A Framework for the Development of
Service Management Systems for the Open
Service Market

by

David Edward Lewis
Department of Computer Science
University College London
A Thesis for the Degree of Doctor of Philosophy

Supervisor: Graham Knight

Date: 1% March 2000

ProQuest Number: U644002

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest U644002
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

An open market in telecommunication services requires standard management
interfaces to ensure interoperability between the operational support systems of the
increasing number of market players generated by liberalisation. In addition,
increased competition between these players heightens the needs for the rapid, cost-
effective development of telecommunication management systems. Service
Management bridges the gap between the network management activities of a
service provider and its customer care activities and overall business aims. Systems
implementing service management functions, therefore, must be well integrated with
other service and management systems in the same and different administrative
domains. However, service management suffers from a lack of standards for suitable
architectures and technologies, as well as being exposed to the varied and volatile
requirement imposed by a highly competitive and fluid services market. A common
Development Framework for Service Management Systems (SMS) therefore needs
to accommodate a range of architectures and technologies. The main benefit of a
common development framework, therefore, may be in the development of a
common development methodology. For a common methodology to be usefully and
widely applied it must support the requirements of the main stakeholders in service
management system development, namely SMS developers, the vendors of
commercial off-the-shelf software these systems may use and the developers of the

interface standards to which they may conform.

This thesis evaluates a variety of techniques for their suitability for a common
development methodology that address the interactions and commonalities between
development processes within the different stakeholder types. The techniques
evaluated include those suggested in existing TMN recommendations, those using
Open Distributed Process principles and those from existing general-purpose object-
oriented analysis and design methodologies. The evaluation is based both on a
review of the previous application of these techniques to management system

development and to their application in a series of SMS development case studies in

which the author was involved. Some of the latter case studies introduced a level of

empirical evaluation absent from previous studies

The result of the evaluations is the validation of specific techniques, namely, Use
Cases, the Unified Modelling Language, the Analysis Modelling and Component
Facades concepts developed originally by Ivar Jacobsen and the integration of
Business Process and Role Modelling techniques during requirements analysis. A
common methodology is described in terms of UML meta-models for integrated
Business Requirements Modelling and a specialisation of the facade construct,
termed a Projection. These are presented with examples and descriptions of how they
may apply to the development processes of the different stakeholders. In addition,

compatible, but loosely prescribed architectural guidelines are provided.

Acknowledgements

This thesis would not have been possible without the help, support and inspiration of
a great many people. Firstly I would like to thank Graham Knight, my supervisor, for
his patient guidance and good advice throughout the course of this project. I would
also like to thank my second supervisor, Wolfgang Emmerich, and Jon Crowcroft
who acted as my second supervisor for the first years of this work and who was a
constant source of useful advice on the process of performing research. I would also
like to thank George Pavlou, David Griffin and Saleem Bhatti, who together with
Graham formed the core of a highly knowledgeable, world class telecommunications
management research group at UCL, which provided an enormously stimulating

environment for my research.

This work was conducted while I was working in a number of European Union
sponsored projects so I also would like to acknowledge the many international
colleagues with whom I have worked. In particular I would like to thanks Lennart
Bjerring, Willie Donnelly, Jane Hall, Michel Louis, Jurgen Schneider, Lars Bo
Sorensen and Michael Tschichholz for their insight and guidance in examining the
development of TMN systems in PREPARE and subsequent projects. I would also
like to thank Vincent Wade for his close collaboration on working on development
methodologies in the Prospect and FlowThru projects. Many thanks also needs to go
to the development team members who worked on the PREPARE, Prospect and
FlowThru projects and who acted as guinea pigs for various development techniques
addressed by this thesis. In particular, I must thank the developers at UCL for their
assistance and feedback, namely: James Cowan, Alina DaCruz, Anne Hutton, Chris

Malbon, Alistair McEwan, Rong Shi and Thanassis Tiropanis.

Finally I thank my family and friends for their help and encouragement in this
arduous and time-consuming endeavour. In particular, I thank my Mum and Dad for
their unconditional love and support, Fernando Urquidi for inspiring me to do a PhD
in the first place and Liz Dancer who’s praise, affection and advice helped make the

completion of this work possible.

1.

Table of Contents

INTRODUCTION 13
1.1 APPROACH AND CONTRIBUTIONccoiimiiiuiniiinitintcrintite st estess et sbes et sasss s s esasbaenes 18
PROBLEM DEFINITION 25
2.1 STAKEHOLDERS IN SMS DEVELOPMENTcccottemitmiririntientainiencsssesssisess s sasssssassssssesaes 25
2.2 OPEN SERVICE MANAGEMENTcoviimntininiiitriteiimitinssaesististosisesasessssnsssssssasssssssesssessssseos 30
2.2.1 Service Management in TMN............cccooorivmmiiiiinniiniiniiciicnie e cre e ens 30
2.2.2 Service Management for Intelligent NetWOTKSccoveevivecviiiinivceennircieeneecrinens 34
2.2.3 Service Management in the TeleManagement Forum.................c.cooevveeeveevnsnaenccnns. 34
2.2.4 Service Management in TINAcccocoviriivnieeerciieeeiecteeet ettt 36
2.2.5 Current Status of Open Service MANAZEMENL..............oeceeviiiviisiicereereneeeeerneseessiensns 39
2.3 TECHNOLOGIES APPLICABLE TO SERVICE MANAGEMENTccovvuiriiniinsiisisiecmnrineenenceessessones 41
2.4 SYNTHESIS OF REQUIREMENTS........ccoctiimrtininiiereeereissieneisiassssrs s sasesssssessssesssssssssnasonsssons 44
2.5 SUMMARY ...oiimiiiiiiiiciere ettt e sae et st an bR 47
ANALYSIS OF EXISTING FRAMEWORKS AND REQUIREMENTS SYNTHESIS....48
3.1 GENERAL SOFTWARE ENGINEERING METHODOLOGIESocoiiinriniriiiicirceeeesnec e 49
3.1.1 Object Oriented Analysis Gnd DESIgN.............occueereerueeinervecceesierecniereeseesessssessesesessenes 49
3.1.2 Business Process Modelling................c.ivnniiciniiiiiiiiiicnncssiecseneeneeseens 54
3.1.3 DESIGH PAIEINS........oveenevneeeiieiirecieetetcsitesien st st eb e s et tsereenbeens 55
3.1.4 Relevance 10 SMS DEVEIOPIMENL............c.ceveereereueueceniriersinirireessseeressesnssssisssssssssesesenen 57
3.2 OPEN DISTRIBUTED PROCESSING RELATED METHODOLOGIESccoiviiiencrisnnninssenisesaesessssnns 60
3.3 TELECOMMUNICATIONS SPECIFIC METHODOLOGIEScoccociiiuiiueiruieniiinesneeiessnensesnennsaeenne 73
3.4 SUMMARY OF STATE OF THE ART ANALYSIScc.coiiiimiiiiiiiniieccnr sttt eecneresmsnssssnis 80
3.5 SYNTHESIS OF METHODOLOGICAL REQUIREMENTS FOR SMS DEVELOPMENT STAKEHOLDERS
82
3.5.1 The SMS Development PrOCESS.............couueeuvvcnereiicntiesessisiesiesessesesassesseseeseseesssasses 86
3.5.2 The COTS Software Product Development PrOCESScueecverreercrirvnneeienensenseneens 90
3.5.3 The Interface Standard DeveloOpment PrOCESS............c.ccvueceeerenereneinesenesrerssseesenes 92
3.5.4 Generic Methodological REQUITEMERLS............c.cooeueeireecremceenirenireneee et aeseesenaenes 94
CASE STUDIES 97
4.1 CASE STUDY 1: OSI-SM AND TMN.....ociiiiriiniiiiniiiieietnttrecee st 98
4.1.1 Development ADPFOACH................ouemeenuiciitictiicticterestscne ettt st 100
4.1.2 Evaluation Gnd RESUILSccccuoeeueouniiricieiiiiinesteectse s cseet e ses e se s senssaene 106

4.2 CASE STUDY 2: RESPONSIBILITY AND COMPUTATIONAL MODELLINGccoueeieerinnersnneesennes 109

4.2.1 Development ADPrOGCH................cvcuevieceeitiviiiiiineccte it 110
4.2.1.1 Enterprise Modelling and SCENATIOScceviiuiririninintitntcsieee e 111
4.2.1.2 ROIE SPECIfICAHONS «...c.ceueeuceeiiitri ittt bbb sn s sasas s e enas 112
4.2.1.3 TMN Architecture Defilitionco.eccvevivirininneiiiiiinens e ebenes 114
4.2.14 Information Models and Information FIOWScccoooermvmniimrmiiiiiicccceeciveeienenes 115
4.2.1.5 Management FUNCHON DESIZNcvocvireuiuimiererinmieenirie ittt sssssess s sasssnsasssssenes 118

422 EVAIUGLON QRA RESUILS ..ooooeeeeeeeeeeeeveoeseceeseessesss s seesssssesesssssssessessss s 121

4.3 CASE STUDY 3: ODP VIEWPOINTScoerimiriiimiinisiiins s sesstssessssssssssessasssssseseses 125

4.3.1 Development APPIOACH..............ooiiviviiiniiiiiniiiiiie et es 125

4.3.1.1 Business Modelling............ ... 126

4.3.1.2 Reuse of Existing Models....... ... 128

4.3.1.3 System DevVElOPMENtc.occeuiiriiieieiiiee ettt ea e
4.3.2 Evaluation and Results

4.4 CASE STUDY 4: DEVELOPING SMS WITH UML.......c.cooiiviimiiiniiiinincienrre it 138
4.4.1 Development ADPrOACH..............cvivviveiiiiictiictete s 138
4.4.1.1 Multi-domain System MOdelling........cccccviivrrvnieinrniiiicicen e enenes 141
4.4.1.2 Component MOAEIINGcccoveieuiiiiiniiiiiiiieiitcien st sas s s snens 143
4.4.1.3 Single-Domain System MOAEINg........ccovvieininiiirinnriiiinin s esenes 147

4.4.2 Evaluation and ReSUILSccuccceiomimeeceeeeeciniiniininsiie et s 148

4.5 CASE STUDY 5: DEVELOPING SMS WITH INTEGRATING BUSINESS PROCESS MODELLING AND

COMPONENT REUSEcociiiiiiieeriiiiiiiniiie ettt ssen st srneseesa s e n e bbb e s e e e sesannasbasness 154
4.5.1 Development APPrOACH................ovevveiviveiriniineee ettt 154
4.5.1.1 Reusable Component Modelling Approachcoevmeciiiiininnncnnicninicnnnsneseessnenes 155
4.5.1.1.1 Application of Reusable Component Modellingccoceuevrrrirerincccncscenniscrenennns 160

4.5.1.2 Open Business Process Modelling Approach ..o 164
4.5.1.3 Application of Open Business Modelling.........covceivmvnvniiriininniiinenicninerees 168

4.5.2 Evaluation and RESUILScocoourveeeueimircriciiinieiiscitiserie et se s 175

5. RESULTS AND SYNTHESIS 179
5.1 GENERAL RECOMMENDATIONSccectirtintimmitiinriietinesssesesssssssnanese s sassnosesssesesessesessessns 179
5.2 SYNTHESIS OF OPEN SMS DEVELOPMENT FRAMEWORKcvcuemeuiririnierisininiininnesesessinesesenns 183
5.21 Methodological GUIAEREScucovuenecmniininiiicnieiniicnttee e 183
5.2.1.1 Notations and Meta-model Definitioncoccemmeerriinnniirinicceiirseeeete s 183
52111 Use Case MOAE] ..ot en e 184

5.2.1.1.2 Business Requirements Modelccccoiveeriiimicineinnecreceee e 185

5.2.1.1.3 The Projection Modelling CODSITUCEcoucuvverruirivmriniriiniisereneeisensisesesessisesssasnns 191

5.2.1.2 Process GUIAEIINES .. coerruerireeiereteireecie ettt ne e e e seem et esemessnanens 195
5.21.2.1 Generic DevelOpmEnt PTOCESS.........ioveecmernerceintiniiisniiiseeceesssnessessessseesessmsasssessans 196

6

6.

5.2.1.2.2 Interface Standard Development PTOCESSc.cevcveeermeerereesercrmeneeenenneeeneeererecrrenenns
5.21.23 COTS Software Product Development Process........cccocevcevirieeeneineescenencnnneicnienes
5.2.1.24 SMS Development PIOCESS ...c.covvierererriiinenrnirsecanecieicerensenseeesaransisssesessossesessossssseses

5.2.2 ArchiteCtur@l GUIAELINEScuveeeeeereeeeieeeiirreeereeeeeeccavesee e eresessssssesteesssssaeanens

FURTHER WORK

6.1
6.2
6.3
6.4

CONCLUSIONS

REFERENCES

APPENDIX 1

9.1

EXTENSION AND FURTHER VALIDATION OF RECOMMENDATIONSouvvteieieeiierireeeeennnsenens
APPLICATION TO COMPONENT SOFTWARE ARCHITECTUREScccooeeirunrrrrereeeeseresiveeeesssnsnens
INTEGRATED TOOL SUPPORTcccuvvvurteeeeereirirereeessinrseesesessssnssnsesesssenssassssssessssssssenssessssssssssass

APPLICATION TO SERVICE MANAGEMENT STANDARDISATIONcocceectreerenrirsnenensesseenvecnees

CASE STUDY 4 RESPONSE SUMMARYuvteeieieeittereeiesiniveeseesseresssssneseessrsesssssssssessesssasssesssssnes

9.1.1 Responses from Component Developers.................cooininivnisivnivinensnniiisinee

9.1.2 Responses from System DevelOpersoucoeeeiiiiiincvcsrnriieeececseeseneesnne

9.1.3 Responses from Sub-System Developers..............coouvrevievvvvneninininennnsiieniines

9.2

CASE STUDY 5 RESPONSE SUMMARYccoentiruteneietiastrntreseseeesetessssnessessssesssessasssesssssessessans

9.2.1 Responses from Requirements ANGLYSESccoveviviiinnreveecrnccnnniinicenneesinseinnes

9.2.2 Responses from Component Developers.............cuwcericevriviviicreneeinecsennsnesesennes

9.2.3 Responses from Trial Business System Developers.................ccccorumcrcorncnrnecns

9.2.4 ReSPONSES OB TOOLSc.cooeeeneeiiirniriiiiiiiiiiitsiinit sttt sttt st s smeeais

209

209
213
215
218

226

235

Table of Figures References

Figure 1-1: Generic Structure of Development Framework...........ccccoovvirvnvviinenninnnn. 17
Figure 2-1: Summary of SMS development stakeholder roles and their relationships..... 30
Figure 2-2: TMN separation of functional CONCEINScccceeurrieercencrninicneniinniiicieerene 32
Figure 2-3: TMF’s Telecoms Operation Mapccccvevcricmicinicrcninnninncnenseesnnes 35
Figure 2-4: Management Areas in TINAccccooviinininniinnincnrnceereeee e 38
Figure 3-1: The PRISM, ODP viewpoint-based development process..........cccoevvvrvvreennn 68
Figure 3-2: The PRISM Enterprise Viewpoint CONCepts.......ccccecermrrererirccrrcrvvrcruniseenes 70
Figure 3-3: The M.3020 development methodology..........cocveueeverenenciecmiinniiciicncsnennn 74
Figure 3-4: Refined Generic Development Framework Structureccccovvveeiinvnnnnnee. 84
Figure 3-5: Process Model for SMS Developmentcccoccevveveniirnecnnnsinivviennesnennes 90
Figure 3-6: Process model for off the shelf management software development. 92
.Figure 3-7: Process Model for Interface Standard Developmento.eceuvinericunicnnnncs 94
Figure 3-8: Generic SMS Development Stakeholder Process Modelccccoverrveennnne. 96
Figure 4-1: TMN Functional Architecture for PREPARE Phase 1..........ccccocvvvvviinenn. 104
Figure 4-2: Development Process for Case Study 1.........ccceoevieeceiienrenncnnnneevncnienennens 107
Figure 4-3: Example of a Role Specification for a VPN Service Manager Role............. 113
Figure 4-4: TMN Functional Architecture for PREPARE Phase 2..........ccccecvrvevvnnnnnn. 115
Figure 4-5: VPN Information Model..........cooierirviriirreciiiieeiesce e 115

Figure 4-6: Example of Information Flow Sequence Diagram for the Creation of a

VPN USET StIEAM ...cccvviiiiiiiiiiiiitiiiieitcnie ettt sesecssetesrbes s raesbassans 117
Figure 4-7: Example of CO Textual ODL Definitionccocccoccevrvcncveccrccinevcncneinenne, 120
Figure 4-8: Example of ODL Diagram Showing COs in an OSF and a WSF 120
Figure 4-9: Development Process for Case Study 2........ccccoovvveviriinsinscencnenncccvnenne. 122

Figure 4-10: Contractual Relationships Between Stakeholder Organisations................. 127

Figure 4-11: Scenario Sequence Diagram Showing Information Flow Between

Stakeholders for a Use Case........ccceeuevvevierieerreintcninienenieeresiesseeeseesesecessnnns 128
Figure 4-12: Extended Subscription Management Information Model............c.ccccecuue 131

Figure 4-13: Extended Subscription Management Computational Object Model

(00 5 OO 132
Figure 4-14: Example of Detailed CO ODL Diagram for SRP CO..........ccccocevirrivrrnnnn 133
Figure 4-15: Example of Sequence Diagram Showing Interactions between COs......... 134
Figure 4-16: Development Process for Case Study 3.......ccccoovvvniiiiniiiincinrinencneenn 136

Figure 4-17: UML Class Diagram Showing Roles and Stakeholders Used in Prospect

Figure 4-18: UML Use Case Diagram for Prospect Customer Management Trial......... 142

Figure 4-19: UML Use Case Model for Prospect Subscription Management
L1041 076) 115 11 AR OO RORORRROt 144

Figure 4-20: Top-level UML Class Diagram for Subscription Management
Component DESIZN.......cccovvvirrmiiniiiiirincetints et aens 145

Figure 4-21: UML Class Diagrams Showing the Interfaces to the Subscriber
ManAgETr COcoviiriiiiiiiniiniieet et e st ees 146

Figure 4-22: UML Interaction Diagrams Showing Subscription Component
Behaviour for the Create SAG Use Case.coovvveeiiiniiiniiincinienienceninnnnnncens 147

Figure 4-23: Multi-domain Use Case Linkages Supported by Component Level Use

1L RS 148

Figure 4-24: Development Process for Case Study 4........ocoovvvirircncninccineinicnnnnnns 149

Figure 4-25: Differing Approaches to Component Reuse...........cccoevvvvircrivnvnrnininins 157

Figure 4-26: Analysis Objects Stereotype NOtationcccoeevveeviereeinereeeeneeninirceens 159
9

Figure 4-27: Analysis Object Diagram for Subscribe a Customer to a Service Use

Figure 4-28: Example of a Collaboration Diagram for a Use Case..........ccceeerervererrernne.
Figure 4-29: Mapping of TMF Business Processes onto TINA Business Roles.............

Figure 4-30: Business Process to Business Role Mapping for ATM Service

FUulfilmentcooiiiiiiiiciece ettt s n e n e e aesrasanens
Figure 4-31: UML Class Diagram of Responsibilities Between Business Roles............
Figure 4-32: Use case Diagram for ATM Service Fulfilment Scenario............cccccveueene.

Figure 4-33: Relationships Between the Main Entity Objects Identified in the Use

Figure 4-34: UML Activity Diagram for the Subscribe to ATM Service Use Case
Figure 5-1: Structure of the Business Requirements Model

...

Figure 5-2: Relationships between the Elements of the Business Requirements

Figure 5-5: Example of SMS Level Business System Model using a UML

Component DIagramcoceevverimviniiiiiniiiiiiniiiscrcce e essee st esseesnesaessnenne
Figure 5-6: Structure of the Projection Modelling Construct...........cocuevereereerverrereeeennnne

Figure 5-7: Relationship between Elements of the Projection Construct’s Use Case

and Analysis MOAEIS.........coccomeviriiiiiniiiiiiciiinee et

Figure 5-8: The Application of the Methodological Guidelines to the Generic SMS
Development Stakeholder Process Model..........c.occevevneeeninccncivenenieerreeennn.

10

Figure 5-9: Application of the Methodological Guidelines to the Interface Standard

Development PrOCESScocvevvvuiriiiiiiiiiniiieiiemete ettt s 200

Figure 5-10: Application of the Methodological Guidelines to the COTS Software

Product Development PTOCESS.......cccceeeeiiiriiineiiiienienrtenenrteeeessesseeeneeeeneeenne 202

Figure 5-11: Application of the Methodological Guidelines to the SMS Development
PIOCESS .. ettt ettt st sttt es 203

Figure 6-1: A Potential Scenario for the Integration of Software development across

the Telecommunications DOMaIN........ccoeveeerieirimiiecieiieecrcee e e 217
Figure 6-2: Tool interworking and multi-notation round trip engineering using XMI ... 218

Figure 6-3: Possible enterprise management service system scenario showing

potential functional architecture overlayccccceoveeverniinvinienicrcceneerceeeeees 222

11

Table of Table References

Table 2-1: Comparison of Business Model Roles..........cccooevvvircrncncniniencnnncnnnnenene 26

Table 3-1: Categorisation of management related standards by generic development

TTAMEWOTK SLIUCLUTEovevvveueeereeeeereerrereersseeerersentesssssteeensssennnnssossesasnnsssnnnssesrosmsesns 85

Table 5-1: Comparison of Business Requirements Model Concepts and Concepts

FrOm the StANAATAS.....coveeeeeie ettt tre e re e e e teeeessessaaeeeeesasesessees 199

12

1. Introduction

The liberalisation of telecommunications markets around the world in the late 1980s
and the 1990s has led to an explosion in the number of market players.
Telecommunication markets, which were previously characterised by unchallenged
national monopolies, have now become globalised and intensely competitive. As a
result, the major new pressures that have come to bear on the providers of

telecommunications services are, as identified in [adams]:

* The need to compete by lowering prices: which exerts a general downward

pressure on costs and spur to automate processes within service providers.

* The need to compete on quality: where the speed and efficiency with which a
service provider responds to a customer’s orders, queries and problems can be a

key competitive differentiator.

* The need to compete using new services: which is accelerated by the
convergence of telecommunications industry with other sectors such as data
communications, cable TV and publishing and the lowering of the cost of entry
for new players, such as mobile operators and Internet Service Providers, due to

technical innovations [beamount].

Standardisation is encouraged so that open interfaces to services, products and
componénts may help prevent customers being tied to service providers and
providers being tied to equipment and software vendors. In addition open interfaces
aid providers in collaborating to provide services and thus help to prevent
incumbents from excluding new entrants. Open interfaces are also developed
through the collaboration of industry players to encourage the adoption of a new
technology [leakey]. For a competitive market in telecommunication services
underpinned by the use of interface standards the term Open Service Market is used

here.

13

Returning to the pressures faced by service providers, one of the major operating
costs they experience is that of managing their networks. Networks need to be
managed to ensure that they service the end points required by customers, that the
throughput and utilisation of the network is optimised and that equipment faults are
dealt with as and when they occur. Such activities are categorised as Network
Management, and are a major cost in the operation of a network. Software systems,
termed Network Management Systems (NMS), are employed to help automate this
task in order to reduce the cost of network management. This is an area that has long
been addressed by open standards, e.g. Open Systems Interconnection - Systems
Management (OSI-SM) and Simple Network Management Protocol (SNMP)
[stallings][hegering]. Many conformant products are available and have been

deployed by service providers

In a competitive environment, to allow a provider to make a profit while both
controlling costs and providing superior customer service, network management
must be conducted in close collaboration with Service Management. Service
management is the term given to the management of the communications facilities
offered by a network to provide a commercial service to customers. Service
management involves tasks such as: mapping customer orders efficiently onto
network provisioning and configuration activities, monitoring the delivered quality
of service against the levels of service agreed with individual customers and
mapping customer complaints onto network faults or performance problems. In
addition to supporting such customer-driven needs, the network usage information
made available by NMS is required both to generate charging information with
which to bill the customer, and to monitor the utilisation of the network in order to
plan network growth [varley]. Service management, therefore, represents a further
major cost for service providers and there is a pressing need for them to provide
effective Information Technology (IT) support for these activities if service
providers are to be competitive. The software systems that implement service

management activities are termed Service Management Systems (SMS).

14

SMS development has not benefited from standardisation to the same extent as NMS

development. This can be attributed to several factors:

* While network management standards have emerged from the need for providers
to have open interfaces to manage network elements, the needs of service
management, i.e. service management interoperability between providers and the
open procurement of SMS software, have only recently emerged due to

liberalisation.

* Service management features such as billing and customer care, are often key
competitive differentiators, so providers are often reluctant to collaborate in

standardising them.

* The wide adoption of network technologies such has ATM and TCP/IP has
provided a common base for open interface modelling for NMS. Services, which
change rapidly in response to competition, do not offer a similarly stable model

of what SMS must manage.

Though service management requires some level of distribution in its
implementation, it does not have the extreme requirements for distribution of
network management. So though standard network management technologies such
as OSI-SM and SNMP could be applied to service management, they do not serve
key requirements. As a result, many of the general purpose distributed processing
platforms emerging in the IT sector present alternative, cost-effective solutions for
service management. Amongst those that have been suggested as the basis for
service management solutions are; technologies from the World Wide Web
[maston], the Object Management Group’s Common Object Request Broker
Architecture (OMG CORBA) [chen96], the Open Software Foundation’s Distributed
Computing Environment (OSF DCE) [gaspoz] and intelligent mobile agents
[corely]. It is therefore not currently feasible to advocate a standard service
management platform technology that is likely to be widely accepted. This is
explored further in Section 2.3.

15

The SMS development community is therefore faced with a potential vicious circle.
The rapidly changing nature of the market imposes wide-ranging and volatile
requirements on SMS that retards the development of the standards that could
simplify problems of interoperability and encourage off-the-shelf solutions.
Meanwhile the lack of a common framework for the development of SMS leads to
the development of ad hoc solutions that in turn exacerbates the conditions that
retard the development of common approaches. It could be argued that this situation
is no different to that in any industry sector that relies heavily on IT. However, the
highly inter-connected nature of the telecommunications industry means that
obstacles to inter-operability are real barriers to competition and collaboration and
thus to healthy growth. As a result the industry has a long tradition of overcoming
these obstacles through the definition of open interfaces. However, the close
relationship of service management to fast changing business and software
environments (as opposed to the more stable network environment), indicates that a
different approach to achieving open systems may be required in this area of

telecommunications.

Shared system development problems, such as this, are often addressed by the
effected community establishing a Common Development Framework. In
telecommunications management, it is widely recognised that the lack of a coherent
development framework has often resulted in poor integration of operational support
systems, high levels of duplication due to stove-pipe solutions for different services
and networks and thus high cost of ownership and operation [furley][adams]. A
development framework that is open also allows for the integration of solutions from

external vendors.

A development framework is typically an organised set of architectural and
methodological guidelines for system development, coupled with an extensible set of
reusable parts that perform functions useful in the problem domain (see Figure 1-1).
Architectural guidelines are based on knowledge of the problem domain and aim to
help practitioners to divide the problem domain up into manageable parts in a

consistent way. Architectural guidelines address both the logical architecture and the

16

technological architecture applicable to the problem domain. The /logical
architecture consists of a structured division of the logical functional areas
addressed by the development framework, with layering being a common structural
technique. The technological architecture establishes the common underlying IT
functionality required to implement solutions. The more common functionality that
can be identified in a domain and bundled into a supporting IT platform, the easier it
is for developers to address the specific problem at hand. The set of reusable parts
enables the developers to draw on the knowledge and experience gained from
previous solutions in the problem domain. The methodological guidelines provide
the processes and notations needed by developers to build systems that solve their
particular problems in a way that is consistent with the framework’s architectural
and technological guidelines and which make best use of and possibly contribute to
the set of reusable parts. The methodological guidelines of such a framework are

main focus ofthis thesis.

Development Framework

Architectural Guidelines

Logical .
Architecture Methodological
Guidelines
Technological
Architecture

Reusable Parts

O O0O0doond

Figure 1-1: Generic Structure of Development Framework

Given the above considerations the thesis can be stated as follows:

17

The broad ranging and rapidly changing environment of the Open Service Market,
in which SMS must be developed means that a common, durable, well-populated
architecture for service management is currently unattainable. A development
framework suitable for SMS must, therefore, have a loose, extensible logical

architecture encompassing a range of different technologies.

Within such a framework, a common, well-understood approach to modelling system
requirements and design will enable developers to deal with the complexity and
heterogeneity of SMS within cost and time constraints. To be effective, such a
common modelling approach must take into account the methodological
requirements of SMS developers, of the developers of open interfaces to which SMS
conform and of the developers of commercial software used in SMS. The approaches
currently taken to the development and standardisation of NMS are insufficient to
support the development of and standardisation for SMS in the Open Service
Market. However, existing techniques from the Open Distributed Processing and
Software Engineering communities can be successfully applied to these

requirements.

1.1 Approach and Contribution

The thesis proposes that a common methodological guideline is the key part of an
open development framework for SMS that must necessarily present only loose
architectural guidelines. The development and testing of such an open development
framework was conducted based on the analysis of a novel business stakeholder
model, presented in Section 2.1 of the problem definition in Chapter 2. This model
addresses the individual needs and required relationships between the three main
stakeholder types involved in the development of SMS. These are the developers of
SMS, the vendors of the commercial off-the-shelf (COTS) software components that
may be used within SMS and the developers of open interface standards to which
SMS and COTS may conform. This model forms the core of the approach taken to
defining a suitable open development framework for the thesis. Chapter 2 completes

the definition of the problem presented in defining an open SMS development

18

framework by analysing the current state of standards addressing service
management (Section 2.2) and the range of technologies that may be reasonably
applied to service management (Section 2.3). The range of standards analysed
consists of international standards for Telecommunication Management Networks
(TMN) and Intelligent Networks, the work of the TeleManagement Forum and that
of the Telecommunications Information Networking Architecture Consortium
(TINA-C). This provides evidence that no common logical architecture for service
management is likely to emerge in the near term. The range of applicable
technologies presents a similar conclusion for the prospects of a common service
management technology. Based on this analysis of the current context for SMS
development, a series of goals for an open SMS development framework is

synthesised (Section 2.4).

A comprehensive survey of existing methodological techniques that have been
suggested and applied to the development of SMS, of management interface
standards and of management systems in general is then provided, in Chapter 3. This
survey covers popular general purpose software engineering techniques (Section
3.1), techniques associates with Open Distributed Processing (ODP) standards
(Section 3.2) and techniques developed specifically for telecommunication
management development (Section 3.3). An analysis of this survey (Section 3.4)
reveals that there is a low level of objective evaluation of these techniques and no
empirical evaluation. However, commonalities in the structuring of these
development approaches are used in Section 3.5 to define a model of the
development processes that typically are performed by each of the SMS development
stakeholder types. This model also identifies the relationships between development
processes within the same stakeholder type and between processes in different
stakeholder types. This yields another novel aspect of the approach taken in this
thesis, in that it is both the commonalities and relationships between development
processes in different stakeholders that are highlighted as offering the widest benefit

from commonality in the techniques applied to them.

19

Next, in Chapter 4, the core experimental work of the thesis is presented, where
different development techniques are evaluated to assess them against the overall
goals for an open SMS development framework and specific requirement of the
SMS developement stakeholder process model. As is observed in Chapter 3,
however, evaluation of SMS development techniques suffers from the general
problem experienced in validating software-engineering techniques. Firstly,
measures of desirable software features such as reliability, maintainability and
flexibility are difficult to define [fenton]. Also it is recognised that, in addition to the
methodology followed and the tools used, the effectiveness of a software
development effort is highly dependent on the people involved and the
characteristics of their personal interactions. These human factors are difficult to
control, and at best can be randomised, leading to limits to the replicatability of and
therefore the validity of many software experiments. Software development is also a
very expensive activity due to the value of software developer’s time. Therefore,
fully controlled experiments tend to be small in scale and often don’t reflect a real
commercial software development environment, e.g. experiments performed on
groups of students. Alternatively, experiments can be carried out within commercial
software development projects. Here, budget and time constraints often take priority
over experimental considerations, limiting the control of variables and the collection
of data. This thesis presents a particular problem since open service management is a
relatively new area and not yet a common basis for software development. In
addition, as the effectiveness of SMS development is crucially linked to the
effectiveness of interactions between SMS Developers, Software Vendors and
Standards Developers, an experiment within a single software development
organisation alone would not address the full problem domain. For a PhD thesis
study the option of performing a replicated, controlled experiment with a significant
number of subjects is ruled out due to the cost involved. The approach taken,
therefore, was to conduct a series of case studies where SMS development activities
were observed and the experiences of SMS developers garnered. The case studies

were conducted as SMS development work in collaborative research projects. Here,

20

groups of developers from universities, research institutes and industry, worked
together in realising networks of integrated management systems, including SMS, in
order to publicly demonstrate novel aspects of telecommunications management.
Though these development projects do not fully reflect real commercial
development, their collaborative nature makes them a closer approximation to the
multi-stakeholder open service market environment. In addition, these projects were

more amenable to experiments attempting different development methodologies.

The approach to evaluating the methodologies used in each case study varied from
anecdotal observation of developers’ experiences, through group discussion of such
experiences to structured questionnaires. In all but the first case study, the author had
team leader responsibilities for the modelling, implementation and integration of
SMS, and was therefore in a good position to garner on-going, informal feedback of
the techniques used, as well as to organised the more formal evaluations. The main
aim of the evaluations was to assess the practicability and relative usefulness of

different development approaches applied to SMS development.
The Case Studies provide the following experimental information:

e (Case Study 1 used OSI-SM technology for the integration of network and service
management in a multi-provider environment. It provided anecdotal evidence of
the problems involved in defining a multi-interface system using the notations
and processes defined for TMN by the ITU-T. It also provided some initial
evidence of the power of scenario and business role definitions for SMS

development.

e (Case Study 2 addressed the same problem domain, but provided anecdotal
evidence of the benefits of modelling the responsibilities between roles to
supplement scenario descriptions. It also provides anecdotal evidence of the
benefits of using computational modelling, as practised in TINA, to functionally

dCCOI’IIPOSC systems.

¢ (Case Study 3 involved a more complex enterprise model than the previous case

studies, with the SMS were implemented using the Object Management Group’s

21

Common Object Request Broker Architecture (OMG CORBA). It provided
evidence of the usefulness of ODP viewpoints, as applied in TINA, through
anecdotal feedback, a questionnaire and a group discussion. Weaknesses were
found with the ODP approach however, in particular in maintaining consistency

between the information and computational viewpoints.

* Case Study 4 extended further the multi-domain system developed in Case Study
3, but using Use Cases and the Unified Modelling Language (UML). The
experiences of developers of the usefulness of these techniques for multi-domain
system, single-domain system and component development was captured via a

questionnaire.

* Case Study S built on the results from Case Study 4 and refined the application
of UML to support more fully the reuse of components in systems that
implemented management business information flows. Jacobsen’s analysis
modelling technique [jacobsen92] and his facade modelling construct
[jacobsen97] were used to model components in a more reusable manner, while
UML activity diagrams were used to help model business process interactions.

The case study was evaluated though a questionnaire.

Chapter 5 presents the results of the thesis in terms of methodological guidelines for
an open development framework. The evaluation of the individual case studies and
the state of the art analysis of suitable methodologies was synthesised into a set of
methodological recommendations. These commend the use of Use Cases, the UML,
Jacobsen’s analysis modelling abstractions and his facade modelling construct. The
recommendations are accompanied by specific modelling guidelines in the form of
extensions to the UML meta-model, which represent the core contribution of the

thesis. These meta-model extensions address:
* A simple but precise definition of the components of a Use Case Description.

¢ The definition of a Business Requirements Model, which combines use case
modelling, role and responsibility modelling, business process modelling and

multi-domain system modelling.

22

* The definition of a modelling construct called a Projection. This is similar to
Jacobsen’s facade construct, but with the use of Jacobsen’s analysis modelling

abstraction defined more precisely.

The application of these modelling constructs to the development process

interactions between the SMS development stakeholder types is then presented.

Chapter 6 presents areas were this work could be extended. It addresses: further
extending and validating the meta-model; aligning the models with emerging
software component architectures as they might apply to SMS; providing CASE tool
support for the integration of the modelling constructs with other open,
telecommunications modelling notations and applying the modelling concepts to the

future standardisation of service management capabilities.

Finally Chapter 7 concludes the thesis by assessing the results against the thesis

statement and the goals set out in Chapter 2.

As the case studies were collaborative exercises the author was not solely
responsible for defining the methodologies used. In Case Studies 1 and 2 the
methodologies applied were defined collaboratively by a core of the development
team, which included the author. For Case Studies 2 and 3 the methodologies used
were defined jointly and equally by the author and Vincent Wade of Trinity College
Dublin. The application of the business process to business role mapping and the
facade modelling construct in Case Study 5 was specified by the author alone. The
subjective evaluation of development techniques in the case studies is based both on
the author’s own experiences of applying the techniques and on the informal
feedback gained from other developers individually and through group discussion.
The empirical evaluations conducted for Case Studies 4 and 5 were entirely the
author’s work, as were the problem analysis of Chapter 2, the state of the art analysis
of Chapter 3, the methodological recommendations and guidelines of Chapter 5 and
the assessment of further work in Chapter 6. A reference to publications where the

author has already presented material in this work is given alongside that material.

23

To summarise, this thesis performs some empirical analysis of the applicability of
various software development techniques to the specific needs of stakeholders
involved in SMS development. The results of this analysis are used to define some
UML modelling constructs that, though generally applicable to open, multi-domain,
component based system development, are focussed on the development process

interactions identified between the SMS development stakeholder types.

24

2. Problem Definition

This chapter first defines a model of the organisational types that have a stake in the
development of SMS. It then reviews the current state of the art of service
management in terms of the available standards and applicable technologies. A set of

goals is then defined establishing an open SMS development framework.

2.1 Stakeholders in SMS Development

To fully understand the requirements for an open SMS development framework, a
good understanding is needed of the organisational types that have a stake in SMS
development. Many of the requirements are driven by the relationships the involved
organisational types may have with each other. In order to fully understand these
relationships and the resulting requirements a suitable organisational stakeholder
model must be established. Several models have been proposed by various fora and
researchers, which attempt to provide a basis for analysing the various business
entities involved in telecommunications management and the relationships between
them. The approach typically taken does not identify different existing organisational
types since the structure of the sector is changing too rapidly for the businesses
involved to be easily and durably classified. Instead, business roles are identified in
the hope that most businesses can then be classified as playing one or more roles.
Examples of role-based organisational models are the TINA Business Model
[mulder], the business model used in the EURESCOM project P.610 [nesbitt], the
enterprise model used in the RACE project MOBILISE [keil] and the TMF’s
Business Reference Model [nmf-gb910]. These models reflect the different business
concerns and technology choices of the group generating the model. For instance
TINA is heavily based on ODP principles, part of which is the concept of a trader
that directs consumers of services to providers based on a description of the service
required and other non-functional parameters such as cost. Hence TINA identifies a
Broker business role, not present in other models, that performs an ODP trader-like

activity. Also the P.610 and MOBILISE business models differentiate between a

25

public network operator role and an access network provider role, reflecting real
divisions in the market place, while TINA opts for a more abstract view with a single

connectivity provider. The roles identified by these are summarised in Table 2-1.

Role TINA P.610 MOBILISE TMF
Customer/Subscriber X X X X
End User X X

Service Provider X X X X
Connectivity Provide X X X

Access Provider X X

Third Party Provider X X X X
Service Broker X

Application Vendors X
Equipment/System Suppliers

Table 2-1: Comparison of Business Model Roles

For assessing the requirements for a SMS development framework, a suitable
business model does not need to detail operational roles in more detailed than
needed to identify their impact on the development process. It is necessary; however,
to identify and highlight the relationships of stakeholder who have a direct impact on
the SMS development process. Though all of these models are part of frameworks
that intend to support the on-going development of telecommunications systems,
only the TMF model explicitly identifies a system supplier role. It also identifies a
third party application vendor to acknowledge that third party software is an

increasingly important way of reducing development costs.

