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Abstract. In this paper, we combine sophisticated and deep-parametric active 
inference to create an agent whose affective states change as a consequence of its 
Bayesian beliefs about how possible future outcomes will affect future beliefs. 
To achieve this, we augment Markov Decision Processes with a Bayes-adaptive 
deep-temporal tree search that is guided by a free energy functional which recur-
sively scores counterfactual futures. Our model reproduces the common phenom-
enon of rumination over a situation until unlikely, yet aversive and arousing sit-
uations emerge in one’s imagination. As a proof of concept, we show how certain 
hyperparameters give rise to neurocognitive dynamics that characterise imagina-
tion-induced anxiety. 
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1 Introduction 

A common aspect of human experience is that imagined, counterfactual events can have 
a significant impact on our affective states. In its extreme form, people suffering from 
a variety of psychiatric conditions, such as generalised anxiety disorder (Gale & Da-
vidson, 2007), consistently report experiencing repetitively imagined “what-if” scenar-
ios that have a significant impact on their real-time affective dynamics. This type of 
maladaptive, repetitive thinking about (often unlikely) negative future outcomes is re-
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ferred to as rumination. Clinically validated therapeutic interventions for disorders in-
volving rumination (e.g., cognitive-behavioural therapy [CBT], acceptance and com-
mitment therapy [ACT]) also typically aim to reduce confidence in catastrophic imag-
ined future events and ground patients in the here and now (e.g., see Barlow et al., 2017; 
Hayes et al. 2006). Although the effectiveness of such therapies is well established, 
their mechanisms of action remain poorly understood. Gaining a more detailed under-
standing of the specific neurocomputational mechanisms that underpin prospection-in-
duced affect in general – and excessive rumination-induced anxiety in particular – is an 
important direction for future research.  

In this paper, we aim to provide a mechanistic account of how affective re-
sponses can be generated by imagined future outcomes – and how this can become 
dysfunctional during rumination. By combining two recent developments in active in-
ference, we provide a formal model of these phenomena and simulate how ‘overthink-
ing a situation’ can occur – continuing to the point where unlikely, yet aversive and 
arousing situations emerge in one’s imagination. We employ an affective-inference 
agent (Hesp et al., 2020) equipped with the recursive belief-updating scheme of sophis-
ticated inference (Friston et al., 2020). This powerful combination allows us – for the 
first time – to create an agent whose affective states change as a consequence of its 
internal machinations about possible future events. In this short paper, we present the 
underlying generative model and discuss its implications. We also show some brief 
illustrative simulations. We leave a more elaborate analysis of computational results 
for a variety of parametrisations for a future piece. 

2 Methods 

Here, we show how one can augment the Markov Decision Process formalism that un-
derwrites the standard active inference scheme with a Bayes-adaptive deep-temporal 
tree search that is guided by a free energy functional as it scores counterfactual futures. 
By combining the ensuing recursive update scheme of sophisticated inference (Friston 
et al., 2020) with deep-parametric, affective inference (Hesp et al., 2020), we can derive 
a general-purpose generative model of the following mathematical form, summarised 
graphically in Figure 1 and in tabular format in Table 1: 

 
𝑃"𝑜$, 𝑠̃("), 𝑢$ , 𝛾$, 𝑠($)* =
𝑃"𝑜",𝑠"

(")*𝑃"𝑠"
("),𝑠($)*𝑃"𝑠($)*∏ 𝑃"𝑜%&",𝑠%&"

(") *𝑃"𝑠%&"
(") ,𝑠%

("), 𝑢%*𝑃"𝑢%,𝛾%, 𝑠($)*𝑃"𝛾%,𝑠($)*'("
%)"        (1) 

 
In brief, the (higher-level) affective-contextual states 𝑠(") entail three hidden-state 
factors: arousal, valence, and context. These factors map (through the likelihood ma-
trix 𝐀(")) onto three lower-level model variables: the latent states 𝑠$

($), actions 𝑢% (i.e., 
possible state transitions at time τ), and 𝐆%-precision 𝛾% (i.e., action confidence at time 
τ). The latter is a scalar precision that scales the contribution of the expected free en-
ergy 𝐆% to posterior beliefs about actions. This precision term can be read as a subjec-
tive estimate of confidence in model-based beliefs about action outcomes (Hesp et al., 
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2020). This estimate is updated when posterior beliefs about action depart from one’s 
prior expectations such that it produces a con-comitant change in the action-averaged 
expected free energy. The ensuing update term—named “affective charge” or 𝐴𝐶— 
reflects changes in the confidence in one’s action model.  
 
