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Abstract—Computational systems that process multiple affective states may benefit from explicitly considering the interaction between
the states to enhance their recognition performance. This work proposes the combination of a multi-label classifier, Circular Classifier
Chain (CCC), with a multimodal classifier, Fusion using a Semi-Naive Bayesian classifier (FSNBC), to include explicitly the
dependencies between multiple affective states during the automatic recognition process. This combination of classifiers is applied to a
virtual rehabilitation context of post-stroke patients. We collected data from post-stroke patients, which include finger pressure, hand
movements, and facial expressions during ten longitudinal sessions. Videos of the sessions were labelled by clinicians to recognize
four states: tiredness, anxiety, pain, and engagement. Each state was modelled by the FSNBC receiving the information of finger
pressure, hand movements, and facial expressions. The four FSNBCs were linked in the CCC to exploit the dependency relationships
between the states. The convergence of CCC was reached by 5 iterations at most for all the patients. Results (ROC AUC) of CCC with
the FSNBC are over 0.940± 0.045 (mean± std. deviation) for the four states. Relationships of mutual exclusion between engagement
and all the other states and co-occurrences between pain and anxiety were detected and discussed.

Index Terms—Affective states, affective states’ dependency relationships, multi-label classification, multimodal classification, classifier
chains, facial expressions, finger pressure, hand movements, posture, Semi-Naive Bayesian classifier, stroke, virtual rehabilitation.
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1 INTRODUCTION

A FFECTIVE computing systems that recognize multiple
affective states may benefit from explicitly considering

and exploiting the underlying dependency relationships be-
tween the affective states to enhance automatic recognition
performances. This is critical now that affective recognition
systems are used more and more in different fields of appli-
cation, and in naturalistic everyday contexts. One of these
fields of application is neuro-rehabilitation and healthcare
in general. Specifically, for virtual rehabilitation, affective-
aware platforms, could help post-stroke patients to perform
their rehabilitation exercises by addressing their affective
needs.

Virtual rehabilitation platforms provide opportunities
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for monitoring the multiple affective states experienced by
the patients while interacting with the system. The auto-
matic recognition of the patients’ affective states can be
useful for controlling virtual scenarios to leverage empathic
and motivating interactions with the patients, to promote
the adherence to the therapy [1], [2], [3], [4], and for adapt-
ing the exercise to not just physical by also psychological
capabilities [5], [6]. Unfortunately, the correct detection of
affective, physical, and/or cognitive states of the patients is
still a challenge when applied to real data.

Some affective states tend to co-exist, while others do
not; indeed, others are mutually exclusive. For example, in
chronic pain rehabilitation, patients co-experience anxiety,
and pain often expressed in the form of protective behaviour
[7]. Another example, in the context of music, there exists
songs that can elicit mixed emotions of relaxed-calm-sad,
but it is quite improbable that songs elicit the emotions of
surprise and quietness, or relaxed and angry at the same
time [8].

Given the existence of such co-occurrences and mutually
exclusive relationships between affective states, these rela-
tionships could be explicitly leveraged to support automatic
recognition [9], [10]. A factor that could contribute to the
robustness of the automatic recognition of affective states is
when the underpinning computational models consider the
interactions of the affective states modelled by the system.

This work proposes a multi-label classifier, combined
with a multimodal classifier, that capitalizes on the de-
pendency relationships between multiple affective states
involved in an affective computing application. One of
these applications is the automatic recognition of multi-
ple affective, physical, and/or cognitive states involved in
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the rehabilitation of patients after stroke. In this case, the
combination of the proposed classifiers aims to leverage
the automatic recognition of the patients’ states in a vir-
tual rehabilitation platform, by considering the dependency
relationships between the states1.

The performance of the proposed multi-label classifier
combined with the multimodal classifiers was assessed
on a cohort of eight post-stroke patients for 10 virtual
rehabilitation sessions, each patient over a month at the
rehabilitation centre of a hospital. This dataset includes
finger pressure (from a sensor we called PRE sensor), hand
movements (from a sensor we named MOV sensor), and
facial expressions (from a sensor we called FAE sensor) of
the patients, gathered using a virtual rehabilitation platform
called Gesture Therapy [1], [2]. For each of the eight patients,
four states: tiredness, anxiety, pain, and engagement, were
registered (through the labelling of the psychiatrists) while
they participated in the virtual rehabilitation sessions.

Our proposal uses as base classifier, a derivation from
Naive Bayes classifier, named Semi-Naive Bayesian classi-
fier (SNBC) [12], for its efficiency, simplicity and because
it tackles dependent features [13]. An advantage of the
Bayesian approaches is that their models are interpretable,
and this characteristic was useful for computing the con-
ditional probability tables (CPTs) presented in subsection
5.5 for detecting the mutual exclusion and co-occurrences
between the states.

The base classifier SNBC was used to build the Mul-
tiresolution SNBC (MSNBC) [14] and then to create the late
Fusion of the three sensors (PRE, MOV, and FAE) using
SNBC (called hereafter FSNBC). Finally, the dependency
relationships between the states were exploited by a multi-
label classifier named Circular Classifier Chain (CCC).

To evaluate the performance of CCC using the FSNBC,
the dataset of post-stroke patients mentioned above was
used in three experiments. The first experiment had the
purpose of evaluating the convergence of CCC for the
data of each patient. The second experiment allowed us to
evaluate the CCC performance, and compared it against the
performance of the multi-label classifiers: Binary Relevance
(BR) and Classifier Chains (CC) [15]; the three classifiers
used the FSNBC as the base classifier. Finally, the third
experiment permitted to analyze whether the affective states
ordering within the CCC could generate different results.
Additionally, the conditional probability tables (CPTs) cre-
ated automatically by CCC using the FSNBC, in the sec-
ond experiment, were analyzed for trying to determine
the dependency relationships between the states, that were
captured by CCC using the FSNBC.