The following business roles are suggested as ones with a significant stake in SMS

development. These roles are inspired by those identified in the TMF model, but are

26

tailored to aid the identification of requirements for an open SMS development

framework:

* Service Provider: A role that provides commercial telecommunication services

to a Service Customer.

* Third Party Service Provider: A role that the Service Provider must collaborate
with in order to provide the required service to the customer, e.g. underlying

services, content provision, peer services which extend coverage.

* Service Customer: A role that consumes and pays for the service provided by a

Service Provider.

* SMS Developer: A role that undertakes the development of the SMS required by

a Service Provider to manage its services.

* Software Vendor: A role that develops software to sell on the open market.

Standards Developer: a r1ole that develops standards related to service

management functions and relevant computing platforms.

The relationships between these roles have been limited to those that relate to the
development of SMS, and thus influence the requirements on the development

framework.

The SMS Developer role develops bespoke SMS for the Service Provider and the
Service Provider may select different organisations playing the SMS developer role
for different SMS development projects, including possibly the maintenance of
previous SMS from other developers. Typically these roles have been played by the
same organisation, but the model separates these roles in the anticipation that SMS
development will be increasingly out-sourced. The SMS Developer is motivated to
reduce SMS development costs and delays and SMS maintenance costs in order to

secure continued SMS development contracts from the Service Provider.

The Service Provider role is principally concerned with controlling the costs and
improving the quality of the service management it delivers, as well as managing

new services. It also agrees cost and time constraints for SMS development with the

27

SMS Developer role. The Service Provider is the main source of functional
requirements for the SMSs that are developed by the SMS Developer. These
requirements may include adherence to specific open standards as part of an overall
business strategy. However these requirements are also shaped by the relationships
the Service Provider has with other market players. For instance, a Service Provider
may not actually own and operate a network but may be part of a service provision
chain, as discussed in [davidson94][noam]. For the purpose of analysing the
requirements for a development framework it is sufficient to ignore the complexities
of possible value chains and simply consider the roles of Service Customer and the
Third Party Service Provider relative to the Service Provider. Business relationships
with these stakeholders may also include agreements to adhere to open interface
standards for operational interaction at the service management level. The current
lack of inter-domain service management standards and the concomitant scarcity of
off the shelf products to support such interactions mean that the collaborative
agreement and implementation of interoperable interfaces between SMS Developers
must be addressed by the model. Though the development of SMS for the Service
Customer and the Third Party Service Provider are outside the core focus of the
model, this relationship introduces the requirement for the SMS Developer to
interact with another SMS Developer contracted to provide an interoperable SMS to

the Third Party Service Provider.

Software reuse is widely seen as a key technique in meeting the challenges of
developing software within cost and time constraints [jacobsen97][karlsson]. One of
the most promising techniques is the reuse of Commercial-Off-The-Shelf (COTS)
software developed by a third party, modelled here as the Software Vendor role.
With COTS software reuse, the costs of developing and maintaining the software
component falls on the Software Vendor, who recoups it by selling the component to
as many customers as possible, the customer in this model being the SMS
Developer. In addition, the SMS Developer can also practise software reuse
internally by reusing solutions to frequently occurring problems, or by implementing

standard interfaces popular with SMS customers.

28

The Standards Developer will develop standards mostly in response to the petition
from the other roles. The Service Customer may petition for open service
management interfaces that enable it to move between Service Providers easily, thus
encouraging competition between them. Service Providers and Third Party Service
Providers may petition for service management interface standards to ease the
implementation of multiple third party relationships or to meet regulatory
interoperability requirements. The SMS Developer is motivated to support these
standards, as they will promote the reuse of software that implements them between
different SMS development projects. The Software Vendor will also have an interest
in management interface standards since they reduce the risk of investing in the
development of COTS software that conform to such standards. Both the SMS
Developer and the Software Vendor will also have an interest in using standards that

promote software portability and integration, e.g. CORBA.

This stakeholder model therefore emphasises the need for open standards to
underpin a competitive market both in the delivery of service management and the
provision of SMS software. The model is novel in identifying the Standard
Developer role as one that should be addressed by a development framework for
open service management. This recognises: that there is no dominant forum for
service management solutions; that work from many different fora are relevant to
SMS development and that an open development framework must therefore support
multiple standards developers. The interactions between the roles in the stakeholder

model are shown in Figure 2-1.

29

standards

Software
Vendor

Standards
Developer

components and
platforms

standards

SMS
Developer

SMS
Developer

interoperable

interface
SM agreements
Development Domain applications SMS SMS
EN SNSRI NS NN RN NN RAEREE SERsEEsEssERsENaEREAREERENERE N FEmsasssnannen [LLLEER TN LT LA AR L) (LR RN Y]
Operational Domain management A
N services o
Service SS Party
. ervice
management Provider Provider
services management
services

Figure 2-1: Summary of SMS development stakeholder roles and their relationships

The author believes that an approach to the design of a development framework
driven by the needs of software developers and standards developers rather than
being driven by architectural and technological consideration is a novel one and will

result in a more flexible and robust development framework.

2.2 Open Service Management

This section reviews existing open development frameworks that address service
management. It describes how each framework addresses service management and
also the structure of its functional architecture and scope of its population of reusable

parts.

2.2.1 Service Management in TMN

To date, several standards generating bodies have addressed the area of service
management. One of the first standards to draw the distinction between service
management and network management was the Telecommunications Management
Network (TMN) series of recommendation from the ITU-T [m3000]. The TMN
architecture is specified in recommendation M.3010 [m3010] and defines a Logical

Layer Architecture in which conceptual layers address different concerns within a

30

provider’s management network. The following layers are identified (listed from the

bottom up):

* A Network Element Layer (NEL) containing the network resources to be

managed.

* An Element Management Layer (EML) that is concerned with the management

of individual network elements.

* A Network Management Layer (NML) that is concerned with managing

individual networks.

* A Service Management Layer (SML) that is concerned with the management of

customer services.

* A Business Management Layer (BML) that is concerned with the management of

the entire enterprise.

Each layer is intended to provide the layer above it with the functions required to
perform its functions. Therefore, we can define the service management layer as
being involved in using network management layer functions both to support the
delivery of services to customers and to provide the functions needed by the business
management layer. M.3010 also states that the service management layer is
responsible for maintaining statistical information, interactions with other service

providers and interactions between services.

M.3010 specifies a functional architecture that identifies types of functional blocks
and the types of reference points that exist between them. The taxonomy of
functional blocks makes the distinction between: a Network Element Function
(NEF) managing individual network elements; a Mediation Function (MF) that
mediates between different TMN interfaces; a Q-Adapter Function to non-TMN
compliant network element managers; a Work-Station Function (WSF) presenting
information to human operators; and a general Operations System Function (OSF)
that monitors, co-ordinates and controls telecommunications functions. The

functional architecture identifies reference points that define the functions that may

31

be exchanged between functional blocks. Reference points therefore provide the
basis for defining interfaces between physical implementations of the functional
blocks. The functional architecture also distinguishes between the types of reference
points connecting functional blocks within a single TMN (q reference points) and
those connecting OSFs in different TMNs (x reference points). TMN management
functions are categorised, for the purpose of standardisation, into the areas of Fault
management. Configuration management. Accounting management. Performance
management and Security management. This categorisation is commonly referred to
by the acronym FCAPS. A functional decomposition of the TMN problem area can
therefore be represented as a five by five grid consisting of FCAPS in one axis and
the TMN layers in another [des403-I]. This can also be further decomposed on a
third axis according to whether inter or intra domain issues are being addressed, i.e.

whether the resulting reference points are x or q type (see Figure 2-2).

BML SML NML EML NEL
Fault

Configuration
Accounting

Performance

Security y
Inter-domain (x)

Intra-domain (q)

Figure 2-2: TMN separation offunctional concerns

TMN interfaces are defined according to the methodology described in
recommendation M.3020 [m302Q-95], which results in the definition of management
services, management functions and management information models. This
methodology is discussed further in the next chapter. The TMN management
services defined to date in [m3200] are mostly network-related, with the exceptions

of Customer Administration and Tariff, Charging and Accounting Administration.

32

The more detailed TMN management functions defined in [m3400] also mostly
address the network and network element management layers, though the following

functions sets can be placed in the service management layer:

* Under Performance management there are function sets for subscriber service
quality criteria, customer service performance summary and customer traffic

perfor mance summary.

¢ Under Fault management there are function sets addressing service outage
reporting, arrangement of repairs with the customer and the area of trouble

administration?

* Under Configuration management there are function sets addressing demand
forecasting and the area of service planning and negotiation, which involves
customer interactions, request for service functions and service status

administration.

* Under Accounting management there are several function sets related to the

areas of tariffing, pricing, collections and finance.

* Under Security management there are a few function sets addressing customer
security alarm, customer profiling, customer usage pattern analysis,
administration of customer revocation list, protected storage of customer data,
customer audit trail and customer security alarm management as well as many

functions that apply equally to customers and internal operations staff.

Some of management functions have been refined into information models, though
mostly for function in the EML and NML, e.g. the generic network management in
[m3100]. Some generic systems management functions exist in the form of OSI-SM

System Management Functions [x700].

Despite its network management focus, examples exist of TMN being applied
successfully to the architectural structuring of SMS for X.400 services [caluwe] and

broadband Virtual Private Network (VPN) services [bjerring94b][griffin95].

33

2.2.2 Service Management for Intelligent Networks

One area where service management has been investigated in relation to standardised
services, is that of the management of Intelligent Networks (IN), as standardised by
the ITU-T in the Q.1200 series of recommendations [q1200]. Initial research into
this area suggested that functional entities defined in IN standards for performing
management functions could be implemented as TMN OSFs
[magedanz][pavlou95a]. This work raised the issue of how OSFs access via CMIP,
which is not optimised for real-time operations, could be integrated with signalling
technologies that satisfy the real time requirements of IN service control. This
revealed the lack of a clear functional demarcation between service management and
service control within the standards for both (i.e. TMN and IN respectively).
Problems were also identified with determining standardised solutions should handle
non-functional requirements. Much of the current research in this area advocates the
migration of both IN and TMN .to a middleware based approach such as the one
proposed in the Telecommunication Information Networking Architecture (TINA)
[chapman], which is discussed in more detail below. IN service management
analysis has already influenced TINA, with a set of intra-domain management
requirements for IN Capability Set 2 [etsi-na608] being reflected in the design of the
TINA Subscription Management model.

2.2.3 Service Management in the TeleManagement Forum

One body that has analysed service management requirements more directly is the
Network Management Forum (NMF), which has recently been re-branded as the
TeleManagement Forum (TMF). This not-for-profit, industrial forum aims to build
on existing TMN standards with business agreements and procurement guidelines
that directly address the industry’s near-term needs. This is in recognition of the fact
that the ITU-T’s TMN standards address mainly network and network element
management from a bottom-up perspective, and are therefore difficult to apply
directly to business problems related to service management. In addition, problems

have been found in applying TMN standards in their existing form to specific

34

management problems. These experiences led to the definition by the NMF in 1995
of the Service Management Business Process Model [nmf-gb901]. This was a result
of a survey of several service providers in an attempt to identify key business
processes involved in the provision and operation of services. The aim was to
establish a provider-independent model that would help engage providers in the
process of developing business agreements by reducing the potential for revealing
sensitive proprietary process solutions. This model was supplemented in 1998 with a
more detailed analysis of the business processes involved in network management
[nmf-gb908]. These business models were combined and released as the TMF’s
Telecoms Operation Map (TOM) [nmf-gb910], which contains the business process

model shown in Figure 2-3.

)
[Customer Interface Management Process I
Fulfiment Assurance Billing
-
Sales Order Handling Problem Handling Customer QoS Invoicing/Collection
(SA) (OD) (PD) Management ic) ||
(CQm)
_ Customer Care Processes)
| Information
Systems
Service Planning/ Service Service Problem Service Quality Rating & Management
Development Configuration Resolution Management Discounting — Processes
(SPD) (SC) (SPR) (sam) (RD)
_ Service/Product Dgvelopment and Maintenance Processes ~ Y.
p =
Network Planning/ Network Nejwork Inventory Network Network Data w
Development Provisioning lanagement Maintenance & Management
(NPD) (NP) 1 (NIM) Planning (NMP) (NDM) |
H —/
Y Network and Sys‘!ems I\Idanagement Processes)
[Physical Network and Information Technology]

Figure 2-3: TMF’s Telecoms Operation Map

In this model, the Customer Interface Management process, the Customer Care
processes and the Service/Product Development and Maintenance processes can be
regarded as those performing service management. The vertical divisions shown in

Figure 2-3 represent a broad functional partitioning of the processes into those

35

involved in service delivery (i.e. fulfilment) those involved in maintaining the
services (i.e. assurance) and those involved with billing for the service. These three
vertical process groups correspond to the FCAPS categories of configuration
management, performance and fault management combined and accounting
management respectively. The TOM describes each process in more detail
identifying activities performed within each process and the input and output triggers
that pass between processes, with those between processes potentially in different

service provider domains being highlighted.

This is the most comprehensive high-level functional architecture for service
management in the public domain, certainly amongst the ones claiming to be open.
As it is directly based on surveys of current service providers, the TMF regards this
as a living document that will be updated every few years to reflect changing
approaches to service provisioning and operation. Based on this model, the TMF is
performing ongoing work in defining open management interfaces, both between
service and network management processes, and amongst service management

processes. Of the latter the following interface agreements are completed:

* Trouble Ticket - Electronic bonding: allowing service providers to exchange

trouble information

¢ Trouble Ticket - Customer/Provider interface: enables customer SMS to receive

trouble reports automatically from a service provider’s SMS.

* Performance Reporting: provides common model for exchanging Service Level

Agreements (SLA) information between customers and service providers.
* Order Exchange: provides a generic mechanism for exchanging service ordering

information between service providers.

2.2.4 Service Management in TINA

Another body that has performed in-depth studies of service management is the
Telecommunication Information Network Architecture Consortium (TINA-C). This

industrial consortium has aimed to develop a comprehensive architecture for

36

telecommunications control and management based on the Open Distributed
Processing principles defined by ITU in [x901]. TINA-C has generated a detailed
development framework for the integrated control and management of multimedia
and information services, principally over broadband networks [chapman]. It has
drawn heavily on the recommendations from TMN, the IN standards and ATM
signalling and management standards from the ATM Forum and ITU-T. TINA is
split into four constituent architectures addressing network, service, computing and
management concerns. The Network Architecture [tina-nra] and the Service
Architecture [berndt95a] provide the main sources of detailed functional
specifications within TINA. The Computing Architecture specifies a Distributed
Processing Environment (DPE), which is the distributed, object-oriented software
platform over which all TINA functions are provided [graubmann]. The
Management Architecture [delafuaente94][delafuente95] defines the principles
under which telecommunications management is performed in TINA, though the
actual functionality is defined in the Network and Service Architecture
specifications. The TMN logical layers are used as a basis for TINA’s own logical
layering of management functionality. The Management Architecture has a Service
Management layer corresponding to the TMN SML. Below that it has a Resource
Management layer which encompasses the TMN NML but also includes the
management of the connectivity requirements for multimedia communication
session. Finally the Element Management layer encompasses the TMN EML. TINA
does not address the TMN BML. Figure 2-4 shows the scope of Telecommunications
Management in TINA, together with the scope of Computing Management, which is
applied to the applications performing service and management functions as well as

the supporting DPE and computing and networking infrastructure.

37

Telecommunications
Management Area

Service Resource Element
Applications
DPE
Transport
Workstations & Servers Network
DPE Transport Network
Computing

Management Area

Figure 2-4: Management Areas in TINA

Management concerns within each layer are addressed within the FCAPS categories,
however TINA extends their scope beyond those traditionally assumed for
management. Specifically, in the Resource Management layer, configuration
management is split into resource configuration, similar to the TMN interpretation of
network configuration management, and connection management, which maps onto
control aspects of the network which are typically addressed through signalling
standards in the ITU-T and ATM Forum. This is due to TINA% assumption that the
same DPE infrastructure is used for both management and connection control and
hence classifies the latter as management also. A similarly close integration between
management and what elsewhere is regarded as service control is present in the
TINA Service Management layer as defined in the Service Architecture. This is
advantageous in some respects since it enables the same concepts and mechanisms
for interacting with users to be applied to both service delivery and service

management. The distinction between control and management functions is

38

maintained in the definition of TINA reference points where they are allocated to

core service segments and ancillary segments respectively [mulder].

Detailed service management functions are defined within TINA in the Service
Architecture. This specifies detailed models for Subscription Management and
Accounting Management. Subscription Management covers service life-cycle
management, i.e. the introduction, suspension, and withdrawal of services composed
of different service features, as well as customer life-cycle management, i.e. the
subscription of customers to services and the authorisation of users to use these
services. Accounting management addresses the collection of service and resource
usage information, its assembly into charges and its distribution as bills.
Subscription and accounting management are both tightly integrated with the TINA
session concepts, around which the rest of the Service Architecture is structured.
This principally is integration between subscription management and the access
session, which mediates which services a user can invoke, and between accounting
management and the service session, which controls the distributed execution of the
service. Fault, Performance and Security Management are not yet directly addressed

in the Service Architecture.

2.2.5 Current Status of Open Service Management

From this review of current open standards, it can be seen that there is no single
accepted definition of service management. Though TMN addresses service
management directly, it provides no clear definition of the boundaries of the SML
and little in the way of functional content for this layer. The TMF Telecoms
Operation Map provides a more complete view of the processes that are involved in
the service management layer, though this model is not intended to be definitive, but
an evolving contextual guide to their on-going efforts to generate open interface
agreements prioritised by TMF members. Other attempts at defining service
management functionality have been performed in support of specific open services
such as IN and X.400. TINA presents a more generic open service definition based

on the concept of sessions. While TINA services are connection-oriented and based

39

on the use of a DPE, research has shown that the session concepts can be adapted for
use in environments with different network and computing technologies, e.g. the
Internet [lewis98a][dezen98] and IN [herzog]. This implies TINA service
management features may be widely applicable, though this is still a research issue.
The relative immaturity of open service management standards, however, is
indicated by the lack of evidence of these standards being used in industry. British
Telecom for example, while accepting TMN in principle, has evolved its own

operational support system architecture [furley].

In attempting to define service management based on open standards the following

statements can be made:

* Service management is concerned with the activities within a service provider
organisation that manage the delivery of telecommunication services to the

customer.

* Service management makes use of network and network element management

functions.

e Service management provides functions needed for the business management of

service provider enterprises.

* Service management deals with customer sales queries, customer service orders,
customer problems with service failure or performance and with charging the

customer for the service.

* Service management is concerned with the deployment and withdrawal of

services.

* Service management does not encompass the management of hardware or
software components involved in the delivery of services. These are handled by

network and systems management functions.

¢ Service management does not encompass management of the computing

platform on which services or management services are provided.

40

Despite these common definitions, the fact that there is no widely accepted
functional architecture that can be prescribed for an open SMS development
framework means that the other portions of the framework must therefore support
the ongoing development of multiple functional architectures and their growing

populations of reusable functional units.

2.3 Technologies Applicable to Service Management

Many different technologies are currently being put forward as candidates for service
management. The first management specific technologies were two rival manager-
agent protocols, which were initially designed for managing network elements.
Manager-agent protocols enact management on communications resources through

their representation on an agent as a collection of Managed Objects (MOs).

One of the manager-agent protocols, SNMP [case], emerged from the Internet
community. This protocol dominates the management of network elements in the
data-networking sector but has not yet been applied to service management. To date,
there has been very little interest in general from the Internet community in service
management. There is, however, a growing recognition that issues of customer
service profiles and billing [arkko] are key to the development of the Internet once
IP-based services provide quality of service. Nevertheless, there is still little
evidence of SNMP being applied to service management, with new protocols being

developed in support of service management requirements instead [yavatkar].

The other manager-agent protocol is the Common Management Information Protocol
(CMIP) [x711] underlying OSI System Management framework X700 series [x700].
This has been widely accepted by the telecommunications community, and was
adopted for implementing the physical architecture in TMN, notionally including
systems in the Service Management Layer. When applied to inter-domain
management, which is typically enacted in the SML, the need was identified for
CMIP to be integrated with X.500 directory in order to allow transparent navigation
between MOs on separate agents [stathopoulos][bjerring94a]. The TMF has

developed some service management related interface agreements using CMIP, and

41

several research projects have attempted to implement service management OSFs
using CMIP platforms [hall96][griffin96][galis]. There is, however, little evidence
that CMIP has been used for industrial service management applications to date.
Research experiences in developing CMIP OSs reveal that the difficulties
experienced were closely related to the CMIP Application Programming Interface
(API) made available to the developer in the platform used. These APIs ranged from
low level ones such as XMP/XOM used in Hewlett-Packards OpenView system, to
the high level RMIB C++ [pavlou94] and Tcl/Tk APIs used in the OSIMIS platform
[pavlou95b]. The differing nature of these APIs also precluded the reuse of code
across platforms, though recently the TMF has produced an open C++ CMIP API
[chatt].

Interoperation between managers and agents implemented using the different
protocols is possible using gateways for converting between SNMP and CMIP
[mccarthy][dassow]. However when accessing a CMIP agent from an SNMP
manager via such a gateway, some of the protocol features of the more functionally

rich CMIP, e.g. scoping and filtering, are lost.

Increasingly, the OMG’s Common Object Request Broker Architecture
[corba][chen97a] is being advocated for telecommunications management [stringer].
As with manager-agent protocols, CORBA provides client-server interoperability
between remote systems through the use of standardised protocols, but without the
built-in support for event notification and multiple object access available with
CMIP. In addition, CORBA supports the standardisation of APIs for performing
remote procedure calls from clients to server objects. This is done through
standardising the mapping between various programming languages and the
Interface Definition Language (IDL) used to describe CORBA server interfaces.
Compilers can generate client stub and server skeleton code in a number of

languages, e.g. C, C++, Java, Cobol, and Ada.

The OMG’s Object Management Architecture (OMA), which encompasses CORBA

[pope], therefore represents an open functional framework that could be applied to

42

SMS. The functional structuring within the OMA is not strongly prescribed, with the
primary separation being into areas of increasing speciality. The separations are into
categories of: generally useful CORBA Services [oma-cos] (e.g. the naming, event
and persistence services); CORBA Facilities that are useful across application
domains and Domain Facilities that provide domain specific solutions, e.g. the
output of the OMG’s Telecommunications Domain task force. Typically CORBA
Facilities will make use of CORBA Services, while Domain Facilities will use both

CORBA Services and Facilities.

The level of advocacy for the adoption of CORBA for service management varies.
TINA-C has adopted the position that its DPE can be implemented using CORBA,
and therefore that CORBA may be used for the control and management of both
networks and services. There is a broad consensus, summarised in the TMF’s
Technology Integration Map (TIM) document [nmf-gb909], that the investment in
network element management, and to a lesser extent, network management using
CMIP and SNMP will result in these technologies persisting in these roles. This is
reinforced by the features they provide for efficiently interacting with large numbers
of managed objects distributed over large numbers of network elements, which are
not available in CORBA. However there are strong arguments for CORBA to be
adopted in the service management layer where CMIP does not yet have a strong
foothold and so there is little or no CMIP based legacy to support. These arguments
include: easier integration with legacy business systems, more likelihood of
applicable CORBA applications emerging from the wider IT community, greater
availability of CORBA development expertise and a wider range of platforms at
lower prices. The growing popularity of CORBA has prompted the investigation of
CORBA to CMIP and CORBA to SNMP gateways [deri], with standardised
solutions now being available from the Joint Inter-Domain Management (JIDM)
taskforce formed by the TMF and X/Open [soukouti]. An alternative approach to
exploiting the TMN legacy that has been attempted for network management is to
use the existing CMIP-oriented specifications to structure CORBA solutions

[griffin97][potonniee].

43

The OSF’s Distributed Computing Environment was an earlier distributed
computing platform that was considered for use in telecommunication management,
as described for example in [gazpos]. The OSF also built on DCE in developing the
Distributed Management Environment (DME) which aimed to bring together
network and system management in an object oriented manner. The use of DME was
largely unsuccessful [marcus], and the use of DCE has now been largely superseded

by CORBA.

Another recent technology that has received much attention for its applicability to
management is the World Wide Web and downloadable application code in the form
of Java applets. The low cost and sudden near ubiquity of WWW browsers makes
them an attractive option for management applications. Several solutions have been
found for using WWW browsers for browsing agents, e.g. [barillaud], while the Java

to IDL binding enables interaction with CORBA-based management information.

To summarise, there seems little likelihood of a single distributed technology
becoming dominant for the implementation SMS in the near future. However,
technology gateways between candidate technologies seem to be feasible, and are
being integrated into management platforms [rahkila][rasmussen], so this may not
pose a major obstacle to SMS interoperability. It is clear, therefore, that the other
portions of the development architecture must support the development of SMS on
multiple different technological platforms. As distribution technologies are closely
integrated with modelling techniques, e.g. CMIP with GDMO, SNMP with SMI and
CORBA with IDL (see next chapter), the range of platforms that must be
accommodated must be reflected in the range of interface specification techniques

that must be supported in the development framework.

2.4 Synthesis of Requirements

Based on the analysis of the architectures and technologies that may apply to service
management and the model of business roles that are involved in the development of
SMS, this section lays out the goals for an effective open development framework

for SMS.

44

The focal beneficiary of a development framework is the SMS Developer role as it is
the support of this role that is the principle activity of the Standards Developers and
the Software Vendors in this context. The SMS Developers are driven by the
requirements imposed on them by their customers, i.e. the Service Providers who

will use the SMS. The first goal can therefore be stated as:

Goal 1: The Development Framework must support SMS Developers in developing
SMS that satisfy the business needs of Service Providers, including its business

interactions with Service Customers and Third Party Service Providers.

To satisfy the first goal, the SMS Developer will gain the maximum benefit from a
development framework if it addresses all its internal software development

activities. Hence we can summarise the next goal as:

Goal 2: The Development Framework must address all stages of SMS development,
i.e.: requirements capture, system analysis, system design, systems testing, system

deployment and system maintenance.

The Service Provider operates in an open service market underpinned by open
interface agreements that ensure the interoperability of its own SMS with those of its
Customers and Third Party Service Providers. In addition, the SMS Developers wish
to benefit from open IT solutions to enable the construction of system from solutions

obtained from multiple different sources (i.e. Software Vendors). Therefore:

Goal 3: The framework must support SMS Developers in the application of open

standards from Standards Developers.

The SMS Developers need to operate within cost and time constraints to ensure
competitiveness and profitability. One approach to this is to build SMS products
based increasingly from a portfolio of existing, internally developed software and to
be able to exploit software bought of the shelf from Software Vendors. Hence the

next two goals can be stated as:

Goal 4: The Development Framework must support SMS Developers in the reuse of

design solutions and software over different project.

45

Goal 5: The Development Framework must support SMS Developers in using

commercial off the shelf software components developed by Software Vendors.

For the Software Vendor, the risk of developing software for use by SMS
Developers is reduced if that software product addresses known industry

requirements as expressed in open industry agreements. Therefore a further goal is:

Goal 6: The Development Framework must support Software Vendors in the

application of open standards in developing its products.

As we have seen in Section 2.2, no dominant functional architecture is emerging for
service management, so the parallel development and co-existence of several
functional architectures and constituent functional units must be supported.
Therefore the development framework should be one that can be applied to the on-
going development of standards within existing open development frameworks,
including the continued use of standards not originally developed according to the

common development framework. Hence:

Goal 7: The Development Framework must support Standards Developers in the on-
going development and evolution of open standards to be used by SMS Developers

and Software Vendors.

As we have seen in Section 2.3, a wide range of different technologies are applicable
to service management, and are likely to co-exist thanks to interoperable gateways.

Therefore a further goal is:

Goal 8: The Development Framework must support the development of SMS that
operate over heterogeneous computing platform technology and that will be robust

to changes in computing platforms.

Finally, a clear requirement for the widespread uptake of a development framework
is that it is simple to understand and easy to use for practitioners. An important key
to usability is the amenability of the framework to Computer Aided Software
Engineering (CASE) tool support. A wide range of CASE tools have been applied to

the development of management systems, which presents problems in terms of

46

integrating development processes and exchanging models [valiant]. A common
development methodology must be deployable on as much of the installed base of
CASE tools as possible, but should also facilitate the development of more suitable

CASE tools if necessary. Therefore the final goal is:

Goal 9: The notations and methodology of the development framework should be
easy for those playing SMS development stakeholder roles to understand, and should
be readily supported by CASE tools.

2.5 Summary

To summarise, the lack of a common functional architecture described in Section 2.2
and the range of technological solutions applicable to service management described
in Section 2.3 retard the definition of common architectural guidelines as part of the
development framework. The effectiveness of any common development framework
must therefore depend more on the common applicability of its methodological
guidelines, rather than on that of its architectural guidelines. For this reason the
thesis proposes that a common methodological approach to the whole SMS
development problem will be more effective than aftempting to synthesis yet another
set of common architectural guidelines. The above goals will therefore be used in
subsequent chapters to assess the suitability of existing methodologies for SMS
development, to analyse the requirements for methodological guidelines in the
development framework and to test, through case studies, different approaches that

combine existing development techniques.

47

3. Analysis of Existing Frameworks and

Requirements Synthesis

This chapter reviews the various existing software development methodologies that
have been applied within the telecommunications domain and to the development of
management systems in particular. A very wide range of software development
methodologies exists, so this analysis is restricted to those that most closely match
the requirements for an open SMS development framework given in the previous
chapter. The methodologies addressed are ones that are part of de facto or de jure
standards and/or ones that are closely related to the technologies applicable to

service management as described in Section 2.3.

The review of methodologies is split into three sections. The first addresses
methodologies that have emerged from the general software engineering community,
in particular the ones that have been widely accepted or standardised or which have
had a visible influence on standard management systems development
methodologies. The second section addresses the methodologies that have come
from the distributed systems community, in particular those related to Open
Distributed Processing. The third section addresses methodologies that have been
developed for telecommunication system development and for management system
development in particular. Material presented in this chapter relating to M.3020, the
TMF methodology and the TINA methodology is based on an existing survey by the

author [lewis99c].

This chapter is concluded by a fourth section which attempt to synthesise the
methodological techniques that have been analysed into a high level categorisation
of development models and processes. This categorisation is mapped onto the needs

of the SMS development stakeholders identified in Chapter 2.

48

3.1 General Software Engineering Methodologies

The last decade has seen the generation and promotion of a huge number of general
software development methodologies, though to date no one methodology has
emerged as dominant. However, two categories of methodology that have gained
wide spread acceptance are Object Oriented (OO) Analysis and Design and Business
Process Engineering. A further technique, Design Patterns, has also attracted much
recent attention, and shows potential for aiding the communication of common
solutions between developers. These different techniques are reviewed in the
following sections together with their application to SMS development where

relevant.

3.1.1 Object Oriented Analysis and Design

Object Oriented Analysis and Design (OOAD) methodologies use concepts
originally developed for object oriented programming with languages such as C++
and Smalltalk. Most OOAD methodologies therefore share common concepts of;
object instances containing state only accessible through a well-defined interface;
object classes that defined the interfaces and the inheritance between object class
definitions. The earlier Object Oriented (OO) methodologies focussed on design,
where OO modelling provided benefits by localising design changes and thus
minimising unexpected interactions. OO design also removed the problems related
to having shared data areas and were considered well suited to distributed or parallel
system implementations. Though OO designs do not have to be implemented in an
OO programming language the mapping from design to implementation is much
more straightforward if they are, with the generation of OO-language code from OO
designs becoming a major benefit of OO design. OO analysis exploited OO concepts
in the modelling of real world situations that were to be addressed by software
systems. Typically problem domain artefacts were identified from requirements
statements through techniques such as mapping nouns phrases to objects and verbs
to methods on objects. As with the relationship between OO design and OO
programming, OO analysis may be useful without integration with OO design

49

techniques, however integrated OOAD methodologies have emerged the most

popular.

A wide range of OOAD methodologies has been generated, with Graham, in his
1994 book [graham] identifying over 28 distinct methodologies. One of the earliest
and most influential OO methodologies was that developed by Grady Booch in 1991
and revised in 1994 [booch94]. Booch observes that all software development
methods include: a notation for expressing the various models used; a process
describing the ordering of development activities and tools to aid the developer
follow process rules, reduce errors and maintain consistency. In Booch’s
methodology, the notation is structured as a logical model, expressed in class and
object diagrams and a physical model expressed in module diagrams and diagrams
showing the distribution of processes between processors. The dynamic aspects of
the notation are provided by state transition diagrams for individual classes and
interaction diagrams showing the flow of messages between classes. Booch advises
that the development process should be both iterative and incremental, but
acknowledges the need for waterfall-based project management to ensure progress is
monitored and guided correctly. He therefore categorised the process into two parts.
Firstly, developers cycle through a micro development process consisting of
identifying classes and objects, identifying their semantics, identifying their
relationships, specifying class and object interfaces and implementing them.
Secondly, the project must follow a macro-process, which starts with establishing
core requirements, developing a model of the desired behaviour (i.e. analysis),
creating an architecture (i.e. design), evolving the implementation and subsequently
managing post-delivery execution (i.e. maintenance). As pointed out in [graham], the
Booch methodology focuses more on the design and implementation part of the
overall development process and is weak in providing guidance for capturing and
analysing user requirements, suggesting only that these be based on scenario
descriptions. Though Booch’s object oriented design modelling concepts were very
influential, there is little evidence of the notation being used for telecommunication

management related activities.

50

Another influential methodology that first appeared around the same time as Booch’s
was James Rumbaugh’s Object Modelling Notation (OMT) [rumbaugh]. OMT
places an emphasis on the object oriented modelling of concepts rather than just of a
design solutions and thus can be categorised as an integrated OOAD approach. This
methodology is structured around three models: an object model using object class
diagrams, a dynamic model using nested state diagrams and a functional model using
data flow diagrams that show how processes operate on data originating from
individual objects or aggregate data stores. The process is split into three phases:
systems analysis; system design, where the system is subdivided into more workable
units and object design, where the objects and their relationships identified in the
analysis are elaborated upon. Rumbaugh places a similar emphasis to Booch on
using an iterative process, but places more emphasis on the analysis phase and on the
dynamic and functional models. The rich expressiveness and clarity of the object
modelling notation made it popular in many applications. It was applied to the
modelling of management system by the TMF for a period (see later in this section)
and was used by TINA-C for expressing models in the ODP information viewpoint
(see Section 3.2 for further details). There are few examples of the full OMT
methodology being applied to management. The application of OMT to VPN
management service design in [chan-m] is unusual in that it uses the functional
model but not the object model. Examples exist for IN development
[dezen97][milsted]. In [milsted], it is observed that though the OMT dynamic model
expresses the change in state of objects, it does not readily allow the representation
of how relationships between objects vary over time. The solution proposed is to use

a ‘storyboard’ that consists of an ordered sequence of object instance diagrams.

Another popular OOAD methodology is Object Oriented Software Engineering
(OOSE) first described by Ivar Jacobsen et al in [jacobsen92]. This was first worked
upon while Jacobsen was working for Ericsson, and is therefore well grounded in
telecommunications software development. This methodology places more focus on
the capture and analysis of requirements than Booch or Rumbaugh’s. It introduces

the concepts of use case modelling and analysis modelling. Use case modelling

51

involves describing textually the interactions of users with the system under analysis,
thus providing a structured, semi-formal representation of the system’s functional
requirements. Use cases and their interactions with users, or actors as Jacobsen calls
them, can be summarised in use case diagrams. Also use cases can be generalised, so
that common patterns of user-system interaction can be captured and requirements
therefore can be stated more concisely. Analysis modelling is a high-level form of
object modelling where use case text is analysed to generate objects of three types.
These object types are: interface objects dealing with the interactions between users
and the system; entity objects modelling information in the system and control
objects which operate on one or more entity objects and interact with actors via
interface objects. Such high level modelling is claimed by Jacobsen to clarify the
architectural issues of system development and thus contributed to a more robust
design. Modelling with analysis object is therefore referred to as robustness
modelling. These objects are represented as specialised icon in a robustness model
diagram that showed static relationships between them such as inheritance and
message channels. These objects and their relationships are then transformed into
more general purpose design object diagrams. These are refined with the aid of
sequence diagrams, which are driven by use case descriptions, and the consideration
of the system’s implementation environment, e.g. database and distribution
requirements. Jacobsen claims that the power of this approach lays in use cases
being the focus for modelling activities at all stages of development, i.e. for analysis
modelling, design modelling, implementation and testing. He therefore claims that
OOSE covers more of the development process than the Booch and Rumbaugh
methodologies. Though use cases have been widely used in management related
methodologies (see the TMF and P.610 approaches discussed later in this section
and the application of use cases in Case Studies 3, 4 and 5 in Chapter 4), there has

been little evidence of the analysis object types being widely applied.

Jacobsen further refined his methodology in 1997 in [jacobsen97], which applied use
case and robustness modelling to software reuse. This approach uses a modelling

construct called a facade which presents a view of a component for its reuse by using

52

relevant modelling elements from its use case, robustness analysis, design,
implementation and testing models. Though there is little evidence of this construct
being applied to management systems, it has been assessed in the SMS development

context by the author in [lewis99b] and as part of Case Study 5 in Chapter 4.

The most significant potential impact these three methodologies have had on the
SMS development problem has been through the evolution of the Unified Modelling
Language (UML) [booch99][eriksson][fowler]. The development of UML was
motivated by the realisation that though the processes used in the different
methodologies varied, and often had to be adapted to specific problem domains, the
notations contained many similar modelling concepts. UML was developed jointly
by Booch, Rumbaugh and Jacobsen while working together at Rational Software
Corporation. UML versionl.1 has now been adopted as a standard notation for
OOAD by the OMG [ad/97-08-03], which now also controls its evolution. The
semantics of the language are expressed as a meta-model that defines the types of
modelling elements that UML provides, the relationships that may exist between
them and the constraints that are imposed on those relationships [ad/97-08-04].
UML also provides notational guidelines for the visualisation of models in a variety

of diagram types [ad/97-08-05]. The diagram types are:
* Class diagrams visually similar to OMT.

* Object diagrams showing class instances.

* Use case diagrams based on OOSE.

* Interaction diagrams of two types, sequence diagrams showing interacting object
instances as vertical bars and collaboration diagrams showing interactions
between objects instances as depicted in object diagrams but connected by

temporally enumerated message lines.

e State-chart diagrams showing the event driven state machine behaviour of a

system.

53

* Activity diagrams, which are a specialisation of state-chart diagrams showing the

flow of control between activities in a system.

¢ Component diagrams showing the organisation and dependencies of components

and the interfaces that exist between them.

¢ Deployment diagrams that show the runtime configuration of processing nodes

and the components that operate on them.

An additional strength of UML is its extensibility mechanisms, which allow the
language to be extended in a controlled way. These mechanisms are: stereotypes,
which allow new modelling elements to be derived from existing ones; tagged
values, which allow the information handled by the modelling elements to be
extended and constraints, which allow new semantic rules to be added or existing
ones modified. The OMG supports a mechanism whereby process specific
extensions for UML can be agreed. For example a proposal exists for supporting
UML extension for the analysis object types found in Jacobsen’s OOSE
methodology [ad/97-08-06]. The definition of a suitable process to apply UML is
intended by its authors to be a matter for individual problem domain groups to agree
upon. Some general UMIL-based development processes are emerging
[korthaus][allen][kivisto] as are initial experiences from industrial use of UML
[hruby]. UML's standardised status has greatly accelerated its support within CASE
tools and it is increasingly widely accepted as the standard notation for OOAD. It has
therefore attracted attention from bodies such as TINA-C, TMF and EURESCOM as
a suitable notation for defining management standards. However, the opportunity to
agree common UML profiles or processes for telecommunication management has

not yet been exploited.

