes (chiefly related to GABA and adren-

ergic signaling), but also regulators of differentiation, Notch and cAMP signaling (Figure 10B). To

test the effects of maintaining c-Jun protein levels during the 10-week chronic denervation, we iden-

tified genes differentially expressed between 10-week cut WT and c-Jun OE/+ nerves (Figure 10C).

This showed strong upregulation, in c-Jun OE/+ mice, of pathways involved in PNS and Schwann cell

development and differentiation.

To further determine genes that may contribute to the restoration of regeneration in aged c-Jun

OE/+ mice, the injury response in the three situations analyzed in the regeneration experiments, WT

Figure 9 continued

fold change >2 and FDR < 0.05). (F) When aged c-Jun OE/+ and WT nerves are compared, genes associated with protein processing (FDR = 0.00318)

and maturation (FDR = 0.0153) are significantly enriched in aged c-Jun OE/+ nerves compared to aged WT. (G) Venn diagram showing numbers of

differentially expressed genes between young and aged 3-day cut WT nerves and aged 3-day cut OE/+ nerves, compared to their uninjured

counterparts. (H) Mean expression of four c-Jun-regulated genes with significantly different expression between young and aged WT nerves but not

between young WT and aged c-Jun OE/+ nerves(absolute fold change >2 and FDR < 0.05).

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Bioinformatics analysis of aged and young nerves following injury.
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Figure 10. Bioinformatics analysis of RNA seq. data from acutely and chronically denervated nerves. (A) GO terms downregulated and (B) upregulated

in WT nerves during chronic denervation. (C) When chronically denervated c-Jun OE/+ and WT nerves were compared, GO terms associated with

Schwann cell differentiation (FDR = 0.00397) and PNS development (FDR = 0.0173) were enriched in c-Jun OE/+ nerves. (D) Venn diagram showing

numbers of differentially expressed genes between WT nerves following acute (1 week) and chronic (10-week) denervation and c-Jun OE/+ nerves

Figure 10 continued on next page
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1 week, WT 10 weeks, and c-Jun OE/+ 10 weeks, was compared (Figure 10D). A point of interest

are the 227 genes that showed an injury response in WT 1-week nerves and in c-Jun OE/+ 10-week

nerves, both of which show fast regeneration, but no injury response in WT 10-week nerves, where

regeneration is slow (Supplementary file 2 F).

As when studying aged mice, we looked among the 138 c-Jun-regulated injury genes for candi-

dates involved in decreased regeneration in 10-week cut WT nerves and the restoration of regenera-

tion in 10-week cut c-Jun OE/+ nerves. Fifty of the 138 genes changed expression during chronic

denervation in WT nerves, where regeneration is poor. In chronically denervated c-Jun OE/+ nerves,

where regeneration is restored, expression levels were restored, completely or partially, in the case

of five of these genes, Cxcl5, Egfl8, Gas213, Megf10, and Pcdh20 (Figure 10E). These correlations

provide a basis for considering these genes as candidates down-stream of c-Jun for involvement in

the restoration of regeneration in chronically denervated nerves of c-Jun OE/+.

Discussion
The present results indicate that reduced expression of c-Jun is an important factor in the repair cell

failures seen during aging and chronic denervation. In both situations, Schwann cells of injured

nerves fail to achieve or maintain high c-Jun levels, and in both cases, correction of c-Jun expression

restores regeneration deficits. This highlights the importance of c-Jun in the function of repair

Schwann cells, provides a common molecular link between two apparently unrelated problems in

nerve repair, and points to manipulation of c-Jun-regulated pathways as a potential route for

improving the outcome of nerve injuries.

By using neuron back-filling, this study provides a direct quantitative measure of neuronal regen-

eration capacity in vivo and how this is controlled by Schwann cell c-Jun levels. It also opens new

questions that remain to be investigated. In particular, to what extent does c-Jun in Schwann cells

determine other factors that are also important for repair. This includes the length of time neurons

are able to sustain axon growth after injury, sprouting, axonal misrouting, targeting, and synapse

reformation.

A previously identified gene set regulated by c-Jun in injured nerves (Arthur-Farraj et al., 2012)

was found to be highly enriched among the genes affected by aging or chronic denervation in WT

mice. The expression of a small group of genes was also positively correlated both with c-Jun levels

and regeneration, suggesting that their role in Schwann cells or other cells in the nerve merits further

study. In aging mice, this encompasses Aqp5, Gpr37L1, Igfbp2, and Olig1, all of which have been

studied in glial cells. Igfbp2 promotes phosphorylation of Akt, a pathway that is linked to Schwann

cell proliferation and differentiation (reviewed in Ma et al., 2015; Boerboom et al., 2017;

Jessen and Arthur-Farraj, 2019). Gpr37L1 is a receptor for prosaposin and prosapeptide

(Meyer et al., 2013). In Schwann cells, prosapeptide phosphorylates MAPK (Hiraiwa et al., 1997)

and prosaposin is secreted after nerve injury, facilitating regeneration (Hiraiwa et al., 1999). In

experiments on chronic denervation, this gene group encompasses Cxcl5, Egfl8, Gas2I3, Megf10,

and Pcdh20. All these genes were previously shown to be upregulated in Schwann cells after injury

(Zhang et al., 2011; Tanaka et al., 2013; Weiss et al., 2016; reviewed in Ma et al., 2016;

Brosius Lutz et al., 2017). Cxcl5 activates STAT3 (Zhang et al., 2011), a transcription factor that we

have shown to be important for maintaining repair cells during chronic denervation (Benito et al.,

2017). Gas2I3 has a role in the cell cycle, and Megf10 in phagocytosis (Wolter et al., 2012;

Chung et al., 2013).

Since c-Jun levels in injured nerves are a major determinant of effective repair, it is important to

identify signals that control c-Jun expression. The present results suggest that Shh has a role in this

Figure 10 continued

following chronic denervation, compared to their uninjured counterparts. (E) Mean expression of five c-Jun-regulated genes with significantly different

expression between acute and chronic WT nerves, but not between acute WT and chronic c-Jun OE/+ nerves (absolute fold change >2 and

FDR < 0.05).