The contributions of this research are:

1) a novel architecture formed by a multi-label classi-
fier called Circular Classifier Chain (CCC) combined
with a set of multimodal classifiers called Fusion

1. This work is an extension of our research presented at the Inter-
national Conference of Affective Computing and Intelligent Interaction
ACII 2019 [11]. In this extended version, we included experimental
validation by incrementing the number of post-stroke patients (from
five to eight) in the longitudinal study; extended in the analysis of the
convergence of the proposed multi-label classifier, Circular Classifier
Chain (CCC); and further analysis to evaluate the impact of the affective
states ordering within the CCC.

using a Semi-Naive Bayesian classifier (FSNBC)
(one FSNBC for representing one of the states), to
explicitly capture and leverage the dependency re-
lationships between multiple affective states during
the automatic recognition process;

2) a scheme for detecting dependencies between af-
fective states. In the application of rehabilitation of
post-stroke patients, it was detected mutual exclu-
sion between engagement and all the other states
(tiredness, anxiety, and pain), and the co-occurrence
of pain and anxiety for the patients during the
rehabilitation sessions. The analysis of the emerged
dependency of the states shows that the relation-
ships captured by the architecture reflect the clinical
literature; and

3) a late fusion process in the multimodal classifier
FSNBC that not only takes into account informa-
tion from each of the modalities involved in the
problem but also includes correlation information
of the predicted classes from these modalities and
the predicted classes from the other affective states.

2 RELATED WORK

2.1 Dependency Relationships between Affective
States
Relationships of co-occurrence and mutual exclusion be-
tween emotions have been exposed in studies where emo-
tions were elicited through video clips [16], [17]. Emotions
such as anger and disgust were difficult to induce indepen-
dently [16]. Their results also suggested that one emotion
could trigger another; for example, anger may induce anxi-
ety [16]. Video clips that induced contentment, amusement,
also elicit happiness, but it never occurred that the videos
that induce anger could induce levels of happiness at the
same time [17]. Similarly, when music is used to generate
emotions, some music can induce mixed emotions of calm-
relaxed-sad, but it is improbable that it elicits the emotions
of quietness and surprise, or relaxed and angry at the same
time [8]. In the context of health, chronic pain patients
exhibit protective behaviour during exercise in response
to their anxiety, fear towards, and low confidence in such
movements [5]. Additionally, the relationship between pain
and protective behaviour is mediated by anxiety rather than
being directly linked. This suggests that in some cases,
emotional expressions that may be perceived of pain may
indeed be a consequence of another emotional state, anxiety
in this case, or a mixture of the two [7]. This highlights
that not only relationships between states exist, but that also
exists a directional dependency.

Very few works have addressed the dependency rela-
tionships between emotions and multidimensional classifi-
cation [10]. Olugbade et al. [5] has modelled pain, anxiety,
and confidence recognition as parallel and co-present ex-
pressions by building independent recognition models for
the three states. However, her work has not taken advantage
of their relationship. The works of [18] and [10] do exploit
the dependency relationships between emotions. In [18],
a Bayesian network is used to learn the relations of co-
occurrence and mutual exclusion between pairs of emotions;
but this is somewhat limited because it does not include
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dependency relationships between more than two emotions
simultaneously. In [10], a three-layer Boltzmann restrictive
machine is used to detect the dependency relationships
between more than one pair of emotions; but the problem
is the computational cost involved in training and making
inferences in a Boltzmann machine. In our proposal, we
tackle dependency relationships of two or more affective
states by using Circular Classifier Chains [19] where the pre-
dicted classes of the previous affective states in the chain are
incorporated as additional feature inputs to the succeeding
classifiers. Our core classifier is the SNBC, which maintains
the efficiency and simplicity of the Naive Bayesian classifiers
[13].

2.2 Modalities: Finger Pressure, Hand Movements, and
Facial Expressions

Computational models for automatic affect recognition ben-
efit from including information from several sensors to
improve classification rates [20], [21]. Complementarity be-
tween some sensors’ signals may lead to an increase in
recognition performance [20]. Most of the research in affec-
tive computing has mainly considered three kinds of modal-
ities: visual (facial expressions), audio (vocalization), and
text information (written communication) [21]. Around 10%
of the research has addressed the integration of modalities
related to body movements and other modalities like facial
expressions [20], [21]. In particular, even less research has
looked on the use of touch in combination with the modali-
ties mentioned above; indeed, touch has been studied quite
in isolation [22]. Recently, Filntisis et al. (2019) [23] studied
the body movements and facial expressions of children for
recognizing manifestations of affective states, to promote
emphatic child-robot interaction. They used Deep Neural
Networks (DNN) for processing each modality (body and
facial), and made a late fusion through a fully connected
layer where the scores obtained through the modalities
were combined. Some works have explored affect recog-
nition combining the modalities of hand gestures and fa-
cial expressions [24], [25], [26], [27]. Computational models
included Hidden Markov Models (HMM) and fuzzy logic
for studying the hand gestures and the facial expressions,
respectively [24]. Other alternatives have been Bayesian
Networks for each modality [25], and combinations of
HMM, Adaboost, and Random Forest [26]. With respect to
the fusion, the results of each modality (facial and hand)
have been combined at late fusion using a weighted sum
of the two modalities [24], [25], [26], or using only sum or
product rule [25], [26].

A growing body of work has been exploring the auto-
matic expression of not-lab induced pain (for a review on
pain datasets see [28]), exploring a combination of several
modalities [29], [30], [31] but not hand or touch movement.
In addition, none of these works has attempted to directly
exploit the relation of pain with other emotional states to
improve recognition performances.

