
A Framework for the Development of
Service Management Systems for the Open

Service Market

by

David Edward Lewis

Department of Computer Science

University College London

A Thesis for the Degree of Doctor of Philosophy

Supervisor: Graham Knight

Date: March 2000

ProQuest Number: U644002

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U644002

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

An open market in telecommunication services requires standard management

interfaces to ensure interoperability between the operational support systems of the

increasing number of market players generated by liberalisation. In addition,

increased competition between these players heightens the needs for the rapid, cost-

effective development of telecommunication management systems. Service

Management bridges the gap between the network management activities of a

service provider and its customer care activities and overall business aims. Systems

implementing service management functions, therefore, must be well integrated with

other service and management systems in the same and different administrative

domains. However, service management suffers from a lack of standards for suitable

architectures and technologies, as well as being exposed to the varied and volatile

requirement imposed by a highly competitive and fluid services market. A common

Development Framework for Service Management Systems (SMS) therefore needs

to accommodate a range of architectures and technologies. The main benefit of a

common development framework, therefore, may be in the development of a

common development methodology. For a common methodology to be usefully and

widely applied it must support the requirements of the main stakeholders in service

management system development, namely SMS developers, the vendors of

commercial off-the-shelf software these systems may use and the developers of the

interface standards to which they may conform.

This thesis evaluates a variety of techniques for their suitability for a common

development methodology that address the interactions and commonalities between

development processes within the different stakeholder types. The techniques

evaluated include those suggested in existing TMN recommendations, those using

Open Distributed Process principles and those from existing general-purpose object-

oriented analysis and design methodologies. The evaluation is based both on a

review of the previous application of these techniques to management system

development and to their application in a series of SMS development case studies in

which the author was involved. Some of the latter case studies introduced a level of

empirical evaluation absent from previous studies

The result of the evaluations is the validation of specific techniques, namely, Use

Cases, the Unified Modelling Language, the Analysis Modelling and Component

Facades concepts developed originally by Ivar Jacobsen and the integration of

Business Process and Role Modelling techniques during requirements analysis. A

common methodology is described in terms of UML meta-models for integrated

Business Requirements Modelling and a specialisation of the facade construct,

termed a Projection. These are presented with examples and descriptions of how they

may apply to the development processes of the different stakeholders. In addition,

compatible, but loosely prescribed architectural guidelines are provided.

Acknowledgements

This thesis would not have been possible without the help, support and inspiration of

a great many people. Firstly I would like to thank Graham Knight, my supervisor, for

his patient guidance and good advice throughout the course of this project. I would

also like to thank my second supervisor, Wolfgang Emmerich, and Jon Crowcroft

who acted as my second supervisor for the first years of this work and who was a

constant source of useful advice on the process of performing research. I would also

like to thank George Pavlou, David Griffin and Saleem Bhatti, who together with

Graham formed the core of a highly knowledgeable, world class telecommunications

management research group at UCL, which provided an enormously stimulating

environment for my research.

This work was conducted while I was working in a number of European Union

sponsored projects so I also would like to acknowledge the many international

colleagues with whom I have worked. In particular I would like to thanks Lennart

Bjerring, Willie Donnelly, Jane Hall, Michel Louis, Jurgen Schneider, Lars Bo

Sorensen and Michael Tschichholz for their insight and guidance in examining the

development of TMN systems in PREPARE and subsequent projects. I would also

like to thank Vincent Wade for his close collaboration on working on development

methodologies in the Prospect and FlowThru projects. Many thanks also needs to go

to the development team members who worked on the PREPARE, Prospect and

FlowThru projects and who acted as guinea pigs for various development techniques

addressed by this thesis. In particular, I must thank the developers at UCL for their

assistance and feedback, namely: James Cowan, Alina DaCruz, Anne Hutton, Chris

Malbon, Alistair McEwan, Rong Shi and Thanassis Tiropanis.

Finally I thank my family and friends for their help and encouragement in this

arduous and time-consuming endeavour. In particular, I thank my Mum and Dad for

their unconditional love and support, Fernando Urquidi for inspiring me to do a PhD

in the first place and Liz Dancer who’s praise, affection and advice helped make the

completion of this work possible.

Table of Contents

1. INTRODUCTION.. 13

1.1 A p pr o a c h a n d CONTRIBUTION... 18

2. PROBLEM DEFINITION...25

2.1 St a k eh o ld er s in SM S D e v e l o p m e n t ...25

2.2 O pen Se r v ic e M a n a g e m e n t .. 30

2 .2 .1 Service Management in TMN..30

2.2 .2 Service Management for Intelligent Networks...34

2.2.3 Service Management in the TeleManagement Forum... 34

2.2.4 Service Management in TINA...36

2.2.5 Current Status of Open Service Management..39

2.3 T e c h n o lo g ies A p p u c a b l e to Se r v ic e M a n a g e m e n t ... 41

2.4 S y n th esis o f Re q u ir e m e n t s ... 44

2.5 S u m m a r y ... 47

3. ANALYSIS OF EXISTING FRAMEWORKS AND REQUIREMENTS SYNTHESIS48

3.1 G e n e r a l S o ftw a r e E n g in eer in g M e t h o d o l o g ie s .. 49

3.1.1 Object Oriented Analysis and Design.. 49

3.1.2 Business Process Modelling..54

3.1.3 Design Patterns... 55

3.1.4 Relevance to SMS Development... 57

3.2 O pen D istr ib u ted P r o c essin g Rel a t e d M e t h o d o l o g ie s ... 60

3.3 T ele c o m m u n ic a t io n s Sp e c m c M e t h o d o l o g ie s ...73

3.4 Su m m a r y o f Sta te o f t h e A r t A n a l y s is ..80

3.5 Sy n th esis o f M eth o d o lo g ic a l Re q u ir e m e n t s fo r SM S D e v e l o p m e n t Sta k eh o ld er s

82

3.5.1 The SMS Development Process...86

3.5.2 The COTS Software Product Development Process..90

3.5.3 The Interface Standard Development Process...92

3.5.4 Generic Methodological Requirements.. 94

4. CASE STUDIES..97

4.1 C ase St u d y 1: O SI-SM a n d T M N ... 98

4.1.1 Development Approach... 100

4.1.2 Evaluation and Results... 106

4 .2 C a se Stu d y 2; Re spo n sib ility a n d C o m pu ta tio n a l M o d e l l in g ... 109

4.2.1 Development Approach...110

4.2.1.1 Enterprise Modelling and Scenarios.. I l l

4.2.1.2 Role Specifications...112

4.2.1.3 TMN Architecture Definition... 114

4.2.1.4 Information Models and Information Flow s...115

4.2.1.5 Management Function D esign.. 118

4.2.2 Evaluation and Results.. 121

4.3 C a s e St u d y 3; O D P V ie w p o in t s ...125

4.3.1 Development Approach...125

4.3.1.1 Business Modelling... 126

4.3.1.2 Reuse of Existing M odels.. 128

4.3.1.3 System D evelopment..130

4.3.2 Evaluation and Results...135

4 .4 C a s e St u d y 4: D e v elo pin g SM S w ith U M L ... 138

4.4.1 Development Approach...138

4.4.1.1 Multi-domain System Modelling..141

4.4.1.2 Component M odelling..143

4.4.1.3 Single-Domain System Modelling..147

4.4.2 Evaluation and Results...148

4.5 Ca s e St u d y 5; D e v e l o p in g SM S w it h In teg r a tin g B u sin ess P r o c e ss M o d ellin g a n d

C o m po n e n t R e u s e ...154

4.5.1 Development Approach...154

4.5.1.1 Reusable Component Modelling Approach.. 155

4.5.1.1.1 Application of Reusable Component Modelling... 160

4.5.1.2 Open Business Process Modelling A pproach... 164

4.5.1.3 Application of Open Business M odelling..168

4.5.2 Evaluation and Results.. 175

5. RESULTS AND SYNTHESIS...179

5.1 G e n e r a l R e c o m m e n d a t io n s ... 179

5 .2 S y n th esis o f O pe n SM S D e v e l o p m e n t F r a m e w o r k .. 183

5.2.1 Methodologica I Guidelines...183

5.2.1.1 Notations and Meta-model D efinition..183

5.2.1.1.1 Use Case M odel.. 184

5.2.1.1.2 Business Requirements M odel..185

5.2.1.1.3 The Projection Modelling Construct... 191

5.2.1.2 Process Guidelines...195

5.2.1.2.1 Generic Development Process...196

5.2.1.2.2 Interface Standard Development Process...197

5.2.1.2.3 COTS Software Product Development Process...200

5.2.1.2.4 SMS Development Process..202

5 .2.2 Architectural Guidelines..204

6. FURTHER WORK.. 209

6.1 E x t e n sio n a n d F u r th er V alid a tio n o f Re c o m m e n d a t io n s ...209

6.2 A p p u c a t io n t o C o m po n e n t S o ftw a r e A r c h it e c t u r e s ...213

6.3 In t e g r a t e d T o o l Su p p o r t ...215

6.4 A p p u c a t io n to Ser v ic e M a n a g e m e n t St a n d a r d is a t io n .. 218

7. CONCLUSIONS... 226

8. REFERENCES..235

9. APPENDIX 1 ...255

9.1 C a s e St u d y 4 Respo n se S u m m a r y ...255

9.1.1 Responses from Component Developers...255

9.1.2 Responses from System Developers.. 260

9.1.3 Responses from Sub-System Developers...269

9.2 C a s e St u d y 5 Re spo n se Su m m a r y ...276

9.2.1 Responses from Requirements Analysts..276

9.2.2 Responses from Component Developers...277

9.2.3 Responses from Trial Business System Developers.. 280

9.2.4 Responses on Tools.. 284

Table of Figures References

Figure 1-1: Generic Structure of Development Framework... 17

Figure 2-1: Summary of SMS development stakeholder roles and their relationships 30

Figure 2-2: TMN separation of functional concerns...32

Figure 2-3: TMF’s Telecoms Operation M ap... 35

Figure 2-4: Management Areas in TIN A ...38

Figure 3-1: The PRISM, ODP viewpoint-based development process...............................68

Figure 3-2: The PRISM Enterprise Viewpoint Concepts... 70

Figure 3-3: The M.3020 development methodology...74

Figure 3-4: Refined Generic Development Framework Structure...................................... 84

Figure 3-5: Process Model for SMS Development...90

Figure 3-6: Process model for off the shelf management software development...............92

Figure 3-7: Process Model for Interface Standard Development.. 94

Figure 3-8: Generic SMS Development Stakeholder Process M odel.................................96

Figure 4-1: TMN Functional Architecture for PREPARE Phase 1................................... 104

Figure 4-2: Development Process for Case Study 1..107

Figure 4-3: Example of a Role Specification for a VPN Service Manager Role 113

Figure 4-4: TMN Functional Architecture for PREPARE Phase 2 115

Figure 4-5: VPN Information Model.. 115

Figure 4-6: Example of Information Flow Sequence Diagram for the Creation of a

VPN User Stream.. 117

Figure 4-7: Example of CO Textual ODL Definition...120

Figure 4-8: Example of ODL Diagram Showing COs in an OSF and a W SF................. 120

Figure 4-9: Development Process for Case Study 2 ..122

8

Figure 4-10: Contractual Relationships Between Stakeholder Organisations.................. 127

Figure 4-11: Scenario Sequence Diagram Showing Information Flow Between

Stakeholders for a Use Case... 128

Figure 4-12: Extended Subscription Management Information Model.............................131

Figure 4-13: Extended Subscription Management Computational Object Model

(ODL)..132

Figure 4-14: Example of Detailed CO ODL Diagram for SRP C O 133

Figure 4-15: Example of Sequence Diagram Showing Interactions between COs..........134

Figure 4-16: Development Process for Case Study 3 ..136

Figure 4-17: UML Class Diagram Showing Roles and Stakeholders Used in Prospect

Trials..141

Figure 4-18: UML Use Case Diagram for Prospect Customer Management Trial 142

Figure 4-19: UML Use Case Model for Prospect Subscription Management

Component... 144

Figure 4-20: Top-level UML Class Diagram for Subscription Management

Component Design.. 145

Figure 4-21: UML Class Diagrams Showing the Interfaces to the Subscriber

Manager C O ... 146

Figure 4-22: UML Interaction Diagrams Showing Subscription Component

Behaviour for the Create SAG Use Case... 147

Figure 4-23: Multi-domain Use Case Linkages Supported by Component Level Use

Cases.. 148

Figure 4-24: Development Process for Case Study 4 ..149

Figure 4-25: Differing Approaches to Component Reuse.. 157

Figure 4-26: Analysis Objects Stereotype Notation..159

Figure 4-27: Analysis Object Diagram for Subscribe a Customer to a Service Use

Case...162

Figure 4-28: Example of a Collaboration Diagram for a Use Case................................... 163

Figure 4-29: Mapping of TMF Business Processes onto TINA Business Roles..............167

Figure 4-30: Business Process to Business Role Mapping for ATM Service

Fulfilment... 169

Figure 4-31: UML Class Diagram of Responsibilities Between Business Roles.............171

Figure 4-32: Use case Diagram for ATM Service Fulfilment Scenario............................172

Figure 4-33: Relationships Between the Main Entity Objects Identified in the Use

Cases..173

Figure 4-34: UML Activity Diagram for the Subscribe to ATM Service Use Case 174

Figure 5-1: Structure of the Business Requirements M odel..186

Figure 5-2: Relationships between the Elements of the Business Requirements

M odel..188

Figure 5-3: Example of static Business Process Model using a UML Component

Diagram...189

Figure 5-4: Example of Dynamic Business Process Model using a UML Sequence

Diagram...190

Figure 5-5: Example of SMS Level Business System Model using a UML

Component Diagram... 191

Figure 5-6: Structure of the Projection Modelling Construct... 192

Figure 5-7: Relationship between Elements of the Projection Construct’s Use Case

and Analysis models.. 195

Figure 5-8: The Application of the Methodological Guidelines to the Generic SMS

Development Stakeholder Process Model.................................... 197

10

Figure 5-9: Application of the Methodological Guidelines to the Interface Standard

Development Process.. 200

Figure 5-10: Application of the Methodological Guidelines to the COTS Software

Product Development Process...202

Figure 5-11: Application of the Methodological Guidelines to the SMS Development

Process... 203

Figure 6-1: A Potential Scenario for the Integration of Software development across

the Telecommunications Domain... 217

Figure 6-2: Tool interworking and multi-notation round trip engineering using X M I... 218

Figure 6-3: Possible enterprise management service system scenario showing

potential functional architecture overlay............. 222

11

Table of Table References

Table 2-1: Comparison of Business Model Roles... 26

Table 3-1: Categorisation of management related standards by generic development

framework structure...85

Table 5-1: Comparison of Business Requirements Model Concepts and Concepts

from the Standards..199

12

1. Introduction
The liberalisation of telecommunications markets around the world in the late 1980s

and the 1990s has led to an explosion in the number of market players.

Telecommunication markets, which were previously characterised by unchallenged

national monopolies, have now become globalised and intensely competitive. As a

result, the major new pressures that have come to bear on the providers of

telecommunications services are, as identified in [adams]:

• The need to compete by lowering prices: which exerts a general downward

pressure on costs and spur to automate processes within service providers.

• The need to compete on quality: where the speed and efficiency with which a

service provider responds to a customer’s orders, queries and problems can be a

key competitive differentiator.

• The need to compete using new services: which is accelerated by the

convergence of telecommunications industry with other sectors such as data

communications, cable TV and publishing and the lowering of the cost of entry

for new players, such as mobile operators and Internet Service Providers, due to

technical innovations [beamount].

Standardisation is encouraged so that open interfaces to services, products and

components may help prevent customers being tied to service providers and

providers being tied to equipment and software vendors. In addition open interfaces

aid providers in collaborating to provide services and thus help to prevent

incumbents from excluding new entrants. Open interfaces are also developed

through the collaboration of industry players to encourage the adoption of a new

technology [leakey]. For a competitive market in telecommunication services

underpinned by the use of interface standards the term Open Service Market is used

here.

13

Returning to the pressures faced by service providers, one of the major operating

costs they experience is that of managing their networks. Networks need to be

managed to ensure that they service the end points required by customers, that the

throughput and utilisation of the network is optimised and that equipment faults are

dealt with as and when they occur. Such activities are categorised as Network

Management, and are a major cost in the operation of a network. Software systems,

termed Network Management Systems (NMS), are employed to help automate this

task in order to reduce the cost of network management. This is an area that has long

been addressed by open standards, e.g. Open Systems Interconnection - Systems

Management (OSI-SM) and Simple Network Management Protocol (SNMP)

[Stallings] [hegering]. Many conformant products are available and have been

deployed by service providers

In a competitive environment, to allow a provider to make a profit while both

controlling costs and providing superior customer service, network management

must be conducted in close collaboration with Service Management. Service

management is the term given to the management of the communications facilities

offered by a network to provide a commercial service to customers. Service

management involves tasks such as: mapping customer orders efficiently onto

network provisioning and configuration activities, monitoring the delivered quality

of service against the levels of service agreed with individual customers and

mapping customer complaints onto network faults or performance problems. In

addition to supporting such customer-driven needs, the network usage information

made available by NMS is required both to generate charging information with

which to bill the customer, and to monitor the utilisation of the network in order to

plan network growth [varley]. Service management, therefore, represents a further

major cost for service providers and there is a pressing need for them to provide

effective Information Technology (IT) support for these activities if service

providers are to be competitive. The software systems that implement service

management activities are termed Service Management Systems (SMS).

14

SMS development has not benefited from standardisation to the same extent as NMS

development. This can be attributed to several factors:

• While network management standards have emerged from the need for providers

to have open interfaces to manage network elements, the needs of service

management, i.e. service management interoperability between providers and the

open procurement of SMS software, have only recently emerged due to

liberalisation.

• Service management features such as billing and customer care, are often key

competitive differentiators, so providers are often reluctant to collaborate in

standardising them.

• The wide adoption of network technologies such has ATM and TCP/IP has

provided a common base for open interface modelling for NMS. Services, which

change rapidly in response to competition, do not offer a similarly stable model

of what SMS must manage.

Though service management requires some level of distribution in its

implementation, it does not have the extreme requirements for distribution of

network management. So though standard network management technologies such

as OSI-SM and SNMP could be applied to service management, they do not serve

key requirements. As a result, many of the general purpose distributed processing

platforms emerging in the IT sector present alternative, cost-effective solutions for

service management. Amongst those that have been suggested as the basis for

service management solutions are; technologies from the World Wide Web

[maston], the Object Management Group’s Common Object Request Broker

Architecture (OMG CORBA) [chen96], the Open Software Foundation’s Distributed

Computing Environment (OSF DCE) [gaspoz] and intelligent mobile agents

[corely]. It is therefore not currently feasible to advocate a standard service

management platform technology that is likely to be widely accepted. This is

explored further in Section 2.3.

15

The SMS development community is therefore faced with a potential vicious circle.

The rapidly changing nature of the market imposes wide-ranging and volatile

requirements on SMS that retards the development of the standards that could

simplify problems of interoperability and encourage off-the-shelf solutions.

Meanwhile the lack of a common framework for the development of SMS leads to

the development of ad hoc solutions that in turn exacerbates the conditions that

retard the development of common approaches. It could be argued that this situation

is no different to that in any industry sector that relies heavily on IT. However, the

highly inter-connected nature of the telecommunications industry means that

obstacles to inter-operability are real barriers to competition and collaboration and

thus to healthy growth. As a result the industry has a long tradition of overcoming

these obstacles through the definition of open interfaces. However, the close

relationship of service management to fast changing business and software

environments (as opposed to the more stable network environment), indicates that a

different approach to achieving open systems may be required in this area of

telecommunications.

Shared system development problems, such as this, are often addressed by the

effected community establishing a Common Development Framework. In

telecommunications management, it is widely recognised that the lack of a coherent

development framework has often resulted in poor integration of operational support

systems, high levels of duplication due to stove-pipe solutions for different services

and networks and thus high cost of ownership and operation [furley][adams]. A

development framework that is open also allows for the integration of solutions from

external vendors.

A development framework is typically an organised set of architectural and

methodological guidelines for system development, coupled with an extensible set of

reusable parts that perform functions useful in the problem domain (see Figure 1-1).

Architectural guidelines are based on knowledge of the problem domain and aim to

help practitioners to divide the problem domain up into manageable parts in a

consistent way. Architectural guidelines address both the logical architecture and the

16

technological architecture applicable to the problem domain. The logical

architecture consists of a structured division of the logical functional areas

addressed by the development framework, with layering being a common structural

technique. The technological architecture establishes the common underlying IT

functionality required to implement solutions. The more common functionality that

can be identified in a domain and bundled into a supporting IT platform, the easier it

is for developers to address the specific problem at hand. The set of reusable parts

enables the developers to draw on the knowledge and experience gained from

previous solutions in the problem domain. The methodological guidelines provide

the processes and notations needed by developers to build systems that solve their

particular problems in a way that is consistent with the framework’s architectural

and technological guidelines and which make best use of and possibly contribute to

the set of reusable parts. The methodological guidelines of such a framework are

main focus of this thesis.

Development Framework

Architectural Guidelines

Logical
Architecture

Technological
Architecture

Methodological
Guidelines

Reusable Parts

□ □ □ □ □ □ □ □
Figure 1-1: Generic Structure of Development Framework

Given the above considerations the thesis can be stated as follows:

17

The broad ranging and rapidly changing environment o f the Open Service Market,

in which SMS must be developed means that a common, durable, well-populated

architecture for service management is currently unattainable. A development

framework suitable for SMS must, therefore, have a loose, extensible logical

architecture encompassing a range o f different technologies.

Within such a framework, a common, well-understood approach to modelling system

requirements and design will enable developers to deal with the complexity and

heterogeneity o f SMS within cost and time constraints. To be effective, such a

common modelling approach must take into account the methodological

requirements o f SMS developers, o f the developers o f open interfaces to which SMS

conform and o f the developers o f commercial software used in SMS. The approaches

currently taken to the development and standardisation o f NMS are insufficient to

support the development o f and standardisation for SMS in the Open Service

Market. However, existing techniques from the Open Distributed Processing and

Software Engineering communities can be successfully applied to these

requirements.

1.1 Approach and Contribution

The thesis proposes that a common methodological guideline is the key part of an

open development framework for SMS that must necessarily present only loose

architectural guidelines. The development and testing of such an open development

framework was conducted based on the analysis of a novel business stakeholder

model, presented in Section 2.1 of the problem definition in Chapter 2. This model

addresses the individual needs and required relationships between the three main

stakeholder types involved in the development of SMS. These are the developers of

SMS, the vendors of the commercial off-the-shelf (COTS) software components that

may be used within SMS and the developers of open interface standards to which

SMS and COTS may conform. This model forms the core of the approach taken to

defining a suitable open development framework for the thesis. Chapter 2 completes

the definition of the problem presented in defining an open SMS development

18

framework by analysing the current state of standards addressing service

management (Section 2.2) and the range of technologies that may be reasonably

applied to service management (Section 2.3). The range of standards analysed

consists of international standards for Telecommunication Management Networks

(TMN) and Intelligent Networks, the work of the TeleManagement Forum and that

of the Telecommunications Information Networking Architecture Consortium

(TfNA-C). This provides evidence that no common logical architecture for service

management is likely to emerge in the near term. The range of applicable

technologies presents a similar conclusion for the prospects of a common service

management technology. Based on this analysis of the current context for SMS

development, a series of goals for an open SMS development framework is

synthesised (Section 2.4).

A comprehensive survey o f existing methodological techniques that have been

suggested and applied to the development of SMS, of management interface

standards and of management systems in general is then provided, in Chapter 3. This

survey covers popular general purpose software engineering techniques (Section

3.1), techniques associates with Open Distributed Processing (ODP) standards

(Section 3.2) and techniques developed specifically for telecommunication

management development (Section 3.3). An analysis of this survey (Section 3.4)

reveals that there is a low level of objective evaluation of these techniques and no

empirical evaluation. However, commonalities in the structuring of these

development approaches are used in Section 3.5 to define a model of the

development processes that typically are performed by each of the SMS development

stakeholder types. This model also identifies the relationships between development

processes within the same stakeholder type and between processes in different

stakeholder types. This yields another novel aspect of the approach taken in this

thesis, in that it is both the commonalities and relationships between development

processes in different stakeholders that are highlighted as offering the widest benefit

from commonality in the techniques applied to them.

19

Next, in Chapter 4, the core experimental work of the thesis is presented, where

different development techniques are evaluated to assess them against the overall

goals for an open SMS development framework and specific requirement of the

SMS developement stakeholder process model. As is observed in Chapter 3,

however, evaluation of SMS development techniques suffers from the general

problem experienced in validating software-engineering techniques. Firstly,

measures of desirable software features such as reliability, maintainability and

flexibility are difficult to define [fenton]. Also it is recognised that, in addition to the

methodology followed and the tools used, the effectiveness of a software

development effort is highly dependent on the people involved and the

characteristics of their personal interactions. These human factors are difficult to

control, and at best can be randomised, leading to limits to the replicatability of and

therefore the validity of many software experiments. Software development is also a

very expensive activity due to the value of software developer’s time. Therefore,

fully controlled experiments tend to be small in scale and often don’t reflect a real

commercial software development environment, e.g. experiments performed on

groups of students. Alternatively, experiments can be carried out within commercial

software development projects. Here, budget and time constraints often take priority

over experimental considerations, limiting the control of variables and the collection

of data. This thesis presents a particular problem since open service management is a

relatively new area and not yet a common basis for software development. In

addition, as the effectiveness of SMS development is crucially linked to the

effectiveness of interactions between SMS Developers, Software Vendors and

Standards Developers, an experiment within a single software development

organisation alone would not address the full problem domain. For a PhD thesis

study the option of performing a replicated, controlled experiment with a significant

number of subjects is ruled out due to the cost involved. The approach taken,

therefore, was to conduct a series of case studies where SMS development activities

were observed and the experiences of SMS developers garnered. The case studies

were conducted as SMS development work in collaborative research projects. Here,

20

groups of developers from universities, research institutes and industry, worked

together in realising networks of integrated management systems, including SMS, in

order to publicly demonstrate novel aspects of telecommunications management.

Though these development projects do not fully reflect real commercial

development, their collaborative nature makes them a closer approximation to the

multi-stakeholder open service market environment. In addition, these projects were

more amenable to experiments attempting different development methodologies.

The approach to evaluating the methodologies used in each case study varied from

anecdotal observation of developers’ experiences, through group discussion of such

experiences to structured questionnaires. In all but the first case study, the author had

team leader responsibilities for the modelling, implementation and integration of

SMS, and was therefore in a good position to garner on-going, informal feedback of

the techniques used, as well as to organised the more formal evaluations. The main

aim of the evaluations was to assess the practicability and relative usefulness of

different development approaches applied to SMS development.

The Case Studies provide the following experimental information:

• Case Study 1 used OSI-SM technology for the integration of network and service

management in a multi-provider environment. It provided anecdotal evidence of

the problems involved in defining a multi-interface system using the notations

and processes defined for TMN by the ITU-T. It also provided some initial

evidence of the power of scenario and business role definitions for SMS

development.

• Case Study 2 addressed the same problem domain, but provided anecdotal

evidence of the benefits of modelling the responsibilities between roles to

supplement scenario descriptions. It also provides anecdotal evidence of the

benefits of using computational modelling, as practised in TINA, to functionally

decompose systems.

• Case Study 3 involved a more complex enterprise model than the previous case

studies, with the SMS were implemented using the Object Management Group’s

21

Common Object Request Broker Architecture (OMG CORBA). It provided

evidence of the usefulness of ODP viewpoints, as applied in TINA, through

anecdotal feedback, a questionnaire and a group discussion. Weaknesses were

found with the ODP approach however, in particular in maintaining consistency

between the information and computational viewpoints.

• Case Study 4 extended further the multi-domain system developed in Case Study

3, but using Use Cases and the Unified Modelling Language (UML). The

experiences of developers of the usefulness of these techniques for multi-domain

system, single-domain system and component development was captured via a

questionnaire.

• Case Study 5 built on the results from Case Study 4 and refined the application

of UML to support more fully the reuse of components in systems that

implemented management business information flows. Jacobsen’s analysis

modelling technique [jacobsen92] and his facade modelling construct

[Jacobsen97] were used to model components in a more reusable manner, while

UML activity diagrams were used to help model business process interactions.

The case study was evaluated though a questionnaire.

Chapter 5 presents the results of the thesis in terms of methodological guidelines for

an open development framework. The evaluation of the individual case studies and

the state of the art analysis of suitable methodologies was synthesised into a set of

methodological recommendations. These commend the use of Use Cases, the UML,

Jacobsen’s analysis modelling abstractions and his facade modelling construct. The

recommendations are accompanied by specific modelling guidelines in the form of

extensions to the UML meta-model, which represent the core contribution of the

thesis. These meta-model extensions address:

• A simple but precise definition of the components of a Use Case Description.

• The definition of a Business Requirements Model, which combines use case

modelling, role and responsibility modelling, business process modelling and

multi-domain system modelling.

22

• The definition of a modelling construct called a Projection. This is similar to

Jacobsen’s facade construct, but with the use of Jacobsen’s analysis modelling

abstraction defined more precisely.

The application of these modelling constructs to the development process

interactions between the SMS development stakeholder types is then presented.

Chapter 6 presents areas were this work could be extended. It addresses: further

extending and validating the meta-model; aligning the models with emerging

software component architectures as they might apply to SMS; providing CASE tool

support for the integration of the modelling constructs with other open,

telecommunications modelling notations and applying the modelling concepts to the

future standardisation of service management capabilities.

Finally Chapter 7 concludes the thesis by assessing the results against the thesis

statement and the goals set out in Chapter 2.

As the case studies were collaborative exercises the author was not solely

responsible for defining the methodologies used. In Case Studies 1 and 2 the

methodologies applied were defined collaboratively by a core of the development

team, which included the author. For Case Studies 2 and 3 the methodologies used

were defined jointly and equally by the author and Vincent Wade of Trinity College

Dublin. The application of the business process to business role mapping and the

facade modelling construct in Case Study 5 was specified by the author alone. The

subjective evaluation of development techniques in the case studies is based both on

the author’s own experiences of applying the techniques and on the informal

feedback gained from other developers individually and through group discussion.

The empirical evaluations conducted for Case Studies 4 and 5 were entirely the

author’s work, as were the problem analysis of Chapter 2, the state of the art analysis

of Chapter 3, the methodological recommendations and guidelines of Chapter 5 and

the assessment of further work in Chapter 6. A reference to publications where the

author has already presented material in this work is given alongside that material.

23

To summarise, this thesis performs some empirical analysis of the applicability of

various software development techniques to the specific needs of stakeholders

involved in SMS development. The results of this analysis are used to define some

UML modelling constructs that, though generally applicable to open, multi-domain,

component based system development, are focussed on the development process

interactions identified between the SMS development stakeholder types.

24

2. Problem Definition
This chapter first defines a model of the organisational types that have a stake in the

development of SMS. It then reviews the current state of the art of service

management in terms of the available standards and applicable technologies. A set of

goals is then defined establishing an open SMS development framework.

2.1 Stakeholders in SMS Development

To fully understand the requirements for an open SMS development framework, a

good understanding is needed of the organisational types that have a stake in SMS

development. Many of the requirements are driven by the relationships the involved

organisational types may have with each other. In order to fully understand these

relationships and the resulting requirements a suitable organisational stakeholder

model must be established. Several models have been proposed by various fora and

researchers, which attempt to provide a basis for analysing the various business

entities involved in telecommunications management and the relationships between

them. The approach typically taken does not identify different existing organisational

types since the structure of the sector is changing too rapidly for the businesses

involved to be easily and durably classified. Instead, business roles are identified in

the hope that most businesses can then be classified as playing one or more roles.

Examples of role-based organisational models are the TINA Business Model

[mulder], the business model used in the EURESCOM project P.610 [nesbitt], the

enterprise model used in the RACE project MOBILISE [keil] and the TMF’s

Business Reference Model [nmf-gb910]. These models reflect the different business

concerns and technology choices of the group generating the model. For instance

TINA is heavily based on GDP principles, part of which is the concept of a trader

that directs consumers of services to providers based on a description of the service

required and other non-functional parameters such as cost. Hence TINA identifies a

Broker business role, not present in other models, that performs an GDP trader-like

activity. Also the P.610 and MGBILISE business models differentiate between a

25

public network operator role and an access network provider role, reflecting real

divisions in the market place, while TINA opts for a more abstract view with a single

connectivity provider. The roles identified by these are summarised in Table 2-1.

Role TINA p.610 MOBILISE TMF

Customer/Subscriber X X X X

End User X X

Service Provider X X X X

Connectivity Provide X X X

Access Provider X X

Third Party Provider X X X X

Service Broker X

Application Vendors X

Equipment/System Suppliers

Table 2-1: Comparison o f Business Model Roles

For assessing the requirements for a SMS development framework, a suitable

business model does not need to detail operational roles in more detailed than

needed to identify their impact on the development process. It is necessary; however,

to identify and highlight the relationships of stakeholder who have a direct impact on

the SMS development process. Though all of these models are part of frameworks

that intend to support the on-going development of telecommunications systems,

only the TMF model explicitly identifies a system supplier role. It also identifies a

third party application vendor to acknowledge that third party software is an

increasingly important way of reducing development costs.

The following business roles are suggested as ones with a significant stake in SMS

development. These roles are inspired by those identified in the TMF model, but are

26

tailored to aid the identification of requirements for an open SMS development

framework:

• Service Provider: A role that provides commercial telecommunication services

to a Service Customer.

• Third Party Service Provider: A role that the Service Provider must collaborate

with in order to provide the required service to the customer, e.g. underlying

services, content provision, peer services which extend coverage.

• Service Customer: A role that consumes and pays for the service provided by a

Service Provider.

• SMS Developer: A role that undertakes the development of the SMS required by

a Service Provider to manage its services.

• Software Vendor: A role that develops software to sell on the open market.

• Standards Developer: a role that develops standards related to service

management functions and relevant computing platforms.

The relationships between these roles have been limited to those that relate to the

development of SMS, and thus influence the requirements on the development

framework.

The SMS Developer role develops bespoke SMS for the Service Provider and the

Service Provider may select different organisations playing the SMS developer role

for different SMS development projects, including possibly the maintenance of

previous SMS from other developers. Typically these roles have been played by the

same organisation, but the model separates these roles in the anticipation that SMS

development will be increasingly out-sourced. The SMS Developer is motivated to

reduce SMS development costs and delays and SMS maintenance costs in order to

secure continued SMS development contracts from the Service Provider.

The Service Provider role is principally concerned with controlling the costs and

improving the quality of the service management it delivers, as well as managing

new services. It also agrees cost and time constraints for SMS development with the

27

SMS Developer role. The Service Provider is the main source of functional

requirements for the SMSs that are developed by the SMS Developer. These

requirements may include adherence to specific open standards as part of an overall

business strategy. However these requirements are also shaped by the relationships

the Service Provider has with other market players. For instance, a Service Provider

may not actually own and operate a network but may be part of a service provision

chain, as discussed in [davidson94][noam]. For the purpose of analysing the

requirements for a development framework it is sufficient to ignore the complexities

of possible value chains and simply consider the roles of Service Customer and the

Third Party Service Provider relative to the Service Provider. Business relationships

with these stakeholders may also include agreements to adhere to open interface

standards for operational interaction at the service management level. The current

lack of inter-domain service management standards and the concomitant scarcity of

off the shelf products to support such interactions mean that the collaborative

agreement and implementation of interoperable interfaces between SMS Developers

must be addressed by the model. Though the development of SMS for the Service

Customer and the Third Party Service Provider are outside the core focus of the

model, this relationship introduces the requirement for the SMS Developer to

interact with another SMS Developer contracted to provide an interoperable SMS to

the Third Party Service Provider.

Software reuse is widely seen as a key technique in meeting the challenges of

developing software within cost and time constraints [jacobsen97][karlsson]. One of

the most promising techniques is the reuse of Commercial-Off-The-Shelf (COTS)

software developed by a third party, modelled here as the Software Vendor role.

With COTS software reuse, the costs of developing and maintaining the software

component falls on the Software Vendor, who recoups it by selling the component to

as many customers as possible, the customer in this model being the SMS

Developer. In addition, the SMS Developer can also practise software reuse

internally by reusing solutions to frequently occurring problems, or by implementing

standard interfaces popular with SMS customers.

28

The Standards Developer will develop standards mostly in response to the petition

from the other roles. The Service Customer may petition for open service

management interfaces that enable it to move between Service Providers easily, thus

encouraging competition between them. Service Providers and Third Party Service

Providers may petition for service management interface standards to ease the

implementation of multiple third party relationships or to meet regulatory

interoperability requirements. The SMS Developer is motivated to support these

standards, as they will promote the reuse of software that implements them between

different SMS development projects. The Software Vendor will also have an interest

in management interface standards since they reduce the risk of investing in the

development of COTS software that conform to such standards. Both the SMS

Developer and the Software Vendor will also have an interest in using standards that

promote software portability and integration, e.g. CORBA.

This stakeholder model therefore emphasises the need for open standards to

underpin a competitive market both in the delivery of service management and the

provision of SMS software. The model is novel in identifying the Standard

Developer role as one that should be addressed by a development framework for

open service management. This recognises: that there is no dominant forum for

service management solutions; that work from many different fora are relevant to

SMS development and that an open development framework must therefore support

multiple standards developers. The interactions between the roles in the stakeholder

model are shown in Figure 2-1.

29

standards

components and
platforms

standards

interoperable
interface

agreementsSM
applications SMSDevelopment Domain SMS

Operational Domain management
services

management
services management

Service
Customer

SMS
Developer

Service
Provider

Standards
Developer

SMS
Developer

Software
Vendor

3"* Party
Service

Provider

Figure 2-1: Summary o f SMS development stakeholder roles and their relationships

The author believes that an approach to the design of a development framework

driven by the needs of software developers and standards developers rather than

being driven by architectural and technological consideration is a novel one and will

result in a more flexible and robust development framework.

2.2 Open Service Management

This section reviews existing open development frameworks that address service

management. It describes how each framework addresses service management and

also the structure of its functional architecture and scope of its population of reusable

parts.

2.2.1 Service Management in TMN

To date, several standards generating bodies have addressed the area of service

management. One of the first standards to draw the distinction between service

management and network management was the Telecommunications Management

Network (TMN) series of recommendation from the ITU-T [m3000]. The TMN

architecture is specified in recommendation M.3010 [m3010] and defines a Logical

Layer Architecture in which conceptual layers address different concerns within a

30

provider’s management network. The following layers are identified (listed from the

bottom up):

• A Network Element Layer (NEL) containing the network resources to be

managed.

• An Element Management Layer (EML) that is concerned with the management

of individual network elements.

• A Network Management Layer (NML) that is concerned with managing

individual networks.

• A Service Management Layer (SML) that is concerned with the management of

customer services.

• A Business Management Layer (EML) that is concerned with the management of

the entire enterprise.

Each layer is intended to provide the layer above it with the functions required to

perform its functions. Therefore, we can define the service management layer as

being involved in using network management layer functions both to support the

delivery of services to customers and to provide the functions needed by the business

management layer. M.3010 also states that the service management layer is

responsible for maintaining statistical information, interactions with other service

providers and interactions between services.

M.3010 specifies a functional architecture that identifies types of functional blocks

and the types of reference points that exist between them. The taxonomy of

functional blocks makes the distinction between: a Network Element Function

(NEF) managing individual network elements; a Mediation Function (MF) that

mediates between different TMN interfaces; a Q-Adapter Function to non-TMN

compliant network element managers; a Work-Station Function (WSF) presenting

information to human operators; and a general Operations System Function (OSF)

that monitors, co-ordinates and controls telecommunications functions. The

functional architecture identifies reference points that define the functions that may

31

be exchanged between functional blocks. Reference points therefore provide the

basis for defining interfaces between physical implementations of the functional

blocks. The functional architecture also distinguishes between the types of reference

points connecting functional blocks within a single TMN (q reference points) and

those connecting OSFs in different TMNs (x reference points). TMN management

functions are categorised, for the purpose of standardisation, into the areas of Fault

management. Configuration management. Accounting management. Performance

management and Security management. This categorisation is commonly referred to

by the acronym FCAPS. A functional decomposition of the TMN problem area can

therefore be represented as a five by five grid consisting of FCAPS in one axis and

the TMN layers in another [des403-I]. This can also be further decomposed on a

third axis according to whether inter or intra domain issues are being addressed, i.e.

whether the resulting reference points are x or q type (see Figure 2-2).

BML SML NML EML NEL

Fault

Configuration

Accounting

Performance

Security y

Inter-domain (x)

Intra-domain (q)

Figure 2-2: TMN separation of functional concerns

TMN interfaces are defined according to the methodology described in

recommendation M.3020 [m302Q-95], which results in the definition of management

services, management functions and management information models. This

methodology is discussed further in the next chapter. The TMN management

services defined to date in [m3200] are mostly network-related, with the exceptions

of Customer Administration and Tariff, Charging and Accounting Administration.

32

The more detailed TMN management functions defined in [m3400] also mostly

address the network and network element management layers, though the following

functions sets can be placed in the service management layer:

• Under Performance management there are function sets for subscriber service

quality criteria, customer service performance summary and customer traffic

performance summary.

• Under Fault management there are function sets addressing service outage

reporting, arrangement of repairs with the customer and the area of trouble

administration?

• Under Configuration management there are function sets addressing demand

forecasting and the area of service planning and negotiation, which involves

customer interactions, request for service functions and service status

administration.

• Under Accounting management there are several function sets related to the

areas of tariffing, pricing, collections and finance.

• Under Security management there are a few function sets addressing customer

security alarm, customer profiling, customer usage pattern analysis,

administration of customer revocation list, protected storage of customer data,

customer audit trail and customer security alarm management as well as many

functions that apply equally to customers and internal operations staff.

Some of management functions have been refined into information models, though

mostly for function in the EML and NML, e.g. the generic network management in

[m3100]. Some generic systems management functions exist in the form of OSI-SM

System Management Functions [x700].

Despite its network management focus, examples exist of TMN being applied

successfully to the architectural structuring of SMS for X.400 services [caluwe] and

broadband Virtual Private Network (VPN) services [bjerring94b][griffin95j.

33

2.2.2 Service Management for Intelligent Networks

One area where service management has been investigated in relation to standardised

services, is that of the management of Intelligent Networks (IN), as standardised by

the ITU-T in the Q.1200 series of recommendations [ql200]. Initial research into

this area suggested that functional entities defined in IN standards for performing

management functions could be implemented as TMN OSFs

[magedanz][pavlou95a]. This work raised the issue of how OSFs access via CMIP,

which is not optimised for real-time operations, could be integrated with signalling

technologies that satisfy the real time requirements of IN service control. This

revealed the lack of a clear functional demarcation between service management and

service control within the standards for both (i.e. TMN and IN respectively).

Problems were also identified with determining standardised solutions should handle

non-functional requirements. Much of the current research in this area advocates the

migration of both IN and TMN to a middleware based approach such as the one

proposed in the Telecommunication Information Networking Architecture (TINA)

[chapman], which is discussed in more detail below. IN service management

analysis has already influenced TINA, with a set of intra-domain management

requirements for IN Capability Set 2 [etsi-na608] being reflected in the design of the

TINA Subscription Management model.

2.2.3 Service Management in the TeleManagement Forum

One body that has analysed service management requirements more directly is the

Network Management Forum (NMF), which has recently been re-branded as the

TeleManagement Forum (TMF). This not-for-profit, industrial forum aims to build

on existing TMN standards with business agreements and procurement guidelines

that directly address the industry’s near-term needs. This is in recognition of the fact

that the ITU-T’s TMN standards address mainly network and network element

management from a bottom-up perspective, and are therefore difficult to apply

directly to business problems related to service management. In addition, problems

have been found in applying TMN standards in their existing form to specific

34

management problems. These experiences led to the definition by the NMF in 1995

of the Service Management Business Process Model [nmf-gb901]. This was a result

of a survey of several service providers in an attempt to identify key business

processes involved in the provision and operation of services. The aim was to

establish a provider-independent model that would help engage providers in the

process of developing business agreements by reducing the potential for revealing

sensitive proprietary process solutions. This model was supplemented in 1998 with a

more detailed analysis of the business processes involved in network management

[nmf-gb908]. These business models were combined and released as the TMF’s

Telecoms Operation Map (TOM) [nmf-gb910], which contains the business process

model shown in Figure 2-3.

Customer

Customer Interface Management Process

Fulfilment

Sales
(SA)

Service Planning/
Development

(SPD)

Network Planning/
Development

(NPD)

Order Handling
(OD)

Service
Configuration

(SC)

Assurance

Problem Handling
(PD)

Customer QoS
Management

(COM)

Customer Care Processes

Service Problem
Resolution

(SPR)

Service Quality
Management

(SQM)

Service/Product Oĥ velopment and Maintenance Processes

Network
Provisioning

(NP)

N ^ork Inventory
Management
I (NIM)

Network
Maintenance &
Planning (NMP)

Network and Sysjems Management Processes

Physical Network and Information Technology

Billing

Invoicing/Collection
(1C)

Rating &
Discounting

(RD)

Network Data
Management

(NDM)

Information
Systems

Management
Processes

Figure 2-3: TMF’s Telecoms Operation Map

In this model, the Customer Interface Management process, the Customer Care

processes and the Service/Product Development and Maintenance processes can be

regarded as those performing service management. The vertical divisions shown in

Figure 2-3 represent a broad functional partitioning of the processes into those

35

involved in service delivery (i.e. fulfilment) those involved in maintaining the

services (i.e. assurance) and those involved with billing for the service. These three

vertical process groups correspond to the FCAPS categories of configuration

management, performance and fault management combined and accounting

management respectively. The TOM describes each process in more detail

identifying activities performed within each process and the input and output triggers

that pass between processes, with those between processes potentially in different

service provider domains being highlighted.

This is the most comprehensive high-level functional architecture for service

management in the public domain, certainly amongst the ones claiming to be open.

As it is directly based on surveys of current service providers, the TMF regards this

as a living document that will be updated every few years to reflect changing

approaches to service provisioning and operation. Based on this model, the TMF is

performing ongoing work in defining open management interfaces, both between

service and network management processes, and amongst service management

processes. Of the latter the following interface agreements are completed:

• Trouble Ticket - Electronic bonding: allowing service providers to exchange

trouble information

• Trouble Ticket - Customer/Provider interface: enables customer SMS to receive

trouble reports automatically from a service provider’s SMS.

• Performance Reporting: provides common model for exchanging Service Level

Agreements (SLA) information between customers and service providers.

• Order Exchange: provides a generic mechanism for exchanging service ordering

information between service providers.