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Bioinformatics analysis of nerves after chronic injury.
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process. In injured nerves of Shh cKO mice, there is reduced c-Jun activation and diminished

Schwann cell expression of the c-Jun target p75NTR. In purified Schwann cells, application of Shh

elevates c-Jun, while cyclopamine alone suppresses c-Jun. Shh also promotes Schwann cell elonga-

tion. Further, during chronic denervation, Shh expression, like that of c-Jun, is substantially reduced.

Previous work also implicates Shh signaling in repair. Shh is upregulated in Schwann cells after injury

(Hashimoto et al., 2008; Arthur-Farraj et al., 2012; Yamada et al., 2018), and exposure to Shh

improves nerve regeneration in various settings (Pepinsky et al., 2002; Bond et al., 2013;

Martinez et al., 2015; Yamada et al., 2018). Inhibition of Shh signaling reduces Schwann cell

expression of BDNF, motor neuron survival after injury and axon regeneration (Hashimoto et al.,

2008; Yamada et al., 2020), and a molecular link between Shh signaling and Jun activation has

been established in various cell lines (Laner-Plamberger et al., 2009; Kudo et al., 2012). Further in

vivo experiments using Shh cKO mice as well as Shh agonists and antagonists are needed to conclu-

sively determine the involvement of Shh in regeneration. At present, however, the data presented

here and previous work are consistent with the existence of an autocrine Shh signaling loop acti-

vated by injury to promote expression of c-Jun and the repair cell phenotype.

In c-Jun OE/+ mice, we considered whether restoration of c-Jun levels altered cell numbers, thus

promoting regeneration. In aging mice, the results appear to exclude this, since cell numbers in the

mutant and the WT are similar. During chronic denervation, Schwann cell numbers remain constant

in c-Jun OE/+mice, but fall by about 30% in the WT. Since there is now evidence that Schwann cell

proliferation may not be essential for regeneration, contrary to common assumptions, the relation-

ship between cell numbers and repair is currently unclear (Kim et al., 2000; Atanasoski et al., 2001;

Yang et al., 2008; for discussion see Jessen and Mirsky, 2019). Even in WT mice, cell number after

chronic denervation remains nearly twice that in uninjured nerves. It is therefore unlikely that the

changes in Schwann cell numbers are the key reason for the reduced regeneration support provided

by 10-week cut WT stumps, or the increase in support provided by 10-week cut c-Jun OE/+ stumps.

The degree of reduction in transverse nerve area after chronic denervation could also affect

repair. However, the area of 10-week cut c-Jun OE/+ nerves, while increased compared to 10-week

cut WT, remains ~50% smaller than that of 2-week cut WT nerves. Nevertheless, regeneration

through these nerves is similar. The relationship between nerve area and regeneration in these

experiments may therefore not be straightforward.

During longer denervation times, cell loss and nerve shrinking will increasingly impede repair.

These slow, atrophic changes, likely involving regulation of cell death and proliferation, have not

been extensively studied, although STAT3 has recently been implicated in the long-term mainte-

nance of repair cells (Benito et al., 2017). Previously, c-Jun was shown to influence both apoptosis

and proliferation in repair Schwann cells (Parkinson et al., 2001; Parkinson et al., 2004;

Parkinson et al., 2008), but the particular way in which c-Jun levels determine nerve atrophy

remains to be determined.

It has become clear that the injury-induced reprogramming of Schwann cells to cells specialized

to support nerve regeneration is regulated by dedicated mechanisms, including c-Jun, STAT3, mer-

lin, and H3K27 trimethylation-related epigenetic controls, that operate selectively in repair cells, and

have a relatively minor or undetectable function in Schwann cell development (reviewed in

Jessen and Mirsky, 2019). The present work provides evidence that an impairment of one of these

mechanisms, c-Jun, is a major contributor to two major categories of regeneration failure, aging and

chronic denervation. It will be important to extend this study to other regulators of repair cells as a

basis for developing molecular interventions for promoting repair in the PNS.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Mpz < Cre/+>;
Rosa26c-Junstopf < f/+>,
C57BL/6J background,
Mus musculus both sexes used

c-Jun OE/+ mouse Fazal et al., 2017 RRID:MGI:

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Mpz < Cre/+>; Jun < f/+>,
C57BL/6J background,
Mus musculus both sexes used

c-Jun cKO mouse Arthur-Farraj et al., 2012 Juntm4Wag RRID:MGI:2445420

Mpz < Cre/+>; Shh < f/+>,
C57BL/6J background,
Mus musculus both sexes used

Shh cKO mouse Jackson Laboratory B6;129-Shhtm2Amc/J RRID:IMSR_JAX:004293

Mpz < Cre/+>,
C57BL/6J background,
Mus musculus both sexes used

Mpz-Cre mouse Jackson Laboratory B6N.FVB-Tg
(Mpz-cre)26Mes/J;

RRID:IMSR_JAX:017927

Antibody Anti- c-Jun
(rabbit monoclonal)

Cell Signaling Cat #9165;
RRID:AB_2130165

WB (1:1000)
IF (1:800)

Antibody Anti-
P-c-Jun
(rabbit polyclonal)

Cell Signaling Cat#9261;
RRID:AB_2130162

WB (1:1000)

Antibody Anti- p75NTR (Ngfr)
(rabbit polyclonal)

Millipore Cat#AB1554;
RRID:AB_90760

WB (1:1000)

Antibody Anti-
GAPDH
(rabbit polyclonal)

Sigma-Aldrich Cat#G9545;
RRID:AB_796208

WB (1:5000)

Antibody Anti-
Canelxin
(rabbit polyclonal)

Enzo Life Sciences Cat#ADI-SPA-860-D;
RRID:AB_2038898

WB (1:1000)

Antibody Anti- sox10
(goat polyclonal)

R and D Systems Cat#AF2864;
RRID:AB_442208

IF (1:100)

Antibody Anti-
CGRP
(rabbit monoclonal)

