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Abstract 

Introduction Genome-wide association studies (GWAS) of alcohol dependence syndrome 
(ADS) to date, have utilized a case-control design and with the exception of protective 
variants within the alcohol metabolizing genes, have failed to identify consistently replicable 
loci. The variability of the ADS phenotype means that the use of quantitative variables as a 
proxy for the severity of ADS has the potential to facilitate identification of risk loci by 
increasing statistical power. The current study aims to examine the influences of using 
binary and adjusted quantitative measures of ADS on GWAS outcomes and on calculated 
polygenic risk scores (PRS).  

Methods A GWAS was performed in 1251 healthy controls with no history of excess alcohol 
use and 739 patients with ADS classified using binary DMS-IV criteria. Additional two GWASs 
were undertaken using a quantitative score based on DSM-IV criteria, which were applied 
assuming both normal and non-normal distributions of the phenotypic variable. PRS 
analyses were performed utilizing the data from the binary and the quantitative trait 
analyses. 

Results No associations were identified at genomewide significance in any of the individual 
GWAS; results were comparable in all three. The top associated single nucleotide 
polymorphism was located on the alcohol dehydrogenase gene cluster on chromosome 4, 
consistent with previous ADS GWAS. The quantitative trait analysis adjusted for the 
distribution of the criterion score and the associated PRS had the smallest standard errors 
and thus the greatest precision. 

Conclusion Further exploitation of the use of qualitative trait analysis in GWAS in ADS is 
warranted. 
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Introduction 

Alcohol dependence syndrome (ADS) is a common disorder characterized by the excessive 

and compulsive use of alcohol, often resulting in physical, emotional and social harm; it poses 

significant problems for both health and social services alike.  ADS is a complex disorder which 

is influenced by both environmental and genetic factors (Stickel, Moreno, Hampe, & Morgan, 

2017).  Twin, family and adoption studies provide evidence for significant heritability of the 

alcohol dependence and alcohol misuse phenotypes.  However, the magnitude of the effect 

is still debated.  Verhulst, Neale, & Kendler (2015) undertook a meta-analysis of data from 12 

twin and five adoption studies and provided an overall estimate of the heritability for alcohol 

use disorders of 49%.  However, in an earlier meta-analysis of over 50 family, twin and 

adoption studies of alcohol misuse phenotypes Walters (2002) showed that there was 

significant heterogeneity across studies and provided a mean heritability estimate of 24%.  

Walters (2002) also showed that the heritability was much stronger in men with severe 

alcoholism/alcohol dependence with heritability estimates of the order of 30% to 36%.  

While it is generally agreed that inheritance is polygenic (Goldman, Oroszi, & Ducci, 2005; 

Schork & Schork, 1998), identifying the genes involved and their relative contribution is 

difficult because of the considerable variations observed in the design of studies, the 

phenotypes of the included cohorts, the general failure to control for potential confounders 

such as co-morbid psychiatric conditions and co-occurring substance misuse, and because 

many studies have lacked statistical power (Ali et al., 2015; Hirschhorn, Lohmueller, Byrne, & 

Hirschhorn, 2002). 

The majority of the GWAS in ADS, undertaken to date, have failed to identify consistently 

replicable novel loci (Walters et al., 2018; Kranzler et al., 2019; Liu et al., 2019).  However, 

meta-analyses and studies in populations with greater phenotypic surety have identified 



genome-wide significant associations between genetic risk variants in the alcohol 

dehydrogenase (ADH) gene cluster on chromosome 4, which includes ADH1B, ADH1C, and 

aldehyde dehydrogenase 2 (ALDH2).  These polymorphisms, which confer protection against 

problematic drinking, are significantly more prevalent in populations with East Asian ancestry 

(Bierut et al., 2012; Li, Zhao, & Gelernter, 2011, 2012).  Other significant associations, appear 

to be specific to individual studies and have failed to replicate (Gelernter et al., 2014; Kranzler 

et al., 2019; Liu et al., 2019; R. K. Walters et al., 2018).  This lack of consistency and failure to 

replicate may reflect genetic heterogeneity in the susceptibility to ADS and the fact that most 

of the published studies were likely underpowered to detect variants with small effect sizes, 

particularly given the stringent genome-wide significance threshold.  