2.2.4 Service Management in TINA

Another body that has performed in-depth studies of service management is the

Telecommunication Information Network Architecture Consortium (TINA-C). This

industrial consortium has aimed to develop a comprehensive architecture for

36

telecommunications control and management based on the Open Distributed

Processing principles defined by ITU in [x901]. TINA-C has generated a detailed

development framework for the integrated control and management of multimedia

and information services, principally over broadband networks [chapman]. It has

drawn heavily on the recommendations from TMN, the IN standards and ATM

signalling and management standards &om the ATM Forum and ITU-T. TINA is

split into four constituent architectures addressing network, service, computing and

management concerns. The Network Architecture [tina-ma] and the Service

Architecture [bemdt95a] provide the main sources of detailed functional

specifications within TINA. The Computing Architecture specifies a Distributed

Processing Environment (DPE), which is the distributed, object-oriented software

platform over which all TINA functions are provided [graubmann]. The

Management Architecture [delafuaente94][delafuente95] defines the principles

under which telecommunications management is performed in TINA, though the

actual functionality is defined in the Network and Service Architecture

specifications. The TMN logical layers are used as a basis for TINA’s own logical

layering of management functionality. The Management Architecture has a Service

Management layer corresponding to the TMN SML. Below that it has a Resource

Management layer which encompasses the TMN NML but also includes the

management of the connectivity requirements for multimedia communication

session. Finally the Element Management layer encompasses the TMN EML. TINA

does not address the TMN BML. Figure 2-4 shows the scope of Telecommunications

Management in TINA, together with the scope of Computing Management, which is

applied to the applications performing service and management functions as well as

the supporting DPE and computing and networking infrastructure.

37

T elecommunications
Management Area

Service Elem entResource

\ i
\
\ /

Applications

DPE

W orkstations & Servers

DPE Transport Network

Transport
Network

Computing
Management Area

Figure 2-4: Management Areas in TINA

Management concerns within each layer are addressed within the FCAPS categories,

however TINA extends their scope beyond those traditionally assumed for

management. Specifically, in the Resource Management layer, configuration

management is split into resource configuration, similar to the TMN interpretation of

network configuration management, and connection management, which maps onto

control aspects of the network which are typically addressed through signalling

standards in the ITU-T and ATM Forum. This is due to TINA’s assumption that the

same DPE infrastructure is used for both management and connection control and

hence classifies the latter as management also. A similarly close integration between

management and what elsewhere is regarded as service control is present in the

TINA Service Management layer as defined in the Service Architecture. This is

advantageous in some respects since it enables the same concepts and mechanisms

for interacting with users to be applied to both service delivery and service

management. The distinction between control and management functions is

38

maintained in the definition of TINA reference points where they are allocated to

core service segments and ancillary segments respectively [mulder].

Detailed service management functions are defined within TINA in the Service

Architecture. This specifies detailed models for Subscription Management and

Accounting Management. Subscription Management covers service life-cycle

management, i.e. the introduction, suspension, and withdrawal of services composed

of different service features, as well as customer life-cycle management, i.e. the

subscription of customers to services and the authorisation of users to use these

services. Accounting management addresses the collection of service and resource

usage information, its assembly into charges and its distribution as bills.

Subscription and accounting management are both tightly integrated with the TINA

session concepts, around which the rest of the Service Architecture is structured.

This principally is integration between subscription management and the access

session, which mediates which services a user can invoke, and between accounting

management and the service session, which controls the distributed execution of the

service. Fault, Performance and Security Management are not yet directly addressed

in the Service Architecture.

2.2.5 Current Status of Open Service Management

From this review of current open standards, it can be seen that there is no single

accepted definition of service management. Though TMN addresses service

management directly, it provides no clear definition of the boundaries of the SML

and little in the way of functional content for this layer. The TMF Telecoms

Operation Map provides a more complete view of the processes that are involved in

the service management layer, though this model is not intended to be definitive, but

an evolving contextual guide to their on-going efforts to generate open interface

agreements prioritised by TMF members. Other attempts at defining service

management functionality have been performed in support of specific open services

such as IN and X.400. TINA presents a more generic open service definition based

on the concept of sessions. While TINA services are connection-oriented and based

39

on the use of a DPE, research has shown that the session concepts can be adapted for

use in environments with different network and computing technologies, e.g. the

Internet [Iewis98a][dezen98] and IN [herzog]. This implies TINA service

management features may be widely applicable, though this is still a research issue.

The relative immaturity of open service management standards, however, is

indicated by the lack of evidence of these standards being used in industry. British

Telecom for example, while accepting TMN in principle, has evolved its own

operational support system architecture [furley].

In attempting to define service management based on open standards the following

statements can be made:

• Service management is concerned with the activities within a service provider

organisation that manage the delivery of telecommunication services to the

customer.

• Service management makes use of network and network element management

functions.

• Service management provides functions needed for the business management of

service provider enterprises.

• Service management deals with customer sales queries, customer service orders,

customer problems with service failure or performance and with charging the

customer for the service.

• Service management is concerned with the deployment and withdrawal of

services.

• Service management does not encompass the management of hardware or

software components involved in the delivery of services. These are handled by

network and systems management functions.

• Service management does not encompass management of the computing

platform on which services or management services are provided.

40

Despite these common definitions, the fact that there is no widely accepted

functional architecture that can be prescribed for an open SMS development

framework means that the other portions of the framework must therefore support

the ongoing development of multiple functional architectures and their growing

populations of reusable functional units.

2.3 Technologies Applicable to Service Management

Many different technologies are currently being put forward as candidates for service

management. The first management specific technologies were two rival manager-

agent protocols, which were initially designed for managing network elements.

Manager-agent protocols enact management on communications resources through

their representation on an agent as a collection of Managed Objects (MOs).

One of the manager-agent protocols, SNMP [case], emerged from the Internet

community. This protocol dominates the management of network elements in the

data-networking sector but has not yet been applied to service management. To date,

there has been very little interest in general from the Internet community in service

management. There is, however, a growing recognition that issues of customer

service profiles and billing [arkko] are key to the development of the Internet once

IP-based services provide quality of service. Nevertheless, there is still little

evidence of SNMP being applied to service management, with new protocols being

developed in support of service management requirements instead [yavatkar].

The other manager-agent protocol is the Common Management Information Protocol

(CMIP) [x711] underlying OSI System Management framework X700 series [x700].

This has been widely accepted by the telecommunications community, and was

adopted for implementing the physical architecture in TMN, notionally including

systems in the Service Management Layer. When applied to inter-domain

management, which is typically enacted in the SML, the need was identified for

CMIP to be integrated with X.500 directory in order to allow transparent navigation

between MOs on separate agents [stathopoulos][bjerring94a]. The TMF has

developed some service management related interface agreements using CMIP, and

41

several research projects have attempted to implement service management OSFs

using CMIP platforms [hall96][griffin96][galis]. There is, however, little evidence

that CMIP has been used for industrial service management applications to date.

Research experiences in developing CMIP OSs reveal that the difficulties

experienced were closely related to the CMIP Application Programming Interface

(API) made available to the developer in the platform used. These APIs ranged from

low level ones such as XMP/XOM used in Hewlett-Packards Open View system, to

the high level RMIB C++ [pavlou94] and Tcl/Tk APIs used in the OSIMIS platform

[pavlou95b]. The differing nature of these APIs also precluded the reuse of code

across platforms, though recently the TMF has produced an open C++ CMIP API

[chatt].

Interoperation between managers and agents implemented using the different

protocols is possible using gateways for converting between SNMP and CMIP

[mccarthy] [dassow]. However when accessing a CMIP agent from an SNMP

manager via such a gateway, some of the protocol features of the more functionally

rich CMIP, e.g. scoping and filtering, are lost.

Increasingly, the OMG’s Common Object Request Broker Architecture

[corba][chen97a] is being advocated for telecommunications management [stringer].

As with manager-agent protocols, CORBA provides client-server interoperability

between remote systems through the use of standardised protocols, but without the

built-in support for event notification and multiple object access available with

CMIP. In addition, CORBA supports the standardisation of APIs for performing

remote procedure calls from clients to server objects. This is done through

standardising the mapping between various programming languages and the

Interface Definition Language (IDL) used to describe CORBA server interfaces.

Compilers can generate client stub and server skeleton code in a number of

languages, e.g. C, C++, Java, Cobol, and Ada.

The OMG’s Object Management Architecture (OMA), which encompasses CORBA

[pope], therefore represents an open functional framework that could be applied to

42

SMS. The functional structuring within the OMA is not strongly prescribed, with the

primary separation being into areas of increasing speciality. The separations are into

categories of: generally useful CORBA Services [oma-cos] (e.g. the naming, event

and persistence services); CORBA Facilities that are useful across application

domains and Domain Facilities that provide domain specific solutions, e.g. the

output of the OMG’s Telecommunications Domain task force. Typically CORBA

Facilities will make use of CORBA Services, while Domain Facilities will use both

CORBA Services and Facilities.

The level of advocacy for the adoption of CORBA for service management varies.

TINA-C has adopted the position that its DPE can be implemented using CORBA,

and therefore that CORBA may be used for the control and management of both

networks and services. There is a broad consensus, summarised in the TMF’s

Technology Integration Map (TIM) document [nmf-gb909], that the investment in

network element management, and to a lesser extent, network management using

CMIP and SNMP will result in these technologies persisting in these roles. This is

reinforced by the features they provide for efficiently interacting with large numbers

of managed objects distributed over large numbers of network elements, which are

not available in CORBA. However there are strong arguments for CORBA to be

adopted in the service management layer where CMIP does not yet have a strong

foothold and so there is little or no CMIP based legacy to support. These arguments

include: easier integration with legacy business systems, more likelihood of

applicable CORBA applications emerging from the wider IT community, greater

availability of CORBA development expertise and a wider range of platforms at

lower prices. The growing popularity of CORBA has prompted the investigation of

CORBA to CMIP and CORBA to SNMP gateways [deri], with standardised

solutions now being available from the Joint Inter-Domain Management (JEDM)

taskforce formed by the TMF and X/Open [soukouti]. An alternative approach to

exploiting the TMN legacy that has been attempted for network management is to

use the existing CMIP-oriented specifications to structure CORBA solutions

[griffin97] [potonniee].

43

The OSF’s Distributed Computing Environment was an earlier distributed

computing platform that was considered for use in telecommunication management,

as described for example in [gazpos]. The OSF also built on DCE in developing the

Distributed Management Environment (DME) which aimed to bring together

network and system management in an object oriented manner. The use of DME was

largely unsuccessful [marcus], and the use of DCE has now been largely superseded

by CORBA.

Another recent technology that has received much attention for its applicability to

management is the World Wide Web and downloadable application code in the form

of Java applets. The low cost and sudden near ubiquity of WWW browsers makes

them an attractive option for management applications. Several solutions have been

found for using WWW browsers for browsing agents, e.g. [barillaud], while the Java

to IDL binding enables interaction with CORBA-based management information.

To summarise, there seems little likelihood of a single distributed technology

becoming dominant for the implementation SMS in the near future. However,

technology gateways between candidate technologies seem to be feasible, and are

being integrated into management platforms [rahkila] [rasmussen], so this may not

pose a major obstacle to SMS interoperability. It is clear, therefore, that the other

portions of the development architecture must support the development of SMS on

multiple different technological platforms. As distribution technologies are closely

integrated with modelling techniques, e.g. CMIP with GDMO, SNMP with SMI and

CORBA with IDE (see next chapter), the range of platforms that must be

accommodated must be reflected in the range of interface specification techniques

that must be supported in the development framework.

2A Synthesis of Requirements

Based on the analysis of the architectures and technologies that may apply to service

management and the model of business roles that are involved in the development of

SMS, this section lays out the goals for an effective open development framework

for SMS.

44

The focal beneficiary of a development framework is the SMS Developer role as it is

the support of this role that is the principle activity of the Standards Developers and

the Software Vendors in this context. The SMS Developers are driven by the

requirements imposed on them by their customers, i.e. the Service Providers who

will use the SMS. The first goal can therefore be stated as:

Goal 1: The Development Framework must support SMS Developers in developing

SMS that satisfy the business needs o f Service Providers, including its business

interactions with Service Customers and Third Party Service Providers.

To satisfy the first goal, the SMS Developer will gain the maximum benefit from a

development framework if it addresses all its internal software development

activities. Hence we can summarise the next goal as:

Goal 2: The Development Framework must address all stages o f SMS development,

i.e.: requirements capture, system analysis, system design, systems testing, system

deployment and system maintenance.

The Service Provider operates in an open service market underpinned by open

interface agreements that ensure the interoperability of its own SMS with those of its

Customers and Third Party Service Providers. In addition, the SMS Developers wish

to benefit from open IT solutions to enable the construction of system from solutions

obtained from multiple different sources (i.e. Software Vendors). Therefore:

Goal 3: The framework must support SMS Developers in the application o f open

standards from Standards Developers.

The SMS Developers need to operate within cost and time constraints to ensure

competitiveness and profitability. One approach to this is to build SMS products

based increasingly from a portfolio of existing, internally developed software and to

be able to exploit software bought of the shelf from Software Vendors. Hence the

next two goals can be stated as:

Goal 4: The Development Framework must support SMS Developers in the reuse o f

design solutions and software over different project.

45

Goal 5: The Development Framework must support SMS Developers in using

commercial off the shelf software components developed by Software Vendors.

For the Software Vendor, the risk of developing software for use by SMS

Developers is reduced if that software product addresses known industry

requirements as expressed in open industry agreements. Therefore a further goal is:

Goal 6: The Development Framework must support Software Vendors in the

application o f open standards in developing its products.

As we have seen in Section 2.2, no dominant functional architecture is emerging for

service management, so the parallel development and co-existence of several

functional architectures and constituent functional units must be supported.

Therefore the development framework should be one that can be applied to the on­

going development of standards within existing open development frameworks,

including the continued use of standards not originally developed according to the

common development framework. Hence:

Goal 7: The Development Framework must support Standards Developers in the on­

going development and evolution o f open standards to be used by SMS Developers

and Software Vendors.

As we have seen in Section 2.3, a wide range of different technologies are applicable

to service management, and are likely to co-exist thanks to interoperable gateways.

Therefore a further goal is:

Goal 8: The Development Framework must support the development o f SMS that

operate over heterogeneous computing platform technology and that will be robust

to changes in computing platforms.

Finally, a clear requirement for the widespread uptake of a development framework

is that it is simple to understand and easy to use for practitioners. An important key

to usability is the amenability of the framework to Computer Aided Software

Engineering (CASE) tool support. A wide range of CASE tools have been applied to

the development of management systems, which presents problems in terms of

46

integrating development processes and exchanging models [valiant]. A common

development methodology must be deployable on as much of the installed base of

CASE tools as possible, but should also facilitate the development of more suitable

CASE tools if necessary. Therefore the final goal is:

Goal 9: The notations and methodology o f the development framework should be

easy for those playing SMS development stakeholder roles to understand, and should

be readily supported by CASE tools.

2.5 Summary

To summarise, the lack of a common functional architecture described in Section 2.2

and the range of technological solutions applicable to service management described

in Section 2.3 retard the definition of common architectural guidelines as part of the

development framework. The effectiveness of any common development framework

must therefore depend more on the common applicability of its methodological

guidelines, rather than on that of its architectural guidelines. For this reason the

thesis proposes that a common methodological approach to the whole SMS

development problem will be more effective than attempting to synthesis yet another

set of common architectural guidelines. The above goals will therefore be used in

subsequent chapters to assess the suitability of existing methodologies for SMS

development, to analyse the requirements for methodological guidelines in the

development framework and to test, through case studies, different approaches that

combine existing development techniques.

47

3. Analysis of Existing Frameworks and

Requirements Synthesis
This chapter reviews the various existing software development methodologies that

have been applied within the telecommunications domain and to the development of

management systems in particular. A very wide range of software development

methodologies exists, so this analysis is restricted to those that most closely match

the requirements for an open SMS development framework given in the previous

chapter. The methodologies addressed are ones that are part of de facto or de jure

standards and/or ones that are closely related to the technologies applicable to

service management as described in Section 2.3.

The review of methodologies is split into three sections. The first addresses

methodologies that have emerged from the general software engineering community,

in particular the ones that have been widely accepted or standardised or which have

had a visible influence on standard management systems development

methodologies. The second section addresses the methodologies that have come

from the distributed systems community, in particular those related to Open

Distributed Processing. The third section addresses methodologies that have been

developed for telecommunication system development and for management system

development in particular. Material presented in this chapter relating to M.3020, the

TMF methodology and the TE^A methodology is based on an existing survey by the

author [lewis99c].

This chapter is concluded by a fourth section which attempt to synthesise the

methodological techniques that have been analysed into a high level categorisation

of development models and processes. This categorisation is mapped onto the needs

of the SMS development stakeholders identified in Chapter 2.

48

3.1 General Software Engineering Methodoiogies

The last decade has seen the generation and promotion of a huge number of general

software development methodologies, though to date no one methodology has

emerged as dominant. However, two categories of methodology that have gained

wide spread acceptance are Object Oriented (0 0) Analysis and Design and Business

Process Engineering. A further technique. Design Patterns, has also attracted much

recent attention, and shows potential for aiding the communication of common

solutions between developers. These different techniques are reviewed in the

following sections together with their application to SMS development where

relevant.

3.1.1 Object Oriented Analysis and Design

Object Oriented Analysis and Design (OOAD) methodologies use concepts

originally developed for object oriented programming with languages such as C++

and Smalltalk. Most OOAD methodologies therefore share common concepts of;

object instances containing state only accessible through a well-defined interface;

object classes that defined the interfaces and the inheritance between object class

definitions. The earlier Object Oriented (OO) methodologies focussed on design,

where OO modelling provided benefits by localising design changes and thus

minimising unexpected interactions. OO design also removed the problems related

to having shared data areas and were considered well suited to distributed or parallel

system implementations. Though OO designs do not have to be implemented in an

OO programming language the mapping from design to implementation is much

more straightforward if they are, with the generation of OO-language code from OO

designs becoming a major benefit of OO design. 0 0 analysis exploited 0 0 concepts

in the modelling of real world situations that were to be addressed by software

systems. Typically problem domain artefacts were identified from requirements

statements through techniques such as mapping nouns phrases to objects and verbs

to methods on objects. As with the relationship between 0 0 design and OO

programming, OO analysis may be useful without integration with OO design

49

techniques, however integrated OOAD methodologies have emerged the most

popular.

A wide range of OOAD methodologies has been generated, with Graham, in his

1994 book [graham] identifying over 28 distinct methodologies. One of the earliest

and most influential 0 0 methodologies was that developed by Grady Booch in 1991

and revised in 1994 [booch94]. Booch observes that all software development

methods include: a notation for expressing the various models used; a process

describing the ordering of development activities and tools to aid the developer

follow process rules, reduce errors and maintain consistency. In Booch’s

methodology, the notation is structured as a logical model, expressed in class and

object diagrams and a physical model expressed in module diagrams and diagrams

showing the distribution of processes between processors. The dynamic aspects of

the notation are provided by state transition diagrams for individual classes and

interaction diagrams showing the flow of messages between classes. Booch advises

that the development process should be both iterative and incremental, but

acknowledges the need for waterfall-based project management to ensure progress is

monitored and guided correctly. He therefore categorised the process into two parts.

Firstly, developers cycle through a micro development process consisting of

identifying classes and objects, identifying their semantics, identifying their

relationships, specifying class and object interfaces and implementing them.

Secondly, the project must follow a macro-process, which starts with establishing

core requirements, developing a model of the desired behaviour (i.e. analysis),

creating an architecture (i.e. design), evolving the implementation and subsequently

managing post-delivery execution (i.e. maintenance). As pointed out in [graham], the

Booch methodology focuses more on the design and implementation part of the

overall development process and is weak in providing guidance for capturing and

analysing user requirements, suggesting only that these be based on scenario

descriptions. Though Booch’s object oriented design modelling concepts were very

influential, there is little evidence of the notation being used for telecommunication

management related activities.

50

Another influential methodology that first appeared around the same time as Booch’s

was James Rumbaugh’s Object Modelling Notation (GMT) [rumbaugh]. GMT

places an emphasis on the object oriented modelling of concepts rather than just of a

design solutions and thus can be categorised as an integrated GGAD approach. This

methodology is structured around three models: an object model using object class

diagrams, a dynamic model using nested state diagrams and a functional model using

data flow diagrams that show how processes operate on data originating from

individual objects or aggregate data stores. The process is split into three phases:

systems analysis; system design, where the system is subdivided into more workable

units and object design, where the objects and their relationships identified in the

analysis are elaborated upon. Rumbaugh places a similar emphasis to Booch on

using an iterative process, but places more emphasis on the analysis phase and on the

dynamic and functional models. The rich expressiveness and clarity of the object

modelling notation made it popular in many applications. It was applied to the

modelling of management system by the TMF for a period (see later in this section)

and was used by TINA-C for expressing models in the GDP information viewpoint

(see Section 3.2 for further details). There are few examples of the full GMT

methodology being applied to management. The application of GMT to VPN

management service design in [chan-m] is unusual in that it uses the functional

model but not the object model. Examples exist for IN development

[dezen97][milsted]. In [milsted], it is observed that though the GMT dynamic model

expresses the change in state of objects, it does not readily allow the representation

of how relationships between objects vary over time. The solution proposed is to use

a ‘storyboard’ that consists of an ordered sequence of object instance diagrams.

Another popular GGAD methodology is Gbject Griented Software Engineering

(GGSE) first described by Ivar Jacobsen et al in [jacobsen92]. This was first worked

upon while Jacobsen was working for Ericsson, and is therefore well grounded in

telecommunications software development. This methodology places more focus on

the capture and analysis of requirements than Booch or Rumbaugh’s. It introduces

the concepts of use case modelling and analysis modelling. Use case modelling

51

involves describing textually the interactions of users with the system under analysis,

thus providing a structured, semi-formal representation of the system’s functional

requirements. Use cases and their interactions with users, or actors as Jacobsen calls

them, can be summarised in use case diagrams. Also use cases can be generalised, so

that common patterns of user-system interaction can be captured and requirements

therefore can be stated more concisely. Analysis modelling is a high-level form of

object modelling where use case text is analysed to generate objects of three types.

These object types are: interface objects dealing with the interactions between users

and the system; entity objects modelling information in the system and control

objects which operate on one or more entity objects and interact with actors via

interface objects. Such high level modelling is claimed by Jacobsen to clarify the

architectural issues of system development and thus contributed to a more robust

design. Modelling with analysis object is therefore referred to as robustness

modelling. These objects are represented as specialised icon in a robustness model

diagram that showed static relationships between them such as inheritance and

message channels. These objects and their relationships are then transformed into

more general purpose design object diagrams. These are refined with the aid of

sequence diagrams, which are driven by use case descriptions, and the consideration

of the system’s implementation environment, e.g. database and distribution

requirements. Jacobsen claims that the power of this approach lays in use cases

being the focus for modelling activities at all stages of development, i.e. for analysis

modelling, design modelling, implementation and testing. He therefore claims that

OOSE covers more of the development process than the Booch and Rumbaugh

methodologies. Though use cases have been widely used in management related

methodologies (see the TMF and P.610 approaches discussed later in this section

and the application of use cases in Case Studies 3, 4 and 5 in Chapter 4), there has

been little evidence of the analysis object types being widely applied.

Jacobsen further refined his methodology in 1997 in [jacobsen97], which applied use

case and robustness modelling to software reuse. This approach uses a modelling

construct called a facade which presents a view of a component for its reuse by using

52

relevant modelling elements from its use case, robustness analysis, design,

implementation and testing models. Though there is little evidence of this construct

being applied to management systems, it has been assessed in the SMS development

context by the author in [lewis99b] and as part of Case Study 5 in Chapter 4.

The most significant potential impact these three methodologies have had on the

SMS development problem has been through the evolution of the Unified Modelling

Language (UML) [booch99][eriksson][fowler]. The development of UML was

motivated by the realisation that though the processes used in the different

methodologies varied, and often had to be adapted to specific problem domains, the

notations contained many similar modelling concepts. UML was developed jointly

by Booch, Rumbaugh and Jacobsen while working together at Rational Software

Corporation. UML version 1.1 has now been adopted as a standard notation for

OOAD by the OMG [ad/97-08-03], which now also controls its evolution. The

semantics of the language are expressed as a meta-model that defines the types of

modelling elements that UML provides, the relationships that may exist between

them and the constraints that are imposed on those relationships [ad/97-08-04].

UML also provides notational guidelines for the visualisation of models in a variety

of diagram types [ad/97-08-05]. The diagram types are:

• Class diagrams visually similar to OMT.

• Object diagrams showing class instances.

• Use case diagrams based on OOSE.

• Interaction diagrams of two types, sequence diagrams showing interacting object

instances as vertical bars and collaboration diagrams showing interactions

between objects instances as depicted in object diagrams but connected by

temporally enumerated message lines.

• State-chart diagrams showing the event driven state machine behaviour of a

system.

53

• Activity diagrams, which are a specialisation of state-chart diagrams showing the

flow of control between activities in a system.

• Component diagrams showing the organisation and dependencies of components

and the interfaces that exist between them.

• Deployment diagrams that show the runtime configuration of processing nodes

and the components that operate on them.

An additional strength of UML is its extensibility mechanisms, which allow the

language to be extended in a controlled way. These mechanisms are: stereotypes,

which allow new modelling elements to be derived from existing ones; tagged

values, which allow the information handled by the modelling elements to be

extended and constraints, which allow new semantic rules to be added or existing

ones modified. The OMG supports a mechanism whereby process specific

extensions for UML can be agreed. For example a proposal exists for supporting

UML extension for the analysis object types found in Jacobsen’s OOSE

methodology [ad/97-08-06]. The definition of a suitable process to apply UML is

intended by its authors to be a matter for individual problem domain groups to agree

upon. Some general UML^based development processes are emerging

[korthaus] [alien] [kivisto] as are initial experiences from industrial use of UML

[hruby]. UML's standardised status has greatly accelerated its support within CASE

tools and it is increasingly widely accepted as the standard notation for OOAD. It has

therefore attracted attention from bodies such as TINA-C, TMF and EURESCOM as

a suitable notation for defining management standards. However, the opportunity to

agree common UML profiles or processes for telecommunication management has

not yet been exploited.

3.1.2 Business Process Modelling

Though OOAD techniques have provided major benefits for software engineers, they

are not always very accessible to the managers, customers and other players in a

business who have to supply and agree the requirements of a system and understand

its operation and its implications for their business activities. It is shown in [arlow]

54

for example that while non-technical managers, users and domain experts had a good

comprehension of UML use cases, this fell off rapidly when dealing with class,

interaction and state diagrams. Business process modelling is one increasingly

popular approach to bridging the gap between describing the business needs of a

company in a way that those involved in its operation can understand, and defining

the requirements for IT systems that support these needs. Business process

modelling is widely used to assist in general business process re-engineering,

defining and controlling the flow of work within organisations, configuring standard

software, developing bespoke software and performing activity-based costing.

Notations such as Event-driven Process Chains (EPC) are used to depict: the

relationship between business functions and events; the flow of control between

functions and the flow of data between functions and the users or organisational

units with which they interact. EPC also supports additional modelling features such

as timing constraints on functions and probability of control flow options to enable

the simulation of what-if scenarios when performing business process re-engineering

and the determining of performance requirements for supporting IT systems. As

pointed out in [allweyer], UML activity diagrams support some of the

expressiveness of EPCs, but would need to be enhanced and better integrated with

class and use case models to provide similar analytical power.

The main proponent of business process modelling for management systems is the

TMF. Its Telecoms Operations Map is intended as a provider-independent process

model for use in driving the agreement of common interfaces.

3.1.3 Design Patterns

The software engineering community has recently recognised problems with reuse

techniques that rely solely on obj ect-orientation. One response to these problems has

been to adapt the concept of Design Patterns from the architectural and construction

industry and apply it to software reuse as demonstrated by Erich Gamma [gamma].

Design patterns aim to capture the knowledge of experienced designers and

document it in a manner that facilitates the communication of architectural

55

knowledge and known design traps to other developers. Typically, therefore, design

patterns represent common, well-proven designs. There are several, slightly different

forms suggested for documenting design pattern, however they all follow a common

structure. At a minimum a design pattern states a problem and outlines a solution to

it, with a context description that indicates the applicability of the solution. The latter

part is key, since the aim is not to sell the pattern to the reader, but to provide the

information needed by the reader to enable them to gauge whether the solution

presented fits well to the problem with which they are faced. An important feature of

a pattern is a suitable, and preferably brief, name. In this way, it is hoped that

pattern-based terminology will evolve into a more powerful means for

communicating between software developers. Great emphasis is placed on

expressing patterns concisely and clearly. Ideally they should also contain an

example of an application or coding of the pattern. Design patterns are typically

collected together into Pattern Catalogues [coplien] [vlissides], though more benefit

can be gained for the user when a collection of related patterns, possibly addressing a

specific application domain, are carefully cross-indexed, to show how the solutions

can work together in different ways. Such an inter-related collection of patterns is

referred to as a Pattern Language. Gamma’s original pattern catalogue addressed

how small groups of software objects solved common problems, however patterns

have been written to address a wide range of problems up to and including patterns

for structuring enterprises. Mowbray and Mai veau [mowbray] suggest that patterns

could actually be categorised into levels of architectural scale from those containing

a few classes to those spanning several organisations.

Design patterns therefore show potential as a way of exchanging knowledge between

developers, with examples of telecommunications solutions expressed as patterns

becoming more common in the literature [aurrecoechea] [meszaros]. However, it is

less clear how patterns can integrate with the exchange of specific OOAD models.

Though UML had a notation for expressing patterns, the author has found no solid

examples of how this can be applied within a broader OOAD specification.

56

3.1.4 Relevance to SMS Development

The above general software engineering techniques vary in their relevance to SMS

development. OOAD is clearly relevant to the development of SMS. However, as

pointed out by Martin, based on experiences of applying OOAD the

telecommunication systems development [martin], most OOAD approaches do not

take into account the inclusion of models from sources that have not followed the

same approach or used the same notation. This presents a problem within the context

of SMS development stakeholder model presented in the previous chapter where

models must be imported from both the software vendor and the standards

developer. With respect to the latter, Martin recommends that the fora generating

models for telecommunication interface standards should migrate to an OOAD

approach so that the full benefits of these techniques could be exploited when

integrating the resulting specifications into applications.

The TMF has explicitly recognised this problem in its internal modelling and design

methodology [vincent]. This provides methodological guidance to those within the

TMF responsible for developing open interface agreements. It describes the

definition of the interface as an adjunct to the development of the systems that

provide the solution to the problem for which the interface was required. This

therefore involves consideration of the systems on both sides of the interface, rather

than just the modelling of agent/server management services, management functions

and managed objects as had been performed previously in management interface

development (see Section 3.3 for more details). The TMF methodology borrows

heavily from contemporary OOAD methodologies such as those described above.

The process consists of the following stages:

• System Overview: This uses use case diagrams to define the context of the

system. An interesting addition is to allow specific actor-system interaction flows

to be identified at this stage as conforming to an existing standard. Also the

interactions that are the focus of the interface definition effort are made distinct

from those simply providing contextual support.

57

• Problem Statement Capture: This involves two techniques ideally performed

with the co-operation of the potential standard user community:

• The enumeration of requirement statements and their categorisation into ones

relating to: structural information, dynamic information, abnormal

conditions, expectations and non-functional requirements and system

administration requirements.

• Detailed use case descriptions focussing on the actor-system interactions

under scrutiny, these include traces to requirement statements.

® Requirements Modelling: This involves refining the problem statements and use

case descriptions to identify common pieces of information and to provide

clearer descriptions of their usage and the functions that may be performed on

them using the OMT models.

• Analysis Modelling: This involves transforming the requirements analysis into a

system design by further refinement of the OMT models. It is recommended at

this stage to use, if possible, existing design patterns or to use object types

similar to Jacobsen’s analysis objects in order to structure the design.

• Design modelling: This involves mapping the analysis model into its

implementation environment which consists of a standardisation framework (the

TMF’s TOM being the obvious choice) and the system’s technical environment

such as operating systems and databases.

Unfortunately no information is available as to the effectiveness of this process as

used by TMF development teams. However, the approach is being used and is

rapidly evolving, with a revised version of the methodology, based on the use of

UML as the notation, under development.

A further initiative by the TMF that builds on this methodology is that of protocol

neutral modelling. This aims to define interface standards in terms of OMT class

models and then automatically generate from these models interface definitions in

the notation required, e.g. the OMG’s IDL or the ITU-T’s Guidelines for the

58

Definitions of Management Objects (GDMO) [x722]. To this end the TMF has

defined mappings between OMT and GDMO and, as protocol neutral modelling has

evolved to use UML, have done a similar mapping between UML and GDMO.

Extensions to existing tools to support these mapping are also available. The aims of

this approach are to make the interface modelling work robust to changes in

distributed platform technologies and to allow them to be applied across a wider

range of such technologies. As reported in [hall98] however, problems were

experienced in supporting mapping from OMT to both IDL and GDMO due to

differences in how they represent aggregation relationships, name bindings and

relationships between objects, as well as the presence of specialised mechanisms

such as scoping, filtering and notification in GDMO. This means interface

specifications generated from a common OMT model will sub-optimal for

implementation using either of the interface definition languages.

Significantly, the TMF has not yet integrated its business process model closely with

requirements capture in this methodology, though this is an item of study within the

Forum. In practice, the business process model is just used to scope a study area

rather than in the analysis of requirements, e.g. [nmf-504][chen97b]. It would seem

likely, however, that techniques such as EPCs or UML activity diagrams would be

useful in determining how this common process model may be systematically

refined into individual interface agreements. It is pointed out in [mcleod], for

example, that grouping activities into vertical swim-lanes in UML activity diagrams

can be used to identify the separate domains, typical in SMS problems. The

boundaries between swim-lanes can therefore be used to determine the control and

information flow requirements of interfaces between those domains. A similar

approach to refining interface designs from the TMF Business Process Model is

presented by the author in [lewis99a] and is assessed as part of Case Study 5 in

Chapter 4.

Other OOAD methodologies have been applied to SMS development. In applying

the FUSION OOAD methodology, it is noted in [saydam] that though the approach

led to a straightforward and consistent design of a solution from an object oriented

59

analysis of customer needs, it was not well suited to the development of distributed

system. Few OOAD techniques currently address the needs of distributed systems

well though this is an area of ongoing investigation. For instance the OMG have

recently released an RFP for a UML profile for CORBA [ad/99-03-11]. The

application of OOAD techniques in the context of Open Distributed Processing is

discussed in more detail in the next section. There are few reports of experiences of

SMS development using CASE tools, but in [neilsen] an OMT graphical editing tool

was found invaluable in speeding the generation of the various models and

presenting and revising diagrams for discussions between developers for a VPN

SMS. This work formed part of the project studied in Case Studies 1 and 2 described

in the next chapter.

To summarise, OOAD techniques have much to offer to the development of SMS,

and are also finding application in the development of standards at least within the

TMF. Business process modelling is a potentially important technique in relating

business requirements to system requirements, but techniques for integrating this

with OOAD techniques are not well established. Finally, the use of design pattern

could potentially be applied to the exchange of knowledge between SMS

development stakeholders, but the immaturity of techniques to integrate patterns

with OOAD models makes them difficult to include in any methodological

guidelines.

3.2 Open Distributed Processing Reiated Methodoiogies

In response to some of the problems raised by the complexities of large scale

distributed systems, ISO has developed the Open Distributed Processing Reference

Model (ODP-RM) [x901][x902j. This reference model aims to support the

specification of systems with the following properties:

• Openness in the portability of components between different processing nodes

and in the interworking of components in different systems.

60

• Integration of various systems with heterogeneous architectural, resource,

performance characteristics into a whole.

• Flexibility in supporting the evolution of systems and their components as well

as run-time reconfiguration, such as when handling user mobility.

• Modularity to maximise the autonomy of interrelated components, which is

required for flexibility.

• Federation of systems from different technical and administrative domains.

• Manageability of systems to support policies related to configuration. Quality of

Service (QoS) and accounting, amongst others.

• Provision of Quality of Service in terms of timeliness, availability, reliability and

fault tolerance.

• Security including authentication and access control facilities.

As well as supporting the definition of systems or components, ODP-RM is intended

as a meta-standard intended to guide the development of other standards by

providing a framework for the integrated support of distribution, inter-working,

inter-operability and portability, all of which are relevant to service management.

GDP approaches the problem of describing distributed systems by expressing the

effects of distribution as a number of distribution transparencies, e.g. location, access

or failure transparencies. These transparencies aim to hide the complexities of

distributed systems from the software developer. Distributed systems adhering to the

GDP framework are described using five complementary viewpoints of a system

[x903]. These separate viewpoints together aim to provide a complete and consistent

view of the system. These viewpoints are:

• The Enterprise Viewpoint, which aids requirements capture and is concerned

with the business needs of the system in terms of its purpose, scope and policies.

• The Information Viewpoint, which aims to identify the information content of the

system in terms of constraints on its use and its interpretation within the system.

61

• The Computational Viewpoint, which aims to describe the functional

decomposition of the system into objects suitable for distribution.

• The Engineering Viewpoint, which addresses system support for distributed

applications. It identifies the platform support needed to provide the distribution

transparencies assumed in the computational view.

• The Technological Viewpoint, which addresses the basic hardware and software

characteristics independently of the part they play in a specific distributed

system.

Each viewpoint has an associated set of concepts and rules relevant to the concerns

of that viewpoint [x904]. As viewpoints are separate but inter-related views of the

same system, the relations between terms in different views are subject to

consistency constraints. One aim of GDP is that viewpoint languages may be defined

in a formal way that would enable the automation of consistency checks between

viewpoints. Bindings have been suggested between GDP viewpoint concepts and

Formal Description Techniques (FDTs), such as LGTGS and Z. Conformance in

GDP may be expressed in terms of a reference point specified using combinations

the viewpoints. An example reference point specification could contain: an

enterprise specification giving roles and policies across the reference point; an

information specification giving the universe of discourse for the reference point and

a computational specification of the operations and dialogue across the reference

point. The GDP-RM, however, does not specify any methodology describing how

the viewpoint-based specifications should be developed. Approaches to establishing

an GDP-based methodology have varied, from those who have attempted to

developed the FDT approach to support automated translations between viewpoint

and to those who have tried to apply semi-formal specifications to expressing

viewpoint concepts. As pointed out in [erdmann], GDP FDT language mapping to Z

and LGTGS are not suitable for use in the Enterprise viewpoint which must be used

in requirements capture activities involving potential system users and domain

experts who will not be conversant with such notations. In the author’s opinion, the

62

FDT based approach is not well suited to any viewpoints in the context of SMS

Development since, as established in Chapter 2, a suitable development framework

must be easy for the range of practitioners to understand and use. However, the

application of FDT’s to telecommunication system development is analysed further

in the next section. The rest of this section therefore only deals with the application

of semi-formal techniques to ODP-based methodologies.

An important factor in considering the practical application of ODP is that no

popular distributed processing platform conforming to ODP and associated ITU-T

standards has emerged. Instead, partly inspired by ODP, the OMG’s CORBA

represents the de facto open distributed processing platform in use today. In this

context Microsoft’s COM [kindel], though it is widely used, is not considered a truly

open distributed processing platform as its specification is under the control of a

single company. This situation is changing however, with the recent release of

potions of COM to the Open Group for the support on non-Microsoft operating

systems. CORBA provides the equivalent of the distribution transparencies provided

by the ODP engineering viewpoint concepts though a combination of the core ORB

capabilities and CORBA services, though the structuring is different and the

concepts and functional separations do not match precisely. Though OMG RFPs pay

some lip service to the use of ODP principles and viewpoints, they are not used in

practice for OMG standard development. Significantly, the OMG’s standard OOAD

notation, UML, does not refer to or explicitly support ODP viewpoint concepts.

Attempts to apply ODP viewpoints in practice has therefore tended to focus on the

use of the enterprise, informational and computational viewpoints during

requirements capture, analysis and design, but with interoperable interfaces being

ultimately expressed in the OMG’s Interface Definition Language (IDL).

Before examining individual ODP-based methodology experiences, a better

understanding of the ODP concepts in the enterprise, informational and

computational viewpoints is required. The enterprise viewpoint support the

following concepts, represented as enterprise objects and their relationships:

63

• Environment: Part of the model that interacts with, but is not part of, the system

being specified.

• Role: The view of an entity in terms of an agent that carries out some activities

with respect to another agent.

• Resource: An entity that is operated upon.

• Contract: The agreement of the activities and information that pass between two

enterprise objects.

• Policy: Rules specifying the constraints and obligations a subject has towards

some target.

• Community: A group of objects with a common objective.

• Domain: A collection of enterprise objects grouped for purposes of autonomy,

authority and control, often driven by the structure of the business organisation

under scrutiny.

• Federations: A community of domains grouped to serve some common

objective.

The information viewpoint concepts are expressed in terms of Information Objects

(IQs) and the static and dynamic relationships between them. They are therefore very

similar to OOAD class and object modelling techniques such as those found in

OMT. The computational viewpoint is based around the concept of a computational

object (CO), which offers functionality through one or more well-defined interfaces.

This model differs from the current CORBA model where an object has only one

interface, though as observed in [kitson], ODP COs can be implemented by grouping

CORBA interface objects.

Probably the largest body of work that attempts to apply ODP principles to

telecommunications and implement the results using CORBA, is that of the TINA-C,

which was introduced in Section 2.2.4. Though TINA adopted the use of ODP

viewpoints, it has not adopted the viewpoint languages suggested in [x904]. For the

64

enterprise viewpoint, ODP concepts are condensed to statements of which

stakeholder are involved, the roles they play, the services they offer and the

obligations of service customers. The ODP concept of federation is used in the TINA

business model [mulder]. For the information viewpoint, [christensen] advocates the

use of the OMT object model for TINA. TINA supplements this with a textual

notation consisting of quasi-GDMO object definitions and an object relationship

model based on the OSI General Relationship Model [x725]. This notation provides

a representation of objects, including their attributes, the constraints and operations

that cause change in the object’s state, as well as object inheritance and relationships

between objects. For the computational viewpoint, TINA-C has adopted its own

graphical notation consisting of simple component diagrams representing

computational objects and the operational and stream interfaces they offer to each

other [natarajan]. To provide detailed definitions of computational object interface

structure and operation definitions a superset of IDL termed. Object Definition

Language (DDL), is used [mercouroff95]. DDL allows the definition of multiple

interfaces, of stream interfaces and of references to interfaces used on other objects.

ODL enhances the ODP concept of a CO by supporting the grouping of COs into

building blocks that can be manipulated as a unit for the purpose of system life-cycle

management. For the engineering viewpoint, a Distributed Processing Environment

(DPE) is assumed which provides various distribution transparencies required by

COs through a set of services made available to engineering objects populating the

DPE [graubmann]. The engineering objects themselves are arrived at directly by

decomposing the computational objects (COs). As TINA has adopted CORBA as its

DPE, this decomposition involved mapping ODL to IDL.

TINA goes beyond the ODP-RM by specifying an outline methodology for

developing TINA services [salleros]. This methodology presents a development

process where the enterprise viewpoint of a service is addressed during the analysis

stage of the development process, followed by information viewpoint modelling and

computational viewpoint modelling which together result in the system’s design

specification. The computational model and the derived engineering model both

65

support the implementation of the system. Though the information viewpoint model

and computational viewpoint model are described as complementary parts of the

design model, exactly how to iterate between them and to describe the relationship

between the different objects in these models is not stated in any prescriptive

manner. The different cardinalities that may exist for CO to IQ mappings are

described, but no guidelines are given for situations where the different relationships

might best be applied. Also, though there is a relatively clear mapping from COs to

engineering objects, no guidelines for the implementation of lOs is provided.

The TINA Management Architecture prescribes the use of the manager-agent

paradigm for managing TINA resources through manipulating and monitoring

managed objects. Though this approach is not in evidence in the service management

specifications in the Service Architecture, it has been applied in implementation of

elements of the TINA Network Architecture for ATM management [griffin97]. Here

MOs were accessed via a management broker CORBA interface. This approach was

regarded as more flexible and amenable to reuse in different applications than those

based on higher-level, task-oriented interface definition, which were subject to

change as new management task were identified. If we consider lOs in the

management context to be MOs then this approach points to a more definitive way

of identifying lO to CO mappings for SMS.

Though the TINA-C was concerned primarily with the development of

specifications, it has associated with it several auxiliary projects that developed

TINA-based systems and extended its specification base. These projects, therefore,

provide a further source of experience on the application of ODP viewpoints. One of

the major results of this work has been the evolution of ODL in describing the

notation and semantics of both its graphical and textual variants [mercouroff97].

This has now been adopted within the ITU-T as a notation for computational objects

[itu-odl] and has also helped influence the OMG towards the investigation of multi­

interface objects [omg/96-01-04].

66

The computational object is also seen as the major unit of reusability in TINA, with

ODL allowing the description of a CO to be partitioned into the interfaces for the

services it provides and those used for the management of those services. It also

allows for a CO definition to include the identification of the services of other COs

that it uses, thus providing a more complete description of the CO for reuse. The

ODL meta-model is adapted and extended in [dede] to provide behaviour

descriptions for COs using Service Definition Language (SDL) [zlOO], which is

discussed further in the next section. The author was involved in an attempt to apply

ODP-viewpoint based models to the development and deployment of service

management components [lewis97]. Here the structuring of the computational

model, as building blocks was found to be effective in reusing service management

components in different business scenario. However, as described in Case Study 3

and in [wade97], the use of both the information and the computational models for

describing the design of systems was problematic.

Some prototype tool support has been generated specifically for TINA modelling

purposes [bosco]. Primarily, this provided graphical and textual editing for

computational modelling using ODL for object and building block definitions,

together with object behaviour in SDL. This tool was combined with IDL and C++

generators for integration into simulation and testing tools. Such CASE-based

development activities are addressed further in the next section in relation to SDL-

based development.

An early attempt at applying ODP viewpoint to a service management development

framework was conducted between 1992 and 1995 by the EU funded project PRISM

[berquist]. This provided early validation of TINA modelling techniques as well as

borrowing concepts from it. This project developed, through a set of paper-based

case studies, a structured development methodology based on ODP viewpoints but

with more detail than given in TINA documentation. It also possessed a more

explicit linkage to the TMN interface definition methodology, M.3020. The overall

PRISM methodology is summarised in Figure 3-1 using a notation similar to UML

activity diagrams.

67

Enterprise
Viewpoint Describe TMN

Management System

Select and Assign TMN
Management Functions

Information
Viewpoint

Computational
Viewpoint

Select/Specify the first
Operation Signatures and

Activities

Select/Specify Information
Object Types

Select/Specify
Computational Object

Types and Interface Types

Engineering
Viewpoint Distribute Functionality

Define Communication

Consolidate

Figure 3-1: The PRISM, ODP viewpoint-based development process

The process for developing the enterprise viewpoint for a specific system involved

the following sequence of tasks:

• Identifying the Environment and Parties Involved: This introduced the idea of an

actor, which could play several roles with respect to other actors. Relationships

between actors were identified with specific goals and were used to identify QoS

attributes, the duration of relationship, availability conditions and safety and

security considerations for the relationship.