Peninsula Laboratories Cat#T-4032;
RRID:AB_518147

IF (1:1000)

Antibody Anti-
Neurofilament
(chicken polyclonal)

Abcam Cat#ab4680;
RRID:AB_304560

IF (1:1000)

Antibody Anti- Rabbit IgG, HRP-linked
(Goat polyclonal)

Cell Signaling Cat#7074;
RRID:AB_2099233

WB (1:2000)

Antibody Cy3 anti-Rabbit IgG (H+L)
(Donkey polyclonal)

Jackson Immuno
Research Labs

Cat#711-165-152;
RRID:AB_2307443

IF (1:500)

Antibody Anti-Goat Alexa
488 Conjugated
(Donkey polyclonal)

Molecular Probes -
Thermo Fisher

Cat#A11057;
RRID:AB_2534104

IF (1:1000)

Antibody Anti-Rabbit Alexa
488 Conjugated
(Donkey polyclonal)

Molecular Probes -
Thermo Fisher

Cat#A11008;
RRID:AB_143165

IF (1:1000)

Antibody Anti-Chicken Alexa
488 Conjugated
(Goat polyclonal)

Molecular Probes -
Thermo Fisher

Cat#A-11039;
RRID:AB_2534096

IF (1:1000)

Sequence-based reagent Bdnf_F Benito et al., 2017 PCR primers TCATACTTCGGTTGCATGAAGG

Sequence-based reagent Bdnf_R Benito et al., 2017 PCR primers AGACCTCTCGAACCTGCCC

Sequence-based reagent c-Jun_F (Cells) Benito et al., 2017 PCR primers AATGGGCACATCACCACTACAC

Sequence-based reagent c-Jun_R (Cells) Benito et al., 2017 PCR primers TGCTCGTCGGTCACGTTCT

Sequence-based reagent c-Jun_F (Tissue) Benito et al., 2017 PCR primers CCTTCTACGACGATGCCCTC

Sequence-based reagent c-Jun_R (Tissue) Benito et al., 2017 PCR primers GATTCGGGCCACTTGGAGTT

Sequence-based reagent Gdnf_F Benito et al., 2017 PCR primers GATTCGGGCCACTTGGAGTT

Sequence-based reagent Gdnf_R Benito et al., 2017 PCR primers GACAGCCACGACATCCCATA

Sequence-based reagent Calnexin_F Benito et al., 2017 PCR primers CAACAGGGGAGGTTTATTTTGCT

Sequence-based reagent Calnexin_R Benito et al., 2017 PCR primers TCCCACTTTCCATCATATTTGGC

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Sequence-based reagent Gapdh_F Benito et al., 2017 PCR primers AGGTCGGTGTGAACGGATTTG

Sequence-based reagent Gapdh_R Benito et al., 2017 PCR primers TGTAGACCATGTAGTTGAGGTCA

Sequence-based reagent Mpz_F Benito et al., 2017 PCR primers GCTGGCCCAAATGTTGCTGG

Sequence-based reagent Mpz_R Benito et al., 2017 PCR primers CCACCACCTCTCCATTGCAC

Commercial assay or kit Kapa mRNA HyperPrep Kit Roche Cat#KK8581,
08098123702

Commercial assay or kit RNeasy Micro Extraction Kit Qiagen Cat#74004

Chemical compound, drug Purmorphamine Sigma-Aldrich Cat#540220 Concentration:
various, see figures

Chemical compound, drug Smoothened Agonist (SAG) Merck-Sigma-
Aldrich-Calbiochem

Cat#566660 Concentration:
various, see figures

Chemical compound, drug Cyclopamine Merck-Sigma-
Aldrich-Calbiochem

Cat#CAS 4449-51-8 Concentration:
various, see figures

Software, algorithm Samtools version 1.2 Li et al., 2009 RRID:SCR_002105

Software, algorithm Picard tools version 1.140 http://broadinstitute.
github.io/picard/

RRID:SCR_006525

Software, algorithm featureCounts Liao et al., 2014 RRID:SCR_012919

Software, algorithm edgeR Robinson et al., 2010 RRID:SCR_012802

Software, algorithm Gen ser enrichment
analysis (GSEA)

Subramanian et al., 2005 RRID:SCR_003199

Software, algorithm Gen ontology (GO) analysis –
PANTHER
classification system

Mi et al., 2013 RRID:SCR_004869

Software, algorithm GraphPad Prism 9.0.0 GraphPad Prism RRID:SCR_002798

Software, algorithm Bio Rad ChemiDoc
MP Imaging System

Bio Rad RRID:SCR_019037

Other Fluorogold Fluorochrome Fluoro-gold 20 mg Made up to 4%

Other DAPI Thermo Fisher Cat#D1306 IF (1:40,000)

Transgenic mice
Animal experiments conformed to UK Home Office guidelines under the supervision of University

College London (UCL) Biological Services under Protocol No. PPL/70/7900. Mice were generated to

overexpress c-Jun selectively in Schwann cells as described (Fazal et al., 2017). Briefly, female R26c-

Junstopf mice carrying a lox-P flanked STOP cassette in front of a CAG promoter-driven c-Jun cDNA

in the ROSA26 locus, were crossed with male MpzCre+/� mice (Feltri et al., 1999). This generated

MpzCre+;R26c-Junstopff/+ mice, referred to here as c-Jun OE/+ mice. MpzCre�/Cre� littermates were

used as controls. Shh-floxed mice, referred to as Shh cKO mice, carrying loxP sites flanking exon 2

of the Shh gene were obtained from the Jackson Laboratory (Jax, stock# 004293), and bred to

MpzCre mice (Feltri et al., 1999). Experiments used mice of either sex on the C57BL/6 background.

Genotyping
DNA was extracted from ear notches or tail tips using the Hot Sodium Hydroxide and Tris method

(HotSHot; Truett et al., 2000). Tissue was incubated in HotSHot buffer (25 mM NaOH and 0.2 mM

disodium EDTA, pH 12) at 95˚C for 1 hr. The reaction was neutralized with neutralizing buffer (40

mM Tris-HCl, pH 5). DNA was then added to the PCR mastermix with primers for the Mpz-Cre trans-

gene: 50-GCTGGCCCAAATGTTGCTGG-30 and 50CCACCACCTCTCCATTGCAC-30 (480 bp band).