3.1.2 Business Process Modelling

Though OOAD techniques have provided major benefits for software engineers, they
are not always very accessible to the managers, customers and other players in a
business who have to supply and agree the requirements of a system and understand

its operation and its implications for their business activities. It is shown in [arlow]

54

for example that while non-technical managers, users and domain experts had a good
comprehension of UML use cases, this fell off rapidly when dealing with class,
interaction and state diagrams. Business process modelling is one increasingly
popular approach to bridging the gap between describing the business needs of a
company in a way that those involved in its operation can understand, and defining
the requirements for IT systems that support these needs. Business process
modelling is widely used to assist in general business process re-engineering,
defining and controlling the flow of work within organisations, configuring standard
software, developing bespoke software and performing activity-based costing.
Notations such as Event-driven Process Chains (EPC) are used to depict: the
relationship between business functions and events; the flow of control between
functions and the flow of data between functions and the users or organisational
units with which they interact. EPC also supports additional modelling features such
as timing constraints on functions and probability of control flow options to enable
the simulation of what-if scenarios when performing business process re-engineering
and the determining of performance requirements for supporting IT systems. As
pointed out in [allweyer], UML activity diagrams support some of the
expressiveness of EPCs, but would need to be enhanced and better integrated with

class and use case models to provide similar analytical power.

The main proponent of business process modelling for management systems is the
TMF. Its Telecoms Operations Map is intended as a provider-independent process

model for use in driving the agreement of common interfaces.

3.1.3 Design Patterns

The software engineering community has recently recognised problems with reuse
techniques that rely solely on object-orientation. One response to these problems has
been to adapt the concept of Design Patterns from the architectural and construction
industry and apply it to software reuse as demonstrated by Erich Gamma [gamma].
Design patterns aim to capture the knowledge of experienced designers and

document it in a manner that facilitates the communication of architectural

55

knowledge and known design traps to other developers. Typically, therefore, design
patterns represent common, well-proven designs. There are several, slightly different
forms suggested for documenting design pattern, however they all follow a common
structure. At a minimum a design pattern states a problem and outlines a solution to
it, with a context description that indicates the applicability of the solution. The latter
part is key, since the aim is not to sell the pattern to the reader, but to provide the
information needed by the reader to enable them to gauge whether the solution
presented fits well to the problem with which they are faced. An important feature of
a pattern is a suitable, and preferably brief, name. In this way, it is hoped that
pattern-based terminology will evolve into a more powerful means for
communicating between software developers. Great emphasis is placed on
expressing patterns concisely and clearly. Ideally they should also contain an
example of an application or coding of the pattern. Design patterns are typically
collected together into Pattern Catalogues [coplien][vlissides], though more benefit
can be gained for the user when a collection of related patterns, possibly addressing a
specific application domain, are carefully cross-indexed, to show how the solutions
can work together in different ways. Such an inter-related collection of patterns is
referred to as a Pattern Language. Gamma’s original pattern catalogue addressed
how small groups of software objects solved common problems, however patterns
have been written to address a wide range of problems up to and including patterns
for structuring enterprises. Mowbray and Malveau [mowbray]| suggest that patterns
could actually be categorised into levels of architectural scale from those containing

a few classes to those spanning several organisations.

Design patterns therefore show potential as a way of exchanging knowledge between
developers, with examples of telecommunications solutions expressed as patterns
becoming more common in the literature [aurrecoechea][meszaros]. However, it is
less clear how patterns can integrate with the exchange of specific OOAD models.
Though UML had a notation for expressing patterns, the author has found no solid

examples of how this can be applied within a broader OOAD specification.

56

3.1.4 Relevance to SMS Development

The above general software engineering techniques vary in their relevance to SMS
development. OOAD is clearly relevant to the development of SMS. However, as
pointed out by Martin, based on experiences of applying OOAD the
telecommunication systems development [martin], most OOAD approaches do not
take into account the inclusion of models from sources that have not followed the
same approach or used the same notation. This presents a problem within the context
of SMS development stakeholder model presented in the previous chapter where
models must be imported from both the software vendor and the standards
developer. With respect to the latter, Martin recommends that the fora generating
models for telecommunication interface standards should migrate to an OOAD
approach so that the full benefits of these techniques could be exploited when

integrating the resulting specifications into applications.

The TMF has explicitly recognised this problem in its internal modelling and design
methodology [vincent]. This provides methodological guidance to those within the
TMF responsible for developing open interface agreements. It describes the
definition of the interface as an adjunct to the development of the systems that
provide the solution to the problem for which the interface was required. This
therefore involves consideration of the systems on both sides of the interface, rather
than just the modelling of agent/server management services, management functions
and managed objects as had been performed previously in management interface
development (see Section 3.3 for more details). The TMF methodology borrows
heavily from contemporary OOAD methodologies such as those described above.

The process consists of the following stages:

* System Overview: This uses use case diagrams to define the context of the
system. An interesting addition is to allow specific actor-system interaction flows
to be identified at this stage as conforming to an existing standard. Also the
interactions that are the focus of the interface definition effort are made distinct

from those simply providing contextual support.

57

Problem Statement Capture: This involves two techniques ideally performed

with the co-operation of the potential standard user community:

* The enumeration of requirement statements and their categorisation into ones
relating to: structural information, dynamic information, abnormal
conditions, expectations and non-functional requirements and system

administration requirements.

* Detailed use case descriptions focussing on the actor-system interactions

under scrutiny, these include traces to requirement statements.

Requirements Modelling: This involves refining the problem statements and use
case descriptions to identify common pieces of information and to provide
clearer descriptions of their usage and the functions that may be performed on

them using the OMT models.

Analysis Modelling: This involves transforming the requirements analysis into a
system design by further refinement of the OMT models. It is recommended at
this stage to use, if possible, existing design patterns or to use object types

similar to Jacobsen’s analysis objects in order to structure the design.

Design modelling: This involves mapping the analysis model into its
implementation environment which consists of a standardisation framework (the
TMF’s TOM being the obvious choice) and the system’s technical environment

such as operating systems and databases.

Unfortunately no information is available as to the effectiveness of this process as

used by TMF development teams. However, the approach is being used and is

rapidly evolving, with a revised version of the methodology, based on the use of

UML as the notation, under development.

A further initiative by the TMF that builds on this methodology is that of protocol

neutral modelling. This aims to define interface standards in terms of OMT class

models and then automatically generate from these models interface definitions in

the notation required, e.g. the OMG’s IDL or the ITU-T’s Guidelines for the

58

Definitions of Management Objects (GDMO) [x722]. To this end the TMF has
defined mappings between OMT and GDMO and, as protocol neutral modelling has
evolved to use UML, have done a similar mapping between UML and GDMO.
Extensions to existing tools to support these mapping are also available. The aims of
this approach are to make the interface modelling work robust to changes in
distributed platform technologies and to allow them to be applied across a wider
range of such technologies. As reported in [hall98] however, problems were
experienced in supporting mapping from OMT to both IDL and GDMO due to
differences in how they represent aggregation relationships, name bindings and
relationships between objects, as well as the presence of specialised mechanisms
such as scoping, filtering and notification in GDMO. This means interface
specifications generated from a common OMT model will sub-optimal for

implementation using either of the interface definition languages.

Significantly, the TMF has not yet integrated its business process model closely with
requirements capture in this methodology, though this is an item of study within the
Forum. In practice, the business process model is just used to scope a study area
rather than in the analysis of requirements, e.g. [nfnf—504] [chen97b]. It would seem
likely, however, that techniques such as EPCs or UML activity diagrams would be
useful in determining how this common process model may be systematically
refined into individual interface agreements. It is pointed out in [mcleod], for
example, that grouping activities into vertical swim-lanes in UML activity diagrams
can be used to identify the separate domains, typical in SMS problems. The
boundaries between swim-lanes can therefore be used to determine the control and
information flow requirements of interfaces between those domains. A similar
approach to refining interface designs from the TMF Business Process Model is
presented by the author in [lewis99a] and is assessed as part of Case Study 5 in

Chapter 4.

Other OOAD methodologies have been applied to SMS development. In applying
the FUSION OOAD methodology, it is noted in [saydam] that though the approach

led to a straightforward and consistent design of a solution from an object oriented

59

analysis of customer needs, it was not well suited to the development of distributed
system. Few OOAD techniques currently address the needs of distributed systems
well though this is an area of ongoing investigation. For instance the OMG have
recently released an RFP for a UML profile for CORBA [ad/99-03-11]. The
application of OOAD techniques in the context of Open Distributed Processing is
discussed in more detail in the next section. There are few reports of experiences of
SMS development using CASE tools, but in [neilsen] an OMT graphical editing tool
was found invaluable in speeding the generation of the various models and
presenting and revising diagrams for discussions between developers for a VPN
SMS. This work formed part of the project studied in Case Studies 1 and 2 described

in the next chapter.

To summarise, OOAD techniques have much to offer to the development of SMS,
and are also finding application in the development of standards at least within the
TMF. Business process modelling is a potentially important technique in relating
business requirements to system requirements, but techniques for integrating this
with OOAD techniques are not well established. Finally, the use of design pattern
could potentially be applied to the exchange of knowledge between SMS
development stakeholders, but the immaturity of techniques to integrate patterns
with OOAD models makes them difficult to include in any methodological
guidelines.

3.2 Open Distributed Processing Related Methodologies

In response to some of the problems raised by the complexities of large scale
distributed systems, ISO has developed the Open Distributed Processing Reference
Model (ODP-RM) [x901][x902]. This reference model aims to support the

specification of systems with the following properties:

* Openness in the portability of components between different processing nodes

and in the interworking of components in different systems.

60

* Integration of various systems with heterogeneous architectural, resource,

performance characteristics into a whole.

* Flexibility in supporting the evolution of systems and their components as well

as run-time reconfiguration, such as when handling user mobility.

* Modularity to maximise the autonomy of interrelated components, which is

required for flexibility.
* Federation of systems from different technical and administrative domains.

* Manageability of systems to support policies related to configuration, Quality of

Service (QoS) and accounting, amongst others.

* Provision of Quality of Service in terms of timeliness, availability, reliability and

fault tolerance.
* Security including authentication and access control facilities.

As well as supporting the definition of systems or components, ODP-RM is intended
as a meta-standard intended to guide the development of other standards by
providing a framework for the integrated support of distribution, inter-working,
inter-operability and portability, all of which are relevant to service management.
ODP approaches the problem of describing distributed systems by expressing the
effects of distribution as a number of distribution transparencies, e.g. location, access
or failure transparencies. These transparencies aim to hide the complexities of
distributed systems from the software developer. Distributed systems adhering to the
ODP framework are described using five complementary viewpoints of a system
[x903]. These separate viewpoints together aim to provide a complete and consistent

view of the system. These viewpoints are:

* The Enterprise Viewpoint, which aids requirements capture and is concerned

with the business needs of the system in terms of its purpose, scope and policies.

* The Information Viewpoint, which aims to identify the information content of the

system in terms of constraints on its use and its interpretation within the system.

61

* The Computational Viewpoint, which aims to describe the functional

decomposition of the system into objects suitable for distribution.

* The Engineering Viewpoint, which addresses system support for distributed
applications. It identifies the platform support needed to provide the distribution

transparencies assumed in the computational view.

* The Technological Viewpoint, which addresses the basic hardware and software
characteristics independently of the part they play in a specific distributed

system.

Each viewpoint has an associated set of concepts and rules relevant to the concerns
of that viewpoint [x904]. As viewpoints are separate but inter-related views of the
same system, the relations between terms in different views are subject to
consistency constraints. One aim of ODP is that viewpoint languages may be defined
in a formal way that would enable the automation of consistency checks between
viewpoints. Bindings have been suggested between ODP viewpoint concepts and
Formal Description Techniques (FDTs), such as LOTOS and Z. Conformance in
ODP may be expressed in terms of a reference point specified using combinations
the viewpoints. An example reference point specification could contain: an
enterprise specification giving roles and policies across the reference point; an
information specification giving the universe of discourse for the reference point and
a computational specification of the operations and dialogue across the reference
point. The ODP-RM, however, does not specify any methodology describing how
the viewpoint-based specifications should be developed. Approaches to establishing
an ODP-based methodology have varied, from those who have attempted to
developed the FDT approach to support automated translations between viewpoint
and to those who have tried to apply semi-formal specifications to expressing
viewpoint concepts. As pointed out in [erdmann], ODP FDT language mapping to Z
and LOTOS are not suitable for use in the Enterprise viewpoint which must be used
in requirements capture activities involving potential system users and domain

experts who will not be conversant with such notations. In the author’s opinion, the

62

FDT based approach is not well suited to any viewpoints in the context of SMS
Development since, as established in Chapter 2, a suitable development framework
must be easy for the range of practitioners to understand and use. However, the
application of FDT’s to telecommunication system development is analysed further
in the next section. The rest of this section therefore only deals with the application

of semi-formal techniques to ODP-based methodologies.

An important factor in considering the practical application of ODP is that no
popular distributed processing platform conforming to ODP and associated ITU-T
standards has emerged. Instead, partly inspired by ODP, the OMG’s CORBA
represents the de facto open distributed processing platform in use today. In this
context Microsoft’s COM [kindel], though it is widely used, is not considered a truly
open distributed processing platform as its specification is under the control of a
single company. This situation is changing however, with the recent release of
potions of COM to the Open Group for the support on non-Microsoft operating
systems. CORBA provides the equivalent of the distribution transparencies provided
by the ODP engineering viewpoint concepts though a combination of the core ORB
capabilities and CORBA services, though the structuring is different and the
concepts and functional separations do not match precisely. Though OMG RFPs pay
some lip service to the use of ODP principles and viewpoints, they are not used in
practice for OMG standard development. Significantly, the OMG’s standard OOAD
notation, UML, does not refer to or explicitly support ODP viewpoint concepts.
Attempts to apply ODP viewpoints in practice has therefore tended to focus on the
use of the enterprise, informational and computational viewpoints during
requirements capture, analysis and design, but with interoperable interfaces being

ultimately expressed in the OMG’s Interface Definition Language (IDL).

Before examining individual ODP-based methodology experiences, a better
understanding of the ODP concepts in the enterprise, informational and
computational viewpoints is required. The enterprise viewpoint support the

following concepts, represented as enterprise objects and their relationships:

63

* Environment: Part of the model that interacts with, but is not part of, the system

being specified.

* Role: The view of an entity in terms of an agent that carries out some activities

with respect to another agent.
* Resource: An entity that is operated upon.

* Contract: The agreement of the activities and information that pass between two

enterprise objects.

* Policy: Rules specifying the constraints and obligations a subject has towards

some target.
e Community: A group of objects with a common objective.

* Domain: A collection of enterprise objects grouped for purposes of autonomy,
authority and control, often driven by the structure of the business organisation

under scrutiny.

* Federations: A community of domains grouped to serve some common

objective.

The information viewpoint concepts are expressed in terms of Information Objects
(IOs) and the static and dynamic relationships between them. They are therefore very
similar to OOAD class and object modelling techniques such as those found in
OMT. The computational viewpoint is based around the concept of a computational
object (CO), which offers functionality through one or more well-defined interfaces.
This model differs from the current CORBA model where an object has only one
interface, though as observed in [kitson], ODP COs can be implemented by grouping
CORBA interface objects.

Probably the largest body of work that attempts to apply ODP principles to
telecommunications and implement the results using CORBA, is that of the TINA-C,
which was introduced in Section 2.2.4. Though TINA adopted the use of ODP

viewpoints, it has not adopted the viewpoint languages suggested in [x904]. For the

64

enterprise viewpoint, ODP concepts are condensed to statements of which
stakeholder are involved, the roles they play, the services they offer and the
obligations of service customers. The ODP concept of federation is used in the TINA
business model [mulder]. For the information viewpoint, [christensen] advocates the
use of the OMT object model for TINA. TINA supplements this with a textual
notation consisting of quasi-GDMO object definitions and an object relationship
model based on the OSI General Relationship Model [x725]. This notation provides
a representation of objects, including their attributes, the constraints and operations
that cause change in the object’s state, as well as object inheritance and relationships
between objects. For the computational viewpoint, TINA-C has adopted its own
graphical notation consisting of simple component diagrams representing
computational objects and the operational and stream interfaces they offer to each
other [natarajan]. To provide detailed definitions of computational object interface
structure and operation definitions a superset of IDL termed, Object Definition
Language (ODL), is used [mercouroff95]. ODL allows the definition of multiple
interfaces, of stream interfaces and of references to interfaces used on other objects.
ODL enhances the ODP concept of a CO by supporting the grouping of COs into
building blocks that can be manipulated as a unit for the purpose of system life-cycle
management. For the engineering viewpoint, a Distributed Processing Environment
(DPE) is assumed which provides various distribution transparencies required by
COs through a set of services made available to engineering objects populating the
DPE [graubmann]. The engineering objects themselves are arrived at directly by
decomposing the computational objects (COs). As TINA has adopted CORBA as its
DPE, this decomposition involved mapping ODL to IDL.

TINA goes beyond the ODP-RM by specifying an outline methodology for
developing TINA services [salleros]. This methodology presents a development
process where the enterprise viewpoint of a service is addressed during the analysis
stage of the development process, followed by information viewpoint modelling and
computational viewpoint modelling which together result in the system’s design

specification. The computational model and the derived engineering model both

65

support the implementation of the system. Though the information viewpoint model
and computational viewpoint model are described as complementary parts of the
design model, exactly how to iterate between them and to describe the relationship
between the different objects in these models is not stated in any prescriptive
manner. The different cardinalities that may exist for CO to IO mappings are
described, but no guidelines are given for situations where the different relationships
might best be applied. Also, though there is a relatively clear mapping from COs to

engineering objects, no guidelines for the implementation of 1Os is provided.

The TINA Management Architecture prescribes the use of the manager-agent
paradigm for managing TINA resources through manipulating and monitoring
managed objects. Though this approach is not in evidence in the service management
specifications in the Service Architecture, it has been applied in implementation of
elements of the TINA Network Architecture for ATM management [griffin97]. Here
MOs were accessed via a management broker CORBA interface. This approach was
regarded as more flexible and amenable to reuse in different applications than those
based on higher-level, task-oriented interface definition, which were subject to
change as new management task were identified. If we consider IOs in the
management context to be MOs then this approach points to a more definitive way

of identifying IO to CO mappings for SMS.

Though the TINA-C was concerned primarily with the development of
specifications, it has associated with it several auxiliary projects that developed
TINA-based systems and extended its specification base. These projects, therefore,
provide a further source of experience on the application of ODP viewpoints. One of
the major results of this work has been the evolution of ODL in describing the
notation and semantics of both its graphical and textual variants [mercouroff97].
This has now been adopted within the ITU-T as a notation for computational objects
[itu-odl] and has also helped influence the OMG towards the investigation of multi-

interface objects [omg/96-01-04].

66

The computational object is also seen as the major unit of reusability in TINA, with
ODL allowing the description of a CO to be partitioned into the interfaces for the
services it provides and those used for the management of those services. It also
allows for a CO definition to include the identification of the services of other COs
that it uses, thus providing a more complete description of the CO for reuse. The
ODL meta-model is adapted and extended in [dede] to provide behaviour
descriptions for COs using Service Definition Language (SDL) [z100], which is
discussed further in the next section. The author was involved in an attempt to apply
ODP-viewpoint based models to the development and deployment of service
management components [lewis97]. Here the structuring of the computational
model, as building blocks was found to be effective in reusing service management
components in different business scenario. However, as described in Case Study 3
and in [wade97], the use of both the information and the computational models for

describing the design of systems was problematic.

Some prototype tool support has been generated specifically for TINA modelling
purposes [bosco]. Primarily, this provided graphical and textual editing for
computational modelling using ODL for object and building block definitions,
together with object behaviour in SDL. This tool was combined with IDL and C++
generators for integration into simulation and testing tools. Such CASE-based
development activities are addressed further in the next section in relation to SDL-

based development.

An early attempt at applying ODP viewpoint to a service management development
framework was conducted between 1992 and 1995 by the EU funded project PRISM
[berquist]. This provided early validation of TINA modelling techniques as well as
borrowing concepts from it. This project developed, through a set of paper-based
case studies, a structured development methodology based on ODP viewpoints but
with more detail than given in TINA documentation. It also possessed a more
explicit linkage to the TMN interface definition methodology, M.3020. The overall
PRISM methodology is summarised in Figure 3-1 using a notation similar to UML

activity diagrams.

67

The process for developing the enterprise viewpoint for a specific system involved

Enterprise
Viewpoint Describe TMN
Management System
Select and Assign TMN
Management Functions
\
\

Information Computational
Viewpoint Viewpoint

Select/Specify Information
Object Types

Select/Specify the first
Operation Signatures and
Activities

\ Select/Specify
Computational Object
Types and Interface Types

Engineering
Viewpoint

Qsmbute FunctionalitD

v

Geﬁne Commum'cation)

I
‘K Consolidate)/

Figure 3-1: The PRISM, ODP viewpoint-based development process

the following sequence of tasks:

Identifying the Environment and Parties Involved: This introduced the idea of an
actor, which could play several roles with respect to other actors. Relationships
between actors were identified with specific goals and were used to identify QoS

attributes, the duration of relationship, availability conditions and safety and

security considerations for the relationship.

68

* Requirements Capture: Requirements imposed by individual roles are recorded
and categorised by management functional areas (a set extended from FCAPS)

and TMN logical layers.

* Description of Management Services: This defines management service required
by users and decomposes them into management functions using the process

defined in [m3020-95] as described in the next section.

¢ Structuring the Enterprise: This refines the identification of actors, roles,
contracts, requirements and management services into a detailed, structured set
of objectives. These are expressed as enterprise objects grouped using ODP
concepts of community, federation and domains. Policies are formulated that
define which activities a manager may perform (i.e. authorisation policy) and

which ones they must perform (i.e. obligation policy).

* Scenario description: This describes the sequence of interactions that may occur
across multiple domains. These express the interactions that may occur between
actors and roles grouped by communities, federations and domains, in terms of

Jacobsen-style use cases and as event-trace diagrams between actors.

The static relationships between the PRISM enterprise viewpoint concepts are given
in Figure 3-2. This set of semantics for the enterprise viewpoint was adapted from
the corresponding ODP set of concepts with the aim of supporting more directly the

requirements of TMN systems [strick94].

69

composite
enterprise
object

*

role policy

actor

o[]

contract
1* enteypise
communityl~. " | object
0..f
1.*
< domain domain environment system
- manager
(controlling
object)
federation

Figure 3-2: The PRISM Enterprise Viewpoint Concepts

For the information viewpoint the OMT object model is used together with quasi-
GDMO in a manner similar to TINA. For the computational viewpoint the following

steps are taken:

* Computational Object Identification: This uses an analysis of the enterprise
model, and in particular of the management functions identified, to help identify

units of functionality.

* Dynamic Computational Modelling: This uses computational activity diagrams
designed by PRISM [dahle] to represent the sequence of management operations
exchanged between COs for a specific management activity, triggered by the
user’s invocation of a management function. These diagrams are therefore

similar in their semantics to UML collaboration diagrams.

* Computational Object Type Design: This uses Computational Object Type
diagrams to represent the static relationships between COs and their attributes,

interfaces and operation signatures. This is effectively a combination of OMT or

70

UML class operations (though allocated to multiple interfaces) and attribute

notations from the graphical ODL representation.

* Building Block Design: This involves grouping computational objects into more
course-grained systems that may correspond to TMN Operations Systems,
according to criteria of release independence, security, system management,
distribution or TMN logical layering. Building Blocks are represented as

enclosing rectangles in computational object type diagrams.

As PRISM did not attempt to implement its designs or map them to CORBA, their
approach to engineering modelling is not analysed here. As with TINA, the mapping
between the different viewpoints did not seem to follow a very well-defined process,
though some mappings were identified between objects in different viewpoints. For
instance the methodology advises that the information model be based on an analysis
of the text description of enterprise model use cases, with noun phrases mapping to
IOs in the first instance. Also, CO operations should be provided for all management
functions identified in the enterprise model, though this does not help in the design
of CO operations that do not face the user. As with TINA, mapping between IOs and
COs is identified as being potentially many to many. In [may] the need to iteratively
regard both informational and computational models in order to gain complete and
consistent specification for both is described. How the relationship between the
information and computation viewpoints might guide the identification of COs is
also not well addressed. It is acknowledged in [berquist], however, that this is a
difficult task as it involves consistency checking of both static and dynamic models
in both viewpoints. The grouping of COs into building blocks was also found to be
problematic since the different grouping criteria often result in conflicting or
overlapping groups. Another issue not fully addressed in the PRISM methodology is
how the managed object definitions that specify the details of TMN management

functions might be imported into ODP models.

Some tool support was developed for the PRISM methodology [strick96], which

supported implementation and specification repositories and allowed grammar

71

modules to be provided for each viewpoint, acknowledging that the notations used

would change over time.

Others have attempted to develop SMS using subsets of ODP viewpoints coupled
with other development techniques. In [choi], a design for a service order handling
interface is developed in terms of COs and IOs, but driven by a TMF-like business
process model rather than from an enterprise viewpoint model. This approach also
uses state transition diagrams in modelling IOs and links this to the CO model by
binding triggering events to CO interface operations. The author was involved in an
attempt to integrate a UML-based SMS development approach with a design
expressed in terms of COs and IOs [lewis99d]. This is reviewed in more detail as
part of Case Study 4 in the next chapter, with further examples of the application of
this techniques given in [tiropanis98] and [hellemans99].

More recently, others have attempted to apply ODP to SMS development using
UML [kande]. The object oriented nature of both UML and ODP, and the similarity
of some UML models to models used for ODP viewpoints, made this approach fairly
straightforward notationally. The viewpoints were represented using the following

diagrams:
* Enterprise Viewpoint: Use case diagrams, class/package diagrams.
* Information Viewpoint: Class/package diagrams, state transition diagrams.

* Computational Viewpoint: Sequence, collaboration, component, activity and

class/package diagrams.
* Engineering Viewpoint: Component and deployment diagrams.

In this study, using a single notation (i,e, UML), edited within a single CASE tool,
proved useful in making the models for the different viewpoints more coherent and
easier to navigate between. Several ODP concepts, such as enterprise objects, could
not be directly represented in UML, but were readily modelled using stereotype of
the class type. Limitations were found however in describing COs, as not all aspects

of ODL could be conveniently represented in UML.

72

The ITU-T has a standardisation activity developing an Open Distributed
Management Architecture (ODMA) [x708], which is applying ODP principle to OSI
Systems Management. The draft output of ODMA to date has focussed on how
CMIS-based manager agent systems can be represented in the ODP engineering
viewpoint, though for practical purposes this work has been superseded by the JIDM
CORBA-CMIP gateway specifications.

3.3 Telecommunications Specific Methodologies

This section reviews relevant development methodologies that originated in the
telecommunications industry. This includes ones that combine elements of general
software engineering techniques and ODP-based techniques and ones that apply
specialised techniques to SMS development and related areas such as network

management and service control system development.

As mentioned in Chapter 2, the TMN set of recommendations contains a
recommendation, M.3020, for an Interface Specification Methodology [m3020-95].
This provides guidelines for the functional decomposition of management interfaces
found at reference points in the TMN functional architecture. This methodology is
primarily aimed at guiding work conducted in ITU-T working groups towards the
standardisation of management services [m3200] and management functions
[m3400], though application specifiers and protocol specifiers are targeted also. In
M.3020, management services describe the functionality available at a TMN
interface from the point of view of the user. These services are decomposed into
management functions, using either existing management functions or defining new
ones if required. Management functions are grouped into management function sets
for the purposes of information modelling. Where possible, management functions
are based on OSI system management functions. Information modelling involves
analysing existing generic and technology specific information models to see if
existing object classes satisfy management function requirements. If existing
management functions have been used, then these may have corresponding

information models already defined which then can be reused. Though it is expected

73

that TMN information models will be accessed over the interface using CMIP, the
development of other protocols is also accommodated by the methodology. The

overall process as represented in [m3020-95] is summarised in Figure 3-3.

TMN management <- Describe TMN
service and goals management services

Roles, resources Describe TMN <
and functions - management context
Management Perform information <«
information library |€--- modelling
l’l
,I
’/
i ; K i
hGeI]lenc and f Object relationship _Consolidate
'tcc nology specific diagrams available information
information models 4
\\
\\
\\
Define management
Management & information schema

information schema

v

Requirements for Determine communication
communications requirements

Protocol specification
activities

Figure 3-3: The M.3020 development methodology

The description of management services includes the description of the goal of the
user in invoking the service. This is complimented by the description of the context
in which the service is invoked, described in terms of the role played by the user, the
telecommunications resources being managed and the management functions used,
supplemented by scenarios descriptions giving examples of the functions’ usage in

performing the service. The service is also identified with respect to TMN interface

74

types, e.g. Q, F, X. The information modelling activity can be enhanced by the use of
entity relationship diagrams, and must also express the object class naming schema

that will be visible at the interface.

This methodology uses functional decomposition in order to subdivide the problem
of interface definition and to support the identification of existing functions and
information model that can be reused. It therefore offers no opportunity to specialise
existing functions in a structured manner, with this only being possible using object
class inheritance at the information modelling stage. Also this methodology does not
provide any direct guidance on the functional decomposition of systems, only of
interfaces. These characteristics represent a fundamental difference between the
M.3020 approach and the general software engineering and ODP-based development

methodologies described in the previous two sections.

The problem of functional system design was addressed directly in [griffin96] where
the M.3020 was extended to include the identification of OSFs. Observing that the
application of M.3020 directly to TMN OS development would result in single,
monolithic OS in each logical layer, this approach focuses on the development of
managed object clusters, which presented a single management interface, but which
are also defined by their use of management functions from peer or subordinate
clusters. These MO clusters represented the building blocks from which OSFs were
built. The application of the methodology across a TMN requires the nomination of a
system designer who maintains a consistent view of how OSFs were to interact with
each other. The system designer therefore guides and co-ordinates the developers of
multiple, individual OSFs, who follow M.3020 in defining their own interface
information models. This resulted in a set of service and network management OSFs
consisting of well-defined management functional components implemented as
managed object clusters and associated manager functions [griffin95]. Another
example of TMN interface specification development [covaci] show that techniques
such as message sequence flow diagrams are useful for showing how management
functions are used in specific scenarios and state transition diagrams are useful for

defining the changes of MO state.

75

The TMF built on TMN standards to provide the additional industry agreements on
management interfaces needed by its membership. It quickly realised that the
structure of TMN standards, resulting from the application of M.3020 within the
ITU-T was not easily usable by its member when used to implement and verify TMN
systems. The separation of management service and function overviews from
individual management function definitions sometime made it difficult to understand
the mode of application intended for a function definition and associated information
model. As the definition CMIS-based manager-agent interfaces allows very flexible
use of the interface, this led to misunderstandings about the exact operation of an
interface, which that had a negative impact on interoperability. The TMF (or the
NMF as it was then) addressed this by publishing interface agreements in the form of
an ensemble [nmf-025]. An ensemble packages together; an outline of what is to be
managed, expressed as resources; what functions are required to solve the
management problem and some scenarios to illuminate how these functions should
operate dynamically on the resources. The process for developing these ensembles
largely revolves around the identification of management functions and MO
definitions from existing standards, with new MOs being defined only when
absolutely necessary. The ensemble form differs from M.3020 in that it packages the
motivation for the interface and conformance test specifications with the
specification of the interface itself. It does not, however, provide scope for new
management protocols to be defined, relying instead on the use of existing ones, e.g.
CMIP. It also encourages the use of entity relationship diagrams and sequence charts
of CMIP interactions to make the specification more accessible to its users. The
ensemble approach was found useful in [bleakley] for defining TMN X-interfaces
for accounting management, though it was observed that the techniques could be
improved by the application of detailed use cases descriptions and a clearer mapping
between management function and CMIP interactions. The ensemble form is no
longer directly used in the TMF as the framework of which it was a part [zeisler] has

evolved into the business process based framework used today. However, the legacy

76

of closely linking requirements for interfaces with their standardised specification

still persists in the TMF development approach.

The EURESCOM organisation, which is funded by European public network
operators to perform telecommunication related research, has conducted case studies
into TMN development with the aim of providing guidelines for the development of
TMN systems. In 1996 the EURESCOM project P414 used a paper-base case study
of VPN service management to assess the possible merging of the TMN interfaces
specification techniques, namely TMF ensembles and the M.3020, with OOAD
techniques such as OMT, OOSE and FUSION. A report on this case study [p414-d2]
makes several initial observations. It singles out use cases as a techniques that was
found useful in bridging the gap between TMN interface specification approaches
and OOAD techniques. Comparing the ensemble approach to M.3020, it concluded
that the former was better suited to inter-OS interface definition, i.e. X or Q
interfaces, while M.3020 was better suited to WS to OS interface definition, i.e. the
F interface. A more detailed analysis of this case study [p414-d3] that attempted to
combine the ensemble approach with OMT points out the key difference between the
former as an interface specification technique and the latter as an application
development technique. It recommended that the understandability of ensembles
could be improved by employing the graphical notations of OMT. However it
concluded that the ensemble process did map well onto the OMT process as the
iterative and incremental nature of the latter was not reflected in the waterfall
structure of the former. It therefore recommended that though the structure of
ensembles aided understanding of the interface specification, to gain the full benefit
of OOAD techniques such as OMT, this form should only be used for the final
structure of the specification while native OOAD models should be used to perform

the development process.

In 1997, another EURESCOM project, P.610, reported on its analysis of the state-of-
the-art in development frameworks and methodologies for the management of
multimedia services [p610-d1]. After analysing the methodologies used in P414,
PRISM, the EU-funded Prospect project (the subject of Case Studies 3 and 4 of the

77

next chapter), and TINA, it concluded that as the de facto standards OOAD
modelling notation UML should be adopted for any development methodology in
this domain, with OMT providing guidance on the process. The results of several
paper case studies were presented in [p610-d2], which suggests a UML-based
methodology for developing multi-media service management systems that consists

of the following steps:

* Requirements Capture: This consists of describing the service, providing a
business model of the service, modelling the relationships between actors to
determine the resources and actions required by the system (following the
ORDIT methodology [strens][dobson]), describing use cases and the defining of

scenarios, i.e. use case instances.

* Object Oriented Analysis: This consists of a domain track and an application
track. The domain track involves building a class model of the problem domain.
The application track involves building an application class model and refining it

though the construction of sequence, state and collaboration diagrams.

* Mapping to Multi-Domain Management Architecture: This consists of grouping
classes into packages according to functional criteria. This grouping should also

aid in the identification of reusable packages.

No practical assessment or experience is relayed, however, from the execution of

these case studies.

Other, more specialised, development techniques have emerged from the
telecommunication software sector that may prove applicable to SMS development.
Two approaches that have been applied in a variety of forms to network and systems
management are policy-based management and formal managed object behaviour
definition. Policy based management, as described in [wies], involved analysing
high-level corporate policies and refining them into task oriented policies. Task
oriented policies are then mapped onto functional policies that act on management
services which in turn act on low-level policies that restrict the behaviour of

managed object classes. Policy based management has been applied mostly in

78

situations where manager applications have to interact with potentially large
numbers of network element or system management agents, e.g. [putter]. Its benefits
come from enabling management applications to manage groups or domains of MOs
[alpers][sloman], which may be distributed over potentially large numbers of agents,
in terms of goal-driven policies rather than of specific management operations. An
architecture is proposed in [davidson99b] in which network management systems are
developed and sold as independent functions enforcing policies. Though this
matches some of the SMS development requirements by explicitly supporting a
market in management components, it is not clear how this would translate from
network management to the service management environment. Policy-based
management is largely focussed on dealing with problems in a single layer of
manager-agent relationships, so its application to the multi-layer TMN architecture,
from which the definition of service management used here is derived, is also not

clear.

Formal MO behaviour has been an ongoing area of study with the ITU-T, motivated
by the problem of ensuring interoperability between management systems based on
GDMO definitions that provide only natural language behaviour descriptions. A
wide range FDTs seem to have been proposed for this task including SDL
[carls][barbeau], LOBSTERS [festor], DOMAINS [fink], Object-Z and RAISE
[derrick]. However, no agreement has yet emerged on a common language for
formal MO behaviour description, and these techniques suffer from a lack of

integration with common CASE tools, i.e. those supporting OOAD methods.

SDL has been used widely in the development of telecommunication control systems
and intelligent networks [morris][olsen99]. It allows for the analysis of
specifications for correctness, for validation through simulation, for generation of
implementation code and the generation of test cases and test code. The development
of notational mapping between SDL and both IDL [olsen95] and ODL has allowed
SDL to be used for such development activities in TINA-based service system
development [lucidi][schieferdecker]. The feasibility of this implies that SDL could

also be applied to such activities in TINA-based SMS. However, as pointed out in

79

[lodge], many of these techniques rely on an existing, well defined and relatively
narrow functional frameworks within which SDL based activities are cost effective.
As discussed in Chapter 2, no such well-defined framework exists for service
management, thus limiting the extent to which these techniques can be usefully

applied to SMS development.

Another complimentary approach to developing telecommunication systems is one
that focuses on integrity. Integrity is the ability of a system to retain its specified
attributes in terms of performance and functionality, and is important for
telecommunication systems due their increasing complexity, especially for signalling
systems. The management of integrity involves the prediction of where a system’s
design has high integrity risk areas, testing to validate integrity of a developed
system and maintenance to monitor and diagnose threat to integrity in operation. As
suggested in [monton], the prediction activity requires modifications to existing
development methodologies so that integrity risk assessment, possibly based on
complexity metrics, is introduced at each stage of development. This technique has
been applied to a multi-domain SMS case study [prnjat], where complexity metrics

were applied to ODP viewpoint models of the system generated using UML.

3.4 Summary of State of the Art Analysis

From the analysis of methodological techniques applied to service management, the
author concludes that the area of development frameworks and methodologies for
problem domain has not been extensively investigated and the level of experimental
rigour adopted is low. Most reports consist of assertions made by their authors that
were based on their own experiences of using a technique. Only a few reported case
studies conducted on the application of a technique in a wider project or provided the
lessons leant from such projects. The author found no quantitative assessments of the
application of methodological techniques to SMS development. This, however, is
unremarkable when compared to the main body of work into methodological
techniques for software development. In a survey of over 600 software engineering

publications [zelkowitz], the majority contained no experimentation or resorted to

80

assertions, only 10% presented case studies, while other, more controlled
experimental techniques presented in only a very small percentage of the sample. Of
the development approaches presented in the previous sections that were assessed in
more detail, most were based on paper case studies that only extended as far as a
system design specification. The minimum, implicit quality check that results from
observing if the design led to a working implementation within reasonable costs

constraints was therefore largely absent.

Based on the qualitative material available it can be observed that
telecommunications management development techniques borrow heavily from
software engineering techniques popular at the time. It can therefore be concluded
that the growing popularity of UML, its establishment as the de facto OOAD
modelling notation, its widespread tool support and its expanding skill base will
make it a very acceptable choice as the notation for an open SMS development
framework. Other OOAD techniques that seem to have gained widespread
acceptability in SMS development are use cases, graphical class modelling and the
use of sequence diagrams. The application of use cases seems particular suited to
SMS development as such systems are essentially intended to support the activities
of human operators and service customers, the analysis of such activities being the

focus of use cases.

Other more specialised techniques seem to be driven by their use in standards bodies
rather than clear results concerning their utility in industrial applications. Prime
examples are the use of business process modelling promoted by the TMF and of
ODP viewpoints advocated by TINA-C. However, as these bodies represent the
major current source of service management standards, these approaches must be
accommodated in addressing the needs of the SMS development stakeholder model.
The ITU-T does not emerge as a very suitable source of methodological techniques.
The functional decomposition approach taken by M.3020 has not yet been well
integrated with OOAD-based techniques, and in the author’s opinion needs to be
reassessed as the basis for developing TMN interface specifications. The ITU-T’s

other methodological efforts have focussed mostly on FDTs, which due to their

81

specialised mathematical nature and the immaturity of accompanying tools, are not
likely candidates for an open SMS development framework (see Goal 9 of the
previous chapter). In the author’s opinion, the same reasons for the unsuitability of
FDT’s also diminish the motivation for applying ODP viewpoints within an SMS
development framework. Other, goal driven development techniques such as policy
based management and integrity analysis, are complimentary to the application of
more conventional techniques, as they provide guidance in the structuring of a
solution. However, they do not provide techniques for performing the detailed
modelling. Once techniques have been established that address the primary business
needs of the SMS development stakeholders, these techniques may build upon them
to allow the stakeholders to interact at a higher level of abstraction, for instance by
selecting components by the goals they achieve rather than the functions they
perform. As this thesis primarily addresses these business needs, the application of

goal driven techniques is left for further study.