68

• Requirements Capture: Requirements imposed by individual roles are recorded

and categorised by management functional areas (a set extended from FCAPS)

and TMN logical layers.

• Description of Management Services: This defines management service required

by users and decomposes them into management functions using the process

defined in [m3020-95] as described in the next section.

• Structuring the Enterprise: This refines the identification of actors, roles,

contracts, requirements and management services into a detailed, structured set

of objectives. These are expressed as enterprise objects grouped using ODP

concepts of community, federation and domains. Policies are formulated that

define which activities a manager may perform (i.e. authorisation policy) and

which ones they must perform (i.e. obligation policy).

• Scenario description: This describes the sequence of interactions that may occur

across multiple domains. These express the interactions that may occur between

actors and roles grouped by communities, federations and domains, in terms of

Jacobsen-style use cases and as event-trace diagrams between actors.

The static relationships between the PRISM enterprise viewpoint concepts are given

in Figure 3-2. This set of semantics for the enterprise viewpoint was adapted from

the corresponding ODP set of concepts with the aim of supporting more directly the

requirements of TMN systems [strick94].

69

com posite
enterprise

object

actor

com m unity

0..1

L O

federation

1 . /
role

1 ..
enterpise

object

~zr

object)

policy

A
contract

dom ain
1..*

domain environm ent system
* 1 m anager

Figure 3-2: The PRISM Enterprise Viewpoint Concepts

For the information viewpoint the OMT object model is used together with quasi-

GDMO in a manner similar to TINA. For the computational viewpoint the following

steps are taken;

• Computational Object Identification: This uses an analysis of the enterprise

model, and in particular of the management functions identified, to help identify

units of functionality.

• Dynamic Computational Modelling: This uses computational activity diagrams

designed by PRISM [dahle] to represent the sequence of management operations

exchanged between COs for a specific management activity, triggered by the

user’s invocation of a management function. These diagrams are therefore

similar in their semantics to UML collaboration diagrams.

• Computational Object Type Design: This uses Computational Object Type

diagrams to represent the static relationships between COs and their attributes,

interfaces and operation signatures. This is effectively a combination of OMT or

70

UML class operations (though allocated to multiple interfaces) and attribute

notations from the graphical ODL representation.

• Building Block Design: This involves grouping computational objects into more

course-grained systems that may correspond to TMN Operations Systems,

according to criteria of release independence, security, system management,

distribution or TMN logical layering. Building Blocks are represented as

enclosing rectangles in computational object type diagrams.

As PRISM did not attempt to implement its designs or map them to CORBA, their

approach to engineering modelling is not analysed here. As with TINA, the mapping

between the different viewpoints did not seem to follow a very well-defined process,

though some mappings were identified between objects in different viewpoints. For

instance the methodology advises that the information model be based on an analysis

of the text description of enterprise model use cases, with noun phrases mapping to

lOs in the first instance. Also, CO operations should be provided for all management

functions identified in the enterprise model, though this does not help in the design

of CO operations that do not face the user. As with TINA, mapping between lOs and

COs is identified as being potentially many to many. In [may] the need to iteratively

regard both informational and computational models in order to gain complete and

consistent specification for both is described. How the relationship between the

information and computation viewpoints might guide the identification of COs is

also not well addressed. It is acknowledged in [berquist], however, that this is a

difficult task as it involves consistency checking of both static and dynamic models

in both viewpoints. The grouping of COs into building blocks was also found to be

problematic since the different grouping criteria often result in conflicting or

overlapping groups. Another issue not fully addressed in the PRISM methodology is

how the managed object definitions that specify the details of TMN management

functions might be imported into ODP models.

Some tool support was developed for the PRISM methodology [strick96], which

supported implementation and specification repositories and allowed grammar

71

modules to be provided for each viewpoint, acknowledging that the notations used

would change over time.

Others have attempted to develop SMS using subsets of ODP viewpoints coupled

with other development techniques. In [choi], a design for a service order handling

interface is developed in terms of COs and lOs, but driven by a TMF-like business

process model rather than from an enterprise viewpoint model. This approach also

uses state transition diagrams in modelling lOs and links this to the CO model by

binding triggering events to CO interface operations. The author was involved in an

attempt to integrate a UML-based SMS development approach with a design

expressed in terms of COs and lOs [lewis99d]. This is reviewed in more detail as

part of Case Study 4 in the next chapter, with further examples of the application of

this techniques given in [tiropanis98] and [hellemans99].

More recently, others have attempted to apply ODP to SMS development using

UML [kande]. The object oriented nature of both UML and ODP, and the similarity

of some UML models to models used for ODP viewpoints, made this approach fairly

straightforward notationally. The viewpoints were represented using the following

diagrams:

• Enterprise Viewpoint: Use case diagrams, class/package diagrams.

• Information Viewpoint: Class/package diagrams, state transition diagrams.

• Computational Viewpoint: Sequence, collaboration, component, activity and

class/package diagrams.

• Engineering Viewpoint: Component and deployment diagrams.

In this study, using a single notation (i,e, UML), edited within a single CASE tool,

proved useful in making the models for the different viewpoints more coherent and

easier to navigate between. Several ODP concepts, such as enterprise objects, could

not be directly represented in UML, but were readily modelled using stereotype of

the class type. Limitations were found however in describing COs, as not all aspects

of ODL could be conveniently represented in UML.

72

The ITU-T has a standardisation activity developing an Open Distributed

Management Architecture (CDMA) [x708], which is applying ODP principle to OSI

Systems Management. The draft output of ODMA to date has focussed on how

CMIS-based manager agent systems can be represented in the ODP engineering

viewpoint, though for practical purposes this work has been superseded by the JIDM

CORBA-CMIP gateway specifications.

3.3 Telecommunications Specific Methodoiogies

This section reviews relevant development methodologies that originated in the

telecommunications industry. This includes ones that combine elements of general

software engineering techniques and ODP-based techniques and ones that apply

specialised techniques to SMS development and related areas such as network

management and service control system development.

As mentioned in Chapter 2, the TMN set of recommendations contains a

recommendation, M.3020, for an Interface Specification Methodology [m3020-95].

This provides guidelines for the functional decomposition of management interfaces

found at reference points in the TMN functional architecture. This methodology is

primarily aimed at guiding work conducted in ITU-T working groups towards the

standardisation of management services [m3200] and management functions

[m3400], though application specifiers and protocol specifiers are targeted also. In

M.3020, management services describe the functionality available at a TMN

interface from the point of view of the user. These services are decomposed into

management functions, using either existing management functions or defining new

ones if required. Management functions are grouped into management function sets

for the purposes of information modelling. Where possible, management functions

are based on OSI system management functions. Information modelling involves

analysing existing generic and technology specific information models to see if

existing object classes satisfy management function requirements. If existing

management functions have been used, then these may have corresponding

information models already defined which then can be reused. Though it is expected

73

that TMN information models will be accessed over the interface using CMfP, the

development of other protocols is also accommodated by the methodology. The

overall process as represented in [m3020-95] is summarised in Figure 3-3.

Generic and
technology specific
information models

TMN management
service and goals

Roles, resources
and functions

Management
information library

Object relationship
diagrams

Requirements for
communications

Management
information schema

Describe TMN
management services

Describe TMN
management context

Perform information
modelling

T
Consolidate

available information

Define management
information schema

Determine communication
requirements

Protocol specification
activities

Figure 3-3: The M.3020 development methodology

The description of management services includes the description of the goal of the

user in invoking the service. This is complimented by the description of the context

in which the service is invoked, described in terms of the role played by the user, the

telecommunications resources being managed and the management functions used,

supplemented by scenarios descriptions giving examples of the functions’ usage in

performing the service. The service is also identified with respect to TMN interface

74

types, e.g. Q, F, X. The information modelling activity can be enhanced by the use of

entity relationship diagrams, and must also express the object class naming schema

that will be visible at the interface.

This methodology uses functional decomposition in order to subdivide the problem

of interface definition and to support the identification of existing functions and

information model that can be reused. It therefore offers no opportunity to specialise

existing functions in a structured manner, with this only being possible using object

class inheritance at the information modelling stage. Also this methodology does not

provide any direct guidance on the functional decomposition of systems, only of

interfaces. These characteristics represent a fundamental difference between the

M.3020 approach and the general software engineering and ODP-based development

methodologies described in the previous two sections.

The problem of functional system design was addressed directly in [griffin96] where

the M.3020 was extended to include the identification of OSFs. Observing that the

application of M.3020 directly to TMN OS development would result in single,

monolithic OS in each logical layer, this approach focuses on the development of

managed object clusters, which presented a single management interface, but which

are also defined by their use of management functions from peer or subordinate

clusters. These MO clusters represented the building blocks from which OSFs were

built. The application of the methodology across a TMN requires the nomination of a

system designer who maintains a consistent view of how OSFs were to interact with

each other. The system designer therefore guides and co-ordinates the developers of

multiple, individual OSFs, who follow M.3020 in defining their own interface

information models. This resulted in a set of service and network management OSFs

consisting of well-defined management functional components implemented as

managed object clusters and associated manager functions [griffin95]. Another

example of TMN interface specification development [covaci] show that techniques

such as message sequence flow diagrams are useful for showing how management

functions are used in specific scenarios and state transition diagrams are useful for

defining the changes of MO state.

75

The TMF built on TMN standards to provide the additional industry agreements on

management interfaces needed by its membership. It quickly realised that the

structure of TMN standards, resulting from the application of M.3020 within the

rrU-T was not easily usable by its member when used to implement and verify TMN

systems. The separation of management service and function overviews from

individual management function definitions sometime made it difficult to understand

the mode of application intended for a function definition and associated information

model. As the definition CMIS-based manager-agent interfaces allows very flexible

use of the interface, this led to misunderstandings about the exact operation of an

interface, which that had a negative impact on interoperability. The TMF (or the

NMF as it was then) addressed this by publishing interface agreements in the form of

an ensemble [nmf-025]. An ensemble packages together; an outline of what is to be

managed, expressed as resources; what functions are required to solve the

management problem and some scenarios to illuminate how these functions should

operate dynamically on the resources. The process for developing these ensembles

largely revolves around the identification of management functions and MO

definitions from existing standards, with new MOs being defined only when

absolutely necessary. The ensemble form differs from M.3020 in that it packages the

motivation for the interface and conformance test specifications with the

specification of the interface itself. It does not, however, provide scope for new

management protocols to be defined, relying instead on the use of existing ones, e.g.

CMIP. It also encourages the use of entity relationship diagrams and sequence charts

of CMIP interactions to make the specification more accessible to its users. The

ensemble approach was found useful in [bleakley] for defining TMN X-interfaces

for accounting management, though it was observed that the techniques could be

improved by the application of detailed use cases descriptions and a clearer mapping

between management function and CMIP interactions. The ensemble form is no

longer directly used in the TMF as the framework of which it was a part [zeisler] has

evolved into the business process based framework used today. However, the legacy

76

of closely linking requirements for interfaces with their standardised specification

still persists in the TMF development approach.

The EURESCOM organisation, which is funded by European public network

operators to perform telecommunication related research, has conducted case studies

into TMN development with the aim of providing guidelines for the development of

TMN systems. In 1996 the EURESCOM project P414 used a paper-base case study

of VPN service management to assess the possible merging of the TMN interfaces

specification techniques, namely TMF ensembles and the M.3020, with GOAD

techniques such as GMT, GGSE and FUSION. A report on this case study [p414-d2]

makes several initial observations. It singles out use cases as a techniques that was

found useful in bridging the gap between TMN interface specification approaches

and GOAD techniques. Comparing the ensemble approach to M.3020, it concluded

that the former was better suited to inter-GS interface definition, i.e. X or Q

interfaces, while M.3020 was better suited to WS to OS interface definition, i.e. the

F interface. A more detailed analysis of this case study [p414-d3] that attempted to

combine the ensemble approach with GMT points out the key difference between the

former as an interface specification technique and the latter as an application

development technique. It recommended that the understandability of ensembles

could be improved by employing the graphical notations of GMT. However it

concluded that the ensemble process did map well onto the GMT process as the

iterative and incremental nature of the latter was not reflected in the waterfall

structure of the former. It therefore recommended that though the structure of

ensembles aided understanding of the interface specification, to gain the full benefit

of GGAD techniques such as GMT, this form should only be used for the final

structure of the specification while native GGAD models should be used to perform

the development process.

In 1997, another EURESCGM project, P.610, reported on its analysis of the state-of-

the-art in development frameworks and methodologies for the management of

multimedia services [p610-dl]. After analysing the methodologies used in P414,

PRISM, the EU-funded Prospect project (the subject of Case Studies 3 and 4 of the

77

next chapter), and TINA, it concluded that as the de facto standards OOAD

modelling notation UML should be adopted for any development methodology in

this domain, with OMT providing guidance on the process. The results of several

paper case studies were presented in [p610-d2], which suggests a UML-based

methodology for developing multi-media service management systems that consists

of the following steps:

• Requirements Capture: This consists of describing the service, providing a

business model of the service, modelling the relationships between actors to

determine the resources and actions required by the system (following the

ORDTT methodology [strens][dobson]), describing use cases and the defining of

scenarios, i.e. use case instances.

• Object Oriented Analysis: This consists of a domain track and an application

track. The domain track involves building a class model of the problem domain.

The application track involves building an application class model and refining it

though the construction of sequence, state and collaboration diagrams.

• Mapping to Multi-Domain Management Architecture: This consists of grouping

classes into packages according to functional criteria. This grouping should also

aid in the identification of reusable packages.

No practical assessment or experience is relayed, however, from the execution of

these case studies.

Other, more specialised, development techniques have emerged from the

telecommunication software sector that may prove applicable to SMS development.

Two approaches that have been applied in a variety of forms to network and systems

management are policy-based management and formal managed object behaviour

definition. Policy based management, as described in [wies], involved analysing

high-level corporate policies and refining them into task oriented policies. Task

oriented policies are then mapped onto functional policies that act on management

services which in turn act on low-level policies that restrict the behaviour of

managed object classes. Policy based management has been applied mostly in

78

situations where manager applications have to interact with potentially large

numbers of network element or system management agents, e.g. [putter]. Its benefits

come from enabling management applications to manage groups or domains of MOs

[alpers][sloman], which may be distributed over potentially large numbers of agents,

in terms of goal-driven policies rather than of specific management operations. An

architecture is proposed in [davidson99b] in which network management systems are

developed and sold as independent functions enforcing policies. Though this

matches some of the SMS development requirements by explicitly supporting a

market in management components, it is not clear how this would translate from

network management to the service management environment. Policy-based

management is largely focussed on dealing with problems in a single layer of

manager-agent relationships, so its application to the multi-layer TMN architecture,

from which the definition of service management used here is derived, is also not

clear.

Formal MO behaviour has been an ongoing area of study with the ITU-T, motivated

by the problem of ensuring interoperability between management systems based on

GDMO definitions that provide only natural language behaviour descriptions. A

wide range FDTs seem to have been proposed for this task including SDL

[carls][barbeau], LOBSTERS [festor], DOMAINS [fink], Object-Z and RAISE

[derrick]. However, no agreement has yet emerged on a common language for

formal MO behaviour description, and these techniques suffer from a lack of

integration with common CASE tools, i.e. those supporting OOAD methods.

SDL has been used widely in the development of telecommunication control systems

and intelligent networks [morris] [olsen99]. It allows for the analysis of

specifications for correctness, for validation through simulation, for generation of

implementation code and the generation of test cases and test code. The development

of notational mapping between SDL and both IDL [olsen95] and ODL has allowed

SDL to be used for such development activities in TINA-based service system

development [lucidi] [schieferdecker]. The feasibility of this implies that SDL could

also be applied to such activities in TINA-based SMS. However, as pointed out in

79

[lodge], many of these techniques rely on an existing, well defined and relatively

narrow functional frameworks within which SDL based activities are cost effective.

As discussed in Chapter 2, no such well-defined framework exists for service

management, thus limiting the extent to which these techniques can be usefully

applied to SMS development.

Another complimentary approach to developing telecommunication systems is one

that focuses on integrity. Integrity is the ability of a system to retain its specified

attributes in terms of performance and functionality, and is important for

telecommunication systems due their increasing complexity, especially for signalling

systems. The management of integrity involves the prediction of where a system’s

design has high integrity risk areas, testing to validate integrity of a developed

system and maintenance to monitor and diagnose threat to integrity in operation. As

suggested in [monton], the prediction activity requires modifications to existing

development methodologies so that integrity risk assessment, possibly based on

complexity metrics, is introduced at each stage of development. This technique has

been applied to a multi-domain SMS case study [pmjat], where complexity metrics

were applied to ODP viewpoint models of the system generated using UML.

3.4 Summary of State of the Art Analysis

From the analysis of methodological techniques applied to service management, the

author concludes that the area of development frameworks and methodologies for

problem domain has not been extensively investigated and the level of experimental

rigour adopted is low. Most reports consist of assertions made by their authors that

were based on their own experiences of using a technique. Only a few reported case

studies conducted on the application of a technique in a wider project or provided the

lessons leant from such projects. The author found no quantitative assessments of the

application of methodological techniques to SMS development. This, however, is

unremarkable when compared to the main body of work into methodological

techniques for software development. In a survey of over 600 software engineering

publications [zelkowitz], the majority contained no experimentation or resorted to

80

assertions, only 10% presented case studies, while other, more controlled

experimental techniques presented in only a very small percentage of the sample. Of

the development approaches presented in the previous sections that were assessed in

more detail, most were based on paper case studies that only extended as far as a

system design specification. The minimum, implicit quality check that results from

observing if the design led to a working implementation within reasonable costs

constraints was therefore largely absent.

Based on the qualitative material available it can be observed that

telecommunications management development techniques borrow heavily from

software engineering techniques popular at the time. It can therefore be concluded

that the growing popularity of UML, its establishment as the de facto OOAD

modelling notation, its widespread tool support and its expanding skill base will

make it a very acceptable choice as the notation for an open SMS development

framework. Other OOAD techniques that seem to have gained widespread

acceptability in SMS development are use cases, graphical class modelling and the

use of sequence diagrams. The application of use cases seems particular suited to

SMS development as such systems are essentially intended to support the activities

of human operators and service customers, the analysis of such activities being the

focus of use cases.

Other more specialised techniques seem to be driven by their use in standards bodies

rather than clear results concerning their utility in industrial applications. Prime

examples are the use of business process modelling promoted by the TMF and of

ODP viewpoints advocated by TINA-C. However, as these bodies represent the

major current source of service management standards, these approaches must be

accommodated in addressing the needs of the SMS development stakeholder model.

The ITU-T does not emerge as a very suitable source of methodological techniques.

The functional decomposition approach taken by M.3020 has not yet been well

integrated with OOAD-based techniques, and in the author’s opinion needs to be

reassessed as the basis for developing TMN interface specifications. The ITU-T’s

other methodological efforts have focussed mostly on FDTs, which due to their

81

specialised mathematical nature and the immaturity of accompanying tools, are not

likely candidates for an open SMS development framework (see Goal 9 of the

previous chapter). In the author’s opinion, the same reasons for the unsuitability of

FDT’s also diminish the motivation for applying ODP viewpoints within an SMS

development framework. Other, goal driven development techniques such as policy

based management and integrity analysis, are complimentary to the application of

more conventional techniques, as they provide guidance in the structuring of a

solution. However, they do not provide techniques for performing the detailed

modelling. Once techniques have been established that address the primary business

needs of the SMS development stakeholders, these techniques may build upon them

to allow the stakeholders to interact at a higher level of abstraction, for instance by

selecting components by the goals they achieve rather than the functions they

perform. As this thesis primarily addresses these business needs, the application of

goal driven techniques is left for further study.

An important distinction that is apparent in analysing the various methodologies is

the differences in approach observed when the target is an interface specification

rather than a system implementation. As observed in [sullivan], the only techniques

that would seem well suited to both is ODP viewpoint, though as pointed out in

[schoo], when applied in TINA, the benefits of CO modularity and reuse in system

design are not fully exploited in the definition of TINA reference points. A common

development framework that addresses all the SMS development stakeholders must

therefore address both goals in its methodological guidelines. Finally, though many

of the techniques reviewed claim to support and ease software reuse, there is very

little evidence of reuse of software or specifications between projects or between

separate stakeholders.

3.5 Synthesis of Methodological Requirements for SMS

Development Stakeholders

This section analyses the requirements for the methodological guidelines portion of a

possible development framework, based on the state of the art review in the

82

preceding sections of this chapter. It does so by analysing the development processes

that each of the SMS development stakeholder will undergo in the course of their

core business activities. For the SMS Developer this process, is the development of

an SMS, for the Software Vendor it is the development of a commercial off the shelf

(COTS) software and for the Standard Developer it is the development of an

interoperability standard. The stakeholders will also perform other activities such as

market surveys, sales and internal guideline development, but for the purpose of

analysing the requirements for a suitable development framework, only the core

business activities are considered.

An initial assumption made about the structure of the development framework’s

methodological guidelines is that they will be split into the following parts:

• Notations and Meta-model: Providing guidance on the types of notations that are

suitable for different development tasks and the structure of the models, i.e. the

meta-model, that is appropriate for these tasks.

• Process Guidelines: Providing guidance on the specific activities involved in the

overall development process, the relationships between activities and their

relationship to notations and meta-models.

The overall generic structure of a development framework can therefore be modified

from that shown in Chapter 1, to the one shown in Figure 3-4.

83

Development Framework

Architectural Guidelines

Functional
Architecture

Technological
Architecture

M ethodological Guidelines

Notations and
Meta-models

Process
Guidelines

Reusable Parts

□ □ □ □ □ □ □ □
Figure 3-4: Refined Generic Development Framework Structure

This structure of methodological guidelines mirrors that taken by the UML authors

and the OMG analysis and design working group in separating the notation and

modelling semantics that make up the UML from the analysis and design process

guidelines. The motivation for such a split is that notations and meta-models can

usually be well-defined while development processes are a lot more difficult to

capture since they are highly conditional on the context within which the

development is occurring. For this reason notations and meta-models are often

defined formally or semi-formally using existing (or sometimes their own) notation,

while process guidelines are delivered as more general descriptive advice. This split

is reflected in most of the methodologies reviewed earlier in this chapter, as

summarised in Table 3-1. This table also includes the separations between functional

and technological architectures and examples of the reusable parts that exist in the

different development frameworks.

84

Development

Framework/

Methodological

Guidelines

Architectural

Guidelines

Reusable

Parts

Standards set Notations

and Meta­

models

Process

Guidelines

Functional

Architecture

Technological

Architecture

TMN GDMO M.3020 M.3010 CMIP/CMIS Management

functions/

MOs

TMF UML/OMT Telecoms

Operations

Map

Technology

Integration

Map

Protocol

Independent

Models

TINA ODL,

OMT

Design

Guidelines

Business

Model and

RPs

Engineering

model

(DPE)

OMG UML

Notation

and

Semantic

s

OOAD

Process RFP

OMA CORBA/II

OP

CORBA

Services and

Facilities

Table 3-1: Categorisation o f management related standards by generic development

framework structure

The following sections present generic models of the core business activities of each

of the SMS developer stakeholders. The graphical notation used is similar to UML

activity diagrams, where lozenge shapes represent discrete activities, arrows between

activities represent the sequence of activities over time and oblongs represent

information that is used by or generated by activities. Round edged oblongs

85

represent stakeholder types, and may contain the information maintained and the

activities conducted by that stakeholder. Information not contained within a

stakeholder oblong is typically generated to support the exchange of information

between stakeholders for a particular activity. A shadowed oblong indicates that

multiple instances of the stakeholder type or of the information represented are

involved in the overall process.

The aim of analysing these processes is to identify the commonalties in the

development process experienced by the different development stakeholders in terms

of the relationships between the activities they conduct and the information

exchanged between activities and between activities and other stakeholders. As

Booch points out, in any effective OOAD process the individual developers will

iterate through the various development activities several times as the information

exchanged is revised based on the experiences and insights obtained through

conducting the previous iteration. It is assumed however that iterations will involve

the same information being passed between the activities, and therefore the inclusion

of activity iterations will not add much to the process analysis. The iteration through

sequences or sub-sequences of activities is not explicitly analysed in the following

sections, though it is the intention that the resulting development framework should

support an iterative and incremental development process.

3.5.1 The SMS Development Process

A simplified depiction of the SMS development process within an idealised SMS

Developer stakeholder is given in Figure 3-5. It is assumed in this model that the

SMS Developer will maintain its own internal architectural guidelines. These may be

purely proprietary, they may be influenced by architectures in the public domain,

they may reflect architectures used by Service Providers that are consumers SMSs,

they may explicitly conform to standard architectures or they may embody

combination of these influences. It is also assumed that the SMS Developer

possesses an existing set of products on which it intends to build when developing

new SMS products. Ideally these existing products will conform to the internal

86

architectural guidelines. Examining each activity in turn we can identify the

interactions on each one in more detail:

• SMS Requirements Capture: An SMS is primarily developed for a single

customer, i.e. for a single Service Provider. Though an independent SMS

Developer may endeavour to reuse some or all of an existing product in future

SMS development contracts, each SMS development project will be primarily

driven by the requirements of a single Service Provider, expressed in a

requirements statement document. If the SMS is required to interact with the

SMS of the Service Provider’s customers or of Third Party Service Providers,

then the requirements of these stakeholders may also need to be explicitly

obtained by the SMS Developer. The result of the SMS Requirements Capture

activity is the SMS Requirements Statement, typically expressed as a categorised

set of plain language statements.

• SMS Requirements Analysis: This activity involves analysing the SMS

Requirements Statement with the aim of synthesising a structured, logical model

of the target SMS. This will be conducted at a high level of abstraction, largely

ignoring implementation issues such as performance tuning and the choice of

communications protocols or distribution technology, though still having to be

aware of them where they have a direct impact on the logical structure of a

solution. The Requirements Analysis will have to take into account the internal

architectural guidelines both to guide the functional structuring of a potential

solution and to use the technology architecture to understand the impact of the

technology choices. The Requirement Statement may specify certain open

standards are to be used in the solution, or the SMS Developer may opt to use

some standards to ease future interoperability problems or to make future

solutions more marketable. In this case the Requirements Analysis will be

influenced by architectural guidelines, potentially from several different

Standards Developers. The SMS Developer may also aim to use COTS software

from one or more Software Vendors. In this case the Requirements Analysis

must take into account the architectural guidelines in which the off the shelf

87

components are presented. These guidelines may be themselves based on open

standards or they could be closely aligned with the SMS Developers own

architectural guidelines. The different vendors’ architectural guidelines may,

however, be quite different, in which case they must be considered carefully in

this activity to ensure that the integration of the COTS software is successful.

The output of this activity will be the SMS Analysis Model.

SMS Design: This activity is driven primarily by the SMS Analysis Model.

Based on the logical structures contained within this, a detailed design of the

system is performed, specifying software modules, functional units and interface

definitions. This will require reference to the internal architectural guidelines and

potentially also to those from Standards Developers and Software Vendors as

referenced in the SMS Analysis Model. In particular, the technology guidelines

will be examined in order to determine the impact on the design of the various

computing and communication platforms used both internally and by COTS

software, and of the need to support open platform interoperability. In addition,

the details of the APIs and interface definitions via which existing SMS

Developer products, existing Service Provider systems and COTS software

products will be integrated will need to be considered. The definitions of any

open interfaces the system conforms to will also need to be obtained from

Standard Developers. The output of this activity will be the SMS Design Model

SMS Implementation: This activity involves developing software code based on

the SMS Design Model. Implementers may need to reference details of the

architectural guidelines from the SMS Developer, the Software Vendors and the

Standards Developers that are referenced in the SMS Design Model, though this

should primarily be to refer to details in the technology architecture related to

implementation. Issues presented by the functional architecture would already be

embodied in the design and should not need to be referenced directly by

implementers. In addition, implementers will need to follow references to the

API and interface definitions of existing internal products, existing Service

Provider systems, COTS software and open interfaces given in the SMS Design

88

Model. The construction of the SMS software may require the inclusion of

modules from existing products and of libraries and executables from the

Software Vendor. The resulting integration may require modification of the

existing product modules and of the Service Provider’s existing systems. In some

circumstances the modification of the COTS products, either by the Software

Vendor or if source code is available, by the SMS developer. The result of this

software should be a set of SMS software modules for testing.

• SMS Testing: This activity will typically be highly integrated with the SMS

Implementation activity, operating on the software generated by that activity.

Testers will use the SMS Design and the SMS Requirements Statement as the

basis for generating test cases and test harnesses. The APIs and interface

definitions of existing products, existing Service Provider systems and COTS

software will also be used in building test harnesses, while the open interface

definition from the Standards Developers will be used to test conformance.

Obviously, testing will be facilitated if the existing APIs and interfaces are

accompanied by test environments and similarly if the open interface definitions

are accompanied by explicit conformance statements. The output of the SMS

testing should be SMS Software ready for deployment.

• SMS Deployment: This activity actually takes place in the Service Provider

domain and involves ensuring that the SMS operates correctly with the Service

Provider’s existing SMS and NMS. This would typically involve the

collaboration of SMS Developer staff and Service Provider operations staff.

This process analysis does not address the situation where two or more SMS

Developers are required to collaborate in order to develop SMS in parallel for the

same Service Providers, or possibly for two collaborating Service Providers.

Replicating the Software Vendor to SMS Developer relationships in both directions

could approximate the process relationships for such situations. This would reflect

the need to jointly develop models at the different stages of development.

89

Standards Developer

Standard architectural
guidelines

Functional architecture

Technology architecture

Open interface
standard

Software Vendor

tnlemal architectural
guidelines

Functional architecture

Technology architecture

Off the shelf software products

API & intcface definitions

SMS Developer

Internal architectural
guidelines

Functional architecture

Technology architecture

— Requirements
statement

^ ------ | Customer

Requirements 4 ------It
statement

SMS requirements
capture

SMS requirements
statement

I W SMS requirements w
I analysis /\ I ./

--------------------W SMS design W

SMS analysis model

SMS design model

I ▼ »
> I J SMS imdementation W

SMS software

I V
------------4-------SMS testing ^

Existing SMS Products

API & interface
definitions

Software modules

Requirements
statement

Service Provider

Existing SMS & NMS

API & interface
definiticns

Software modules

^ S M S deploymenl^^

Figure 3-5: Process Model for SMS Development

3.5.2 The COTS Software Product Development Process

The process model for COTS software product development by the Software Vendor

bears many similarities to that for the development of SMS software, as both are

basically software product development processes. The following description of

activities is therefore restricted to identifying where the process differs significantly

from the SMS development process. It should be noted that, though COTS software

may often incorporate other vendor’s products, the interaction between Software

Vendors is not analysed here.

90

COTS product requirements capture differs from the requirements capture activity

for SMS in the source of requirements. Instead of getting requirements from a single

customer and their collaborators, the Software Vendor needs to analyse the

requirements of the range of organisations playing the SMS Developer role in order

to identify a product with the widest or most profitable marketability. Requirements

capture in this context therefore involves understanding the needs of SMS

Developers, either through direct contact or through market surveys.

COTS product requirements analysis, design, implementation and testing do not

differ greatly from the corresponding activities in the SMS Development process,

except in that the dependency on the customer is greatly diminished. The analysis

and design will only consider the existing systems used by SMS Developers in a

general way, and there will not be an obligation to support products that will

integrate with systems developed by a particular SMS Developer. Also, given that

the interactions between Software Vendors is not analysed here, implementation and

testing will not required direct integration with systems from another stakeholder. It

is expected, however, that the dependency on architectural guidelines and open

interfaces from the Standards Developers will be much more important for COTS

software development than for SMS development. In other words, the COTS

products will offer conformance to standards rather than necessarily guarantees of

interoperability with other products. This is because off the shelf software

developers rely more on the conformance of their products to standards to ensure

wide marketability of its products. This reduces the risk involved in investing in

COTS software development before any specific customers have been identified.

The final activity shown is simply expressed as product release, since product

deployment and use by a customer typically will not involve the close collaboration

and testing in situ that would be required for a bespoke SMS product. The overall

process model for COTS software development is summarised in Figure 3-6.

91

Standard# Developer

Standard architectural
guidelines

Rmctional architecture

Technology architecture

Open interface
standard

Software Vendor

Internal architectural
guidelines

Functional architecture

Technology architecture

t"r : \
I I Product requirements

lA ^ r
Product requirements

statement

I f : \
 ^ Product requirements W

I analysis j

Product analysis

"W Product design N *“

Product design

I r
I ^ Product implementation

LI
Product software

Product testing

Off the shelf software products

API & interface definitions

Software libraries and
executables

>—

 Product release ^

Requirements
statement ^

Existing SMS products

API & interface
definitions

Software modules

Figure 3-6: Process model for o ff the shelf management software development.

3.5.3 The Interface Standard Development Process

The interface standard development process differs fundamentally from the SMS and

COTS product development process in that it does not result in the development of

software, but only in specification documents. However, as observed in Section 3.4,

the process of generating open specification does have some similarities with the

software development process.

92

Capturing industry requirements for a new interface standard is a much more broad

ranging process than capturing requirements for developing a product. The process

may be visible externally, for instance as in the publications of Request for

Information in the OMG. Alternatively it may occur within the standards body, with

groups of members forming a consensus on which new areas need to be addressed.

In the SMS development context, we would expect Software Vendors, SMS

Developers and Service Provider all to be active in this process, as is reflected by the

makeup of bodies such as TINA-C and the TMF. The Service Provider will be

motivated to ensure that new standards are compatible with existing deployed NMS

and SMS systems. The process used to define an interface standard varies between

the different standards bodies in terms of its external visibility, and in the stages

undertaken. Usually, however, it will be kicked off, after some analysis of the range

of relevant requirements, by a clear statement of the problem being addressed and of

the constraints on the solutions sought. This may be expressed as a Request For

Proposals (RFP) or a Project Statement, depending on the openness of the

development activity to external contributions. The design of the standard typically

will involve the definition of an interface, some description of its behaviour and

possibly some guidelines for assessing conformance of implementations. Once the

interface definition has been accepted as satisfying the requirements and the

constraints of the RFP, it may then join the set of interface standards maintained by

the body.

An important difference between the analysis and design phases of a standard and

those of a product is in the emphasis placed on consistency with existing standards.

A key aim of standards is to provide a framework for software development that is

consistent. There is, therefore, a great emphasis on ensuring that standards comply

with existing standard architectural guidelines and that they are compatible with

preceding standards from the same body. In addition, there is an increasing emphasis

on ensuring consistency between standards offered by different bodies, particularly

in avoiding generating a new solution to a problem that might be solved by an open

solution from another standards body. Therefore the links between the analysis and

93

design activities and the architectural guidelines and open solution of the same and

of separate bodies are strong. A summary of the process for developing service

management interface standards is shown in Figure 3-7. This process model does not

address the development of the architecture used by a Standards Developer. This is

because this is typically a one-off process rather than an on-going one, and therefore

not likely to benefit from a common methodological approach.

Standards Developer

guidelines

Open interface Technology architecture Requirements

Requirements
Developers

Capture industry

guidelines

Request for
proposals

Technology architecture

Existing SMS & NMS

Open interface

Standard acceptance

Figure 3-7: Process Model for Interface Standard Development

3.5.4 Generic Methodological Requirements

The above process models serve to identify the differences between the core

development processes typically performed by the three SMS development

stakeholder types. However, in order to define a common development framework

that is practical for all three stakeholder types to use, the most promising approach

94

may be to focus on where the processes are most similar. Solutions to problems in

these areas will have a higher likelihood of being widely understood by practitioners

in organisations of all stakeholder types, thus enhancing the benefit of a common

approach.

Organisational inertia makes imposing a common development framework across

many different organisations very difficult. Arguments for established internal

processes and architectures often outweigh any move to accept a common

framework motivated solely by the need for smoother interactions with other

organisations. This problem is especially acute when these organisations are of the

same stakeholder type and are mutually perceived as competitors. A more productive

approach to promoting a common development framework, therefore, may be to use

the commonalties identified in the processes analyses, not to standardise those

processes but to identify commonalties in the interactions between stakeholder types.

The approach taken here to synthesising common methodological requirements is

therefore to identify requirements that focus the interactions between stakeholders,

but which accommodate the differences between the processes identified the

stakeholder process models and those within real stakeholder instances.

The process model shown in Figure 3-8 depicts the commonalties between processes

and interactions that exist between the different stakeholder process models. This is

expressed in terms of processes with and interactions between a generalised SMS

development stakeholder and a generalised collaborating stakeholder. The main

differences between the stockholder’s core processes are between standard definition

and software implementation and between bespoke and generic software

implementation, testing and deployment. However, the activities of requirements

capture, requirement analysis and design are similar in all three models. In addition

all three models require these activities to take into account architectural guidelines

and existing solutions both from within the stakeholder and from other collaborating

stakeholders. This common model forms the focus of the investigation of suitable

methodological guidelines for a common development framework. It is used as a

95

template for examining the practicability of different methodological techniques is

the case studies examined in the following chapter.

Collaborating SMS Development
Stakeholder

Architectural guidelines

Functional architecture

Technology architecture

Existing solutions

Requirements
statement

Generic SMS Development Stakeholder

Existing Solutions

Internal architectural
guidelines

Functional architecture

Technology architecture

Requirements
capture

X
Requirements

statement

Requirements
analysis

Analysis model

y. &
Design

Design model

Figure 3-8: Generic SMS Development Stakeholder Process Model

96

4. Case Studies
This chapter describes five SMS development case studies, in which the author has

been involved and has observed, evaluated and in some cases guided the

development methodology used. These SMS development projects were undertaken

as part of three different European Union (EU) funded collaborative research

projects, which focussed on the development of management systems in an open

services market. Each case study reflects a major management system development

cycle in one of these projects. The case studies involve aspects of all the

development phases of an SMS. The case studies were performed by collaborating

teams of between one and two dozen, researchers, analysts and software engineers

drawn from a range of companies, universities and research institutes across Europe.

These case studies, therefore, do not reflect SMS development scenarios operating

under real commercial pressures. They do represent, however, the opportunity to

observe the development of SMS by teams who were committed to the use of

standards and were also willing to both try out new development techniques and

provide feedback on their experiences with them.

The first two case studies relate to the two development phases conducted in the

PREPARE project. This project was funded under the EU RACE II programme and

ran from January 1992 to December 1995. It aimed to investigate issues of applying

TMN to the integration of service and network management in a multi-provider

environment. In these case studies the author participated in a team that evaluated

and refined the methodology used in the project. He was primarily responsible for

publishing experiences and assessments of the methodology for the first phase in

[lewis95a] and the second phase in [lewis95b] and [hall96].

The third and fourth case studies were conducted in the Prospect project. This was

funded by the EU under the ACTS programme and ran from September 1995 to

August 1998. It addressed the integration of service and network management with

service control using a wider range of technologies than then specified in TMN,

97

principally CORBA. Both phases of Prospect followed an explicitly defined

methodology defined by the author jointly with Vincent Wade of Trinity College

Dublin and described in [wade97] and [wade98] for the first phase and [lewis99d]

for the second phase. The author, however, was solely responsible for collecting and

evaluating the experiences of the developers in forming the assessment of their

usefulness presented in this chapter.

The final case study is from the FlowThru project. This was also funded under the

EU’s ACTS programme and specifically aimed to study methodological techniques

for building management systems that satisfy business process requirements and

which are constructed from reusable components. This project started in March 1998

and is due to complete in February 2000. The author played a primary role in

defining the methodology and wider development framework used for this project,

as published in [lewis99a] and [lewis99b]. He was also solely responsible for

collecting and evaluating the developer’s experiences from this case study.

Each case study is presented in a separate section. Each section: reviews the context

within which the SMS development was undertaken; describes the development

approach taken; summarises the mechanism to evaluate the approach and presents

results of the evaluation. The description of the development approach for each case

study is supplemented by examples of modelling notations and structures from the

original working documents where appropriate

4.1 Case Study 1: OSI~SM and TMN

This case study is based on the management system development performed in the

first phase of the PREPARE project. The material presented here is based on the

authors contribution to the development experiences reported in [lewis95a] The

PREPARE project was proposed with the aim of investigating network and service

management issues in the multiple bearer and value added service provider context

of a future deregulated European telecommunications market. The specific example

selected for implementation in PREPARE phase 1 was of a value added service

provider co-operating with multiple public bearer service providers to deliver a

98

Virtual Private Network (VPN) service to a distributed corporate customer. In order

that these investigations had a realistic focus a broadband testbed network was

constructed over which the VPN service would be demonstrated. This testbed

consisted of several different but inter-working network technologies. Each of these

sub-networks possessed its own network management system which were developed

according to the principles laid down in the TMN recommendations and using

platforms that implemented of the OSI CMIP mechanism. The investigation of such

a multi-domain management involved the development of an architecture that

allowed these separate network management systems to co-operate in providing end-

to-end management services. This end-to-end architecture was also developed in

accordance with TMN principles. The development approach taken was subject to

the full rigour needed to implement a working system with the resulting management

testbed being successfully demonstrated in public on 8*̂ December 1994.

The make-up of the project consortium added a further importantly realistic aspect to

the case study in that many of the roles played are relevant to the realisation of future

multi-domain management services. The project partners and their relevant roles

were:

• A public network operator (KTAS from Denmark), interested in integrating wide

area network management with multi-domain service management.

• A public network equipment vendor (NKT from Denmark), interested in the

management of Metropolitan Area Networks (MANs) and the management of

heterogeneous network inter-working.

• A customer premises network and management platform vendor (IBM), who

were interested in using their products (Token Ring and Netview/6000) in a

multi-domain environment.

• A vendor of network management platforms (LMD Ericsson from Denmark in

co-operation with Broadcom from Ireland), interested in the application of the

TMOS Development Platform to value added service provision.

99

• Researchers into advanced network management techniques (University College

London and GMD-FOKUS from Germany), interested in applying their

platforms to the multi-domain environment.

• Researchers into multimedia applications (University College London),

interested in the interactions of these applications with service and network

management.

Project partners therefore brought to the project their own specific interests, which

were often overlapping but sometimes different or even contradictory. Therefore,

though not operating in a true commercial environment, the viewpoints of the

Service Customer, the Service Provider (i.e. a value added and a bearer service

provider), the Software Vendor (i.e. management platform vendors) were all

genuinely represented. It can therefore be asserted that the methods chosen in

arriving at this working TMN-based SMS implementation represent those that will

have likely applicability to the SMS development stakeholders. In addition, though

this was a prototype development exercise rather than a standards writing one, the

lack of service management standards motivated the development of interfaces

definitions that would be relatively generic and could therefore form a contribution

to standardisation for inter-domain service management.

4.1.1 Development Approach

The process of defining management services and information models in an

environment that contains several different types of player has received some

theoretical attention at the time this work was conducted but the body of actual

experience with large scale developments was still very limited. The main input that

could be drawn upon at that time was GDP viewpoints, M.3020 and the TMF

ensemble approach. For the first phase of PREPARE there were few examples of

GDP viewpoints applied to management so this approach was regarded as too

immature to apply here.

Gne limitation of the M.3020 and TMF ensemble approaches for PREPARE was

their overall scope. The project required a methodology that was capable of

100

integrating the service specification, design and implementation phases of the TMN

demonstrator. The scope of these methodologies only covered the requirements

analysis and design processes as they were intended for defining interface standards

rather than building systems to customer requirements. In addition, and of most

significance for PREPARE, these two approaches are designed to support single

interface design. Neither provided support for developing co-operative management

systems with multiple interfaces.

The development team, though influenced by some of these approaches, did not

follow any closely but synthesised its own methodology. A pragmatic approach was

taken that was primarily driven by the experience in management system

development and knowledge of contemporary development methodologies possessed

by the team members. The approach was heavily influenced by the division between

intra-domain and inter-domain management system development. This reflected the

make up of the project testbed that had an ATM Wide Area Network (WAN), an

ATM Customer Premises Network (CPN), a DQDB Metropolitan Area Network

(MAN) and a Token Ring Local Area Network (LAN) all being provided by

different partners. The partners responsible for providing each network also provided

the accompanying implementations of EML, NML and SML OSFs. Each network

type therefore possessed its own TMN up to and including the SML, with each TMN

being modelled as existing in a separate organisational domain. The methodological

approach therefore focussed on the development of the inter-domain interfaces since

this was where partners would collaborate and would therefore gain most benefit

from a common development approach. No attempt was made to prescribe how

individual intra-domain systems were developed.

Against this background the work proceeded as four separate, but inter-linked

activities:

• Scenario Definition: This activity produced a set of scenarios that detailed what

would be demonstrated over the management testbed. Due to the large number of

participants, components and requirements involved, these scenarios were seen

101

as essential in order to focus the work onto a manageable subset of demonstrable

operations while at the same time presenting a coherent description of what was

to be demonstrated.

• TMN Architecture Definition: This activity had to interpret the TMN

recommendations in order to produce a functional architecture that specified how

the OSFs in the different domains should be connected to each other via

reference points in order to provide end-to-end services.

• Management Service Definition: This activity defined a set of services that

operated between the different management OSFs in accordance to the Abstract

Service Definition Convention (ASDC) Recommendation [x407].

• Management Information Modelling: This activity defined the information

models required by the various OSFs interfaces that were involved in inter­

domain relationships, using GDMO.

Due to restrictions of time and man-power these groups contained only a small core

of overlapping personnel and were generally conducted in parallel. It was intended

that the Management Service Definition and the Management Information Modelling

be focussed on satisfying the requirements laid out by the Scenario Definition and on

defining the inter-domain reference points identified in the TMN Architecture

Definition.

At the beginning of 1993 a review was conducted of the work performed in the first

stages of design and its suitability for supporting the subsequent implementation

work. The output from the Scenario Definition activity had described the roles of the

human users and organisations involved in the VPN service as well as the

motivations for the operations they performed. This was supplemented by

descriptions of the commercial service that the VPN provider should provide to its

customers in terms of contractual responsibilities. The TMN Architecture Definition

group had identified the OSF required to provide end-to-end VPN services and the

different reference points required between them. The architecture was structured

according to the management functions types, reference point types and logical

102

layering of [m3010]. The architecture was designed based on the following

principles:

• Each organisational stakeholder, including customers, had its own TMN.

• Organisations which own physical networks have within their TMN an OSF

specific to the particular network technology being managed by that TMN, i.e. a

Network OSF (N_OSF).

• Each TMN has a Service OSF (S_OSF) implementing service management

functions associated with that particular domain, and which takes part in

providing the distributed end-to-end service management services.