Surgery
For short-term time points (<1 week) and crushes, the sciatic nerve was exposed and cut or crushed

(at three rotation angles) at the sciatic notch. For western blot, immunofluorescence and mRNA
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investigations into chronic denervation (>1 week) the sciatic nerve was cut and the proximal stump

was reflected back and sutured into muscle to prevent regeneration. The nerve distal to the injury

was excised for analysis at various time points. Contralateral uninjured sciatic nerves served as con-

trols. To examine the effects of chronic denervation on regeneration, the nerve branches of the sci-

atic nerve were individually separated (Figure 2—figure supplement 1). The tibial nerve was cut

and both proximal and distal stumps were reflected and sutured into muscle. Either immediately or

following 10 weeks of chronic denervation, the distal tibial nerve stump was cut from the muscle and

sutured to the freshly transected common peroneal nerve.

Retrograde labeling with Fluorogold
To examine regeneration following nerve crush or repair, the nerve was cut distal to the original

injury site and exposed to 4% Fluorogold for 1 hr (Catapano et al., 2016; Figure 1—figure supple-

ment 1). The spinal cord and L4 DRG were removed following perfusion 1 week post-labeling.

Labeled cells in all the spinal cord sections (50 mm) were counted and the Abercrombie correction

was applied to compensate for double counting (Abercrombie, 1946). To avoid double counting,

cells in every fifth DRG section (20 mm) were counted.

Schwann cell cultures
Rat Schwann cells were cultured as described (Brockes et al., 1979). Briefly, sciatic nerves and bra-

chial plexuses were digested enzymatically with collagenase and trypsin and cultured on laminin-

and PLL-coated plates in DMEM, 2% FBS, 10 ng/ml NRG-1, 2 mM forskolin and penicillin/streptomy-

cin. Under experimental conditions, cultures were maintained in defined medium (DMEM and Ham’s

F12 (1:1), transferrin (100 pg/ml), progesterone (60 ng/ml), putrescine (16 pg/ml), insulin (5 �g/ml),

thyroxine (0.4 mg/ml), selenium (160 ng/ml), triiodothyronine (10.1 ng/ml), dexamethasone (38 ng/

ml), glucose (7.9 mg/ml), bovine serum albumin (0.3 mg/ml), penicillin (100 IU/ml), streptomycin (100

IU/ml), and glutamine (2 mM) with 0.5% serum Jessen et al., 1994; Meier et al., 1999).

Antibodies
Immunofluorescence antibodies: c-Jun (Cell Signaling Technology, rabbit 1:800), Sox10 (R and D Sys-

tems, goat 1:100), CGRP (Peninsula, rabbit 1:1000), neurofilament (Abcam, rabbit 1:1000), donkey

anti-goat IgG (H+L) Alexa Fluor 488 conjugate (Invitrogen, 1:1000), and Cy3 donkey anti-rabbit IgG

(H+L) (Jackson Immunoresearch, 1:500).

Antibodies used for western blotting: c-Jun (Cell Signaling Technology, rabbit 1:1000), p75 NTR

(Millipore, rabbit 1:1000), serine 63 phosphorylated c-Jun (Cell Signaling Technology, rabbit 1:1000),

GAPDH (Sigma-Aldrich, rabbit 1:5000), calnexin (Enzo Life Sciences, rabbit 1:1000), and anti-rabbit

IgG, HRP-linked (Cell Signaling Technology, 1:2000).

Immunofluorescence
For immunofluorescence experiments on cultured cells, 5000 Schwann cells were plated in a 35 ml

drop on a PLL laminin-coated coverslip. Cells were topped up with defined medium after 24 hr. At

the experimental end point, cells were washed 2x with 1x PBS. Cells were fixed with 4% paraformal-

dehyde ( PFA) for 10 min. Cells were then washed for 5 min in 1x PBS. Fresh PBS was added to the

wells and the lid was parafilm sealed. Dishes were stored at 4˚C until use.

Nerve samples were fresh frozen during embedding in OCT. Cryosections were cut at 10 mm.

Sections were fixed in 100% acetone (Sox10/c-Jun double-labeling, 10 min at �20˚C) or 4% PFA (10

min at room temperature).

For immunofluorescence, all samples were washed 3x in 1x PBS and blocked in 5% donkey serum,

1% BSA, 0.3% Triton X-100 in PBS. Samples were incubated with primary antibodies in blocking solu-

tion overnight at 4˚C. Sox10/c-Jun double-labeling was performed overnight at room temperature.

Samples were washed and incubated with secondary antibodies and DAPI to identify cell nuclei

(Thermo Fisher Scientific, 1:40,000) in PBS for 1 hr at room temperature. Samples were mounted in

fluorescent mounting medium (Citifluor).

Images were taken on a Nikon Labophot two fluorescence microscope. Cell counts were per-

formed in ImageJ or directly from the microscope. Comparable images have been equally adjusted
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for brightness/contrast. In some cases (Figures 1, 3 and 4), images of whole nerve profiles have

been generated by stitching together multiple images.

Western blotting
Nerves were dissected and snap frozen in liquid nitrogen. For protein extraction, nerves were placed

in 2 ml graduated skirted tubes with nine 10B lysing beads with 75 ml lysis buffer (1M Tris-HCl pH 8,

5M NaCl, 20% Triton X-100, 5 mM EDTA) and homogenized using a Fastprep fp120 homogeniser.

Samples were run twice at speed 6 for 45 s. Lysates were then centrifuged at 13,000 rpm for 2 min

at 4˚C to pellet the debris. The supernatant was transferred to a new 1.5 ml Eppendorf tube and

centrifuged at 13,000 rpm for 2 min at 4˚C. The supernatant was transferred to a new 1.5 ml Eppen-

dorf tube and the protein extract was stored at �80˚C.