To our knowledge, the proposal of studying the com-
bination of finger pressure and hand movements with fa-
cial expressions is novel. Additionally, we have not found
studies about that combination of modalities in relation to
pain, anxiety, engagement, and tiredness, together with the

dependency relationships between these states. For rehabil-
itation therapies of post-stroke patients, finger pressure and
hand movements recovery of an impaired upper limb is a
specific target to achieve [2], so it is relevant to include these
modalities in a virtual rehabilitation system [1], [2], [32],
[33]. This is even more important is we aim to incorporate
patients’ affective state automatic recognition functions into
a virtual rehabilitation platform [14], [34].

3 DATASET OF SPONTANEOUS AFFECTIVE
STATES OF POST-STROKE PATIENTS

A dataset of post-stroke patients was collected and labelled
by clinicians to develop and assess the performance of the
proposed classifiers, which exploits the dependency rela-
tionships between the patient’s affective states. The dataset
consists of data from post-stroke patients that participated
in virtual rehabilitation sessions using a computational plat-
form called Gesture Therapy (GT) [1], [2]. The first version
of this dataset, including 5 patients, was presented in [14],
where only finger pressure and hand movements data were
used. The dataset was then used in [11] by considering all
modalities available, finger pressure, hand movements, and
facial expressions. For this current paper, the dataset was
extended to include 6 new patients, as described below.
Unfortunately, 3 of them (P06, P09, and P10) could not
be used for the training and evaluation of the multi-label
automatic recognition task because their facial expression
features could not be extracted. We briefly describe the GT
system used to collect the data from patients, and then we
describe the full dataset.

3.1 The Virtual Rehabilitation Platform: Gesture Ther-
apy
Gesture Therapy (GT) [1], [2] is an upper limb rehabilitation
platform for post-stroke patients consisting of a set of virtual
reality serious games for doing the therapeutic exercises
(Fig. 1).

GT integrates five interacting modules [2]:

1) Physical System (the hardware elements), composed
of a personal computer, a webcam, and a device
created in our lab, the gripper (see Fig. 1), which
is held by the patient;

2) Tracking System, for tracking the hand movements
through the gripper’s colour ball, and for detecting
the finger pressure exerted on the gripper’s pressure
sensor (PRE sensor);

3) Simulated Environment, to display the serious
games, and to control the interaction with the pa-
tient;

4) Trunk Compensation Detector, to identify whether
the patient is making compensatory movements;
and

5) Adaptation System for real-time dynamical adjust-
ment of the difficulty levels of the games to the
patient’s requirements and progress. The automatic
recognition of the patient’s affective states will be
useful to provide real-time customization of the
system not only to the physical needs but also to
the psychological ones.
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GT also includes capabilities for recording a video
(through the webcam), for registering the patient’s session.
The video is used, in this study, to capture the patient’s
facial expressions (FAcial Expression: FAE sensor) and for
the labelling of the affective states as described in the next
session. On the other hand, the tracker system estimates,
at each video frame, the 3D coordinates of the hand move-
ments (MOV sensor), and the finger pressure (PRE sensor)
value, and conveys these values to the simulated environ-
ment. These tracked pieces of information (movements and
pressure) are used for real-time customization of the game.

Fig. 1. A volunteer participating in the Gesture Therapy platform. The
participant is holding the gripper with the right hand. The gripper has a
frontal sensor for registering finger pressure. The webcam follows the
gripper’s colour ball to control an avatar (in this example, it is the kitchen
palette) in the game.

3.2 Patient Recruitment and Data Collection

Eleven post-stroke volunteer patients were recruited from
the Instituto Nacional de Neurologı́a y Neurocirugı́a
(INNN), Mexico City, and the Rehabilitation Centre of the
Hospital Universitario de Puebla, Benemérita Universidad
Autónoma de Puebla, in Mexico. The demographic infor-
mation is summarized in Table 1. The patients received a
brief explanation of the research before giving their consent
to participate and agreeing that their rehabilitation sessions
could be video recorded, and their hand movement and
facial expressions data could be used for scientific purposes.
After that, patients attended the virtual rehabilitation ses-
sions using the GT during ten longitudinal sessions over
a month approximately (each session was performed on a
different day, at most 3 sessions per week). All the sessions
were supervised by a qualified occupational therapist that
had previous experience with the GT platform. Patients
played 5 games for at most 3 minutes each. The precise
amount of time was decided by the therapist. GT recorded
a frontal video of the patient for each game at 15 frames per
second, where the spontaneous facial expressions, the upper
torso postures, and the hand movements could be tracked.
It also recorded instantaneous hand location proxied by
the gripper’s ball and the gripping strength exerted by the
fingers at 15 Hz synchronized with the video frames. The
stream of 3D coordinates of the hand motions and finger
pressure at each video frame, and the information of the
facial expressions, were used as independent variables. Data
were labelled, frame by frame, by a group of psychiatrists

considering four patients’ states, tiredness, anxiety, pain,
and engagement [14]. The states were considered as the
dependent variables. This set of states had been decided
through discussion with a group of clinicians formed by a
therapist, psychiatrists, and an affective computing expert
involved in the project. They considered that these states
are relevant and critical during post-stroke rehabilitation to
provide support to the patients and adjust the therapy to
their needs.