Most of the published ADS GWAS have utilised a case-control design (Hart & Kranzler, 2015; 

Stickel et al., 2017).  However, within the ADS phenotype there is substantial uncertainty 

about which defining features might be inherited. Thus, for example, the Diagnostic and 

Statistical Manual of Mental Disorders of the American Psychiatric Association (DSM) 4th 

edition (American Psychiatric Association, 2000) lists seven defining symptoms: tolerance, 

withdrawal, desire/failed efforts to control drinking, drinking more than intended, 

reduced/impaired activities, primacy of drinking, and drinking despite problems.  Individuals 

who report three or more of these features within one 12-month period are classified as 

having ADS.  However, scores may range from 3 to 7 and it is clear that the contributing 

features may carry different weighting in relation to the clinical condition and its severity 

(Lane & Sher, 2015). 

Thus, one approach to improving the identification of risk loci in ADS GWAS would be to create 

a quantitative variable based on the total number of DSM-IV criteria fulfilled.  A score based 

on the DSM-IV, which is a proxy for the severity of ADS, has been used as a quantitative 

variable in a number of studies (Gelernter et al., 2014; Heath, Whitfield, Martin, Pergadia, 



Goate, Lind, Mcevoy, et al., 2011; Kendler et al., 2011; Lai et al., 2019; Mcgue, Zhang, & Miller, 

2013; Wang et al., 2013).  However, this approach has not, to date, identified any novel 

associations at genome-wide significance or else novel findings that have been replicated.  

However, this may reflect the fact that distribution of the ADS criterion scores within GWAS 

populations may be skewed towards the more severe end of the spectrum, as they are likely 

treatment–seeking, and hence will demonstrate a quasi-Poisson distribution. No studies 

examining the impact of the assumptions made with regards to the distribution of quantitative 

symptom data and hence no studies which have examined the influence of regression models 

on the ADS GWAS data. 

The aims of the present study were: 

1.  To compare the results of a classic case-control GWAS in ADS with those obtained using 

the DSM-IV criterion score as a quantitative trait.  

2.  To determine the proportion of the variance for ADS explained by ADS risk alleles utilising 

PRS analyses based on the case-control and quantitative trait analyses. 



Methods 

Participants 

Individuals with ADS (n=741, 67 % men) were recruited from a variety of UK community and 

hospital-based services providing support and treatment for individuals with alcohol use 

disorders. The diagnosis of ADS was made by senior clinicians and trained researchers using 

the Alcohol Dependence Syndrome section of the Semi-Structured Assessment for the 

Genetics of Alcoholism (SSAGA-II) (Bucholz et al., 1994). This instrument incorporates the 

scoring items for the diagnosis of ADS delineated in the Diagnostic and Statistical Manual of 

Mental Disorders 4th Edition (DSM-IV) (American Psychiatric Association, 2000).  All 

participants were of English, Scottish, Welsh or Irish descent with a maximum of one 

grandparent of non-British but Western European ancestry; none of these individuals was 

related.  

Ancestrally matched, healthy controls (n = 797) were recruited from London branches of the 

National Health Service (NHS) blood transfusion service, from family doctor clinics and from 

among university students. Individuals were excluded if screening with the Schedule for 

Affective Disorders and Schizophrenia (SAD-L) (Endicott & Spitzer, 1978) revealed a lifetime 

history of neurosis, depression, bipolar disorder, schizophrenia or alcohol use disorders.  DNA 

from a separate set of healthy controls of British ancestry (n = 454) was purchased from the 

European Collection of Cell Cultures (ECACC; Health Protection Agency Culture Collections, 

Salisbury, UK). 

All procedures involving human subjects were approved by the NHS Metropolitan Multi-

centre Research Ethics Committee (now the South Central - Hampshire A Research Ethics 

Committee) approval number MREC/03/11/090.  All participants provided signed informed 

consent. 



Genotyping, Imputation and Quality Control 

Participants provided either blood or saliva samples for genomic DNA extraction.  Genotyping 

of the DNA samples in the ADS cohort was performed at Life and Brain GmbH, Bonn, Germany, 

using the Illumina PsychArray.  The DNA samples from the healthy controls were genotyped 

at the Broad Institute, MA, USA, using the same array. Quality control of the genotype data 

was performed in two stages, pre-imputation with more inclusive parameters aimed at 

retaining a maximal number of subjects, and post-imputation with more stringent parameters 

aimed at obtaining a high-quality data set.   Pre-imputation quality control parameters were: 

individuals were excluded if they had incorrect gender assignment; excessive heterozygosity 

(in ADS samples and healthy controls: 3 standard deviation > the mean); more than 10% of 

missing genotype data and evidence of relatedness.  Data on SNPs which had a minor allele 

frequency (MAF) < 5% and/or deviated substantially from the Hardy-Weinberg equilibrium 

(HWE) (p < 10-6) were excluded.  