• The VPN provider, which did not operate a network, has a TMN continuing only

an S OSF.

As a result N OSFs inter-operate with the S OSFs in their own TMN (via q-type

reference points) and S OSFs inter-operate with S OSFs in other TMNs (via x-type

reference). Figure 4-1 presents an overview of the resulting functional management

architecture.

During the architecture definition activity, attention was paid to explicitly addressing

the non-functional requirements imposed by the scope of partners’ interests and the

platforms available to partners, as well as reducing the overall complexity of the

information modelling tasks by minimising the number of inter-domain reference

points involved. By addressing these issues at the architectural stage of the design

process it was found subsequently easier to split the work between relatively

independent groups addressing different areas of the functional architecture.

103

VPN
S OSF

CPN
S OSF

CPN
S OSF

PN
S OSF

PN
S OSF

N OSF N OSFN OSF N OSF

NEF NEFNEF NEF

Token
Ring LAN

DQDB
MAN

ATM
LAN

ATM
WAN workstationworkstation

CPN Domain CPN DomainPN Domain PN Domain

Figure 4-1: TMN Functional Architecture for PREPARE Phase 1

It was apparent from the review that the scenarios contributed greatly to the teams

collective understanding of the problem while the architecture was generally agreed

upon as being suitable for the implementation of the VPN service. However it was

also recognised that the outputs from the management services and information

modelling groups suffered in many respects. Firstly, these two sets of output were

not mutually consistent nor were they totally aligned with the output of the scenarios

and architecture groups. Co-ordinating this work while running the groups in parallel

had apparently proved too complex a task given the human resources available.

Secondly it was felt that, given the goal of demonstrating the scenarios, the

management service and information model definitions were not complete and did

not contain the level of detail required by the implementers.

Though a combination of the GDMO and ASDC descriptions of an interface were

expected to provide a clear definition of the reference points, there was no formal

mappings between GDMO and ASDC and no automated support for maintaining

such mappings as the two specification were developed in parallel. This made this

104

approach problematic. In addition the behaviour description of individual MOs and

ASDC operations were not sufficient in defining the behaviour of the OSF as a

whole. The development approach was therefore modified by abandoning the further

definition of management services and concentrating on refining the scenario

description. The existing scenarios were refined from a level where they described

enterprise roles and their relationships, to one where the same scenarios were

described in terms of OSFs with detailed definitions of the management information

flowing between them given as sequence diagrams. By adopting this technique, a full

GDMO specification for the inter-domain reference points was quickly arrived at.

This approach also had the intrinsic advantages of ensuring that all information

modelling was directly focused on the desired implementation areas and, through

scenario descriptions, providing an informal but relatively brief description of the

behaviour of the collaborating OSFs.

The entire information model for all inter-domain interfaces was maintained in a

single document referred to as the Implementer’s Hand Book (EHB). It was apparent

that although the aim at this stage of the design work was to arrive at a stable version

of the information model, there would inevitably be changes required to the IHB as

the understanding of the problem grew. For this reason the IHB was maintained as a

living document. This task was made considerably easier with the help of Damocles

a GDMO parsing and checking tool developed by GMD-FOKUS. This was used to

check the IHB for GDMO syntax errors and open references, but more importantly it

assisted in the manual checking for consistency and completeness throughout the

information model. This was especially useful considering the number of partners

involved in contributing to this document. A mechanism for requesting updates or

modifications to the information model was also adopted since changes inevitably

effected more than one partner’s implementation work.

As the IHB became stable and the inter-domain implementation began, the planning

for integrating the various hardware and software components commenced. This was

conducted broadly following the IEEE standard 829-1983 [ieee829] which involved

the generation of Test Design Specifications (TDSs) for all tests that would involve

105

components from one or more partners. When this was performed for inter-domain

management software components some interesting effects were observed. Firstly,

the refined scenario descriptions proved to be ideal templates for defining the

interactions that should be tested, ensuring once again that the work performed

directly supported the final aims of the project. Secondly, the TDSs were written to a

level of detail that defined the actual CMIS primitives that should be exchanged

between the OSFs and the information content required. This process of writing the

TDS to such a level of detail provided much invaluable insight for the implementers

in that it raised many issues that had not yet been recognised and allowed these

problems to be resolved before the implementation work had progressed too far.

These problems often related to the relationships between different MO classes

which supported different OSF management functions, but which were both related

to the same underlying resource. In addition, problems related to differences between

the structure of information at inter-domain reference points and at the separately

developed intra-domain reference points revealed themselves at this stage. This

indicated that the level of detail used at the testing stage should ideally have been

addressed at the design stage.

4.1.2 Evaluation and Results

The evaluation approach taken was purely anecdotal, based on the author’s own

experiences and those elicited during discussions with other PREPARE team

members. The overall development process taken in this case study is depicted in

Figure 4-2.

106

Dom ain and role
definitions

M ulti-D om ain
Scenario Definition

TM N Architecture
Definition M ulti-dom ain M gmt Service

Definition

T M N functional
architecture

M gmt Inform ation
M odelling

M gm t service
specs. (A SD C)

M gm t inform ation
m odel (G D M O)

Inter-O SF
inform ation flow

Inter-D om ain
D ynam ic M odelling

Implem ent e r 's
Handbook (G D M O)Test Case D efinition

Test cases

OS Im plem entations

Inter-dom ain
Testing

Figure 4-2: Development Process for Case Study 1

With respect to the SMS development stakeholder model, this case study represents

a green-field situation where there are no existing service management standards or

software products to draw upon and the SMS Developers for different Service

Providers must collaborate to agree inter-domain interfaces on a case by case basis.

However, as the intention was to generate generic reference point definitions, some

of the experiences of this case study could be relevant to the development processes

within the Standard Developer stakeholder.

107

This case study provide some evidence to support the statement in the thesis

hypothesis that development techniques that already exist for network management

system development are inadequate for SMS development. Network management

system development techniques are typically extended from the information

modelling paradigm used for network element modelling, where the primary

modelling activity is the object-oriented modelling of the physical and logical

resources to be managed. When applied to OSI-SM, the resulting managed objects

define the functionality of an agent entity that may be accessed by a manager, i.e. it

is focused on the definition of a single manager-agent interface. This approach is

insufficient for an SMS which, as exemplified in this case study, must typically

operate in an environment of multiple, interoperating functional units that play both

manager and agent roles. Here functional units will exhibit multiple collaborative

relationships, rather than the strict hierarchical relationships typical of network

management. Approaches to defining a single interface, such as M.3020 or the TMF

ensemble approach, are therefore, insufficient for analysing the behaviour of a

service management OSF playing multiple roles and for designing the multiple,

interrelated agent interfaces that implement these roles.

The major methodological problem encountered in this case study was in attempting

the modelling of both the management information and management functions

visible at a reference point in parallel. This problem was exacerbated by the separate

notations used for these models, i.e. GDMO and ASDC. These models were closely

linked, with the structure of information being influenced by the functions required

to be performed with it while the choice of functions was influenced by the

information available. The development of these models should have been much

more closely integrated but this was impeded by the lack of mappings between these

notations.

In M.3020, management services and management functions are both regarded as

reusable entities. However, abandoning the specification of management functions in

this case study precluded their availability for later reuse, possibly at another

reference point of the same OSF. Reuse was therefore limited in this case study to

108

the use of standard ASN.l types or standard abstract MO class definitions during

information modelling. Reuse of code or binaries was also ruled out in the

implementation stage by the presence of different, proprietary API’s in the various

CMIS platforms used in the project.

Of the modelling techniques that were applied in this case study, the most useful was

found to be the application of scenarios. These aided greatly in the communal

understanding of the multi-domain problems being addressed and in co-ordinating

the individual modelling efforts required for a multi-OSF interaction scenarios that

were required. Finally, it was also found that scenario-based development proved

useful for generating test cases, where test cases were based on the initial scenarios,

but instantiated with specific preconditions and operational parameters.

4.2 Case Study 2: Responsibility and Computationai

Modeiiing

This case study is based on development performed in the second phase of the

PREPARE project. The development experiences reported here are based on work

by the authors published in [lewis95b] and [hall96]. The second phase of the

PREPARE built upon the first phase in terms of the methodological experience

gained, the construction of the management testbed and the user services that

operated over it [lewis94]. The second phase differed from the first in that the

enterprise situation was more complicated, involving more service providers and

more relationships between service providers, with the range of scenarios being

addressed being more ambitious. There was also a change in architectural emphasis

from simply producing service level OSFs in each domain, to adding WSFs with rich

functionality for service and network administrators. It was however similar to the

first phase in that the management architecture had a TMN-based structure.

The enterprise situation modelled a Multimedia Conferencing (MMC) teleservice

provider and a Multimedia Mail Global Store (OS) teleservice provider which

provided their services to users on CPNs. The teleservice providers used the services

of a separate VPN provider to manage end-to-end network resources over multiple

109

public network domains and the CPN domains in support of the teleservice

providers’ communication needs. This management testbed was successfully

integrated and tested and then demonstrated publicly on 30̂ ̂November 1995.

4.2.1 Development Approach

Based largely on the experiences of the first phase, it was felt that a more cohesive

development approach was required. The requirements capture, analysis, design,

implementation and testing was therefore performed under one group which would

split into subgroups at various stages to address clearly defined functional areas

rather than splitting into groups addressing the different development activities. The

development approach taken can be broken down into the following activities:

• Enterprise Modelling and Scenario Description: This described the

organisational context in which the management systems were required to

operate by identifying the organisational domains and human operator roles and

describing their interactions as a set of scenario descriptions.

• Role Specifications: These provided a way of describing in more detail the

requirements of the involved organisations through the definition of

responsibilities for individual roles identified in the enterprise model and a way

of mapping these requirements to lower level management function

requirements.

• TMN Architecture Definition: As in the first phase of PREPARE, this defined

the functional architecture of the TMN systems that would provide the

framework for the more detailed design work. This was expressing in terms of

NEF, OSFs and WSFs, their positioning within logical layers and organisational

domains and the identification of reference points required between.

• Information Modelling and Information Flow Analysis: This involved the

identification of information required by the management functions identified in

the scenarios and role specification. The analysis is performed in terms of

information models defined for each domain and inter-OSF sequence diagrams

110

showing information flow over the reference points defined in the TMN

functional architecture.

• Design of Functional Units: This involved the functional decomposition and

design of the various OSFs, WSFs and NEFs. The development of the latter is

not discussed further here.

These activities were not addressed is a strict sequence, but to an extent were

interleaved with some being revisited after the initial work on others had provided

clearer insight into the requirement upon them. Each of these activities is now

described in more detail.

4.2.1.1 Enterprise Modelling and Scenarios

This activity identified the organisational stakeholders and their characteristics (e.g.

core business areas), with the focus on the objectives for their involvement in the

scenarios in order to identify the high-level requirements on the system. Scenarios

concentrated on inter-domain aspects, i.e. inter-organisational relationships where

agents of the organisations interacting on behalf of their organisations in specific

roles. To help identify these human roles in a consistent manner, the organisations

were classified by a set of abstract business roles. These were based on a separation

between a service provision relationship and the accompanying commercial

relationship. These relationships are described in terms of business related meta­

roles. For the service provision relationship a service supplier provides a service to

the service user. For the commercial relationship a service vendor provides a service

to a service customer. The following abstract organisational business roles were

therefore defined in terms of the above meta-roles:

• A service consumer is an organisation acting as both service user and customer

with another single organisation acting as corresponding service supplier and

vendor.

• A service provider is an organisation acting as both service supplier and vendor

with another single organisation acting as user and customer.

I l l

• An indirect service consumer is an organisation acting as service user and

customer but where the corresponding supplier and vendor are separate

organisations.

• An indirect service provider is an organisation acting as service supplier and

vendor but where the user and customer are separate organisations.

4.2.1.2 Role Specifications

This activity aimed to further describe the relationships between these roles that

place requirements on inter-domain management functionality. Role specifications

were adopted as a means of ensuring that the management functionality required by

the role holders in the scenarios was adequately described and provided full

requirements for the inter-domain reference points.

A common role specification template was adopted in order to structure the

description of what the role requires, and to facilitate refinement of the role

specification down to the operations on the managed resources that would eventually

be modelled as MOs at a reference point. This template was based on the work of the

ESPRIT project ORDIT, which investigated the organisational requirements for

information technology systems by examining roles and responsibilities within an

organisation [strens][dobson]. In PREPARE, the ORDIT concepts were adapted for

the specific needs of the role specification work and inter-domain service

management. The role specification template therefore included for each role holder

the responsibilities of the role holder in relation to other role holders. The

responsibilities were then refined into finer grained obligations that needed to be

discharged by the role holder in order to meet the responsibilities of the role.

Obligations were then decomposed into activities that needed to be carried out to

enable the role holder to fulfil the obligations deriving from the responsibilities and

the resources and access rights required to enable the role holder to carry out an

activity. The specific human role holders required for the case study were identified

via the scenario descriptions, and were derived from the abstract business roles. The

identification of role holders was split between those dealing with the contractual

112

and financial aspects of service management and those dealing with the more

technical and operational aspects, thus reflecting the similar separation in the

business meta-roles.

VPN Service Manager

Responsibility #1) Responsibility (to VPN End user Agent) to ensure end-to-end communication paths are set up to satisfy their

communication requirements.

Obligation #1) To ensure end-to-end communication paths are set up between end points associated with the VPN end users with

the QoS requested by the VPN End user Agent.

Activity #1) Request a user stream from the VPN Service Administrator specifying the end points and the QoS
parameters

Resource #2) User stream (create)
Activity #2) Modify user streams as required by the VPN End user Agent.

Resource #1) Termination point (read)
Resource #2) User stream (read, update, delete)

VPN Service Administrator

Respousibility #1) Responsibility (to the VPN Service Manager) to ensure that the sufficient resources have been allocated in the

VPN.

Obligation #1) To reserve requested resources in the public network operator domain

Activity #1) Request that a network link is reserved over the public network operator domain.
Resource #1) Network Link to VPLine mapping and representation (create, read, modify, delete)
Resource #2) Translation point (read)

Obligation #2) To reserve resources in the private network domain

Activity #2) Request or verify that a network link is reserved over the private network operator domain.
Resource #3) Network Link (create, read, modify, delete)
Resource #4) Termination point (read)

Responsibility #3) Responsibility (to the VPN Service Manager) for the end to end communication stream provision and

maintenance

Obligation #3) Receive, verify and acknowledge the request for a user steam

Activity #3) Verify available connectivity reservation
Resource #3) Network link (read)

Activity #4) Allocate reserved capacity in public network operator domain
Resource #2) Translation point (read)
Resource #5) User stream (create)

Activity #5) Allocate reserved capacity in private network operator domains
Resource #4) Termination point (read)
Resource #5) User stream (create)

Obligation M) Report the request for a user stream creation to customer service administrators.

Activity #6) When subscribed to send notifications on changes in the VPN
Resource #6) User stream creation creation notification (create)

Figure 4-3: Example o f a Role Specification for a VPN Service Manager Role

Organisations that acted as a service consumer had a financial agent role holder

broadly responsible for locating new services, subscribing to them, paying the bills

113

and terminating subscriptions. Organisations that acted as service vendors had a

financial agent role responsible for receiving requests for service subscription,

granting or denying the request, sending bills and terminating the service.

Organisations that acted as service users had a service manager role that dealt with

the operational aspects of service usage while organisations that acted as service

suppliers have a service administrator role that dealt with the operational side of

service provision. Each organisation also has an owner role to which the

organisation’s other roles are ultimately responsible and which was included to

ensure the completeness of the role specification set. An example of role definition

for the VPN provider taken from [hall96] is given in Figure 4-3.

4.2.1.3 TMN Architecture Definition

This activity followed the same principles is in Case Study 1. The resulting

functional architecture is depicted in Figure 4-4.

Multimedia Maii
Global Store

provider domain

Virtual Rivate Network
provider domain

Multimedia Conferencing
prwider domain

8 OS

PN
S W SS OSS OSF

q
Customer
R em ises
Network
domain

Custom er
R em ises

PN
N wsm PN

N OS
Network

N OS N OSF N OS! domain

Rjbiic Network
domain

F\iblic Network
domain

Bjropean F rO
a ™ Pilot

globa
store

XC

J
XC= ATM cross connect
TE= terminal equipmert
N ff= network element function

114

Figure 4-4: TMN Functional Architecture for PREPARE Phase 2

4.2.1.4 Information Models and Information Flows

Initial information models based on the requirements imposed by the enterprise

model and the scenario descriptions were made more concrete by the identification

of resources in the role specification. These initial MO descriptions were expressed

simply as text description of what the MG’s represented. As resources from the role

specifications were associated though role to organisational domains, these MOs

were straight-forwardly associated with the S OSFs identified for each domain in

the TMN functional architecture. Inspired by its usage in the ODP information

model as applied in TINA, the initial information models were enhanced with OMT

class diagrams showing the relationships between the MOs supported by an

individual OSF, and in some cases the relationships to MO’s in other OSF. An

example for the VPN S OSF is given in Figure 4-5, with relationships to the MO’s

in the ATM N OSF shown in grey.

end Point link

resources defined by

terminates2+
termination
point

qosSpecuserStrea t i
2+

terminates customerPath

rtmCbrSpecterminates

networkLink reiated bytransiation
point

terminates

reiated
with networkLinkRelation

connectionDescriptor

obrNetworkLinkReiation: pvcinterface j

gives connection details for

Figure 4-5: VPN Information Model

115

Inter-OSF information flows were then generated and refined, detailing how the

management activities outlined in the scenarios were accomplished by operations on

managed objects. Information flows were described in terms of CMIS message flows

between OSFs. Thus they identified the MOs present at a reference point, which

operations were performed on them, and with which attributes and values. An

example information flow taken from [hall96] is shown in Figure 4-6. The

information models and flows were designed in an iterative fashion, since

information flows identified missing information that needed to be included in the

information model specification and subsequently verified through updated

information flows.

116

VPN customer VPN Provider
OSF

PuNOt
OSF

0 CREATE REQ userStream
id=systemld=VPNprov@linkld=userS
srcEndPoints= { systemld=PrN01@e
dstErrdPoints= {systemld=PrN02@ei

ream!
tdPtld=termR1}
dPtld=termR1, PrN02@termP

o

?}

CREATE CONF userStream

CREATE REQ atmCbrSpec
k)=systemld=VPNprov@inkid=userS
maximumBandwidth=1000000
cellDelayVatiarx:e=1

eamt @qosSpecld=atmCbrSp(c2

CREATE CONFatmCbrSpec p

CREATE REQ virtual Une
id=system=PuN01 ©virtualUnr
endPoints={ {0x0401, null},

d=vp1
0x0501, null}} 0

CREATE CONF virtualUne
endPoints={[0x0401, vpt=1(

Q

ti}
1, systemld=RN02©endPtld=t

{0x0501, vpi=20}}

CREATE R[
id=systemlr
srcEndPoln
dstEndPoini

0 userStream
=PrN01 @iinkld=userStream1
>= { systemld=PrN01 @endPtld-termf
>= {systemld=PrN02@endPtld=temP »rmPt2}

CREATE CONF userStream ^

CREATE R
id=systeml(
maximums
cellDelayVî

0 atmCbrSpec
=PrN01 @linkld=userStream1 @qosSp
ndviridth= 1000000
iance=1 ^

9C=atmCbrSpec2

CREATE ;ONF atmCbrSpec

Descriptorld=pvclnterace 1

11}
nR1}

CREATE R
id=systeml<
userStream
localEndPtl
remote Endl
networtdJnk
vd=1 vp

;Q pvcinterface
=PrNo1 @endPtld=trans1 ©connection
Support ed-userStreamt
st= {systemld=PrN01@endPtld=term
tüst= {systemid=PrN02@endPtld=ter
Jsed=netUnk1
=10 pvcDirection=inAndOut

CREATE SON F pvcinterface

CREATE R
ld=systemlc
userStream
localEndRL
remoteEndF
networlrUnK
vci=2 vpi=H

;Q pvcinterface
=PrNo1 @endPUd=trans1 ©connection
)upported=userStream1
st= {systemld=PrN01@endPttd=term
BJst= {systemld=PrN02©endPtld=ter
Jsed=netUnk1
pvcDirection=inAndOut

Descriptorld=pvclnterace2

t1}
nR2}

CREATE Cl INF pvcinterface

EVENT id=!
stateCtiang

ystemld=PrN01 @linkld=userStream1
)={operationalState=enabled}

CREATE REQ userStream id=systemld=PrN02@linkld=usefStream1

CREATE REQ atmcbrSpec ...

CREATE REQ pvcinterface...
W

CREATE REQ pvcinterface... P

E O
^ ■
EVENT id=systemld=RN02©
stateChange=(operationalStatf

nkld=userSlream1
=enabled}

^ N T userStream! id=syst
stateChange={operatk)nalState=enab

mld=VPNprov©linkld=userStre
4

iml

Figure 4-6: Example o f Information Flow Sequence Diagram for the Creation o f a

VPN User Stream

117

4.2.1.5 Management Function Design

The functionality of the OSFs identified in the TMN architecture was generally

governed by the requirements of the scenarios and role specification and the

resulting functional interactions across reference points defined in terms of the

information models and the information flows. Once this level of detail had been

achieved the functional design of individual OSFs was left largely to the judgement

of individual designers. In a few cases, however, where OSFs developed by different

partners shared common functional requirements, a more fine-grained approach was

taken to the functional decomposition of the OSFs. This work took an object

oriented approach loosely based on the ODP computation viewpoint as applied by

the TINA-C. This involved defining functional building blocks that addressed

specific functional areas, e.g. billing or customer interface functions, and that could

be used in different OSFs. These building blocks were then further decomposed into

computational objects (COs) that provided both the functional structure of the

building blocks and the interfaces offered by this functional building block to other

functional building blocks in the same of separate OSFs. The COs were defined with

multiple interfaces to explicitly differentiate between the functions and access rights

required by the different roles played by OSFs as identified in the role specifications.

The final design then consisted of mapping these COs onto engineering objects that

implemented the OSF functionality. Where this was performed, it was done so in a

proprietary manner as described in [tiropanis97], i.e. proprietary APIs were defined

for CO implementation interfaces. Within a TMN platform, inter-OS communication

is performed by creation, deletion or attribute change operations on MOs

implementing an OS’s interface. All internal CO communication, however,

potentially all could be via invocations on the proprietary CO interface API.

However, in order to efficiently integrate inter-OS and intra-OS interactions, most

communication between COs was performed by one CO operating on MOs and

others receiving notification of this using the same mechanism used to generate

inter-OS CMIP notifications. In other words the COs conununicated via an MO-

based notification mechanism using the existing internal CMIS event forwarding

118

discriminator mechanism. Hence the propriety inter-CO API was implemented

through operations on existing MOs and only through direct invocations or CO

interfaces when no suitable MO definitions existed in the reference point definition.

The definition of the COs used an augmented version of TINA’s ODL. An example

of the textual part of this notation for a single COs is shown in Figure 4-7.

COMPUTATIONAL_OBJECT_CLASS e2eResourceA]locationMgr
SERVER_INTERFACES

NAME csmControlInterface
CUENT_INTERFACES

NAME statuslnterface

BEHAVIOUR

END_TEMPLATE

COMPUTAIOTNAL_INTERFACE csmControlInterface

OPERATION createUserStream

OPERATION deleteUserStream

OPERATION modifyOos

OPERATION addSourceEndPoint

OPERATION removeSourceEndPoint

OPERATION addDestinationEndPoint

OPERATION disableuserStream

OPERATION enableUserStream

BEHAVIOUR

END TEMPLATE;:

OPERATION createUserStream

INPUT PARAMETERS

sourceEndPoints: SET OF endPoints

destinationEndPoints: SET OF {SET OF endPoints}

qualityOfService: SET OF REAL

OUTPUT PARAMETERS

userStreamId: OBJECT IDENTIFIER

RAISED EXEPTIONS

BEHAVIOUR

END TEMPLATE

119

Figure 4-7: Example of CO Textual ODL Definition

An example of the graphical notation of ODL showing the decomposition of the

VPN S OSF and WSF into COs grouped as building blocks is given in Figure 4-8.

VPN Customer Service Manager WSF

e2eStatusM gr

VPN Customer OSF

e2eResourceAllocationMgr

e2eResourceReservationM gr

e2eCustom erServiceM anagerGui

Figure 4-8: Example o f ODL Diagram Showing COs in an OSF and a WSF

In cases where an organisation played more than one business role, its service layer

OSF was decomposed into OSFs performing individual roles, e.g. the multimedia

conference provider domain contained S OSFs for both the VPN customer role

functions and MMC provider role functions. This allowed OSFs to become units of

reuse, e.g. the VPN customer OSF was instantiated in several organisational

domains. From the computational viewpoint, such a reusable OSF was represented

as a single building block. As roles had been defined along lines reflecting functional

divisions in service management, e.g. separating out roles for service provision,

accounting management and resource/network management, then the OSFs also

reflected this natural split, which assisted in their reuse.

In mapping several OSF reference points into a single OS interface, the useful split

between the different manager role related functions offered by the OSFs was lost,

i.e. the different functions of separate OSF roles were not visible in the

corresponding OS’s agent interface. This was addressed in the project by defining

120

MOs that would form the head of the naming tree of MO which reflected the abstract

business roles played by the constituent OSFs at that interface. Instantiating such

MfB sub-tree for each business relationship that fulfilled an abstract business role

provided a mechanism for naming and locating required portions of a service

management interface, ensuring that role separations had operational significance.

As the testbed included platforms that supported combined X.500/X.700 global

distinguished names could be used for MOs, e.g. (cs=uk, o=ucl, ou=cs, system=vpn-

os, indirectProviderSvcInstance=custl, userStream=usl)

WSFs provided the representation of systems and sub-systems as relevant and

needed by a role holder, taking various concerns into account. The WSF’s design

depended to a large extent on platform technologies, in that such platforms often

have individual style guides prescribing many aspects of the GUI, for instance use of

colours and maps, window layout and menus. The role specifications, however,

provided important indications of what was to be represented on the screen (the

resources the role holder managed), and the capabilities over these resources which

are available to the role holder, which for instance provided indications of the

contents of menus associated with each resource.

4.2.2 Evaluation and Results

The effectiveness and usefulness of the various methodological and architectural

techniques use in this case study were assessed both through the author’s own

experiences in leading the working group that performed the analysis and design of

the system, and through informal discussion with and feedback from the developers.

This case study represents a small increment on the first, dealing as it does with a

refinement of the same multi-domain, TMN-based system. However it introduces

two new development techniques were introduced: the modelling of responsibilities

during requirements analysis and the use of computational modelling in the design

activity. These are summarised in Figure 4-9, which highlights the difference to the

process used in the first phase of PREPARE.

121

Dom ain and role
definitions

M ulti-D om ain
Scenario Definition

TM N A rchitecture
D efinition M ulti-dom ain Role

Definition

TM N functional
architecture

M gmt Inform ation
M odelling I

Role
Specification

M gm t inform ation
m odel (G D M O)

Inter-O SF
inform ation flow

Inter-D om ain
D ynam ic M odelling

Com putational
M odelling

CO and building
block defns (OD L) Implem ent e r's

Handbook (G D M O)Test Case Definition

Test cases Im plem entation

OS Im plem entations

Inter-dom ain
Testing

Figure 4-9: Development Process for Case Study 2

As with Case Study 1, the M.3020 and the TMF ensemble approach were not found

to provide sufficient guidance. Both approaches assumed that only a single manager-

agent interface was being addressed and thus were able to make information

modelling subservient to the functional decomposition, forming only the last part of

the methodology. This makes these approaches vulnerable to the type of problem

observed with other methodologies driven by functional decomposition, e.g.

diffusion of control of data. Therefore, some of the potential benefits of object-

122

orientation gained from the use of GDMO, such as information hiding, are not

necessarily present in the design of a MEB and therefore not of potential benefit to its

implementation. Where the problem at hand involved manageable resources being

represented on both sides of an interface, as was the case in the design of the

PREPARE VPN to CPN interface, information modelling must be promoted to an

earlier stage in the analysis and design process than offered by M.3020. This allows

the functional decomposition of both manager-agent interfaces to be informed by the

informational composition of the problem, and also aids in ensuring the consistent

management of information between the two entities communication over the

interface.

The use of responsibility modelling was found to compliment rather than negate the

usefulness of scenarios. Scenarios described the sequence of events that may occur

over time between a set of organisations and management users. In practice this

technique was used in the case study largely to help clarify the complex situations

where there were interactions between two or more organisations were involved.

Responsibility modelling identified the responsibilities a role in one organisation had

with respect to a role in another. Responsibility modelling therefore focused on the

set of one-to-one relationships between organisations, thus not revealing the multi­

domain interaction view given by scenario modelling. However, role specifications

tended to lead to a more comprehensive set of requirements on the individual OSFs

than was obtained from the multi-domain scenarios.

The mechanism for refining these respective models led to a consistent view of the

design of the various OSFs and their inter-domain reference points. Scenario

modelling was refined by applying the scenarios to the functional architecture

overlaid on the organisational structure, and thus revealed inter-domain OSF

interactions. As observed in Case Study 1, this was helpful in modelling information

that had to span more than one domain or that had to be exchanged between

domains. The scenario-based interactions were refined down to the level of inter-

OSF sequence diagrams showing the CMIS operation needed to perform a scenario

or portion of a scenario. This was regarded by developers as a key design tool in

123

evolving the OSF reference point definitions into GDMO specifications, in contrast

to its application in Case Study 1 which was restricted to test case development.

The refinement of responsibilities into obligations and then into activities and

resources using the ORDIT technique was not so well received by developers. This

tended to be performed in a bottom-up manner once some indication of the resources

in each domain had been formed during information modelling. However, it did

prove useful in providing a consistency check between the functionality required

from a domain’s S OSF in order to satisfy its contractual responsibilities and both

the information held by that domain and the operations that were permitted on that

information, i.e. create, read, delete, modify. This could therefore identify some

information and operations that a domain must offer at an interface that may not

have been identified by refinement of the more narrowly focussed scenario

descriptions.

The computational modelling introduced in this case study addressed the

decomposition of OSFs into functional units that were both more manageable and

potentially reusable. TMN allows OSs to be composed of multiple OSF in order to

achieve a more fine-grained functional decomposition, as demonstrated in

[griffin96]. However the interfaces to such OSs still have to be expressed in terms of

MO classes and manager-agent operations. Whether OSFs can be implemented

efficiently and flexibly as a reusable functional unit within an OS depends on the

structure of the TMN platform used and is not addressed by the TMN standards.

The functional decomposition approach used drew heavily from TINA concepts of

computational modelling where the unit of functional decomposition was the

computational object. Though the ODL notation was helpful in defining the different

interfaces that objects offered each other, these interface definitions did not map well

to their physical implementation within an OS. The solution adopted, i.e., using MOs

to propagate notifications between COs, offered the advantage of being very flexible.

New functionality could be added by introducing a new CO that simply listened to

MO operations made by existing COs that need not be aware of the new CO. This

124

represented a high degree of decoupling between COs which could potentially be

exploited in their reuse elsewhere. By convention individual computation objects

were given responsibility for specific MO classes. However this relationship was not

directly supported by the management platform or by the DDL notation so therefore

it was not possible to ensure that only certain MOs were accessed by a CO. The

reusability of a building block of COs was therefore linked to the presence of

specific MO class implementations, which is not expressed by the ODL definitions,

thus making reuse more problematic.

Finally, it should be noted that though notations from TINA’s application of the

ODP viewpoints were used in this case study, the OOP concept of consistent,

orthogonal viewpoint were not explicitly applied. The next case study provides an

example of such a development process.

4.3 Case Study 3: ODP Viewpoints

This case study is based on multi-domain SMS development that occurred as part of

the first development phase of the Prospect project. The methodological approach

has already been reported by the author in collaboration with others in [wade97] and

has been disseminated by the EU’s ACTS programme as a guidelines recommending

best practice to industry [wade98]. This case study presents the author’s own

contribution to this work. The example used for this case study is the development of

a multi-domain subscription management service for a Tele-Educational Service

(TES) provider. The tele-education service being managed is composed of several

Multi-Media Tele-Services (MMTS) provided by separate service provider, i.e. two

different WWW-based information services, a multimedia conferencing service and

a VPN service and ATM service. The systems developed were successfully trialed

by multiple users across a pan-European ATM network in March 1997.

4.3.1 Development Approach

The Prospect consortium mostly consisted of members from the PREPARE project

so the development approach was able to draw upon the experiences described in the

125

previous two case studies. However, the SMSs constructed for this project were

implemented using CORBA platforms rather than CMIP ones. In addition, the SMS

were not designed from scratch but were heavily influenced, together with the

service delivery systems, principally by models from the TINA Service Architecture.

The use of ODP viewpoints in the documentation of the TINA Service Architecture

motivated the adoption the viewpoints in the development approach. The

development approach is described here in terms of the main processes of interest,

i.e. the modelling the business requirements for the multi-domain context, the

modelling of TINA systems as reusable components and the design and

implementation of the SMSs that use these components.

4.3.1.1 Busin ess Modelling

This activity used the same ORDIT based techniques used in PREPARE, which were

based on the identification of business roles and the responsibilities between them,

alongside scenario descriptions. Figure 4-10 is the OMT diagram used to summarise

the organisations, their roles and the contractual relationships between the

organisations. The contracts were defined by the aggregation of the responsibilities

identified between the roles.

126

TES Provider

TES
Customer

Contraci

responsible to
TES

Provider Role

1+
responsible to

Content
Provider Role

responsible to

Integ. MMTS
Manager Role

Contracj^
responsible to

MMTS
Provider

Contraci

responsible to

VPN
Provider

^ Contraci

responsible to

Legend

□ Enterprise Object
representing a stakeholder

TES TeleEducational Service
Provider

MMTS MultiMedia Service Provider
e.g. Multimedia Conferencing
Service Provider, Multimedia ma t

^ Global Store Service Provider ^

Figure 4-10: Contractual Relationships Between Stakeholder Organisations

The scenarios descriptions were first defined as use case descriptions for the

customer, provider and end user roles of the TES stakeholder. Use cases described

the interactions of a user role with the multi-domain system as a whole with the aim

of performing some task of value to that user. Examples of such use cases were;

subscription to the TES, inclusion of a customer network site in a TES subscription,

authorisation of a TES end user and the actual use of the service. To assess the inter­

domain implications of these use-cases, i.e. the requirements they placed on the

different stakeholder organisations in the enterprise model, high level sequence

diagrams were drawn up to help define the information that needs to flow between

the different stakeholder and roles. These were equivalent to the scenario

descriptions performed in the previous two case studies in that they revealed the

required inter-domain interactions. An example of such a diagram for the “authorise

a TES end user” use case is shown in Figure 4-11.

127

T E S CRN T E S T E S MMC MMM HT V PN VF
u s e r ad m in c u s to m e r p rov ider p rov ider p rov ider p ro v id e r p ro v id e r p rov ider

i au tho rise ijs er
S: ï c o n trac t ID, i;:

I u s e r ID(e .g |e m a i l a d d r e s s |

î au th o rise u |^ r I I I I
I u s e r ID(e .g . é n a i l ad d re ss# .

I au th o rise u ^ r |
I I I u s e r i u (e .g . ^m aii a d d r e l l) . | |

authorise uïer
I u s e r ID(e .g . ipmail a d d r e s |) .

j^ack authorise end user
;i u s e r se rv ie# ID
i u s e r passvwdrd

Figure 4-11: Scenario Sequence Diagram Showing Information Flow Between

Stakeholders for a Use Case

4.3.1.2 Reuse o f Existing Models

Pre-existing management system specifications were analysed to see if they could be

reused in meeting these functional requirements. However, in the particular service

management areas covered by the requirements, little was available in the way of

existing specifications, either from the TMN series of recommendations or from the

TMF information agreements. The TINA Consortium, however, had been examining

areas of service management in detail as part of its Service Architecture. This

provided, amongst others, a generic model for service access and session control.

This session model was integrated with a subscription management model for

determining which users could access which service from which network terminals

and an accounting management model of collecting data on individual user’s service

usage and transforming this into billing information. This service access and service

session model, subscription management model and accounting management model

where selected as the basis for common reusable component specifications that

could be used in the TES, MMTS and VPN stakeholder SMSs. However, the TINA

Service Architecture models assumed only a single provider offers services to

customers, whereas the use cases placed requirements on the TES system to integrate

128

the MMTS offered by other providers into a single service offering. This required the

extension of the TINA specifications in order to deal with the resulting inter-domain

interactions.

The TINA Service Architecture models were based on ODP concepts, and consisted

of:

• An Information Viewpoint model in terms of information object (10)

descriptions in Quasi GDMO together with OMT object diagrams to express the

relationships between the objects.

• A Computational Viewpoint model in terms of computational object (CO)

textual definitions in ODL together with ODL diagrams showing the client server

relationships between objects.

These information and computational models were therefore used as the basis for

developing design models that satisfied the requirements presented by the business

model and from which the components and systems could be implemented. It was

found, however, that the TINA design specification in the form of these two

viewpoints was inadequate for this task. This was primarily due to the lack of an

explicit linkage between the two viewpoint models, i.e. the mapping between lOs

and COs was not presented in the TINA specifications in any clear manner. This

prevented both a clear understanding of the system and hid the overall object model

needed to implement this system. The first step to resolving this problem was to

generate sequence diagrams describing the flow of information between COs.

Though such diagrams were present in the TINA Service Architecture, they were

presented as selected examples of the application of the models, rather than

depicting the general usage of the models. The use case based sequence diagrams

illuminated the general dynamic behaviour of the model in satisfying the system’s

requirements, and in the process clarified the relationships intended between the COs

and lOs and their behaviours.

As COs are taken to be units of object distribution, some mechanism was required to

map CO definitions to a form suitable for implementation on a distributed platform.

129

TINA assumes a DPE that provides distribution transparencies for engineering

computational objects that implement the COs. However, no practical

implementation of the TINA DPE platform implementation was available to the

project. Instead a commercial CORBA 2.0 implementation (Orbix from Iona) was

chosen as the platform for the SMS. This required mapping between the multiple

interfaces of a TINA engineering computational object to the single interfaces of

CORBA objects as suggested in [kitson]. This mapping exploited the similarity

between ODL and CORBA’s IDE, with ODL CO interfaces being mapped to

individual IDL interfaces definitions, which were grouped in modules mapped from

CO definitions.

4.3.1.3 System Development

As the design of the TINA Service Architecture subscription management

component had been presented as a set of lO and CO definitions, and since the

relationships between these sets of objects have been clarified through detailed

sequence diagrams, the design of the stakeholder systems that use these components

used the same modelling approach.

Figure 4-12 shows the OMT object diagram for the subscription management

component together with its relationship to the additional lOs (shown shaded)

needed to satisfy the multi-domain requirements of the TES SMS. The intention of

these extensions was to support the functionality required, while preserving the

integrity of the existing component’s information model.

130

i s R e s p o n s i b l e F o r

i s R e s p o n s i b l e F o r

{ s u b s e t }

a l l o w S e r v i c e A c c e s s F r o m

UserTerminal

Service Profile
Mapping

SAG Mapping

Service Provider

Service Template
Mapping

Network Access Point

Subcontractor Portfolio

P_Service Profile
s v c _ p r o f i l e _ i d
a c t i v a t i o n _ s t a t e

Subscription
c h a r g i n g _ p o l i c y
s v c j D r e s e n t a t i o n
t e r m _ s u p p o r t
n e t w o r k s u p p o r t

Subscription Portfoiio
n o _ o f _ s u b s c r i p t i o n s
m o n t h l y _ c h a r g e
p a y m e n t r e c o r d
a u t h o r i t y J i m i t

Subscriber
a c c o u n t n o
n a m e
a d d r e s s
n o o f g r o u p s
t a r i f f
c r e d i t

Service Template
s v c j d
s v c t y p e
s v c _ p r o v i d e r _ i d
s v c _ c o m m o n _ d a t a
s e s s i o n t y p e
s v c j a c t o r y r e f
s v c _ s p e c i f i c _ p a r t

Subscription Contract
s v c J d
a c t u a l s t a r t
r e q u e s t e d s t a r t

r e q u e s t e d b y
b i l l i n g _ c o n t a c t _ p t
t e c h _ c o n t a c t j 3 t
b a s i c T a r r i f f
u s e r P l a n

Subscription Assignment Group
g r o u p J d
g r o u p s i z e
g r o u p d e s c r i p t i o n
t e r m i n a l t y p e
n a p t y p e

Figure 4-12: Extended Subscription Management Information Model

A similar approach was taken when modelling how the subscription management

component’s computational model would be applied to the TES SMS design. It was

deemed useful to retain as much as possible of the interface definition of the existing

COs when developing the extensions required. In this way components designed to

interact with the original CO interfaces of the component (SubMgmt in Figure 4-13)

could also interact with the extended SMS (SubMgmt* in Figure 4-13) with

minimum modification. This was performed simply by designing SubMgmt* as a

wrapper for SubMgmt, with the new COs introduced to implement this wrapper

131

(shown shaded in Figure 4-13) inheriting IDL interfaces from COs in SubMgmt. The

SubMgmt* COs provide the functionality needed to interact with SubMgmt

components as used in the subcontractor’s domains, thus exploiting the same CO

interfaces and minimising the complexity of information transformation that needed

to be performed.

UA

SubMgrr t*

SubMg

A C u s t
MUAP

mt

S R P

S u b R g s

4 SubA gt
1

B P r o v
M UAP

UA

SubMgr SS GO

S u b R g s

SubA gt

A P r o v
M UAP

S M P

S ubM gr

1
STH

S ubM gr

4 STH

Service A
Customer

Domain

Service A
Provider
Domain

A C o n f
M gr S C S O

Service B
Provider
Domain

B _C onf
M gr S C S O

Figure 4-13: Extended Subscription Management Computational Object Model

(ODL)

132

Objects in the original TINA specification, the SubMgmt* COs were documented as

a detailed block diagram identifying the specific server interfaces offered by the CO

using the IDL interface names. In addition the other COs to which the CO was a

client were also identified. An example of this notation is given in Figure 4-14.

Cust
MUAP

l_srplnit

Prov
MUAP

l_sprSubscrnCn1

SMP

l_srpMgmt
l_rgsPrpgnMgmt

gsPrpgnlnfoQuery

Subscription Registration Propagator (SRP)

SubRgs

Figure 4-14: Example o f Detailed CO ODL Diagram for SRF CO

Such diagrams were accompanied with details of which lOs the CO had

responsibility for and descriptions of the functionality provided by the different

interfaces. As with the original TINA COs, sequence diagrams showing interface

interactions between the SubMgmt* COs were used to develop these interface

definitions and clarify which lOs are held in which COs. An example of such a

sequence diagram is given in Figure 4-15.

133

Service A Provider Domain Service B Provider Domain
/ N / \

A Cust A Prov UA SPR SMP SubRgs SubAgt SubMgr A_Conf B_Prov UA SubRgs SubAgt SubMgr B Conf
MUAP MUAP Mgr MUAP

l_saghigmt

Sub 16

Sub 16

DONE

l _ s rpS ib sc r r |Cn t r l
assign | j

Sub 13

l_prp|nlnfo|uery
g e t S ^ appir|

sagu3 I

Sub 13
DONE

Figure 4-15: Example o f Sequence Diagram Showing Interactions between COs

The functionality covered by these sequence diagrams was taken directly from the

use case information flows used in the analysis, thus providing a mechanism for

ensuring that the requirements were fully met by the design. Figure 4-15 shows the

interactions that implement the use case information flows of Figure 4-11. As

sequence diagrams showing interactions between multiple COs in multiple domains

could easily become large and complex, a nesting notation was used to refer to

sequences of interactions that were represented in other diagrams, e.g. the boxes

marked Sub_16 and Sub_13 in Figure 4-15. This form of nesting sequence diagrams

also simplified the drawing of situations were sequences of interactions were

repeated. The boxed numbers referred to accompanying notes that explained each

significant interaction in more detail, in particular, referring to their effect on lOs

contained within the COs shown.

134

As well as proving essential in clarifying the behaviour of CO interfaces and their

internal operations on IQs, the sequence diagrams were also found to be ideal for

producing test documentation. Integration tests performed between components

implemented by different developers were specified by defining pre-conditions and

post-condition values for IQs at the beginning and end of sets of interactions

represented on an sequence diagram. Values were also provided for the parameters

of interface operations performed, so that appropriate test harness software could be

developed and operated. This was especially important where interactions involved a

chain of several COs, and these needed to be tested individually and in small groups

before finally being able to test the complete end-to-end interaction. This involved

the definition of test cases at a finer level of granularity than those derived directly

from the system level use cases.

4.3.2 Evaluation and Results

This case study provides evidence on the usefulness of techniques such as use cases,

OMT graphical object modelling and ODP viewpoints as practised by the TINA-C.

The reactions of the developers to these modelling techniques was gathered though a

group discussion. The discussion was chaired by the author and was driven by the

review of the answers participants had given to a questionnaire in the weeks prior to

the meeting. This questionnaire elicited views from the developers on the usefulness

of the modelling techniques used in: capturing and revising requirements; defining

the enterprise model; writing scenarios; designing the components and SMS using

the ODP information and computational viewpoints; implementing the system using

a CORBA-based engineering viewpoint and testing.

The general structure of ODP viewpoints was applied in this case study. The capture

and analysis of requirements was classified as enterprise modelling, the design of

both the individual stakeholder’s SMS and of the components used within them was

conducted using the information and computational viewpoints and the

implementation was guided by the engineering viewpoint. The activities used in

developing the systems and components are summarised in Figure 4-16.

135

Requirements
Capture

TTNA Service Architecture
(quasi-GEMD & CO_)Domains, rdes and coitracts

(CMT&CHEST)

Use cases

Soenanos (domain
levd sequence

10 definitions
(CMV)

DMrain System

Test Qjse
Définit bn

Test Design
Specification

(X) definitions
(CSX diagrams & IDL)

*
1 i 1 \ i t

10 definitions
(CMI)

, 1 1 1 \ 1
CD levd sequence

(fiagrams

0 0 definitions
(COL diagrams & n X)

Implementatbn

CD levd sequence
diagrams

*

Software

I

<

X

Testing

7

Figure 4-16: Development Process for Case Study 3

The dual requirements capture approach of responsibility modelling and scenarios

modelling was retained from Case Study 2. An intervening stage was introduced

however, where use cases describing tasks performed by the human roles were used

to motivate individual scenarios. In addition, the organisational stakeholders, the

business roles they play and the contractual relationships between them were

modelled using OMT class diagrams. The reaction of those performing the enterprise

modelling was that, though the identification of responsibilities between roles was

useful, the refinement into obligations, actions and resources was difficult to perform

and relatively unhelpful. This was due to the design being based to a large extent on

existing specifications, so that the freedom provided by this top-down approach was

not available, and merely served as a consistency check.