For protein studies on cultured cells, 1 � 106 purified Schwann cells were plated in a 35 mm dish

in defined medium for 48 hr. At the time of extraction, the cultures were washed 2x with 1x PBS and

incubated with 100 ml cell lysis buffer (T-PER Tissue Protein Extraction Reagent, Halt protease, and

phosphatase inhibitor cocktail [1:100] Thermo Fisher Scientific). Cells were physically detached from

dishes using a cell scraper. The cell lysate was collected and kept on ice in a 1.5 ml Eppendorf tube.

Lysate was spun for 2 min at 1000 rpm to pellet the debris. The supernatant was transferred to a

fresh Eppendorf tube and spun for a further 2 min at 1000 rpm. The supernatant was transferred to

a new 1.5 ml Eppendorf tube and stored at �80˚C until use.

Protein was diluted in the appropriate lysis buffer and 5x Laemmli buffer at a working concentra-

tion of 1x. Samples were heated to 95˚C for 5 min to denature the protein. 10 mg protein was loaded

per well on 8% acrylamide gels with prestained standard molecular weight markers (PageRuler pre-

stained protein ladder; Thermo Fisher Scientific) and run at 60 mV for 3 hr using the mini Protean II

gel electrophoresis apparatus (Bio-Rad Laboratories). Protein was transferred to a nitrocellulose

membrane (Hybond ECL; Amersham Biosciences) using a semi-dry transfer system (Bio-Rad Labora-

tories) at 25 mV for 45 min. Membranes were briefly stained with Ponceau S (Sigma Aldrich) to

determine that the transfer has been successful and that equal levels of protein had been loaded in

the gel. Membranes were briefly washed in ddH2O to remove excess Ponceau and blocked in 5%

milk/TBS-T for 1 hr with shaking at room temperature. Membranes were then incubated with appro-

priate antibodies in heat sealable polyethylene bags and were incubated overnight at 4˚C on a rota-

tory wheel. Membranes were washed 3x for 10 min in 1x TBS-T then incubated with the appropriate

secondary antibody in heat sealable polyethylene bags, rotating for 1 hr at room temperature. Mem-

branes were washed 3x for 10 min in 1x TBS-T before developing. For development of GAPDH,

membranes were incubated with ECL (Amersham) for 1 min and developed on a Bio-Rad Chemidoc

machine. For the development of all other antibodies, membranes were incubated with ECL prime

(Amersham) for 5 min then developed. Membranes were automatically exposed to prevent satura-

tion. Blots were analyzed and densitometric quantification was performed using Bio-Rad Imagelab.

Protein levels were determined by normalizing the protein of interest against the house keeping pro-

tein (GAPDH or calnexin). All blots were then normalized to one sample (e.g. 1 week after injury,

control cells) to account for any difference between each blot. Each experiment was performed at

least three times with fresh samples. Representative images are shown.

Electron microscopy
Nerves were fixed in 2.5% glutaraldehyde/2% paraformaldehyde in 0.1 M cacodylate buffer, pH 7.4,

overnight at 4˚C. Post-fixation in 1% OsO4 was performed before nerves were embedded in Agar

100 epoxy resin. Transverse ultrathin sections from adult (P60) or aged (P300) tibial nerves or from

injured distal stumps of adult sciatic nerves at various times after injury were taken 5 mm from the

sciatic notch and mounted on film (no grid bars). Images were examined using a Jeol 1010 electron

microscope with a Gatan camera and software. Images were examined and photographed at

8000 � or 15,000x. The nerve area was measured from photographs taken at 200 � magnification.

Schwann cells and macrophages and fibroblasts were identified by standard ultrastructural criteria

(e.g. Reichert et al., 1994). Schwann cell, macrophage, and fibroblast nuclei were counted in every

field, or every second, third, or fourth field, depending on the size of the nerve, and multiplied by

the number of fields to generate totals.
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qPCR
RNA from rat Schwann cell cultures or mouse nerve tissue was extracted using an RNeasy Micro

Extraction Kit (Qiagen). RNA quality and concentration was determined after extraction using a

nanodrop 2000 machine (Thermo). One mg of RNA was converted to cDNA using SuperScriptTM II

Reverse Transcriptase (Invitrogen) as per the manufacturer’s instructions. Samples were run with Pre-

cisionPLUS qPCR Mastermix with SYBR Green (Primerdesign) with primers as described in

Benito et al., 2017. Ct values were normalized to housekeeping gene expression (GAPDH and

calnexin).

Primer Sequence 5´- 3´

Bdnf Fwd TCATACTTCGGTTGCATGAAGG

Bdnf Rev AGACCTCTCGAACCTGCCC

c-Jun Fwd (Cells) AATGGGCACATCACCACTACAC

c-Jun Rev (Cells) TGCTCGTCGGTCACGTTCT

c-Jun Fwd (Tissue) CCTTCTACGACGATGCCCTC

c-Jun Rev (Tissue) GGTTCAAGGTCATGCTCTGTTT

Gdnf Fwd GATTCGGGCCACTTGGAGTT

Gdnf Rev GACAGCCACGACATCCCATA

Calnexin Fwd CAACAGGGGAGGTTTATTTTGCT

Calnexin Rev TCCCACTTTCCATCATATTTGGC

GAPDH Fwd AGGTCGGTGTGAACGGATTTG

GAPDH Rev TGTAGACCATGTAGTTGAGGTCA

Statistical analysis
Results are expressed as mean ± SEM. Statistical significance was estimated by Student’s t test, one-

way ANOVA or two-way ANOVA with appropriate post hoc tests. A p value < 0.05 was considered

as statistically significant. Statistical analysis was performed using GraphPad software.

Library preparation
RNA was extracted using a RNeasy lipid tissue kit with an in column DNase step (Qiagen). Chroni-

cally denervated and uninjured nerves were pooled, two per n. Acutely denervated nerves were not

pooled using one nerve per n. The library was prepared using the Kapa mRNA Hyper Prep kit

(Roche) with 100 ng RNA and 15 cycles of PCR enrichment. The assay is (first) stranded (dUTP

method).