TABLE 1
COHORT DEMOGRAPHICS

Patient Age
[years] Gender Stroke date Therapy onset Paretic side

No. of
sessions

P01 55 M Apr, 2014 May, 2014 Left 6

P02 57 F May, 2014 Sep, 2014 Left 10

P03 67 M Jan, 2013 Jul, 2016 Right 10

P04 44 M Dec, 2016 Jul, 2017 Right 8

P05 41 M Nov, 2015 Jul, 2017 Right 5

*P06 76 F Oct, 2018 Nov, 2018 Left 5

P07 65 M Nov, 2018 Dec, 2018 Left 10

P08 64 F Dec, 2018 Dec, 2018 Right 10

*P09 58 F Nov, 2018 Jan, 2019 Right 10

*P10 33 M Dec, 2018 Feb, 2019 Right 10

P11 65 M Mar, 2019 Apr, 2019 Left 10

* Data from patients P06, P09, and P10 were not included in the multi-label automatic
recognition because the facial recognition system could not obtain the required features
from their videos.

3.3 Feature Vectors
Feature vectors were created with a sliding window (of a
predefined size) over consecutive frames of the respective
data [14] (see subsection 4.2). This procedure yielded a
feature vector for each step forward of the sliding window.
The feature vector for finger pressure (from PRE sensor)
contains 3 features (averages of the data contained in the
sliding window): pressure (Pres), pressure speed (PresSpe) and
pressure acceleration (PresAce). For hand movements, the fea-
ture vector (from MOV sensor) contains 5 features (averages
of the data contained in the sliding window): speed (Spe),
acceleration (Ace) and differential location by the axes: x (Di-
fLx), y (DifLy), z (DifLz). Finally, for the facial expressions, 20
features from each frame of the patients’ frontal video were
extracted [35]. These features by frame represent distances
of geometrical figures over the eyebrows, the eyes, and the
mouth, and some angles over the eyebrows [36] (see Fig.
2). More precisely, the feature vector (from FAE sensor)
contains 20 averaged features (averages of the data contained
in the sliding window) for F1 (avF1), F2 (avF2), ..., F20
(avF20) (see Fig. 2 for the meaning of each feature number).
All the feature vectors have four binary tags (from the set
{−1, 1}), one for each state (tiredness, anxiety, pain, and
engagement), indicating the presence (1) or the absence (−1)
of the state. Since the data were labelled frame by frame, the
corresponding tag was generated as the majority label in the
sliding window. Data of the three sensors and the class tags
were synchronized through the associated frames.

4 CLASSIFIERS: SNBC, MSNBC2, FSNBC, AND
CCC
The following classifiers were assembled to obtain the final
model, which includes the affective states’ relationships to
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Fig. 2. Facial Expressions Features: Fi, i ∈ {1, 2, · · · , 20}. F1 and F2

represent angles over the eyebrow, and Fi, i∈{3, · · · , 20} constitutes
a distance of a geometrical figure over the eyebrows, the eyes, and the
mouth, at a video frame.

improve their automatic recognition. The base model was
the SNBC, which was fundamental to build all the other
models. Then, for processing each sensor, i.e., each modality
for affective states recognition, we used the Multiresolution
Semi-Naive Bayesian classifier (MSNBC) (with a modifica-
tion, and we call the new model, MSNBC2). The MSNBC2
for each sensor estimated the presence or the absence of an
affective state, and a late Fusion using SNBC (FSNBC) was
implemented to combine the individual sensors’ predictions
to recognize the occurrence of the affective state. There
were as many FSNBCs as affective states, each one for rec-
ognizing one affective state independently. These FSNBCs
were linked in a Circular Classifier Chain (CCC), which
integrated the interactions of the affective states to enhance
the final recognition.

4.1 Semi-Naive Bayesian Classifier (SNBC)

Semi-Naive Bayesian classifier (SNBC) is based on the
Naive Bayes classifier (NBC) [12], [37]. Given a sample
sa = (a1, a2, · · · , an), and given the ith feature Ai, the
decision rule of NBC for a two-class problem (the class
variable C takes values in {-1, 1}), is expressed as:

class(sa) = argmax
c∈{−1,1}

(Prob(C = c)
n∏
i=1

Prob(Ai = ai|C = c))

(1)
The naive assumption that all features Ai are indepen-

dent given the classC supports the multiplication in (1) [12].
To address a more generic and realistic situation, the SNBC
executes a structural improvement [12], [38], [39] to remove
and/or join features (to eliminate redundant or irrelevant
features and/or join dependent features). The structural
improvement (Fig. 3) employs mutual information and con-
ditional mutual information calculations [40] between the
features and the class to make the improvements. After
each operation of elimination or join of features, the new
structure is tested to determine whether classification per-
formance is improved. The process is repeated until all
features have been analyzed.

Fig. 3. Example of the process of structural improvement to obtain a
Semi-Naive Bayesian (SNB) model: (a) An original Naive Bayes model
with 4 features (all of them are assumed independent), (b) Feature A2

is eliminated because the mutual information value between A2 and the
class C is close to zero, (c) Features A3 and A4 are joined into one,
as they are considered dependent based upon the conditional mutual
information value between A3 and A4 given the class C.

4.2 Multiresolution Semi-Naive Bayesian Classifier 2
(MSNBC2)

Multiresolution Semi-Naive Bayesian classifier (MSNBC) is
a binary classifier to explore the occurrence of an affective
state of interest in the trace over time [41]. The classifier
operationalizes several odd-size sliding windows (starting
from 3) concentric to a current frame. These parallel slid-
ing windows are shifted simultaneously over the trace to
calculate several features in the environment of the current
frame (neighbourhood). There is a SNBC associated with
each window to discriminate the presence or not of the
affective state in the corresponding window. (Fig. 4). The
name multiresolution is used because the windows repre-
sent several concurrent resolutions at the current frame of
the trace. Therefore, the associated SNBCs constitute simul-
taneous sliding estimators at different resolutions. MSNBC
represents an ensemble of SNBCs with a late (decision level)
fusion process by majority vote. Each SNBC receives the
features coming from a different window size and infers the
presence or not of the affective state of interest. Finally, in
the fusion stage, the presence or not is decided through the
majority vote of the SNBCs. Since the input features were
numeric values, we employed a discretization process called
Proportional k-interval discretization (PKID) [42]. This pro-
cess tries to match the number of intervals with the amount
of values within each interval [42].