The reuse of TINA models was exercised at both the SMS design level and at the

level of the components that made up these systems. For both, the ODP information

136

and computational models were used though several methodological problems were

experienced by the developers in using the two viewpoints. The major problem was

in relating the two viewpoints to each other. It was found that the notations used in

TINA did not provide adequate support for mapping model elements between the

two viewpoints. This was found to be necessary in order to gain a complete

understanding of the designs being used. The TINA specifications used, therefore,

had to be supplemented by interaction diagrams to gain a fuller understanding of the

mapping between objects given in the two viewpoints. This was still only an

implicit, rather than explicit mapping, and was difficult to maintain when changes

were made to models in either viewpoint. As models in the two viewpoints were

closely coupled, changes in the information model often resulted in changes in the

computational model and vice versa. Similar problems were encountered when

developing new designs using the two viewpoints. Modelling using OMT for the

information model, ODL for the computational object and sequence diagrams for

dynamic models made the use of CASE tools difficult. Where CASE tools were

available, their use was found to be very beneficial to the developers common

understanding of the design [neilsen]. This was performed using the available set of

OMT object, dynamic and functional models rather than the ODP-oriented models

used in the rest of the project. The division between the two viewpoints, therefore,

was found to be a barrier to the developers’ comprehension of a design and made the

task of consistency checking an onerous one. Developers tended to be most

interested in the computational viewpoint, since this was the one in which interface

agreement to other sub-system were defined and which had a major impact on

interoperability. The agreement of IDE interfaces was therefore seen as the most

crucial collaborative design activity. Other aspects of the engineering viewpoint

were not actively addressed as the implementation of location and access

transparencies and the underlying communication protocol were provided by the

ORB.

From this case study we can conclude that ODP suffers in several respects. The

mapping of viewpoint concepts to practical development notations for SMS

137

development was not sufficiently defined. Also, as discussed in Chapter 3 there is a

general lack of consistent guidance on a suitable development process for actually

applying ODP modelling constructs to the development of SMS. Developers,

therefore, have to define their own process, as was the case in this case study.

Finally, consistent with the other conclusions, there is little tool support available for

development using ODP viewpoints in commercial CASE tools. Due to the close

coupling between the information and computational viewpoints, such tool support

is essential for the seamless transition between viewpoints and for automatic

consistency checking between them if this technique is to be applied successfully.

4.4 Case Study 4: Developing SMS with UML

This case study is based on the second phase of the Prospect project. This was based

on the same tele-education service as the first phase, with the resulting multi-domain

SMSs also being demonstrated through user trials. Several trial systems were

developed in this phase, each demonstrating a different multi-domain business

scenario. These scenarios aimed to show how SMS could be constructed to flexibly

support multiple business scenarios and how service management components could

be reused in different stakeholder’s SMS, across these different business scenarios.

A review of the approach taken has been published in [lewis99d], the author’s

contribution to which forms the basis of the following section. This phase of

Prospect was also subject to a more in-depth evaluation of developers’ experience of

the methodology, performed through a questionnaire. The results are presented in the

subsequent section.

4.4.1 Development Approach

The development approach followed was heavily influenced by the methodological

experiences of the first phase as presented in Case Study 3. The principle result of

this was that two modelling processes were explicitly identified in the development

of SMS:

138

• Multi-Domain Modelling: This captures requirements of management tasks

involving more than one organisational domain. It therefore focuses on

supporting inter-domain interactions.

• Single-Domain Modelling: This captures the management system requirements

and design for a specific organisation. It therefore focuses on intra-domain

interactions.

These processes are not independent, so the approach taken supported the alignment

of requirements and interface definitions between a multi-domain model and the

related single domain models.

In addition to these two modelling processes, the approach taken also explicitly

addressed the modelling of components. Components were treated as separate

entities from multi-domain or single-domain systems on the assumption that they

may be developed by third party vendors and will, therefore, have distinct

development life-cycles. This approach had to support the introduction of separate

component models into the development of multi-domain or single-domain systems.

This case study, therefore, provides a close match to the generic SMS development

process model of Chapter 2.

The recognition of the presence of distinct development stakeholders, which was

reflected by the collaborative nature of the project, highlighted the need to support as

much as possible the communication of models between different developers. The

emerging UML standard was therefore selected as the primary modelling notation

for the development approach of this phase of Prospect. This decision was justified

by the broad range of modelling constructs it supports including ones similar to

those familiar to developers from the first phase of the project. The support for UML

by commercial CASE tools which were used in the project, such as Paradigm Plus

and Rational Rose, was also a major motivating factor. To fully support the

development cycle of the required SMS, detailed design specifications and

specifically interface definitions had to be in technology specific languages, in this

139

case EDL. The CASE tools used already supported mappings from UML class

definitions to IDL.

The development process used aimed to provide a common approach to iterating

through the development of management systems, whether they were multi-domain

systems, single-domain systems or components. As proposed by this thesis, in this

case study it was expected that, by following a common well understood process and

notation regardless of the type of system being implemented, communication

between developers of these different types of systems would be facilitated. The

process adopted can be decomposed into the following steps:

• Definition of the system business model, identifying the business stakeholders

and roles together with their responsibilities and obligations to each other.

• Functional requirements capture by use case analysis.

• Identification of system information in terms of objects and their relationships.

• Functional decomposition of the system into sub-systems, including

identification of pre-existing, reusable components, the definition of external

interfaces and interfaces between sub-systems.

• Definition of distributed platform structure and required services.

• Definition of test specifications.

• Implementation and integration of components.

• Testing of sub-systems, sub-system integration testing and testing of external

interactions.

The process and notation is discussed in the section in terms of their application to

multi-domain system modelling, component development and single-domain SMS

development.

140

4.4.1.1 Multi-domain System Modelling

The enterprise model for a specific business scenario was represented using UML

object diagrams. The objects in the enterprise model diagrams were instances of

classes from a general enterprise model, shown in the class diagram in Figure 4-17.

In this general model classes representing roles and stakeholders are differentiated by

their class stereotypes. The general enterprise model defined a set of roles and

stakeholder that were thought likely to be present in multi-domain, open service

management scenarios. However, this was principally performed to clarify the

context of Prospect’s work, and other general enterprise model classes could be

equally valid in different situations.

stekeholder^O..* <
customer---------------- buys services from-------

_ j j n _
<stbkeholderl»1

provldei
1 1

supports role.

supports role supports role

0..*
« ro le> ; ■

customer
administrate

« r o l e »
end usei

multlmedi i
teleservice
provider

<<role>:
provider

adm inistrator

composltp
service
provider

value
added
service
provide:

«ÿtakeholder^>«s|takeholder^x<stëkeholdeci(Stàkeholderl»
network
operator

Figure 4-17: UML Class Diagram Showing Roles and Stakeholders Used in

Prospect Trials

To provide a more detailed context for the subsequent definition of use cases, the

relationship between the roles and organisations prior to the trial was also described.

This took the form of statements of contractual responsibilities between the different

stakeholders that could, in commercial scenarios, form the basis of, or be informed

by, legal contracts between the parties concerned. These contractual responsibilities

were represented as associations between stakeholder objects. A further breakdown

into obligations with mappings to activities and resources using the ORDIT

technique was not attempted.

141

Use cases at the multi-domain system level defined what the system as a whole

needed to do in terms of useful interactions with actors that define the system’s

environment. Figure 4-18 shows an example of a UML class diagram for one of the

multi-domain trial systems developed. These actors represented instances of the role

class stereotypes from the general enterprise model for the multi-domain system. The

use cases descriptions were stated in the form of text, with sections defining the use

case pre-conditions, the use case itself and the use case post conditions. The

preconditions present the state of the multi-domain system, from the point of view of

the actors, and would typically be related to the post-condition of other use cases.

The use case body described, as a sequence of steps meaningful to the actor, the

interactions that were performed with the system in order to complete some useful

task.

T21a system

generate

create
student
group

service tassign
student
group to
student
profile

authorise
student ♦use

course
service

student

TES Provider
A dm inistrator

TES Customer
Administrator

TES End
User

Figure 4-18: UML Use Case Diagram for Prospect Customer Management Trial

To analyse the inter-domain interactions within such a multi-domain system, the

individual use cases were refined to describe the inter-domain interactions they

required. This step was informed by the responsibilities between different roles and

stakeholders in the enterprise model. Refining the multi-domain use cases in this

way enabled the identification of use cases for individual domains, i.e. for the single-

142

domain systems that made up the multi-domain system. A similar set of use case

diagrams showing the decomposed, single-domain use cases, could then be produced

as input to the single-domain requirements discussed in Section 4.4.1.3. However,

use case diagrams in UML do not support direct interaction between use cases, so

use case diagrams could not be used to show the full chains of interactions between

the single-domain systems that make up the multi-domain one. Instead, high-level

UML sequence diagrams were also used to show information flows between the

multi-domain system actors and objects representing individual domains, in a similar

manner to the previous case study.

The definition of the information was involved in these inter-domain interactions

was based on the requirements embodied in the multi-domain use case definitions.

However, developers also took information definitions from existing standards and

from existing components that were likely to be used in the systems implementation.

4.4.1.2 Component Modelling

The components used in this phase of the project were modified versions of the ones

based on TINA Service Architecture specifications that were implemented for the

first phase. Components were re-modelled in UML using CASE tools. Use cases

were introduced to the component model to define the actors that would interact with

a component and to define their interactions with the component. A use case diagram

for the Subscription Management component described in Case Study 3 is given in

Figure 4-19.

143

core subscription component

create
service

template□□□ delete
service

template□□□
create

subscrlbiservice factory
management delete

subscribe
subscribe
customer.

cancel
subscripts

set SVC
profil^customer

delete
service
profil^ provider

create
SAG

delete
SAG

add Iterr
to SAG,□□□ remove?

Item from)
. SAG J□□□

assign
SAGuser

management deassign
SAG ,

activate
SAG

deactivate
SAG ,

Figure 4-19: UML Use Case Model for Prospect Subscription Management

Component

Note that some actors represent human users while others represent systems that may

be other components that are either abstract or represent existing components, such

as ones from the TINA Service Architecture.

The design of components was developed using UML class diagrams. These

represented the results of both the information modelling activity and the functional

decomposition activity. Outputs from both activities were integrated on the same

diagrams but were differentiated by stereotypes for information objects (IQ) and

computational objects (CO) respectively reflecting the design’s TINA origin. Figure

4-20 shows the top-level class diagram for the Subscription Management

component. UML component diagrams could have been used to identify the different

interfaces of computational objects and their relationships. Instead, however, the

144

details of the interfaces were modelled as classes grouped in diagrams representing a

single CO. This facilitated both the automated generation of IDL by case tools and

the maintenance of consistency with interaction diagrams, features not directly

supported by component diagrams. It meant, however, that the collection of

interfaces in a CO construct was not explicitly represented anywhere in the UML

model.

uses

1 . . *

ServiceOperator

uses

1 ..*

1 . /

« S y s t e m » | uses
ManagementApplication

I 1 /
0. /

1..1

« 00»

1 ..*

es
1..1

ServiceTem plateHandleL__

1..1

controls

0 . . *

«10» I
ServiceTemplate

«10» I
SubscriptionContract us

0. /

controls

1..1

0. /

1..1

0 . /

« 00»!
UserAgent

controls lifecycle of

1..1 1..1

« 0 0 » I
SubscriberManager

controls

1..1

lifecycle

1..1

controls

0 . . *

1..1

rols

0 . .*

«10» I «10» I
Subscriber UserGroup

ses

0 . / 1..1

« 0 O » I notifies
SubscriptionRegistrar------------

I 0..*

«00» I
SubscriptionAgent

0. /

Figure 4-20: Top-level UML Class Diagram for Subscription Management

Component Design

Figure 4-21 shows an example of how class diagrams were used to define the

interfaces for one of the computational objects shown in Figure 4-20. The

computational object. Subscriber Management, has eight IDL interfaces, two of

which have been inherited from more general interfaces intended for managing a

computational object’s lifecycle (i_CoInit) and administrative state (i CoMgmt).

145

The interface’s operation parameters are not shown in this figure, but were also

modelled in the CASE tool used (Rational Rose in this case).

i_Colnit

(from Interface)

, %init()
, ■%terminate()

<F1
ism lnit

J

l_CoMgmt

(from Interface)

, ^setAdminState()
. $getAckninState()

<3----------
i_smMgmt

i_sagMgmt

%iefineSAG()
4modifySAG()
^delete SAG()
^addSAGItem()
%emoveSAGttem()

is ag ln fo Q u e ry

4getSagUst()
^ e t AssignedSagUst()
^ S A G ()

i_stxMgmt

)
■%modi1ySul3SCTlt>er()
^deleteSut)scrit)er()

islxInfbQuery

4fistAccounts()
^etSutBcrit)er()
4modifySut)scrit)erDetails()

ijxxtfblioMgmt

4modfyPortfolio()
^deletePOrtfdlo()

l_sut)ScmNotlfy

^notifySut)scription()
%iotifyCancellation()

Figure 4-21: UML Class Diagrams Showing the Interfaces to the Subscriber

Manager CO

To fully describe the component’s behaviour for the benefit of the implementers, its

dynamic operation had to be modelled. This was typically performed by defining the

interactions between the computational objects and with actor systems, based on

individual use case descriptions. An example of such an interaction diagram is given

in Figure 4-22, which shows the interactions between entities in terms of IDL

operations on their interfaces. This example shows the CO behaviour required by the

“Create Subscription Assignment Group (SAG)” use case shown in Figure 4-19.

Note that in this diagram only the Subscriber Manager and the Subscription Agent

entities are part of the Subscription Management component. The management user

application (MUAP) is the design level representation of the application used by the

Provider Administrator actor identified in the use case model, while the User Agent

146

object is part of the User Management system actor also identified in the use case

model. These are necessary since the dynamic behaviour of a component can only be

fully described by including its interactions with its environment.

S u b s c r i b e r
M a n a g e r

M U A P : M a n a g e m e n t
A p p l i c a t i o n

S M G R : i s a g
M q m t I

S u b s c r i p t i o n
A g e n t

S A G T : i s a l n i t

U s e r A g e n t

U A : i u a l n i t

n I I
1 : d e f i n e S A G (i n t A c c o u n t N o , i n t A s s i g n G r o u p S e l e c t i o n , o u t t S a g I d)

2 : i n i t i a l i s e (i n t U s e r l d)
. -

3 : s a l n i t (i n t U s e r l d , i n t J n t R e f l l i s t , o u t t _ l n t R * Ç)

r " — ^

Figure 4-22: UML Interaction Diagrams Showing Subscription Component

Behaviour for the Create SAG Use Case.

4.4.1.3 Single-Domain System Modelling

The development of SMS for Prospect was performed at the level of an

organisational domain, i.e. the SMS contained all components and subsystems

operated by a single organisation. In determining a system’s requirements, in

addition to inter-domain sequence diagrams, multi-domain system use cases were

used/ These were decomposed into linked sets of use cases specific to the constituent

single-domain systems. This helped to identify where the same functionality was

required in different domains. Where such common functionality could be provided

by a reusable component, these components and their relevant use cases were

included in the diagrams expressing the multi-domain to single-domain use case

decomposition. An example of this is shown in Figure 4-23.

147

TES systems

core subscription component

create ̂
student
group>

create
SAG« u s e s » '

« e x te n d s»TES Customer
Administrator

MMTS system

core subscription component
create
MMTS

user gri
create
SAG« u s e s » '

Figure 4-23: Multi-domain Use Case Linkages Supported by Component Level Use

Cases

In this way, places where components could be reused in different domains could be

clearly identified. This analysis also aided in the identification of the areas where

reusable components did not satisfy the requirements of the domain’s use cases, and

where, therefore, the development of additional domain-specific sub-systems was

required. Such sub-systems were modelled using the same notational techniques as

those used for developing and describing components

4.4.2 Evaluation and Results

The development methodology used in this case study combined an iterative, use

case driven development process with UML as the modelling notation. This has been

applied effectively for multi-domain management system analysis, single-domain

system development and component development. By using the same basic

methodology for all of these activities communication between the different

developers, e.g. component developers and component re-users, was eased. Figure

4-24 gives a summary of the common development process.

148

Define roles and
stakeholders

Definition of
contractual

responsibilities

Object diagrams
of business

Capture functional
requirem ents

Inform ation m odelling

Functional
decomposition

Component
Dynam ic m odelling

Inter&ce spec
Sœmplete?

Distribution m odelling

Deployment
Specification of tests Im plem entation

Testing

Figure 4-24: Development Process for Case Study 4

It should be noted that some models are used in several subsequent steps. Also note

that the information modelling, functional decomposition and dynamic modelling

steps are closely coupled and may undergo several iterations before arriving at a set

of completed interface specifications.

The approach followed in this case study benefited from the experience of the

previous case study and also from the emergence of the UML notation, which was

bolstered by strong tool support. It made the distinction between the application of a

common development methodology to the analysis of multi-domain systems, to the

development of complete SMS and to the development of reusable management

components. This case study, therefore, partially emulated the business model for

149

SMS development proposed in Chapter 2. The latter two applications of the

methodology are analogous to those conducted by the SMS Developer and the

Software Vendor respectively. This case study is therefore important in determining

the effectiveness of a common methodological approach in communicating between

these stakeholders.

The use of UML brought several advantages. Its coverage of a wide range of

modelling diagrams meant that a tool that supported UML would provide much

better coverage of the models needed compared to the tool support for ODP-based

modelling experienced in the previous case study. Also the stereotyping mechanism

of UML allowed its modelling constructs to be tailored to the SMS development

problem domain. This was used, for example, in the definition of stakeholder and

role stereotypes for business level diagrams. In the long term UML stereotyping

provides a path to standardising modelling constructs for this domain and

influencing tool developers to support them.

Use cases were used more widely in preference to scenarios due to their better-

defined semantics. Use cases were used in the three different development areas for

showing how the SMS and components under development interacted with their

environment. However, this was to the detriment of the dynamic modelling at a high

level abstraction, with dynamic modelling being mostly focussed at the design stage.

Several shortcoming of UML were identified in this case study. Use cases lack a

relationship where use cases in one system interact with use cases in another system,

a facility that would be useful in decomposing multi-domain system requirements

into single-domain system ones, and similarly in matching single domain system

requirements onto interacting components. Also, though multi-interface

computational objects can be modelled as components in UML component

diagrams, these cannot be used as communicating entities in interaction diagrams,

restricting support for multi-interface distributed components. These problems point

to improvements required in the semantics of UML rather than just ones that can be

implemented through stereotypes

150

The above observations are based largely on the author’s experiences in analysing

and using the methodology proposed for this case study and from discussion with the

developers. In addition, a questionnaire was used to get a more structured view of

the developers’ experiences, against which the above observations can be compared.

The questionnaire was designed using the goal-question-metric approach described

by [basili] and structured using questionnaire writing techniques described in

[oppenheim]. The questionnaire to target those involved in developing whole

domain management systems, developing individual subsystems for a specific

domain management system and/or developing reusable components applied in

several subsystems. Questions eliciting feedback from these activities were of two

types. The first attempted to gauge the usefulness, if present, of different modelling

constructs for a specific development activity. Responses were requested on a scale

of:

Essential =5, Mostly Useful =4, Generally Useful =3, Partially Useful =2, or Not

Useful =1.

The second type of question attempted to discover the extent to which errors in the

development process were due to omissions in, errors in, inconsistencies in or

misunderstanding of other models. Responses were requested on a scale of:

Always=5, Usually=4, Sometimes=3, Rarely=2 or Never=l.

For both types of questions respondents could also register a “don’t know” for

individual categories.

The questionnaire therefore contained six sections as follows:

• The first section allowed the developers to identify which components, whole

domain systems or constituent sub-systems they were involved in developing and

for which parts of the development cycle, i.e. analysis, design, implementation

and/or testing/integration. This was intended primarily to clarify in the mind of

the respondent which development experiences they were referring to in their

answers. This information was also available for any correlation needed between

151

groups working on different systems and differences in their responses those of

others.

• Section two was to be answered by component developers. It addressed the

component’s analysis specification as applied to component design and

implementation (Q2.3) and its design specification as applied to its

implementation and testing/integration (Q2.7).

• Section three was to be answered by whole domain system developers. It

addressed:

• The multi-domain analysis specification as applied to system design and

implementation (Q3.1).

• The design specifications of interoperable systems as applied to the systems

design, implementation and testing/integration (Q3.3).

• The analysis specification of reused components as applied to system design

and implementation (Q3.6).

• The design specification of reused components as applied to system

implementation and testing/integration (Q3.8).

• Section four was to be answered by sub-system developers. It addressed:

• The analysis specifications for reused components, the encompassing system

and other interoperating sub-systems for sub-system design and

implementation (Q4.1).

• The design specifications for reused components, the encompassing system

and other interoperating sub-systems for sub-system design, implementation

and testing/integration (Q4.3).

• Section five was to be answered by everyone and addressed the CASE tools used

for different modelling activities and the communication techniques used

between developers at the different stages of development, i.e. meetings,

telephone, email, multi-media conference or exchange of revised specifications.

152

• Section six was also to be answered by everyone and requested personal

information from the respondent including the level of experience with

modelling techniques and tools used.

Completed questionnaires were received from fifteen developers. It was found that

respondents had had difficulty in completing questions on the frequency of problems

related to different specification parts due to poor phrasing of the question. This data

was therefore not analysed further. The mode response for each modelling technique

addressed by each question is given in Appendix 1 (Section 8.1). If two adjacent

values contained the same mode total the mode is presented as the median of those

two values. If the mode value was present in two unadjacent categories or in more

then two categories then no mode value is presented. Though the usefulness measure

is not an ordinal scale the mean is also presented to give a further indication of the

spread of responses. Uncompleted and “don’t know” responses were not included in

the mode and mean calculation, with the number of responses counted given on the

category entries of the y-axis.

The responses largely reinforced the general observation made above, though the

small size of the sample does not allow any strong conclusions to be drawn. Use

cases were found to be generally the most useful both for the design of the item

analysed and also for understanding the items that needed to interoperate with the

item under analysis. Modelling constructs related to role and responsibility were

generally not rated as very useful. Significantly, the general textual description of

components and systems were rated highly for design, indicating that they provided

an aid to understandability that was not present through the other more formal UML

constructs.

For the design stages sequence diagrams and collaboration diagrams are highly rated

supporting the use of scenarios and use cases as the focussing thread though the

different development stages. For the implementation and testing/integration stages

the core object specification were seen as essential, though the specification of the

153

information content of interface operation parameter types together with the CORBA

Naming Service naming scheme were also rated highly.

4.5 Case Study 5: Developing SMS with Integrating Business

Process Modeiiing and Component Reuse

This case study is based on work conducted in the FlowThru project. This project

had the express aim of investigating development techniques for the integration of

management systems that implemented management business processes from

reusable management components. This case study therefore provided an

opportunity to explicitly analyse the development process needed for such

development in addition to observing and evaluating its application. This case study

also represents an explicit attempt to address the generic SMS development process

model laid out in Section 3.5.4. For this project the author proposed a reusable

component modelling approach and an open approach to the mapping of business

processes to open reference points based on existing standards. These proposals were

published in [lewis99c], from which the descriptions of the development approaches

given below are based. The next section also provides examples of how these

proposals were applied in the development of management systems within the

project. The reusable component modelling approach is applied to an evolution of

the same subscription management component used in the previous two case studies

and is based on contributions by the author to experiences published in

[Iewis99b][wade99]. The application of the open business process modelling

approach and its integration with the component modelling approach is taken from a

portion of the FlowThru system development addressing the integration of service

ordering and ATM network planning and configuration as documented by the author

in [lewis99e].

4.5.1 Development Approach

The overall development approach proposed for this case study built heavily on the

results of Case Study 4, in particular in the use of UML as a notation, the use of use

154

cases for both systems and component requirements specification and the use of

roles and responsibilities in capturing single and multi-domain system requirements.

The novel techniques applied were, as mentioned above, the modelling of

components specifically for reuse and the use of business process models for

analysing system requirements and mapping them to open reference points. These

techniques and their application in the case study are presented in the following two

sections.

4.5.1.1 Reusable Component Modelling Approach

The approach to modelling components for reuse assumed a development activity

similar to that described in Section 3.5.2. Reusable components are typically

presented to system developers as sets of libraries, i.e. as a set of software modules

and the definition of the individual operations they provide. In terms of the generic

development process described in Section 3.5.2, the component is presented in terms

of its design model and software. This may cause problems in the development of

systems that reuse the component, since any changes required to accommodate the

reuse of components are only likely to become apparent during the design process,

therefore possibly countering aspects of the system’s analysis model.

As described in Section 3.5, components are often part of a framework. The

framework may be general, e.g. CORBA Services, or aimed at a particular problem

domain, e.g. the TINA Service Architecture. In either case, the framework will

provide some high level architectural and technological guidance on how

components can be integrated together and how they can support the development of

a system. Such frameworks are often considered at the analysis stage to ensure that

the system’s analysis model is structured in a way that will accommodate the

inclusion of the framework’s components at the design stage. This situation is

depicted in Figure 4-25a. However, frameworks typically only give general guidance

on the use of components. The suitability or otherwise of individual components in

satisfying requirements still needs to be considered in the design activity.

155

For SMS development, such a typical component reuse situation is difficult to

standardise because, as described in Section 3.5, there is no commonly accepted

framework that supports a suitably wide range of components. The development

guidelines for component reuse presented here are motivated by the absence of such

a framework. As such, they attempt to provide guidance on how components can be

specified in a more self-contained manner that is easily understood by those

performing the analysis of the system. In this way, decisions about reuse can be

made based on the suitability of individual components rather than on a wider

assessment of the suitability of an entire framework. The approach is aimed at

making decisions based on architectural and functional aspects of a component

rather than its implementation technology. A component’s technology is treated as

an orthogonal issue, with heterogeneity handled primarily through the employment

of suitable gateways.

The approach is derived from that described in [jacobsen97] and outlined in Section

3.1.1. The basis of the approach is that components are not presented just as units of

design and of software within an encompassing framework. Instead, they should be

packaged together with the requirement statement and analysis model of the

component for presentation to potential reusers. If the modelling techniques used for

the requirements capture and analysis modelling of the component are similar to

those used for modelling the system in which it might be included, then it becomes

much easier for an analyst to assess whether the component is suitable for use in the

system. In addition the system’s analysis model can directly import the analysis

abstractions of the various components it reuses, easing the task of requirements

analysis and ensuring, at an early stage, compatibility between components and the

system requirements. This analysis model-based reuse approach is depicted in Figure

4-25b.

156

Requirements
Capture

Component
frameworir Requirements

Analysis

Requirements
model

Component
part of

Design
model

Software
exports

i/f

Design

'■3É(Analysis
model

i/f -

Implementation

Design
model

Testing

Software

Deploy

a) Conventional (design model level) com ponent reuse

Component

Use case
model

%
Analysis
model

%
Design
model

%
Software

exports

export;

export

exports

i/f

i/f r

facade

Requirements
Capture

Requirements
Analysis

Requirements
model

Design

Analysis
model

Implementation

3E
Design
model

Testing

I
Software

Deploy

b) Analysis model level com ponent reuse

Figure 4-25: Differing Approaches to Component Reuse

The presentation of a component for reuse in this way is known as a facade. A

facade presents the re-user of a component with only the information needed to

effectively reuse the component, while at the same time hiding from the re-user

unnecessary design and implementation details about the component. The facade,

therefore, consists not just of reusable code and the design model, but also the

requirements statements and analysis model relevant to the design model exposed by

the facade.

157

A component may present several different facades, possibly aimed at different types

of re-users, i.e. a black-box reuser such as an SMS developer using a Software

Vendor product or a white-box re-user such as an SMS Developer reusing code from

previous projects. A component may have various releases of a facade to reflect the

evolution of the component. The usefulness of the facade is strengthened if there is

clear traceability between the different models, so that within the facade re-users can

easily determine which parts are useful to them by matching facade use cases and

analysis objects to their requirements and tracing to relevant design model elements.

Obviously, the construction of a facade from the internal development models of a

component will be greatly eased if the same type of modelling approach was used for

developing the component in the first place. Also, traceability in the facade will be

greatly eased if the models of the underlying component are strongly traced.

One of the problems raised from examination of the previous case studies was that

the boundaries between the different development activities were not always well

defined, especially between requirements capture and analysis and between analysis

and design. This meant that the level of abstraction used in the models resulting from

these activities varied, making it difficult to define traceability mechanisms between

the different models. Defining the structure of the different development models was

therefore essential to applying useable traces between them.

As use cases had already proven effective for SMS and component development in

the previous case studies, Jacobsen’s suggestion of using use cases for the

requirements model and the closely related robustness model for the analysis model

was adopted.

The UML representation of these stereotype classes is suggested in [jacobsen97] and

recently proposed to the OMG as an UML extension in [ad/97-08-06]. A slightly

different representation available with the Paradigm Plus CASE tools is shown in

Figure 4-26.

158

an entity
class

K3 Ô
a boundary ̂control

class class

Figure 4-26: Analysis Objects Stereotype Notation

In mapping use cases to an analysis model for a facade, entity objects will be

typically derived from noun phrases that occur in one or more use cases. Boundary

objects are identified by any interactions between the users and the system. Control

objects can initially be allocated per use case, and consolidated as functional

commonalties are identified between use cases. Interaction diagrams are often

required at this stage to detail the lifecycle of objects and dynamic aspects of the

relationships between them. Refining the analysis model into the design model for a

facade takes into account design level issues, such as scalability, load balancing,

platform dependencies, database schemes etc. Again, strong tracing between objects

in the analysis model and the design model is required.

Though it is preferable to generate a facade &om a component model of the same

structure, it is not a requirement for the component to have been originally

developed and documented using an OOSE-like process. Indeed, part of the benefit

of facades should be that it can hide the internal model if necessary. For instance if a

component has been developed and documented using OOP viewpoints the

following mappings may be used to reverse engineering the ODP model into the

facade format:

• Roles in the enterprise viewpoint map onto actors in the use case modelled in the

facade.

• Computational objects from the computational viewpoint may map onto control

objects in the analysis model.

159

• Computational object interfaces may map or be grouped into boundary objects in

the analysis model.

• Information object may map to entity objects in the facade’s analysis model.

• If some sequence diagrams have been used to clarify the interactions between

computational and information objects, then these might form the basis for

reverse engineering use cases, otherwise use cases should be based on and be

consistent with the component's requirements.

Such an ODP model to facade mapping was employed as a consistency check in the

application of this technique to the subscription management component, as in the

following section.

4.5.1.1.1 Application of Reusabie Component Modeiiing

The facade modelling approach was applied within FlowThru to the integration of

components in three separate Trial Business Systems demonstrating different

business process areas from the TMF’s Telecoms Operations Map. The components

from which these systems are constructed are from different EU funded projects, and

as such they were originally developed using a variety of notations. To validate the

reusable component modelling approach described above the specifications of these

existing components had to be recast as facades.

The specific experiences presented in this section are from the development of a

facade for the subscription management component that was developed in the

previous two case studies. The original specification of this component, as used in

Case Study 3, was structured in terms of ODP viewpoints, principally the

information and computational viewpoints. In generating the facade for this

component the use cases developed for it, as described in Case Study 4, were used to

generate an analysis model that would replace the corresponding high level design

model shown in Figure 4-20. This was then mapped to the existing design

documentation consisting primarily of IDL definitions. The overall aim was to be

able to export the facade in a form that presented each of its constituent models and

160

the traces between them. An HTML-based approach was therefore taken in order to

allow traces to be implemented at hyper-links. The Paradigm Plus CASE tools was

used for generating use case diagrams, analysis model diagrams and design model

diagrams. Though Paradigm Plus supported hyper-textual style links between

different diagrams, this was not a suitable solution for widely publishing the facade,

whether this is done in the public domain or within a software development

organisation. This was partly due to the cost involved in having Paradigm Plus

available to everyone who might want to browse the model, and partly because the

alternative precluded for the possibility of a similarly structured facade being

generated by other tools.

To generate the facade, noun-phrase identification was used on an initial pass of

each use case description to elicit the major entity objects and their relationships.

The use cases also helped identify a boundary object for each interaction between the

system and each external actor. Control objects were required whenever there was a

need to create, destroy, update or otherwise manage an entity object or closely linked

group of such objects.

The subscription management component produced entity objects such as Service,

Customer Account, Service Level Agreement (SLA), Subscription and Subscription

Contract, a set of boundary objects, and four major control objects: Service Manager,

Customer Manager, Subscription Manager and SUG Manager.

161

Provider
NianagemerA

Application

>.HD

Customer
Manageme nt
Applicatio i

K >
interface ZA in erfac« i

Provider
Administrator

t
Customer

Administrator

Subscription Service

 0 —

Subscription su b s
M anagement [^3^1

Interface

Service

—

Service
Record

0 ..*

ription Accountinc
ager M anageme 11

Interface

Customer
Account

Service Level
Ageement

0 ..*

Subscription

Subscription
Contract

Accounting
M anagement

Use case re f e re r ï î^
Ttie diagram refers
to both the Create
and Break
SUG/Assigned
Record Connection

Figure 4-27: Analysis Object Diagram for Subscribe a Customer to a Service Use

Case

The objects were then modelled as analysis class stereotypes in UML use case

diagrams since this was the only diagram type in which Paradigm Plus rendered the

analysis objects’ stereotype notation. As use case diagrams are more commonly used

to show how use cases relate to each other and to actors across the system boundary,

we distinguished this use of the diagram type by referring to them as analysis object

diagrams. One analysis object diagram was created for each use case (see Figure

4-27 for an example), though on a second pass it was found closely related use cases

could be supported by a single analysis object diagram.

The creation of the analysis object diagrams, threw up issues that were not expressed

in the use case descriptions, and thus needed further consideration. For example, in

the subscription management component the cardinality of the relationship between

a customer subscription and a SLA was unclear. Once these issues were resolved the

results were fed back into the use case descriptions to ensure there were no

162

inconsistencies with the analysis model. A consolidated analysis object diagram was

also produced showing all interface objects, control objects, and entity objects that

they manage, thus providing an overview of the analysis model.

s e l e c] T i p t i o n O

S u b M I :
S u b s c r i p t i o n
M a n a g e m e n t

s e l e c t S e r v i c eP M U A P : P A
I n t e r f a c e

[asm

c r e a t e _ A s s i g n r n ^ n t (S U G J i s t , S e r R e c J i s t)

S u b M : S e r M :
S e r v i c e

[4.2]
S u b s c r i p t i o n

M a n a g e r — c r e a t e _ A s s i g n m e n t (S A G _ l i s t) M g n a g g r
n o t i t rigrîméntOC A U A P :

C A
i n t e f a c e

[4.3][4.1]

c r e a t e _ A s s i g r i m e n t (S e r R e c _ l i s t)
c r e a t e _ A s y g n m e n t (S A G _ l i s t)

S U G :

S e r R e c :
S e r v i c e
R e c o r d

r o u p

Figure 4-28: Example o f a Collaboration Diagram for a Use Case

Collaboration and sequence diagrams were also used to show the dynamic behaviour

of the analysis object in enacting a use case. Figure 4-28 gives an example of such a

collaboration diagram.

The design model used was a straight-forward UML class diagram representation of

the EDL interfaces and their parameter types with component diagrams used to

represent the COs. There was a clear mapping between control objects in the analysis

model and computational objects already defined in the subscription management

component design. Boundary objects (e.g. Subscription Management) mapped to

individual initialisation, query, and management interfaces in the design model,

which in turn mapped to IDL interfaces. Entity objects were mapped to design object

163

representing IDL operation parameter structures. A smaller group of many to one

relationships also exist. This occurred when distinct entity objects were identified

from the use case descriptions but their characteristics were similar enough to justify

a common, possibly abstract, design object. The analysis model failed to identify

some objects and relationships present in the existing design. For example, the

analysis model contained no Subscription Portfolio object, a collective holder for a

number of customer subscriptions. Nor did it model the complex association

between a Service Record and a Subscription Usage Group. These examples

represent the designer’s skill in being able to harness past experience to recognise

suitable design patterns and take into account non-functional requirements such as

performance issues, caching requirements, etc.

For publishing the facade, use cases were written in a word processor that could

generate HTML output. The analysis and design models were generated on the

Paradigm Plus CASE tool as UML diagrams with additional relationships added for

links between specific UML classes in different diagrams. Paradigm Plus was able to

generate HTML pages for specific diagrams and for each class modelled. Paradigm

Plus uses an object-oriented database for storing its UML models and provides a

simple scripting language for querying that database. These features were exploited

in order to augment the HTML generated by Paradigm Plus with the additional links

needed to be able to trace between the analysis and design models. The publication

of the facade on the web is recounted in more detail in [lewis99b].

4,5.1.2 Open Business Process Modelling Approach

The attempt to provide a standardised architectural framework for analysing business

requirements for SMS have, as described in Chapter 3, centred either around the

definition of distinct business roles and the reference points that exist between them,

as in TINA, or on the definition of a common business process model as in the

TMF’s TOM. These two inputs were therefore chosen as the basis for a model that

enabled business process modelling to be applied to the multi-domain problems of

164

SMS development, but in a way would support the on-going standardisation of

service management functions within these two bodies.

The approach taken was to map the TMF business model onto the TINA business

model. Before examining such a mapping however, the core differences between the

two models must be appreciated. Firstly, the TMF’s TOM defines general business

processes in existing service providers. These may be human based processes or

automated ones. Part of the intention of the TOM is to identify and prioritise which

processes they wish to automate, and therefore which inter-process interactions

would benefit from industry agreements. The TINA model restricts itself only to

reference points that will yield automated interfaces. Also, the TMF’s TOM is

concerned only with service and network management processes, while the TINA

reference points additionally cover issues of service and network control. TINA also

assumes its DPE (essentially CORBA) will be used to implement reference point

interactions, while the TMF’s TOM makes no assumptions about implementation

technology (this is addressed in the TMF’s Technology Integration Map as discussed

in Section 2.3). Functionally, TINA management is aimed specifically at managing

TINA services (multimedia, multiparty, multi-way, mobile) and network resources

(connection oriented, broadband), while the TMF model is less specific, but is

derived from the management of more contemporary services and networks, i.e.

POTS, Frame Rely etc. TINA also specifically covers information services, while

these have not yet influenced the TOM to a large extent. Finally, the TOM prioritises

issues of process interaction and information flow between processes, while the

TINA business model and reference points are focused on the development of

detailed reference point specifications, based on other ODP-based TINA

specifications, with little attention directed at business process information flows.

The approach taken in mapping the TOM to the TINA business model and reference

points is to identify which TMF processes operate in which TINA Business Roles.

Note that some TMF processes may be present in more than one TINA Business

Role. An initial mapping of the TMF business processes onto TINA business roles is

given in Figure 4-29

165

The principal assumptions behind this mapping are as follows:

• The TINA Retailer role is the one that embodies the TM Forum Customer Care

Processes. If an organisation operating in the Retailer role has to communicate

with another organisation playing the Connectivity Provider role or the 3pty

Service Provider role, then these other organisations will also have to play the

Retailer role so that any Customer Care process-related interactions are

performed via the RtR business relationship.

• The TINA Retailer is not concerned with any Network and System Management

Processes.

• The Connectivity Provider role is only concerned with Network and System

Management Processes.

• The 3pty Service Provider is only concerned with Network and System

Management Processes related to the provision of service content, i.e. Network

Provisioning, Network Inventory Management and Network Data Management.

• The Broker will be effected by Sales, Order Handling and Rating and

Discounting processes in other business roles, so these processes are mapped

onto this role to indicate this. This is not intended to cover the application of

these processes to the Broker’s own services (i.e. broker services), which should

be addressed by an organisation in the Broker role also taking on the Retailer

role.

166

pi; Sales Ordef Handling

B k r

Rating and
Discounting

/

Retalter
Sales Order Handling Problem Handling Customer QoS

Management
Invoicing/
Collection

Sendee Planning/
Developmert

Service
Configuraton

Sendee Problem
Resolution

Service Quality
Management

Rating and
Discounting

Customer

3Pty

3^ Pftrtv Service
N

Service Planning/ Service I Sendee Probiem Service Quality Rating and
Deveiopment Configuralion I Resolution Management Discounting

Network I Network Inventory Netwoik Data
Provisioning | Management Management

i i i ip '

[
C c n i ie c f iv t t y P h r

; 1 Network Planning/
;pj Development

Network
Provisioning

Network Inventory
Management

Network Maintenance
& Restoration

Network Data
Management

]
3Pty

Figure 4-29: Mapping of TMF Business Processes onto TINA Business Roles

The TOM provides a model of suitable business processes which we are fairly

confident reflects the typical operations of a service provider. This mapping,

therefore, helps in the analysis of a Service Provider’s business processes in order to

identify where existing solutions, possibly available as reusable components

implementing reference point segments, can be applied. The analysis of business

processes is typically performed by identifying discrete activities and the events that

propagate the control of execution of a task between activities. As described in

Section 3.1.2, a common representation of such a control flow is event-driven

process chains, and the inclusion of activity diagrams allows UML to support a

similar type of model. The analysis of a management task in a specific business

scenario can be initially described in terms of a use case giving the interactions of

the system with the human roles involved in the task. These use cases can then be

broken down into internal activities performed with the system, using a UML

activity diagram. The activities can be placed within swim-lanes representing TMF

business processes, possibly residing in different administrative domains. This will

ease the identification of which existing TMF business agreements match the

167

requirements of the task at hand. The mapping of the TOM process onto the TINA

business roles will then enable the identification of where TINA reference point

definitions could apply. The following section outlines an example of the application

of this business modelling technique from the FlowThru project.

4.5.1.3 Application of Open Business Modelling

The problem addressed by this example is the integration of management functions

in the service and network management layers related to the fulfilment of customer

orders for a switched ATM service. It was assumed that customers were not

restricted to single terminal domestic users but would also comprise of corporate

users with switched ATM customer premises equipment supporting a number of

users via a single UNI.

In terms of the TMF’s business process model, the problem domain encompassed

the fulfilment process area, which consists of the following business processes:

• Customer Care Process: This involved the management of the interactions

between the customer and the provider’s management system, in particular

translating customer requests and queries into appropriate system operations.

• Order Handling: This involved the receipt of orders for ATM services from a

customer and the translation of these orders, after appropriate financial checks,

into requests for network configuration changes needed to satisfy the customers

order. It then involved tracking the progress of these orders to completion.

• Service Configuration: This involved the installation and configuration of a

service for a specific customer, including any customer premises equipment.

• Service Planning and Development: This involved the design of the service

capabilities to meet market requirements for services within required costs and

exhibiting required manageability characteristics.

• Network Provisioning: This involved the reconfiguration of network resources so

that network capacity is ready for the provisioning of services.

168

• Network Planning and Development: This involved designing the network

capability to meet specified service needs at the desired cost and within

operational constraints, determined principally by service level agreement with

customers.

• Network Inventory Management: This involved the installation of physical

equipment in the network.

Within the context of TINA, the problem may be expressed in terms of business

roles and reference points between these roles. The business roles identified for this

scenario were the Consumer role taken by the ATM service customer organisation

while the ATM service provider organisation took the Retailer and Connectivity

Provider business roles. Based on the business model from the previous section.

Figure 4-30 shows the overall business context of the problem being addressed in

terms of the business roles played by the organisations involved, the business

processes undertaken by those roles and the TINA reference points that exist

between those roles.

A T M S e rv ic e C u s to i le r

Customer

A I M S e rv ic e P ro v id e r

Retailer
Sales Order Handling

Service Plarming/
Development

Service
Configuration

C r a n e t ^ t y P m v W e r

Netwoitr Planning^ Networir Network Inventory
Development Provisioning Management

Figure 4-30: Business Process to Business Role Mapping for ATM Service

Fulfilment

169

As the business problem under examination did not involve multiple providers the

need for TINA federation reference points for the roles within the ATM Service

Provider were dropped. The remaining relevant TINA reference points were:

• Ret reference point: This was concerned with access control between the

Consumer and the Retailer, the discovery and commencement of operational and

management service offerings and the control and management of session,

stream flow bindings and stream flow content.

• ConS: The control and management of connections between network access

points.

• TCon: The negotiation of and control of network level interconnection, which is

technology specific.

As the focus of this work was on the development of functions in what was typically

described as the management plane, aspects of network and service control were

assumed but not analysed or developed any further. Therefore the TCon reference

point was not examined, with the assumption that existing UNI protocols would be

used for connection set-up. Instead the focus was placed on the management

interactions that occurred across the Ret and ConS reference points. Work on these

reference points within TINA-C had mostly been concerned with the control of user

session. This provided further contextual information on the service to be managed.

The Ret reference point was derived form the TINA Service Architecture and

included interfaces to the subscription management component use in the previous

case studies. The ConS reference point was based around the TINA Network

Resource Information Model (NRIM), however this had been enhanced with

additional network configuration, planning and restoration management features by

the REFORM project as described in [georgatatsos].

These existing TINA-based models provided a core set of concepts that could be

used in further analysing the requirements of the ATM service fulfilment business

problem and the interactions between the business processes identified as being

relevant to this problem. These models had been captured in the facades that had

170

been generated for each of the components brought to the problem. These facades

yielded key information definitions, such as Network Access Point, Class of Service

and Service Usage Group, represented by entity objects in their analysis model

To analyse the problem further, business roles within the business stakeholders were

analysed to determine the responsibilities they owed to each other. The set of

responsibility relationships was represented as a UML class diagram in Figure 4-31.

«business actor»
ATMSen/ice
Customer

V
plav

«busirless actor»
ATM

Service
Provider

plays

«busi

plays

0 .. . ,
ness role:

«busi less role»
customer

Kii less role»
retailer< ---

user

«res|))onsiWity» <<res ||KDnsi^ty»

«business role»
- connectivty

provider

«res ijKDnsî nty»

«res |j)onsi^nty» «resfj)onsi^lity» «resp<|)nsibiN^>

Figure 4-31: UML Class Diagram o f Responsibilities Between Business Roles

The responsibilities from Figure 4-31 were defined as text descriptions. Based on

these responsibilities use cases were drawn up documenting the functionality of the

whole business system from the point of view of actors whom play the part of the

business roles. These use cases cover the following functionality and are summarised

in the UML use case diagram shown in Figure 4-32.

171

ATM Custom
Administrator

M M
^— -----J}

FiJfilment Dem o System

Subscribe to
the ATM
Service

ATiMProvder
Service

Administrator
Register a

NAP

Remove a
NAPt Register a

user to use a
CoS

isable a use
from using a

CoS

Adda
new Cos

vMthdraw a
CoS

ATM Provider
Network

Adm inistrator

Figure 4-32: Use case Diagram for ATM Service Fulfilment Scenario

These use cases were then analysed to refine the relationships between objects

representing the major entities that appeared in the use cases and were related to

entity objects in the component facade’s analysis models. These relationships were

summarised in a UML class diagram shown in Figure 4-33.