Sequencing
Sequencing was performed in a pooled NextSeq 500 run using a 43 bp paired end protocol (plus a

6 bp index read). Sequencing reads (in fastq format) were aligned to the hg38 reference sequence

using STAR v2.5.3 (Dobin et al., 2013). Samtools version 1.2 and Picard tools version 1.140 were

used to process alignments (Li et al., 2009), Aligned reads were filtered for mapq _ 4 that is

uniquely mapping reads, and putative PCR duplicates were removed. featureCounts was used to

perform read summarization (Liao et al., 2014).

Data analysis
Expression analysis was carried out using R version 3.5.1. Differential gene expression was analyzed

using edgeR (Robinson et al., 2010). Genes with both an absolute log2 fold change >2.0 and

FDR < 0.05 were identified as being significantly differentially expressed. Principal component analy-

sis (PCA) showed that injury status was the dominant source of variation in both data sets (Figure 9—

figure supplement 1A; Figure 10—figure supplement 1A). Enrichment of c-Jun-regulated genes

was investigated using Fisher one-sided exact tests and GSEA ( Subramanian et al., 2005). GO
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analysis was used to examine gene enrichment of all significantly differentiated genes using the

PANTHER classification system (Mi et al., 2013).
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Höke A. 2006. Mechanisms of Disease: what factors limit the success of peripheral nerve regeneration in
humans? Nature Clinical Practice Neurology 2:448–454. DOI: https://doi.org/10.1038/ncpneuro0262

Hsin-Pin L, Oksuz I, Hurley E, Wrabetz L, Awatramani R. 2015. Microprocessor complex subunit DiGeorge
syndrome critical region gene 8 (Dgcr8) Is required for schwann cell myelination and myelin maintenance.
Journal of Biological Chemistry 290:24294–24307. DOI: https://doi.org/10.1074/jbc.M115.636407

Huang L, Quan X, Liu Z, Ma T, Wu Y, Ge J, Zhu S, Yang Y, Liu L, Sun Z, Huang J, Luo Z. 2015. c-Jun gene-
modified schwann cells: upregulating multiple neurotrophic factors and promoting neurite outgrowth. Tissue
Engineering Part A 21:1409–1421. DOI: https://doi.org/10.1089/ten.tea.2014.0416, PMID: 25588149

Huang L, Xia B, Shi X, Gao J, Yang Y, Xu F, Qi F, Liang C, Huang J, Luo Z. 2019. Time-restricted release of
multiple neurotrophic factors promotes axonal regeneration and functional recovery after peripheral nerve
injury. The FASEB Journal 33:8600–8613. DOI: https://doi.org/10.1096/fj.201802065RR

Jessen KR, Brennan A, Morgan L, Mirsky R, Kent A, Hashimoto Y, Gavrilovic J. 1994. The Schwann cell precursor
and its fate: A study of cell death and differentiation during gliogenesis in rat embryonic nerves. Neuron 12:
509–527. DOI: https://doi.org/10.1016/0896-6273(94)90209-7

Jessen KR, Mirsky R, Arthur-Farraj P. 2015. The role of cell plasticity in tissue repair: adaptive cellular
reprogramming. Developmental Cell 34:613–620. DOI: https://doi.org/10.1016/j.devcel.2015.09.005,
PMID: 26418293

Jessen KR, Arthur-Farraj P. 2019. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in
regenerating nerves. Glia 67:421–437. DOI: https://doi.org/10.1002/glia.23532

Jessen KR, Mirsky R. 2016. The repair schwann cell and its function in regenerating nerves. The Journal of
Physiology 594:3521–3531. DOI: https://doi.org/10.1113/JP270874, PMID: 26864683

Jessen KR, Mirsky R. 2019. The success and failure of the schwann cell response to nerve injury. Frontiers in
Cellular Neuroscience 13:33. DOI: https://doi.org/10.3389/fncel.2019.00033, PMID: 30804758

Wagstaff, Gomez-Sanchez, et al. eLife 2021;10:e62232. DOI: https://doi.org/10.7554/eLife.62232 29 of 32

Research article Neuroscience Stem Cells and Regenerative Medicine

https://doi.org/10.1523/JNEUROSCI.0986-17.2017
https://doi.org/10.1523/JNEUROSCI.0986-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/29109239
http://www.ncbi.nlm.nih.gov/pubmed/10586237
https://doi.org/10.1083/jcb.201205025
https://doi.org/10.1083/jcb.201205025
https://doi.org/10.1523/JNEUROSCI.15-05-03886.1995
https://doi.org/10.1523/JNEUROSCI.15-05-03886.1995
https://doi.org/10.1227/01.NEU.0000255412.63184.CC
https://doi.org/10.1227/01.NEU.0000255412.63184.CC
http://www.ncbi.nlm.nih.gov/pubmed/17415210
https://doi.org/10.1016/B978-0-12-410499-0.00009-5
http://www.ncbi.nlm.nih.gov/pubmed/24083437
https://doi.org/10.1016/j.conb.2013.06.010
http://www.ncbi.nlm.nih.gov/pubmed/23896313
https://doi.org/10.1523/JNEUROSCI.1453-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/28904214
https://doi.org/10.1073/pnas.1319405111
https://doi.org/10.1073/pnas.1319405111
http://www.ncbi.nlm.nih.gov/pubmed/24474787
https://doi.org/10.1016/j.brainresrev.2005.12.001
http://www.ncbi.nlm.nih.gov/pubmed/16430964
https://doi.org/10.1111/j.1471-4159.2008.05666.x
https://doi.org/10.1073/pnas.94.9.4778
http://www.ncbi.nlm.nih.gov/pubmed/9114068
http://www.ncbi.nlm.nih.gov/pubmed/9114068
https://doi.org/10.1002/(SICI)1098-1136(199906)26:4%3C353::AID-GLIA9%3E3.0.CO;2-G
https://doi.org/10.1002/(SICI)1098-1136(199906)26:4%3C353::AID-GLIA9%3E3.0.CO;2-G
https://doi.org/10.1006/exnr.2001.7826
http://www.ncbi.nlm.nih.gov/pubmed/11771940
https://doi.org/10.1038/ncpneuro0262
https://doi.org/10.1074/jbc.M115.636407
https://doi.org/10.1089/ten.tea.2014.0416
http://www.ncbi.nlm.nih.gov/pubmed/25588149
https://doi.org/10.1096/fj.201802065RR
https://doi.org/10.1016/0896-6273(94)90209-7
https://doi.org/10.1016/j.devcel.2015.09.005
http://www.ncbi.nlm.nih.gov/pubmed/26418293
https://doi.org/10.1002/glia.23532
https://doi.org/10.1113/JP270874
http://www.ncbi.nlm.nih.gov/pubmed/26864683
https://doi.org/10.3389/fncel.2019.00033
http://www.ncbi.nlm.nih.gov/pubmed/30804758
https://doi.org/10.7554/eLife.62232