An important distinction that is apparent in analysing the various methodologies is
the differences in approach observed when the target is an interface specification
rather than a system implementation. As observed in [sullivan], the only techniques
that would seem well suited to both is ODP viewpoint, though as pointed out in
[schoo], when applied in TINA, the benefits of CO modularity and reuse in system
design are not fully exploited in the definition of TINA reference points. A common
development framework that addresses all the SMS development stakeholders must
therefore address both goals in its methodological guidelines. Finally, though many
of the techniques reviewed claim to support and ease software reuse, there is very
little evidence of reuse of software or specifications between projects or between

separate stakeholders.

3.5 Synthesis of Methodological Requirements for SMS
Development Stakeholders

This section analyses the requirements for the methodological guidelines portion of a

possible development framework, based on the state of the art review in the

82

preceding sections of this chapter. It does so by analysing the development processes
that each of the SMS development stakeholder will undergo in the course of their
core business activities. For the SMS Developer this process, is the development of
an SMS, for the Software Vendor it is the development of a commercial off the shelf
(COTS) software and for the Standard Developer it is the development of an
interoperability standard. The stakeholders will also perform other activities such as
market surveys, sales and internal guideline development, but for the purpose of
analysing the requirements for a suitable development framework, only the core

business activities are considered.

An initial assumption made about the structure of the development framework’s

methodological guidelines is that they will be split into the following parts:

* Notations and Meta-model: Providing guidance on the types of notations that are
suitable for different development tasks and the structure of the models, i.e. the

meta-model, that is appropriate for these tasks.

* Process Guidelines: Providing guidance on the specific activities involved in the
overall development process, the relationships between activities and their

relationship to notations and meta-models.

The overall generic structure of a development framework can therefore be modified

from that shown in Chapter 1, to the one shown in Figure 3-4.

83

Development Framework

Architectural Guidelines Methodological Guidelines
Functional Notations and
Architecture Meta-models
Technological Process
Architecture Guidelines

Reusable Parts

N I I I B I B I B B B

Figure 3-4: Refined Generic Development Framework Structure

This structure of methodological guidelines mirrors that taken by the UML authors
and the OMG analysis and design working group in separating the notation and
modelling semantics that make up the UML from the analysis and design process
guidelines. The motivation for such a split is that notations and meta-models can
usually be well-defined while development processes are a lot more difficult to
capture since they are highly conditional on the context within which the
development is occurring. For this reason notations and meta-models are often
defined formally or semi-formally using existing (or sometimes their own) notation,
while process guidelines are delivered as more general descriptive advice. This split
is reflected in most of the methodologies reviewed earlier in this chapter, as
summarised in Table 3-1. This table also includes the separations between functional
and technological architectures and examples of the reusable parts that exist in the

different development frameworks.

Development Methodological Architectural Reusable
Framework/ Guidelines Guidelines Parts
Standards set | Notations Process Functional | Technological
and Meta- | Guidelines Architecture Architecture
models
TMN GDMO M.3020 M.3010 CMIP/CMIS | Management
functions/
MOs
TMF UML/OMT Telecoms | Technology Protocol
Operations | Integration | Independent
Map Map Models
TINA ODL, Design Business | Engineering
OMT Guidelines | Model and model
RPs (DPE)
OMG UML OOAD OMA CORBA/II CORBA
Notation | Process RFP oP Services and
and Facilities
Semantic
s

Table 3-1: Categorisation of management related standards by generic development

framework structure

The following sections present generic models of the core business activities of each
of the SMS developer stakeholders. The graphical notation used is similar to UML
activity diagrams, where lozenge shapes represent discrete activities, arrows between
activities represent the sequence of activities over time and oblongs represent

information that is used by or generated by activities. Round edged oblongs

85

represent stakeholder types, and may contain the information maintained and the
activities conducted by that stakeholder. Information not contained within a
stakeholder oblong is typically generated to support the exchange of information
between stakeholders for a particular activity. A shadowed oblong indicates that
multiple instances of the stakeholder type or of the information represented are

involved in the overall process.

The aim of analysing these processes is to identify the commonalties in the
development process experienced by the different development stakeholders in terms
of the relationships between the activities they conduct and the information
exchanged between activities and between activities and other stakeholders. As
Booch points out, in any effective OOAD process the individual developers will
iterate through the various development activities several times as the information
exchanged is revised based on the experiences and insights obtained through
conducting the previous iteration. It is assumed however that iterations will involve
the same information being passed between the activities, and therefore the inclusion
of activity iterations will not add much to the process analysis. The iteration through
sequences or sub-sequences of activities is not explicitly analysed in the following
sections, though it is the intention that the resulting development framework should

support an iterative and incremental development process.

3.5.1 The SMS Development Process

A simplified depiction of the SMS development process within an idealised SMS
Developer stakeholder is given in Figure 3-5. It is assumed in this model that the
SMS Developer will maintain its own internal architectural guidelines. These may be
purely proprietary, they may be influenced by architectures in the public domain,
they may reflect architectures used by Service Providers that are consumers SMSs,
they may explicitly conform to standard architectures or they may embody
combination of these influences. It is also assumed that the SMS Developer
possesses an existing set of products on which it intends to build when developing

new SMS products. Ideally these existing products will conform to the internal

86

architectural guidelines. Examining each activity in turn we can identify the

interactions on each one in more detail:

SMS Requirements Capture: An SMS is primarily developed for a single
customer, i.e. for a single Service Provider. Though an independent SMS
Developer may endeavour to reuse some or all of an existing product in future
SMS development contracts, each SMS development project will be primarily
driven by the requirements of a single Service Provider, expressed in a
requirements statement document. If the SMS is required to interact with the
SMS of the Service Provider’s customers or of Third Party Service Providers,
then the requirements of these stakeholders may also need to be explicitly
obtained by the SMS Developer. The result of the SMS Requirements Capture
activity is the SMS Requirements Statement, typically expressed as a categorised

set of plain language statements.

SMS Requirements Analysis: This activity involves analysing the SMS
Requirements Statement with the aim of synthesising a structured, logical model
of the target SMS. This will be conducted at a high level of abstraction, largely
ignoring implementation issues such as performance tuning and the choice of
communications protocols or distribution technology, though still having to be
aware of them where they have a direct impact on the logical structure of a
solution. The Requirements Analysis will have to take into account the internal
architectural guidelines both to guide the functional structuring of a potential
solution and to use the technology architecture to understand the impact of the
technology choices. The Requirement Statement may specify certain open
standards are to be used in the solution, or the SMS Developer may opt to use
some standards to ease future interoperability problems or to make future
solutions more marketable. In this case the Requirements Analysis will be
influenced by architectural guidelines, potentially from several different
Standards Developers. The SMS Developer may also aim to use COTS software
from one or more Software Vendors. In this case the Requirements Analysis

must take into account the architectural guidelines in which the off the shelf

87

components are presented. These guidelines may be themselves based on open
standards or they could be closely aligned with the SMS Developers own
architectural guidelines. The different vendors’ architectural guidelines may,
however, be quite different, in which case they must be considered carefully in
this activity to ensure that the integration of the COTS software is successful.

The output of this activity will be the SMS Analysis Model.

SMS Design: This activity is driven primarily by the SMS Analysis Model.
Based on the logical structures contained within this, a detailed design of the
system is performed, specifying software modules, functional units and interface
definitions. This will require reference to the internal architectural guidelines and
potentially also to those from Standards Developers and Software Vendors as
referenced in the SMS Analysis Model. In particular, the technology guidelines
will be examined in order to determine the impact on the design of the various
computing and communication platforms used both internally and by COTS
software, and of the need to support open platform interoperability. In addition,
the details of the APIs and interface definitions via which existing SMS
Developer products, existing Service Provider systems and COTS software
products will be integrated will need to be considered. The definitions of any
open interfaces the system conforms to will also need to be obtained from

Standard Developers. The output of this activity will be the SMS Design Model

SMS Implementation: This activity involves developing software code based on
the SMS Design Model. Implementers may need to reference details of the
architectural guidelines from the SMS Developer, the Software Vendors and the
Standards Developers that are referenced in the SMS Design Model, though this
should primarily be to refer to details in the technology architecture related to
implementation. Issues presented by the functional architecture would already be
embodied in the design and should not need to be referenced directly by
implementers. In addition, implementers will need to follow references to the
API and interface definitions of existing internal products, existing Service

Provider systems, COTS software and open interfaces given in the SMS Design

88

Model. The construction of the SMS software may require the inclusion of
modules from existing products and of libraries and executables from the
Software Vendor. The resulting integration may require modification of the
existing product modules and of the Service Provider’s existing systems. In some
circumstances the modification of the COTS products, either by the Software
Vendor or if source code is available, by the SMS developer. The result of this

software should be a set of SMS software modules for testing.

SMS Testing: This activity will typically be highly integrated with the SMS
Implementation activity, operating on the software generated by that activity.
Testers will use the SMS Design and the SMS Requirements Statement as the
basis for generating test cases and test harnesses. The APIs and interface
definitions of existing products, existing Service Provider systems and COTS
software will also be used in building test harnesses, while the open interface
definition from the Standards Developers will be used to test conformance.
Obviously, testing will be facilitated if the existing APIs and interfaces are
accompanied by test environments and similarly if the open interface definitions
are accompanied by explicit conformance statements. The output of the SMS

testing should be SMS Software ready for deployment.

SMS Deployment: This activity actually takes place in the Service Provider
domain and involves ensuring that the SMS operates correctly with the Service
Provider’s existing SMS and NMS. This would typically involve the

collaboration of SMS Developer staff and Service Provider operations staff.

This process analysis does not address the situation where two or more SMS

Developers are required to collaborate in order to develop SMS in parallel for the

same Service Providers, or possibly for two collaborating Service Providers.

Replicating the Software Vendor to SMS Developer relationships in both directions

could approximate the process relationships for such situations. This would reflect

the need to jointly develop models at the different stages of development.

89

Internal architectural
guidelines

3.5.2 The COTS Software Product Development Process

Figure 3-5: Process Model for SMS Development

. . Customer
- semest \]
A//
ﬂ/
Technotogy architecture e T
) - q < Service
Standards Developer e statement Provider
"’r "" -
Standard architectural e
guidelines 3
SMS requirements Requi
. capture i statement ‘\
. RS
N o AN
RN e i
. i . SMS requirements H
Technology architecture i e statcment]
i . @ S i
1 '~ N, . :
| S y 4 i
™ i
Open interface . 1
standard c i
\ J i
7 3 (Service Provider T
Software Vendor
Existing SMS & NMS
Internal architectural
guidelines
API & interface
—_
- 4 Software modules
Technology architecture 7 yd e
S
™. i
5 - SMS implementation
] e
Off the shelf software products [e
¢, . [o N SMS depioyment
. N 4 L SMS software
API & interface definitions H \\ / K A J
H S 4 ¥
E W
L SMS testing r
Saoftware libraries and _,-;\ /
executables >
Existing SMS Products
. J
AP] & interface
definitions
Software modules
_

The process model for COTS software product development by the Software Vendor

bears many similarities to that for the development of SMS software, as both are

basically software product development processes. The following description of

activities is therefore restricted to identifying where the process differs significantly

from the SMS development process. It should be noted that, though COTS software

may often incorporate other vendor’s products, the interaction between Software

Vendors is not analysed here.

90

COTS product requirements capture differs from the requirements capture activity
for SMS in the source of requirements. Instead of getting requirements from a single
customer and their collaborators, the Software Vendor needs to analyse the
requirements of the range of organisations playing the SMS Developer role in order
to identify a product with the widest or most profitable marketability. Requirements
capture in this context therefore involves understanding the needs of SMS

Developers, either through direct contact or through market surveys.

COTS product requirements analysis, design, implementation and testing do not
differ greatly from the corresponding activities in the SMS Development process,
except in that the dependency on the customer is greatly diminished. The analysis
and design will only consider the existing systems used by SMS Developers in a
general way, and there will not be an obligation to support products that will
integrate with systems developed by a particular SMS Developer. Also, given that
the interactions between Software Vendors is not analysed here, implementation and
testing will not required direct integration with systems from another stakeholder. It
is expected, however, that the dependency on architectural guidelines and open
interfaces from the Standards Developers will be much more important for COTS
software development than for SMS development. In other words, the COTS
products will offer conformance to standards rather than necessarily guarantees of
interoperability with other products. This is because off the shelf software
developers rely more on the conformance of their products to standards to ensure
wide marketability of its products. This reduces the risk involved in investing in
COTS software development before any specific customers have been identified.
The final activity shown is simply expressed as product release, since product
deployment and use by a customer typically will not involve the close collaboration
and testing in situ that would be required for a bespoke SMS product. The overall

process model for COTS software development is summarised in Figure 3-6.

91

Software Vendor

Internal architectural
guidelines

[
Product i i
capture h statement X,
> o N
e N N
T - !
\ prd Product requirements {
Standards Developer e ® m——— statement K !
; s |
Standard architectural H . y |
guidelines ' i
Py Product requi |
SN a
t \\
! h h 4 N
i o
i ! i pE SMS Developer
Technology architecture . AN > Product analysis \ N
“Te-- . P model \
Ry . S Existing SMS products
Tt > A 4 »
0 interface .
Op:mu“d Product design APl & l_nlemme
; definitions
-

S
- —--- Product design

P 4 model ‘\‘. ’,/ Software modules

/

,
_

/
/
¥
2
m
7
=
g
£
-~ g
\,
A~
\.

Off the shelf software products

API & interface definitions

Sofiware libraries and
executables

Figure 3-6: Process model for off the shelf management software development.

3.5.3 The Interface Standard Development Process

The interface standard development process differs fundamentally from the SMS and
COTS product development process in that it does not result in the development of
software, but only in specification documents. However, as observed in Section 3.4,
the process of generating open specification does have some similarities with the

software development process.

92

Capturing industry requirements for a new interface standard is a much more broad
ranging process than capturing requirements for developing a product. The process
may be visible externally, for instance as in the publications of Request for
Information in the OMG. Alternatively it may occur within the standards body, with
groups of members forming a consensus on which new areas need to be addressed.
In the SMS development context, we would expect Software Vendors, SMS
Developers and Service Provider all to be active in this process, as is reflected by the
makeup of bodies such as TINA-C and the TMF. The Service Provider will be
motivated to ensure that new standards are compatible with existing deployed NMS
and SMS systems. The process used to define an interface standard varies between
the different standards bodies in terms of its external visibility, and in the stages
undertaken. Usually, however, it will be kicked off, after some analysis of the range
of relevant requirements, by a clear statement of the problem being addressed and of
the constraints on the solutions sought. This may be expressed as a Request For
Proposals (RFP) or a Project Statement, depending on the openness of the
development activity to external contributions. The design of the standard typically
will involve the definition of an interface, some description of its behaviour and
possibly some guidelines for assessing conformance of implementations. Once the
interface definition has been accepted as satisfying the requirements and the
constraints of the RFP, it may then join the set of interface standards maintained by

the body.

An important difference between the analysis and design phases of a standard and
those of a product is in the emphasis placed on consistency with existing standards.
A key aim of standards is to provide a framework for software development that is
consistent. There is, therefore, a great emphasis on ensuring that standards comply
with existing standard architectural guidelines and that they are compatible with
preceding standards from the same body. In addition, there is an increasing emphasis
on ensuring consistency between standards offered by different bodies, particularly
in avoiding generating a new solution to a problem that might be solved by an open

solution from another standards body. Therefore the links between the analysis and

93

design activities and the architectural guidelines and open solution of the same and

of separate bodies are strong. A summary of the process for developing service

management interface standards is shown in Figure 3-7. This process model does not

address the development of the architecture used by a Standards Developer. This is

because this is typically a one-off process rather than an on-going one, and therefore

not likely to benefit from a common methodological approach.

f R
Standards Developer
Standard architectural
guidelines
Open interface Technology architecture » Software
standards - statement Vendors
~ e
g o .
e -
S - e ¢ sMs
P e stalement Developers
-~ e \.
Pl
Capture industry
needs / stalement W,
.
<. \,
. b
V \ == Requircments i
i
Standards Developer p pa— statement |
/
!\ / !
Standard architectural ~, '
guidelines |
Py i i
b > " \ !
Functional architecture i \ analysis) i
|
.
o o Service Provid
Technology architecture B 0\ R Request for er
L R L proposals
E S . rd Existing SMS & NMS
NN ,
: o - ~al y K
E D interface . AP & interface
; k standards Interface design / definitions
> Interface definition
N ===
N <,
\\\\\ \\‘ + ’
.
S
Standard acceptance
. J

Figure 3-7: Process Model for Interface Standard Development

3.5.4 Generic Methodological Requirements

The above process models serve to identify the differences between the core

development processes typically performed by the three SMS development

stakeholder types. However, in order to define a common development framework

that is practical for all three stakeholder types to use, the most promising approach

94

may be to focus on where the processes are most similar. Solutions to problems in
these areas will have a higher likelihood of being widely understood by practitioners
in organisations of all stakeholder types, thus enhancing the benefit of a common

approach.

Organisational inertia makes imposing a common development framework across
many different organisations very difficult. Arguments for established internal
processes and architectures often outweigh any move to accept a common
framework motivated solely by the need for smoother interactions with other
organisations. This problem is especially acute when these organisations are of the
same stakeholder type and are mutually perceived as competitors. A more productive
approach to promoting a common development framework, therefore, may be to use
the commonalties identified in the processes analyses, not to standardise those
processes but to identify commonalties in the interactions between stakeholder types.
The approach taken here to synthesising common methodological requirements is
therefore to identify requirements that focus the interactions between stakeholders,
but which accommodate the differences between the processes identified the

stakeholder process models and those within real stakeholder instances.

The process model shown in Figure 3-8 depicts the commonalties between processes
and interactions that exist between the different stakeholder process models. This is
expressed in terms of processes with and interactions between a generalised SMS
development stakeholder and a generalised collaborating stakeholder. The main
differences between the stockholder’s core processes are between standard definition
and software implementation and between bespoke and generic software
implementation, testing and deployment. However, the activities of requirements
capture, requirement analysis and design are similar in all three models. In addition
all three models require these activities to take into account architectural guidelines
and existing solutions both from within the stakeholder and from other collaborating
stakeholders. This common model forms the focus of the investigation of suitable

methodological guidelines for a common development framework. It is used as a

95

template for examining the practicability of different methodological techniques is
the case studies examined in the following chapter.

4)
Generic SMS Development Stakeholder
Internal architectural
guidelines
Functional architecture
Existing Solutions Technology architecture
—
l’,’
[— -
“\
Collaborating SMS Devel g Requirements Reaus
Ll 1
Stakeholder statement t capture
\\
\\
b g Requirements
- statement
Architectural guidelines .\ /
\\\ /
Fi h Reani
L 4 1)
' R analysis
i -
1 g
Technology architecture '_‘ e ‘\
~- g N
R ——~
,,,,,,,, . R Analysis model
N
i R 9/—J
Existing solutions . .
& L Design
J ¥ Design model
_ J

Figure 3-8: Generic SMS Development Stakeholder Process Model

96

4. Case Studies

This chapter describes five SMS development case studies, in which the author has
been involved and has observed, evaluated and in some cases guided the
development methodology used. These SMS development projects were undertaken
as part of three different European Union (EU) funded collaborative research
projects, which focussed on the development of management systems in an open
services market. Each case study reflects a major management system development
cycle in one of these projects. The case studies involve aspects of all the
development phases of an SMS. The case studies were performed by collaborating
teams of between one and two dozen, researchers, analysts and software engineers
drawn from a range of companies, universities and research institutes across Europe.
These case studies, therefore, do not reflect SMS development scenarios operating
under real commercial pressures. They do represent, however, the opportunity to
observe the development of SMS by teams who were committed to the use of
standards and were also willing to both try out new development techniques and

provide feedback on their experiences with them.

The first two case studies relate to the two development phases conducted in the
PREPARE project. This project was funded under the EU RACE II programme and
ran from January 1992 to December 1995. It aimed to investigate issues of applying
TMN to the integration of service and network management in a multi-provider
environment. In these case studies the author participated in a team that evaluated
and refined the methodology used in the project. He was primarily responsible for
publishing experiences and assessments of the methodology for the first phase in

[lewis95a] and the second phase in [lewis95b] and [hall96].

The third and fourth case studies were conducted in the Prospect project. This was
funded by the EU under the ACTS programme and ran from September 1995 to
August 1998. It addressed the integration of service and network management with

service control using a wider range of technologies than then specified in TMN,

97

principally CORBA. Both phases of Prospect followed an explicitly defined
methodology defined by the author jointly with Vincent Wade of Trinity College
Dublin and described in [wade97] and-[wadc98] for the first phase and [lewis99d]
for the second phase. The author, however, was solely responsible for collecting and
evaluating the experiences of the developers in forming the assessment of their

usefulness presented in this chapter.

The final case study is from the FlowThru project. This was also funded under the
EU’s ACTS programme and specifically aimed to study methodological techniques
for building management systems that satisfy business process requirements and
which are constructed from reusable components. This project started in March 1998
and is due to complete in February 2000. The author played a primary role in
defining the methodology and wider development framework used for this project,
as published in [lewis99a] and [lewis99b]. He was also solely responsible for

collecting and evaluating the developer’s experiences from this case study.

Each case study is presented in a separate section. Each section: reviews the context
within which the SMS development was undertaken; describes the development
approach taken; summarises the mechanism to evaluate the approach and presents
results of the evaluation. The description of the development approach for each case
study is supplemented by examples of modelling notations and structures from the

original working documents where appropriate

4.1 Case Study 1: OSI-SM and TMN

This case study is based on the management system development performed in the
first phase of the PREPARE project. The material presented here is based on the
authors contribution to the development experiences reported in [lewis95a] The
PREPARE project was proposed with the aim of investigating network and service
management issues in the multiple bearer and value added service provider context
of a future deregulated European telecommunications market. The specific example
selected for implementation in PREPARE phase 1 was of a value added service

provider co-operating with multiple public bearer service providers to deliver a

98

Virtual Private Network (VPN) service to a distributed corporate customer. In order
that these investigations had a realistic focus a broadband testbed network was
constructed over which the VPN service would be demonstrated. This testbed
consisted of several different but inter-working network technologies. Each of these
sub-networks possessed its own network management system which were developed
according to the principles laid down in the TMN recommendations and using
platforms that implemented of the OSI CMIP mechanism. The investigation of such
a multi-domain management involved the development of an architecture that
allowed these separate network management systems to co-operate in providing end-
to-end management services. This end-to-end architecture was also developed in
accordance with TMN principles. The development approach taken was subject to
the full rigour needed to implement a working system with the resulting management

testbed being successfully demonstrated in public on 8" December 1994.

The make-up of the project consortium added a further importantly realistic aspect to
the case study in that many of the roles played are relevant to the realisation of future
multi-domain management services. The project partners and their relevant roles

WEre:

* A public network operator (KTAS from Denmark), interested in integrating wide

area network management with multi-domain service management.

* A public network equipment vendor (NKT from Denmark), interested in the
management of Metropolitan Area Networks (MANSs) and the management of

heterogeneous network inter-working.

* A customer premises network and management platform vendor (IBM), who
were interested in using their products (Token Ring and Netview/6000) in a

multi-domain environment.

* A vendor of network management platforms (LMD Ericsson from Denmark in
co-operation with Broadcom from Ireland), interested in the application of the

TMOS Development Platform to value added service provision.

929

* Researchers into advanced network management techniques (University College
London and GMD-FOKUS from Germany), interested in applying their

platforms to the multi-domain environment.

* Researchers into multimedia applications (University College London),
interested in the interactions of these applications with service and network

management.

Project partners therefore brought to the project their own specific interests, which
were often overlapping but sometimes different or even contradictory. Therefore,
though not operating in a true commercial environment, the viewpoints of the
Service Customer, the Service Provider (i.e. a value added and a bearer service
provider), the Software Vendor (i.e. management platform vendors) were all
genuinely represented. It can therefore be asserted that the methods chosen in
arriving at this working TMN-based SMS implementation represent those that will
have likely applicability to the SMS development stakeholders. In addition, though
this was a prototype development exercise rather than a standards writing one, the
lack of service management standards motivated the development of interfaces
definitions that would be relatively generic and could therefore form a contribution

to standardisation for inter-domain service management.

4.1.1 Development Approach

The process of defining management services and information models in an
environment that contains several different types of player has received some
theoretical attention at the time this work was conducted but the body of actual
experience with large scale developments was still very limited. The main input that
could be drawn upon at that time was ODP viewpoints, M.3020 and the TMF
ensemble approach. For the first phase of PREPARE there were few examples of
ODP viewpoints applied to management so this approach was regarded as too

immature to apply here.

One limitation of the M.3020 and TMF ensemble approaches for PREPARE was

their overall scope. The project required a methodology that was capable of

100

integrating the service specification, design and implementation phases of the TMN
demonstrator. The scope of these methodologies only covered the requirements
analysis and design processes as they were intended for defining interface standards
rather than building systems to customer requirements. In addition, and of most
significance for PREPARE, these two approaches are designed to support single
interface design. Neither provided support for developing co-operative management

systems with multiple interfaces.

The development team, though influenced by some of these approaches, did not
follow any closely but synthesised its own methodology. A pragmatic approach was
taken that was primarily driven by the experience in management system
development and knowledge of contemporary development methodologies possessed
by the team members. The approach was heavily influenced by the division between
intra-domain and inter-domain management system development. This reflected the
make up of the project testbed that had an ATM Wide Area Network (WAN), an
ATM Customer Premises Network (CPN), a DQDB Metropolitan Area Network
(MAN) and a Token Ring Local Area Network (LAN) all being provided by
different partners. The partners responsible for prox;iding each network also provided
the accompanying implementations of EML, NML and SML OSFs. Each network
type therefore possessed its own TMN up to and including the SML, with each TMN
being modelled as existing in a separate organisational domain. The methodological
approach therefore focussed on the development of the inter-domain interfaces since
this was where partners would collaborate and would therefore gain most benefit
from a common development approach. No attempt was made to prescribe how

individual intra-domain systems were developed.
Against this background the work proceeded as four separate, but inter-linked
activities:

* Scenario Definition: This activity produced a set of scenarios that detailed what
would be demonstrated over the management testbed. Due to the large number of

participants, components and requirements involved, these scenarios were seen

101

as essential in order to focus the work onto a manageable subset of demonstrable
operations while at the same time presenting a coherent description of what was

to be demonstrated.

* TMN Architecture Definition: This activity had to interpret the TMN
recommendations in order to produce a functional architecture that specified how
the OSFs in the different domains should be connected to each other via

reference points in order to provide end-to-end services.

* Management Service Definition: This activity defined a set of services that
operated between the different management OSFs in accordance to the Abstract

Service Definition Convention (ASDC) Recommendation [x407].

* Management Information Modelling: This activity defined the information
models required by the various OSFs interfaces that were involved in inter-

domain relationships, using GDMO.

Due to restrictions of time and man-power these groups contained only a small core
of overlapping personnel and were generally conducted in parallel. It was intended
that the Management Service Definition and the Management Information Modelling
be focussed on satisfying the requirements laid out by the Scenario Definition and on
defining the inter-domain reference points identified in the TMN Architecture

Definition.

At the beginning of 1993 a review was conducted of the work performed in the first
stages of design and its suitability for supporting the subsequent implementation
work. The output from the Scenario Definition activity had described the roles of the
human users and organisations involved in the VPN service as well as the
motivations for the operations they performed. This was supplemented by
descriptions of the commercial service that the VPN provider should provide to its
customers in terms of contractual responsibilities. The TMN Architecture Definition
group had identified the OSF required to provide end-to-end VPN services and the
different reference points required between them. The architecture was structured

according to the management functions types, reference point types and logical

102

layering of [m3010]. The architecture was designed based on the following

principles:
* Each organisational stakeholder, including customers, had its own TMN.

* Organisations which own physical networks have within their TMN an OSF
specific to the particular network technology being managed by that TMN, i.e. a
Network OSF (N_OSF).

* Each TMN has a Service OSF (S_OSF) implementing service management
functions associated with that particular domain, and which takes part in

providing the distributed end-to-end service management services.

* The VPN provider, which did not operate a network, has a TMN continuing only
an S_OSF.

As a result N_OSFs inter-operate with the S_OSFs in their own TMN (via g-type
reference points) and S_OSFs inter-operate with S_OSFs in other TMNs (via x-type
reference). Figure 4-1 presents an overview of the resulting functional management

architecture.

During the architecture definition activity, attention was paid to explicitly addressing
the non-functional requirements imposed by the scope of partners’ interests and the
platforms available to partners, as well as reducing the overall complexity of the
information modelling tasks by minimising the number of inter-domain reference
points involved. By addressing these issues at the architectural stage of the design
process it was found subsequently easier to split the work between relatively

independent groups addressing different areas of the functional architecture.

103

q
DQDB
MAN

- J

CPN Domain PN Domain PN Domain CPN Domain

Figure 4-1: TMN Functional Architecture for PREPARE Phase 1

It was apparent from the review that the scenarios contributed greatly to the teams
collective understanding of the problem while the architecture was generally agreed
upon as being suitable for the implementation of the VPN service. However it was
also recognised that the outputs from the management services and information
modelling groups suffered in many respects. Firstly, these two sets of output were
not mutually consistent nor were they totally aligned with the output of the scenarios
and architecture groups. Co-ordinating this work while running the groups in parallel
had apparently proved too complex a task given the human resources available.
Secondly it was felt that, given the goal of demonstrating the scenarios, the
management service and information model definitions were not complete and did

not contain the level of detail required by the implementers.

Though a combination of the GDMO and ASDC descriptions of an interface were
expected to provide a clear definition of the reference points, there was no formal
mappings between GDMO and ASDC and no automated support for maintaining

such mappings as the two specification were developed in parallel. This made this

104

approach problematic. In addition the behaviour description of individual MOs and
ASDC operations were not sufficient in defining the behaviour of the OSF as a
whole. The development approach was therefore modified by abandoning the further
definition of management services and concentrating on refining the scenario
description. The existing scenarios were refined from a level where they described
enterprise roles and their relationships, to one where the same scenarios were
described in terms of OSFs with detailed definitions of the management information
flowing between them given as sequence diagrams. By adopting this technique, a full
GDMO specification for the inter-domain reference points was quickly arrived at.
This approach also had the inirinsic advantages of ensuring that all information
modelling was directly focused on the desired implementation areas and, through
scenario descriptions, providing an informal but relatively brief description of the

behaviour of the collaborating OSFs.

The entire information model for all inter-domain interfaces was maintained in a
single document referred to as the Implementer’s Hand Book (IHB). It was apparent
that although the aim at this stage of the design work was to arrive at a stable version
of the information model, there would inevitably be changes required to the IHB as
the understanding of the problem grew. For this reason the IHB was maintained as a
living document. This task was made considerably easier with the help of Damocles
a GDMO parsing and checking tool developed by GMD-FOKUS. This was used to
check the IHB for GDMO syntax errors and open references, but more importantly it
assisted in the manual checking for consistency and completeness throughout the
information model. This was especially useful considering the number of partners
involved in contributing to this document. A mechanism for requesting updates or
modifications to the information model was also adopted since changes inevitably

effected more than one partner’s implementation work.

As the IHB became stable and the inter-domain implementation began, the planning
for integrating the various hardware and software components commenced. This was
conducted broadly following the IEEE standard 829-1983 [ieee829] which involved

the generation of Test Design Specifications (TDSs) for all tests that would involve

105

components from one or more partners. When this was performed for inter-domain
management software components some interesting effects were observed. Firstly,
the refined scenario descriptions proved to be ideal templates for defining the
interactions that should be tested, ensuring once again that the work performed
directly supported the final aims of the project. Secondly, the TDSs were written to a
level of detail that defined the actual CMIS primitives that should be exchanged
between the OSFs and the information content required. This process of writing the
TDS to such a level of detail provided much invaluable insight for the implementers
in that it raised many issues that had not yet been recognised and allowed these
problems to be resolved before the implementation work had progressed too far.
These problems often related to the relationships between different MO classes
which supported different OSF management functions, but which were both related
to the same underlying resource. In addition, problems related to differences between
the structure of information at inter-domain reference points and at the separately
developed intra-domain reference points revealed themselves at this stage. This
indicated that the level of detail used at the testing stage should ideally have been
addressed at the design stage.

4.1.2 Evaluation and Results

The evaluation approach taken was purely anecdotal, based on the author’s own
experiences and those elicited during discussions with other PREPARE team

members. The overall development process taken in this case study is depicted in

Figure 4-2.

106

Domain and role
g~ definitions

! Multi-Domain
/ Scenario Definition

TMN Architecture

e Definition Multi-domain Mgt Service
H scenarios DBefinition
1
1
" ——
- - N
TMN functional [-===—==--========== N
architecture |
1
i Mgmt Information \--+---- N \
| Modelling A
: Mgmt service
I\\‘* j specs. (ASDC)
~ .

Mgmt information
ST model (GDMO)

Inter-OSF

Inter-Domain
information flow <---

Dynamic Modelling

Sm———
———

. Implementer’s
Test Case Definition Y————-——=~—=S=————~—-=——==-=--=--=--— Handbook (GDMO)

| Test cases l

|
i
i
I\

Inter-domain
Testing

Figure 4-2: Development Process for Case Study 1

With respect to the SMS development stakeholder model, this case study represents
a green-field situation where there are no existing service management standards or
software products to draw upon and the SMS Developers for different Service
Providers must collaborate to agree inter-domain interfaces on a case by case basis.
However, as the intention was to generate generic reference point definitions, some
of the experiences of this case study could be relevant to the development processes

within the Standard Developer stakeholder.

107

This case study provide some evidence to support the statement in the thesis
hypothesis that development techniques that already exist for network management
system development are inadequate for SMS development. Network management
system development techniques are typically extended from the information
modelling paradigm used for network element modelling, where the primary
modelling activity is the object-oriented modelling of the physical and logical
resources to be managed. When applied to OSI-SM, the resulting managed objects
define the functionality of an agent entity that may be accessed by a manager, i.e. it
is focused on the definition of a single manager-agent interface. This approach is
insufficient for an SMS which, as exemplified in this case study, must typically
operate in an environment of multiple, interoperating functional units that play both
manager and agent roles. Here functional units will exhibit multiple collaborative
relationships, rather than the strict hierarchical relationships typical of network
management. Approaches to defining a single interface, such as M.3020 or the TMF
ensemble approach, are therefore, insufficient for analysing the behaviour of a
service management OSF playing multiple roles and for designing the multiple,

interrelated agent interfaces that implement these roles.

The major methodological problem encountered in this case study was in attempting
the modelling of both the management information and management functions
visible at a reference point in parallel. This problem was exacerbated by the separate
notations used for these models, i.e. GDMO and ASDC. These models were closely
linked, with the structure of information being influenced by the functions required
to be performed with it while the choice of functions was influenced by the
information available. The development of these models should have been much
more closely integrated but this was impeded by the lack of mappings between these

notations.

In M.3020, management services and management functions are both regarded as
reusable entities. However, abandoning the specification of management functions in
this case study precluded their availability for later reuse, possibly at another

reference point of the same OSF. Reuse was therefore limited in this case study to

108

the use of standard ASN.1 types or standard abstract MO class definitions during
information modelling. Reuse of code or binaries was also ruled out in the
implementation stage by the presence of different, proprietary API’s in the various

CMIS platforms used in the project.

Of the modelling techniques that were applied in this case study, the most useful was
found to be the application of scenarios. These aided greatly in the communal
understanding of the multi-domain problems being addressed and in co-ordinating
the individual modelling efforts required for a multi-OSF interaction scenarios that
were required. Finally, it was also found that scenario-based development proved
useful for generating test cases, where test cases were based on the initial scenarios,

but instantiated with specific preconditions and operational parameters.

4.2 Case Study 2: Responsibility and Computational
Modelling

This case study is based on development performed in the second phase of the
PREPARE project. The development experiences reported here are based on work
by the authors published in [lewis95b] and [hall96]. The second phase of the
PREPARE built upon the first phase in terms of the methodological experience
gained, the construction of the management testbed and the user services that
operated over it [lewis94]. The second phase differed from the first in that the
enterprise situation was more complicated, involving more service providers and
more relationships between service providers, with the range of scenarios being
addressed being more ambitious. There was also a change in architectural emphasis
from simply producing service level OSFs in each domain, to adding WSFs with rich
functionality for service and network administrators. It was however similar to the

first phase in that the management architecture had a TMN-based structure.

The enterprise situation modelled a Multimedia Conferencing (MMC) teleservice
provider and a Multimedia Mail Global Store (GS) teleservice provider which
provided their services to users on CPNs. The teleservice providers used the services

of a separate VPN provider to manage end-to-end network resources over multiple

109

public network domains and the CPN domains in support of the teleservice

providers’ communication needs. This management testbed was successfully

integrated and tested and then demonstrated publicly on 30™ November 1995.

4.2.1 Development Approach

Based largely on the experiences of the first phase, it was felt that a more cohesive

development approach was required. The requirements capture, analysis, design,

implementation and testing was therefore performed under one group which would

split into subgroups at various stages to address clearly defined functional areas

rather than splitting into groups addressing the different development activities. The

development approach taken can be broken down into the following activities:

Enterprise Modelling and Scenario Description: This described the
organisational context in which the management systems were required to
operate by identifying the organisational domains and human operator roles and

describing their interactions as a set of scenario descriptions.

Role Specifications: These provided a way of describing in more detail the
requirements of the involved organisations through the definition of
responsibilities for individual roles identified in the enterprise model and a way
of mapping these requirements to lower level management function

requirements.

TMN Architecture Definition: As in the first phase of PREPARE, this defined
the functional architecture of the TMN systems that would provide the
framework for the more detailed design work. This was expressing in terms of
NEF, OSFs and WSFs, their positioning within logical layers and organisational

domains and the identification of reference points required between.

Information Modelling and Information Flow Analysis: This involved the
identification of information required by the management functions identified in
the scenarios and role specification. The analysis is performed in terms of

information models defined for each domain and inter-OSF sequence diagrams

110

showing information flow over the reference points defined in the TMN

functional architecture.

* Design of Functional Units: This involved the functional decomposition and
design of the various OSFs, WSFs and NEFs. The development of the latter is

not discussed further here.

These activities were not addressed is a strict sequence, but to an extent were
interleaved with some being revisited after the initial work on others had provided
clearer insight into the requirement upon them. Each of these activities is now

described in more detail.

4.2.1.1 Enterprise Modelling and Scenarios

This activity identified the organisational stakeholders and their characteristics (e.g.
core business areas), with the focus on the objectives for their involvement in the
scenarios in order to identify the high-level requirements on the system. Scenarios
concentrated on inter-domain aspects, i.e. inter-organisational relationships where
agents of the organisations interacting on behalf of their organisations in specific
roles. To help identify these human roles in a consistent manner, the organisations
were classified by a set of abstract business roles. These were based on a separation
between a service provision relationship and the accompanying commercial
relationship. These relationships are described in terms of business related meta-
roles. For the service provision relationship a service supplier provides a service to
the service user. For the commercial relationship a service vendor provides a service
to a service customer. The following abstract organisational business roles were

therefore defined in terms of the above meta-roles:

* A service consumer is an organisation acting as both service user and customer
with another single organisation acting as corresponding service supplier and

vendor.

* A service provider is an organisation acting as both service supplier and vendor

with another single organisation acting as user and customer.

111

* An indirect service consumer is an organisation acting as service user and
customer but where the corresponding supplier and vendor are separate

organisations.