A modification was made to MSNBC replacing the ma-
jority voting with a SNBC in the late fusion module, and
the resulting classifier was called MSNBC2. Fig. 5, part a),
shows the architecture of MSNBC2.

4.3 Late Fusion using SNBC (FSNBC)

There is an independent MSNBC2 for each sensor (PRE,
MOV, and FAE) to predict the occurrence of an affective
state. Then, the predicted class labels (1 –presence– or -1
–absence–) of the three MSNBC2 are fused using a SNBC
(FSNBC) [43]. FSNBC is a binary classifier that represents a
multimodal affective states recognizer (Fig. 5, part b)).
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Fig. 4. Multiresolution process using several odd-size sliding windows
(3, 5, 7, 9, and 11) concentric to a current frame fi. The sliding windows
are shifted simultaneously over the trace. Exemplification corresponds
to the trace of finger pressure at each video frame during a segment of
a rehabilitation session. A SNBC is trained for each window size to infer
the presence (1) or absence (-1) of the affective state into consideration.
Then, each of the 5 SNBC models (a model for each one of the 5
windows) returns its prediction for the class label in each sample fi
of the series, and the MSNBC2 makes a late fusion using a SNBC to
assign the final class label (1 or -1) to fi.

4.4 Circular Classifier Chain (CCC)

There are as many FSNBCs as affective states, each one
for recognizing one state independently. As each FSNBC
performs the automatic recognition of a state independently,
they are integrated into a Circular Classifier Chain (CCC)
that links, between them, their predicted class labels, to in-
corporate the dependency relationships between the states.
The FSNBCs are the base classifiers of the multi-label classi-
fier CCC.

CCC [19] is an extension of the multi-label classifier
Classifier Chains (CC) [15] for addressing the problem of
defining the class variables’ ordering in the chain. CC is
related to Binary Relevance (BR), an approach that consists
of q base binary classifiers for classifying q class variables,
where each one is independently trained to predict the
occurrence of a class variable. CC incorporates class inter-
actions to the BR approach through a strategy of creating a
chain where each classifier includes as additional features
the predicted class labels of the previous classifiers in the
chain (except for the first classifier) [15]. A drawback to CC
is that the class variables’ ordering is decided at random,
and this has effects on the classification rates [15], [44].

CCC consists of q base binary classifiers (in our case,
the FSNBCs, one for each affective state) linked circularly in
a chain, creating a ring architecture (see Fig. 6). As in CC,
each classifier at succeeding positions 2, 3, . . . , q aggregates
as inputs the predicted class labels of its previous classifiers.
The circular configuration is generated after the first “cycle”
or iteration when the predicted class labels of the classifiers
at positions 2, . . . , q are entered as additional features to the
first one in the chain. The propagation of the predicted class
labels continues to the succeeding classifiers (2, 3, . . . , q),
and this mechanism is repeated for N iterations or until
convergence.

5 EXPERIMENTAL RESULTS

Three experiments were carried out to evaluate the perfor-
mance of CCC using the FSNBC:

Experiment 1: Evaluate the convergence of CCC for the
data of each patient.

Experiment 2: Evaluate the CCC performance and com-
pare it against the performance of the multi-label classifiers:
Binary Relevance (BR) and Classifier Chains (CC) [15].

Experiment 3: Analyze whether the affective states or-
dering within the CCC could generate different results in
the multi-label metrics.

Additionally, the conditional probability tables (CPTs)
created automatically by CCC using the FSNBC, in the sec-
ond experiment, were analyzed for determining the depen-
dency relationships between the states, that were captured
by CCC using the FSNBC.

5.1 Experimental Setups

CCC models were independently trained for each patient
to predict the occurrence of the four states (tiredness, anx-
iety, pain, and engagement) in the multi-label classification
scheme. This led to 8 CCC models, one for each patient.
Each CCC involved the development of 4 FSNBCs, one for
each state of the patient. Similarly, BR and CC models were
independently developed for each patient, leading to 8 BR
and 8 CC models, with their corresponding 4 FSNBCs for
each one. Therefore, the three multi-label classifiers BR, CC,
and CCC, were implemented using the FSNBC as the base
classifier for all of them.

The performance of CCC was evaluated against BR and
CC (used as baselines), using several multi-label classifica-
tion metrics [45]: Global accuracy (GAcc), Mean accuracy
(MAcc), Multi-label accuracy (MLAcc) and F1.

The notation to describe the metrics for multi-label clas-
sification is as follows:

r: number of examples in the data set;
q: number of classes. Each example u has q class vari-

ables (each class variable takes one label: 1 –presence– or -1
–absence–);

cu,j : jth true class label in example u;
c′u,j : jth label predicted by the multi-label classifier for

example u;
~cu: vector of true class labels in example u;
~c ′u: vector of class labels predicted by the multi-label

classifier for example u.

GAcc =
1

r

r∑
u=1

q∧
j=1

(c′u,j = cu,j) (2)

where
∧q
j=1 is the logical AND operator.

MAcc =
1

q

q∑
j=1

Accj =
1

q

q∑
j=1

1

r

r∑
u=1

δ(c′u,j , cu,j) (3)

where Accj is the calculation of accuracy for the class j and
δ(c′u,j , cu,j) = 1 if c′u,j = cu,j and 0 otherwise.