The lower-level state space 𝑠̃	($) comprises three hidden-state factors: location, con-
text, and time, which map (through 𝐀($)) onto two outcome modalities representing 
cues (e.g., visual) and rewards (e.g., gustatory). Following Hesp et al. (2020), each of 
the higher-level states can be associated with different combinations of lower-level 
parameters for 𝑠$

($) (in terms of the initial prior 𝐃($)),	𝑢' (in terms of the baseline ac-
tion prior 𝐄'), and 𝛾' (in terms of the rate parameter 𝛃%) through a higher-level likeli-
hood mapping 𝐀("). For example, imagine you experience a pleasant low arousal state 
when you arrive home after a day’s hard work. This higher-level belief about your 
current state can then inform your lower-level action beliefs, e.g., by increasing the 
prior probability of actions associated with getting ready to sleep. Conversely, imag-
ining yourself getting ready to sleep can further increase your experienced sleepiness. 
It is the latter type of reaction that we would like to model in general: affective re-
sponses (in this case, arousal-reducing responses) generated by imagined (internally 
simulated) future events. 

 
Fig. 1. A directed acyclic Bayes graph showing a generative model for sophisticated affective 
inference about higher-level valence, arousal and context states (𝑠($)) based on (imagined) lower-
level action-model precision (𝛾%),  actions (𝑢%), states (𝑠%

(")), and outcomes (𝑜%) over four successive 
time points, thus combining sophisticated active inference (Friston et al., 2020) with deep-para-
metric affective inference (Hesp et al., 2020). 
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The specifics of the lower level generative model are not terribly important, but for 
the sake of our demonstration, we introduce a simple state space (within a stable con-
text) that comprises four states (see Figure 2), each with its own observable outcome 
and associated preference 𝐂:  
 
state 1: an initial neutral state  (𝐂()$ = 0) e.g., being at home base 
state 2: a slightly rewarding state  (𝐂()" = +1) e.g., picking berries 
state 3: a highly rewarding state  (𝐂()* = +2)  e.g., hunting large prey 
state 4: a painful absorbing state  (𝐂()+ = −2).  e.g., being wounded 
 
The agent always starts in neutral state 1 and can move towards any of the four states 
by selecting up to three moves. Furthermore, a notion of safety is introduced by mak-
ing state 2 a safer option than state 3: transitioning towards the latter has a higher 
probability of failure and can accidentally lead to painful state 4, which cannot be left 
until the end of the (4 time-step) trial. If we liken a trial to a working day, state 1 
could be seen as the agent’s home base, state 2 as a safe activity with a small yet cer-
tain reward (e.g., picking berries), state 3 as a dangerous activity with a large yet un-
certain reward (e.g., hunting prey), and state 4 as an unpreferred state that cannot be 
left for the rest of the day (e.g., being wounded). 
 

 
Fig. 2. An illustration of the state-space of the task with four states (left side, arrows indicating 
likely transitions) as it unfolds over four time steps (right side). The agent always starts in state 
1 (grey), can get a small but safe reward in state 2 (light green), and a large but dangerous reward 
in state 3 (dark green). The latter is dangerous because it entails a larger probability of transition 
to the absorbing painful state 4 (red). The right side of the figure depicts the decision tree through 
which the agent searches to evaluate the expected consequences of each possible action sequence. 
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Table 1. This table lists the predictive posteriors that provide the empirical priors for our gener-
ative model.  

Predictive posteriors Mathematical definitions 
𝑄"𝑠	($)* = 𝐶𝑎𝑡"𝐬	($)* 

higher-level state beliefs: 
context, arousal, valence  

𝐬($) = 𝜎4ln𝐃($)    (higher-level state prior) 
     +∑ ln𝐀+! ⋅ 𝐮%

	
%    (action evidence) 

     −∑ >ln 𝛃
(#,%)(-./!
𝛃(#,%)

𝛃!
𝛃!(-./!