* An indirect service provider is an organisation acting as service supplier and

vendor but where the user and customer are separate organisations.

4.2.1.2 Role Specifications

This activity aimed to further describe the relationships between these roles that
place requirements on inter-domain management functionality. Role specifications
were adopted as a means of ensuring that the management functionality required by
the role holders in the scenarios was adequately described and provided full

requirements for the inter-domain reference points.

A common role specification template was adopted in order to structure the
description of what the role requires, and to facilitate refinement of the role
specification down to the operations on the managed resources that would eventually
be modelled as MOs at a reference point. This template was based on the work of the
ESPRIT project ORDIT, which investigated the organisational requirements for
information technology systems by examining roles and responsibilities within an
organisation [strens][dobson]. In PREPARE, the ORDIT concepts were adapted for
the specific needs of the role specification work and inter-domain service
management. The role specification template therefore included for each role holder
the responsibilities of the role holder in relation to other role holders. The
responsibilities were then refined into finer grained obligations that needed to be
discharged by the role holder in order to meet the responsibilities of the role.
Obligations were then decomposed into activities that needed to be carried out to
enable the role holder to fulfil the obligations deriving from the responsibilities and
the resources and access rights required to enable the role holder to carry out an
activity. The specific human role holders required for the case study were identified
via the scenario descriptions, and were derived from the abstract business roles. The

identification of role holders was split between those dealing with the contractual

112

and financial aspects of service management and those dealing with the more
technical and operational aspects, thus reflecting the similar separation in the

business meta-roles.

VPN Service Manager
Responsibility #1) Responsibility (to VPN End user Agent) to ensure end-to-end communication paths are set up to satisfy their

communication requirements.

Obligation #1) To ensure end-to-end communication paths are set up between end points associated with the VPN end users with

the QoS requested by the VPN End user Agent.

Activity #1) Request a user stream from the VPN Service Administrator specifying the end points and the QoS
parameters
Resource #2) User stream (create)
Activity #2) Modify user streams as required by the VPN End user Agent.
Resource #1) Termination point (read)
Resource #2) User stream (read, update, delete)

VPN Service Administrator

Responsibility #1) Responsibility (to the VPN Service Manager) to ensure that the sufficient resources have been allocated in the
VPN.

Obligation #1) To reserve requested resources in the public network operator domain

Activity #1) Request that a network link is reserved over the public network operator domain.
Resource #1) Network Link to VPLine mapping and representation (create, read, modify, delete)
Resource #2) Translation point (read)
Obligation #2) To reserve resources in the private network domain

Activity #2) Request or verify that a network link is reserved over the private network operator domain.
Resource #3) Network Link (create, read, modify, delete)
Resource #4) Termination point (read)
Responsibility #3) Responsibility (to the VPN Service Manager) for the end to end communication stream provision and

maintenance
Obligation #3) Receive, verify and acknowledge the request for a user steam

Activity #3) Verify available connectivity reservation
Resource #3) Network link (read)

Activity #4) Allocate reserved capacity in public network operator domain
Resource #2) Translation point (read)
Resource #5) User stream (create)

Activity #5) Allocate reserved capacity in private network operator domains
Resource #4) Termination point (read)
Resource #5) User stream (create)

Obligation #4) Report the request for a user stream creation to customer service administrators.

Activity #6) When subscribed to send notifications on changes in the VPN
Resource #6) User stream creation creation notification (create)

Figure 4-3: Example of a Role Specification for a VPN Service Manager Role

Organisations that acted as a service consumer had a financial agent role holder

broadly responsible for locating new services, subscribing to them, paying the bills

113

and terminating subscriptions. Organisations that acted as service veﬁdors had a
financial agent role responsible for receiving requests for service subscription,
granting or denying the request, sending bills and terminating the service.
Organisations that acted as service users had a service manager role that dealt with
the operational aspects of service usage while organisations that acted as service
suppliers have a service administrator role that dealt with the operational side of
service provision. Each organisation also has an owner role to which the
organisation’s other roles are ultimately responsible and which was included to
ensure the completeness of the role specification set. An example of role definition

for the VPN provider taken from [hall96] is given in Figure 4-3.

4.2.1.3 TMN Architecture Definition

This activity followed the same principles is in Case Study 1. The resulting
functional architecture is depicted in Figure 4-4.

Virtual Private Network

Muttimedia Mail provider domain
Global Store L .
provider domain VPN MJ'tIrTEdl'a Confagwcmg
WSF; provider domain
X VPN
- S 0S
X X X X
(- (7 N\
orn) [CPN NN T PN (PN cPNY [CPAN
wsF [5_OgH [\ S WS s s_Osft s wsh |ls_osF| WsF
q ! q q
Customer Customer
Premises Premises
Nework [CPN PN VPN PN) PN CPN) Network
domain |N_OSH| [{N\WSHIN_Os}{ | IN_OSH| N_WSH [[N_OSF domain
q q qll a q q
NEF NEF || NEF NEF || NEF NEF
TE XC b (o] TE
N
N xc || xc
/ XC' N\
Public Network Public Network
domain domain

XC= ATM cross connect

TE= terminal equipment
NEF= netw ork element function

N
European PNO
ATM Pilot

114

Figure 4-4: TMN Functional Architecture for PREPARE Phase 2

4.2.1.4 Information Models and Information Flows

Initial information models based on the requirements imposed by the enterprise
model and the scenario descriptions were made more concrete by the identification
of resources in the role specification. These initial MO descriptions were expressed
simply as text description of what the MO’s represented. As resources from the role
specifications were associated though role to organisational domains, these MOs
were straight-forwardly associated with the S_OSFs identified for each domain in
the TMN functional architecture. Inspired by its usage in the ODP information
model as applied in TINA, the initial information models were enhanced with OMT
class diagrams showing the relationships between the MOs supported by an
individual OSF, and in some cases the relationships to MO’s in other OSF. An
example for the VPN S_OSF is given in Figure 4-5, with relationships to the MO’s
in the ATM N_OSF shown in grey.

endPoint link

L I resources defined by

- - 2+ terminates .
termination userStre qosSpec
point 2+
I terminates customerPath
terminates 9 tmCbrSps
translation | terminates = |networkLink | related by
point |

related
with

C

networkLinkRelation

lconnectionDescriptor
pvclﬁérface cbrNetworkLinkReiation

gives connection details for

Figure 4-5: VPN Information Model

115

Inter-OSF information flows were then generated and refined, detailing how the
management activities outlined in the scenarios were accomplished by operations on
managed objects. Information flows were described in terms of CMIS message flows
between OSFs. Thus they identified the MOs present at a reference point, which
operations were performed on them, and with which attributes and values. An
example information flow taken from [hall96] is shown in Figure 4-6. The
information models and flows were designed in an iterative fashion, since
information flows identified missing information that needed to be included in the
information model specification and subsequently verified through updated

information flows.

116

VPN customer VPN Provider PuNOt
OSF OSF

CREATE REQ userStream

id=systemld=VPNprov@linkld=userS ream!

srcEndPoints= { systemid=PrNO1@e tdPtld=termR1}

dstErdPoints= {systemld=PrN02@ei dPtld=termR1, PrNO2@termP 3

CREATE CONF userStream o

CREATE REQ atmCbrSpec

Kk)=systemld=VPNprov@inkid=userS eamt @qosSpecld=atmCbrSp(2
maximumBandwidth=1000000
cellDelayVatiarx:e=1

CREATE CONFatmCbrSpec p

CREATE REQ virtual Une
id=systen=PuNO1 @virtualUnr d=vp1
endPoints={ ~ {0x0401, null}, 0x0501, null}} 0

CREATE CONF virtualUne
endPoints={[0x0401, vpt=1({00501, vpi=20}}
Q
CREATE R 0 userStream
id=systemir =PrN01 @jinkld=userStream1
srcEndPoln >={ systemld=PrNO1 @endPtid-termf t;
dstEndPoini >={systemld=PrN02@endPtid=temP 1, systemld=RN02©endPtld=t »mPt2}

CREATE CONF userStream A

CREATE R 0 atmCbrSpec

id=systeml(=PrNO1 @linkld=userStream1 @qosSp 9C=atmCbrSpec2
maximums ndviridth= 1000000

cellDelayVi iance=1 A

CREATE ;ONF atmCbrSpec

CREATE R ;Qpvcinterface

id=systemi< =PrNo1 @endPtld=trans1©connection Descriptorid=pvcinterace 1
userStream Supported-userStreamt

localEndPtl st= {systemld=PrNO1@endPtld=term 11}

remoteEnd| tiist= {systemid=PrNO2@endPtld=ter nR1}

networtdJnk Jsed=netUnk1

vd=1 vp =10 pvcDirection=inAndOut

CREATE SONF pvcinterface

CREATE R ;Qpvcinterface

Id=systemic =PrNo1 @endPUd=trans1©connection Descriptorld=pvcinterace2
userStream)upported=userStream1

localEndRL st={systemld=PrNO1@endPttd=term t1}

remoteEndF Blst= {systemld=PrN02@endPtid=ter nR2}

networlrlUnK Jsed=netUnk1

vei=2 vpi=H pveDirection=inAndOut
CREATE Cl INF pvcinterface

EVENT id=! ystemld=PrNO1 @linkld=userStream1
stateCtiang)={operationalState=enabled}

CREATE REQ userStream id=systemld=PrNO2@linkld=usefStream1 ...

CREATE REQ atmcbrSpec ...

CREATE REQ pvcinterface... w
P

CREATE REQ pvcinterface...

A m

EVENT id=systemld=RN02© nkid=userSlream1
E O stateChange=(operationalStatf =enabled}

AN T userStream! id=syst mld=VPNprov@linkld=userStre iml
stateChange={operatk)nalState=enab 4

Figure 4-6: Example ofInformation Flow Sequence Diagram for the Creation ofa
VPN User Stream

117

4.2.1.5 Management Function Design

The functionality of the OSFs identified in the TMN architecture was generally
governed by the requirements of the scenarios and role specification and the
resulting functional interactions across reference points defined in terms of the
information models and the information flows. Once this level of detail had been
achieved the functional design of individual OSFs was left largely to the judgement
of individual designers. In a few cases, however, where OSFs developed by different
partners shared common functional requirements, a more fine-grained approach was
taken to the functional decomposition of the OSFs. This work took an object
oriented approach loosely based on the ODP computation viewpoint as applied by
the TINA-C. This involved defining functional building blocks that addressed
specific functional areas, e.g. billing or customer interface functions, and that could
be used in different OSFs. These building blocks were then further decomposed into
computational objects (COs) that provided both the functional structure of the
building blocks and the interfaces offered by this functional building block to other
functional building blocks in the same of separate OSFs. The COs were defined with
multiple interfaces to explicitly differentiate between the functions and access rights
required by the different roles played by OSFs as identified in the role specifications.
The final design then consisted of mapping these COs onto engineering objects that
implemented the OSF functionality. Where this was performed, it was done so in a
proprietary manner as described in [tiropanis97], i.e. proprietary APIs were defined
for CO implementation interfaces. Within a TMN platform, inter-OS communication
is performed by creation, deletion or attribute change operations on MOs
implementing an OS’s interface. All internal CO communication, however,
potentially all could be via invocations on the proprietary CO interface APIL
However, in order to efficiently integrate inter-OS and intra-OS interactions, most
communication between COs was performed by one CO operating on MOs and
others receiving notification of this using the same mechanism used to generate
inter-OS CMIP notifications. In other words the COs communicated via an MO-

based notification mechanism using the existing internal CMIS event forwarding

118

discriminator mechanism. Hence the propriety inter-CO API was implemented
through operations on existing MOs and only through direct invocations or CO
interfaces when no suitable MO definitions existed in the reference point definition.
The definition of the COs used an augmented version of TINA’s ODL. An example

of the textual part of this notation for a single COs is shown in Figure 4-7.

COMPUTATIONAL OBJECT_CLASS e2eResourceAllocationMgr
SERVER_INTERFACES

NAME csmControllnterface
CLIENT_INTERFACES

NAME statusInterface
BEHAVIOUR

END_TEMPLATE

COMPUTAIOTNAL _INTERFACE csmControlInterface

OPERATION createUserStream
OPERATION deleteUserStream
OPERATION modifyQos
OPERATION addSourceEndPoint
OPERATION removeSourceEndPoint
OPERATION addDestinationEndPoint
OPERATION disableuserStream
OPERATION enableUserStream

BEHAVIOUR

END TEMPLATE::

OPERATION createUserStream
INPUT PARAMETERS
sourceEndPoints: SET OF endPoints
destinationEndPoints: SET OF {SET OF endPoints}
qualityOfService: SET OF REAL
OUTPUT PARAMETERS
userStreamId: OBJECT IDENTIFIER
RAISED EXEPTIONS
BEHAVIOUR

END_TEMPLATE

119

Figure 4-7: Example of CO Textual ODL Definition

An example of the graphical notation of ODL showing the decomposition of the
VPN S_OSF and WSF into COs grouped as building blocks is given in Figure 4-8.

VPN Customer Service Manager WSF

e2eCustomerServiceManagerGui
I

-

E e2eEndPointMgr k

|
e2eResourceReservationMgr F e2eStatusMgr

T

e2eResourceAllocationMgr

VPN Customer OSF

Figure 4-8: Example of ODL Diagram Showing COs in an OSF and a WSF

In cases where an organisation played more than one business role, its service layer
OSF was decomposed into OSFs performing individual roles, e.g. the multimedia
conference provider domain contained S_OSFs for both the VPN customer role
functions and MMC provider role functions. This allowed OSFs to become units of
reuse, e.g. the VPN customer OSF was instantiated in several organisational
domains. From the computational viewpoint, such a reusable OSF was represented
as a single building block. As roles had been defined along lines reflecting functional
divisions in service management, e.g. separating out roles for service provision,
accounting management and resource/network management, then the OSFs also

reflected this natural split, which assisted in their reuse.

In mapping several OSF reference points into a single OS interface, the useful split
between the different manager role related functions offered by the OSFs was lost,
i.e. the different functions of separate OSF roles were not visible in the

corresponding OS’s agent interface. This was addressed in the project by defining

120

MOs that would form the head of the naming tree of MO which reflected the abstract
business roles played by the constituent OSFs at that interface. Instantiating such
MIB sub-tree for each business relationship that fulfilled an abstract business role
provided a mechanism for naming and locating required portions of a service
management interface, ensuring that role separations had operational significance.
As the testbed included platforms that supported combined X.500/X.700 global
distinguished names could be used for MOs, e.g. (cs=uk, o=ucl, ou=cs, system=vpn-

os, indirectProviderSvclnstance=cust1, userStream=us1)

WSFs provided the representation of systems and sub-systems as relevant and
needed by a role holder, taking various concerns into account. The WSF’s design
depended to a large extent on platform technologies, in that such platforms often
have individual style guides prescribing many aspects of the GUI, for instance use of
colours and maps, window layout and menus. The role specifications, however,
provided important indications of what was to be represented on the screen (the
resources the role holder managed), and the capabilities over these resources which
are available to the role holder, which for instance provided indications of the

contents of menus associated with each resource.

4.2.2 Evaluation and Results

The effectiveness and usefulness of the various methodological and architectural
techniques use in this case study were assessed both through the author’s own
experiences in leading the working group that performed the analysis and design of

the system, and through informal discussion with and feedback from the developers.

This case study represents a small increment on the first, dealing as it does with a
refinement of the same multi-domain, TMN-based system. However it introduces
two new development techniques were introduced: the modelling of responsibilities
during requirements analysis and the use of computational modelling in the design
activity. These are summarised in Figure 4-9, which highlights the difference to the

process used in the first phase of PREPARE.

121

Domain and role
definitions

Multi-Domain
Scenario Definition

TMN Architecture
Definition

Multi-domain

. .
|' scenarios . Definition
i ™
! |
\ 4 : .
N
TMN functional 3
architecture |
\
; Mgmt Information N S N \
| Modelling N J
: Role
. Specification
\‘~‘\ /”’
\\\ Pl
‘\\ Mgmt information
o Pt model (GDMO)
N
L
) Inter—pSF < Inter-Domain
information flow - Dynamic Modelling ~ f~-~_____
B N
% [T
=
i i
' 1
: v
v Computational | _____ p| COandbuilding \mplementer’s
Test Case Definition Modclling block defns (ODL) Handbook (GDMO)
-

-
-
-

————————

————

| Test cases

I

1

]

i
~

Inter-domain
Testing

Figure 4-9: Development Process for Case Study

As with Case Study 1, the M.3020 and the TMF ensemble approach were not found

to provide sufficient guidance. Both approaches assumed that only

2

a single manager-

agent interface was being addressed and thus were able to make information

modelling subservient to the functional decomposition, forming only the last part of

the methodology. This makes these approaches vulnerable to the type of problem

observed with other methodologies driven by functional decomposition, e.g.

diffusion of control of data. Therefore, some of the potential benefits of object-

122

orientation gained from the use of GDMO, such as information hiding, are not
necessarily present in the design of a MIB and therefore not of potential benefit to its
implementation. Where the problem at hand involved manageable resources being
represented on both sides of an interface, as was the case in the design of the
PREPARE VPN to CPN interface, information modelling must be promoted to an
earlier stage in the analysis and design process than offered by M.3020. This allows
the functional decomposition of both manager-agent interfaces to be informed by the
informational composition of the problem, and also aids in ensuring the consistent
management of information between the two entities communication over the

interface.

The use of responsibility modelling was found to compliment rather than negate the
usefulness of scenarios. Scenarios described the sequence of events that may occur
over time between a set of organisations and management users. In practice this
technique was used in the case study largely to help clarify the complex situations
where there were interactions between two or more organisations were involved.
Responsibility modelling identified the responsibilities a role in one organisation had
with respect to a role in another. Responsibility modelling therefore focused on the
set of one-to-one relationships between organisations, thus not revealing the multi-
domain interaction view given by scenario modelling. However, role specifications
tended to lead to a more comprehensive set of requirements on the individual OSFs

than was obtained from the multi-domain scenarios.

The mechanism for refining these respective models led to a consistent view of the
design of the various OSFs and their inter-domain reference points. Scenario
modelling was refined by applying the scenarios to the functional architecture
overlaid on the organisational structure, and thus revealed inter-domain OSF
interactions. As observed in Case Study 1, this was helpful in modelling information
that had to span more than one domain or that had to be exchanged between
domains. The scenario-based interactions were refined down to the level of inter-
OSF sequence diagrams showing the CMIS operation needed to perform a scenario

or portion of a scenario. This was regarded by developers as a key design tool in

123

evolving the OSF reference point definitions into GDMO specifications, in contrast

to its application in Case Study 1 which was restricted to test case development.

The refinement of responsibilities into obligations and then into activities and
resources using the ORDIT technique was not so well received by developers. This
tended to be performed in a bottom-up manner once some indication of the resources
in each domain had been formed during information modelling. However, it did
prove useful in providing a consistency check between the functionality required
from a domain’s S_OSF in order to satisfy its contractual responsibilities and both
the information held by that domain and the operations that were permitted on that
information, i.e. create, read, delete, modify. This could therefore identify some
information and operations that a domain must offer at an interface that may not
have been identified by refinement of the more narrowly focussed scenario

descriptions.

The computational modelling introduced in this case study addressed the
decomposition of OSFs into functional units that were both more manageable and
potentially reusable. TMN allows OSs to be composed of multiple OSF in order to
achieve a more fine-grained functional decomposition, as demonstrated in
[griffin96]. However the interfaces to such OSs still have to be expressed in terms of
MO classes and manager-agent operations. Whether OSFs can be implemented
efficiently and flexibly as a reusable functional unit within an OS depends on the

structure of the TMN platform used and is not addressed by the TMN standards.

The functional decomposition approach used drew heavily from TINA concepts of
computational modelling where the unit of functional decomposition was the
computational object. Though the ODL notation was helpful in defining the different
interfaces that objects offered each other, these interface definitions did not map well
to their physical implementation within an OS. The solution adopted, i.e., using MOs
to propagate notifications between COs, offered the advantage of being very flexible.
New functionality could be added by introducing a new CO that simply listened to

MO operations made by existing COs that need not be aware of the new CO. This

124

represented a high degree of decoupling between COs which could potentially be
exploited in their reuse elsewhere. By convention individual computation objects
were given responsibility for specific MO classes. However this relationship was not
directly supported by the management platform or by the ODL notation so therefore
it was not possible to ensure that only certain MOs were accessed by a CO. The
reusability of a building block of COs was therefore linked to the presence of
specific MO class implementations, which is not expressed by the ODL definitions,

thus making reuse more problematic.

Finally, it should be noted that though notations from TINA’s application of the
ODP viewpoints were used in this case study, the ODP concept of consistent,
orthogonal viewpoint were not explicitly applied. The next case study provides an

example of such a development process.

4.3 Case Study 3: ODP Viewpoints

This case study is based on multi-domain SMS development that occurred as part of
the first development phase of the Prospect project. The methodological approach
has already been reported by the author in collaboration with others in [wade97] and
has been disseminated by the EU’s ACTS programme as a guidelines recommending
best practice to industry [wade98]. This case study presents the author’s own
contribution to this work. The example used for this case study is the development of
a multi-domain subscription management service for a Tele-Educational Service
(TES) provider. The tele-education service being managed is composed of several
Multi-Media Tele-Services (MMTS) provided by separate service provider, i.e. two
different WWW-based information services, a multimedia conferencing service and
a VPN service and ATM service. The systems developed were successfully trialed

by multiple users across a pan-European ATM network in March 1997.

4.3.1 Development Approach

The Prospect consortium mostly consisted of members from the PREPARE project

so the development approach was able to draw upon the experiences described in the

125

previous two case studies. However, the SMSs constructed for this project were
implemented using CORBA platforms rather than CMIP ones. In addition, the SMS
were not designed from scratch but were heavily influenced, together with the
service delivery systems, principally by models from the TINA Service Architecture.
The use of ODP viewpoints in the documentation of the TINA Service Architecture
motivated the adoption the viewpoints in the development approach. The
development approach is described here in terms of the main processes of interest,
i.e. the modelling the business requirements for the multi-domain context, the
modelling of TINA systems as reusable components and the design and

implementation of the SMSs that use these components.

4.3.1.1 Business Modelling

This activity used the same ORDIT based techniques used in PREPARE, which were
based on the identification of business roles and the responsibilities between them,
alongside scenario descriptions. Figure 4-10 is the OMT diagram used to summarise
the organisations, their roles and the contractual relationships between the
organisations. The contracts were defined by the aggregation of the responsibilities

identified between the roles.

126

TES Provider

TES 1+ I Contrac! ” p—
- - . n en
Customer J responsible to Provider Role responsible to Provider Role

responsible to
Integ. MMTS
Manager Role
responsible to
1
:
MMTS
Provider
(Legend \
Enterprise Object
VEN D representing a stakehoider
q p—
" i responsible to
p leto | Provider P TES TeleEducational Service
Provider
MMTS MultiMedia Service Provider
¢.g. Multimedia Conferencing

Service Provider, Multimedia mafl
Global Store Service Provider

Figure 4-10: Contractual Relationships Between Stakeholder Organisations

The scenarios descriptions were first defined as use case descriptions for the
customer, provider and end user roles of the TES stakeholder. Use cases described
the interactions of a user role with the multi-domain system as a whole with the aim
of performing some task of value to that user. Examples of such use cases were;
subscription to the TES, inclusion of a customer network site in a TES subscription,
authorisation of a TES end user and the actual use of the service. To assess the inter-
domain implications of these use-cases, i.e. the requirements they placed on the
different stakeholder organisations in the enterprise model, high level sequence
diagrams were drawn up to help define the information that needs to flow between
the different stakeholder and roles. These were equivalent to the scenario
descriptions performed in the previous two case studies in that they revealed the
required inter-domain interactions. An example of such a diagram for the “authorise

a TES end user” use case is shown in Figure 4-11.

127

TES CRN TES TES MMC MMM HT VPN VF

user admin customer provider provider provider provider provider provider

i authorise ijser
S i contract ID, ¢
I user ID(e.glemail address|

1 authorise u| r I I 1 1
I user ID(e.g. énail address#.

[authorise u”r |
I 1 I useriu(e.g. “maii addrell). |

authorise uier
I user ID(e.g. ipmail addres|).

j”*ack authorise end user
i user servie# ID
i user passvwdrd

Figure 4-11: Scenario Sequence Diagram Showing Information Flow Between

Stakeholders for a Use Case

4.3.1.2 Reuse ofExisting Models

Pre-existing management system specifications were analysed to see if they could be
reused in meeting these functional requirements. However, in the particular service
management areas covered by the requirements, little was available in the way of
existing specifications, either from the TMN series of recommendations or from the
TMF information agreements. The TINA Consortium, however, had been examining
areas of service management in detail as part of its Service Architecture. This
provided, amongst others, a generic model for service access and session control.
This session model was integrated with a subscription management model for
determining which users could access which service from which network terminals
and an accounting management model of collecting data on individual user’s service
usage and transforming this into billing information. This service access and service
session model, subscription management model and accounting management model
where selected as the basis for common reusable component specifications that
could be used in the TES, MMTS and VPN stakeholder SMSs. However, the TINA
Service Architecture models assumed only a single provider offers services to

customers, whereas the use cases placed requirements on the TES system to integrate

128

the MMTS offered by other providers into a single service offering. This required the
extension of the TINA specifications in order to deal with the resulting inter-domain

interactions.

The TINA Service Architecture models were based on ODP concepts, and consisted
of:

* An Information Viewpoint model in terms of information object (IO)
descriptions in Quasi GDMO together with OMT object diagrams to express the

relationships between the objects.

* A Computational Viewpoint model in terms of computational object (CO)
textual definitions in ODL together with ODL diagrams showing the client server

relationships between objects.

These information and computational models were therefore used as the basis for
developing design models that satisfied the requirements presented by the business
model and from which the components and systems could be implemented. It was
found, however, that the TINA design specification in the form of these two
viewpoints was inadequate for this task. This was primarily due to the lack of an
explicit linkage between the two viewpoint models, i.e. the mapping between I0s
and COs was not presented in the TINA specifications in any clear manner. This
prevented both a clear understanding of the system and hid the overall object model
needed to implement this system. The first step to resolving this problem was to
generate sequence diagrams describing the flow of information between COs.
Though such diagrams were present in the TINA Service Architecture, they were
presented as selected examples of the application of the models, rather than
depicting the general usage of the models. The use case based sequence diagrams
illuminated the general dynamic behaviour of the model in satisfying the system’s
requirements, and in the process clarified the relationships intended between the COs

and IOs and their behaviours.

As COs are taken to be units of object distribution, some mechanism was required to

map CO definitions to a form suitable for implementation on a distributed platform.

129

TINA assumes a DPE that provides distribution transparencies for engineering
computational objects that implement the COs. However, no practical
implementation of the TINA DPE platform implementation was available to the
project. Instead a commercial CORBA 2.0 implementation (Orbix from Iona) was
chosen as the platform for the SMS. This required mapping between the multiple
interfaces of a TINA engineering computational object to the single interfaces of
CORBA objects as suggested in [kitson]. This mapping exploited the similarity
between ODL and CORBA’s IDL, with ODL CO interfaces being mapped to
individual IDL interfaces definitions, which were grouped in modules mapped from

CO definitions.

4.3.1.3 System Development

As the design of the TINA Service Architecture subscription management
component had been presented as a set of IO and CO definitions, and since the
relationships between these sets of objects have been clarified through detailed
sequence diagrams, the design of the stakeholder systems that use these components

used the same modelling approach.

Figure 4-12 shows the OMT object diagram for the subscription management
component together with its relationship to the additional IOs (shown shaded)
needed to satisfy the multi-domain requirements of the TES SMS. The intention of
these extensions was to support the functionality required, while preserving the

integrity of the existing component’s information model.

130

BsResponsiblefor

Subscriber
decountoo
Tim e
pddress
Teofgrougs
driff

credit

Service Template

Mapping

Service Template
syl

STetype
sve_provider_ id
sve_ctomomoon_date
sessiontype
svejecetoryred

sve_specific_part

Figure 4-12:

A similar approach was taken when modelling how the subscription management
component’s computational model would be applied to the TES SMS design. It was
deemed useful to retain as much as possible of the interface definition of the existing
COs when developing the extensions required. In this way components designed to
interact with the original CO interfaces of the component (SubMgmt in Figure 4-13)
could also interact with the extended SMS (SubMgmt* in Figure 4-13) with
minimum modification. This was performed simply by designing SubMgmt* as a

wrapper for SubMgmt, with the new COs introduced to implement this wrapper

Subscription

Subscription Portfoiio

vo_of_sud

seriptions

monthly charge
ot Subcontractor Portfolio

paymoentres

uthority lim it

Subscription Contract

svold

petualstarnt

reguestedstart

requested by

billing vontact_pt

teeh _contactjd

bosie T arriff

vserP lan

charging policy

svejd resen

term _suppor

tation

petv orksupport

sllow Serviced veessFron

SResponsiblefor

Service Provider

Service Profile

P_Service Profile
s profile il

cetivation _state

[subset]

Terminal

131

Mapping

SAG Mapping

Subscription Assignment Group
groupld

groupsize

groupdescription

term inaltype

Taplype

Network Access Point User

Extended Subscription Management Information Model

(shown shaded in Figure 4-13) inheriting IDL interfaces from COs in SubMgmt. The
SubMgmt* COs provide the functionality needed to interact with SubMgmt
components as used in the subcontractor’s domains, thus exploiting the same CO

interfaces and minimising the complexity of information transformation that needed

to be performed.

A Cust Service A
MUAP Customer

Domain
AProv Service A
MUAP Provider

Domain

SubMgrr t*
SRP SMP
SubMg mt
SubRgs SubMgr
AConf
Mgr SCSO
UA 4 SubAgt STH
1
BProv Service B
MUAP Provider
SubMgr SS GO Domain
SubRgs SubMgr
B_Conf
Mgr SCSO
SubA gt 4 STH

UA

Figure 4-13: Extended Subscription Management Computational Object Model
(ODL)

132

Objects in the original TINA specification, the SubMgmt* COs were documented as
a detailed block diagram identifying the specific server interfaces offered by the CO
using the IDL interface names. In addition the other COs to which the CO was a

client were also identified. An example of this notation is given in Figure 4-14.

Cust Prov | SMP
MUAP MUAP

] |_rgsPrpgnMgmt
|_srphnit |_sprSubscrnCn | srpMgmt |_tgsPrpgninfoQuery

Subscription Registration Propagator (SRP)

-

SubRgs

Figure 4-14: Example of Detailed CO ODL Diagram for SRP CO

Such diagrams were accompanied with details of which IO0s the CO had
responsibility for and descriptions of the functionality provided by the different
interfaces. As with the original TINA COs, sequence diagrams showing interface
interactions between the SubMgmt* COs were used to develop these interface
definitions and clarify which IOs are held in which COs. An example of such a

sequence diagram is given in Figure 4-15.

133

Service A Provider Domain Service B Provider Domain

/ N/ \
A Cust A Prov UA SPR SMP SubRgs SubAgt SubMgr A_Conf B_Prov UA SubRgs SubAgt SubMgr B Conf
MUAP MUAP Mgr MUAP
I_saghigmt
Sub 16
Sub 16
DONE

1_srpSibscrr|Cntrl

assign | j
Sub 13
I_prp|ninfoluery
getS Mappir|
sagu3 |
Sub 13

DONE

Figure 4-15: Example ofSequence Diagram Showing Interactions between COs

The functionality covered by these sequence diagrams was taken directly from the
use case information flows used in the analysis, thus providing a mechanism for
ensuring that the requirements were fully met by the design. Figure 4-15 shows the
interactions that implement the use case information flows of Figure 4-11. As
sequence diagrams showing interactions between multiple COs in multiple domains
could easily become large and complex, a nesting notation was used to refer to
sequences of interactions that were represented in other diagrams, e.g. the boxes
marked Sub_16 and Sub_13 in Figure 4-15. This form of nesting sequence diagrams
also simplified the drawing of situations were sequences of interactions were
repeated. The boxed numbers referred to accompanying notes that explained each
significant interaction in more detail, in particular, referring to their effect on 10s

contained within the COs shown.

134

As well as proving essential in clarifying the behaviour of CO interfaces and their
internal operations on IOs, the sequence diagrams were also found to be ideal for
producing test documentation. Integration tests performed between components
implemented by different developers were specified by defining pre-conditions and
post-condition values for IOs at the beginning and end of sets of interactions
represented on an sequence diagram. Values were also provided for the parameters
of interface operations performed, so that appropriate test harness software could be
developed and operated. This was especially important where interactions involved a
chain of several COs, and these needed to be tested individually and in small groups
before finally being able to test the complete end-to-end interaction. This involved
the definition of test cases at a finer level of granularity than those derived directly

from the system level use cases.

4.3.2 Evaluation and Results

This case study provides evidence on the usefulness of techniques such as use cases,
OMT graphical object modelling and ODP viewpoints as practised by the TINA-C.
The reactions of the developers to these modelling techniques was gathered though a
group discussion. The discussion was chaired by the author and was driven by the
review of the answers participants had given to a questionnaire in the weeks prior to
the meeting. This questionnaire elicited views from the developers on the usefulness
of the modelling techniques used in: capturing and revising requirements; defining
the enterprise model; writing scenarios; designing the components and SMS using
the ODP information and computational viewpoints; implementing the system using

a CORBA-based engineering viewpoint and testing.

The general structure of ODP viewpoints was applied in this case study. The capture
and analysis of requirements was classified as enterprise modelling, the design of
both the individual stakeholder’s SMS and of the components used within them was
conducted using the information and computational viewpoints and the
implementation was guided by the engineering viewpoint. The activities used in

developing the systems and components are summarised in Figure 4-16.

135

TINA Service Architecture
Domains, roles and contracts (quasi-GDMO & ODL)
(OMT & ORDIT)

1
/
7
/ , 0O definitions
/I ,/ (ODL diagrams & IDL)
,I ,I,’ '
7
/ ’,’ ______________ Q0 level sequence
> K
Test Case
Definition

Tet Dsig o Tesing »
Specification

Figure 4-16: Development Process for Case Study 3

The dual requirements capture approach of responsibility modelling and scenarios
modelling was retained from Case Study 2. An intervening stage was introduced
however, where use cases describing tasks performed by the human roles were used
to motivate individual scenarios. In addition, the organisational stakeholders, the
business roles they play and the contractual relationships between them were
modelled using OMT class diagrams. The reaction of those performing the enterprise
modelling was that, though the identification of responsibilities between roles was

useful, the refinement into obligations, actions and resources was difficult to perform

and relatively unhelpful. This was due to the design being based to a large extent on
existing specifications, so that the freedom provided by this top-down approach was

not available, and merely served as a consistency check.

The reuse of TINA models was exercised at both the SMS design level and at the

level of the components that made up these systems. For both, the ODP information

136

and computational models were used though several methodological problems were
experienced by the developers in using the two viewpoints. The major problem was
in relating the two viewpoints to each other. It was found that the notations used in
TINA did not provide adequate support for mapping model elements between the
two viewpoints. This was found to be necessary in order to gain a complete
understanding of the designs being used. The TINA specifications used, therefore,
had to be supplemented by interaction diagrams to gain a fuller understanding of the
mapping between objects given in the two viewpoints. This was still only an
implicit, rather than explicit mapping, and was difficult to maintain when changes
were made to models in either viewpoint. As models in the two viewpoints were
closely coupled, changes in the information model often resulted in changes in the
computational model and vice versa. Similar problems were encountered when
developing new designs using the two viewpoints. Modelling using OMT for the
information model, ODL for the computational object and sequence diagrams for
dynamic models made the use of CASE tools difficult. Where CASE tools were
available, their use was found to be very beneficial to the developers common
understanding of the design [neilsen]. This was performed using the available set of
OMT object, dynamic and functional models rather than the ODP-oriented models
used in the rest of the project. The division between the two viewpoints, therefore,
was found to be a barrier to the developers’ comprehension of a design and made the
task of. consistency checking an onerous one. Developers tended to be most
interested in the computational viewpoint, since this was the one in which interface
agreement to other sub-system were defined and which had a major impact on
interoperability. The agreement of IDL interfaces was therefore seen as the most
crucial collaborative design activity. Other aspects of the engineering viewpoint
were not actively addressed as the implementation of location and access
transparencies and the underlying communication protocol were provided by the

ORB.

From this case study we can conclude that ODP suffers in several respects. The

mapping of viewpoint concepts to practical development notations for SMS

137

development was not sufficiently defined. Also, as discussed in Chapter 3 there is a
general lack of consistent guidance on a suitable development process for actually
applying ODP modelling constructs to the development of SMS. Developers,
therefore, have to define their own process, as was the case in this case study.
Finally, consistent with the other conclusions, there is little tool support available for
development using ODP viewpoints in commercial CASE tools. Due to the close
coupling between the information and computational viewpoints, such tool support
is essential for the seamless transition between viewpoints and for automatic

consistency checking between them if this technique is to be applied successfully.

4.4 Case Study 4: Developing SMS with UML

This case study is based on the second phase of the Prospect project. This was based
on the same tele-education service as the first phase, with the resulting multi-domain
SMSs also being demonstrated through user trials. Several trial systems were
developed in this phase, each demonstrating a different multi-domain business
scenario. These scenarios aimed to show how SMS could be constructed to flexibly
support multiple business scenarios and how service management components could
be reused in different stakeholder’s SMS, across these different business scenarios.
A review of the approach taken has been published in [lewis99d], the author’s
contribution to which forms the basis of the following section. This phase of
Prospect was also subject to a more in-depth evaluation of developers’ experience of

the methodology, performed through a questionnaire. The results are presented in the

subsequent section.

4.4.1 Development Approach

The development approach followed was heavily influenced by the methodological
experiences of the first phase as presented in Case Study 3. The principle result of

this was that two modelling processes were explicitly identified in the development
of SMS:

138

* Multi-Domain Modelling: This captures requirements of management tasks
involving more than one organisational domain. It therefore focuses on

supporting inter-domain interactions.

* Single-Domain Modelling: This captures the management system requirements
and design for a specific organisation. It therefore focuses on intra-domain

interactions.

These processes are not independent, so the approach taken supported the alignment
of requirements and interface definitions between a multi-domain model and the

related single domain models.

In addition to these two modelling processes, the approach taken also explicitly
addressed the modelling of components. Components were treated as separate
entities from multi-domain or single-domain systems on the assumption that they
may be developed by third party vendors and will, therefore, have distinct
development life-cycles. This approach had to support the introduction of separate
component models into the development of multi-domain or single-domain systems.
This case study, therefore, provides a close match to the generic SMS development

process model of Chapter 2.

The recognition of the presence of distinct development stakeholders, which was
reflected by the collaborative nature of the project, highlighted the need to support as
much as possible the communication of models between different developers. The
emerging UML standard was therefore selected as the primary modelling notation
for the development approach of this phase of Prospect. This decision was justified
by the broad range of modelling constructs it supports including ones similar to
those familiar to developers from the first phase of the project. The support for UML
by commercial CASE tools which were used in the project, such as Paradigm Plus
and Rational Rose, was also a major motivating factor. To fully support the
development cycle of the required SMS, detailed design specifications and

specifically interface definitions had to be in technology specific languages, in this

139

case IDL. The CASE tools used already supported mappings from UML class
definitions to IDL.

The development process used aimed to provide a common approach to iterating
through the development of management systems, whether they were multi-domain
systems, single-domain systems or components. As proposed by this thesis, in this
case study it was expected that, by following a common well understood process and
notation regardless of the type of system being implemented, communication
between developers of these different types of systems would be facilitated. The

process adopted can be decomposed into the following steps:

¢ Definition of the system business model, identifying the business stakeholders

and roles together with their responsibilities and obligations to each other.
¢ Functional requirements capture by use case analysis.
¢ Identification of system information in terms of objects and their relationships.

* Functional decomposition of the system into sub-systems, including
identification of pre-existing, reusable components, the definition of external

interfaces and interfaces between sub-systems.
* Definition of distributed platform structure and required services.
* Definition of test specifications.
¢ Implementation and integration of components.