MLAcc =
1

r

r∑
u=1

|~c ′u ∩ ~cu|
|~c ′u ∪ ~cu|

(4)
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Fig. 5. Multiresolution Semi-Naive Bayesian classifier 2 (MSNBC2) and late Fusion using SNBC (FSNBC). a) MSNBC2 is a binary classifier that
combines a set of parallel sliding windows W of different odd sizes, |W | = 3,5,7,9,11; all concurrently centred around the same frame of the
respective sensor. PKID is a discretization method called Proportional k-interval discretization [42] to handle the numeric features. b) FSNBC is a
binary classifier which contains a MSNBC2 for each sensor (PRE, MOV, and FAE) and makes a late fusion using SNBC. FSNBC is the multimodal
affective states recognizer for an affective state. Acronyms meanings: C, Cck, Csj = class of the respective classifier for the same affective state,
e.g. anxiety; Pres = pressure, PresSpe = pressure speed and PresAce = pressure acceleration.

Fig. 6. Circular Classifier Chain (CCC). At the first iteration, the predicted
class labels C ′

j , j ∈ {1, 2, . . . , q−1} are propagated as classifier chains
(CC).

−→
A is the feature vector (in our case, the feature vector of PRE,

MOV, and FAE). Then, for the second iteration, the classifier at position
1 receives the predicted class labels from the last classifier (the one at
position q) and the other classifiers (positions 2, 3, ..., q − 1). After that,
the propagation process continues to the succeeding classifiers in the
chain. The process is repeated until convergence or until CCC reached
a maximum number N of iterations.

where in |~c ′u ∩ ~cu| we count the number of coincidences of
the two vectors (predicted and true) and in |~c ′u ∪ ~cu| we
count the number of labels covered by those vectors.

F1 =
1

r

r∑
u=1

2 |~c ′u ∩ ~cu|
|~c ′u|+ |~cu|

(5)

The internal validity of the BR, CC, and CCC models
was established using the stratified ten fold cross-validation
mechanism across all the rehabilitation sessions.

The class variables’ ordering for CC, and initially for
CCC, was defined considering the BR results of the area
under the curve (AUC) of the class variables. They were
sorted in decreasing order according to these AUC results,
with the rationale that the class variables with worse out-
comes should be at the last positions so they could receive
more information from the class variables of the preceding
positions.

5.2 Experiment 1: Convergence of CCC
CCC was run with N = 8 iterations. This number was
determined based on previous work [19]. The convergence

of CCC was analyzed, observing the results of the four
multi-label classification metrics at each iteration of CCC.
The behaviour of the system was similar for all the patients,
CCC converged to a fixed value. For patients P1, P2, P3, and
P4, the convergence was achieved at iteration 2. For patients
P5 and P8, at iteration 3. And, for patients P7 and P11, at
iterations 4 and 5, respectively. Fig. 7 shows the convergence
process for patient P11.

Fig. 7. Convergence of CCC - Patient P11. The number of iterations
of CCC was set to N = 8. The four metrics, GAcc, MAcc, MLAcc,
and F1, reached a fixed value at the fifth iteration until the end. CCC
converged to a fixed value at iteration fifth for patient P11.
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5.3 Experiment 2: Performance Comparison of BR, CC,
and CCC
Table 2 summarizes the classification results, mean ±
std. deviation (across the 8 patients and across the 10 folds
of the cross-validation), of BR, CC, and CCC. The experi-
ments were done with a laptop Intel Core i7-8750H CPU,
8th Gen. 2.20 GHz, 16 GB RAM with an operating system
Windows 64 bits. CCC using the FSNBC during training
(with 10 fold cross-validation) had an execution time of
(mean ± std. deviation) 124.09 ± 30.46 sec. which corre-
sponds to 2.07±0.51 min. The number of data samples was
(mean± std. deviation) 7225.75± 3763.03 across the eight
patients. The best results for each metric are highlighted in
bold type. Results reveal that CCC outperformed BR and
CC for all the metrics. Significant differences (Friedman test,
for GAcc, MAcc, MLAcc, F1 χ2(2) = 20.000, p < 0.05,
with post hoc analysis with Wilcoxon signed-rank tests with
Bonferroni correction, p < 0.017) were obtained for CCC.

TABLE 2
Performance comparisons between BR, CC, and CCC

(mean± std. deviation) across the 8 patients and the 10 folds of the
cross-validation. CCC was run with N = 8 iterations, and the

convergence had been achieved by iteration 5 at most for all the
patients. The best results for each metric are highlighted in bold type.

Classifier GAcc MAcc MLAcc F1

BR 0.813± 0.124 0.942± 0.039 0.859± 0.094 0.874± 0.086
CC 0.860± 0.098 0.952± 0.034 0.892± 0.075 0.903± 0.069
CCC 0.905± 0.069 ‡ 0.962± 0.028 ‡ 0.927± 0.054 ‡ 0.933± 0.050 ‡
‡ means significant differences between CCC and CC, and between CCC and BR (Friedman

test, for GAcc, MAcc, MLAcc, F1 χ2(2) = 20.000, p < 0.05, post hoc analysis with
Wilcoxon signed-rank tests with Bonferroni correction, p < 0.017).

Table 3 shows the average AUC results for each state
across the eight patients and across the ten folds. Average
AUC results of CCC were significantly higher than the
ones of BR and CC (Friedman test, for tiredness χ2(2) =
20.000, p < 0.05, for anxiety χ2(2) = 20.000, p < 0.05, for
pain χ2(2) = 17.590, p < 0.05, and for engagement χ2(2) =
18.200, p < 0.05, with post hoc analysis with Wilcoxon
signed-rank tests with Bonferroni correction, p < 0.017).

TABLE 3
Performance comparisons between BR, CC, and CCC

(mean± std. deviation) across the 8 patients and the 10 folds of the
cross-validation, using ROC AUC for each state. CCC was run with

N = 8 iterations, and the convergence had been achieved by iteration
5 at most for all the patients. The best results for each state are

highlighted in bold type.