Jonsson S, Wiberg R, McGrath AM, Novikov LN, Wiberg M, Novikova LN, Kingham PJ. 2013. Effect of delayed
peripheral nerve repair on nerve regeneration, schwann cell function and target muscle recovery. PLOS ONE 8:
e56484. DOI: https://doi.org/10.1371/journal.pone.0056484, PMID: 23409189

Kim HA, Pomeroy SL, Whoriskey W, Pawlitzky I, Benowitz LI, Sicinski P, Stiles CD, Roberts TM. 2000. A
developmentally regulated switch directs regenerative growth of schwann cells through cyclin D1. Neuron 26:
405–416. DOI: https://doi.org/10.1016/S0896-6273(00)81173-3, PMID: 10839359

Kudo K, Gavin E, Das S, Amable L, Shevde LA, Reed E. 2012. Inhibition of Gli1 results in altered c-Jun activation,
inhibition of cisplatin-induced upregulation of ERCC1, XPD and XRCC1, and inhibition of platinum–DNA
adduct repair. Oncogene 31:4718–4724. DOI: https://doi.org/10.1038/onc.2011.610

Laner-Plamberger S, Kaser A, Paulischta M, Hauser-Kronberger C, Eichberger T, Frischauf AM. 2009.
Cooperation between GLI and JUN enhances transcription of JUN and selected GLI target genes. Oncogene
28:1639–1651. DOI: https://doi.org/10.1038/onc.2009.10

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome
Project Data Processing Subgroup. 2009. The sequence alignment/Map format and SAMtools. Bioinformatics
25:2078–2079. DOI: https://doi.org/10.1093/bioinformatics/btp352, PMID: 19505943

Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence
reads to genomic features. Bioinformatics 30:923–930. DOI: https://doi.org/10.1093/bioinformatics/btt656

Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH. 2000. Sonic
hedgehog–regulated oligodendrocyte lineage genes encoding BHLH proteins in the mammalian central
nervous system. Neuron 25:317–329. DOI: https://doi.org/10.1016/s0896-6273(00)80897-1, PMID: 10719888

Ma KH, Hung HA, Srinivasan R, Xie H, Orkin SH, Svaren J. 2015. Regulation of peripheral nerve myelin
maintenance by gene repression through polycomb repressive complex 2. The Journal of Neuroscience 35:
8640–8652. DOI: https://doi.org/10.1523/JNEUROSCI.2257-14.2015, PMID: 26041929

Ma KH, Hung HA, Svaren J. 2016. Epigenomic regulation of schwann cell reprogramming in peripheral nerve
injury. The Journal of Neuroscience 36:9135–9147. DOI: https://doi.org/10.1523/JNEUROSCI.1370-16.2016,
PMID: 27581455

Martinez JA, Kobayashi M, Krishnan A, Webber C, Christie K, Guo G, Singh V, Zochodne DW. 2015. Intrinsic
facilitation of adult peripheral nerve regeneration by the sonic hedgehog morphogen. Experimental Neurology
271:493–505. DOI: https://doi.org/10.1016/j.expneurol.2015.07.018, PMID: 26210874

Meier C, Parmantier E, Brennan A, Mirsky R, Jessen KR. 1999. Developing schwann cells acquire the ability to
survive without axons by establishing an autocrine circuit involving Insulin-Like growth factor, Neurotrophin-3,
and Platelet-Derived growth Factor-BB. The Journal of Neuroscience 19:3847–3859. DOI: https://doi.org/10.
1523/JNEUROSCI.19-10-03847.1999

Melcangi R, Magnaghi V, Cavarretta I, Riva M, Piva F, Martini L. 1998. Effects of steroid hormones on gene
expression of glial markers in the central and peripheral nervous system: variations induced by aging.
Experimental Gerontology 33:827–836. DOI: https://doi.org/10.1016/S0531-5565(98)00020-5

Melcangi RC, Magnaghi V, Martini L. 2000. Aging in peripheral nerves: regulation of myelin protein genes by
steroid hormones. Progress in Neurobiology 60:291–308. DOI: https://doi.org/10.1016/S0301-0082(99)00028-3

Meyer RC, Giddens MM, Schaefer SA, Hall RA. 2013. GPR37 and GPR37L1 are receptors for the neuroprotective
and glioprotective factors prosaptide and prosaposin. PNAS 110:9529–9534. DOI: https://doi.org/10.1073/
pnas.1219004110, PMID: 23690594

Mi H, Muruganujan A, Casagrande JT, Thomas PD. 2013. Large-scale gene function analysis with the PANTHER
classification system. Nature Protocols 8:1551–1566. DOI: https://doi.org/10.1038/nprot.2013.092

Michalski B, Bain JR, Fahnestock M. 2008. Long-term changes in neurotrophic factor expression in distal nerve
stump following denervation and reinnervation with motor or sensory nerve. Journal of Neurochemistry 105:
1244–1252. DOI: https://doi.org/10.1111/j.1471-4159.2008.05224.x

Nocera G, Jacob C. 2020. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury.
Cellular and Molecular Life Sciences 77:3977–3989. DOI: https://doi.org/10.1007/s00018-020-03516-9