* Testing of sub-systems, sub-system integration testing and testing of external

interactions.

The process and notation is discussed in the section in terms of their application to
multi-domain system modelling, component development and single-domain SMS

development.

140

4.4.1.1 Multi-domain System Modelling

The enterprise model for a specific business scenario was represented using UML
object diagrams. The objects in the enterprise model diagrams were instances of
classes from a general enterprise model, shown in the class diagram in Figure 4-17.
In this general model classes representing roles and stakeholders are differentiated by
their class stereotypes. The general enterprise model defined a set of roles and
stakeholder that were thought likely to be present in multi-domain, open service
management scenarios. However, this was principally performed to clarify the
context of Prospect’s work, and other general enterprise model classes could be

equally valid in different situations.

eholder}0..*
customef————buys services fro

1 17

<<S

eholder}!
providef]

supports role supports role

0..* 0..*

—

<<role> <<role>3}
customer end use
admlini r
strat <<s$takeholderp><<stakeholderpx<stakeholdecstpkehoidery>
multimedi composilt value network
teleservict service added operator
provider provider service

provider

Figure 4-17: UML Class Diagram Showing Roles and Stakeholders Used in

Prospect Trials

To provide a more detailed context for the subsequent definition of use cases, the
relationship between the roles and organisations prior to the trial was also described.
This took the form of statements of contractual responsibilities between the different
stakeholders that could, in commercial scenarios, form the basis of, or be informed
by, legal contracts between the parties concerned. These contractual responsibilities
were represented as associations between stakeholder objects. A further breakdown
into obligations with mappings to activities and resources using the ORDIT

technique was not attempted.

141

Use cases at the multi-domain system level defined what the system as a whole
needed to do in terms of useful interactions with actors that define the system’s
environment. Figure 4-18 shows an example of a UML class diagram for one of the
multi-domain trial systems developed. These actors represented instances of the role
class stereotypes from the general enterprise model for the multi-domain system. The
use cases descriptions were stated in the form of text, with sections defining the use
case pre-conditions, the use case itself and the use case post conditions. The
preconditions present the state of the multi-domain system, from the point of view of
the actors, and would typically be related to the post-condition of other use cases.
The use case body described, as a sequence of steps meaningful to the actor, the
interactions that were performed with the system in order to complete some useful

task.

T21a system

generate bil]

Create
student

TES Provider
Administrator

TES Customer
Administrator use
course
service
bar a
TES End
User

Figure 4-18: UML Use Case Diagram for Prospect Customer Management Trial

To analyse the inter-domain interactions within such a multi-domain system, the
individual use cases were refined to describe the inter-domain interactions they
required. This step was informed by the responsibilities between different roles and
stakeholders in the enterprise model. Refining the multi-domain use cases in this

way enabled the identification of use cases for individual domains, i.e. for the single-

142

domain systems that made up the multi-domain system. A similar set of use case
diagrams showing the decomposed, single-domain use cases, could then be produced
as input to the single-domain requirements discussed in Section 4.4.1.3. However,
use case diagrams in UML do not support direct interaction between use cases, so
use case diagrams could not be used to show the full chains of interactions between
the single-domain systems that make up the multi-domain one. Instead, high-level
UML sequence diagrams were also used to show information flows between the
multi-domain system actors and objects representing individual domains, in a similar

manner to the previous case study.

The definition of the information was involved in these inter-domain interactions
was based on the requirements embodied in the multi-domain use case definitions.
However, developers also took information definitions from existing standards and

from existing components that were likely to be used in the systems implementation.

4.4.1.2 Component Modelling

The components used in this phase of the project were modified versions of the ones
based on TINA Service Architecture specifications that were implemented for the
first phase. Components were re-modelled in UML using CASE tools. Use cases
were introduced to the component model to define the actors that would interact with
a component and to define their interactions with the component. A use case diagram
for the Subscription Management component described in Case Study 3 is given in

Figure 4-19.

143

core subscription component

create
— service

N
oo templat delete
]
service
] templat
create
service factoryl| subscrib:
management delete \
subscribg
subscribe
customer
cancel
subscriptig
set sve
customer profile
delete
service

profile provider
create

L}
[
LD

1

user
management

[
Eg

deactivate
SAG

Figure 4-19: UML Use Case Model for Prospect Subscription Management

Component

Note that some actors represent human users while others represent systems that may
be other components that are either abstract or represent existing components, such

as ones from the TINA Service Architecture.

The design of components was developed using UML class diagrams. These
represented the results of both the information modelling activity and the functional
decomposition activity. Outputs from both activities were integrated on the same
diagrams but were differentiated by stereotypes for information objects (IO) and
computational objects (CO) respectively reflecting the design’s TINA origin. Figure
4-20 shows the top-level class diagram for the Subscription Management
component. UML component diagrams could have been used to identify the different

interfaces of computational objects and their relationships. Instead, however, the

144

details of the interfaces were modelled as classes grouped in diagrams representing a
single CO. This facilitated both the automated generation of IDL by case tools and
the maintenance of consistency with interaction diagrams, features not directly
supported by component diagrams. It meant, however, that the collection of

interfaces in a CO construct was not explicitly represented anywhere in the UML

uses
1.*

model.

ServiceOperator 1.*
uses <<System>> | uses 0..*| <<CO>>
ER— ManagementApplica’iiun— UserAgent
1. 1. |
1. controls lifecycle of 1.1
LU R
uses
_ <<CO>> 1.1 1.1 <<CO>> i controls flifecycle
SewlceTemplateHan(Jilm__, SubscrlberMana?er
1.1 1.1
contrpls controls
0.* 0.*
<<lO>> [<<lO>>
ServiceTemplate Subscribe‘r i UserGrouT
<<IO>>__|
SubscriptionContract uses Uses
0..* 0.*|0.* | 0.* 1.1
controls <<CO>> | notifies <<CO>> |
SubscriptionRegistrar SubscriptionAgent
1.1 0.* 0.*

Figure 4-20: Top-level UML Class Diagram for Subscription Management

Component Design

Figure 4-21 shows an example of how class diagrams were used to define the
interfaces for one of the computational objects shown in Figure 4-20. The
computational object, Subscriber Management, has eight IDL interfaces, two of
which have been inherited from more general interfaces intended for managing a

computational object’s lifecycle (i_Colnit) and administrative state (i_CoMgmt).

145

The interface’s operation parameters are not shown in this figure, but were also

modelled in the CASE tool used (Rational Rose in this case).

i_Colnit i_CoMgmt
{from Interface) P i sminit (from Interface) P i smgmt
. Sinit() . %setAdminState()
. Sterminate() . %getAdminState()
i_sagMgmt
i_saginfoQuery i_sbrMgmt
. @defineSAG()
. $modifySAG() . %getSagList() . %createSubscriber()
. Sdelete SAG() . %get AssignedSagList() . modifySubscriber()
. %addSAGitem() . %getSAG() . 9deleteSubscriber()
. ¥removeSAGltem()
i_sbrinfoQuery i_portfolioMgrmt ey
. %listAccounts() . $getPortfolio() ! L
. %getSubscriber() . modifyPortfolio) ' m&bﬁgﬂ;
. SmodifySubscriberDetails() . QdeletePortfolio() :

Figure 4-21: UML Class Diagrams Showing the Interfaces to the Subscriber
Manager CO

To fully describe the component’s behaviour for the benefit of the implementers, its
dynamic operation had to be modelled. This was typically performed by defining the
interactions between the computational objects and with actor systems, based on
individual use case descriptions. An example of such an interaction diagram is given
in Figure 4-22, which shows the interactions between entities in terms of IDL
operations on their interfaces. This example shows the CO behaviour required by the
“Create Subscription Assignment Group (SAG)” use case shown in Figure 4-19.
Note that in this diagram only the Subscriber Manager and the Subscription Agent
entities are part of the Subscription Management component. The management user
application (MUAP) is the design level representation of the application used by the

Provider Administrator actor identified in the use case model, while the User Agent

146

object is part of the User Management system actor also identified in the use case
model. These are necessary since the dynamic behaviour of a component can only be

fully described by including its interactions with its environment.

Subseriber Subscription

Wanager Agent

WUA? sV anagenent SN GR tiosayg $4GT saluit UA cinah
Application Woqat I

n 1 |

odelineSAG (in ¢ AceovntNo, in & AssigaGronpSelection, vutt Sagld)

Doodnitialise (in t Userld)

oosalnit (in Userld, in thatRefllist, ount t_lotR*()

ror A

Figure 4-22: UML Interaction Diagrams Showing Subscription Component
Behaviourfor the Create SAG Use Case.

4.4.1.3 Single-Domain System Modelling

The development of SMS for Prospect was performed at the level of an
organisational domain, i.e. the SMS contained all components and subsystems
operated by a single organisation. In determining a system’s requirements, in
addition to inter-domain sequence diagrams, multi-domain system use cases were
used/ These were decomposed into linked sets of use cases specific to the constituent
single-domain systems. This helped to identify where the same functionality was
required in different domains. Where such common functionality could be provided
by a reusable component, these components and their relevant use cases were
included in the diagrams expressing the multi-domain to single-domain use case

decomposition. An example of this is shown in Figure 4-23.

147

TES systems

core subscription component

create
<<uses>>_ SAG

create
student

i

TES Customer <<extends>>
Administrator

MMTS system

core subscription component
c;atx
MMTS create
user gr <<uses>>_ SAG

Figure 4-23: Multi-domain Use Case Linkages Supported by Component Level Use

Cases

In this way, places where components could be reused in different domains could be
clearly identified. This analysis also aided in the identification of the areas where
reusable components did not satisfy the requirements of the domain’s use cases, and
where, therefore, the development of additional domain-specific sub-systems was
required. Such sub-systems were modelled using the same notational techniques as

those used for developing and describing components

4.4.2 Evaluation and Results

The development methodology used in this case study combined an iterative, use
case driven development process with UML as the modelling notation. This has been
applied effectively for multi-domain management system analysis, single-domain
system development and component development. By using the same basic
methodology for all of these activities communication between the different
developers, e.g. component developers and component re-users, was eased. Figure

4-24 gives a summary of the common development process.

148

Definition of
contractual
responsibilitics

Object diagrams
of business
scenario

~—_

~~—e

-

Use cases & use
case diagrams

-~ _l Information modelling
1

‘_--_-_____-_-__

o

Functional \
I

Test cases

Deployment
diagrams

Figure 4-24: Development Process for Case Study 4

It should be noted that some models are used in several subsequent steps. Also note
that the information modelling, functional decomposition and dynamic modelling

steps are closely coupled and may undergo several iterations before arriving at a set

of completed interface specifications.

The approach followed in this case study benefited from the experience of the
previous case study and also from the emergence of the UML notation, which was
bolstered by strong tool support. It made the distinction between the application of a
common development methodology to the analysis of multi-domain systems, to the
development of complete SMS and to the development of reusable management

components. This case study, therefore, partially emulated the business model for

149

SMS development proposed in Chapter 2. The latter two applications of the
methodology are analogous to those conducted by the SMS Developer and the
Software Vendor respectively. This case study is therefore important in determining
the effectiveness of a common methodological approach in communicating between

these stakeholders.

The use of UML brought several advantages. Its coverage of a wide range of
modelling diagrams meant that a tool that supported UML would provide much
better coverage of the models needed compared to the tool support for ODP-based
modelling experienced in the previous case study. Also the stereotyping mechanism
of UML allowed its modelling constructs to be tailored to the SMS development
problem domain. This was used, for example, in the definition of stakeholder and
role stereotypes for business level diagrams. In the long term UML stereotyping
provides a path to standardising modelling constructs for this domain and

influencing tool developers to support them.

Use cases were used more widely in preference to scenarios due to their better-
defined semantics. Use cases were used in the three different development areas for
showing how the SMS and components under development interacted with their
environment. However, this was to the detriment of the dynamic modelling at a high

level abstraction, with dynamic modelling being mostly focussed at the design stage.

Several shortcoming of UML were identified in this case study. Use cases lack a
relationship where use cases in one system interact with use cases in another system,
a facility that would be useful in decomposing multi-domain system requirements
into single-domain system ones, and similarly in matching single domain system
requirements onto interacting components. Also, though multi-interface
computational objects can be modelled as components in UML component
diagrams, these cannot be used as communicating entities in interaction diagrams,
restricting support for multi-interface distributed components. These problems point
to improvements required in the semantics of UML rather than just ones that can be

implemented through stereotypes

150

The above observations are based largely on the author’s experiences in analysing
and using the methodology proposed for this case study and from discussion with the
developers. In addition, a questionnaire was used to get a more structured view of
the developers’ experiences, against which the above observations can be compared.
The questionnaire was designed using the goal-question-metric approach described
by [basili] and structured using questionnaire writing techniques described in
[oppenheim]. The questionnaire to target those involved in developing whole
domain management systems, developing individual subsystems for a specific
domain management system and/or developing reusable components applied in
several subsystems. Questions eliciting feedback from these activities were of two
types. The first attempted to gauge the usefulness, if present, of different modelling

constructs for a specific development activity. Responses were requested on a scale
of:

Essential =5, Mostly Useful =4, Generally Useful =3, Partially Useful =2, or Not
Useful =1.

The second type of question attempted to discover the extent to which errors in the
development process were due to omissions in, errors in, inconsistencies in or

misunderstanding of other models. Responses were requested on a scale of:
Always=5, Usually=4, Sometimes=3, Rarely=2 or Never=1.

For both types of questions respondents could also register a “don’t know” for

individual categories.
The questionnaire therefore contained six sections as follows:

* The first section allowed the developers to identify which components, whole
domain systems or constituent sub-systems they were involved in developing and
for which parts of the development cycle, i.e. analysis, design, implementation
and/or testing/integration. This was intended primarily to clarify in the mind of
the respondent which development experiences they were referring to in their

answers. This information was also available for any correlation needed between

151

groups working on different systems and differences in their responses those of

others.

Section two was to be answered by component developers. It addressed the
component’s analysis specification as applied to component design and
implementation (Q2.3) and its design specification as applied to its

implementation and testing/integration (Q2.7).

Section three was to be answered by whole domain system developers. It

addressed:

* The multi-domain analysis specification as applied to system design and

implementation (Q3.1).

* The design specifications of interoperable systems as applied to the systems

design, implementation and testing/integration (Q3.3).

e The analysis specification of reused components as applied to system design

and implementation (Q3.6).

* The design specification of reused components as applied to system

implementation and testing/integration (Q3.8).
Section four was to be answered by sub-system developers. It addressed:

* The analysis specifications for reused components, the encompassing system
and other interoperating sub-systems for sub-system design and

implementation (Q4.1).

* The design specifications for reused components, the encompassing system
and other interoperating sub-systems for sub-system design, implementation

and testing/integration (Q4.3).

Section five was to be answered by everyone and addressed the CASE tools used
for different modelling activities and the communication techniques used
between developers at the different stages of development, i.e. meetings,

telephone, email, multi-media conference or exchange of revised specifications.

152

* Section six was also to be answered by everyone and requested personal
information from the respondent including the level of experience with

modelling techniques and tools used.

Completed questionnaires were received from fifteen developers. It was found that
respondents had had difficulty in completing questions on the frequency of problems
related to different specification parts due to poor phrasing of the question. This data
was therefore not analysed further. The mode response for each modelling technique
addressed by each question is given in Appendix 1 (Section 8.1). If two adjacent
values contained the same mode total the mode is presented as the median of those
two values. If the mode value was present in two unadjacent categories or in more
then two categories then no mode value is presented. Though the usefulness measure
is not an ordinal scale the mean is also presented to give a further indication of the
spread of responses. Uncompleted and “don’t know” responses were not included in
the mode and mean calculation, with the number of responses counted given on the

category entries of the y-axis.

The responses largely reinforced the general observation made above, though the
small size of the sample does not allow any strong conclusions to be drawn. Use
cases were found to be generally the most useful both for the design of the item
analysed and also for understanding the items that needed to interoperate with the
item under analysis. Modelling constructs related to role and responsibility were
generalfy not rated as very useful. Significantly, the general textual description of
components and systems were rated highly for design, indicating that they provided
an aid to understandability that was not present through the other more formal UML

constructs.

For the design stages sequence diagrams and collaboration diagrams are highly rated
supporting the use of scenarios and use cases as the focussing thread though the
different development stages. For the implementation and testing/integration stages

the core object specification were seen as essential, though the specification of the

153

information content of interface operation parameter types together with the CORBA

Naming Service naming scheme were also rated highly.

4.5 Case Study 5: Developing SMS with Integrating Business
Process Modelling and Component Reuse

This case study is based on work conducted in the FlowThru project. This project
had the express aim of investigating development techniques for the integration of
management systems that implemented management business processes from
reusable management components. This case study therefore provided an
opportunity to explicitly analyse the development process needed for such
development in addition to observing and evaluating its application. This case study
also represents an explicit attempt to address the generic SMS development process
model laid out in Section 3.5.4. For this project the author proposed a reusable
component modelling approach and an open approach to the mapping of business
processes to open reference points based on existing standards. These proposals were
published in [lewis99c], from which the descriptions of the development approaches
given below are based. The next section also provides examples of how these
proposals were applied in the development of management systems within the
project. The reusable component modelling approach is applied to an evolution of
the same subscription management component used in the previous two case studies
and is based on contributions by the author to experiences published in
[lewis99b][wade99]. The application of the open business process modelling
approach and its integration with the component modelling approach is taken from a
portion of the FlowThru system development addressing the integration of service
ordering and ATM network planning and configuration as documented by the author

in [lewis99e].

4.5.1 Development Approach

The overall development approach proposed for this case study built heavily on the

results of Case Study 4, in particular in the use of UML as a notation, the use of use

154

cases for both systems and component requirements specification and the use of
roles and responsibilities in capturing single and multi-domain system requirements.
The novel techniques applied were, as mentioned above, the modelling of
components specifically for reuse and the use of business process models for
analysing system requirements and mapping them to open reference points. These
techniques and their application in the case study are presented in the following two

sections.

4.5.1.1 Reusable Component Modelling Approach

The approach to modelling components for reuse assumed a development activity
similar to that described in Section 3.5.2. Reusable components are typically
presented to system developers as sets of libraries, i.e. as a set of software modules
and the definition of the individual operations they provide. In terms of the generic
development process described in Section 3.5.2, the component is presented in terms
of its design model and software. This may cause problems in the development of
systems that reuse the component, since any changes required to accommodate the
reuse of components are only likely to become apparent during the design process,

therefore possibly countering aspects of the system’s analysis model.

As described in Section 3.5, components are often part of a framework. The
framework may be general, e.g. CORBA Services, or aimed at a particular problem
domain, e.g. the TINA Service Architecture. In either case, the framework will
provide some high level architectural and technological guidance on how
components can be integrated together and how they can support the development of
a system. Such frameworks are often considered at the analysis stage to ensure that
the system’s analysis model is structured in a way that will accommodate the
inclusion of the framework’s components at the design stage. This situation is
depicted in Figure 4-25a. However, frameworks typically only give general guidance
on the use of components. The suitability or otherwise of individual components in

satisfying requirements still needs to be considered in the design activity.

155

For SMS development, such a typical component reuse situation is difficult to
standardise because, as described in Section 3.5, there is no commonly accepted
framework that supports a suitably wide range of components. The development
guidelines for component reuse presented here are motivated by the absence of such
a framework. As such, they attempt to provide guidance on how components can be
specified in a more self-contained manner that is easily understood by those
performing the analysis of the system. In this way, decisions about reuse can be
made based on the suitability of individual components rather than on a wider
assessment of the suitability of an entire framework. The approach is aimed at
making decisions based on architectural and functional aspects of a component
rather than its implementation technology. A component’s technology is treated as
an orthogonal issue, with heterogeneity handled primarily through the employment

of suitable gateways.

The approach is derived from that described in [jacobsen97] and outlined in Section
3.1.1. The basis of the approach is that components are not presented just as units of
design and of software within an encompassing framework. Instead, they should be
packaged together with the requirement statement and analysis model of the
component for presentation to potential reusers. If the modelling techniques used for
the requirements capture and analysis modelling of the component are similar to
those used for modelling the system in which it might be included, then it becomes
much easier for an analyst to assess whether the component is suitable for use in the
system. In addition the system’s analysis model can directly import the analysis
abstractions of the various components it reuses, easing the task of requirements
analysis and ensuring, at an early stage, compatibility between components and the
system requirements. This analysis model-based reuse approach is depicted in Figure

4-25b.

156

Requirements

Capture
Requirements
Component model
frameworir Requirements
Analysis
part of wH Analysis
Component model
Design
Design . .
model if Design
model
exports Implementation
Software -
Software
Testing
Deploy
a) Conventional (design model level) component reuse
Component Requirements
Capture
exparts Requirements
Us:;)gzlse i model
Requirements
0 .
% . export: Analysis
Analysis Analysis
model model
% Design E
Design erport
model Design
% exports Implementation
Software ifr I
Software
facade Testing
Deploy

b) Analysis model level component reuse

Figure 4-25: Differing Approaches to Component Reuse

The presentation of a component for reuse in this way is known as a facade. A
facade presents the re-user of a component with only the information needed to
effectively reuse the component, while at the same time hiding from the re-user
unnecessary design and implementation details about the component. The facade,
therefore, consists not just of reusable code and the design model, but also the
requirements statements and analysis model relevant to the design model exposed by

the facade.

157

A component may present several different facades, possibly aimed at different types
of re-users, i.e. a black-box reuser such as an SMS developer using a Software
Vendor product or a white-box re-user such as an SMS Developer reusing code from
previous projects. A component may have various releases of a facade to reflect the
evolution of the component. The usefulness of the facade is strengthened if there is
clear traceability between the different models, so that within the facade re-users can
easily determine which parts are useful to them by matching facade use cases and
analysis objects to their requirements and tracing to relevant design model elements.
Obviously, the construction of a facade from the internal development models of a
component will be greatly eased if the same type of modelling approach was used for
developing the component in the first place. Also, traceability in the facade will be

greatly eased if the models of the underlying component are strongly traced.

One of the problems raised from examination of the previous case studies was that
the boundaries between the different development activities were not always well
defined, especially between requirements capture and analysis and between analysis
and design. This meant that the level of abstraction used in the models resulting from
these activities varied, making it difficult to define traceability mechanisms between
the different models. Defining the structure of the different development models was

therefore essential to applying useable traces between them.

As use cases had already proven effective for SMS and component development in
the previous case studies, Jacobsen’s suggestion of using use cases for the
requirements model and the closely related robustness model for the analysis model

was adopted.

The UML representation of these stereotype classes is suggested in [jacobsen97] and
recently proposed to the OMG as an UML extension in [ad/97-08-06]. A slightly
different representation available with the Paradigm Plus CASE tools is shown in
Figure 4-26.

158

an entity I_O @

class aboundary 5 eontrol
class class

Figure 4-26: Analysis Objects Stereotype Notation

In mapping use cases to an analysis model for a facade, entity objects will be
typically derived from noun phrases that occur in one or more use cases. Boundary
objects are identified by any interactions between the users and the system. Control
objects can initially be allocated per use case, and consolidated as functional
commonalties are identified between use cases. Interaction diagrams are often
required at this stage to detail the lifecycle of objects and dynamic aspects of the
relationships between them. Refining the analysis model into the design model for a
facade takes into account design level issues, such as scalability, load balancing,
platform dependencies, database schemes etc. Again, strong tracing between objects

in the analysis model and the design model is required.

Though it is preferable to generate a facade from a component model of the same
structure, it is not a requirement for the component to have been originally
developed and documented using an OOSE-like process. Indeed, part of the benefit
of facades should be that it can hide the internal model if necessary. For instance if a
component has been developed and documented using ODP viewpoints the
following mappings may be used to reverse engineering the ODP model into the

facade format:

* Roles in the enterprise viewpoint map onto actors in the use case modelled in the

facade.

* Computational objects from the computational viewpoint may map onto control

objects in the analysis model.

159

* Computational object interfaces may map or be grouped into boundary objects in

the analysis model.
¢ Information object may map to entity objects in the facade’s analysis model.

* If some sequence diagrams have been used to clarify the interactions between
computational and information objects, then these might form the basis for
reverse engineering use cases, otherwise use cases should be based on and be

consistent with the component's requirements.

Such an ODP model to facade mapping was employed as a consistency check in the
application of this technique to the subscription management component, as in the

following section.

4.5.1.1.1 Application of Reusabie Component Modelling

The facade modelling approach was applied within FlowThru to the integration of
components in three separate Trial Business Systems demonstrating different
business process areas from the TMF’s Telecoms Operations Map. The components
from which these systems are constructed are from different EU funded projects, and
as such they were originally developed using a variety of notations. To validate the
reusable component modelling approach described above the specifications of these

existing components had to be recast as facades.

The specific experiences presented in this section are from the development of a
facade for the subscription management component that was developed in the
previous two case studies. The original specification of this component, as used in
Case Study 3, was structured in terms of ODP viewpoints, principally the
information and computational viewpoints. In generating the facade for this
component the use cases developed for it, as described in Case Study 4, were used to
generate an analysis model that would replace the corresponding high level design
model shown in Figure 4-20. This was then mapped to the existing design
documentation consisting primarily of IDL definitions. The overall aim was to be

able to export the facade in a form that presented each of its constituent models and

160

the traces between them. An HTML-based approach was therefore taken in order to
allow traces to be implemented at hyper-links. The Paradigm Plus CASE tools was
used for generating use case diagrams, analysis model diagrams and design model
diagrams. Though Paradigm Plus supported hyper-textual style links between
different diagrams, this was not a suitable solution for widely publishing the facade,
whether this is done in the public domain or within a software development
organisation. This was partly due to the cost involved in having Paradigm Plus
available to everyone who might want to browse the model, and partly because the
alternative precluded for the possibility of a similarly structured facade being

generated by other tools.

To generate the facade, noun-phrase identification was used on an initial pass of
each use case description to elicit the major entity objects and their relationships.
The use cases also helped identify a boundary object for each interaction between the
system and each external actor. Control objects were required whenever there was a
need to create, destroy, update or otherwise manage an entity object or closely linked

group of such objects.

The subscription management component produced entity objects such as Service,
Customer Account, Service Level Agreement (SLA), Subscription and Subscription
Contract, a set of boundary objects, and four major control objects: Service Manager,

Customer Manager, Subscription Manager and SUG Manager.

161

hL Provider Customer
anagement | Management
) Application| | Applicatiop)
$ ST ST 8
,J ’A\merfa A inferfacq
Ad:rrl?r\\liisdt?arltor Agrl:\sil"lci’sr?rgor

Subscription Service

O

Subscription gy pspription Accounting
Management Mangger Managemeft Accounting
Interface Interface Management
Customer
0 Account

N Subscription
0. Use case referen
Service Level The diagram refers
1.* | Ageement to both the Create
: L and Break
gz‘;’;cr: Subscription SUG/Assigned)
1.* Contract Record Connection

Figure 4-27: Analysis Object Diagram for Subscribe a Customer to a Service Use

Case

The objects were then modelled as analysis class stereotypes in UML use case
diagrams since this was the only diagram type in which Paradigm Plus rendered the
analysis objects’ stereotype notation. As use case diagrams are more commonly used
to show how use cases relate to each other and to actors across the system boundary,
we distinguished this use of the diagram type by referring to them as analysis object
diagrams. One analysis object diagram was created for each use case (see Figure
4-27 for an example), though on a second pass it was found closely related use cases

could be supported by a single analysis object diagram.

The creation of the analysis object diagrams, threw up issues that were not expressed
in the use case descriptions, and thus needed further consideration. For example, in
the subscription management component the cardinality of the relationship between
a customer subscription and a SLA was unclear. Once these issues were resolved the

results were fed back into the use case descriptions to ensure there were no

162

inconsistencies with the analysis model. A consolidated analysis object diagram was
also produced showing all interface objects, control objects, and entity objects that

they manage, thus providing an overview of the analysis model.

select~ ription()
(1])
[2]13[i:=1
PMUAP : PA select_Service_] SubMI ;
Interface Subscription

Management
[[2W intertace
_SUGY() [Y.1-4.1]

a

create_Assignment(SUG_list, SerRec_list)

SubM : ™ :
(5] | Sypscription | 421 >y S
M Manager™ [create_Assignment(SAG_lisp) Manager
AUAP :
4.1 4.3]

CA
inteface

create_Assignment(SerRec_list) create_Assfgnment(SAG_list)

. new
scription SerRec :
; :

i
Record

Figure 4-28: Example of a Collaboration Diagram for a Use Case

Collaboration and sequence diagrams were also used to show the dynamic behaviour
of the analysis object in enacting a use case. Figure 4-28 gives an example of such a

collaboration diagram.

The design model used was a straight-forward UML class diagram representation of
the IDL interfaces and their parameter types with component diagrams used to
represent the COs. There was a clear mapping between control objects in the analysis
model and computational objects already defined in the subscription management
component design. Boundary objects (e.g. Subscription Management) mapped to
individual initialisation, query, and management interfaces in the design model,

which in turn mapped to IDL interfaces. Entity objects were mapped to design object

163

representing IDL operation parameter structures. A smaller group of many to one
relationships also exist. This occurred when distinct entity objects were identified
from the use case descriptions but their characteristics were similar enough to justify
a common, possibly abstract, design object. The analysis model failed to identify
some objects and relationships present in the existing design. For example, the
analysis model contained no Subscription Portfolio object, a collective holder for a
number of customer subscriptions. Nor did it model the complex association
between a Service Record and a Subscription Usage Group. These examples
represent the designer’s skill in being able to harness past experience to recognise
suitable design patterns and take into account non-functional requirements such as

performance issues, caching requirements, etc.

For publishing the facade, use cases were written in a word processor that could
generate HTML output. The analysis and design models were generated on the
Paradigm Plus CASE tool as UML diagrams with additional relationships added for
links between specific UML classes in different diagrams. Paradigm Plus was able to
generate HTML pages for specific diagrams and for each class modelled. Paradigm
Plus uses an object-oriented database for storing its UML models and provides a
simple scripting language for querying that database. These features were exploited
in order to augment the HTML generated by Paradigm Plus with the additional links
needed to be able to trace between the analysis and design models. The publication

of the facade on the web is recounted in more detail in [lewis99b].

4.5.1.2 Open Business Process Modelling Approach

The attempt to provide a standardised architectural framework for analysing business
requirements for SMS have, as described in Chapter 3, centred either around the
definition of distinct business roles and the reference points that exist between them,
as in TINA, or on the definition of a common business process model as in the
TMF’s TOM. These two inputs were therefore chosen as the basis for a model that

enabled business process modelling to be applied to the multi-domain problems of

164

SMS development, but in a way would support the on-going standardisation of

service management functions within these two bodies.

The approach taken was to map the TMF business model onto the TINA business
model. Before examining such a mapping however, the core differences between the
two models must be appreciated. Firstly, the TMF’s TOM defines general business
processes in existing service providers. These may be human based processes or
automated ones. Part of the intention of the TOM is to identify and prioritise which
processes they wish to automate, and therefore which inter-process interactions
would benefit from industry agreements. The TINA model restricts itself only to
reference points that will yield automated interfaces. Also, the TMF’s TOM is
concerned only with service and network management processes, while the TINA
reference points additionally cover issues of service and network control. TINA also
assumes its DPE (essentially CORBA) will be used to implement reference point
interactions, while the TMF’s TOM makes no assumptions about implementation
technology (this is addressed in the TMF’s Technology Integration Map as discussed
in Section 2.3). Functionally, TINA management is aimed specifically at managing
TINA services (multimedia, multiparty, multi-way, mobile) and network resources
(connection oriented, broadband), while the TMF model is less specific, but is
derived from the management of more contemporary services and networks, i.e.
POTS, Frame Rely etc. TINA also specifically covers information services, while
these have not yet influenced the TOM to a large extent. Finally, the TOM prioritises
issues of process interaction and information flow between processes, while the
TINA business model and reference points are focused on the development of
detailed reference point specifications, based on other ODP-based TINA

specifications, with little attention directed at business process information flows.

The approach taken in mapping the TOM to the TINA business model and reference
points is to identify which TMF processes operate in which TINA Business Roles.
Note that some TMF processes may be present in more than one TINA Business
Role. An initial mapping of the TMF business processes onto TINA business roles is

given in Figure 4-29

165

The principal assumptions behind this mapping are as follows:

The TINA Retailer role is the one that embodies the TM Forum Customer Care
Processes. If an organisation operating in the Retailer role has to communicate
with another organisation playing the Connectivity Provider role or the 3pty
Service Provider role, then these other organisations will also have to play the
Retailer role so that any Customer Care process-related interactions are

performed via the RtR business relationship.

The TINA Retailer is not concerned with any Network and System Management

Processes.

The Connectivity Provider role is only concerned with Network and System

Management Processes.

The 3pty Service Provider is only concerned with Network and System
Management Processes related to the provision of service content, i.e. Network

Provisioning, Network Inventory Management and Network Data Management.

The Broker will be effected by Sales, Order Handling and Rating and
Discounting processes in other business roles, so these processes are mapped
onto this role to indicate this. This is not intended to cover the application of
these processes to the Broker’s own services (i.e. broker services), which should
be addressed by an organisation in the Broker role also taking on the Retailer

role.

166

pi; Sales Ordef Handling

Rating and
Discounting
Bkr

Retalter
Sales Order Handling Problem Handling Customer QoS Invoicing/
Management Collection
Sendee Planning/ Service Sendee Problem Service Quality Rating and
Developmert Configuraton Resolution Management Discounting
3Pty
. N
3 Pftrtv Service
Service Planning/ Service | Sendee Probiem Service Quality Rating and
Customer Deveiopment Configuralion | Resolution Management Discounting
Network | Network Inventory Netwoik Data
Provisioning | Management Management .
iiiip’
3Pt
Ccniiecfivtty Phr
; 1 Network Planning/ Network Network Inventory Network Maintenance Network Data
iPj Development Provisioning Management & Restoration Management

Figure 4-29: Mapping of TMF Business Processes onto TINA Business Roles

The TOM provides a model of suitable business processes which we are fairly
confident reflects the typical operations of a service provider. This mapping,
therefore, helps in the analysis of a Service Provider’s business processes in order to
identify where existing solutions, possibly available as reusable components
implementing reference point segments, can be applied. The analysis of business
processes is typically performed by identifying discrete activities and the events that
propagate the control of execution of a task between activities. As described in
Section 3.1.2, a common representation of such a control flow is event-driven
process chains, and the inclusion of activity diagrams allows UML to support a
similar type of model. The analysis of a management task in a specific business
scenario can be initially described in terms of a use case giving the interactions of
the system with the human roles involved in the task. These use cases can then be
broken down into internal activities performed with the system, using a UML
activity diagram. The activities can be placed within swim-lanes representing TMF
business processes, possibly residing in different administrative domains. This will

ease the identification of which existing TMF business agreements match the

167

requirements of the task at hand. The mapping of the TOM process onto the TINA
business roles will then enable the identification of where TINA reference point
definitions could apply. The following section outlines an example of the application

of this business modelling technique from the FlowThru project.

4.5.1.3 Application of Open Business Modelling

The problem addressed by this example is the integration of management functions
in the service and network management layers related to the fulfilment of customer
orders for a switched ATM service. It was assumed that customers were not
restricted to single terminal domestic users but would also comprise of corporate
users with switched ATM customer premises equipment supporting a number of

users via a single UNL

In terms of the TMF’s business process model, the problem domain encompassed

the fulfilment process area, which consists of the following business processes:

* Customer Care Process: This involved the management of the interactions
between the customer and the provider’s management system, in particular

translating customer requests and queries into appropriate system operations.

* Order Handling: This involved the receipt of orders for ATM services from a
customer and the translation of these orders, after appropriate financial checks,
into requests for network configuration changes needed to satisfy the customers

order. It then involved tracking the progress of these orders to completion.

* Service Configuration: This involved the installation and configuration of a

service for a specific customer, including any customer premises equipment.

* Service Planning and Development: This involved the design of the service
capabilities to meet market requirements for services within required costs and

exhibiting required manageability characteristics.

* Network Provisioning: This involved the reconfiguration of network resources so

that network capacity is ready for the provisioning of services.

168

* Network Planning and Development: This involved designing the network
capability to meet specified service needs at the desired cost and within
operational constraints, determined principally by service level agreement with

customers.

* Network Inventory Management: This involved the installation of physical

equipment in the network.

Within the context of TINA, the problem may be expressed in terms of business
roles and reference points between these roles. The business roles identified for this
scenario were the Consumer role taken by the ATM service customer organisation
while the ATM service provider organisation took the Retailer and Connectivity
Provider business roles. Based on the business model from the previous section.
Figure 4-30 shows the overall business context of the problem being addressed in
terms of the business roles played by the organisations involved, the business
processes undertaken by those roles and the TINA reference points that exist
between those roles.

AIM Service Provider

Retailer
Sales Order Handling

Service Plarming/ Service
ATM Service Custoi ler Development Configuration

Customer

Cranetrty PmvWer

Netwoitr Planning® Networir Network Inventory
Development Provisioning Management

Figure 4-30: Business Process to Business Role Mapping for ATM Service
Fulfilment

169

As the business problem under examination did not involve multiple providers the
need for TINA federation reference points for the roles within the ATM Service

Provider were dropped. The remaining relevant TINA reference points were:

* Ret reference point: This was concerned with access control between the
Consumer and the Retailer, the discovery and commencement of operational and
management service offerings and the control and management of session,

stream flow bindings and stream flow content.

* ConS: The control and management of connections between network access

points.

* TCon: The negotiation of and control of network level interconnection, which is

technology specific.

As the focus of this work was on the development of functions in what was typically
described as the management plane, aspects of network and service control were
assumed but not analysed or developed any further. Therefore the TCon reference
point was not examined, with the assumption that existing UNI protocols would be
used for connection set-up. Instead the focus was placed on the management
interactions that occurred across the Ret and ConS reference points. Work on these
reference points within TINA-C had mostly been concerned with the control of user
session. This provided further contextual information on the service to be managed.
The Ret reference point was derived form the TINA Service Architecture and
included interfaces to the subscription management component use in the previous
case studies. The ConS reference point was based around the TINA Network
Resource Information Model (NRIM), however this had been enhanced with
additional network configuration, planning and restoration management features by

the REFORM project as described in [georgatatsos].

These existing TINA-based models provided a core set of concepts that could be
used in further analysing the requirements of the ATM service fulfilment business
problem and the interactions between the business processes identified as being

relevant to this problem. These models had been captured in the facades that had

170

been generated for each of the components brought to the problem. These facades
yielded key information definitions, such as Network Access Point, Class of Service

and Service Usage Group, represented by entity objects in their analysis model

To analyse the problem further, business roles within the business stakeholders were
analysed to determine the responsibilities they owed to each other. The set of

responsibility relationships was represented as a UML class diagram in Figure 4-31.

: <<business actor>>
<<buginess actor>> ATM
Service Senice
Customer Provider
pla plays
<<busihess role>> <<busihess role>>
P'ays customer s retailer pla
.-*
<<busi <<busginess role>>
- connectvty
user =< provider

<<res;[onsibi ity>> <<responsibility>> B
Fi FE F3W> <<resTonsn|):|gty>>
<<responsibility>> ibili ibili
FE F2tY> <<res;[on3|t?__|l{ty>> <<resanS|b'I:tg>>

Figure 4-31: UML Class Diagram of Responsibilities Between Business Roles

The responsibilities from Figure 4-31 were defined as text descriptions. Based on
these responsibilities use cases were drawn up documenting the functionality of the
whole business system from the point of view of actors whom play the part of the
business roles. These use cases cover the following functionality and are summarised

in the UML use case diagram shown in Figure 4-32.

171

Fufilment Demo System

ATMProvider
. Senvice
Registera o
Administrator

Remowe a
NAP

Disable a usel
from usinga

Registera
usertousea

ATMCustomd
Administrator

ATMProvider
Network
Administrator

Figure 4-32: Use case Diagram for ATM Service Fulfilment Scenario

These use cases were then analysed to refine the relationships between objects
representing the major entities that appeared in the use cases and were related to
entity objects in the component facade’s analysis models. These relationships were

summarised in a UML class diagram shown in Figure 4-33.