172

 registered to use—
provides network acœss for

situated atprovides access to

location

«busi less role»
user

site

class of
service

ATTVIQoS
type

CoS user
group

network
access

point

QoS
parameter
bounds

Figure 4-33: Relationships Between the Main Entity Objects Identified in the Use

Cases

The use case descriptions did not however yield much direct analysis of the internal

business processes that were required within the service provider’s domain, and it

was here that the required interactions between service and network management

components needed to be identified and resolved. It was at this point, therefore, that

individual use cases were broken down into separate activities modelled in a UML

activity diagram. These activities were grouped into swim-lanes according to the TM

Forum business process into which they best fit. The activity diagram for the

“Subscribe to ATM Service” use case is presented in Figure 4-34.

173

Custom er Interlace
Management

Network
Provisioning

Order
Handling

Service
Configuration

Network Inventory
Management

Network Planning end
Developm ent

Order fcfATW ^
Service 1

[Credi diec

T(Credi check OKI

(Creek Customer ^
Account I

Customer Sik(s)

I (bint in pleoe]

Update network u
prédictions

Order Complete

Figure 4-34: UML Activity Diagram for the Subscribe to ATM Service Use Case

By comparing these activities to the use cases in the imported components’ facades,

a mapping could be obtained of which activities could be handled by which

components. From this a clearer picture of the interactions required between the

component was formed. This enabled the identification of specific requirements for

modifications to components in order that they satisfy the overall system

requirements. For instance, the activities in the Order Handling swim lane in Figure

4-34 and their interactions with the Customer Interface Management swim-lane

activities were identified as ones that could be performed by the subscription

management component. This analysis indicated, however, that the design of this

component needed to be modified to support asynchronous interactions with

components performing activities in the Network Provisioning and Network

174

Planning and Development swim-lanes, as these could result in considerable delays.

The TMF already had an interface agreement, Service Provide to Service Provider

Order Handling [nmf-504], that addressed aspects of this process area. This standard

contained abstractions for tracking orders in slow response situations, which

therefore could be applied to the modification of the subscription management

component.

The overall system analysis model was defined in terms of the interactions between

analysis model elements from the imported component facades, and in particular the

bindings between their boundary objects. The overall system design model consisted

of the modified EDL for each component and detailed sequence diagrams showing

inter-component interactions that enacted the system’s use cases.

4.5.2 Evaluation and Results

The experiences of this case study relate the generation of the facade for a pre­

existing component and how this may be integrated into the development of an SMS

in a way that ensures the satisfaction of business process requirements and ready

integration with existing open standards. The facade presents the component model

at levels of abstraction, i.e. as use case and analysis models, that facilitate the

components integration into the SMS. It was found that the division in the facade

between the analysis model and the design model provided a good basis for

delineating between the exposure of internal details of a component needed for its

features and capabilities to be understood. At the same time the facade hid all

detailed design issues except those relating to the interfaces via which it is re-used.

Publishing the facade in HTML with a structure suitable for re-users to make best

use of the traces between elements in the different models was found to be relatively

simple with Paradigm Plus. The fact that the same teams were involved in facade

generation and the design of the systems that reused the components meant however

that the effectiveness of the facade in component selection and comprehension could

not be assessed very objectively.

175

The business process and reference point mapping model was found useful in

bringing together the business process model approach to establishing management

requirements from the TMF and the component-based reference points defined in

TE^A. This assisted the understanding of developers with backgrounds in TINA who

needed to use their systems to satisfy business process requirements. This mapping

has been presented to the TMF and TINA-C by the author. It has been received with

interest by both and at the time of writing is forming the basis of negotiation on a

possible liaison agreement between the two bodies. Such a mapping, combined with

the representation of reference points as the facades of their constituent components,

points the way to the integration of existing component and interface specifications

with business process driven SMS development. It also provides a path to expanding

the scope of reference points based on existing business process analyses.

The above observations are based on the author’s own modelling experience with the

teams developing the subscription management component facade and the ATM

fulfilment business scenario. In addition, however, a questionnaire was used to get a

more structured view of the developers’ experiences, against which the above

observations may be compared. The questionnaire was structured in a very similar

manner to the one in Case Study 4 and the results analysed in a similar manner. As

well an initial and a final section similar in structure and purpose to the

corresponding ones in Case Study 4 questionnaire, the following sections were

present:

• Section two was to be answered by those involved in establishing the business

process requirements for the systems being developed. It addressed the

usefulness of the business process modelling elements in analysing business

process requirements (Q2.2).

• Section three was to be answered by those involved in facade generation. It

addressed the usefulness of use case modelling elements when developing the

analysis (Q3.2) and design models (Q3.3) and of the analysis modelling elements

when developing the design models (Q3.4).

176

• Section four was to be answered by those involved in the design of a trial

business system. It addressed the usefulness of the business process modelling

constructs (Q4.2), facade modelling constructs (Q4.3) and general system

modelling constructs (Q4.8) in designing the systems. It also addressed the

usefulness of the facade constructs in the modification of the components for

reuse (Q4.6).

In addition to the above questions some broad questions on the overall effectiveness

of the techniques were posed with space to provide more free flowing responses. The

questionnaire did not address the frequency and types of problems encountered by

developers as in Case Study 4. Also, the timing of the questionnaire mean that

impact of the modelling techniques used on the implementation and

testing/integration stages of development could not be addressed.

Fourteen completed questionnaires were returned and are presented in Appendix 1

(Section 8.2) in the same manner as for the Case Study 4 questionnaire responses.

The responses mostly were in line with the author’s observations above and the

findings of the previous case studies. The business process modelling was rated

highly for both system and component development. The facades were also rated

highly by system designers, though the rating for the facade’s use case model,

indicates that this was not clearly related to the analysis and design model in all

cases. It is notable that the usefulness of the two CASE tools used. Rational Rose

and Paradigm Plus, was much higher than for their use in Case Study 4, possibly

indicating better developer familiarity with these tools. For the system designers,

being able to work at the level was seen as very useful.

The responses to the broad questions were as follows:

• In response to the question “Do you think the use of component facades resulted

in a better-designed component?”, six replied yes, three no and four did not

express an opinion. Comments were made that in most cases the component

design was fairly mature, so the facade generation was purely a documentation

exercise.

177

• In response to the question “Do you think the design of the trial business systems

was made easier or not by the use of the component facade structure?”, seven

replied yes, two no and five did not express an opinion.

• In response to the question “Do you think the modification of components for

reuse in the trial business system was made easier or not by the use of facades?”,

five replied yes, none no and nine did not express an opinion.

In response to a further open question on what areas where not addressed by the

methodological guidelines used but that could have been useful, comments were

made on:

• The lack of common guidelines for the structuring of IDL module, type and

interface definitions into appropriate groups.

• The lack of guidelines for expressing the exchange of asynchronous events

between components.

• The difficulties in describing fully the reasons why components have the

functional scope that they do, possibly requiring a more structured conceptual

framework.

• The lack of working traceability between models under development.

• The general lack of clarity in the guidelines themselves, many found them

difficult to follow.

178

5. Results and Synthesis
This chapter uses the results from the state of the art analyses in Chapter 3 and the

case studies in Chapter 4 to synthesise a set of recommendations for an open SMS

Development Framework. Based on these recommendations, a development

framework is specified consisting of specific methodological guidelines and a

discussion of suitable architectural guidelines. The development framework is then

assessed with reference to the goals laid out for such a framework in Chapter 2.

5.1 General Recommendations

Case Studies 1 and 2 provided evidence that a scenario led development approach

was well suited to the development of TMN systems, especially when several

development teams were working in parallel. The primary benefit was found to be

the way in which scenarios could be used to ensure the sometimes divergent work of

separate teams was kept focussed on the original requirements of the system. This

was shown to be the case both when SMS for different organisational domains were

developed in parallel and when subsystems used within domains were developed in

parallel. Case Studies 4 and 5 introduced Jacobsen’s concept of a use case, which,

though similar in aim to the scenarios used in Case Studies 1 and 2, are better

defined structurally and more widely accepted in industry. Evidence from the

questionnaire conducted for Case Studies 4 and 5 shows that use cases were regarded

as one of the most useful techniques used in these case studies. The results from the

questionnaire for Case Study 4 and 5 show that use cases were useful for both

system development and component development. It can therefore be recommended

that:

Recommendation 1: Use cases should be adopted as the basis for mechanisms for

capturing functional requirements for SMS, COTS management software and

interface standards. They should be used, together with corresponding dynamic

modelling o f related business and object models, as a mechanism for ensuring that

later development activities stay focussed on requirements.

179

Though use cases were found useful for analysing the functional requirements

imposed on an SMS or a reusable component by its environment, it did not always

provide a clear route back to business driven requirements. Case Study 2 introduced

the technique of role-based analysis, which was used to express the business

relationships that existed between different organisational domains by describing the

roles they played towards each other and the responsibilities that these roles

exhibited towards one another. Case Study 3 showed that techniques for refining

responsibility descriptions were not very usable, so role-based analysis is

recommended for refinement only to the level of the responsibility descriptions,

where they are then supplemented by use cases. Role descriptions, however, only

focus on the business interactions between organisations and between human actors

within organisations. Case Study 5 introduced the popular technique of business

process analysis, inspired by its application in the TMF’s Telecoms Operations Map.

This technique allowed specific tasks to be broken down into activities within an

organisational domain, driven by the role-based and use case-based analysis of the

external behaviour of the domain. Case Study 5 also showed the practicability of

combining business role analysis and business process analysis in applying existing

solutions of SMS development. A combined functional architecture based on the

mapping between TMF business processes and TINA business roles has been

suggested by the author as practical mechanism for aligning the work of the two

bodies in the management area. With this mapping the TMF may benefit from

TINA’S component-based, segmented reference point approach to standardisation

while TINA may benefit from a wider set of business process driven requirements.

This mapping is currently the basis of on-going liaison work between TINA-C s

Service Management working group and the TMF.

Recommendation 2: The capture and initial analysis o f requirements for SMS

should be based on a combination o f use cases, role analysis and business process

analysis. A functional architecture based on the mapping o f business processes onto

business roles should form the basis o f a functional architecture for the ongoing

standardisation o f service management interfaces.

180

The case studies have applied a variety of textual and graphical notations to the

development of SMS, reusable components and potential interface standards. Case

Study 1 attempted to use notations recommended in [m3020-95] but, though GDMO

is important for defining interfaces to CMIP-based systems, the definition of analysis

level notations was not well supported. Case Study 3 applied ODP viewpoint

notations as recommended in TINA’s development guidelines. Though these were

individually useful, the close coupling between the informational and computational

viewpoints and the lack of tool support for maintaining the mappings between the

model elements for these viewpoints made this approach impractical. Case Studies 4

and 5 showed that the different modelling diagrams offered by UML were useful in

the development of SMS and reusable components, particularly in the light of the

widespread tool support for this notation. This experience revealed that UML

possesses some shortcomings, amongst others, in the dynamic modelling of multi­

interface objects, but that its stereotyping mechanism enabled many of these to be

circumvented. It was also necessary to use textual interface definition languages such

as IDL or GDMO to exploit existing distributed computing platforms, and the round

trip integration of UML with such languages needs to be better understood and

common agreements reaches. However, the standardised status of UML together

with its increasingly widespread use by developers of all persuasions, spurred by

widespread tool support leads to the following:

Recommendation 3: UML should be used as the common notation for the exchange

o f models between all SMS development stakeholders, supplemented by machine

processable interface definition languages in the design models where necessary.

A further problem encountered in the case studies was in agreeing a common level

of abstraction for the exchange of models during the analysis and design stages. In

Case Studies 2, 3 and 4 detailed analysis and design modelling was performed with a

combination of class diagrams, notations showing discrete functional units and their

interfaces, sequence diagrams and interface definition languages. However, the

generality of these notations made it too easy for developers to blur the distinction

between analysis and design models, reducing the usefulness of being able to work at

181

different levels of abstraction. Jacobsen’s analysis types, as introduced in Case Study

5, were found to help in making the distinction between analysis and design models

in a way that was simple to understand and easy to apply. Hence:

Recommendation 4: Jacobsen’s analysis object types should be used as the basis

for describing analysis models, thus making them distinct from design models.

The experience from Case Studies 3 and 4 in using models from a variety of

different sources illustrated the difficulty in working in such an open manner. To be

able to use a model from any one of these sources a large investment had to be made

in understanding the architectural framework in which the model resided. This

formed a barrier to reuse of open solutions from different sources and encouraged

tie-in to a single source of models. Case Study 5 addressed this problem by

introducing the facade modelling construct which packaged together the

requirements, analysis and design models for a particular solution so that it can be

reused with relatively little reference to an encompassing architectural framework.

Case Study 5 provided an indication that the facade construct was both useable and

useful in combining solutions from different sources. These solutions represented

reusable components and potentially open interface definitions. Hence:

Recommendation 5: The facade modelling construct, packaging requirements

statements, analysis models and design models should be used for presenting SMS

solutions for reuse, both for reusable components and for interface standards.

These recommendations are not individually remarkable as similar ones can be

found in many software engineering texts. What they do represent, however, is a set

of recommendations that have been tested and validated in the context of SMS

development. They can therefore be used to form the basis of methodological

guidelines for an open SMS development framework with a higher degree of

confidence than the many other methodological techniques that could be applied in

this context but remain untested. The next section synthesises such an open

development framework.

182

5.2 Synthesis of Open SMS Development Framework

This section synthesises a development framework based on the analysis of SMS

development frameworks in Chapter 3, the experiences from the case studies

presented in Chapter 4 and the resulting recommendations presented in the previous

section. Consistent with the thesis statement and the results of the state of the art

analysis, the development framework attempts to be prescriptive only in its

methodology guidelines, which are presented in the next section, while providing

only loose architectural guidelines in the subsequent section.

5.2.1 Methodological Guidelines

The methodological guidelines presented here are structured according to the

analysis given in Section 3.5. They are focused on the relationships represented in

the generic SMS developer stakeholder model of Section 2.1 as this is where they are

expected to yield the widest benefit as part of a common development framework

used by all stakeholder types. The guidelines are expressed in terms of the notations

and meta-model to be used, and in terms of how these should be applied to the

development processes for each development stakeholder type, based on the

individual process model identified in Section 3.5. The guidelines are restricted in

scope to the issues covered by the recommendations given in the previous section.

5.2.1.1 Notations and Meta-model Definition

This section defines the notations that should be used by SMS development

stakeholders and the meta-models, i.e. the structure of information, to which models

expressed in these notations should conform. Based on general Recommendation 3,

the core notation used is UML, specifically the OMG’s current version 1.1 [ad/97-

08-01]. UML is, however, a general purpose modelling language and its designers

acknowledge that it is necessary to extend and profile it to suit software development

requirements of specific problem domains. This section therefore uses the UML

stereotyping mechanism to propose extensions to UML for the SMS development

framework. This is presented in terms of stereotypes defining new modelling

183

elements and the meta-model that defines the relationships of these elements with

each other and with existing UML v l . l elements. Class diagrams are used to show

the relationships between these stereotypes and their relationships with existing

UML model elements, which are identified for convenience by the stereotype marker

« u m l l » . UML model elements are written in double inverted commas when first

introduced, and subsequently where needed to avoid ambiguity. The specific

modelling constructs defined here are:

• A Use Case Model

• A Business Requirements Model combining Business Process, Business System

and Use Case Models

• A Facade modelling construct defined here as a Projection as explained below.

UML already defines a “facade” stereotype of the “package” model element. A

facade is defined as the public view of the content of another package, containing

only elements from that package and none of its own. This definition of a facade

conflicts with the usage of the concept intended by Recommendation 5. This,

supported by the experience from Case Study 5, intends the facade to be a public

view of an internal model, but conforming to a specific structure. The condition that

the public package is not necessarily a strict subset of the internal package

differentiates the modelling construct defined here from the UML facade. For this

reason the alternative stereotype designation of a Projection is defined.

5.2.1.1.1 Use Case Model

UML specifies a stereotype of the model element “model” called “Use Case Model”,

which defines the functional requirements for a system. It contains only “use cases”

and “actors”, the “interaction” relationships between them, the “generalisation”

relationships between actors and the “extends” and “uses” relationships between use

cases. This definition and the supporting “use case diagram” is necessary to meet the

requirements of the SMS development framework, but is not sufficient as it does not

define the structure of use case definitions. Several different conventions for use case

184

descriptions have been proposed, but these guidelines define the following simple

convention to ensure commonality in how use cases are expressed.

A use case description is a textual entity that uses natural language. It should consist

of at least the following elements:

• A name that uniquely identifies the use case description. This requires a

distinguished naming scheme that identifies the system the use case is being used

to describe and the organisational unit conducting the analysis. The name should

be meaningful and express the task being addressed by the use case.

• A primary actor from the set of actors that defines the system’s environment.

Each use case should have one and only one primary actor, which is the one

drawing primary benefit from the execution of the use case.

• A set of preconditions that describes the state of the system immediately prior to

the use case being enacted. Each precondition should be uniquely identifiable

within the use case description. A precondition may consist of a reference to the

post condition of another use case from the same use case model.

• A description of the use case in terms of a sequence of steps describing the

operations performed by the use case in the order in which they occur. A step

may include a condition, which must be satisfied in order for it to be conducted.

A step may refer to another use case in the same use case model, this reflecting a

“uses” or “extends” relationship.

• A set of post-conditions that describe the state of the system immediately after

the use case has been enacted. Each post-condition should be uniquely

identifiable within the use case description.

5.2.1.1.2 Business Requirements Model

The Business Requirements Model is a stereotype of “model” that aims to support

the identification of requirements in complex multi-domain situations. It consists of

a Business System Model together with a Use Case Model, of the type described in

the previous section, and a Business Process Model. All three are UML “model”

185

stereotypes. Model elements in the Business System Model are associated with

model elements from the other two models as depicted in Figure 5-1.

« i m p o r t) / business ^ < im p o r t »

j system m odel \

business
process m odel

use ca se
m odel

business
requirem ents

m odel

Figure 5-1: Structure o f the Business Requirements Model

The contents of the Business System Model and the Business Process Model, and the

association between elements in all three models are summarised as follows:

Business Process Model:

This contains the following modelling elements::

• Business Process: This represents a process that must be conducted to

perform the business functions required of the system. It is a high level

identification of an ongoing business task rather than specific identification

of an activity with defined initiation and termination conditions and the flow

of control between them as used in UML activity diagrams.

• User: This acts as a source and/or a sink of information that must be handled

by one or more Business Processes. The set of users in the model defines the

environment that motivates the flow of information between business

processes. A User must be mapped to an actor in the use case model.

186

• Information Flows: This represents the flow of information that may pass

between Business Processes or between Business Processes and Users.

Business System Model:

This contains the following modelling elements:

• Organisational Domains: This represents an organisation involved in the

business scenario under analysis, e.g. a service provider or a customer.

• Business Role: This is a role played by a User within a specific

Organisational Domain, e.g. service user or service administrator.

• Responsibility: This is a unidirectional relation between two Business Roles

defining the contractual obligation one has to the other, e.g. “pay charges by

due date”.

• Service Management Systems: This represents the system under analysis,

which may be one of several operating within an Organisational Domain.

• Contract: This represents the set of functions that may exist between two

Service Management Systems.

The following relationships exist between the modelling elements in a Business

Requirements Model. They are also depicted in Figure 5-2:

• Business Roles should map one to one to actors in the use case model, so the

descriptions of a Responsibility between two Business Roles should be

consistent with the corresponding actor to use case interactions and User to

Process Information Flows.

• Business Processes should be wholly instantiated within an Organisational

domain.

• Individual Systems should exist wholly within one Organisational Domain

The identification of these modelling elements and their relationships enable the

business requirements to be expressed in terms of requirements upon specific

contracts in terms of Responsibilities and Information Flows. This is particularly

187

useful for defining reference points between Organisational Domains that do not

involve direct interactions with actors and are therefore not addressed directly by the

use case model.

functional requirem ents described by

functional requirem ents described by use case
model

1..* operates within o

contains

plays
user

contract

user

actor

responsibility

business
process

business
role

information
flow

multidomain
system

responsibility
set

organisational
domain

service
m anagem ent

system

Figure 5-2: Relationships between the Elements o f the Business Requirements Model

The process of generating a Business Requirements Model consists of the following

steps:

First, establish a multi-domain organisational model (part of the Business System

Model) that identifies Organisational Domain, Business Roles with those domains

and Responsibilities between them. This can be done using a UML class diagram

together with corresponding textual Responsibility descriptions as in Case Study 5

(see Figure 4-31).

Second, establish a use case model where the actors represent the different Business

Roles from the multi-domain organisational model and the use cases are described at

188

the multi-domain level. An example of this is the fulfilment trial business system use

case description presented in Case Study 5 (see use case diagram in Figure 4-32).

Third, establish a Business Process Model where the users are the different multi­

domain user case actors. This can be done using a component diagram to show

which Business Processes interact with which Users in which Organisational

Domain. Figure 5-3 shows such a diagram for the processes, roles and domains

identified in Figure 4-30 for the fulfilment trial business system described in Case

Study 5.

« O r g a n i s a t i o n a l D o m a i n »

« O r g a n i s a t i o n a l D o m a i n »

i<U ser»

< B u s i n e s s P r o c e s s »
4 < U s e r »

R e t a i l e r M a n a g e r

c u s t o m e r

A T M S e r v i c e O r d e r H a n d l i n g

B u s i n e s s P r o c e s s
C u s t o m e r

S e r v i c e
P l a n n i n g / D e v e l o p m e

B u s i n e s s p r o c e s s ^ >

Business p ro c e s s »

N e t w o r k
P l a n n i n g / D e v e l o p m e n t ' '

N e t w o r k
P r o v i s i o n i n g

S e r v i c e
C o n f i g u r a t i o n

B u s i n e s s p r o c e s s » ,

N e t w o r k
I n v e t o r y

M a n a g e m e n t

B u s i n e s s p r o c e s s » ^ < U s e r > >

C o n n e c t i v i t y
P r o v i d e r

M a n a g e r

A T M S e r v i c e
P r o v i d e r

Figure 5-3: Example o f static Business Process Model using a UML Component

Diagram

Fourth, refine the Business Process Model to show for each multi-domain use case

the information flow that must flow between Business Processes and between

Business Processes and Users. This can be performed using UML sequence

diagrams. An example is given in Figure 5-4 for the processes and users in Figure

5-3, for the “subscribe to ATM service” use case from the fulfilment trial business

system presented in Case Study 5.

189

« u s e r » order^

user IDQ

request for NAPQ

NAP IDQ

capacity requestQ

request to activate NAP
< -------------

trunk resource requestQ 1 >-
bandwidth allocation requestQ

customer Order Service Network Network
Handling Configuration Planning and Provisioning

Development

Network
Inventory

Management

Figure 5-4: Example o f Dynamic Business Process Model using a UML Sequence

Diagram

Fifth, establish a Business System Model that shows the SMS under analysis and the

other SMS and the Business Roles with which it interacts in the same or in

collaborating Organisational Domains. The model should identify the Contract via

which interactions are performed. This model can be represented using a UML

component diagram, an example of which is give in Figure 5-5 for the SMS making

up the fulfilment trial business system.

190

«Organisational D om ain»

«O rgan isational D o m a in »« S e vic e MgmtlSystem: <con trac t»
custom er
ordering

Customer
Application

ce Mgrrit [S y stem »« S e iv•4<contract»
user

interface

O rde\H ani
« S e r v tcë' Mgmt [S y stem »

< <contract>5
re so u rce

m gm t

custom er
Network
PlannerATM Service

Custom er ce M gm tlSystem »« S e r v
< con trac t»

NAP
mgmt

Configuration
M anager

ATM Service
Provider

Figure 5-5: Example o f SMS Level Business System Model using a UML Component

Diagram

Finally a use case model can be generated for the SMS under analysis, with actors

representing the users and other SMS with which it interacts. The individual use

cases involved should be triggered by inward Information Flow for a Business

Process handled by this SMS, as identified by the dynamic Business Process Model.

As the actors represent the Users and SMS that interact with the SMS under analysis

via Contracts, the aggregation of the all interactions between the user cases and a

specific actor will define the functions required at the corresponding Contract.

5.2.1.1.3 The Projection Modelling Construct

A Projection allows models to be exchanged between development stakeholders

whose internal models may not yet conform to the common structure used in the

Projection. In such cases a mapping must exist between the meta-model used

internally by the stakeholder and the Projection meta-model. Case Study 5 already

demonstrates that such a mapping can be defined between the model elements of a

facade and ODP-based TINA models, and the same applied to Projections. As with

191

facades, a Projection can provide a selective view of a system, revealing only the

details judged by the owner of the system as needed for a specific type of user of the

system, e.g. a software reuser or a specification reuser. Consequently a system may

support several Projections in parallel.

The Projection construct has a more defined structure than the existing UML facade.

This structure is shown in Figure 5-6.

e{nen#<

ri - I
requiijemefnt
state(nen#s<imdort»

use case
model

« im p o r t»

am ilysis moc

requirements
model

« im p o r t»

m port» n p o rt»

el

«Im port »

verification
model

realisation
model

design model

projection

Figure 5-6: Structure o f the Projection Modelling Construct

A Projection consists of the following elements, each a stereotype of “model”, and

dependencies between their modelling elements:

Requirements Model:

This contains a complete requirements statement for the system concerns

addressed by the Projection. It consists of two parts:

1. A set of textual requirements statements that are uniquely identifiable within

the context of the Projection and which fall into one of the five requirements

categories defined in the TMF development methodology, i.e. Structural

Information, Dynamic Information, Abnormal Conditions, Expectations and

Non Functional Requirements and System Administration Requirements.

192

2. A use case model of the system being modelled addressing only the concerns

relevant to the details revealed by the Projection.

Analysis Model:

This provides an analysis of the requirements presented in the Requirements

Model. It contains: classes of the analysis object types defined by Jacobsen, i.e.

the control, boundary and entity object types; actors that place requirements on

the system and identification of interactions between analysis objects and

between analysis objects and actors. Interactions may be classified by the one or

more of the following types: create, delete, read, and modify. The static view of

the Analysis Model may be represented in an analysis object diagram, which is a

class diagram that supports the analysis object stereotypes. In parallel the

Analysis Model should contain collaboration diagrams which show the dynamic

behaviour of the classes in the analysis object diagram in terms of messages that

pass between instances of them. The structure of the Analysis Model is driven by

that of the Requirements Model. Each use case in the latter should be reflected

by at least one analysis object diagram and one analysis collaboration in the

former. In addition the analysis actors should have a one to one mapping to the

use case model actors in the «requirements model». These model elements and

their relationships to each other and to elements in the use case model are

depicted in Figure 5-7.

Design Model:

This defines a view of the design details of the system judged sufficient by the

system designer to allow the use of the system by others. Typically this will

consist of:

• A description of functional structure of the system in terms of components

and the interfaces they offer to and require of external entities and optionally

each other. This may be expressed in terms of a component diagram.

• A definition of the interfaces offered to, and required of, external entities

defining interface operations, their parameters and exceptions. This may be

193

expressed in a UML class diagram (as in Figure 4-21) or directly in a suitable

interface definition language.

• A definition of the dynamic behaviour between interfaces and external

elements, expressing any temporal dependencies between separate operation

invocations. This may be expressed in terms of UML sequence diagrams or

collaboration diagrams (Figure 4-28 is an example of the latter).

A mapping should exist between model elements in the Analysis Model and the

Design Model. This mapping may be a one to one, or possibly one to many in

order to accommodate the more detailed level of modelling required in the

Design Model. These relationships may also be many to one where designers

have consolidated two or more analysis objects into a design object that performs

the analysis object’s behaviour. The mappings from the Analysis Model’s

modelling elements to Design model modelling elements are as follows:

• Actors to external entities in the Design Model.

• Control objects to functional components.

• Boundary objects to interfaces.

• Entity object to interface operation parameters.

• Analysis object interactions to corresponding interface operation types,

including factory operations for creating and deleting functional components

or their interfaces.

• Analysis collaboration messages to interface operations.

• Analysis collaboration diagrams to design interaction diagrams

Realisation Model:

This defines the physical realisation of the design model in terms that support its

integration into other models by the Projection’s user, including the constraints of

any configuration that can be performed by the user. The Projection definition does

194

not prescribe the notation for this model, though UML deployment and component

diagrams may both be useful here.

Verification Model:

This defines the information and procedures needed by the user of the capabilities of

the system defined by the Projection in order to ensure that it is operating

consistently with its requirements in the environment in which the user has placed it.

The Projection definition does not prescribe the notation for this model.

« u m l 1 . 1 »

class
diagram

stereotyped by analysis
object

diagram

« u m l l . 1 »

classifier

stereotyped by

static analysis
-m aps to-

1 . .*

analysis object interaction

fcontraints: [createjdeletejreadjmod fy]

analysis
object

—z —

0 . .*

« u m l l . 1 »

m essage

control
object

boundary
object

entity
object

I

« u m l l . 1 »

stereotyped by_
1..* I

classifier

analysis
actor

:<um l1.1»
actor

« u m l l . 1 »

analysis
collaboration

-stereotyped b]

collaboration

depicted by

dynamic analysis

« u m l l . 1 »

-m aps to-

collaboration
diagram

1-*«um l1.1

Figure 5-7: Relationship between Elements o f the Projection Construct's Use Case

and Analysis models

5.2.1.2 Process Guidelines

This section analyses how the notations and meta-model defined for the

development framework could be applied usefully to the different development

processes defined in section 3.5.

195

5.2.1.2.1 Generic Development Process

Returning to the Generic SMS Development Stakeholder process model presented in

Section 3.5.4 we can see the principle benefits of using the recommendations. By

modelling requirements of whatever entity is under developer, i.e. an SMS, a

reusable component or an interface standard, in the form of use cases

(Recommendation 1) the requirements capture process may be simplified, providing

those involved with a common, well-understood expression of requirements. At a

minimum the resulting requirements statements would be defined in terms of a use

case model, though as discussed in subsequent sections this may be as part of a

Business Requirements Model.

By presenting both internal and external existing solutions in terms of Projections

(Recommendation 5), the requirements analysis phase becomes a much more

homogenised process. The selection of an existing solution may involves comparing

the use cases in a Business Requirements Model with the use case models of the

Projections’ Requirements Model. Another approach to such integration is to refine

the Business Requirements Model using UML activity diagrams showing the

behaviour of system level or, as shown in Figure 4-34, multi-domain level use cases.

As performed in Case Study 5, these activities can then be compared to use cases

from a Projection to see where the entity modelled by the Projection (which may be

an internally reusable subsystem, a COTS component or an open interface

specification) can be applied. This comparison may be supported by mapping

functions from the SMS Contracts in a Business System Model to boundary object

operations in the Projection’s Analysis Model. Alternatively a mapping of Business

Process Model Information Flows in and out of the system to entity objects from the

Projections Analysis Model may also prove useful in selecting a Projection’s subject.

Homogenising the form of requirements statements and resulting models therefore

eases the selection of solutions within the requirements analysis process for a

system. The synthesis of the system’s analysis model is also simplified, since much

of it may be imported from the analysis models of the existing solutions

(Recommendation 4). This feature is already available in CASE tools supporting

196

UML resulting in the potentially rapid development of an analysis model. Similarly

being able to directly import the design models of both internal and external

solutions into the overall design model may accelerate the design process. The

application of the recommended modelling constructs to the generic SMS

development stakeholder process model is summarised in Figure 5-8, indicated by

the shaded elements.

('ü i)aboniüngSM S Development
S takeholder

Architectural guidelines

Functional architecture

Technology architecture

Re<)uiremcnLs model

Analysis model

Design model

Use case mixlel

(ieneric SMS Development S takeholder

Internal architectural
guidelines

Functional architecture

Technology architecture

Requirements

Use case mixlel

Solution selection

M<xlel synthesis

«.nfllB R Selvbai

RcquircmcnLs mixlcl

Analysis nKxIcl

Design naalel

m p m

Analysis mcxlel

W Design W-............

Desigt mtxiel

Figure 5-8: The Application o f the Methodological Guidelines to the Generic SMS

Development Stakeholder Process Model

5.2.1.2.2 Interface Standard Development Process

From the standards development process described in Section 3.5.3, it can be seen

how the generic application of the Projection modelling construct is applied in the

case of the Standards Developer stakeholder type. As described for the generic case,

the requirements analysis and interface design process will benefit from the use of

the Projection construct for reuse of internal interface standard definitions and ones

197

from other standard developers. In support of this, the standard acceptance activity

must release new standards in the Projection format for use by others. Though not

addressed by these guidelines, standards bodies could gain further benefit from the

Projection construct by agreeing the structure of the verification model, so that

common approaches could be taken to the ascertaining compliance to an interface

standard defined by Projection. It should be noted however, that it is inevitable that

standards developers will still have to comprehend the models of existing SMS and

NMS systems that are not expressed in terms of Projections.

The Standard Developer stakeholder type is also one of the prime potential

beneficiaries of the application of the Business Requirements Model. The other

stakeholders are not usually motivated to analyse business situations that involve

direct relationships between three or more organisational domains. The SMS

Developer for example will not usually need to consider business relationships other

than those connecting directly with the Service Provider for which the SMS is being

developed. More complex business situations are increasingly appearing however,

and it is often left to standards bodies to investigate the ramification of such

situations on the standard management functions that need to be supported by

individual organisations. One example of this is TINA-C’s definition of a multi­

player business model. The capability of the Business Requirements Model to

represent multi-domain situations and to allow the resulting requirements to be

mapped onto requirements at individual Contracts is therefore important. In such

cases. Contracts can be used to develop reference points for standardisation.

Elements of the Business Requirements Model can be readily mapped to the

concepts used in the standardisation mechanisms of TMN, TINA and the TMF as

indicated in Table 5-1. This model therefore represents a possible approach to

integrating the existing outputs of these bodies and even potentially as a basis for

converging their standardisation mechanisms. The impact of the methodological

guidelines on the interface standard development model of Section 3.5.3 is shown in

Figure 5-9.

198

Finally, it should be understood that these guidelines do not attempt to provide

guidance on how to develop architectural guidelines for standards, but rather assist

in how individual functional standards are developed in a way that is more easily

communicable with other stakeholder types.

Business

Requirement

Model

TMN TINA TMF

SMS OSF Building block N/A

Contract Reference point Reference point Business

Agreement

Use Case Management

service

N/A Use case

Information Flow N/A Process triggers

Business Role Management

service user

Business role N/A

Responsibility N/A Responsibility N/A

Business Process N/A N/A Business Process

Organisational

Domain

TMN Domain N/A

Table 5-1: Comparison o f Business Requirements Model Concepts and Concepts

from the Standards

199

Software
Vendors

- ► Requirements
statement

SMS Requirements
Developers statement

Requirements
Providers statement

Standards Developer

Standard architectural
guidelines

Functional architecture

Technology architecture

«proiecUon»

Intcrltee standard

Requirements model

Analysis mixiel

Design mtxlcl

S tandards Developer

Standard architectural
guidelines

Functional architecture

Technology architecture

M<.«9tun! Induttry
seedi

«business requirem ents model»

.i " '-y -----
I '""W U
i /

lA tu t e b i tM ib i id

Requiremcnis mixlel

Requcsl for
proposals

Analysis model

I J Inicrtaec design I *

Design mixicl

I

- • > Interface definition

Standard accepiancc I"

Figure 5-9: Application o f the Methodological Guidelines to the Interface Standard

Development Process

5.2.1.2.3 COTS Software Product Development Process

Examining the development process for COTS software the Projection construct

provides benefits to the Software Vendor stakeholder by providing a common

structure both for the interface standards to which products conform and for the

existing COTS products maintained by the vendor. For both these sources the

Projection’s requirements model aids solution selection, its analysis model aids the

rapid synthesis of the products analysis model while the design model similarly

speeds up the design of the product. The implementation of the COTS product will

use items such as libraries from the realisation model of existing products, while the

testing of the product will use test cases from the validation model of existing

200

products and conformance tests from the validation model of interface standards. An

important result of using the Projection construct for publishing COTS products is

that using other Software Vendor’s products in the development of COTS products

will be very similar to using internal products. The applicability of the Business

Requirements Model to COTS development depends on the granularity of the

intended product. However, it is unlikely that the multi-domain aspects of the model

will be required as it is expected that a use case model will suffice for documenting a

COTS product’s requirements.

The product release process can no longer just be concerned with packaging the

software for sale and deployment. It must now be concerned with extracting the

portions of the models resulting from each of the previous product development

processes and selecting suitable subset for inclusion in the product’s Projection.

Obviously this will be easier if those models use the same notations and meta­

models as the Projection, but this is not a mandatory requirement. Figure 5-10

summarises the impact of the application of the guidelines on the COTS

development process model.

201

Standards D tvtluper

Standard architectural
guidelines

Functional architecture

Technology architecture

IW tetüïlütM uiéart

Requirement model

Analysis model

Design model

Venfiealion model

Software Vendor

Inlemal archileaural
guidelines

Functional architecture

Technology architecture

.IÏPmd=dr*pânihaNs

' ■ ' . - X
m i m a i t \

. /
— 4-

Prtxluct analysis ilx'

f ,

— ► Product design

Product impiementaii

O tt t t e td K if tN f t f n in !
ptnbtci

Requirements model

Analysis nxxlcl

Design mrxlel

Réalisation model

Vcrificatmi model

I Product testing K

Product software |

4-'

Prixluct release

Figure 5-10: Application o f the Methodological Guidelines to the COTS Software

Product Development Process

5.2.1.2.4 SMS Development Process

The SMS development process is impacted by the use of the Projection construct for

interface standards and COTS software products in a similar way to the software

development process (see Figure 5-11). The common use of the Projection construct

for these external models as well as for the SMS developer stakeholder’s internal

reusable models offers potential efficiencies in all the development activities. A

further activity is introduced, that of SMS release, as it will be necessary to assemble

a Projection of the resulting SMS for future reuse. In its most basic form, this

documents the whole of the completed SMS within the SMS Developer’s domain.

202

More detailed strategies could be conducted where reusable portions of developed

SMS are identified as being particularly suitable for future reuse and documented as

separate Projections.

The SMS requirements capture activity needs to capture the business requirements

for the SMS and must deal with the inter-domain interactions between the Service

Provider and both its Customers and its Third Party Service Providers. It is therefore

appropriate to use the business requirements model to express the SMS requirements

statement.

Standards Developer

Standard architectural
guidelines

Functional architecture

Technology architecture

bkr& ce standard

Requirements model

Design model

Verification model

SM S Dewkiper

Internal architectural

Functional architecture

Technology architcciun

t r --------1
1 f r

«husmesA re<|ulrements

: : ------------------------— — ------1 a — |-
analymh ̂ ! \ .

SM S analysis irexicl
: 1.

t - i

SM S design model

T - i
I A \
I (SM S im p le m e n t a t i o n M

X -1 ---------<

I ^ SM S testing

Requirements
statement

Requirements
statement

ITiIrd Party

Requirements
statement

^YiiYiYiV

Software Vendor

«projection»

liniàueL

Requirements model

A nalysis model

Realisation rmxlcl

V erification model

Service Provider

Figure 5-11: Application o f the Methodological Guidelines to the SMS Development

Process

203

5.2.2 Architectural Guidelines

The overall approach to defining a development framework has focussed on

addressing problems of how SMSs, the standards they conform to and the COTS

software they use are developed in relation to each other. The development

framework does aim to prescribe a detailed functional framework into which the

SMSs, standards and COTS software developed using the guidelines should fit. This

has been avoided primarily because the range and volatility of requirements for SMS

makes a highly prescriptive functional architecture unlikely to be widely adopted.

The final functional structure of the developers’ network of SMSs therefore depends

largely on the requirements of the Service Providers and the SMS Developers who

supply them. The functional structure of the COTS software produced by the

Software Vendor will reflect the requirements of specific SMS and what the

Software Vendor perceives as being widely marketable functionality. However, in

communicating the functional requirements between the stakeholders, some

commonly understood architectural framework is useful in order to quickly establish

some common terminology and thus reach an agreement on the functional area being

discussed. If solutions are structured to fit into such an architectural framework then

later requirements can be more quickly matched to existing solutions.

Fundamentally, an architectural framework provides its users with a separation of

concerns to be addressed in the problem domain, so that specific areas of interest can

be consistently identified and other areas not relevant to the problem at hand can be

ignored. Such a proprietary architectural framework may prove useful in the context

of the products offered by a single SMS developer or Software Vendor. However, a

functional architecture will much better match the needs of an open market in SMS

software if it is based on some wider industrial consensus and maintained by

standardisers in the public domain. Specific solutions that conform to and therefore

may populate such an architectural framework should, however, emerge from the

industrial stakeholders, rather than being synthesised by professional standardisers.

Solutions could be made available either through agreement between several

stakeholders, possibly in the context of a standards body (as is the case for the TMF

204

and the OMG), or published by an industrial stakeholder to present its products and

services in a way that conforms to the separation of concerns provided by the

architectural framework.

As we have seen in Chapters 2 and 3, there are several open and proprietary software

frameworks that are applicable to the problem of SMS development for an open

services market. It is difficult to prove whether any of these possess "correct"

functional architectures, however the fact that no architecture dominates the market

to the exclusion of other suggests that no one of them is superior. To provide

architectural guidelines for the development framework presented in this chapter, the

main relevant architectures are examined and their concepts judged for compatibility

with the methodological guidelines and collected, as appropriate, into a lightweight

but consistent architecture.

TMN and its identification of the service management layer underpin the definition

of scope of this thesis. The logical layers of TMN are widely accepted as useful

separation of concerns by others working in the structuring of open management

software, e.g. TINA and the TMF. Combined with the FCAPS categories, TMN

provides the functional structure of the 5x5x2 grid shown in Section 2.2.1. However,

some of the details of the technology advocated (i.e. the use of OSI management)

and reference point categorisation used (i.e. q, x, f etc.) are not so widely used. These

are currently under review within study group 4 of the ITU-T [m301x][m301y].

The TMN framework is ultimately aimed at the identification of testable interfaces

as functional reference points. As a result it is essentially only a functional separation

of concerns and does not directly address the structure of information. Though

information modelling is a common activity in TMN system development it relates

only to modelling information that will be exposed as an interface to implement a

specific management function. TMN does not directly address wider information

modelling concerns such as the modelling of corporate data for a whole enterprise.

Another widely accepted model for structuring management information is the

TMF’s TOM (see Section 2.2.3). This is based on business processes that are

205

structured in three horizontal layers, the top two corresponding to the TMN SML

and the bottom one corresponding to the TMN NML, and three vertical slices into

the functional areas of fulfilment, assurance and billing. The TOM contains more

information about internal business processes, in terms of information and control

flow, than is given by the definition of management functions populating the TMN

5x5x2 grid. The TOM, therefore, gives a better overview of how such management

functions relate to the overall structure of the Service Provider’s business process

requirements and thus provides a better grounding for the generation of requirements

at reference points than the TMN grid. As with the TMN, the ultimate aim of the

TOM is to locate and identify specific interfaces that are to be standardised, i.e. the

architectural framework is provided in order to structure the definition of interfaces

rather than the software itself. TE^A-C offers a slightly different approach in that it

has published detailed component models representing the structure of software

grouped according to its own separation of concerns, i.e. service and network

architectures and their subdivisions (see Section 2.2.4). However, TESIA-C is also

ultimately only supporting conformance to interfaces in the form of reference points,

rather than the component models behind them.

The TMF provides some further guidance on the structure of management software

in its Technology Integration Map. As an analysis of current technologies suitable

for management, it suggests the use of: technologies such as Java and WWW

browsers for presentation of information; CORBA and possibly workflow

technology for business process interaction; CMIPS/P and SNMP for management

of network resources and SQL and distributed database technology for access by

business processes to operational data. This technology driven approach is very

similar to the three tiered architectural approaches currently gaining popularity in the

wider distributed processing field. These three tiers are typically referred to as a

presentation tier, a business tier and a persistence tier. The presentation tier houses

components that deal with human-computer interactions, with web-browser based

solutions becoming the norm. The persistence tier houses components that steward

specific item of corporate data. The business tier houses components that perform

206

individual business functions together with business rule driven components (e.g.

workflow engines) that co-ordinate the invocation of business functions, user tasks

and data manipulation. Three tier architectures are explicitly supported in Java where

JavaBeans populate the presentation tier, session Enterprise JavaBeans (EJB) the

business tier and entity EJBs the persistence tier [orfali]. The CORBA Component

specification [orbos/99-02-05] provides component categories that also map to the

different tiers. The three tier separation, as with the TIM, are driven by technological

concerns, with the differing needs for platform support for components in different

tiers expected to give rise to separate platform product (container) types for

components in each tier. In the context of the TIM, interoperability is handled by

gateways, which may also have to be integrated into component platforms as

discussed in Section 6.3.

The three tiered approach is relatively novel in structuring operational support

systems but is important if management systems are to reap the benefits of new

component-based distributed processing platforms. Its support for explicit business

rules by using workflow techniques in the business tier provides the flexibility

required to respond to changing business requirements for service management.

Such a three tiered architecture has already been advocated for telecommunications

management by BT for its OSS architecture [furley]. Telecordia’s long established

Information Networking Architecture (INA) and its use in its Operations Systems

Computing Architecture (OSCA) also specifies the use of a similar three tiered

architecture. Though TINA-C adopted many of the requirements of OSCA/INA and

applied them to service management, the three tier, business rule driven approach

was not explored, largely due to lack of suitable platform support. Currently the

TMF has adopted the OSCA/INA requirements, including the three tier aspects,

within its application component team, and is working towards using this as the

basis for future standardisation work within the TMF together with the TOM and

TMN grid [Shrewsbury].

In order to provide the development framework with architectural guidelines that

addresses all the stakeholder’s needs it is therefore proposed to align the TMN grid

207

as used by the Standards Developer with its application by the SMS Developer and

Software Vendor in the context of a three tiered architecture. It is therefore suggested

that within the Standards Developer activities, the TMN grid is used, as at present, to

categorise the scope of individual management functions that are defined and whose

interfaces are standardised. In other words the TMN grid forms the structure of a

repository of standardised management functions that can be used by the SMS

Developer and Software Vendor roles. In addition, the management functions should

also be mapped to the interfaces between processes in the TMF TOM to provide

additional information on the intended applicability of the standardised function,

though some management functions will be general enough to be used in many

different process interactions. To present their full context however, management

functions should be presented using the Projection construct. Typically individual

component interfaces or interface segments defined by system’s developers may be

identified as conforming to a specific standardised management function and will be

defined using a profile of that function’s Projection. Within the SMS Developer and

Software Vendor, the three tier architecture should be used for categorising any

reusable components generated. For the SMS developer this should be a natural

process if OOSE-based analysis modelling is used in analysing the system’s

requirements expressed as use cases. The boundary, control and entity class

stereotypes map naturally to objects in the presentation, business and persistency

tiers respectively. This is one of the major advantages of using the OOSE-based

analysis techniques for system analysis in the SMS Developer.