Imputation was undertaken using the Haplotype Reference Consortium (release 1.1) 

(McCarthy et al., 2016) reference panel on the Sanger Imputation server (McCarthy et al., 

2016).  Genotypes were prepared as instructed and checks were performed using the HRC-

1000G-check-bim tool Version 4.2.3 (Rayner, 2015) prior to the upload of data.  A total of 

393,270 SNPs with a MAF > 0.01 were uploaded for imputation(McCarthy et al., 2016).  Pre-

phasing was undertaken with EAGLE2 (Loh et al., 2016) and imputation was performed using 

the with Positional Burrows-Wheeler Transform (Durbin, 2014) method. 

Post imputation quality control (QC) parameters used on the hard-called best-guess SNP 

genotypes.  SNPs were included if they met the following criteria: INFO scores > 0.9, call rates > 

99%, HWE p-value > 1 x 10-5, and MAF > 5%.  All QC steps were performed in PLINK2 (Chang 

et al., 2015).  A total of 2.1 million SNPs were available for analysis following this process.   

 



Statistical Analysis  

Data Processing 

Participants with a DSM-IV ADS score of ≥ 3 were classified as alcohol dependent.  The total 

number of positive responses to the DSM-IV listed criteria (3 to 7) was used to define the 

phenotype for the quantitative trait analyses (see figure 1 and table 1).  The study population 

was recruited from treatment centres across the UK so it was anticipated that the majority 

would have severe ADS according to criteria.  In anticipation of a prominent right skew to the 

criterion scores both Gaussian and quasi-Poisson distributions of the data were assumed. 

Association tests 

A standardised genetic relationship matrix (GRM) was first estimated from the genotype data 

using the genome-wide efficient mixed-model association (GEMMA) package, which is 

considered to be  an efficient method to estimate GRM (Zhou & Stephens, 2012).  The GRM 

was then used in a generalized linear mixed model with the glmmkin function in the 

generalized linear mixed model association test (GMMAT) package to fit three models for the 

binary ADS and quantitative ADS criterion scores.  

Model 1 (Binomial): used the binary ADS phenotype data and assumed a Bernoulli distribution.  

Model 2 (Gaussian): used a fitted linear mixed model for the quantitative ADS criterion scores.  

Model 3 (quasi-Poisson): used the same quantitative ADS criterion scores as Model 2 but to 

fit the likely right-skewed distribution of the criterion scores used a quasi-Poisson regression. 

Individual GWASs were performed using generalized linear mixed model implemented in the 

GMMAT package with imputed best-guess genotypes and with sex, and the first 10 principal 

components as covariates (Chen et al., 2016).   



Effect sizes and p-values for the top nine independent SNPs from the three individual GWASs, 

were generated using Wald tests.  All analyses were performed using R version 3.5.1 (R Core 

Team, 2019). 

Expression and splicing quantitative trait loci (eQTLs and sQTLs) 

The GTEx V8 database was interrogated to identify correlations between genotype and gene 

expression levels (Carithers et al., 2015) for the top GWAS hits. 

Gene-based association and enrichment analyses  

The Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA) 

package was used to explore gene prioritization, gene expression, and gene-based analyses 

(Watanabe et al., 2017).  

Polygenic risk scores  

Polygenic risk score (PRS) analyses were performed to determine the proportion of the 

variance for ADS that could be explained by the identified ADS risk alleles from the binary and 

the quantitative trait analyses.  The software package PRSice2 was used to estimate the PRS 

at a range of nine p-value thresholds (Choi, Mak, & O’Reilly, 2020).  For clumping, the linkage 

disequilibrium (LD) threshold was set to an R2 of 0.1 and a distance of 250kb.  Sex and the first 

10 PCAs were used as the covariates. Summary statistics for ADS GWAS were taken from the 

largest GWAS for ADS (n = 202, 004) available to date (Kranzler et al., 2019).  