172

O*

gewesmg(0.” 0-*[Cosuser
point provides network access for group
0. }- Q
provides access to situated at
Jocation
site 0.*
<<busihess role>>
user

registered to use—|

class of
senice

¢

ATMQoS

1.*

QoS
parameter
bounds

Figure 4-33: Relationships Between the Main Entity Objects Identified in the Use

Cases

The use case descriptions did not however yield much direct analysis of the internal

business processes that were required within the service provider’s domain, and it

was here that the required interactions between service and network management

components needed to be identified and resolved. It was at this point, therefore, that

individual use cases were broken down into separate activities modelled in a UML

activity diagram. These activities were grouped into swim-lanes according to the TM

Forum business process into which they best fit. The activity diagram for the

“Subscribe to ATM Service” use case is presented in Figure 4-34.

173

Customer Intertace
Management

Ordor Failed

Order
Handling

Accept Order for ATM
Service

(Crodi check 0K

Service
Configuration

Network Planning and
Development

Network
Provisioning

Network Inventory
Management

Locais NAP

Determine Location of
Custorrer Sis(s)

Determine the mmb\
use each CoS al sach
site H

Order Compiele

@<

{network acceas g

Activale Network

4 CoS P&
Activde CoS user
groups
Authorise users to use
[servics

bint in piace]

‘ Access Points
[Mewwork access poini npt in place]
Install NE hardwase
and nes ic NAP
Jinadequate]
bhysical network
capadity
inadequate] Instal burk NE

hartware and ines

Figure 4-34: UML Activity Diagram for the Subscribe to ATM Service Use Case

By comparing these activities to the use cases in the imported components’ facades,

a mapping could be obtained of which activities could be handled by which

components. From this a clearer picture of the interactions required between the

component was formed. This enabled the identification of specific requirements for

modifications to components in order that they satisfy the overall system

requirements. For instance, the activities in the Order Handling swim lane in Figure

4-34 and their interactions with the Customer Interface Management swim-lane

activities were identified as ones that could be performed by the subscription

management component. This analysis indicated, however, that the design of this

component needed to be modified to support asynchronous interactions with

components performing activities in the Network Provisioning and Network

174

Planning and Development swim-lanes, as these could result in considerable delays.
The TMF already had an interface agreement, Service Provide to Service Provider
Order Handling [nmf-504], that addressed aspects of this process area. This standard
contained abstractions for tracking orders in slow response situations, which
therefore could be applied to the modification of the subscription management

component.

The overall system analysis model was defined in terms of the interactions between
analysis model elements from the imported component facades, and in particular the
bindings between their boundary objects. The overall system design model consisted
of the modified IDL for each component and detailed sequence diagrams showing

inter-component interactions that enacted the system’s use cases.

4.5.2 Evaluation and Results

The experiences of this case study relate the generation of the facade for a pre-
existing component and how this may be integrated into the development of an SMS
in a way that ensures the satisfaction of business process requirements and ready
integration with existing open standards. The facade presents the component model
at levels of abstraction, i.e. as use case and analysis models, that facilitate the
components integration into the SMS. It was found that the division in the facade
between the analysis model and the design model provided a good basis for
delineating between the exposure of internal details of a component needed for its
features and capabilities to be understood. At the same time the facade hid all

detailed design issues except those relating to the interfaces via which it is re-used.

Publishing the facade in HTML with a structure suitable for re-users to make best
use of the traces between elements in the different models was found to be relatively
simple with Paradigm Plus. The fact that the same teams were involved in facade
generation and the design of the systems that reused the components meant however
that the effectiveness of the facade in component selection and comprehension could

not be assessed very objectively.

175

The business process and reference point mapping model was found useful in
bringing together the business process model approach to establishing management
requirements from the TMF and the component-based reference points defined in
TINA. This assisted the understanding of developers with backgrounds in TINA who
needed to use their systems to satisfy business process requirements. This mapping
has been presented to the TMF and TINA-C by the author. It has been received with
interest by both and at the time of writing is forming the basis of negotiation on a
possible liaison agreement between the two bodies. Such a mapping, combined with
the representation of reference points as the facades of their constituent components,
points the way to the integration of existing component and interface specifications
with business process driven SMS development. It also provides a path to expanding

the scope of reference points based on existing business process analyses.

The above observations are based on the author’s own modelling experience with the
teams developing the subscription management component facade and the ATM
fulfilment business scenario. In addition, however, a questionnaire was used to get a
more structured view of the developers’ experiences, against which the above
observations may be compared. The questionnaire was structured in a very similar
manner to the one in Case Study 4 and the results analysed in a similar manner. As
well an initial and a final section similar in structure and purpose to the
corresponding ones in Case Study 4 questionnaire, the following sections were

present:

* Section two was to be answered by those involved in establishing the business
process requirements for the systems being developed. It addressed the
usefulness of the business process modelling elements in analysing business

process requirements (Q2.2).

* Section three was to be answered by those involved in facade generation. It
addressed the usefulness of use case modelling elements when developing the
analysis (Q3.2) and design models (Q3.3) and of the analysis modelling elements
when developing the design models (Q3.4).

176

e Section four was to be answered by those involved in the design of a trial
business system. It addressed the usefulness of the business process modelling
constructs (Q4.2), facade modelling constructs (Q4.3) and general system
modelling constructs (Q4.8) in designing the systems. It also addressed the
usefulness of the facade constructs in the modification of the components for

reuse (Q4.6).

In addition to the above questions some broad questions on the overall effectiveness
of the techniques were posed with space to provide more free flowing responses. The
questionnaire did not address the frequency and types of problems encountered by
developers as in Case Study 4. Also, the timing of the questionnaire mean that
impact of the modelling techniques used on the implementation and

testing/integration stages of development could not be addressed.

Fourteen completed questionnaires were returned and are presented in Appendix 1
(Section 8.2) in the same manner as for the Case Study 4 questionnaire responses.
The responses mostly were in line with the author’s observations above and the
findings of the previous case studies. The business process modelling was rated
highly for both system and component development. The facades were also rated
highly by system designers, though the rating for the facade’s use case model,
indicates that this was not clearly related to the analysis and design model in all
cases. It is notable that the usefulness of the two CASE tools used, Rational Rose
and Paradigm Plus, was much higher than for their use in Case Study 4, possibly
indicating better developer familiarity with these tools. For the system designers,

being able to work at the level was seen as very useful.
The responses to the broad questions were as follows:

* In response to the question “Do you think the use of component facades resulted
in a better-designed component?”, six replied yes, three no and four did not
express an opinion. Comments were made that in most cases the component
design was fairly mature, so the facade generation was purely a documentation

exercise.

177

In response to the question “Do you think the design of the trial business systems
was made easier or not by the use of the component facade structure?”, seven

replied yes, two no and five did not express an opinion.

In response to the question “Do you think the modification of components for
reuse in the trial business system was made easier or not by the use of facades?”,

five replied yes, none no and nine did not express an opinion.

In response to a further open question on what areas where not addressed by the

methodological guidelines used but that could have been useful, comments were

made on:

The lack of common guidelines for the structuring of IDL module, type and

interface definitions into appropriate groups.

The lack of guidelines for expressing the exchange of asynchronous events

between components.

The difficulties in describing fully the reasons why components have the
functional scope that they do, possibly requiring a more structured conceptual

framework.
The lack of working traceability between models under development.

The general lack of clarity in the guidelines themselves, many found them

difficult to follow.

178

5. Results and Synthesis

This chapter uses the results from the state of the art analyses in Chapter 3 and the
case studies in Chapter 4 to synthesise a set of recommendations for an open SMS
Development Framework. Based on these recommendations, a development
framework is specified consisting of specific methodological guidelines and a
discussion of suitable architectural guidelines. The development framework is then

assessed with reference to the goals laid out for such a framework in Chapter 2.

5.1 General Recommendations

Case Studies 1 and 2 provided evidence that a scenario led development approach
was well suited to the development of TMN systems, especially when several
development teams were working in parallel. The primary benefit was found to be
the way in which scenarios could be used to ensure the sometimes divergent work of
separate teams was kept focussed on the original requirements of the system. This
was shown to be the case both when SMS for different organisational domains were
developed in parallel and when subsystems used within domains were developed in
parallel. Case Studies 4 and 5 introduced Jacobsen’s concept of a use case, which,
though similar in aim to the scenarios used in Case Studies 1 and 2, are better
defined structurally and more widely accepted in industry. Evidence from the
questioﬁnaire conducted for Case Studies 4 and 5 shows that use cases were regarded
as one of the most useful techniques used in these case studies. The results from the
questionnaire for Case Study 4 and S show that use cases were useful for both
system development and component development. It can therefore be recommended

that:

Recommendation 1: Use cases should be adopted as the basis for mechanisms for
capturing functional requirements for SMS, COTS management software and
interface standards. They should be used, together with corresponding dynamic
modelling of related business and object models, as a mechanism for ensuring that

later development activities stay focussed on requirements.

179

Though use cases were found useful for analysing the functional requirements
imposed on an SMS or a reusable component by its environment, it did not always
provide a clear route back to business driven requirements. Case Study 2 introduced
the technique of role-based analysis, which was used to express the business
relationships that existed between different organisational domains by describing the
roles they played towards each other and the responsibilities that these roles
exhibited towards one another. Case Study 3 showed that techniques for refining
responsibility descriptions were not very usable, so role-based analysis is
recommended for refinement only to the level of the responsibility descriptions,
where they are then supplemented by use cases. Role descriptions, however, only
focus on the business interactions between organisations and between human actors
within organisations. Case Study 5 introduced the popular technique of business
process analysis, inspired by its application in the TMF’s Telecoms Operations Map.
This technique allowed specific tasks to be broken down into activities within an
organisational domain, driven by the role-based and use case-based analysis of the
external behaviour of the domain. Case Study 5 also showed the practicability of
combining business role analysis and business process analysis in applying existing
solutions of SMS development. A combined functional architecture based on the
mapping between TMF business processes and TINA business roles has been
suggested by the author as practical mechanism for aligning the work of the two
bodies in the management area. With this mapping the TMF may benefit from
TINA’s component-based, segmented reference point approach to standardisation
while TINA may benefit from a wider set of business process driven requirements.
This mapping is currently the basis of on-going liaison work between TINA-C’s
Service Management working group and the TMF.

Recommendation 2: The capture and initial analysis of requirements for SMS
should be based on a combination of use cases, role analysis and business process
analysis. A functional architecture based on the mapping of business processes onto
business roles should form the basis of a functional architecture for the ongoing

standardisation of service management interfaces.

180

The case studies have applied a variety of textual and graphical notations to the
development of SMS, reusable components and potential interface standards. Case
Study 1 attempted to use notations recommended in [m3020-95] but, though GDMO
is important for defining interfaces to CMIP-based systems, the definition of analysis
level notations was not well supported. Case Study 3 applied ODP viewpoint
notations as recommended in TINA’s development guidelines. Though these were
individually useful, the close coupling between the informational and computational
viewpoints and the lack of tool support for maintaining the mappings between the
model elements for these viewpoints made this approach impractical. Case Studies 4
and 5 showed that the different modelling diagrams offered by UML were useful in
the development of SMS and reusable components, particularly in the light of the
widespread tool support for this notation. This experience revealed that UML
possesses some shortcomings, amongst others, in the dynamic modelling of multi-
interface objects, but that its stereotyping mechanism enabled many of these to be
circumvented. It was also necessary to use textual interface definition languages such
as IDL or GDMO to exploit existing distributed computing platforms, and the round
trip integration of UML with such languages needs to be better understood and
common agreements reaches. However, the standardised status of UML together
with its increasingly widespread use by developers of all persuasions, spurred by

widespread tool support leads to the following:

Recommendation 3: UML should be used as the common notation for the exchange
of models between all SMS development stakeholders, supplemented by machine

processable interface definition languages in the design models where necessary.

A further problem encountered in the case studies was in agreeing a common level
of abstraction for the exchange of models during the analysis and design stages. In
Case Studies 2, 3 and 4 detailed analysis and design modelling was performed with a
combination of class diagrams, notations showing discrete functional units and their
interfaces, sequence diagrams and interface definition languages. However, the
generality of these notations made it too easy for developers to blur the distinction

between analysis and design models, reducing the usefulness of being able to work at

181

different levels of abstraction. Jacobsen’s analysis types, as introduced in Case Study
5, were found to help in making the distinction between analysis and design models

in a way that was simple to understand and easy to apply. Hence:

Recommendation 4: Jacobsen’s analysis object types should be used as the basis

for describing analysis models, thus making them distinct from design models.

The experience from Case Studies 3 and 4 in using models from a variety of
different sources illustrated the difficulty in working in such an open manner. To be
able to use a model from any one of these sources a large investment had to be made
in understanding the architectural framework in which the model resided. This
formed a barrier to reuse of open solutions from different sources and encouraged
tie-in to a single source of models. Case Study 5 addressed this problem by
introducing the facade modelling construct which packaged together the
requirements, analysis and design models for a particular solution so that it can be
reused with relatively little reference to an encompassing architectural framework.
Case Study 5 provided an indication that the facade construct was both useable and
useful in combining solutions from different sources. These solutions represented

reusable components and potentially open interface definitions. Hence:

Recommendation 5: The facade modelling construct, packaging requirements
statements, analysis models and design models should be used for presenting SMS

solutions for reuse, both for reusable components and for interface standards.

These recommendations are not individually remarkable as similar ones can be
found in many software engineering texts. What they do represent, however, is a set
of recommendations that have been tested and validated in the context of SMS
development. They can therefore be used to form the basis of methodological
guidelines for an open SMS development framework with a higher degree of
confidence than the many other methodological techniques that could be applied in
this context but remain untested. The next section synthesises such an open

development framework.

182

5.2 Synthesis of Open SMS Development Framework

This section synthesises a development framework based on the analysis of SMS
development frameworks in Chapter 3, the experiences from the case studies
presented in Chapter 4 and the resulting recommendations presented in the previous
section. Consistent with the thesis statement and the results of the state of the art
analysis, the development framework attempts to be prescriptive only in its
methodology guidelines, which are presented in the next section, while providing

only loose architectural guidelines in the subsequent section.

5.2.1 Methodological Guidelines

The methodological guidelines presented here are structured according to the
analysis given in Section 3.5. They are focused on the relationships represented in
the generic SMS developer stakeholder model of Section 2.1 as this is where they are
expected to yield the widest benefit as part of a common development framework
used by all stakeholder types. The guidelines are expressed in terms of the notations
and meta-model to be used, and in terms of how these should be applied to the
development processes for each development stakeholder type, based on the
individual process model identified in Section 3.5. The guidelines are restricted in

scope to the issues covered by the recommendations given in the previous section.

5.2.1.1 Notations and Meta-model Definition

This section defines the notations that should be used by SMS development
stakeholders and the meta-models, i.e. the structure of information, to which models
expressed in these notations should conform. Based on general Recommendation 3,
the core notation used is UML, specifically the OMG’s current version 1.1 [ad/97-
08-01]. UML is, however, a general purpose modelling language and its designers
acknowledge that it is necessary to extend and profile it to suit software development
requirements of specific problem domains. This section therefore uses the UML
stereotyping mechanism to propose extensions to UML for the SMS development

framework. This is presented in terms of stereotypes defining new modelling

183

elements and the meta-model that defines the relationships of these elements with
each other and with existing UML v1.1 elements. Class diagrams are used to show
the relationships between these stereotypes and their relationships with existing
UML model elements, which are identified for convenience by the stereotype marker
<<uml1>>. UML model elements are written in double inverted commas when first
introduced, and subsequently where needed to avoid ambiguity. The specific

modelling constructs defined here are:
¢ A Use Case Model

* A Business Requirements Model combining Business Process, Business System

and Use Case Models

* A Facade modelling construct defined here as a Projection as explained below.

UML already defines a “facade” stereotype of the “package” model element. A
facade is defined as the public view of the content of another package, containing
only elements from that package and none of its own. This definition of a facade
conflicts with the usage of the concept intended by Recommendation 5. This,
supported by the experience from Case Study 5, intends the facade to be a public
view of an internal model, but conforming to a specific structure. The condition that
the public package is not necessarily a strict subset of the internal package
differentiates the modelling construct defined here from the UML facade. For this

reason the alternative stereotype designation of a Projection is defined.

5.2.1.1.1 Use Case Model

UML specifies a stereotype of the model element “model” called “Use Case Model”,
which defines the functional requirements for a system. It contains only “use cases”
and “actors”, the “interaction” relationships between them, the “generalisation”
relationships between actors and the “extends” and “uses” relationships between use
cases. This definition and the supporting “use case diagram” is necessary to meet the
requirements of the SMS development framework, but is not sufficient as it does not

define the structure of use case definitions. Several different conventions for use case

184

descriptions have been proposed, but these guidelines define the following simple

convention to ensure commonality in how use cases are expressed.

A use case description is a textual entity that uses natural language. It should consist

of at least the following elements:

* A name that uniquely identifies the use case description. This requires a
distinguished naming scheme that identifies the system the use case is being used
to describe and the organisational unit conducting the analysis. The name should

be meaningful and express the task being addressed by the use case.

* A primary actor from the set of actors that defines the system’s environment.
Each use case should have one and only one primary actor, which is the one

drawing primary benefit from the execution of the use case.

* A set of preconditions that describes the state of the system immediately prior to
the use case being enacted. Each precondition should be uniquely identifiable
within the use case description. A precondition may consist of a reference to the

post condition of another use case from the same use case model.

* A description of the use case in terms of a sequence of steps describing the
operations performed by the use case in the order in which they occur. A step
may include a condition, which must be satisfied in order for it to be conducted.
A step may refer to another use case in the same use case model, this reflecting a

“uses” or “extends” relationship.

* A set of post-conditions that describe the state of the system immediately after
the use case has been enacted. Each post-condition should be uniquely

identifiable within the use case description.

5.2.1.1.2 Business Requirements Model

The Business Requirements Model is a stereotype of “model” that aims to support
the identification of requirements in complex multi-domain situations. It consists of
a Business System Model together with a Use Case Model, of the type described in

the previous section, and a Business Process Model. All three are UML “model”

185

stereotypes. Model elements in the Business System Model are associated with

model elements from the other two models as depicted in Figure 5-1.

—

<<impor1>f business &<import>>

I \

/ system model
I‘, y \.
/. \\

I
1]

/

business use case
process model model
business
requirements
model

Figure 5-1: Structure of the Business Requirements Model

The contents of the Business System Model and the Business Process Model, and the

association between elements in all three models are summarised as follows:
Business Process Model:
This contains the following modelling elements::

* Business Process: This represents a process that must be conducted to
perform the business functions required of the system. It is a high level
identification of an ongoing business task rather than specific identification
of an activity with defined initiation and termination conditions and the flow

of control between them as used in UML activity diagrams.

e User: This acts as a source and/or a sink of information that must be handled
by one or more Business Processes. The set of users in the model defines the
environment that motivates the flow of information between business

processes. A User must be mapped to an actor in the use case model.

186

Information Flows: This represents the flow of information that may pass

between Business Processes or between Business Processes and Users.

Business System Model:

This contains the following modelling elements:

Organisational Domains: This represents an organisation involved in the

business scenario under analysis, e.g. a service provider or a customer.

Business Role: This is a role played by a User within a specific

Organisational Domain, e.g. service user or service administrator.

Responsibility: This is a unidirectional relation between two Business Roles
defining the contractual obligation one has to the other, e.g. “pay charges by

due date”.

Service Management Systems: This represents the system under analysis,

which may be one of several operating within an Organisational Domain.

Contract: This represents the set of functions that may exist between two

Service Management Systems.

The following relationships exist between the modelling elements in a Business

Requirements Model. They are also depicted in Figure 5-2:

Business Roles should map one to one to actors in the use case model, so the
descriptions of a Responsibility between two Business Roles should be
consistent with the corresponding actor to use case interactions and User to

Process Information Flows.

Business Processes should be wholly instantiated within an Organisational

domain.

Individual Systems should exist wholly within one Organisational Domain

The identification of these modelling elements and their relationships enable the

business requirements to be expressed in terms of requirements upon specific

contracts in terms of Responsibilities and Information Flows. This is particularly

187

useful for defining reference points between Organisational Domains that do not

involve direct interactions with actors and are therefore not addressed directly by the

use case model.

1.7

business
process

1..* operates within

functional requirements described by

multidomain
system

|
functional requirements described byuse case

*

1.*

*

flow

information

1.

*

user

organisational o
domain

<<umil. 1

model

1. %<uml1.1»

containg
1 ..*|

plays

. .x
business
role

L

responsibility
set

1.*

responsibility

1.*

actor

1.x 1>

service
management

user

system
L

i

con

tract

1.*

Figure 5-2: Relationships between the Elements of the Business Requirements Model

The process of generating a Business Requirements Model consists of the following

steps:

First, establish a multi-domain organisational model (part of the Business System

Model) that identifies Organisational Domain, Business Roles with those domains

and Responsibilities between them. This can be done using a UML class diagram

together with corresponding textual Responsibility descriptions as in Case Study 5

(see Figure 4-31).

Second, establish a use case model where the actors represent the different Business

Roles from the multi-domain organisational model and the use cases are described at

188

the multi-domain level. An example of this is the fulfilment trial business system use

case description presented in Case Study 5 (see use case diagram in Figure 4-32).

Third, establish a Business Process Model where the users are the different multi-
domain user case actors. This can be done using a component diagram to show
which Business Processes interact with which Users in which Organisational
Domain. Figure 5-3 shows such a diagram fbr the processes, roles and domains
identified in Figure 4-30 for the fulfilment trial business system described in Case

Study 5.

<<0Organisational Domain>>

<<Business Process>>
/'——2<User>>
<<0Organisational Domain>>
<User>> /’ /
[Sales]
N 4<Business Process>> Retailer Manager
<<pusiness Process>>
customer N
ATM Service Order Handling
Customer Network
k<Business Process> Planning/Development
<<Business Process>> <Users>
Service
Planning/Developme!
erocnn Comeciviy
l<<Business Process: 9 Provider
<<pBusiness Process>>, Manager
Service
Configuration Network
Invetory
Management

ATM Service
Provider

Figure 5-3: Example of static Business Process Model using a UML Component

Diagram

Fourth, refine the Business Process Model to show for each multi-domain use case
the information flow that must flow between Business Processes and between
Business Processes and Users. This can be performed using UML sequence
diagrams. An example is given in Figure 5-4 for the processes and users in Figure
5-3, for the “subscribe to ATM service” use case from the fulfilment trial business

system presented in Case Study 5.

189

<user:

> orderg 1
request for NAP()
—

request to activate NAP
NAP ID() -

-
user ID()
—_—

capacity request()

—_

trunk resource request() -

|
bandwidth allocation request()
—

customer Order Service Network Network Network
Handling Configuration Planning and Provisioning Inventory
Development Management

Figure 5-4: Example of Dynamic Business Process Model using a UML Sequence

Diagram

Fifth, establish a Business System Model that shows the SMS under analysis and the
other SMS and the Business Roles with which it interacts in the same or in
collaborating Organisational Domains. The model should identify the Contract via
which interactions are performed. This model can be represented using a UML
component diagram, an example of which is give in Figure 5-5 for the SMS making

up the fulfilment trial business system.

190

<<Organisational Domain>>
<<SeMce Mgmi]System>>

<<Organisational Domain>>

<contract>3
customer

ordering

Cusgom.er J<contract> <<Sefv|ce Mgmt[System>>
Application user

interface

1<User>> OrdeNHandier

<<Service Mgmt|System>>|
4<contract>>
resource | |
mgmt

customer

Network
ATM Service Planner

Customer <<Senvjce Mgmt|System>>
4<contract>
NAP

mgmt

Configuration
Manager

ATM Service
Provider

Figure 5-5: Example of SMS Level Business System Model using a UML Component

Diagram

Finally a use case model can be generated for the SMS under analysis, with actors
representing the users and other SMS with which it interacts. The individual use
cases involved should be triggered by inward Information Flow for a Business
Process handled by this SMS, as identified by the dynamic Business Process Model.
As the actors represent the Users and SMS that interact with the SMS under analysis
via Contracts, the aggregation of the all interactions between the user cases and a

specific actor will define the functions required at the corresponding Contract.

5.2.1.1.3 The Projection Modelling Construct

A Projection allows models to be exchanged between development stakeholders
whose internal models may not yet conform to the common structure used in the
Projection. In such cases a mapping must exist between the meta-model used
internally by the stakeholder and the Projection meta-model. Case Study 5 already
demonstrates that such a mapping can be defined between the model elements of a

facade and ODP-based TINA models, and the same applied to Projections. As with

191

facades, a Projection can provide a selective view of a system, revealing only the
details judged by the owner of the system as needed for a specific type of user of the
system, e.g. a software reuser or a specification reuser. Consequently a system may

support several Projections in parallel.

The Projection construct has a more defined structure than the existing UML facade.

This structure is shown in Figure 5-6.

requi%m t
statenents<imgort>>
| n l
<<import>>
.]
use case analysis model
model
<<importp>
requirements
model
<import>>
] _ 1
<<|mport>> <<inport>>
verification realisation design model
model model
projection

Figure 5-6: Structure of the Projection Modelling Construct

A Projection consists of the following elements, each a stereotype of “model”, and

dependencies between their modelling elements:
Requirements Model:

This contains a complete requirements statement for the system concerns

addressed by the Projection. It consists of two parts:

1. A set of textual requirements statements that are uniquely identifiable within
the context of the Projection and which fall into one of the five requirements
categories defined in the TMF development methodology, i.e. Structural
Information, Dynamic Information, Abnormal Conditions, Expéctations and

Non Functional Requirements and System Administration Requirements.

192

2. A use case model of the system being modelled addressing only the concerns

relevant to the details revealed by the Projection.
Analysis Model:

This provides an analysis of the requirements presented in the Requirements
Model. It contains: classes of the analysis object types defined by Jacobsen, i.e.
the control, boundary and entity object types; actors that place requirements on
the system and identification of interactions between analysis objects and
between analysis objects and actors. Interactions may be classified by the one or
more of the following types: create, delete, read, and modify. The static view of
the Analysis Model may be represented in an analysis object diagram, which is a
class diagram that supports the analysis object stereotypes. In parallel the
Analysis Model should contain collaboration diagrams which show the dynamic
behaviour of the classes in the analysis object diagram in terms of messages that
pass between instances of them. The structure of the Analysis Model is driven by
that of the Requirements Model. Each use case in the latter should be reflected
by at least one analysis object diagram and one analysis collaboration in the
former. In addition the analysis actors should have a one to one mapping to the
use case model actors in the «requirements model». These model elements and
their relationships to each other and to elements in the use case model are

depicted in Figure 5-7.
Design Model:

This defines a view of the design details of the system judged sufficient by the
system designer to allow the use of the system by others. Typically this will

consist of:

* A description of functional structure of the system in terms of components
and the interfaces they offer to and require of external entities and optionally

each other. This may be expressed in terms of a component diagram.

* A definition of the interfaces offered to, and required of, external entities

defining interface operations, their parameters and exceptions. This may be

193

expressed in a UML class diagram (as in Figure 4-21) or directly in a suitable

interface definition language.

A definition of the dynamic behaviour between interfaces and external
elements, expressing any temporal dependencies between separate operation
invocations. This may be expressed in terms of UML sequence diagrams or

collaboration diagrams (Figure 4-28 is an example of the latter).

A mapping should exist between model elements in the Analysis Model and the

Design Model. This mapping may be a one to one, or possibly one to many in

order to accommodate the more detailed level of modelling required in the

Design Model. These relationships may also be many to one where designers

have consolidated two or more analysis objects into a design object that performs

the analysis object’s behaviour. The mappings from the Analysis Model’s

modelling elements to Design model modelling elements are as follows:

Actors to external entities in the Design Model.
Control objects to functional components.
Boundary objects to interfaces.

Entity object to interface operation parameters.

Analysis object interactions to corresponding interface operation types,
including factory operations for creating and deleting functional components

or their interfaces.
Analysis collaboration messages to interface operations.

Analysis collaboration diagrams to design interaction diagrams

Realisation Model:

This defines the physical realisation of the design model in terms that support its

integration into other models by the Projection’s user, including the constraints of

any configuration that can be performed by the user. The Projection definition does

194

not prescribe the notation for this model, though UML deployment and component

diagrams may both be useful here.

Verification Model:

This defines the information and procedures needed by the user of the capabilities of

the system defined by the Projection in order to ensure that it is operating

consistently with its requirements in the environment in which the user has placed it.

The Projection definition does not prescribe the notation for this model.

<<umi1.1>>

class
diagram

I
stereotyped by
L |

analysis

object
| diagram | static analysis

maps to

control
object

1. *ccumi .1?

usecase |

collaboration
diagram

<<umli1.1>> Q
classifier l 1.*
<<umil.1>>
analysis object interaction ’__i———l
classifier
stereotyped 1b Y +contraints: [create|delete|read|modfy] sterc-iotyped b
- 1.*
i |0.* 1.*
analysis
ob"};ct i analysis <umil.1>>
) <<umli.1>> actor actor
1.* message 1.*
1 "k
<<umi1.1>>
| | l & collaboration
is |——stereotyped b
boundary| | - entiy collaberation i maps to
object object dynamic analysis map
depicted by <<umi1.1>>

Figure 5-7: Relationship between Elements of the Projection Construct’s Use Case

5.2.1.2 Process Guidelines

and Analysis models

This section analyses how the notations and meta-model defined for the

development framework could be applied usefully to the different development

processes defined in section 3.5.

195

5.2.1.2.1 Generic Development Process

Returning to the Generic SMS Development Stakeholder process model presented in
Section 3.5.4 we can see the principle benefits of using the recommendations. By
modelling requirements of whatever entity is under developer, i.e. an SMS, a
reusable component or an interface standard, in the form of use cases
(Recommendation 1) the requirements capture process may be simplified, providing
those involved with a common, well-understood expression of requirements. At a
minimum the resulting requirements statements would be defined in terms of a use
case model, though as discussed in subsequent sections this may be as part of a

Business Requirements Model.

By presenting both internal and external existing solutions in terms of Projections
(Recommendation 5), the requirements analysis phase becomes a much more
homogenised process. The selection of an existing solution may involves comparing
the use cases in a Business Requirements Model with the use case models of the
Projections’ Requirements Model. Another approach to such integration is to refine
the Business Requirements Model using UML activity diagrams showing the
behaviour of system level or, as shown in Figure 4-34, multi-domain level use cases.
As performed in Case Study 5, these activities can then be compared to use cases
from a Projection to see where the entity modelled by the Projection (which may be
an internally reusable subsystem, a COTS component or an open interface
specification) can be applied. This comparison may be supported by mapping
functions from the SMS Contracts in a Business System Model to boundary object
operations in the Projection’s Analysis Model. Alternatively a mapping of Business
Process Model Information Flows in and out of the system to entity objects from the
Projections Analysis Model may also prove useful in selecting a Projection’s subject.
Homogenising the form of requirements statements and resulting models therefore
eases the selection of solutions within the requirements analysis process for a
system. The synthesis of the system’s analysis model is also simplified, since much
of it may be imported from the analysis models of the existing solutions

(Recommendation 4). This feature is already available in CASE tools supporting

196

UML resulting in the potentially rapid development of an analysis model. Similarly
being able to directly import the design models of both internal and external
solutions into the overall design model may accelerate the design process. The
application of the recommended modelling constructs to the generic SMS
development stakeholder process model is summarised in Figure 5-8, indicated by

the shaded elements.

(ieneric SMS Development Stakeholder

Internal architectural
guidelines

Functional architecture

Technology architecture

(‘iii)aboniiingSM S Development

Stakeholder Requirements

Use case mixlel

Architectural guidelines Use case mixlel

Functional architecture
«nflIBRSelvbai

Technology architecture Solution selection RequiremenLs mixlel

Analysis nKxIcl

M<xlel synthesis
Design naalel

mpm

Re<)uiremenLs model

Analysis model Analysis mexlel

Design model w Design W ettt ottt et

Desigt mtxicl

Figure 5-8: The Application ofthe Methodological Guidelines to the Generic SMS

Development Stakeholder Process Model

5.2.1.2.2 Interface Standard Development Process

From the standards development process described in Section 3.5.3, it can be seen
how the generic application of the Projection modelling construct is applied in the
case of the Standards Developer stakeholder type. As described for the generic case,
the requirements analysis and interface design process will benefit from the use of

the Projection construct for reuse of internal interface standard definitions and ones

197

from other standard developers. In support of this, the standard acceptance activity
must release new standards in the Projection format for use by others. Though not
addressed by these guidelines, standards bodies could gain further benefit from the
Projection construct by agreeing the structure of the verification model, so that
common approaches could be taken to the ascertaining compliance to an interface
standard defined by Projection. It should be noted however, that it is inevitable that
standards developers will still have to comprehend the models of existing SMS and

NMS systems that are not expressed in terms of Projections.

The Standard Developer stakeholder type is also one of the prime potential
beneficiaries of the application of the Business Requirements Model. The other
stakeholders are not usually motivated to analyse business situations that involve
direct relationships between three or more organisational domains. The SMS
Developer for example will not usually need to consider business relationships other
than those connecting directly with the Service Provider for which the SMS is being
developed. More complex business situations are increasingly appearing however,
and it is often left to standards bodies to investigate the ramification of such
situations on the standard management functions that need to be supported by
individual organisations. One example of this is TINA-C’s definition of a multi-
player business model. The capability of the Business Requirements Model to
represent multi-domain situations and to allow the resulting requirements to be
mapped onto requirements at individual Contracts is therefore important. In such
cases, Contracts can be used to develop reference points for standardisation.
Elements of the Business Requirements Model can be readily mapped to the
concepts used in the standardisation mechanisms of TMN, TINA and the TMF as
indicated in Table 5-1. This model therefore represents a possible approach to
integrating the existing outputs of these bodies and even potentially as a basis for
converging their standardisation mechanisms. The impact of the methodological
guidelines on the interface standard development model of Section 3.5.3 is shown in

Figure 5-9.

198

Finally, it should be understood that these guidelines do not attempt to provide

guidance on how to develop architectural guidelines for standards, but rather assist

in how individual functional standards are developed in a way that is more easily

communicable with other stakeholder types.

Business TMN TINA TMF
Requirement
Model
SMS OSF Building block N/A
Contract Reference point Reference point Business
Agreement
Use Case Management N/A Use case
service
Information Flow | N/A Process triggers
Business Role Management Business role N/A
service user
Responsibility N/A Responsibility N/A
Business Process N/A N/A Business Process
Organisational TMN Domain N/A
Domain

Table 5-1: Comparison of Business Requirements Model Concepts and Concepts

from the Standards

199

Standards Developer

Standard architectural

Software i]
Software . » Requirements guidelines
Vendors statement
Functional architecture
SMS Requirements
Developers statement

Technology architecture

Requirements
Providers statement

Standards Developer

«business requirements model»
Standard architectural

guidelines

Functional architecture

" 1A tutebitM ibiid
Technology architecture I'" " “; U Requiremenis mixle
i /
«proiecUon» Analysis model
Requesl for
Intcrltee standard proposals

Design mixicl

Requirements model

1 J Inicrtace design 1*
Analysis mixiel

Interface definition
Design mtxlcl

I Standard accepiance 1"

Figure 5-9: Application ofthe Methodological Guidelines to the Interface Standard

Development Process

5.2.1.2.3 COTS Software Product Development Process

Examining the development process for COTS software the Projection construct
provides benefits to the Software Vendor stakeholder by providing a common
structure both for the interface standards to which products conform and for the
existing COTS products maintained by the vendor. For both these sources the
Projection’s requirements model aids solution selection, its analysis model aids the
rapid synthesis of the products analysis model while the design model similarly
speeds up the design of the product. The implementation of the COTS product will
use items such as libraries from the realisation model of existing products, while the

testing of the product will use test cases from the validation model of existing

200

products and conformance tests from the validation model of interface standards. An
important result of using the Projection construct for publishing COTS products is
that using other Software Vendor’s products in the development of COTS products
will be very similar to using internal products. The applicability of the Business
Requirements Model to COTS development depends on the granularity of the
intended product. However, it is unlikely that the multi-domain aspects of the model
will be required as it is expected that a use case model will suffice for documenting a

COTS product’s requirements.

The product release process can no longer just be concerned with packaging the
software for sale and deployment. It must now be concerned with extracting the
portions of the models resulting from each of the previous product development
processes and selecting suitable subset for inclusion in the product’s Projection.
Obviously this will be easier if those models use the same notations and meta-
models as the Projection, but this is not a mandatory requirement. Figure 5-10
summarises the impact of the application of the guidelines on the COTS

development process model.

201

Software Vendor

Inlemal archilcaural
guidelines

Functional architecture

Technology architecture

Standards Dtvtluper [d=dr*panihaNs

Standard architectural
guidelines

Functional architecture mimait \

Technology architecture
—4 O ttttetd K iftN ftfnin!
ptnbtci

-
Requirements model
IW tetiiiliitM uiéart Prtxluct analysis

Requirement model Analysis nxxlcl

Analysis model Design mrxlel

— > Product design o
Design model Réalisation model

Venfiealion model Verificatmi model

ﬁ Product impiementaii

Product software

I Product testing K 4,

Prixluct release

Figure 5-10: Application ofthe Methodological Guidelines to the COTS Software

Product Development Process

5.2.1.2.4 SMS Development Process

The SMS development process is impacted by the use of the Projection construct for
interface standards and COTS software products in a similar way to the software
development process (see Figure 5-11). The common use of the Projection construct
for these external models as well as for the SMS developer stakeholder’s internal
reusable models offers potential efficiencies in all the development activities. A
further activity is introduced, that of SMS release, as it will be necessary to assemble
a Projection of the resulting SMS for future reuse. In its most basic form, this

documents the whole of the completed SMS within the SMS Developer’s domain.

202

More detailed strategies could be conducted where reusable portions of developed
SMS are identified as being particularly suitable for future reuse and documented as

separate Projections.

The SMS requirements capture activity needs to capture the business requirements
for the SMS and must deal with the inter-domain interactions between the Service
Provider and both its Customers and its Third Party Service Providers. It is therefore
appropriate to use the business requirements model to express the SMS requirements

statement.

SMS Dewkiper

Internal architectural
Requirements
statement

Functional architecture

ITilrd Party
Requirements

Technology architcciun statement

t r I Requirements
Standards Developer T g N statement
Standard architectural «husmesA re<|ulrements
uidelines y
€ AYilYiviv
Functional architecture Software Vendor

«projection»

Technology architecture

analymh S !

. liniauel.
1 Requirements model
bkr& ce standard SMS analysis irexicl
.
Requirements model t -1 Analysis model
SMS design model
Design model = Realisation rmxlcl
=1
Verification model \ Verification model

I (SMSimplementation M

X i [— <

1 ~ SMS testing

Service Provider

Figure 5-11: Application ofthe Methodological Guidelines to the SMS Development

Process

203

5.2.2 Architectural Guidelines

The overall approach to defining a development framework has focussed on
addressing problems of how SMSs, the standards they conform to and the COTS
software they use are developed in relation to each other. The development
framework does aim to prescribe a detailed functional framework into which the
SMSs, standards and COTS software developed using the guidelines should fit. This
has been avoided primarily because the range and volatility of requirements for SMS
makes a highly prescriptive functional architecture unlikely to be widely adopted.
The final functional structure of the developers’ network of SMSs therefore depends
largely on the requirements of the Service Providers and the SMS Developers who
supply them. The functional structure of the COTS software produced by the
Software Vendor will reflect the requirements of specific SMS and what the
Software Vendor perceives as being widely marketable functionality. However, in
communicating the functional requirements between the stakeholders, some
commonly understood architectural framework is useful in order to quickly establish
some common terminology and thus reach an agreement on the functional area being
discussed. If solutions are structured to fit into such an architectural framework then
later requirements can be more quickly matched to existing solutions.
Fundamentally, an architectural framework provides its users with a separation of
concerns to be addressed in the problem domain, so that specific areas of interest can
be consistently identified and other areas not relevant to the problem at hand can be
ignored. Such a proprietary architectural framework may prove useful in the context
of the products offered by a single SMS developer or Software Vendor. However, a
functional architecture will much better match the needs of an open market in SMS
software if it is based on some wider industrial consensus and maintained by
standardisers in the public domain. Specific solutions that conform to and therefore
may populate such an architectural framework should, however, emerge from the
industrial stakeholders, rather than being synthesised by professional standardisers.
Solutions could be made available either through agreement between several

stakeholders, possibly in the context of a standards body (as is the case for the TMF

204

and the OMG), or published by an industrial stakeholder to present its products and
services in a way that conforms to the separation of concerns provided by the

architectural framework.