Novikova L, Novikov L, Kellerth JO. 1997. Persistent neuronal labeling by retrograde fluorescent tracers: a
comparison between fast blue, Fluoro-Gold and various dextran conjugates. Journal of Neuroscience Methods
74:9–15. DOI: https://doi.org/10.1016/S0165-0270(97)02227-9, PMID: 9210570

Painter MW, Brosius Lutz A, Cheng YC, Latremoliere A, Duong K, Miller CM, Posada S, Cobos EJ, Zhang AX,
Wagers AJ, Havton LA, Barres B, Omura T, Woolf CJ. 2014. Diminished schwann cell repair responses underlie
age-associated impaired axonal regeneration. Neuron 83:331–343. DOI: https://doi.org/10.1016/j.neuron.2014.
06.016, PMID: 25033179

Painter MW. 2017. Aging schwann cells: mechanisms, implications, future directions. Current Opinion in
Neurobiology 47:203–208. DOI: https://doi.org/10.1016/j.conb.2017.10.022, PMID: 29161640

Parkinson DB, Dong Z, Bunting H, Whitfield J, Meier C, Marie H, Mirsky R, Jessen KR. 2001. Transforming
growth factor beta (TGFbeta) mediates schwann cell death in vitro and in vivo: examination of c-Jun activation,
interactions with survival signals, and the relationship of TGFbeta-mediated death to schwann cell
differentiation. The Journal of Neuroscience 21:8572–8585. DOI: https://doi.org/10.1523/JNEUROSCI.21-21-
08572.2001, PMID: 11606645

Parkinson DB, Bhaskaran A, Droggiti A, Dickinson S, D’Antonio M, Mirsky R, Jessen KR. 2004. Krox-20 inhibits
Jun-NH2-terminal kinase/c-Jun to control schwann cell proliferation and death. Journal of Cell Biology 164:
385–394. DOI: https://doi.org/10.1083/jcb.200307132

Wagstaff, Gomez-Sanchez, et al. eLife 2021;10:e62232. DOI: https://doi.org/10.7554/eLife.62232 30 of 32

Research article Neuroscience Stem Cells and Regenerative Medicine

https://doi.org/10.1371/journal.pone.0056484
http://www.ncbi.nlm.nih.gov/pubmed/23409189
https://doi.org/10.1016/S0896-6273(00)81173-3
http://www.ncbi.nlm.nih.gov/pubmed/10839359
https://doi.org/10.1038/onc.2011.610
https://doi.org/10.1038/onc.2009.10
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1016/s0896-6273(00)80897-1
http://www.ncbi.nlm.nih.gov/pubmed/10719888
https://doi.org/10.1523/JNEUROSCI.2257-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/26041929
https://doi.org/10.1523/JNEUROSCI.1370-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27581455
https://doi.org/10.1016/j.expneurol.2015.07.018
http://www.ncbi.nlm.nih.gov/pubmed/26210874
https://doi.org/10.1523/JNEUROSCI.19-10-03847.1999
https://doi.org/10.1523/JNEUROSCI.19-10-03847.1999
https://doi.org/10.1016/S0531-5565(98)00020-5
https://doi.org/10.1016/S0301-0082(99)00028-3
https://doi.org/10.1073/pnas.1219004110
https://doi.org/10.1073/pnas.1219004110
http://www.ncbi.nlm.nih.gov/pubmed/23690594
https://doi.org/10.1038/nprot.2013.092
https://doi.org/10.1111/j.1471-4159.2008.05224.x
https://doi.org/10.1007/s00018-020-03516-9
https://doi.org/10.1016/S0165-0270(97)02227-9
http://www.ncbi.nlm.nih.gov/pubmed/9210570
https://doi.org/10.1016/j.neuron.2014.06.016
https://doi.org/10.1016/j.neuron.2014.06.016
http://www.ncbi.nlm.nih.gov/pubmed/25033179
https://doi.org/10.1016/j.conb.2017.10.022
http://www.ncbi.nlm.nih.gov/pubmed/29161640
https://doi.org/10.1523/JNEUROSCI.21-21-08572.2001
https://doi.org/10.1523/JNEUROSCI.21-21-08572.2001
http://www.ncbi.nlm.nih.gov/pubmed/11606645
https://doi.org/10.1083/jcb.200307132
https://doi.org/10.7554/eLife.62232


Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A,
Mirsky R, Jessen Kristja�n R. 2008. c-Jun is a negative regulator of myelination. Journal of Cell Biology 181:625–
637. DOI: https://doi.org/10.1083/jcb.200803013

Pepinsky RB, Shapiro RI, Wang S, Chakraborty A, Gill A, Lepage DJ, Wen D, Rayhorn P, Horan GS, Taylor FR,
Garber EA, Galdes A, Engber TM. 2002. Long-acting forms of sonic hedgehog with improved pharmacokinetic
and pharmacodynamic properties are efficacious in a nerve injury model. Journal of Pharmaceutical Sciences
91:371–387. DOI: https://doi.org/10.1002/jps.10052, PMID: 11835197

Pestronk A, Drachman DB, Griffin JW. 1980. Effects of aging on nerve sprouting and regeneration. Experimental
Neurology 70:65–82. DOI: https://doi.org/10.1016/0014-4886(80)90006-0

Reichert F, Saada A, Rotshenker S. 1994. Peripheral nerve injury induces Schwann cells to express two
macrophage phenotypes: phagocytosis and the galactose-specific lectin MAC-2. The Journal of Neuroscience
14:3231–3245. DOI: https://doi.org/10.1523/JNEUROSCI.14-05-03231.1994

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression
analysis of digital gene expression data. Bioinformatics 26:139–140. DOI: https://doi.org/10.1093/
bioinformatics/btp616

Ruijs AC, Jaquet JB, Kalmijn S, Giele H, Hovius SE. 2005. Median and ulnar nerve injuries: a meta-analysis of
predictors of motor and sensory recovery after modern microsurgical nerve repair. Plastic and Reconstructive
Surgery 116:484–494. DOI: https://doi.org/10.1097/01.prs.0000172896.86594.07, PMID: 16079678
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