Results 

Data were available for 739 (67% men) participants who fulfilled DSM-IV criteria for alcohol 

dependence, 2 participants with an ADS score of less than 3, and 1251 (35% men) healthy 

controls. The ADS criterion scores ranged from 3 to 7 but with a prominent right-skew in the 

distribution (Figure 1 and Table 1).  

GWAS  

No associations were identified in the individual GWAS which were significant at genome-

wide level (Table 2).  The top associated SNP in the GWAS utilising a binary diagnosis for ADS 

(Model 1) was rs34361428, located in the ADH cluster on chromosome 4 (p = 1.31 x 10-6, beta 

= 0.47).  This was also the top associated SNP identified in the GWAS based on the DSM-IV 

criterion scores although the levels of significance were lower in both (Model 2:p = 2.1 x 10-6, 

beta = 0.62; Model 3: p = 1.22 x 10-6, beta = 0.24). (For Manhattan and QQ plots see 

Supplementary Figures 1 - 3). Conditional analyses using directly genotyped data for the 

functional ADH1B SNP rs1229984 (Way et al., 2015) in a subset of the samples with 

available data, did not lead to substantial changes in the effect sizes for the SNPs reported 

in Table 2 that are located outside of the ADH gene cluster (t-test p>0.05, data not shown).   

Expression and splicing quantitative trait loci (eQTLs and sQTLs) 

Based on information provided by the GTEx V8 database, rs34361428, the top identified SNP 

associated with ADS is a significant eQTL for ADH1B (p = 6.5 x 10-17, normalised effect size (NES) 

= -0.27); carriage of the C allele is associated with increased expression of ADH1B.  rs34361428 

is also a significant eQTL for ADH1C (p = 3.6 x10-12, NES = -0.22), ADH1A (p = 1.4 x10-11, NES = 

-0.33), and METAP1 (p = 0.0002, NES = -0.065); at both loci the C allele is associated with 

decreased expression.  Additionally, single-tissue sQTLs data from GTEx V8 show that 

rs34361428 is a significant sQTL for ADH1C (p = 8.6 x10-7, NES = -0.54); splicing is influenced 



by the C allele but varies by tissue; carriage of the C allele is associated with decreased splicing 

in the liver. 

Gene-based test, pathway, and enrichment analyses 

MAGMA gene-based tests showed no significant gene prioritization and gene expression.  

Likewise, MAGMA gene-set analysis revealed no significant gene set related to ADS in the data 

after correcting for multiple testing (Supplementary table 1).  MAGMA tissue expression 

analysis also showed no significant enrichment for any tissue types (Supplementary Figures 4 

- 6).  

Polygenic risk scores (PRS) analysis 

The PRS generated from publicly available ADS GWASs were tested in the sample included in 

the three individual GWAS.  The PRSs explained a proportion of the variance for ADS at all p-

value thresholds.  At a threshold of 0.5 the binary model explained 3.61% of the variance (p = 

0.023) for ADS and the quantitative model upwards of 2.64% of the variance (p = 4.53 x 10-15) 

(Table 3).  The PRS based on the binary model seemed to explain more of the variance in ADS 

than the quantitative models but the difference was not significant (p = 0.22).  

 

 

 

 

 

 

 



Discussion 

Classical GWAS approaches in ADS have failed to identify consistently replicable loci 

with the exception of protective variants within the alcohol metabolizing genes, 

notably ADH1B, and to a lesser degree, ADH1C, but these explain only a small 

proportion of the associated risk (Hart & Kranzler, 2015; Stickel et al., 2017).  Thus, as 

with other complex traits, it is likely that a large number of causal risk variants 

contribute to the development of ADS but that individually they have comparatively 

small effects sizes (Manolio et al., 2009). This coupled with the stringent correction for 

the large number of SNPs tested in GWAS, means that very large samples will be 

necessary to reliably detect the associated loci.  

An additional challenge to the identification of novel loci contributing to the risk for 

developing ADS may be the underlying heterogeneity of the condition.  The majority 

of the GWAS undertaken to date have used a binary case-control definition for the 

ADS phenotype. Another strategy which might improve the detection of variants 

would be use the more granular approach of defining quantitative traits.  Use of 

quantitative traits could potentially enhance statistical power, produce unbiased PRSs, 

and identify quantitative mechanisms.  The disconnect between a disorder’s dichotic 

classification and the quantitatively distributed polygenic liabilities was examined by 

Plomin et al., (2009) who commented that the genetic foundation of common 

disorders is constituted by ‘the quantitative extremes of continuous distributions of 

genetic risk’.  