The main outstanding problem with this approach is the standardisation of entities

on the persistence tier. Standardised management functions map well to the business

process invocations needed in the presentation and persistence tiers, however these

functional definitions do not provide good support for the definition of data oriented

entities, where data structure, class relationships and relationship constraints are of

primary concern. How this may be tackled, especially with respect to the

standardisation of data-oriented components is addressed in Section 6.4.

208

6. Further Work
This chapter discusses further work that may be undertaken or is already planned by

the author. This discussion takes into account the work performed for the thesis, the

obstacles to practical adoption of the recommendations for a development

framework proposed in the previous chapter and new development techniques and

system technologies that may have an impact on the further refinement of such a

framework.

In particular, the chapter is concerned with:

• The identification of those areas that were analysed but are not fully addressed by

the recommendations and how the recommendations may be strengthened

through further experimentation.

• How the recommendations may be applied to the emerging standards and

architectures for software components.

• How the recommendations may impact on the development of tool support for

SMS development and its integration with development techniques for other

areas telecommunication software, e.g. IN.

• How the recommendations could be applied to future standardisation in the

service management domain.

6.1 Extension and Further Validation of Recommendations

The thesis has been tested through the application of various software development

techniques to a number of case studies where representative management systems

were collaboratively developed as research prototypes. Evaluation was through a

mixture of anecdotal feedback and questionnaires representing the subjective views

of development team members as well as through the author’s own analysis of the

application of the techniques. As pointed out in Section 3.4, this level of rigour is not

typical when investigating the effects of software engineering techniques. The large

209

number of control variables involved in such an experiment, the fact that many are

rooted in subjective experience and the high cost of experimental resources (i.e.

software engineer hours) makes the cost of experimentation in this area high

compared to the confidence that can be expected from results. Nevertheless several

further studies could be conducted to improve confidence in the recommendations

made by the thesis.

Firstly, the experiment conducted in Case Study 5 featured the development of

Projection models for existing components by developers who also were responsible

for integrating these components into the required SMS. This serves to confound the

developer’s assessment of how useful the construct was in documenting the

component with their assessment of how useful it was in using the Projection

construct in integrating the components into the final system. A more rigorous study

would involve SMS developers using component Projections developed by a

separate groups of developers. Assessments could then more confidently be made of

the following:

• The usefulness of the Projection construct in matching a component’s

capabilities to the requirements for an SMS, stated in terms of use cases, high-

level information requirements and activity diagrams. More specific experiments

could be conducted in assessing how useful the construct was in determining, for

more complex components, which capabilities and interfaces were relevant and

which were not.

• The usefulness of the Projection construct in determining which modifications

were required to a component’s design based on changes identified to its analysis

model. This would require some measurement of how useful the Projection was

in communicating the changes in requirements between component reusers and

developers.

• The usefulness of the Projection construct in determining secondary

modifications needed to a component based on changes required to its design

imposed from elsewhere, e.g. changes in the interface design of an interoperating

210

component. Again this would centre on the use of the Projection for

communicating the required changes between component reusers and

developers/maintainers.

Ideally such experiments would require the use of CASE tools that directly

supported the UML stereotypes and meta-model extensions suggested in the

previous chapter.

To increase the confidence in such experiments they would need to be compared to

control experiments where similar tasks were attempted between component reusers

and developers, but without the benefit of the Projection construct. Ideally, the

perception of the developers involved would be complemented with objective

measures of the relative effort expended in performing the tasks in each case.

Some extension to the Projection construct can also be envisaged as potentially

improving its usefulness to reusers. In Case Study 5, Projection was matched to SMS

requirements by comparing aspects of the component’s use case based requirements

model and its analysis model to the SMS requirements stated in terms of use cases,

high level information requirements and activity diagrams. As the activity diagrams

typically offer the most detailed view of the SMS requirements, in particular a

breakdown of internal functionality, it might be easier to match the requirements to

component capabilities if they also were expressed in terms of an activity diagram.

Data and events that pass between activities in the SMS requirements could be more

clearly matched to data and events exchanged by the component and its

environment. This would require the inclusion of a micro process model to the

component Projection, which raises questions about how this would integrate with

the traceability chain passing through the Projection’s use case, analysis and design

model. The inclusion of such a micro process model would obviously benefit

components destined for the business process tier of a three-tier business

architecture. It is less clear how a component destined for the persistence tier might

benefit from this. It seems likely that other modelling constructs may be more

suitable here, for instance more accurate expressions of the constraints on the

211

relationships a persistence component may have with other persistence components.

How to express this both within the facade Projection and as SMS requirements is an

area for further study, with the Object Constraint Language [ad/97-08-08], which is

used in defining the semantics of OMG MOF-compliant model, being a possibly

suitable approach.

In [jacobsen97], Jacobsen identifies the concept of a facade’s variability mechanism.

This represents the collection of mechanisms, e.g. inheritance, templates,

composition, by which reusers may modify the interfaces and behaviour of a

component within limits set by the component developer. Such variability

mechanisms were not studied as part of the Projection construct, and their expression

using UML needs to be examined further if the construct is to be suitable for

practical application in the flexible reuse of components.

One of the main challenges facing the developers of reusable components is the

selection of granularity of components. Typically the component must represent a

useful level of functionality to the re-user. By packaging the component with its

analysis model, this levCl of functionality is clearly expressed by the set of use cases

from which the facade’s analysis model is derived. A component should only have

loose coupling with other components, with consideration given to merging tightly

coupled components into one. Commercial consideration may obviously play a role

here, with component vendors being tempted to design components that encourage

the user to buy others in a family due to close coupling. Granularity issues have not

been addressed in this work as the components used were predefined by others ,e.g.

TINA-C, however the analysis model presents a good potential candidate for

assessing granularity consideration and applying relevant heuristics. Such heuristics

could be driven by integrity concerns and applied using complexity measures of the

analysis model.

The definition of the Business Requirements Model defined in Section 5.2.1.1.2

could also benefit from improvement. In particular the relationships between some

modelling elements are defined only informally, in terms of how they might be

212

related though dynamic modelling. This dynamic modelling aspect should be

introduced into the meta-model.

6.2 Application to Component Software Architectures

As discussed in Section 5.2.2, component based reuse is seen as an increasingly

important approach to accelerating software development, both within the

telecommunications industry and in the wider IT community. Building systems from

components that interact through well-defined interfaces offers a route both to

reusing software across projects of a single SMS Developer and to integrating COTS

software from separate Software Vendors. Emerging standards such as Enterprise

Java Beans (EJB) [orfali] and CORBA Components [orbos/99-02-05] are promoting

the development of platforms that directly support the integration of multi-interface

components through the provision of component container platforms. These provide

support for remote component interface operation invocation, notification flow

between components, directory based naming, persistency, transactions and security.

Components also provide support for software deployment, runtime profiling and

reflection. However, many existing architectures, such as TMN, do not directly

support component-based systems, and not all the notations and tools currently used

in telecommunications can fully represent component abstractions for all

development activities.

UML currently provides some support for component modelling in the form of

component diagrams. However, as identified in Case Study 4, multi-interface

components are not directly supported as communicating entities in collaboration or

sequence diagrams. There is also no direct support in the UML model of a

component for modelling the server interfaces or event sources required of other

components. Such additions to UML would assist in making the Projection construct

map more directly onto component models such as CORBA Components and EJB.

In addition, the currently missing variability mechanism could be structured to be

able to map directly to EJB profiles or CORBA Component package profiles. These

213

issues may well be addressed in responses to an OMG RFP on a UML profile for

CORBA [ad/99-03-11], which covers CORBA Components.

TMN functional entities, such as NEFs, MFs, QAFs and OSFs, are not modelled as

multi-interface components. However, agent interfaces are often structured in terms

of management functions that may be used by separate managers playing different

roles. Case Study 2 gives an example of how specific parts of an agent containment

tree can be earmarked for use by different managers by placing a manager-role

specific MOs high in the tree. By using such role-specific MOs to indicate the

demarcation between different access control settings to different agent sub-trees, it

may be possible to design MIBs which provide the benefits of multiple interfaces.

Alternatively, some of the mechanisms used to manage MO domains for policy

based management may be applied [alpers][sloman]. Apart from the lack of support

for multiple interfaces, the TMN set of standards already offer many of the same

features as components models, including:

• The event report management model [x734], which is close to that used in

CORBA Components and EJB event sources,

• Management functions for supporting a management system’s repertoire,

definition and instance knowledge [x750], which provide reflection support.

• The integration of X.500 and X.700 [bjerring94a], which provides similar

location features to component and interface finder interfaces, especially when

combined with scoping and filtering.

• Security, which is available in the form of access control MOs [x741] as

demonstrated in [gagnon].

Aspects of component models not currently addressed in TMN standards are

transactions, persistency and properties. The latter could potentially be handled by

custom MO classes, while proprietary solutions for transaction and persistence

already exist on commercial management platforms. Given that a TMN component

model could be synthesised, a further avenue of investigation would be to develop

214

specifications for suitable CORBA 3.0-to-TMN and EJB-to-TMN gateways,

possibly building on the existing JfDM definitions. The development of a CORBA

Component to TMN gateway function has been suggested by the author as a part of a

collaborative research proposal.

6.3 Integrated Tool Support

Service providers are addressing competitive pressures through the increased

integration of the many software systems that they operate. This includes amongst

other, the integration of different OSSs, the integration of OSSs with service access

and control software and the integration of service control software for different

services that are combined to provide new services.

This thesis argues that a suitable development framework for SMS could be based

on common methodological guidelines containing a common meta-model and

notation extended from UML. However, when considering the integration of SMS

into the wider range of telecommunications software, problems arise from the range

of standardised notations used across different specialised areas of

telecommunication software development, e.g. SDL in IN-based system

development, ODL and IDL in DPE based telecommunication software development

and GDMO in TMN-based system. These different languages overlap in some of

their features, but also have unique features that maintain their importance in the

development and integration of telecommunications systems, e.g. the use of SDL for

simulation and test case and code generation. Furthermore, the standardisation of

these languages has prompted their support in individual CASE tools. Developers

having to develop and integrate systems across the whole range employed by a

service provider are faced with a large number of different modelling languages,

modelling constructs and modelling tools with only limited integration existing

between them [valiant]. This fragmentation in modelling method, notations and tools

poses a tangible barrier to the efficient integration of telecommunication systems and

the adoption of an open development framework for SMS and other

telecommunications areas. Though, as we have seen in Chapter 3, there has been

215

some work aimed at inter-working between notations and tools (e.g. UML to

GDMO, IDL to GDMO), the emergence of similar but separate modelling standards

such as the ITU-T’s ODL and the OMG’s CORBA component IDL extension,

indicates that these barriers continue to persist. For this reason, the evaluation and

application of interworking approaches between those different notations and their

accompanying meta-model needs to be addressed.

A suitable approach should acknowledge that the different branches of

telecommunications software development, principally TMN and IN, exhibit

differences in development techniques based on real-time requirements, scaleability

and reliability targets, installed base, notations used in standards and development

tools investment. However, a less parochial approach to the integration of notations

and tools would allow future investment in skills and tools to be more widely

applicable within enterprises developing telecommunication software. Any fruitful

avenue of investigation would have to support the construction of systems from

reusable components, even if they are expressed and manipulated by developers in

different open notations. Such an approach would also need to support a

component’s potential involvement in different styles of development, from high

level, iconic service creation, to business process engineering led development to

more traditional GOAD. Such an approach would aim to facilitate the collaboration

of a wide range of telecommunications software development specialists using

specialised CASE tools, but interchanging models via component repositories as

depicted in Figure 6-1.

216

s VC M gm t
C om ponent

V endor

IN System
A nalyst

IN System
D eveloper

TM N System
D eveloper

m
Bespoke

com ponents
Bespoke

com ponents

Svc M gm t
com ponents

C S -3 O D L
defin itions

E T S IINIT U -T standard
repositoryrepository

cr— — id
R ef F t T M N i/f

defin itions defin itions

^— -J

Figure 6-1: A Potential Scenario for the Integration o f Software development across

the Telecommunications Domain

An approach based on a common, component-based meta-model would be a natural

extension of the results of this thesis. Such a meta-model would contain additional

information and relationships to enable transparent roundtrip transformation to the

notation most suitable for different telecommunications development tasks, e.g.

UML for general analysis and design work, SDL for behaviour simulation or test

case generation, IDL or GDMO for deployment on specific distributed platforms.

It is not envisaged that a single homogenous, single-vendor tool set will ever address

the entire telecommunications development domain. Instead research should aim to

ensure open model interchange between both general purpose tools, such as

component repositories and UML editors (though working with telecommunication

specific profiles), and specialised telecom-specific tools such as GDMO compilers

or SDL-based service creation simulators. The OMG’s Meta Object Facility (MOF)

[ad/97-08-14] and XML-based Model Interchange (XMI) standards [xml] [ad/98-10-

05] would be central to such research. The use of XMI would allow tools and

exchange mechanisms to gain leverage from the large range of software emerging

that support XML ,e.g. Microsoft’s Windows 2000, thus potentially reducing the

217

cost of supporting an open model exchange format. It may also allow XML to form

the basis of open consistency management tools needed to ensure cohesion of

models being manipulated in different native notations and mapped to and from the

component meta-model, as depicted in Figure 6-2.

C o n s i s t e n c y
m a n a g e m en t

t o o l

X M I

U M L g r a p h i c a l
m o d e l l i n g t o o l

T M N (G D M O)
d e v e l o p m e n t
e n v i r o n m e n t

S D L - b a s e d , IN
p r o t o t y p i n g t oo l

S D L - b a s e d s i m u l a t i o n
& t e s t c a s e g e n e r a t i o n

t o o l o

O D L d e v e l o p m e n t
to 0 1

M e t a -
model
b a s e d

c o m p o n en t
r e p o s i t o r y

N o t a t i o n
t r a n s l a t i o n
fu n c t i o n s

Figure 6-2: Tool interworking and multi-notation round trip engineering using XMI

Such as approach, based on the author’s ideas of a common, multi-notational meta­

model and model exchange mechanisms, have formed the core of a collaborative

research proposal recently submitted to the European Commission.

6.4 Application to Service Management Standardisation

The approach taken in this thesis to addressing the development of open

management systems has focussed on addressing the process and concomitant

notations of open system development. It has not promoted the detailed definition of

218

a functional architecture for service management or the specification of functions

that might populate such an architecture. This is based on the assertion that the

business requirements on service management are currently too volatile. However,

the author acknowledges that a methodologically-based approach will not, in itself

support open service management, and that the requirements of service management

will have to be addressed by standards bodies working in this area in spite of the

changing requirements present. This section presents some changes in service

provision that, due to their general industry momentum, may be fruitful targets for

service management standardisation. It also addresses how various changes in

technology impact on the common perception of the scope of service management

and speculates what further development may have profound impacts on the

development of service management functions.

One major area impacting on telecommunications is the rapid expansion of the

Internet, and the resulting move by service providers to offer IP services instead of or

alongside traditional connection oriented services such as PSTN and ATM. The use

of IP technology presents several challenges to service providers used to dealing

with traditional telecommunications services such as IN or ATM. In these cases

there is a clear identification of the point at which a service is provided to the

customer, e.g. a User-Network Interface (UNI). This, therefore, provides a point at

which service performance can be monitored for application to terms in an SLA. For

IP-based service the situation is different. The IP-based services that users are

familiar with reflect the behaviour both of the network and of end system processes

such as user applications and application servers, e.g. for email store and forward,

WWW or security keys. This reflects the engineering tendency in the Internet to push

intelligence to computer systems at the edge of the network, compared to

concentrating it within the network as in telecommunications systems.

As we have see in Chapter 3, the telecommunications industry has a well-established

functional architecture for structuring management in the form of TMN. The

management of IP-based networks does not benefit from any such common

functional structuring, and little work has been done in formalising the application of

219

the TMN functional grid to such networks despite the fact that they are within the

scope of TMN. With the introduction of QoS capable IP networks (based on RSVP

and Diffserv) there is, as observed in Chapter 3, increased interest within the IETF in

address management beyond the network element. Additionally the Distributed

Management Taskforce is working towards a Common Information Model (CIM) for

managing the end systems typically deployed in IP-based enterprise networks.

Neither group has aligned its work with the TMN functional architecture. This is

necessary if telecommunication service providers are to apply themselves in an

integrated way to the provision of IP enterprise network management services.

Strongly influenced by the rise of the IP technologies, enterprises are increasingly

using distributed IT systems based on Intranet technologies to support and integrate

their business processes. Two major trends are visible in the development of IT

support for integrating enterprise business processes, the move to component-base,

three tier architectures and the adoption of workflow management techniques.

However, if service providers wish to exploit these trends, they must be able to offer

services that manage of the networks that underlie such business integration and the

customer’s business processes that interact across them, i.e. they should provide

third party business process management services. Such services would also aim to

support business process automation between enterprises as well as within them,

based on multi-domain Intranets, also known as Extranets.

The requirements to manage IP-based services and, more specifically to manage

three-tier architecture-based enterprise management systems, means that the

management of services will have to be integrated with what is more commonly

known as systems management. The systems being managed would include

distributed application servers (e.g. middleware service servers and workflow

engines) as well as the management systems themselves. Current management

architectures, such as TINA and the TMFs Telecoms Operation Map, include

systems management but typically only as a single, orthogonal functional area,

typically lacking the finer grained guidance on separation of concerns that is given

220

for communications systems. Solutions also often focus on computing hardware

management rather than the management of the software processes.

Figure 6-3 represents a possible system architecture for an IP-based enterprise

management system. The principal architectural concept used is that all parts of the

system are modelled and implemented as software components, which have an

underlying technological grouping into either a presentation, business or persistence

tier. Starting from this basis an open functional architecture is therefore defined in

terms of groups of component types addressing different functional concerns, along

lines similar to those outlined in Section 5.2.2.

221

P e r s i s t e n c e T 1erP r e s e n t a t i o n T i e r B u s i n e s s T i e r

C u s t o m e r
A p p l i c a t i o n s C u s to m e r a p p lica tio n

fu n c tio n s
C u s to m e r danC u s to m e r user

ap p lic a tio n s

S u p p
f u n c t i Security

fu n c tio n s
L o ca tio n
fu n c tio n s

S erv ice w o rk f lo w

S L A

S y s t e m T g m t M g m t w o rk flo wP ro v id e r system s
m g m t a p p lic a tio n s

System m gm t
fu n c tio n s

U ser

TM1 4 S M L
P ro v id e r serv ice

m g m t a p p lic a tio n sS u p p o r t a n d
M a n a g e m e n t

C u s to m e r

S u b sc rip tio n
m gm t fu n c tio n s

S L A m gm t
fu n c tio n sfu n c tio n s

C u s to m e r service
m g m t a p p lic a tio n s

C o n tra c t

T M N

d e sc rip tio n
F au lt m gm t

fu n c tio n s
P ro v id e r n e tw o rk

m g m t a p p lic a tio n s
N et OoS m gm t

fu n c tio n s

P e rfo rm ance
log

Even t co rre la tio n
fu n c tio n s

S cann ing
fu n c tio n sT M N 1 M L

QoS
T h re sh o ld s

D T M F D T M F
agent

S N M P
agent

T M N - N E L

Figure 6-3: Possible enterprise management service system scenario showing potential functional architecture overlay

222

Figure 6-3 raises many of the architectural issues presented by the move to a three

tier software architecture for integrating network, service and systems management

with a TMN framework. The key questions raised are:

• What is a suitable functional decomposition for components in the persistence

tier?

• Should systems management components be treated separately from service

management ones?

• Should non-network hardware systems be managed in the same functional area

as network elements?

• How can existing network element MEB definitions (e.g. in SNMP) and useful

NE management functions (e.g. workload monitoring) be integrated into a

component-based software architecture?

• Should the component groupings used for forming and populating such a

functional architecture be the only groupings considered, or should other,

potentially overlapping groupings based on component deployment, lifecycle or

security management, component fault and performance monitoring or product

marketability also be supported in an open fashion?

The mechanism for the management and monitoring of application components is

another related area in need of further investigation. In addition to the work of the

DTMF CIM, requirements for this have already been addressed by the TMF

Application Component Team, which has produced requirements for a Common

Application Management Interface as part of its generic building block requirements

[Shrewsbury]. This in turn has influenced an OMG RFP on the subject [orbos/99-04-

11],

The approach required to perform the on-going standardisation of service

management functions in such functional architecture also requires some research.

One possible approach is that taken by the BT OSS architecture, which assumes that

corporate data is more stable than the business processes that operate on it.

223

Standardisation efforts could therefore focus on defining common groupings for

components in the persistence tier. Such common persistence objects would capture

the structure of units of common corporate data, the operations that could be

performed on them and the constraints on relationships to other objects in the

persistence tier. It is significant that the TMF in its current TOM work ignores the

definition of data and focuses primarily on business processes, which provide direct

requirements for business tier objects only. At the time of writing the author is

assisting the TMF’s Application Component Team, in examining the differences in

the TMF’s process-oriented approach and the BT data-oriented approach. This work

has the aim of influencing the TMF to change its working structure to one that

combines both approaches and that addresses each of the three tiers explicitly.

Whichever approach is taken to developing a suitable functional architecture for

service management, the requirements which act upon it will have to be regularly

reviewed as the common understanding of the meaning of service management

changes. The EURESCOM project P.812 is a good example of such a review

[davidson99a], however it may be necessary for standards bodies such as ITU-T

SGIO to regularly undertake analysis of evolution scenarios in order to be able plot

the direction of the scope and content of the service management layer. Examples of

evolution scenarios that are relevant at the time of writing could address:

• The method by which a user pays for services moves from subscription based

quarterly payment based on standing charge and usage metering, through “pay as

you go” schemes, to anonymous, per session e-cash/micropayment transactions.

• The evolution of voice services from PTSN, through PSTN-IP integration to a

scenario of pure voice over IP as part of IP integrated services. This would

involve the migration of much of the intelligence that supports intelligent

network from the network to end user devices.

• A move to the situation where the relative costs of bandwidth and network

intelligence are such that only premium services are cost effective to charge for

224

and a large number of services are provided at a flat rate or free to users (e.g. the

current large number of free ISPs in the UK).

• The migration to a situation where communications services are highly

commoditised, charging policies are highly dynamic and users may change

providers on an hourly basis, possibly with the help of intelligent brokering

agents.

• The migration to a situation where users expect to be able to request whatever

SLA they require at the time, possibly on a call by call basis.

• User’s subscribe and unsubscribe rapidly while roaming internationally through

domains of local area, high bandwidth access providers such as train, aeroplane,

airport, hotel and highway operators, with closely linked loyalty schemes for

these non-communication service providers.

Such analyses could be conducted so as to order requirements in terms of their

volatility, with the most invariant requirements being those most directly targeted for

ongoing standardisation work, e.g. through the definition of service management

persistent object. This approach has been suggested by the author in a further

collaborative research proposal that has recently submitted to the European

Commission.

225

7. Conclusions
This chapter reviews the conclusion of the thesis and discusses the extent to which

the recommendations for the proposed open development framework satisfy the

goals laid out in Chapter 2 and the thesis statement in general.

The analysis of the current state of Service Management standards in Chapter 2

revealed that no single logical architecture is dominant. The current candidates differ

widely in their approach, from the coarse grained, relatively unpopulated TMN

service management layer, through the business process driven set of TMF standards

to the TINA reference points generated from a DPE-based component model. In

addition, a wide range of technologies was identified in Section 2.3 as being

applicable to service management. This included CMIS, as currently specified in

TMN (though this is not widely regarded as a suitable technology for service

management) and CORE A, due to its general suitability for distributed business

systems. This heterogeneity in both logical and technological architectures for

service management presents developers with increasing problems of interoperability

between SMSs precisely at a time when open markets in telecommunication services

are increasing the need for integration of service management processes between

service providers and their customers. The thesis therefore suggests that, to improve

the chances of building interoperable SMS within increasingly tight cost and time

constraints, a suitable development framework exhibits the following characteristics:

• It adopts a loose logical architecture in order to accommodate the range of

logical structures currently applicable to SMS.

• It exploits the existing and emerging range of technological gateways to

accommodate a wide range of SMS platform technologies.

• It promotes interoperability and efficient SMS development through a common

set of methodological guidelines.

226

The thesis has shown that SMS development can benefit from an open approach to

modelling and integrating SMS systems that is commonly understood by SMS

Developers, COTS Software Vendors and service management Standards

Developers. An analysis of the different software engineering and modelling

techniques that may be applied to the development of telecommunications

management systems revealed the potential linkages between the development

activities within each of the relevant stakeholders. These linkages are identified as

points of communication where a common development framework would be most

beneficial.

The thesis asserts that existing network management development techniques are

insufficient to form the basis of such methodological guidelines. Chapter 3 reveals

the distinction, observed by many standardisers and developers, between the

modelling of interfaces and the modelling of systems, the latter of which consists

both of interface definitions and models of the systems behind them. The needs of

the SMS Developer stakeholders depend on the smooth integration o f interface and

system modelling techniques. This was hindered in the case of M.3020 due to its

reliance on functional decomposition, which made it difficult to exploit the benefits

of OOAD in terms of software and specification reuse and specialisation. Though

M.3020 is currently being revised to use UML [m3020-99], it still adheres to this

functional decomposition approach, thus maintaining its inadequacy for SMS

development.

A series of case studies was conducted around the development of SMS in a number

of research projects. These provided evidence of the development techniques that

developers found most useful in practice. Based on this evidence and the analysis of

current development techniques used in management system development, the

following general recommendations were made:

• Use case modelling should be used for describing the external functionality of

service management standards, systems and components.

227

• For multi-domain SMS analysis, business roles and business processes should be

used to supplement use cases.

• The UML notation should be used both internally for the different stakeholder

development processes and externally for exchanging models between

developers involved in these processes.

• The Projection modelling construct should be used for publishing COTS

software, for publishing standards and for documenting internally developed

reusable software.

• Where possible, an analysis and design process that uses OOSE analysis

modelling should be adopted.

These recommendations are made concrete in the form of semi-formal descriptions

of UML modelling constructs, namely the Business Requirements Model and the

Projection Model. These represent the main contribution of the thesis. Some

examples of their application are given with respect to the models used in Case

Study 5.

To assess the correctness of the thesis statement, the methodological guidelines and

supporting evidence from the case studies and state of the art analysis are assessed

below against the development framework goals defined in Section 2.4.

Goal 1: The Development Framework must support SMS Developers in

developing a SMS that satisfy the business needs o f Service Providers,

including its business interactions with Service Customers and Third Party

Service Providers.

The guidelines provide a Business Requirements Model which it recommends is

used in the requirements capture activity of the SMS development process. This

model supports techniques of business role and responsibility modelling to

determine the requirements for interactions between the service provider’s SMS and

the systems of its customers and collaborating service providers. These have been

found useful when combined with sequence diagrams in the requirements analysis

228

stage (Case Study 2 , 3 , 4 and 5). In addition this model supports the identification of

business processes that may occur internally to the Service Provider. This was found

useful in Case Study 5.

Goal 2: The Development Framework must address all stages o f SMS

development, i.e. requirements capture, system analysis, system design,

systems testing, system deployment and system maintenance.

Though the process models for the SMS Developer stakeholders identify activities

for all stages of development, it has only been found to be practical to define

common methodological guidelines for the requirements capture, the requirements

analysis and, to an extent, the design activities. Some aspects of the design model as

well as the models for implementation, testing and deployment are very dependent

on the technological and programming environment adopted, so defining common

guidelines becomes problematic. System maintenance is treated simply as a further

iteration of the overall development process, though it is acknowledged that this may

not be the most efficient approach. System maintenance has not been addressed in

the case studies.

Goal 3: The framework must support SMS Developers in the application o f

open standards from Standards Developers.

This situation was tested in Case Studies 3, 4 and 5 where open specifications,

primarily ones originating from TINA, were followed in order to implement various

systems. This experience revealed some shortcomings in the use of ODP viewpoints

(Case Study 3) but also showed how re-documenting the specifications, first with

UML and then using an equivalent of the Projection construct, aided in their smooth

application by SMS developers. Case Studies 1 and 2 also supported the evidence

from the state of the art review that indicated that specifying open interfaces using

functional decomposition did not support the needs for such definitions in the SMS

development environment. Instead, a use case or scenario focussed approach is

advocated. In addition. Case Study 5 supported the recommendation that the analysis

229

level specification for an open interface should be structured using OOSE analysis

object types.

Goal 4: The Development Framework must support SMS Developers in the

reuse o f design solutions and software over different projects.

The recommendation to use the Projection construct will aid in the reuse of

internally developed models, especially with respect to the retention of the original

requirements and their traceability to design model elements. This was demonstrated

by components such as subscription management, which was reused and modified

over several of the case studies with the aids of some of the modelling elements that

make up the Projection.

Goal 5: The framework must support SMS Developers in using commercial

off the shelf software developed by Software Vendors.

Though the case studies involved some existing components, these were subject to

extensive remodelling using the recommended techniques, so were not really “off-

the-shelf’. This situation was simulated however in Case Studies 3 and 4 where

components from one organisation were reused unchanged by another, thus

providing some evidence of the validity of the recommendations in addressing the

goal of reuse of software between organisations.

Goal 6: The Development Framework must support the Software Vendors in

the application o f open standards in developing its products.

This was supported in much the same way as for Goal 4. It should be noted that

some of the components reused by other partners in Case Studies 3 and 4 were based

on open interface specification as part of component specification of the TINA

Service Architecture, e.g. the subscription management component.

Goal 7: The Development Framework must support Standards Developers in

the on-going development and evolution o f open standards to be used by

SMS Developers and Software Vendors.

230

The fact that existing standard specifications, such as those from TINA, could be

remodelled and applied successfully using the recommended techniques indicates

how existing standards can be aligned with these techniques, and thus, not

insignificantly, with each other. The full benefit of these techniques clearly only will

come when the relevant bodies adopt similar techniques for their internal

development work. In the case of the recommendation to use UML, the TMF has

already adopted it while TINA-C has its adoption as a stated aim. A recent draft

revision to M.3020 [m3020-99], shows that the ITU-T is also moving to use UML

more widely. This revision specifies the use of use cases for defining management

services and functions and explicitly applies the requirements capture, analysis and

design stages of systems modelling. However, differences will remain in the way the

different bodies structure their standardisation efforts, with the ITU-T defining

management functions derived from management services, the TMF defining

management functions based on business process interactions and TINA-C defining

reference points based on component models. The recommended Business

Requirements Model accommodates all of these analysis approaches, thus providing

a possible route to converging the different standardisation approaches. Also, the

Projection modelling construct provides a common form for expressing the results of

standardisation so that the differences in the approach used in arriving at a standard

may not present such an obstacle for the standard’s user.

Goal 8: The framework must support the development o f a SMS that operate

over heterogeneous computing platform technology and which will be robust

to changes in computing platforms.

This goal is addressed by adopting a common notation and meta-model for

requirements capture, analysis and design within the Projection construct, regardless

of the target technology. At the requirements capture and analysis level, it is

expected that models will remain unchanged during platform technology changes. It

is expected that aspects of the design model may change if the platform changes,

especially when changing paradigms, for instance when moving between client-

server and manager-agent platforms. Such ‘protocol neutral modelling’ is not, in the

231

author’s opinion, possible at this detailed level of abstraction. However, the same

UML-based modelling techniques can be applied, with platform specific notations,

e.g. GDMO and IDL, being generated automatically, and thus made largely

transparent to the designer. The development in Case Studies 3, 4 and 5 involved

both CORE A and CMfP technologies. However, the latter did not form a large part

of the development effort, and was restricted to the network and element

management layers. So, though the views of the CMIP developers when questioned

did not vary much from those of the COREA developers, support for claims that the

techniques recommended applied equally to both is relatively weak. One group of

developers who modelled their system in Case Study 2 using OMT, were however

able to transform this CMIP-based design to a COREA-based one for Case Studies 3

and 4 using many of the same core concepts.

Goal 9: The notations and methodology o f the development framework

should be easy for those playing SMS development stakeholder roles to

understand, and should be readily supported by CASE tools.

Ey adopting the widely used UML notation and the use case modelling construct,

and by avoiding the use of FDTs and of the more complex aspects of ODP enterprise

modelling, the recommendations aim to be accessible by the widest range of

developers in the SMS development arena. The use of UML ensures widespread

CASE tool support for the implementation of the recommendations. Expressing the

recommendations in terms of a meta-model defining a UML profile may promote the

development of CASE support for SMS in existing tools.

To summarise, therefore, this thesis has provided evidence of the need for a loose

logical and technological for SMS development and thus of the potential benefits of

adopting a common development framework that can cope with such heterogeneity.

A set detailed goals for such a framework and a model of the development process

needs of the relevant stakeholder types were established. A series of case studies was

conducted which garnered both informal and empirical evidence on the usefulness of

a range of software development techniques applied to SMS development. Eased on

232

the framework goals and stakeholder process needs, specific methodological

recommendation have been made and supporting notational models have been

defined, principally the Projection Construct and the Business Requirements Model.

The author expects that these recommendation and notational models may have

applicability beyond SMS development, but providing evidence for this is beyond

the scope of this work.

233

This page has been deliberately left blank.

234

8. References
[ad/97-08-03] UML Summary, v l . l , ad/97-08-03, OMG, Aug 1997

[ad/97-08-04] UML Semantics, v l .l , ad/97-08-04, OMG, Aug 1997

[ad/97-08-05] UML Notational Guide, v l . l , ad/97-08-05, OMG, Aug 1997

[ad/97-08-06] UML Extension for Objectory Process for Software Engineering,

version 1.1, ad/97-08-06, OMG, Sep 1997

[ad/97-08-08] Object Constraint Language Specification, version 1.1, ad/97-08-08,

OMG, Sep 1997

[ad/97-08-14] Meta Objet Facility, revised submission, ad/97-08-14, OMG, Aug

1997

[ad/98-10-05] XML Metadata Interchange, ad/98-10-05, OMG, Oct 1998

[ad/99-03-11] RFP: UML Profile for CORBA, ad/99-03-11, OMG, 1999

[adams] The Lean Communication Provider: Surviving the Shakeout through

Service Management Excellence, Adams, E., Willetts, K., 0-07-070306-X,

McGraw-Hill, 1996

[alien] Putting UML to Work: Strategies and Techniques, Allen, P., in [UML98],

pp33-43, OMG, Jun 1998

[allweyer] Process Orientation in UML through Interaction of Event-Driven Process

Chains, Allweyer, T., Loos, P., in [UML98], ppl83-193, OMG, Jun 1998

[alpers] Concepts and Application of Policy Based Management, Alpers, B.,

Plansky, H., in [IM95], pp57-68, Chapman-Hall, 1995

[arkko] Requirements for Internet-Scale Accounting Management, Arkko, J., draft-

arkko-acctreq-oo.txt, IETF, Aug 1998

[arlow] Literate Modelling - Capturing Business Knowledge with the UML, Arlow,

J., Emmerich, W., Quinn, J., in [UML98], ppl65-171, OMG, Jun 1998

235

[aurrecoechea] Towards building manageable multimedia network services,

Aurrecoechea, Lazar, A.A., Stadler, R., Proceedings of the International

Conference on Management of Multimedia Networks and Services,

Montreal, Canada, ppl8-30, Chapman-Hall, 1997

[barbeau] An Approach to Conformance Testing of MIB Implementations, Barbeau,

M., Sarikaya, B., in [IM95], pp654-666, Chapman-Hall, 1995

[barillaud] Network Management using Internet Technologies, Barillaud, F., Deri,

L., Feridun, M., in [IM97], pp61-70, Chapman-Hall, May 1997

[basili] The TAME Project: towards improvement-oriented software environments,

Basili, V.R., Rombach, H.D., IEEE Transactions on Software Engineering,

14(6), pp758-773, 1988

[beaumont] Starting from Scratch, Beaumont, J, Telecommunications, 26-29 March

1995, Conference Publication No. 404, lEE, ppl-3, lEE, 1995

[berndt95a] Service Architecture, Bemdt, H., Minerva, R., TINA Baseline

Document TB_MDC.012_2.0_94, TINA, 1995

[berquist] Managing Information Highways: The PRISM Book: Principles, Methods,

and Case Studies for Designing Telecommunications Management Systems,

Berquist, K., Berquist, A. (Eds), Lecture Notes in Computer Science 1164,

Springer-Verlag, 1996

[bjerring94a] Requirements of Inter-Domain Management and their Implications for

TMN Architecture and Implementation, Bjerring, L.H., Tschichholz, M., in

[ISN94], ppl93-206, Springer-Verlag, 1994

[bjerring94b] End-to-end Service Management with Multiple Providers, Bj erring,

L.H., Schneider, J.M., in [ISN94], pp306-316, Springer-Verlag, 1994

[bleakley] TMN Specifications to Support Inter-Domain Exchange of Accounting,

Billing and Charging Information, Bleakley, C., Donnelly, W., Lindgen, A.,

Vuorela, H., in [ISN97], pp275-282, Springer-Verlag, May 1997

236

[booch94] Object Oriented Analysis and Design with Applications (2nd edition),

Booch, G., Rumbaugh, J., Jacobsen, I., 0-8053-5340-2, Benjamin Cummings,

1994

[booch99] The Unified Modelling Language User Guide, Booch, G., Rumbaugh, J.,

Jacobsen, L, 0-201-57168-4, Addison-Wesley, 1999

[bosco] ACE: An Environment for Specifying, Developing and Generating TINA

Services, Bosco, P.G., Lo Giudice, D., Martini, G., Moiso, C., in [IM97],

pp515-527, Chapman-Hall, May 1997

[caluwe] The Use of TMN as an Architectural Framework for Value Added Service

Management, de Caluwe, I., Leever, P., Wester, J., in [ISN94], pp295-304,

Springer-Verlag, 1994

[carls] Introducing SDL92 in the Development of TMN Applications, Carls, G.,

Frohnhoff, B., in [ISN98], pp365-378, Springer-Verlag, May 1998

[case] Simple Network Management Protocol (SNMP), Case, J.D., Fedor, M.,

Schoffstall, M L. Davin, C., RFC 1157, lAB, 1990

[chan-m] Customer Management and Control of Broadband VPN Services, Chan,

M.C., Lazar, A.A., Stadler, R., in [IM97], pp301-314, Chapman-Hall, May

1997

[chapman] Overall Concepts and Principles of TINA, Chapman, M., Montesi, S.,

TINA Baselines document TB_MDC.018_1.0_94, TINA, 1994

[chatt] TMN/C++: An Object-Oriented API for GDMO, CMIS and ASN.l , Chatt,

T.R., Curry, M., Holberg. U., Seppa, J., in [IM97], ppl77-191, Chapman-

Hall, May 1997

[chen96] Distributed Network Management Using CORBA/TMN, Chn, G., Neville,

M., Kong, Q, Proceedings og the 7th IFIP/IEEE International Workshop on

Distributed Systems Operations and Management, LAquila, Italy, Oct 1996

[chen97a] Integrated TMN Service Provisioning and Management Environment,

Chen, G., Kong, Q., in [IM97], pp99-112, Chapman-Hall, May 1997

237

[chen97b] The Business Process and Object Modelling for Service Ordering, Chen,

G., Kong, Q., Proceedings of the 8th IFIP/IEEE International Workshop on

Distributed Systems Operations and Management, LAquila, Italy, ppl96-

209, 1997

[choi] A Generic Service Order Handling Interface for the Cooperative Service

Providers in the Deregulated and Competitive Telecommunications

Environment, Choi, Y.B., Tnag, A., in [ISN97], pp211-218, Springer-Verlag,

May 1997

[christensen] Information Modelling Concepts, Christensen, H., Colban, E., TINA

Baseline document TB_EAC.001_1.2.94, TINA, 1994

[coplien] Pattern Languages of Program Design, Coplien, J., Schmidt, D. (eds), 0-

201-60734-4, Addisson-Wesley, 1995

[corba] The Common Object Request Broker Architecture and Specification, OMG

Document number 92.12.1, Rev. 1.1, OMG, 1992

[corley] The Application of Intelligent and Mobile Agents to Network and Service

Management, Corley, S., Tesslaar, M., Cooley, J., Meinkohn, J.,

Malabocchia, P., Garijo, P., in [ISN98], ppl27-138, Springer-Verlag, May

1998

[covaci] Towards Harmonised Pan-European TMN Customer Care Solutions:

Interoperable Trouble Ticketting Management Service, Covaci, S., Dragan,

D., in [ISN97], pp255-262, Springer-Verlag, May 1997

[dahle] Method and Graphical Syntax for Computational Modelling, Dahle, E.,

Giganti, P.L., Proceeding of TINA95, Melbourne, Australia, pp577-590,

TINA, Peb 1995

[dassow] SNMP and TMN: Aspects of Migration and Integration, Dassow, H., Lehr,

G., in [ISN97], pp339-348, Springer-Verlag, May 1997

[davidson94] Service Provisioning in a Mulit-Provider Environment, Davidson, R.,

O’Brien, P., in [ISN94], pp259-271, Springer-Verlag, 1994

238

[davidson99a] A Practical Perspective on TMN Evolution, Davidson, R., Turner, T.,

in [ISN99], pp3-12, Springer-Verlag, Apr 1999

[davidson99b] A New Architecture for Open and Distributed Network Management,

Davison, R., Hardwicke, J., in [ISN99], pp23-38, Springer-Verlag, Apr 1999

[dede] OSAM Component Model, A key concept for the efficient design of future

telecommunication systems, Dede, A., Arsenis, S., Tosti, A., Lucidi, F.,

Westerga, R., in [ISN97], ppl27-136, Springer-Verlag, May 1997

[delafuente94] Management Architecture, v2.0, de la Fuente, L.A. (ed), TINA

Baseline Document, TB_GN.010_2.0_94, TINA-C, Dec 1994

[delafuente95] Application of the TINA-C Management Architecture, de la Fuente,

L.A., Kawanishi, M., Wakano, M., Walles, T., Aurrecoechea, C., in [IM95],

pp424-436, Chapman-Hall, 1995

[deri] Static vs. Dynamic CMIP/SNMP Network Management Using CORBA, Deri,

L., Ban, B., in [ISN97], pp329-337, Springer-Verlag, May 1997

[derrick] Formal Description Techniques for Object Management, Derrick, J.,

Linington, P.F., Thimpson, S.J., in [IM95], pp641-653, Chapman-Hall, 1995

[des403-B1011] WorldCom TMN Requirements Methodology Specification,

WorldCom Engineering Standards, DES 403.1, Issue 1.01, Mar 1998

[dezen97] Proposal for an IN Switching State Model in an Integrated IN/B-ISDN

Scenario, De Zen, G., Faglia, L., Hussmann, H., van der Vekens, A., in

[ISN97], ppl79-188, Springer-Verlag, May 1997

[dezen98] Accountable and Guaranteed Services in Internet, De Zen, G, Marsiglia,

M., Ricagni, G., Vezzoli, L., in [ISN98], pp31-42, Springer-Verlag, May

1998

[dobson] The ORDIT Approach to Organisational Requirements, Dobson, I.E.,

Blyth, A.J.C., Chudg, J., Strens, R., Requirements Engineering: Social and

Technical Issues, Academic Press, 1994

239

[EDOC97] Proceedings of the 1st International Workshop on Enterprise Object

Distributed Computing,

[erdmann] Enterprise Modelling with FUNSOFT Nets, Erdmann, S., Wortmann, J.,

in [EDOC97], pp28-35, IEEE, 1997

[eriksson] The UML Toolkit, Eriksson, H., Penker, M., Wiley Computer Publishing,

1998

[etsi-na608] IN Intra Domain Management Requirements for CS-2, Draft TC-TR

NA608-01, version7, 8/7/94, ETSI, Jul 1994

[fenton] Software Metrics, Fenton, E., Pfleeger, S.L., International Thompson

Computer Press, 1997

[festor] MODE: A Development Environment for Managed Objects Based on

Formal Methods, Festor, O., in [IM95], pp616-628, Chapman-Hall, 1995

[fink] Management Application Creation with DML, Fink, B., Dereks, H., Besting,

P., in [IM95], pp629-640, Chapman-Hall, 1995

[fowler] UML Distilled - Applying the Standard Object Modeling Language, Fowler,

M., Scott, K., 0-201-32563-2, Addison-Wesley, 1997

[furley] The BT operational support systems architecture, Furley, N., BT Technical

Journal, vol. 15, No 1, January 1997, ppl3-21, BT, 1997

[gagnon] A Security Architecture for TMN Inter-Domain Management, Gagnon, F.,

Maillot, D., Olnes, J., Hofseth, L., Sacks, L., in [ISN97], pp415-427,

Springer-Verlag, May 1997

[galis] Towards Integrated Network Management for ATM and SDH Networks

Supporting a Global Broadband Connectivity Management Service, Galis,

A., Brianza, C., Leone, C., Salvatori, C., Gantenbein, D., Covaci, S.,

Mykoniatis, G., Karayannis, F., in [ISN97], pp303-314, Springer-Verlag,

May 1997

240

[gamma] Design Patterns: Elements of Reusable Object-Oriented Software, Gamma,

E., Helm, R., Johnson, P., Vlissides, J., Addison-Wesley, 1995

[gaspoz] VPN on DCE: From Reference Configuration to Implementation, Gaspoz,

J.P., Gbaguidi, C., Meinkohn, J., in [ISN95], pp249-260, Springer-Verlag,

Oct 1995

[georgatsos] Technology Interoperation in ATM Networks: The REFORM System,

Georgatsos, P., Makris, D., Griffin, D., Pavlou, G., Sartzetakis, S., T ’Joens,

Y., Ranc, D., IEEE Communications Magazine, vol. 37, no. 5, May 1999

[graham] Object Oriented Methods, Graham, I., 0-201-59371-8, Addison-Wesley,

1994

[graubmann] Engineering Modelling Concepts (DPE Architecture), Graubmann, P.,

Mercouroff, N.„ TINA Baseline Document TB_NA.005_2.0_94, TINA,

1994

[griffin95] A TMN System for VPC and Routing Management in ATM Networks,

Griffin, D.P., Georgatsos, P., in [IM95], pp356-369, Chapman-Hall, 1995

[griffin96] Integrated Communications Management of Broadband Networks,

Griffin, D. (ed), 960-524-006-8, Crete University Press, 1996

[griffin97] Implementing TMN-like Management Services in a TINA Compliant

Architecture: A Case Study of Resource Configuration Management, Griffin,

D., Pavlou, G., Tin, T., in [ISN97], pp263-274, Springer-Verlag, May 1997

[hall96] Management of Telecommunication Systems and Services: Modelling and

Implementing TMN-based Multi-domain Management, Hall, J. (Ed), Lecture

Notes in Computer Science 1116, Springer-Verlag, 1996

[hall98] Protocol Independent Information Modelling for a Peer-to-peer

Configuration Interface, Hall, J., Best, M., Ferry, R., Fratini, S., Hunt, C., in