	@	
% A 

    (affective evidence) 
eAC% = (𝐮%0 − 𝑢%) ⋅ 𝐆(𝑢%, 𝑜%)  (expected affective charge) 

𝑄"𝑠%
(")* = 𝐶𝑎𝑡"𝐬%

(")* 
lower-level state beliefs:  
context, location, time 

𝐬"
(") = 𝐃(") = 𝐀1

($)𝐬($) (lower-level initial state prior) 
𝐬%
(") ∝ (ln𝐀 ⋅ 𝑜%	) ⊙ 𝐬%2 (lower-level empirical state prior) 

𝑄"𝑠%
("),𝑢3%* = 𝐶𝑎𝑡"𝐬%&"

(")2* 
action-specific state expectations 

𝐬%&"2 = 𝐁(𝑢%)𝐬%  (action-dependent state priors) 

𝑄"𝑢%,𝑜%, 𝛾%, 𝑠($)* = 𝐶𝑎𝑡(𝐮%0) 
outcome- and time-specific 
action expectations  
based on higher-level states  
and expected 𝐆%-precision 

 

𝐮%0 = 𝜎[𝐄% + 𝛄%𝐆(𝑢%, 𝑜%)] (full action prior) 
𝐄% = 𝐀+!

($)𝐬($)	  (baseline action prior) 

𝛄% = 1 𝜷%⁄    (time-specific expected 𝐆-precision) 
𝐆%
2,0 = 𝐆(𝑢%, 𝑜%) =  (path-specific expected free energy) 

 𝐨%&"2 ⋅ (ln 𝐨%&"2 + 𝐂) (expected risk) 
 +𝒔%&"2 ⋅ 𝐇  (expected ambiguity) 
 +𝐮%&"0 ⋅ 𝐆%&"

2,0 𝒐%&"2  (expected free energy of subsequent 
   actions) 
𝐂 = ln 𝑃(𝑜%)  (prior preferences) 
 

𝑄(𝑜%|𝑢5%) = 𝐶𝑎𝑡(𝐨%2) 
action-specific  
outcome expectations 

𝐨%2 = 𝐀𝐬%2  

 

𝑄"𝛾%,𝑠($)* = Γ(1, 𝛃%) 
time-specific 𝐆%-precision  
based on higher-level states 

𝛃% = 𝛃(&,() ⋅ 𝐀6
($)𝐬($)   (expected rate parameter) 
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An important twist introduced in this model is that higher-level state beliefs can be 
updated recursively through pre-task mental deliberation, based on a deep tree search 
that unfolds pre-emptively on the lower-level. All the equations presented in Table 1 
can be evaluated without presenting any actual outcomes to the agent in question – that 
is, belief updating is guided by the probabilistic exploration of possible futures. This 
tree search involves recursive updating of lower-level action beliefs based on the coun-
terfactual outcomes of actions that are sampled from predictive posteriors at each 
branching point of the tree. Because we equip the generative model with action-depend-
ent 𝐆%-precision estimation, we can see how each counterfactual future elicits an ex-
pected affective charge (𝑒𝐴𝐶; see the first row of Table 1), which provides an ascend-
ing message to inform higher-level affective inference. The equation for 𝑒𝐴𝐶 deserves 
further unpacking: 

 𝑒𝐴𝐶% = (𝐮%, − 𝑢%,) ⋅ 𝐆(𝑢%, 𝑜%)  (2) 

Where 𝐮%, is the empirical prior for a particular action and outcome at time 𝜏, and 𝑢%, is 
a particular outcome-action sequence drawn from the predictive posteriors. The 𝑒𝐴𝐶% 
term thus scores imagined departures from the model-averaged expected free energy 
for an imagined future at time 𝜏. This 𝑒𝐴𝐶 term is the anticipatory analogue of the 
affective charge term proposed by Hesp and colleagues (2020) as a plausible source of 
evidence for different valence states (i.e., pleasant/unpleasant states). The two main 
innovations afforded by sophisticated inference are that: (i) in e𝐴𝐶, the action se-
quences consider all combinations of individual actions and (ii) 𝑒𝐴𝐶 is elicited in re-
sponse to imagined, counterfactual actions (as opposed to events that have already been 
observed). 
 