Classifier Tiredness Anxiety Pain Engagement

BR 0.927± 0.059 0.928± 0.054 0.920± 0.058 0.903± 0.076
CC 0.946± 0.047 0.939± 0.048 0.927± 0.048 0.924± 0.065
CCC 0.957± 0.040 ‡ 0.957± 0.036 ‡ 0.940± 0.045 ‡ 0.940± 0.058 ‡
‡ means significant differences between CCC and CC, and between CCC and BR (Friedman

test, for tiredness χ2(2) = 20.000, p < 0.05, for anxiety χ2(2) = 20.000, p < 0.05,
for pain χ2(2) = 17.590, p < 0.05, and for engagement χ2(2) = 18.200, p < 0.05,
post hoc analysis with Wilcoxon signed-rank tests with Bonferroni correction,
p < 0.017).

5.4 Experiment 3: Evaluation of the Affective States
Ordering within the CCC
To analyze whether the affective states ordering within the
CCC can generate different results, CCC was assessed with

all different permutations of the 4 states, and permutation
tests [46] were applied. The assessment of CCC was made
considering the 24 permutations of the 4 states on the data of
each patient, so the analysis was carried out for each patient.
For every permutation, CCC was run with N = 8 iterations,
and the results of the multi-label classification metrics were
observed at iteration 8, where CCC had converged. After
the results of the 24 permutations were obtained, the per-
mutation tests [46] were performed. There were no signifi-
cant differences in the results of the multi-label metrics for
patients P1, P2, P3, and P5, but for the rest of the patients,
P4, P07, P08, and P11, indeed there were. It could be ex-
pected that the results for each metric were equal for all the
permutations of a patient, but there were some differences.
Therefore, we calculated how large the differences were.
The average differences (mean ± std. deviation) across all
the patients, between the highest result minus the lowest
result, within the permutations of each patient were GAcc:
0.106± 0.069, MAcc: 0.026± 0.017, MLAcc: 0.057± 0.037,
and F1:0.040± 0.026. The main differences were generated
byGAcc, which requires the exact match between the multi-
label vectors that are compared, each time (see Eq. 2).

5.5 Dependency Relationships between the States
Since late fusion in the FSNBC for predicting the class labels
of a certain state, S, creates a SNBC model which receives
as inputs the predicted class labels from the other states,
in addition to the features of PRE, MOV, and FAE of S;
it is possible to analyze the conditional probability tables
(CPTs) of the other states given state S. CPTs can provide
us information about the relationships of the states that
SNBC considers to assess the presence (1) or the absence
(-1) of the state S. These CPTs were generated after the eight
iterations of CCC, from experiment 2. It should be noted
that in this experiment, the affective states were sorted in
decreasing order according to the AUC results obtained for
each state in BR (see Subsection 5.1). Although, each patient
has his/her own decreasing order of the AUC results for the
four states as the initial order for CCC, the results related to
the dependency relationships between the affective states,
represented in CPTs, were similar for all the patients. Fig. 8
shows the CPTs of each state. The information is organized
in blocks a), b), c), and d) corresponding to the CPTs of
tiredness, anxiety, pain, and engagement, respectively. Each
table entry indicates mean± std. deviation across the eight
patients. From the analysis of the tables, we can detect the
following relationships of the states for the eight patients:

1) Tiredness: When tiredness is present, engagement
is not, nor anxiety or pain.

2) Anxiety: When there is anxiety, there is no engage-
ment, and there is no tiredness either. But when
anxiety is not present, pain is not present either.

3) Pain: When there is pain, there is anxiety too; but
there is neither engagement nor tiredness.

4) Engagement: When engagement is present, none
of the other states (tiredness, anxiety, and pain) is
present.

This evidence establishes that there is a mutual exclu-
sion between engagement and all the other states and co-
occurrences between pain and anxiety for the eight patients
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during their rehabilitation sessions. Such results are in line
with the literature on chronic pain, suggesting that anxiety
mediates pain rather than vice versa [7]. The results of
dependency relationships were similar for all the patients,
no matter the initial order of the four states for CCC.
The dependency relationships of the affective states were
automatically learned by CCC using FSNBC, and then they
were used for the classification process.

Fig. 8. Conditional Probability Tables (CPTs) generated by SNB models
at the late fusion of the FSNBC, after the eight iterations of CCC.
T = Tiredness, A = Anxiety, P = Pain, and E = Engagement. Each
CPT entry represents mean± std. deviation across the eight patients.
The highest value for each CPT is highlighted in bold type. Part a)
corresponds to tiredness CPTs, b) to anxiety CPTs, c) to pain CPTs,
and d) to engagement CPTs.

6 DISCUSSION

The Circular Classifier Chain (CCC) in conjunction with
the Fusion using a Semi-Naı̈ve Bayesian classifier (FSNBC)
as the base classifier, can extract information about the
mutual exclusion, and co-occurrence of affective, physical,
and/or cognitive states (e.g., tiredness, anxiety, pain, and
engagement) that are involved in the rehabilitation of post-
stroke patients. The model sought to leverage the automatic
recognition of the post-stroke patients’ states (i.e., tiredness,
anxiety, pain, and engagement) by considering these states’
dependency relationships. In this extended version of the
conference paper [11], we extended the dataset from five to
eleven post-stroke patients, with data from ten rehabilitation
sessions collected at the rehabilitation centre of the hospital.
All the new data were labelled frame-by-frame over the four
states by psychiatrists. Unfortunately, for three of the new
patients, only finger pressure and hand movements tracking

data are available. While the data from these three patients
are still very valuable for the research community to explore
these two modalities as in [14], only the patients with data
from the full set of modalities were used in this paper.
The results presented in the conference paper [11] with five
patients where confirmed on the data collected from three
new post-stroke patients (Table 1) with full multimodal data.