One approach would be to create a quantitative variable based on the total number 

of DSM-IV criteria fulfilled in order to reduce clinical and genetic heterogeneity.  



Although multiple combinations of criteria and study characteristics may result in a 

similar criterion count, this proxy for ADS severity has been successfully employed in 

previous studies although did not result in the identification of any additional findings 

at genome wide significance (Heath et al., 2011; Kendler et al., 2011; Mcgue et al., 

2013; Wang et al., 2013).    

Gelernter et al., (2014) included DSM-IV ADS criterion counts in their GWAS of ADS to 

increase statistical power and to correct for co-occurring dependences.  They reported 

association with the ADH cluster (ADH1B and ADH1C), and other novel loci that 

included MTIF2, CCDC88A, PDLIM5, and LOC100507053.  However, the results were 

not replicated in two much larger meta-analyses (Kranzler et al., 2019; R. K. Walters 

et al., 2018).  Lai et al., (2019) have recently undertaken a GWAS in ADS based on DSM-

IV criteria counts in European and African Americans and reported an association with 

a SNP in ADH1B at genome wide significance.  In addition, they reported four novel 

loci associated with individual DSM-IV criteria.  However, apart from the ADH1B locus, 

only one SNP on chromosome 8 replicated in an independent dataset and meta-

analysis (P = 3.71 x 10−9) and the only gene near this region, FAM84B, does not appear 

to be related to any neuropsychiatric disorder.  Nevertheless, while significant 

increases in sample size can potentially overcome the heterogeneity in ADS, the study 

of quantitative traits could provide a more detailed picture of how genetic risk variants 

influence the disorder. Such quantitative approaches have also been applied to the 

analysis of Alcohol Use Disorders Identification Test (AUDIT) data on alcohol use and 

these have produced robust findings. Interestingly the findings from the analysis of 

AUDIT data and data on alcohol dependence syndrome have provided evidence for 



some important differences in the liability for the two traits (Sanchez-Roige et al., 

2019). 

One consideration that needs to be taken into account when adopting a quantitative 

approach in GWAS is that the phenotypic data used in the analysis may not be 

normally distributed.  Thus, the GWAS employing the DSM-IV criterion scores, as a 

surrogate for disease severity, was undertaken using both a linear regression model, 

based on the assumption that the sores would be normally distribute, and a quasi-

Poisson regression model based on an assumption that the data would show a 

prominent right skew, which indeed it did.  

All three GWAS produced similar results although those obtained with the quasi-

Poisson regression model had the smallest standard errors.  No associations were 

identified which were significant at genome-wide level.  The top associated SNP, which 

was consistent across all three GWAS, was rs34361428, which is located in the ADH 

cluster on chromosome 4.  This SNP is an eQTL for ADH1B, ADH1C, ADH1A, and 

METAP1 and its association with ADS has been reported previously (Goldman et al., 

2005; Li et al., 2011; Luczak, Glatt, & Wall, 2006; R. K. Walters et al., 2018; Zuo et al., 

2012).  METAP1 (methionyl aminopeptidase 1) is a protein coding gene and its 

biological pathways are related to metabolism of fat-soluble vitamins.  The C allele of 

rs34361428 is associated with reduced expression of METAP1.  This association has 

been reported previously but specifically in African Americans classified as having 

alcohol use disorder (Gelernter et al., 2014; Kranzler et al., 2019).  



There were no significant differences in the variance estimates provided by the binary 

and quantitative models despite the fact that the quantitative PRS offered more 

precise estimates.  

This study had two clear limitations: first the relatively small numbers and second the 

highly selected nature of both the cases and controls.  Thus, the cases were treatment-

seeking chronic alcohol misusers, the majority of whom had the most severe ADS 

phenotype.  In contrast, the majority of the controls were healthy blood donors or 

screened controls with no past or current history of excess alcohol use.  Inclusion of a 

cohort of non-dependent heavy drinkers and a general population sample would have 

provided a better representation of the alcohol consumption spectrum.  The strengths 

of this study are its novel approach to the analysis of the GWAS data which took into 

account the distribution of the phenotypic trait of interest and the fact that it can be 

used as a template for future studies.   
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