Simulating all possible sequences of actions and outcomes would quickly be-
come intractable due to a combinatorial explosion (right side of Figure 2). For example, 
with 4 possible outcomes, actions, and time steps, the number of imaginable future 
possibilities would exceed 16,000. To solve this problem, sophisticated inference (Fris-
ton et al., 2020) provides a principled way of exploring the tree using the certainty of 
predictive posteriors. In terms of state estimation, these can be seen as empirical priors 
– as they are derived entirely from prior beliefs, which inform sampling of possible 
futures. In this work, every path has a probability of being selected, however small. 
Obviously, the number of explored possibilities will tend to increase with each iteration. 
By manipulating the number of iterations of such self-directed, recursive sampling of 
the future we can model traditional speed-accuracy tradeoffs for split-second decisions 
(i.e., too few iterations) as well as the detrimental effects of excessive deliberation (i.e., 
too many iterations), which characterises the phenomenon of rumination or ‘overthink-
ing’. 
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Results 

An exemplar result from our simulations is shown in Figure 3 below. It provides a 
simple demonstration of how sophisticated affective inference naturally underwrites 
affective responses to internally imagined futures. We simulated how particular hy-
perparameters give rise to neurocognitive dynamics that characterise imagination-in-
duced anxiety or pessimism about the future. In particular, in Figure 3 we show how 
iterating the tree search too often (i.e., ‘overthinking’) can trigger recursive reductions 
in 𝐆%-precision as the agent enters the following vicious cycle: (1) Every time they end 
up imagining a very negative outcome, their action-model confidence is reduced. (2) 
Every reduction in expected precision 𝛄%	 (for simplicity assumed to be the same for all 
𝜏)  will reduce reliance on one’s action-model for subsequent explorations of the future 
because these are sampled from the predictive posterior over action (see the fourth entry 
of Table 1). This type of excessive, negatively biased prospection (i.e., rumination) will 
subsequently influence the higher-level affective state, which recursively affects the 
lower-level sampling algorithm in multiple ways.  
 

Crucially for these simulations of rumination, a negative affective state can 
bias the agent’s expectations towards negative outcomes and reduce lower-level 𝐆%-
precision even further, leading to increasingly pessimistic exploration of the tree. Such 
affective decision-tree pruning has been observed in a number of previous studies (Da-
yan & Huys, 2008; Huys et al., 2012; Huys et al., 2015; Níally et al., 2017). Our work 
shows how this phenomenon can be cast as a form of belief-updating under sophisti-
cated affective inference (Hesp et al., 2020; Friston et al., 2020). Furthermore, the ae-
tiology of many other psychiatric conditions seems to be intimately related to affective 
responses to imagined events: cravings in addiction, intrusive thoughts in obsessive-
compulsive disorder, flashbacks in post-traumatic stress disorder, hallucinations and 
delusions in schizophrenia, fear of gaining weight in anorexia, excessive monitoring of 
self-states in anxiety, and so forth. As such, this type of formal model of imagination-
induced affective responses could represent an important step forward in computational 
psychiatry and might one day be extended to aid in diagnosis or treatment for a variety 
of affective disorders – thus working towards computational nosology and precision 
psychiatry (see Friston, Redish, & Gordon; 2017). 
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Figure 3. An example of simulation results showing detrimental effects of overthinking (i.e., 
rumination) when considering affective responses to imagined future events. Horizontal axes in-
dicate the number of iterations and, implicitly, the amount of time allowed for internal delibera-
tion. The top panel shows Bayesian beliefs about good and bad valence states (blue and orang, 
respectively); the second panel shows expected precision (blue); the third panel shows the predictive 
posterior for each possible first action: moving to either the neutral location (grey), the small 
reward (light green), the large one (dark green), or the painful absorbing state (red); the bottom 
panel shows the fraction of imagined events that were negative. Initially, exploration gives rise 
to an optimistic phase of increasingly positive valence (blue line in top panel), increasing action-
model precision (second panel), increasingly positive expectations about future state transitions 
(dark green line in third panel) and a relatively small fraction of imagined negative events (red 
line in bottom panel). However, after roughly 500 iterations of the deep tree search, the agent 
devolves into a state of negative affect, reduced action-model precision, pessimistic expectations 
about future rewards, and a much higher fraction of imagined negative events.  
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