[ISN98], pp193-204, Springer-Verlag, May 1998

[hegering] Integrated Network and System Management, Hegering, H.G., Abeck, S.,

0-201-59377-7, Addison-Wesley, 1994

241

[hellemans99] Accounting Management in a TD^A-Based Service and Network

Environment, Hellemans, P., Redmond, C., Daenen, K., Lewis, D., in

[ISN99], ppl3-24, Springer-Verlag, Apr 1999

[herzog] From IN towards TINA - Potential Migration Steps, Herzog, U., Magedanz,

T., in [ISN97], pp219-228, Springer-Verlag, May 1997

[hruby] Structuring Design Deliverable with UML, Hruby, P., in [UML98], pp251-

260, OMG, Jun 1998

[ieee829] IEEE Standard for Software Test Documentation, lEE Standard 829,1983

[IM95] Integrated Network Management IV: Proceedings of the 4th International

Conference on Integrated Network Management, Santa Barbara, USA,

Chapman-Hall, 1995

[IM97] Integrated Network Management V: Proceedings of the 5th IFIP/IEEE

International Symposium on Integrated Network Management, San Diego,

USA, San Diego, USA, Chapman-Hall, 1997

[ISN94] Proceedings of the 2nd International Conference on Intelligence in Services

and Networks, Aachen, Germany, Springer-Verlag, 1994

[ISN95] Proceedings of the 3rd International Conference on Intelligence in Services

and Networks, Heraklion, Greece, Springer-Verlag, 1995

[ISN97] Proceedings of the 4th International Conference on Intelligence in Services

and Networks, Cemobbio, Italy, Springer-Verlag, 1997

[ISN98] Proceedings of the 5th International Conference on Intelligence in Services

and Networks, Antwerp, Belgium, Springer-Verlag, 1998

[ISN99] Proceedings of the 6th International Conference on Intelligence in Services

and Networks, Barcelona, Spain, Springer-Verlag, 1999

[itu-odl] ITU - Object Definition Language (ITU-QDL), ITU-T, Jan 1998

[Jacobsen92] Object-Oriented Software Engineering, Jacobsen, L, Chisterson, M.,

Jonsson, P., Overgaard, G., 0-201-54435-0, Addison-Wesley, 1992

242

[jacobsen97] Software Reuse - Architecture, Process and Organisation for Business

Success, Jacobsen, L, Griss, M., Jonsson, P., 0-201-92476-5, Addison-

Wesley, 1997

[kande] Applying UML to Design an Intrer-Domain Service Management

Application, Kande, M.M., Mazahaer, S., Prajat, O., Sacks, L., Wittig, M., in

[UML98], ppl73-182, OMG, Jun 1998

[karlsson] Software Reuse: A Holistic Approach, Karlsson, E.A., 0=471-95819-0,

Wiley, 1996

[keil] The Mobilise enterprise model: foundation and application, Keil, K., Niebert,

N., Kugler, H.J., Proceeding of the RACE IS&N Conference, 1992

[kindel] COM: What Makes It Work - Black Box Encapsulation through Multiple,

Immutable Interface, Kindel, C., in [EDOC97], pp68-77, IEEE, 1997

[kitson] CORBA and TINA: The Architectural Relatioship, Kitson, B., Proceeding

of TINA’95, Melbourne, Australia, pp371-386, TINA-C, Feb 1995

[kivisto] Considerations of and Suggestions for a UML-Specific Process Model,

Kivisto, K., in [UML98], pp261-271, OMG, Jun 1998

[korthaus] BOOSTER* Process: A Software Development Process Model

Integrating Business Object Technology and UML, Korthaus, A., Kuhlins, S.,

in [UML98], pp205-214, OMG, Jun 1998

[leakey] Some technical aspects of regulation, Leakey, D., Telecommunications, 26-

29 March 1995, Conference Publication No. 404, pp278-281, lEE, 1995

[lewis94] A Broadband Testbed for the Investigation of Multimedia Services and

Teleservice Management, Lewis, D., Kirstein, P., Proceedings of the 3rd

International Conference on Broadband Islands, Hamburg, Germany, April

1994

[lewis95a] Experiences in Multi-Domain Management System Development, Lewis,

D., O’Connell, S., Donnelly, W., Bj erring, L., in [IM95], pp494-505,

Chapman-Hall, 1995

243

[Iewis95b] Experiences in Multi-Domain Management Service Development, Lewis,

D., Tiropanis, T., Bj erring, L.H., Hall, J., in [ISN95], ppl74-184, Springer-

Verlag, Oct 1995

[lewis97] Inter-Domain Integration of Services and Service Management, Lewis, D.,

Tiropanis, T., Redmond, C., Wade, V., McEwan, A., Bracht, R., in [ISN97],

pp283-292, Springer-Verlag, May 1997

[lewis98a] Integrating TINA into an Internet-Based Service Market, Lewis, D.,

Tiropanis, T., in [ISN98], ppl85-192, Springer-Verlag, May 1998

[lewis99a] A Development Framework for Open Management Systems, Lewis, D.,

Journal of Interoprable Communication Networks, vol. 2/1, pp 11-30, Mar

1999

[lewis99b] Modelling Management Components for Reuse Using UML, Lewis, D.,

Malbon, C., DaCruz, A., in [ISN99], pp210-222, Springer-Verlag, Apr 1999

[lewis99c] A Review of Approaches to Developing Service Management Systems,

Lewis, D., to appear in Journal of Systems and Network Management, 1999

[lewis99d] The Development of Integrated Inter and Intra Domain Management

Services, Lewis, D., Wade, V., Bracht, R., Integrated Network Management

VI: Proceedings of the Sixth IFIP/IEEE International Symposium on

Integrated Network Management, Boston, USA, pp279-292, Addison-

Wesley, May 1999

[lewis99e] The Component-based Integration of Customer Subscription

Management with Network Planning and Network Provisioning, Lewis, D.,

Palou, G., Malbon, C., Stathopoulos, C., Villoldo, J.E., to be published in the

proceedings of Proceedings of the 10th IFIP/IEEE International Workshop on

Distrubted Systems Operations and Management, 1999

[lodge] Alignment of the TOSCA and SCREEN Approaches to Service Creation,

Lodge, F., Kimbler, K., Hubert, M., in [ISN99], pp277-290, Springer-Verlag,

Apr 1999

244

[lucidi] Development of TINA-like Systems; The DOLMAN Methodology, Lucidi,

F., Idzenga, H., Batistatos, S., in [ISN98], pp379-392, Springer-Verlag, May

1998

[m3000] Overview of TMN Recommendations, ITU-T Recommendation M.3000,

1995

[m3010] Principles for a Telecommunications Management Network, ITU-T

Recommendation M .3010,1996

[m301x] Definitions of Principles and Concepts for a Telecommunications

Management Network, ITU-T Draft Recommendation M.301x, Jun 1997

[m301y] Considerations for a Telecommunications Management Network, ITU-T

Draft Recommendation M.301y, Aug 1996

[m3020-95] TMN Interface Specification Methodology, ITU-T Recommendation

M.3020, 1995

[m3020-99] TMN Interface Specification Methodology, ITU-T Draft

Recommendation M.3020 Revision, Jul 1999

[m3100] Generic Network Information Model, ITU-T Recommendation M.3100,

1992

[m3200] TMN Management Services: Overview, ITU-T Recommendation M3200,

1992

[m3400] TMN Management Functions, ITU-T Recommendation M.3400, 1997

[magedanz] Modeling IN-based service control capabilities as part of TMN-based

service management, Magedanz, T., in [IM95], pp387-397, Chapman-Hall,

1995

[marcus] Icaros, Alice and the OSF DME, Marcus, J.S., in [IM95], pp83-92,

Chapman-Hall, 1995

245

[martin] Adopting Object Oriented Analysis for Telecommunications Systems

Development, Martin, D., in [ISN97], ppl 17-128, Springer-Verlag, May

1997

[maston] Using the World Wide Web and Java for Network Service Management,

Maston, M.C., in [IM97], pp71-84, Chapman-Hall, 1997

[may] The Relationship Between lOs and COs in VPN Charging Management, May,

J., Maia, A., in [ISN95], ppl85-199, Springer-Verlag, Oct 1995

[mccarthy] Exploiting the Power of OSI Management for the Control of SNMP

Capable Resources Using Generic Application Level Gateways, McCarthy,

K., Pavlou, G., Bhatti, S., Neuman do Souza, J., in [IM95], pp440-453,

Chapman-Hall, 1995

[mcleod] Extending UML for Enterprise and Business Process Modelling, McLeod,

G , in [UML98], ppl95-204, OMG, Jun 1998

[mercouroff95] TINA Object Definition Language (TINA-ODL) Manual,

Mercouroff, N., Kitson, B. (eds), TINA Baseline Document,

TR_NM.002_1.3_95, TINA-C, Jun 1994

[mercouroff97] TINA Computational Modelling Concepts and Object Definition

Language, Mercouroff, N., Parhar, A., in [ISN97], ppl5-24, Springer-Verlag,

May 1997

[meszaros] Distributed Objects in Telecommunications, Meszaro, G., in [EDOC97],

ppl49-159, IEEE, 1997

[milsted] OMT Object Modelling of Telecommunications Services, Milsted, K., in

[ISN95], pp369-379, Springer-Verlag, Oct 1995

[monton] Maintaining Integrity in the Context of Intelligent Networks and Services,

Monton, V., Ward, K., Wilby, M., in [ISN97], pp427-436, Springer-Verlag,

May 1997

[morris] An SDL based Realisation of an IN Service Development Environment,

Morris, C., Nelso, J., in [ISN95], pp292-308, Springer-Verlag, Oct 1995

246

[mowbray] CORBA Design Patterns, Mowbray, T., Malveau, R., 0-471-15882-8,

Wiley Computer Publishing, 1997

[mulder] TINA Business Model and Reference Points, v4.0, Mulder, H. (ed), TINA

baseline document, TINA-C, May 1997

[natarajan] Computational Modelling Concepts, Natarajan, N., Dupuy, P., Singer,

N., Christensen, H., TINA Baseline Document, TB_A2.HC.012_1.2_94,

TINA, 1994

[nesbitt] The EURESCOM P610 Project: Providing a Framework, Architecture and

Methodology for Multimedia Service Management, Nesbitt, P., Counihan,

T., Hickie, J., in [ISN98], pp73-88, Springer-Verlag, May 1998

[nielsen] Development of Telecommunications Management Systems Using GO

Methods and CASE Tool Support, Nielsen, P.S., Lonvig, B., in [ISN94],

pp407-418, Springer-Verlag, Sep 1994

[nmf-025] The "Ensemble" Concept and Format, NMP 025, Issue 1.0, NMP,

Morristown, 1992

[nmf-504] SMART Ordering - SP to SP Interface Business Agreement, NMP 504,

Issue 1.0, TMF, Sep 1997

[nmf-gb901] A Service Management Business Process Model, GB901, NMP,

Morristown, 1995

[nmf-gb908] A Network Management Detailed Operations Map, NMP, Morristown,

1998

[nmf-gb909] SMART TMN Technology Integration Map, GB 909, Issues 1.1, TMF,

Oct 1998

[nmf-gb910] NMP Telecoms Operation Map: A high-level view of end-to-end

service fulfilment, service assurance and billing, NMP, Morristown, 1998

247

[noam] Beyond liberalisation: From the network of networks to the systems of

systems, Noam, E., Telecommunications Policy, vl8(4), pp286-294,

Butterworth-Heinemann, 1994

[olsen95] Using SDL for Targeting Service to CORBA, Olsen, A., Norbaek, B.B., in

[ISN95], pp334-346, Springer-Verlag, Oct 1995

[olsen99] The Pros and Cons of Using SDL for Creation of Distributed Services,

Olsen, A., Demany, D., Cardoso, E., Lodge, F., Kolberg, M., Bjorkander, M.,

Sinnott, R., in [ISN99], pp342-354, Springer-Verlag, Apr 1999

[oma-cos] Common Object Services, vol. 1 and 2, OMG, 1995

[omg/96-01-04] Multiple Interfaces and Composition RFP, OMG, Jan 1996

[oppenheim] Questionnaire Design, Interviewing and Attitude Measurement,

Oppenhiem, A.N., 1-85567-0437, Pinter Publishers, 1992

[orbos/99-02-05] CORBA Components: Joint Revised Submission, OMG TC

Document orbos/99-02-05. Mar 1999

[orbos/99-04-11] CORBA Management: ORB Instrumentation, vl.O, orbos/99-04-

11, OMG, Apr 1999

[orfali] Client/Server Programming with Java and CORBA, 2nd ed, Orfli, R.,

Harkey, D., 0-471-24578-X, Wiley Computer Publishing, 1998

[p414-d2] Project P414, TMN Guidelines,: Deliverable 2, TMN Design Case Study

Report - Overview, EURESCOM, Jul 1996

[p414-d3] Project P414, TMN Guidelines,: Deliverable 3, TMN Guidelines,

EURESCOM, Aug 1996

[p610-dl] Report of state of the art on current activities on management framework,

methodologies and case study service selection criteria for management of

multimedia service, Ferrari, L., EURESCOM, Feb 1997

[p610-d2] Management Framework and Methodology, de la Fuente, L., Gallego, J.,

Llamas, P. (eds), EURESCOM, 1997

248

[pavlou94] High-Level Access APIs in the OSIMIS TMN Platform: Harnessing and

Hiding, Pavlou, G., Tin, T., Carr, A., in [ISN94], ppl81-191, Springer-

Verlag, 1994

[pavlou95a] Issues in the integration of EN and TMN, Pavlou, G., Griffin, D.,

Bringing Telecommunication Services to the People, Proceedings of the 3rd

International conference on Intelligence in Broadband Services and

Networks, Springer-Verlag, 1995

[pavlou95b] The OSIMIS Platform: Making OSI Management Simple, Pavlou, G.,

McCarthy, K., Bhatti, S., Knight, G., in [IM95], pp480-493, Chapman-Hall,

1995

[pope] The CORBA Reference Guide, Pope, A., 0-201-63386-8, Addison-Wesley,

1998

[potonniee] Implementing TMN using CORBA Object Distribution, Potoniee, O.,

Hauw, L.H., Ranc, D., Bardout, Y., Canela, Z., Proceedings of the

International Conference on Management of Multimedia Networks and

Services, Montreal, Canada, pp83-94, Chapman-Hall, 1997

[prnjat] Integrity Methodology for Interoperability Environments, Prnjay, O., Sacks,

L., IEEE Communications Magazine, vol. 37, no. 5, ppl26-132,1999

[putter] Towards Policy Driven Systems Management, Putte, P., Bishop, J., Roos, J.,

in [IM95], pp69-80, Chapman-Hall, 1995

[ql200] Q-series Intelligent Network Recommendation Structure, ITU-T

Recommendation Q .1200,1993

[rahkila] Experiences on Building Distributed Computing Platform Prototype for

Telecom Network and Service Management, Rahkila, S., Stenberg, S., in

[IM97], ppl27-138, Chapman-Hall, May 1997

[rasmussen] A CORBA to CMEP Gateway: A Marriage of Management

Technologies, Rasmussen, S., Baumer, C., in [ISN98], pp477-492, Springer-

Verlag, May 1998

249

[rumbaugh] Object-Oriented Modelling and Design, Rumbaugh, J., Blaha, W.,

Premerlani, W., Eddy, F., Lorensen, W., 0-13-630054-5, Prentice-Hall, 1991

[salleros] TINA-C Service Design Guidelines, Salleros, J., TINA Report

TP_JS_001_0.1_95, TINA, 1995

[saydam] Object-Oriented Design of a VPN Bandwidth Management System,

Saydam, T., Gaspoz, J.P., in [IM95], pp344-355, Chapman-Hall, 1995

[schieferdecker] Conformance Testing of TINA Service Components - The

TTCN/CORBA Gateway, Schieferdcker, I., Li, M., Hoffmann, A., in

[ISN98], pp393-408, Springer-Verlag, May 1998

[schoo] Modularization of TINA Reference Points for Information Networking,

Schoo, P., Egelhaaf, C., Eckardt, T., Agoulmine, N,, Tschichholz, M., in

[ISN99], pp443-445, Springer-Verlag, Apr 1999

[Shrewsbury] Part II: Technology Direction Statement - Building Block

Requirements, Shrewsbury, K. (ed), TMF, 1998

[sloman] Domains: A Framework for Structuring Management Policy, Sloman, M.,

Twidle, K., Network and Distributed Systems Management, pp433-453,

Addison-Wesley, 1994

[soukouti] Join Inter Domain Management: CORBA, CMIP and SNMP, Soukouti,

N., Hollberg, U., in [IM97], ppl53-164, Chapman-Hall, May 1997

[stallings] SNMP, SNMPv2 and CMIP: The Practical Guide to Network

Management Standards, Stallings, W., 0-201-63331-0, Addison-Wesley,

1993

[stathopoulos] Handling the Distribution of Information in the TMN, Stathopoulos,

C., Griffin, D., Sartzetakis, S., in [IM95], pp398-411, Chapman-Hall, 1995

[strens] Responsibility Modelling as a Technique for Organisational Requirements

Definition, Strens, R., Dobson, J., Intelligent Systems Engineering, vol. 3,

no. 1, pp20-26, 1994

250

[strick94] Specifying Pan-European Management Systems, Strick, L., Meinkohm, J.,

in [ISN94], pp467-478, Springer-Verlag, Sep 1994

[strick96] Development of EBC Service Management Services, Strick, L., Wittig, M.,

Paschke, S., Meinkohn, J., Proceedings of the IFIP/IEEE Network Operations

Management Symposium, ppKyoto, Japan, Apr 1996

[stringer] CORBA-based Telecommunication Network Management Systems,

Stringer, D., Rutt, T. (eds), OMG White Paper, May 1996

[sullivan] A Comparison of the PRISM and ONMI-Point Methodologies for the

Specification of Management Systems, Sullivan, D., McLaughlin, P., in

[ISN94], pp553-563, Springer-Verlag, 1994

[tina-nra] TINA Network Resource Architecture, v3.0, TINA Baseline Document

TB_FS.001_3.0_97, TINA-C, 1997

[tiropanis97] A Service Engineering Approach to Inter-Domain TMN System

Developer, Tiropanis, T., Lewis, D., Richter, A., Shi, R., in [IM97], ppl65-

177, Chapman-Hall, May 1997

[tiropanis98] Offering Role Mobility in a TINA Environment, Tiropanis, T., in

[ISN98], pp89-100, Springer-Verlag, May 1998

[UML98] Proceedings of UML98 Conference, Mulhouse, France, OMG, 1998

[valiant] Review of software tools and methods used in operational support systems

developments. Valiant, S.C., BT Technical Journal, vol. 15, No 1, January

1997, ppl47-150, BT, 1997

[varley] User Administration and Accounting, Varley, B., Network and Distributed

Systems Management, pp381-402, Addison-Wesley, 1994

[vincent] Modeling/Design Methodology and Template, Draft 4, Vincent, A, Hall,

C., TMF, Oct 1997

[vlissides] Pattern Languages of Program Design 2, Vlissides, J., Coplien, J., Kerth,

N, 0-201-89527-7, Addisson-Wesley, 1996

251

[wade97] A Methodology for Developing Integrated Multi-domain Service

Management Systems, Wade, V., Lewis, D., Sheppard, M., Tschichholz, M.,

Hall, J., in [ISN97], pp245-244, Springer-Verlag, May 1997

[wade98] A Design Process for the Development of Multi-Domain Service

Management Systems, Wade, W., Lewis, D., Donnelly, W., Ranc, D.,

Karatzas, N., Guidelines for ATM Deployment and Interoperability, pp88-

103, Baltzer Science Publishers, 1998

[wade99] Three Keys to Developing and Integrating Telecommunications Service

Management Systems, Wade, V., Lewis, D., IEEE Communications

Magazine, vol. 37, no. 5, ppl40-146,1999

[wies] Using a Classification of Management Policies for Policy Specification and

Policy Transformation, Wies, R., in [IM95], pp44-56, Chapman-Hall, 1995

[x407] Message Handling Systems: Abstract Service Definition Conventions, ITU-T

Recommendation X.407/ ISO/IEC International Standard 10021-3,1998

[x700] Management framework for Open Systems Interconnection (OSI) for CCTTT

applications, CCTTT Recommendation X .700,1992

[x708] Information Technology - Open Systems Interconnection - Open Distributed

Management Architecture, TTU-T Draft Recommendation X.708, June 1996

[x711] Information Technology - Open Systems Interconnection - Common

Management Information Protocol Specification, ITU-T Recommendation

X.711 - ISO/IEC 10165-1, 1993

[x722] Information Technology - Open Systems Interconnection -Structure of

management information: Guidelines for the Definition of Managed Objects,

TTU-T Recommendation X.722, 1992

[x725] Information Technology- Open Systems Interconnection- Structure of

Management Information- Part 7: General Relationship Model, TTU-T

Recommendation X.725/ ISO/IEC Draft International Standard 10165-7,

ITU-T, 1994

252

[x734] Information Technology - Open Systems Interconnection -Systems

management: Event Report Management Function, ITU-T Recommendation

X.734, 1993

[x741] Information Technology - Open Systems Interconnection -Systems

management: Objects and Attributes for Access Control, TTU-T

Recommendation X.741, 1995

[x750] Information Technology - Open Systems Interconnection -Systems

management: Management Knowledge Management Function, TTU-T

Recommendation X.750, 1996

[x901] Open Distributed Processing- Reference Model: Part 1: Overview and Guide

to Use, TTU-T Recommendation X.901/ ISO/IEC International Standard

10746-1, 1995

[x902] Open Distributed Processing - Reference Model: Part 2: Foundations, TTU-T

Recommendation X.902/ ISO/IEC International Standard 10746-2,1995

[x903] Open Distributed Processing - Reference Model: Part 3: Architecture, TTU-T

Recommendation X.903/ ISO/IEC International Standard 10746-3,1995

[x904] Open Distributed Processing- Reference Mode: Part 4: Architectural

Semantics, TTU-T Draft Recommendation X.904/ISO Draft International

Standard 10746-4, 1994

[xml] Extensible Markup Language (XML) 1.0, W3C Recommendation: REC-xml-

19980210, World Wide Web Consortium, Feb 1998

[yavatkar] A Framework for Policy-based Admission Control, Yakatkar, R.,

Pendarakis, D., Guerin, R., draft-ietf-rap-framework-01.txt, IETF, May 1998

[zlOO] Specification and Description Language, TTU-T Recommendation Z.lOO,

Addendum 1, Oct 1996

[zeisler] A Framework for System and Network Management Ensembles, Zeisler,

E D., Folts, H.C., in [IM95], pp602-614, Chapman-Hall, 1995

253

[zelkowitz] Experimental Models for Validating Technology, Zelkowitz, M.,

Dolores, W., Computer, pp23-31, IEEE, May 1998

254

9. Appendix 1
This appendix summarises the results of the responses to the questionnaires

conducted on the developers involved in Case Studies 4 and 5. The responses

presented are those relating to the assessment of how useful the various techniques

were found to be measured on a scale of:

Essential =5, Mostly Useful =4, Generally Useful =3, Partially Useful =2, Not

Useful =1.

The responses to introductory, filter or personal information questions are not

presented. The mode response for each technique address in each question is given.

Though this not an ordinal scale the mean is also presented to give a further

indication of the spread of responses. In addition, if two adjacent values contained

the same mode total the mode is presented as the median of those two values. If the

mode was present in two unadjacent categories or in more then two categories then

no mode value is presented. For Case Study 3 questions were also asked in each

category in order to assess the problems encountered at each stage in development

due to concurrent or previous activity output. However, due to poor phrasing of the

question the results were confounded and are not presented here.

9.1 Case Study 4 Response Summary

9.1.1 Responses from Component Developers

Q2.3) Please indicate how useful the following parts of the analysis specification

were to you in the further development of the component. Please indicate the

usefulness to you of each part of the analysis specification during both the design

and implementation phases of your component.

255

Responses for design phase:

Q2.3 Usefulness for D es^

J L
1) Identification of stakeholders - 7

2) Statement of stakeholders responsibilities - 7

3) Identification ctf actors (both humans ttndsystems) - 6

4) Statement o f act ex’s responsibilities - 6

5) Identification of boundary of component - 5

6) kJentificatim cf use cases in UMl, use case diagrams - 5

7) Identification of interactions between use cases and

actors - 6

8) Description of use cases - 6

9) Description cf use case pre and post conditions - 5

10) A genera I description o f t he component’s requi rements -
6

Irre an

Im xfc

256

Responses for implementation phase:

Q13 Usefulness for Implemeitation

1) Identification ofstakeholders- 7

2) Statement of stakeholders responabilities - 7

3) identification of actors (both humans and systems) - 7

4) Statement o f actor k responsibilities - 7

5) Identification ofboundary d component - 5

6) Identification of use cases in UML use case diagrams - 6

7) Identification d interactions bet ween use cases and

actors - 7

8) Description d use cases - 7

9) Description d lbc case pre and post conditions - 6

10) A ^neral description o f the component’s requirements -
7

ümean

257

Q2.7) Please state how useful you found the parts of the design specifications that

you used. Please indicate the usefulness to you of each part of the design

specification during both the implementation and testing/integration phases of your

component.

Responses for implementation phase:

Q 2.7 Usefiiness for Im plem entation

1) Object d ass diagrams - 3

2) O bjed instance diagrams - 2

3) Object collaboration diagrams - 4

4) Sequence diagrams - 6

5) Object d ass behaviour descriptions - 4

6) ni(x:k diagrams of oomputational objects and interlaces - 4

7) Computational objed behaviour descriptions - 5

8) Information object behaviour descriptions - 4

9) IDL definitions - 6

10) GDMO definitions -1

11) Naming convention definitions - 6

12) Data structure content definitions - 6

13) A g;neral description of the componentk design - 6

m m m m

T

Hmean
#mode

0

258

Responses for testing/integration phases:

Q2.7 Useftilness for Integration and Test
X

1) Object class diagrams - 3

2) O q e d instance diagrams - 2

3) Object collaboration diagrams - 3

4) Sequence diagrams - 5

5) Object class behaviour descriptions - 3

6j Block diagrams cf computafional objects and interlaces - 4

7) Computational object behaviour desaipticns - 3

8) Information object behaviour descriptions - 2

9) ID L defin itim s-5

10)G D M O defin itkns-0

11) Naming convention definitions - 3

12) Data stmcture content definitions - 4

13) A general description of the oomponentk design - 4

□ mean

259

9.1.2 Responses from System Developers

Q3.I) Please state how useful you found the different parts of multi-domain

analysis specifications of the trials containing the systems you worked on. Please

indicate the usefulness to you of each part of the multi-domain analysis

specifications during both the design and implementation phases of your system.

Responses for design phase:

Q3.1 Useftilness for Design

1) Identification o f s tak eh o ld ers - 6

2) S ta tem ent of s takeho lders resp o n sib ilitie s - 6 ^

3) Id en tification of ac to rs (both h u m an s and system s) - 7

4) S ta tem en t o f a c to r’s resp o n sib ilities - 5

5) Iden tification of boundary o f system - 4

6) Identification o f use c ases - 7

7) Id en tification o f in te rac tio n s betw een use cases and
ac to rs - 5

8) D escrip tion of use c ases - 6

9) D escrip tion of use case pre and post co n d itio n s - 4

10) A g eneral descrip tion o f the system s requi r e m a its - 6

1 1) System s level sequence d iag ram s - 8

--- ------ ----

"T—r

ümean
0mode

260

Responses for implementation phase:

Q3.1 Usefulness for Implementation

I) Identification o f stakeho lders - 7

2) S tatem ent of stakeholders responsib ilities - 7

3) id en tification of actors (both hum ans and system s) - 8

4) S tatem ent o f a c to r’s responsib ilities - 6

5) Identification of boundary o f system - 5

6) Identification of use cases - 8

7) Identification of in teractions between use cases and

a c to rs - 6

8) D escription of use cases - 7

9) D escription o f use case pre and post conditions - 5

10) A general description o f the system s requ irem en ts - 7

11) System s level sequence d iag ram s - 9

_ _ _ !r

......!"--- - ____L ,
1 :: ■ j

ümean

261

Q3.3) Please state how useful you found the design specifications of other systems

with which your system had to inter-operate. Please indicate the usefulness to you of

each part of the design specification during the design, implementation and

testing/integration phases of your system.

Responses for design phase:

Q3.3 Useftilness for Desi^

1) Object d a s s d iag ram s - 5

2) O bject in stance d iag ram s - 3

3) Object co llaboration d iag ram s - 4

4) S eq u en ce d iag ram s - 5

5) Object class behav iour descrip tions - 2

6) B lock d iag ra m s o f com p, objects and in terfaces - 3

7) C o m p u ta tio n a l object behavicxir descrip tions - 2

8) In fo rm ation object behav iour descrip tions - 2

9) ID L defin itions - 7

10) G D M O défin it io n s -1

11) N am ing convention d rfin itio n s - 6

12) Data s tru c tu re c o n ten t defin itions - 6

13) A general descrip tion o f the co m p o n en t’s design - 7

....

''

□ mean

262

Responses for implementation phase:

Q33 Usefulness for Implementation

X . - , i:
1) Object class diagram s - 6

2) Ot^ect instance diagram s - 4

3)O l^ec t collaboration diagram s - 5

4) Sequence diagram s - 6

5) Oiyect class behaviour descriptions - 3

6) H ock diagram s o f comp, objects and interfaces - 4

7) C om putational object behaviour descriptions - 3

8) Inform ation object behaviour descriptions - 3

9) IDL definitions - 8

10) CiDMO definitions - 2

11) Nam ing convention definitions - 8

12) D ata structure content definitions - 8

13) A general description o f the com ponent’s design - 8

m 1 * M

ümean
Im txle

263

.........1

Responses for testing/integration phases:

Q0.3 Usefulness ft)r Integradm a id Testmg

1) Object d a s s d iagram s - 5

2) Object instance d iagram s - 4

3) Object collaboration d iagram s -5

4) Sequence d iagram s - 6

5) Object class behaviour d e s a ip tk ïis -3

6) Block di agram s d" comp, oljects and i nterfkces - 4

7) Q m p J a t io n a l object behaviour descriptioas - 3

8) inform ation object behaviour descriptions - 3

9) !D L d d ln it io n s - 7

10) G O M O d efin itio n s-1

11) N am ing convention definitions - 6

12) Data structu re content definitions - 6

13) A general description o f the com ponent’s design - 8

Imean
Im xle

264

Q3.6) Please indicate how useful the following parts of the components’ analysis

specifications were to you in the development of the system. Please indicate the

usefulness to you of each part of the components’ analysis specifications during both

the design and implementation phases of your system.

Responses for design phase:

Q 0.6 Useftilness for Des%m

J L
1) Identification o f stakeholders - 3

2) S tatem ent of s takeholders responsib ilities - 3

3) Identification actors (both hu m an s and system s) - 3

4) S tatem en t o f a c to r’s responsib ilities - 2

5) Identification o fb o u n d ary of com ponent - 2

6) Identification o f use cases - 4

7) Identification d" in teractions between use cases and

actors - 3

8) Description o f use cases - 3

9) D escription of use case pre and post œ n d itio n s - 2

10) A general description o f the a m p o n e n t ’s requirem ents -

3

ümean

265

Responses for implementation phase:

Q3.6 UseftMness for In^cmntation

1) Identification o f stakeholders -4

2) Statement of stakeholders responsibilities - 4

3) Identification of actors (both hum ans and systons) - 4

4) Statem ent o f a a o rk responsibilities - 3

5) Identification o f boundary of component - 3

6) Identification of iBC cases - 5

7) Identification of interactions between use cases and

actors - 4

8) I3escription c f use cases - 4

9) ITescription of te e case pre and post conditions - 3

10) A gpneral description o f the component’s requirements -
4

Ormtn
Im x le

266

Q3.8) Please indicate how useful did you find the parts of the components’ design

specifications you used? Please indicate the usefulness to you of each part of the

components’ design specifications during both the implementation and

testing/integration phases of the system.

Responses for implementation phase:

Q3.8 Usefulness for Im plem entation

1) O bject dass diagrams - 3

2) Object instance diagram s - 3

3) Object œ llabora titm diagram s - 3

4) Sequence diagram s - 4

5) O bject dass behaviour descrip tions - 3

6) B lock d iagram s o f com putational objects and interfaces - 3

7) C om puta tiona l object behaviour descrip tions - 3

8) ln f(T m a tion object behaviour descrip tions - 3

9) ID L de fin itions - 4

10) G D M O d e fin itions - 2

11) N am ing cm ve n tio n de fin itions - 4

12) Data structure content de fin itions - 3

13) A general descrip tion o f the com ponentk design - 4

□ m e a n

267

Responses for testing/integration phases:

Q3.8 Usefulness for Integration and Testing

X
I) Object class d iagrams - 3

2) Object instance diagrams - 3

3) Object œ lla b o ra tiin diagrams - 3 |

4) Sequence diagrams - 4 |

5) Object class behaviour descriptions - 3

6) 01 ock diagrams o f com putational objects and interfaces - 3 t

7) Com putational object behaviour descriptions - 3

8) InfiTm ation object behaviour descriptions - 3

9) ID L de fin itions - 4

10) G D M O defin itions - 4

11) Nam ing con w n tio n de fin itions - 4

12) Data structure content de fin itions - 3

13) A general description o f the componentk design - 4

□ m e a n

268

9.1.3 Responses from Sub-System Developers

Q4.1) Please state how useful you found the different parts of the analysis

specifications for components, systems or other sub system that interacted with

your sub-system. Please indicate the usefulness to you of each part of the analysis

specifications of other components and (sub)systems for both the design and

implementation of your sub-system.

Responses for design phase:

Q4.1 Usefulness for D esgn

J ________ i________ L
1) Identification o f stakeholders - 3

2) Statement of stakeholders responsibilities - 3

3) Identification of actors (both hum ans and systems) - 3

4) Statem ent o f acto r’s responsibilities - 4

5) Identification of boundary o f system - 3

6) Identification of use cases - 6

7) Identification of interactions between use cases and
actors - 4

8) Description of use cases - 6

9) Description of use case pre and post conditions - 3

10) A general description o f the system s requirem ents - 5

11) System s level sequence d iagram s - 5

üm ean

269

Responses for implementation phase:

Q4.1 Usefulness for Implementation

1) Identification of stakeholders - 2

2) Statement of stakeholders responsibilities - 2

3) Identification of actors (both humans and systems) - 2

4) Statement o f actor’s responsibllit ics - 3

5) Identification of boundary o f system - 2

6) Identification of use cases - 5

7) Identification of interactions between use cases and
actors - 3

8) Description of use cases - 5

9) Description of use case pre and post conditions - 2

10) A general description o f the systems requirements - 4

11) Systems level sequence diagrams - 4

Hmean

270

Q4.3) Please state how useful you found the design specifications for components,

systems or other sub systems with which your sub-system had to inter-operate.

Please indicate the usefulness to you of each part of the design specifications for the

design, implementation and testing/integration of your sub-system.

Responses for design phase:

Q4.3 Usefulness for Design

1) Object d a s s d iag ram s - 3

2) O bject instance d iagram s - 0

3) Object collaboration d iag ram s - 3

4) Sequence d iag ram s - 6

5) Object class behaviour descriptions - 2

6) Block d iagram s of com p, objects and interfaces -2

7) C om putational object behaviour descriptions - 3

8) Inform ation object tiehaviour descriptions -3

9) IDI. definitions - 7

10) GDM O drfin itions - 0

1 1) N am ing convention definitions -5

12) Data s tru c tu re con ten t definitions -5

13) A general description o f the com ponen t’s design - 6

m m um

MM"

^ m m um

■ m m ■ ï . v ï - ^ m

ü m e a n

271

Responses for implementation phase:

Q 43 Usefulness for Implementation

1) Object d a s s d iagram s - 3

2) Object instance d iagram s - 0

3) Object collaboration d iagram s -3

4) Sequence d iagram s - 6

5) Object class behaviour descriptions -2

6) BUxrk diagram s of comp, ot^ects and interfaces - 2

7) Com putational object behaviour descriptions -3

S) Information object behaviour descriptions -3

9) ID l. d rfin itions - 7

10) G D M O drfin itions - 0 |

11) Nam ing œ nven tion d rfin itions -5

12) Data structure con ten t definitions - 5

13) A general description o f the com ponent’s design - 6

W SSi f m S S m

ü m e a n

0 m o d e

272

Responses for testing/integration phases:

Q4.3 Useftilness for Integration and Testing

1) Object d a s s d iag ram s - 3

2) O bject instance d iag ram s - 0

3) Object collaboration d iag ram s - 3

4) Sequence d iagram s - 6

5) Object class behaviour descriptions - 2

6) Block d iag ram s of com p, objects and interfaces - 2

7) C om putational object behaviour descriptions -3

8) Inform ation object behaviour descriptions -3

9) IDL definitions - 6

10) GD M O d e fin itio n s - 0

11) N am ing convention definitions - 5

12) Data s tru c tu re con ten t definitions -5

13) A general description o f the com ponen t’s design - 6

_— i i . =

ü m e a n

273

Responses on Tools Use

Q5.2) If you answered yes to any of the CASE tools in Q5.1, please give your

opinion of how useful the CASE tool you used was for the following activities.

Q5.2 Useftilness of Paradigm Plus

1) D raw ing use case

diagram s - 3

2) D efin ing actors and
system boundaries - 2

3) D raw ing class d iag ram s -

3

4) D raw ing object instance

diagram s - 2

5) D raw ing object instance
coiiabOTation d iag ram s - 3

6) D raw ing sequence

tm s - 2

7) D raw ing com ponent
d iag ram s - 2

8) D raw ing com putational

objects and interfaces - 2

9) D efining IDL d efin itions -

3

10) D efining G D M O
definitions - 0

11) G enerating source code -
3

r 5 j # # ' !

.

1— 7 - - - - - - - - - - - r "

Umean

274

Q5.2 Usetulness of R ational Rose

1) D raw ing use case
d iag ram s - 4

2) D efin ing acto rs and
system boundaries - 2

3) D raw ing class d iag ram s -
3

4) D raw ing object instance
diagram s - 3

5) D raw ing object instance
collaboration d iagram s - 4

6) D raw ing sequence
diagram s - 4

7) D raw ing com ponent
d iag ram s - 2

8) D raw ing com putational
objects and interfaces - 3

9) D efining IDL d efin itions -
1

10) D efining G D M O
definitions - 0

11) G enerating source code - «g::

Hm ean

275

9.2 Case Study 5 Response Summary

9.2.1 Responses from Requirements Analysts

Q2.2) How useful did you find the following business process modelling

constructs in analysing the business process requirements?

Q22 U sefulness o f Business Process M odelling

Identification of business stakeholders (i.e. organisational
domains) - 6

Identification of the business rd e s played by stakeholders - 6

Identification of the responsibilities between business roles - 6

Business situation level use cases (i.e, use cases for the whole
trial business system) - 6

Decomposition of trial business system use eases by business
stakeholder - 6

The identification ttf where TINA Reference Points could operate
between business stakeholders - 4

The identification of thcTM Forum TeleOp Map processes
involved in the use cases - 6

The identification of process interactions between the TM Fomm
TclcOps Map processes in w ived in the use cases - 6

The use of sequence diagrams to show the interactions between
different functional blocks or business processes - 6

The use of activity diagrams to show the interactions between
different activities within business processes - 6

ü mean

^modc

276

9.2.2 Responses from Component Developers

Q3.2) How useful did you find the following facade use case modelling constructs

when documenting the facade analysis model for your component?

Identification o f business stakeholders (i.e. organisational

dom ains) - 6

Identification of the business roles played by stakeholders - 6

Identification o f the responsibilities between business roles - 6

Business situation level use cases (i.e. use cases for the whole
trial business system) - 6

l)conmposition of trial business system use cases by business
stakeholder - 6

The identification cf where TINA Reference Points could operate

between business stakeholdeis - 4

The identification of the TM Forum TeleO p Map processes
involved in the use cases - 6

'Ibe identification of process interactions between the TM Fom m

I'eleOps Map processes involved in the use cases - 6

The use o f sequence diag-ams to show the interactions between

different functional blocks or business processes - 6

The use of activity d iag am s to show the interactions between
different activities within business processes - 6

Q22 Usefulness of Business Process Modelling

^ ■ 1 1

I mean

I mode

277

Q3.3) How useful did you find the following facade use case modelling constructs

when documenting the facade design model for your component?

Q3L3 Usefulness of Façade Use Case Modd for Façade Design

D efin ition o f the œ m p o n a i t

b o u n d ary b y th e

ident ificatio n o f e x te rn a l

ac to rs - 7

O utline tex t d esc r ip tio n of

a c to rs ’ ro le s - 7

Use C ase p r o a n d post

co n d itio n s - 7

Use case d e sc r ip tio n s - 7

U M L use case d ia g ra m s

sh o w in g u se cases , th e ir

in te r-re la tio n sh ip s (ex ten d s

and u se s) and th e ir

in te rac tio n s w ith a c to rs - 6
 I

@mcan

278

Q3.4) How useful did you find the following facade analysis modelling constructs

when documenting the facade design model for your component?

Q3.4 Usefulness of Façade Analysis Model for Façade Design

Per use case analysis otgect

d iagram s show ing boundary,
entity and control objects and
their static relationships - 9

P ct com ponent analysis

o iy ea d iagram s showing
relationships between entity

oiyects - 9

Per com ponent analysis

abject diagram s show ing the
relationship between actors,
boundary, control and entity

objects - 9

Sequence diagram s showing

the interactions between
actors, boundary, cont rol and

entity objects -1 0

Collaboration d iagram s

show ing the interactions
between actors, boundary,

control and entity objects - 9

0mean

279

9.2.3 Responses from Trial Business System Developers

Q4.2) How useful did you find the following business process modelling

constructs when designing the trial business system model?

Q42 Usefulness Business Process IVbdelling for Designing Systems

Idaitificalion of business stakelwldeis (i.e. organisational

dcmains) - 9

Identification of the business roles played by stakeholders 9

Identification of the responsibilities between business roles - 8

Business situation level use cases (i.e. use cases for the whole
trial business system) - 9

ffcarmposition o f trial lousiness system use cases by business
stakeholder - 9

The identification d w h a e ITNA Reference ftrints axild operate

between business stakeholders - 8

Ihe identification of the I’M Fomm TeleOp Map processes
involved in the use cases - 8

Ihe identification of pnacess interactions between the I’M Fomm

TcleOps Map processes involved in the use cases - 7

Ih e use o f sequence diag-arrs to show the interactions between

different fundional blocks or business processes -1 0

The use of activity d iagam s to show the interactions between
different activities within business processes -8

« 0 # # # # # # #

m
I mean

I mode

280

Q4.3) How useful did you find the following facade model constructs when

designing the trial business system model?

- by the identification of external actor
9

Use Case pre-and post conditions - 9

: cases, their inter-relationships (extends
teractions with actors - 8

TO showing relationships between entity
,ls-10

Î interactions between actors, boundary,
1 entity objects - 11

'interfacesexported by a component -10

if the information held by component - 9

the interactions between external actors,
id internal data - 8

n of component interfaces using IDL - 8

I mean

281

Q4.6) How useful did you find the following facade model constructs when

modifying components for reuse in the trial business system?

CkÉnümifdrœrTpTErt tnjniiytylheidtrdtcaiTioteAo ̂ ^
4

LfcQsepc'andptst anliticre -4

LM^'caædagarrBsiïWiç lœcaœs, thar irttnU3dcreHp;(04mck
and iBEs) andthâr irtoulinrewii atljs - 3

ft-a n p ro t aml^asdjeU ciagrans diwingniitbnhipb lïlwœnulily
cbjeds-5

Sbqimrdagam;shwrgtheirtüaakTf;lPveenaclon> hxrdiy, a r ta i
andalitydials-5

k ir i lx iÉ m c f th e d f f i iu l i t lc rÉ iœ o p i to d b y a a T rp ra t -5

kfcrtifitaimctf dtflkxLstriïlucofth; i rianaim hdd tyarrp a trt - 4

GÆahiatkind tgarrsslTwii]g (he irtaaUixthlvccnc4ümal acto^

irtfffàœsandirtiral dka-4

CtfiritiondaTnpcnit irtaikxs iKiig lEL- 5

mi#:;##

mig: :
Irrcan

I m ods

0 1

282

Q4.8) How useful did you find the following system modelling contructs when

designing your Trial business System

Q 4 ^ Usefulness for System Design

C o m p o n e n t d ia g r a m s

sh o w in g w h ic h c o m p o n e n ts

u se th e in te r fa c e s o f w h ic h

o th e r c o m p o n e n ts - 9

S e q u e n c e d ia g r a m s s h o w in g
h o w c o m p o n e n ts d y n a m ic a lly

u se e a c h o th e r ’s in te r fa c e s -

10

C o lla b o ra tio n d ia g r a m s sh o w

ho w c o m p o n e n ts d y n a m ic a lly
use e a c h o t h e r ’s in te r fa c e s - 8

i
Hmean

^ mode

283

9.2.4 Responses on Tools

Q5.2) Please give your opinion of how useful the CASE tool you used was for the

following activities.

Q5.3 Usefulness of Rational Rose

D raw ing use c a se d iag ram s -

5

D efin ing ac to rs and system
b o u n d arie s - 5

D raw ing c lass d iag ram s - 5

D ra w in g object in stan ce

d iag ra m s - 4

D raw in g o b jec t in stan ce
co llab o ra tio n d iag ram s - 4

D ra w in g se q u en ce d iag ram s

- 5

D ra w in g com ponen t
d iag ra m s - 4

D raw ing co m p u ta tio n a l
objects and in te rfaces - 5

D efin in g ID L d e fin itio n s - 4

D efin in g G D M O defin itions
-0

G en era tin g source code - 2

U m ean

284

Q5.2 Usefiilness of using Paradigm Phis

D raw in g use c a se d iag ra m s -

6

D efin in g a c to rs an d system
b o u n d arie s - 6

D ra w in g c la ss d ia g ra m s - 6

D ra w in g o b jec t in s ta n c e

d ia g ra m s - 3

D ra w in g ob jec t in s ta n c e
c o lla b o ra tio n d ia g ra m s - 2

D ra w in g se q u en c e d iag ra m s

-6

D raw i ng co m p o n en t

d ia g ra m s - 4

D raw in g co m p u ta tio n a l

o b jec ts and in te rfa c e s - 3

D efin in g ID L d e fin i tio n s - 3

D efin in g G D M O d e fin itio n s
- 1

G e n e ra tin g so u rce co d e - 1

....................
........... ;.................................

m e a n

m o d e

285