CCC using the FSNBC identified mutual exclusion be-
tween engagement and all the other states and identified co-
occurrence of pain and anxiety for the eight patients during
the rehabilitation sessions. Such results are in line with the
literature on chronic pain, suggesting that anxiety mediates
pain rather than vice versa [7]. The mutual exclusion of
engagement with tiredness, pain, and anxiety is naturally
due to the barriers that the latter three pose to the first.
It could also be that up to a certain level of physical and
psychological demand; engagement may distract from such
unpleasant states. As it has been shown in other studies, en-
gaging games appears to provide better coping-capabilities
within a limited range of fear and physical demand [6].

CCC using the FSNBC allows the prediction of the
patient’s state since all the patients’ states were recog-
nized in our dataset, with results at least of 0.905 ± 0.069
(mean ± std. deviation) on the multi-label metrics, and for
the four states, using the area under the curve, the classifica-
tion rates were at least 0.940±0.045 (mean±std. deviation).
When these dependency relationships between tiredness,
anxiety, pain, and engagement were not taken into ac-
count in BR, for example, GAcc obtained 0.813 ± 0.124
(mean± std. deviation) (Table 2).

We have obtained a late fusion process in the FSNBC (for
predicting the class labels of an affective, physical, and/or
cognitive state) that not only takes into account information
from each modality (i.e., finger pressure, hand movements,
and facial expressions) but also includes correlation infor-
mation of the predicted class labels from these modalities
and the predicted class labels of the FSNBCs of the other
states. In this way, the fusion process not only analyzes the
modalities involved in the recognition but also learns the
correlation between the states.

An advantage of the Bayesian approach is the possibility
of explicability and interpretability of the results, and this
characteristic was useful for determining which dependency
relationships of the affective states were automatically de-
tected by CCC using FSNBC (Subsection 5.5). Further de-
velopments and evaluations can be done concerning the
performance of CCC using FSNBC against other multi-
label classifiers, especially with classifiers associated with
neural networks and deep learning. However, results of
CCC using FSNBC were in the order of 0.905 ± 0.069
(mean± std. deviation).

It should be noted that CCC using the FSNBC converged
in 5 iterations at most for all the patients. Therefore, the
system does not require an extensive process of iterations for
getting the convergence. This tendency was confirmed with
the data of the new patients incorporated into the dataset.

As an extension of [11], we carried out an analysis of the
effect of the affective states ordering within the CCC. The
results revealed that the order might have a small average
effect on the multi-label metrics of MAcc, MLAcc, and F1,
in the order of 0.05± 0.03 (mean± std. deviation), and for
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GAcc, in the order of 0.106± 0.069 (mean± std. deviation)
for some patients. In this case, 4 states were involved, and
all the permutations could be evaluated. Further studies
have to be carried out to determine why the order of the
affective states in the chain generated different results in
some patients and not in others. They could be due not
only to physical differences but also to the ability of the
person with their condition. In the literature in chronic pain,
personal differences exist in people ability to manage their
condition. People suffering from strong anxiety do present
less capability to engage in physical activity.

7 CONCLUSIONS

This work extended our research presented at the Interna-
tional Conference of Affective Computing and Intelligent
Interaction (ACII 2019) [11]. In this extended version, we in-
cluded experimental validation by incrementing the number
of post-stroke patients (from five to eleven, although data of
8 patients were used in the experiments) in the longitudinal
study; we analyzed the convergence of the proposed multi-
label classifier, Circular Classifier Chain (CCC); and we
evaluated the impact of the affective states ordering within
the CCC.

The relationships of mutual exclusion and co-
occurrences between tiredness, anxiety, pain, and engage-
ment, in the rehabilitation of some post-stroke patients, was
studied using the proposal of two classifiers: the multi-
label classifier Circular Classifier Chain (CCC), combined
with the multimodal classifier Fusion using a Semi-Naı̈ve
Bayesian classifier (FSNBC), used as base classifier of CCC.
The synergy between these two classifiers boosted the au-
tomatic recognizing of the mentioned patients’ states by
considering the dependency relationships of the states. CCC
using the FSNBC is simple, efficient, and it is capable of
addressing dependency relationships between states. The
dependency relationships of the affective states were au-
tomatically learned by the model, which converged at 5
iterations at most for all the patients.

CCC using the FSNBC provided a scheme (through the
CPTs created by the classifiers) for the automatic detection
of dependencies between affective states involved in an
affective computing system. This scheme can be useful for
several applications in the area. CCC using the FSNBC
detected the relationships of mutual exclusion between
engagement and all the other states, and co-occurrences
between pain and anxiety for the eight patients during their
rehabilitation sessions. Moreover, CCC using the FSNBC
enhanced the automatic recognition of the states in a multi-
label classification approach, outperforming CC and BR
significantly (both CC and BR using the FSNBC as the base
classifier too).

The performance of CCC was evaluated against the
multi-label classifiers, BR and CC, which were the baselines.
A particular purpose of this study was the assessment of
CCC as an extension of CC for dealing with the problem
of the class variables’ ordering in CC. Comparisons can
be made with other multi-label classifiers (including, for
instance, some concerning neural networks) although an
advantage of the Bayesian approach is the possibility of
explicability and interpretability of the results.

The incorporation of this multi-label classifier combined
with the multimodal classifier in virtual rehabilitation plat-
forms for post-stroke patients could leverage intelligent and
empathic interactions, as well as real-time personalization
of exercise plans to promote adherence to rehabilitation
exercises.

As future work, the problem of determining why the
order of the affective states in the chain generated different
results in some patients and not in others has to be analyzed
in depth. Another problem to be addressed consist in deal-
ing with missing sensors since this problem is common in
the naturalistic everyday use of computational models.
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