As we have seen in Chapters 2 and 3, there are several open and proprietary software
frameworks that are applicable to the problem of SMS development for an open
services market. It is difficult to prove whether any of these possess “correct”
functional architectures, however the fact that no architecture dominates the market
to the exclusion of other suggests that no one of them is superior. To provide
architectural guidelines for the development framework presented in this chapter, the
main relevant architectures are examined and their concepts judged for compatibility
with the methodological guidelines and collected, as appropriate, into a lightweight

but consistent architecture.

TMN and its identification of the service management layer underpin the definition
of scope of this thesis. The logical layers of TMN are widely accepted as useful
separation of concerns by others working in the structuring of open management
software, e.g. TINA and the TMF. Combined with the FCAPS categories, TMN
provides the functional structure of the 5x5x2 grid shown in Section 2.2.1. However,
some of the details of the technology advocated (i.e. the use of OSI management)
and reference point categorisation used (i.e. q, x, f etc.) are not so widely used. These

are currently under review within study group 4 of the ITU-T [m301x}[m301y].

The TMN framework is ultimately aimed at the identification of testable interfaces
as functional reference points. As a result it is essentially only a functional separation
of concerns and does not directly address the structure of information. Though
information modelling is a common activity in TMN system development it relates
only to modelling information that will be exposed as an interface to implement a
specific management function. TMN does not directly address wider information

modelling concerns such as the modelling of corporate data for a whole enterprise.

Another widely accepted model for structuring management information is the

TMF’s TOM (see Section 2.2.3). This is based on business processes that are

205

structured in three horizontal layers, the top two corresponding to the TMN SML
and the bottom one corresponding to the TMN NML, and three vertical slices into
the functional areas of fulfilment, assurance and billing. The TOM contains more
information about internal business processes, in terms of information and control
flow, than is given by the definition of management functions populating the TMN
5x5x2 grid. The TOM, therefore, gives a better overview of how such management
functions relate to the overall structure of the Service Provider’s business process
requirements and thus provides a better grounding for the generation of requirements
at reference points than the TMN grid. As with the TMN, the ultimate aim of the
TOM is to locate and identify specific interfaces that are to be standardised, i.e. the
architectural framework is provided in order to structure the definition of interfaces
rather than the software itself. TINA-C offers a slightly different approach in that it
has published detailed component models representing the structure of software
grouped according to its own separation of concerns, i.e. service and network
architectures and their subdivisions (see Section 2.2.4). However, TINA-C is also
ultimately only supporting conformance to interfaces in the form of reference points,

rather than the component models behind them.

The TMF provides some further guidance on the structure of management software
in its Technology Integration Map. As an analysis of current technologies suitable
for management, it suggests the use of: technologies such as Java and WWW
browsers for presentation of information, CORBA and possibly workflow
technology for business process interaction; CMIPS/P and SNMP for management
of network resources and SQL and distributed database technology for access by
business processes to operational data. This technology driven approach is very
similar to the three tiered architectural approaches currently gaining popularity in the
wider distributed processing field. These three tiers are typically referred to as a
presentation tier, a business tier and a persistence tier. The presentation tier houses
components that deal with human-computer interactions, with web-browser based
solutions becoming the norm. The persistence tier houses components that steward

specific item of corporate data. The business tier houses components that perform

206

individual business functions together with business rule driven components (e.g.
workflow engines) that co-ordinate the invocation of business functions, user tasks
and data manipulation. Three tier architectures are explicitly supported in Java where
JavaBeans populate the presentation tier, session Enterprise JavaBeans (EJB) the
business tier and entity EJBs the persistence tier [orfali]. The CORBA Component
specification [orbos/99-02-05] provides component categories that also map to the
different tiers. The three tier separation, as with the TIM, are driven by technological
concerns, with the differing needs for platform support for components in different
tiers expected to give rise to separate platform product (container) types for
components in each tier. In the context of the TIM, interoperability is handled by
gateways, which may also have to be integrated into component platforms as

discussed in Section 6.3.

The three tiered approach is relatively novel in structuring operational support
systems but is important if management systems are to reap the benefits of new
component-based distributed processing platforms. Its support for explicit business
rules by using workflow techniques in the business tier provides the flexibility
required to respond to changing business requirements for service management.
Such a three tiered architecture has already been advocated for telecommunications
management by BT for its OSS architecture [furley]. Telecordia’s long established
Information Networking Architecture (INA) and its use in its Operations Systems
Computing Architecture (OSCA) also specifies the use of a similar three tiered
architecture. Though TINA-C adopted many of the requirements of OSCA/INA and
applied them to service management, the three tier, business rule driven approach
was not explored, largely due to lack of suitable platform support. Currently the
TMF has adopted the OSCA/INA requirements, including the three tier aspects,
within its application component team, and is working towards using this as the
basis for future standardisation work within the TMF together with the TOM and
TMN grid [shrewsbury].

In order to provide the development framework with architectural guidelines that

addresses all the stakeholder’s needs it is therefore proposed to align the TMN grid

207

as used by the Standards Developer with its application by the SMS Developer and
Software Vendor in the context of a three tiered architecture. It is therefore suggested
that within the Standards Developer activities, the TMN grid is used, as at present, to
categorise the scope of individual management functions that are defined and whose
interfaces are standardised. In other words the TMN grid forms the structure of a
repository of standardised management functions that can be used by the SMS
Developer and Software Vendor roles. In addition, the management functions should
also be mapped to the interfaces between processes in the TMF TOM to provide
additional information on the intended applicability of the standardised function,
though some management functions will be general enough to be used in many
different process interactions. To present their full context however, management
functions should be presented using the Projection construct. Typically individual
component interfaces or interface segments defined by system’s developers may be
identified as conforming to a specific standardised management function and will be
defined using a profile of that function’s Projection. Within the SMS Developer and
Software Vendor, the three tier architecture should be used for categorising any
reusable components generated. For the SMS developer this should be a natural
process if OOSE-based analysis modelling is used in analysing the system’s
requirements expressed as use cases. The boundary, control and entity class
stereotypes map naturally to objects in the presentation, business and persistency
tiers respectively. This is one of the major advantages of using the OOSE-based

analysis techniques for system analysis in the SMS Developer.

The main outstanding problem with this approach is the standardisation of entities
on the persistence tier. Standardised management functions map well to the business
process invocations needed in the presentation and persistence tiers, however these
functional definitions do not provide good support for the definition of data oriented
entities, where data structure, class relationships and relationship constraints are of
primary concern. How this may be tackled, especially with respect to the

standardisation of data-oriented components is addressed in Section 6.4.

208

6. Further Work

This chapter discusses further work that may be undertaken or is already planned by
the author. This discussion takes into account the work performed for the thesis, the
obstacles to practical adoption of the recommendations for a development
framework proposed in the previous chapter and new development techniques and
system technologies that may have an impact on the further refinement of such a

framework.
In particular, the chapter is concerned with:

* The identification of those areas that were analysed but are not fully addressed by
the recommendations and how the recommendations may be strengthened

through further experimentation.

* How the recommendations may be applied to the emerging standards and

architectures for software components.

* How the recommendations may impact on the development of tool support for
SMS development and its integration with development techniques for other

areas telecommunication software, e.g. IN.

* How the recommendations could be applied to future standardisation in the

service management domain.

6.1 Extension and Further Validation of Recommendations

The thesis has been tested through the application of various software development
techniques to a number of case studies where representative management systems
were collaboratively developed as research prototypes. Evaluation was through a
mixture of anecdotal feedback and questionnaires representing the subjective views
of development team members as well as through the author’s own analysis of the
application of the techniques. As pointed out in Section 3.4, this level of rigour is not

typical when investigating the effects of software engineering techniques. The large

209

number of control variables involved in such an experiment, the fact that many are
rooted in subjective experience and the high cost of experimental resources (i.e.
software engineer hours) makes the cost of experimentation in this area high
compared to the confidence that can be expected from results. Nevertheless several
further studies could be conducted to improve confidence in the recommendations

made by the thesis.

Firstly, the experiment conducted in Case Study 5 featured the development of
Projection models for existing components by developers who also were responsible
for integrating these components into the required SMS. This serves to confound the
developer’s assessment of how useful the construct was in documenting the
component with their assessment of how useful it was in using the Projection
construct in integrating the components into the final system. A more rigorous study
would involve SMS developers using component Projections developed by a
separate groups of developers. Assessments could then more confidently be made of

the following:

* The usefulness of the Projection construct in matching a component’s
capabilities to the requirements for an SMS, stated in terms of use cases, high-
level information requirements and activity diagrams. More specific experiments
could be conducted in assessing how useful the construct was in determining, for
more complex components, which capabilities and interfaces were relevant and

which were not.

* The usefulness of the Projection construct in determining which modifications
were required to a component’s design based on changes identified to its analysis
model. This would require some measurement of how useful the Projection was
in communicating the changes in requirements between component reusers and

developers.

¢ The usefulness of the Projection construct in determining secondary
modifications needed to a component based on changes required to its design

imposed from elsewhere, e.g. changes in the interface design of an interoperating

210

component. Again this would centre on the use of the Projection for
communicating the required changes between component reusers and

developers/maintainers.

Ideally such experiments would require the use of CASE tools that directly
supported the UML stereotypes and meta-model extensions suggested in the

previous chapter.

To increase the confidence in such experiments they would need to be compared to
control experiments where similar tasks were attempted between component reusers
and developers, but without the benefit of the Projection construct. Ideally, the
perception of the developers involved would be complemented with objective

measures of the relative effort expended in performing the tasks in each case.

Some extension to the Projection construct can also be envisaged as potentially
improving its usefulness to reusers. In Case Study 5, Projection was matched to SMS
requirements by comparing aspects of the component’s use case based requirements
model and its analysis model to the SMS requirements stated in terms of use cases,
high level information requirements and activity diagrams. As the activity diagrams
typically offer the most detailed view of the SMS requirements, in particular a
breakdown of internal functionality, it might be easier to match the requirements to
component capabilities if they also were expressed in terms of an activity diagram.
Data and events that pass between activities in the SMS requirements could be more
clearly matched to data and events exchanged by the component and its
environment. This would require the inclusion of a micro process model to the
component Projection, which raises questions about how this would integrate with
the traceability chain passing through the Projection’s use case, analysis and design
model. The inclusion of such a micro process model would obviously benefit
components destined for the business process tier of a three-tier business
architecture. It is less clear how a component destined for the persistence tier might
benefit from this. It seems likely that other modelling constructs may be more

suitable here, for instance more accurate expressions of the constraints on the

211

relationships a persistence component may have with other persistence components.
How to express this both within the facade Projection and as SMS requirements is an
area for further study, with the Object Constraint Language [ad/97-08-08], which is
used in defining the semantics of OMG MOF-compliant model, being a possibly

suitable approach.

In [jacobsen97], Jacobsen identifies the concept of a facade’s variability mechanism.
This represents the collection of mechanisms, e.g. inheritance, templates,
composition, by which reusers may modify the interfaces and behaviour of a
component within limits set by the component developer. Such variability
mechanisms were not studied as part of the Projection construct, and their expression
using UML needs to be examined further if the construct is to be suitable for

practical application in the flexible reuse of components.

One of the main challenges facing the developers of reusable components is the
selection of granularity of components. Typically the component must represent a
useful level of functionality to the re-user. By packaging the component with its
analysis model, this level of functionality is clearly expressed by the set of use cases
from which the facade’s analysis model is derived. A component should only have
loose coupling with other components, with consideration given to merging tightly
coupled components into one. Commercial consideration may obviously play a role
here, with component vendors being tempted to design components that encourage
the user to buy others in a family due to close coupling. Granularity issues have not
been addressed in this work as the components used were predefined by others ,e.g.
TINA-C, however the analysis model presents a good potential candidate for
assessing granularity consideration and applying relevant heuristics. Such heuristics
could be driven by integrity concerns and applied using complexity measures of the

analysis model.

The definition of the Business Requirements Model defined in Section 5.2.1.1.2
could also benefit from improvement. In particular the relationships between some

modelling elements are defined only informally, in terms of how they might be

212

related though dynamic modelling. This dynamic modelling aspect should be

introduced into the meta-model.

6.2 Application to Component Software Architectures

As discussed in Section 5.2.2, component based reuse is seen as an increasingly
important approach to accelerating software development, both within the
telecommunications industry and in the wider IT community. Building systems from
components that interact through well-defined interfaces offers a route both to
reusing software across projects of a single SMS Developer and to integrating COTS
software from separate Software Vendors. Emerging standards such as Enterprise
Java Beans (EJB) [orfali] and CORBA Components [orbos/99-02-05] are promoting
the development of platforms that directly support the integration of multi-interface
components through the provision of component container platforms. These provide
support for remote component interface operation invocation, notification flow
between components, directory based naming, persistency, transactions and security.
Components also provide support for software deployment, runtime profiling and
reflection. However, many existing architectures, such as TMN, do not directly
support component-based systems, and not all the notations and tools currently used
in telecommunications can fully represent component abstractions for all

development activities.

UML currently provides some support for component modelling in the form of
component diagrams. However, as identified in Case Study 4, multi-interface
components are not directly supported as communicating entities in collaboration or
sequence diagrams. There is also no direct support in the UML model of a
component for modelling the server interfaces or event sources required of other
components. Such additions to UML would assist in making the Projection construct
map more directly onto component models such as CORBA Components and EJB.
In addition, the currently missing variability mechanism could be structured to be

able to map directly to EJB profiles or CORBA Component package profiles. These

213

issues may well be addressed in responses to an OMG RFP on a UML profile for

CORBA [ad/99-03-11], which covers CORBA Components.

TMN functional entities, such as NEFs, MFs, QAFs and OSFs, are not modelled as
multi-interface components. However, agent interfaces are often structured in terms
of management functions that may be used by separate managers playing different
roles. Case Study 2 gives an example of how specific parts of an agent containment
tree can be earmarked for use by different managers by placing a manager-role
specific MOs high in the tree. By using such role-specific MOs to indicate the
demarcation between different access control settings to different agent sub-trees, it
may be possible to design MIBs which provide the benefits of multiple interfaces.
Alternatively, some of the mechanisms used to manage MO domains for policy
based management may be applied [alpers][sloman]. Apart from the lack of support
for multiple interfaces, the TMN set of standards already offer many of the same

features as components models, including:

* The event report management model [x734], which is close to that used in

CORBA Components and EJB event sources,

* Management functions for supporting a management system’s repertoire,

definition and instance knowledge [x750], which provide reflection support.

e The integration of X.500 and X.700 [bjerring94a], which provides similar
location features to component and interface finder interfaces, especially when

combined with scoping and filtering.

* Security, which is available in the form of access control MOs [x741] as

demonstrated in [gagnon].

Aspects of component models not currently addressed in TMN standards are
transactions, persistency and properties. The latter could potentially be handled by
custom MO classes, while proprietary solutions for transaction and persistence
already exist on commercial management platforms. Given that a TMN component

model could be synthesised, a further avenue of investigation would be to develop

214

specifications for suitable CORBA 3.0-to-TMN and EJB-to-TMN gateways,
possibly building on the existing JIDM definitions. The development of a CORBA
Component to TMN gateway function has been suggested by the author as a part of a

collaborative research proposal.

6.3 Integrated Tool Support

Service providers are addressing competitive pressures through the increased
integration of the many software systems that they operate. This includes amongst
other, the integration of different OSSs, the integration of OSSs with service access
and control software and the integration of service control software for different

services that are combined to provide new services.

This thesis argues that a suitable development framework for SMS could be based
on common methodological guidelines containing a common meta-model and
notation extended from UML. However, when considering the integration of SMS
into the wider range of telecommunications software, problems arise from the range
of standardised notations used across different specialised areas of
telecommunication software development, e.g. SDL in IN-based system
development, ODL and IDL in DPE based telecommunication software development
and GDMO in TMN-based system. These different languages overlap in some of
their features, but also have unique features that maintain their importance in the
development and integration of telecommunications systems, e.g. the use of SDL for
simulation and test case and code generation. Furthermore, the standardisation of
these languages has prompted their support in individual CASE tools. Developers
having to develop and integrate systems across the whole range employed by a
service provider are faced with a large number of different modelling languages,
modelling constructs and modelling tools with only limited integration existing
between them [valiant]. This fragmentation in modelling method, notations and tools
poses a tangible barrier to the efficient integration of telecommunication systems and
the adoption of an open development framework for SMS and other

telecommunications areas. Though, as we have seen in Chapter 3, there has been

215

some work aimed at inter-working between notations and tools (e.g. UML to
GDMO, IDL to GDMO), the emergence of similar but separate modelling standards
such as the ITU-T’s ODL and the OMG’s CORBA component IDL extension,
indicates that these barriers continue to persist. For this reason, the evaluation and
application of interworking approaches between those different notations and their

accompanying meta-model needs to be addressed.

A suitable approach should acknowledge that the different branches of
telecommunications software development, principally TMN and IN, exhibit
differences in development techniques based on real-time requirements, scaleability
and reliability targets, installed base, notations used in standards and development
tools investment. However, a less parochial approach to the integration of notations
and tools would allow future investment in skills and tools to be more widely
applicable within enterprises developing telecommunication software. Any fruitful
avenue of investigation would have to support the construction of systems from
reusable components, even if they are expressed and manipulated by developers in
different open notations. Such an approach would also need to support a
component’s potential involvement in different styles of development, from high
level, iconic service creation, to business process engineering led development to
more traditional OOAD. Such an approach would aim to facilitate the collaboration
of a wide range of telecommunications software development specialists using
specialised CASE tools, but interchanging models via component repositories as

depicted in Figure 6-1.

216

TMN System Svc Mgmt IN System
Developer Component Developer
Vendor

i &
&
G i
\ .-
components

IN System
Analyst

Bespoke
components

Svc Mgmt
components

Ref Pt TMI.‘I. if gSt:lS .(')DL
definitions definitions efinitions
ITU-T standard ETSIIN

TINA reference

point repository repository repository

Figure 6-1: A Potential Scenario for the Integration of Software development across

the Telecommunications Domain

An approach based on a common, component-based meta-model would be a natural
extension of the results of this thesis. Such a meta-model would contain additional
information and relationships to enable transparent roundtrip transformation to the
notation most suitable for different telecommunications development tasks, e.g.
UML for general analysis and design work, SDL for behaviour simulation or test

case generation, IDL or GDMO for deployment on specific distributed platforms.

It is not envisaged that a single homogenous, single-vendor tool set will ever address
the entire telecommunications development domain. Instead research should aim to
ensure open model interchange between both general purpose tools, such as
component repositories and UML editors (though working with telecommunication
specific profiles), and specialised telecom-specific tools such as GDMO compilers
or SDL-based service creation simulators. The OMG’s Meta Object Facility (MOF)
[ad/97-08-14] and XML-based Model Interchange (XMI) standards [xml][ad/98-10-
05] would be central to such research. The use of XMI would allow tools and
exchange mechanisms to gain leverage from the large range of software emerging

that support XML ,e.g. MicroSoft’s Windows 2000, thus potentially reducing the
217

cost of supporting an open model exchange format. It may also allow XML to form
the basis of open consistency management tools needed to ensure cohesion of
models being manipulated in different native notations and mapped to and from the

component meta-model, as depicted in Figure 6-2.

Consistency
management
tool

¢ XMI

UML graphical
modelling tool < >
M eta-
model
TMN (GDMO) based

development
environment

> component

repository

SDL-based, IN
prototyping tool

A
NININ

SDL-based simulation
& test case generation
tool)
ODL development
tool _”/

Notation
translation
functions

Figure 6-2: Tool interworking and multi-notation round trip engineering using XMI

Such as approach, based on the author’s ideas of a common, multi-notational meta-
model and model exchange mechanisms, have formed the core of a collaborative

research proposal recently submitted to the European Commission.

6.4 Application to Service Management Standardisation

The approach taken in this thesis to addressing the development of open
management systems has focussed on addressing the process and concomitant

notations of open system development. It has not promoted the detailed definition of

218

a functional architecture for service management or the specification of functions
that might populate such an architecture. This is based on the assertion that the
business requirements on service management are currently too volatile. However,
the author acknowledges that a methodologically-based approach will not, in itself
support open service management, and that the requirements of service management
will have to be addressed by standards bodies working in this area in spite of the
changing requirements present. This section presents some changes in service
provision that, due to their general industry momentum, may be fruitful targets for
service management standardisation. It also addresses how various changes in
technology impact on the common perception of the scope of service management
and speculates what further development may have profound impacts on the

development of service management functions.

One major area impacting on telecommunications is the rapid expansion of the
Internet, and the resulting move by service providers to offer IP services instead of or
alongside traditional connection oriented services such as PSTN and ATM. The use
of IP technology presents several challenges to service providers used to dealing
with traditional telecommunications services such as IN or ATM. In these cases
there is a clear identification of the point at which a service is provided to the
customer, e.g. a User-Network Interface (UNI). This, therefore, provides a point at
which service performance can be monitored for application to terms in an SLA. For
IP-based service the situation is different. The IP-based services that users are
familiar with reflect the behaviour both of the network and of end system processes
such as user applications and application servers, e.g. for email store and forward,
WWW or security keys. This reflects the engineering tendency in the Internet to push
intelligence to computer systems at the edge of the network, compared to

concentrating it within the network as in telecommunications systems.

As we have see in Chapter 3, the telecommunications industry has a well-established
functional architecture for structuring management in the form of TMN. The
management of IP-based networks does not benefit from any such common

functional structuring, and little work has been done in formalising the application of

219

the TMN functional grid to such networks despite the fact that they are within the
scope of TMN. With the introduction of QoS capable IP networks (based on RSVP
and Diffserv) there is, as observed in Chapter 3, increased interest within the IETF in
address management beyond the network element. Additionally the Distributed
Management Taskforce is working towards a Common Information Model (CIM) for
managing the end systems typically deployed in IP-based enterprise networks.
Neither group has aligned its work with the TMN functional architecture. This is
necessary if telecommunication service providers are to apply themselves in an

integrated way to the provision of IP enterprise network management services.

Strongly influenced by the rise of the IP technologies, enterprises are increasingly
using distributed IT systems based on Intranet technologies to support and integrate
their business processes. Two major trends are visible in the development of IT
support for integrating enterprise business processes, the move to component-base,
three tier architectures and the adoption of workflow management techniques.
However, if service providers wish to exploit these trends, they must be able to offer
services that manage of the networks that underlie such business integration and the
customer’s business processes that interact across them, i.e. they should provide
third party business process management services. Such services would also aim to
support business process automation between enterprises as well as within them,

based on multi-domain Intranets, also known as Extranets.

The requirements to manage IP-based services and, more specifically to manage
three-tier architecture-based enterprise management systems, means that the
management of services will have to be integrated with what is more commonly
known as systems management. The systems being managed would include
distributed application servers (e.g. middleware service servers and workflow
engines) as well as the management systems themselves. Current management
architectures, such as TINA and the TMF's Telecoms Operation Map, include
systems management but typically only as a single, orthogonal functional area,

typically lacking the finer grained guidance on separation of concerns that is given

220

for communications systems. Solutions also often focus on computing hardware

management rather than the management of the software processes.

Figure 6-3 represents a possible system architecture for an IP-based enterprise
management system. The principal architectural concept used is that all parts of the
system are modelled and implemented as software components, which have an
underlying technological grouping into either a presentation, business or persistence
tier. Starting from this basis an open functional architecture is therefore defined in
terms of groups of component types addressing different functional concerns, along

lines similar to those outlined in Section 5.2.2.

221

Persistence T ler

Presentation Tier Business Tier
Customer
Applications Customer user Customer application Customer dan
applications functions
Supp
functi Service workflow Security Location
functions functions
SLA
Provider systems System Tgmt System mgmt Mgmt workflow
mgmt applications functions
User
TM14 SML
Provider service
Support and mgmt applications Customer
Management Subscription SLA mgmt
mgmt functions functions functions
Customer service
mgmt applications Contract
TMN
Provider network Net OoS mgmt Fault mgmt
mgmt applications functions functions description
Performance
log
Scanning Event correlation
TMN 1 ML functions functions
QoS
Thresholds
DTMF SNMP DTMF
agent agent
TMN-NEL

Figure 6-3: Possible enterprise management service system scenario showing potential functional architecture overlay

222

Figure 6-3 raises many of the architectural issues presented by the move to a three
tier software architecture for integrating network, service and systems management

with a TMN framework. The key questions raised are:

What is a suitable functional decomposition for components in the persistence

tier?

* Should systems management components be treated separately from service

management ones?

* Should non-network hardware systems be managed in the same functional area

as network elements?

* How can existing network element MIB definitions (e.g. in SNMP) and useful
NE management functions (e.g. workload monitoring) be integrated into a

component-based software architecture?

* Should the component groupings used for forming and populating such a
functional architecture be the only groupings considered, or should other,
potentially overlapping groupings based on component deployment, lifecycle or
security management, component fault and performance monitoring or product

marketability also be supported in an open fashion?

The mechanism for the management and monitoring of application components is
another related area in need of further investigation. In addition to the work of the
DTMF CIM, requirements for this have already been addressed by the TMF
Application Component Team, which has produced requirements for a Common
Application Management Interface as part of its generic building block requirements
[shrewsbury]. This in turn has influenced an OMG RFP on the subject [orbos/99-04-
11].

The approach required to perform the on-going standardisation of service
management functions in such functional architecture also requires some research.
One possible approach is that taken by the BT OSS architecture, which assumes that

corporate data is more stable than the business processes that operate on it.

223

Standardisation efforts could therefore focus on defining common groupings for
components in the persistence tier. Such common persistence objects would capture
the structure of units of common corporate data, the operations that could be
performed on them and the constraints on relationships to other objects in the
persistence tier. It is significant that the TMF in its current TOM work ignores the
definition of data and focuses primarily on business processes, which provide direct
requirements for business tier objects only. At the time of writing the author is
assisting the TMF’s Application Component Team, in examining the differences in
the TMF’s process-oriented approach and the BT data-oriented approach. This work
has the aim of influencing the TMF to change its working structure to one that

combines both approaches and that addresses each of the three tiers explicitly.

Whichever approach is taken to developing a suitable functional architecture for
service management, the requirements which act upon it will have to be regularly
reviewed as the common understanding of the meaning of service management
changes. The EURESCOM project P.812 is a good example of such a review
[davidson99a], however it may be necessary for standards bodies such as ITU-T
SG10 to regularly undertake analysis of evolution scenarios in order to be able plot
the direction of the scope and content of the service management layer. Examples of

evolution scenarios that are relevant at the time of writing could address:

* The method by which a user pays for services moves from subscription based
quarterly payment based on standing charge and usage metering, through “pay as

you go” schemes, to anonymous, per session e-cash/micropayment transactions.

* The evolution of voice services from PTSN, through PSTN-IP integration to a
scenario of pure voice over IP as part of IP integrated services. This would
involve the migration of much of the intelligence that supports intelligent

network from the network to end user devices.

e A move to the situation where the relative costs of bandwidth and network

intelligence are such that only premium services are cost effective to charge for

224

and a large number of services are provided at a flat rate or free to users (e.g. the

current large number of free ISPs in the UK).

* The migration to a situation where communications services are highly
commoditised, charging policies are highly dynamic and users may change
providers on an hourly basis, possibly with the help of intelligent brokering

agents.

* The migration to a situation where users expect to be able to request whatever

SLA they require at the time, possibly on a call by call basis.

* User’s subscribe and unsubscribe rapidly while roaming internationally through
domains of local area, high bandwidth access providers such as train, aeroplane,
airport, hotel and highway operators, with closely linked loyalty schemes for

these non-communication service providers.

Such analyses could be conducted so as to order requirements in terms of their
volatility, with the most invariant requirements being those most directly targeted for
ongoing standardisation work, e.g. through the definition of service management
persistent object. This approach has been suggested by the author in a further
collaborative research proposal that has recently submitted to the European

Commission.

225

7. Conclusions

This chapter reviews the conclusion of the thesis and discusses the extent to which
the recommendations for the proposed open development framework satisfy the

goals laid out in Chapter 2 and the thesis statement in general.

The analysis of the current state of Service Management standards in Chapter 2
revealed that no single logical architecture is dominant. The current candidates differ
widely in their approach, from the coarse grained, relatively unpopulated TMN
service management layer, through the business process driven set of TMF standards
to the TINA reference points generated from a DPE-based component model. In
addition, a wide range of technologies was identified in Section 2.3 as being
applicable to service management. This included CMIS, as currently specified in
TMN (though this is not widely regarded as a suitable technology for service
management) and CORBA, due to its general suitability for distributed business
systems. This heterogeneity in both logical and technological architectures for
service management presents developers with increasing problems of interoperability
between SMSs precisely at a time when open markets in telecommunication services
are increasing the need for integration of service management processes between
service providers and their customers. The thesis therefore suggests that, to improve
the chances of building interoperable SMS within increasingly tight cost and time

constraints, a suitable development framework exhibits the following characteristics:

* It adopts a loose logical architecture in order to accommodate the range of

logical structures currently applicable to SMS.

e It exploits the existing and emerging range of technological gateways to

accommodate a wide range of SMS platform technologies.

¢ It promotes interoperability and efficient SMS development through a common

set of methodological guidelines.

226

The thesis has shown that SMS development can benefit from an open approach to
modelling and integrating SMS systems that is commonly understood by SMS
Developers, COTS Software Vendors and service management Standards
Developers. An analysis of the different software engineering and modelling
techniques that may be applied to the development of telecommunications
management systems revealed the potential linkages between the development
activities within each of the relevant stakeholders. These linkages are identified as
points of communication where a common development framework would be most

beneficial.

The thesis asserts that existing network management development techniques are
insufficient to form the basis of such methodological guidelines. Chapter 3 reveals
the distinction, observed by many standardisers and developers, between the
modelling of interfaces and the modelling of systems, the latter of which consists
both of interface definitions and models of the systems behind them. The needs of
the SMS Developer stakeholders depend on the smooth integration of interface and
system modelling techniques. This was hindered in the case of M.3020 due to its
reliance on functional decomposition, which made it difficult to exploit the benefits
of OOAD in terms of software and specification reuse and specialisation. Though
M.3020 is currently being revised to use UML [m3020-99], it still adheres to this
functional decomposition approach, thus maintaining its inadequacy for SMS

development.

A series of case studies was conducted around the development of SMS in a number
of research projects. These provided evidence of the development techniques that
developers found most useful in practice. Based on this evidence and the analysis of
current development techniques used in management system development, the

following general recommendations were made:

* Use case modelling should be used for describing the external functionality of

service management standards, systems and components.

227

* For multi-domain SMS analysis, business roles and business processes should be

used to supplement use cases.

* The UML notation should be used both internally for the different stakeholder
development processes and externally for exchanging models between

developers involved in these processes.

e The Projection modelling construct should be used for publishing COTS
software, for publishing standards and for documenting internally developed

reusable software.

* Where possible, an analysis and design process that uses OOSE analysis

modelling should be adopted.

These recommendations are made concrete in the form of semi-formal descriptions
of UML modelling constructs, namely the Business Requirements Model and the
Projection Model. These represent the main contribution of the thesis. Some
examples of their application are given with respect to the models used in Case

Study 5.

To assess the correctness of the thesis statement, the methodological guidelines and
supporting evidence from the case studies and state of the art analysis are assessed

below against the development framework goals defined in Section 2.4.

Goal 1: The Development Framework must support SMS Developers in
developing a SMS that satisfy the business needs of Service Providers,
including its business interactions with Service Customers and Third Party

Service Providers.

The guidelines provide a Business Requirements Model which it recommends is
used in the requirements capture activity of the SMS development process. This
model supports techniques of business role and responsibility modelling to
determine the requirements for interactions between the service provider’s SMS and
the systems of its customers and collaborating service providers. These have been

found useful when combined with sequence diagrams in the requirements analysis

228

stage (Case Study 2, 3, 4 and 5). In addition this model supports the identification of
business processes that may occur internally to the Service Provider. This was found

useful in Case Study 5.

Goal 2: The Development Framework must address all stages of SMS
development, i.e. requirements capture, system analysis, system design,

systems testing, system deployment and system maintenance.

Though the process models for the SMS Developer stakeholders identify activities
for all stages of development, it has only been found to be practical to define
common methodological guidelines for the requirements capture, the requirements
analysis and, to an extent, the design activities. Some aspects of the design model as
well as the models for implementation, testing and deployment are very dependent
on the technological and programming environment adopted, so defining common
guidelines becomes problematic. System maintenance is treated simply as a further
iteration of the overall development process, though it is acknowledged that this may
not be the most efficient approach. System maintenance has not been addressed in

the case studies.

Goal 3: The framework must support SMS Developers in the application of

open standards from Standards Developers.

This situation was tested in Case Studies 3, 4 and 5 where open specifications,
primarily ones originating from TINA, were followed in order to implement various
systems. This experience revealed some shortcomings in the use of ODP viewpoints
(Case Study 3) but also showed how re-documenting the specifications, first with
UML and then using an equivalent of the Projection construct, aided in their smooth
application by SMS developers. Case Studies 1 and 2 also supported the evidence
from the state of the art review that indicated that specifying open interfaces using
functional decomposition did not support the needs for such definitions in the SMS
development environment. Instead, a use case or scenario focussed approach is

advocated. In addition, Case Study 5 supported the recommendation that the analysis

229

level specification for an open interface should be structured using OOSE analysis

object types.

Goal 4: The Development Framework must support SMS Developers in the

reuse of design solutions and software over different projects.

The recommendation to use the Projection construct will aid in the reuse of
internally developed models, especially with respect to the retention of the original
requirements and their traceability to design model elements. This was demonstrated
by components such as subscription management, which was reused and modified
over several of the case studies with the aids of some of the modelling elements that

make up the Projection.

Goal 5: The framework must support SMS Developers in using commercial

off the shelf software developed by Software Vendors.

Though the case studies involved some existing components, these were subject to
extensive remodelling using the recommended techniques, so were not really “off-
the-shelf”. This situation was simulated however in Case Studies 3 and 4 where
components from one organisation were reused unchanged by another, thus
providing some evidence of the validity of the recommendations in addressing the

goal of reuse of software between organisations.

Goal 6: The Development Framework must support the Software Vendors in

the application of open standards in developing its products.

This was supported in much the same way as for Goal 4. It should be noted that
some of the components reused by other partners in Case Studies 3 and 4 were based
on open interface specification as part of component specification of the TINA

Service Architecture, e.g. the subscription management component.

Goal 7: The Development Framework must support Standards Developers in
the on-going development and evolution of open standards to be used by

SMS Developers and Software Vendors.

230

The fact that existing standard specifications, such as those from TINA, could be
remodelled and applied successfully using the recommended techniques indicates
how existing standards can be aligned with these techniques, and thus, not
insignificantly, with each other. The full benefit of these techniques clearly only will
come when the relevant bodies adopt similar techniques for their internal
development work. In the case of the recommendation to use UML, the TMF has
already adopted it while TINA-C has its adoption as a stated aim. A recent draft
revision to M.3020 [m3020-99], shows that the ITU-T is also moving to use UML
more widely. This revision specifies the use of use cases for defining management
services and functions and explicitly applies the requirements capture, analysis and
design stages of systems modelling. However, differences will remain in the way the
different bodies structure their standardisation efforts, with the ITU-T defining
management functions derived from management services, the TMF defining
management functions based on business process interactions and TINA-C defining
reference points based on component models. The recommended Business
Requirements Model accommodates all of these analysis approaches, thus providing
a possible route to converging the different standardisation approaches. Also, the
Projection modelling construct provides a common form for expressing the results of
standardisation so that the differences in the approach used in arriving at a standard

may not present such an obstacle for the standard’s user.

Goal 8: The framework must support the development of a SMS that operate
over heterogeneous computing platform technology and which will be robust

to changes in computing platforms.

This goal is addressed by adopting a common notation and meta-model for
requirements capture, analysis and design within the Projection construct, regardless
of the target technology. At the requirements capture and analysis level, it is
expected that models will remain unchanged during platform technology changes. It
is expected that aspects of the design model may change if the platform changes,
especially when changing paradigms, for instance when moving between client-

server and manager-agent platforms. Such ‘protocol neutral modelling’ is not, in the

231

author’s opinion, possible at this detailed level of abstraction. However, the same
UML-based modelling techniques can be applied, with platform specific notations,
e.2. GDMO and IDL, being generated automatically, and thus made largely
transparent to the designer. The development in Case Studies 3, 4 and 5 involved
both CORBA and CMIP technologies. However, the latter did not form a large part
of the development effort, and was restricted to the network and element
management layers. So, though the views of the CMIP developers when questioned
did not vary much from those of the CORBA developers, support for claims that the
techniques recommended applied equally to both is relatively weak. One group of
developers who modelled their system in Case Study 2 using OMT, were however
able to transform this CMIP-based design to a CORBA-based one for Case Studies 3

and 4 using many of the same core concepts.

Goal 9: The notations and methodology of the development framework
should be easy for those playing SMS development stakeholder roles to
understand, and should be readily supported by CASE tools.

By adopting the widely used UML notation and the use case modelling construct,
and by avoiding the use of FDTs and of the more complex aspects of ODP enterprise
modelling, the recommendations aim to be accessible by the widest range of
developers in the SMS development arena. The use of UML ensures widespread
CASE tool support for the implementation of the recommendations. Expressing the
recommendations in terms of a meta-model defining a UML profile may promote the

development of CASE support for SMS in existing tools.

To summarise, therefore, this thesis has provided evidence of the need for a loose
logical and technological for SMS development and thus of the potential benefits of
adopting a common development framework that can cope with such heterogeneity.
A set detailed goals for such a framework and a model of the development process
needs of the relevant stakeholder types were established. A series of case studies was
conducted which garnered both informal and empirical evidence on the usefulness of

a range of software development techniques applied to SMS development. Based on

232

the framework goals and stakeholder process needs, specific methodological
recommendation have been made and supporting notational models have been
defined, principally the Projection Construct and the Business Requirements Model.
The author expects that these recommendation and notational models may have
applicability beyond SMS development, but providing evidence for this is beyond

the scope of this work.

233

This page has been deliberately left blank.

234

8. References

[ad/97-08-03] UML Summary, v1.1, ad/97-08-03, OMG, Aug 1997
[ad/97-08-04] UML Semantics, v1.1, ad/97-08-04, OMG, Aug 1997
[ad/97-08-05] UML Notational Guide, v1.1, ad/97-08-05, OMG, Aug 1997

[ad/97-08-06] UML Extension for Objectory Process for Software Engineering,
version 1.1, ad/97-08-06, OMG, Sep 1997

[ad/97-08-08] Object Constraint Language Specification, version 1.1, ad/97-08-08,
OMG, Sep 1997

[ad/97-08-14] Meta Objet Facility, revised submission, ad/97-08-14, OMG, Aug
1997

[2d/98-10-05] XML Metadata Interchange, ad/98-10-05, OMG, Oct 1998
[2d/99-03-11] RFP: UML Profile for CORBA, ad/99-03-11, OMG, 1999

[adams] The Lean Communication Provider: Surviving the Shakeout through
Service Management Excellence, Adams, E., Willetts, K., 0-07-070306-X,
McGraw-Hill, 1996

[allen] Putting UML to Work: Strategies and Techniques, Allen, P., in [UML98],
pp33-43, OMG, Jun 1998

[allweyer] Process Orientation in UML through Interaction of Event-Driven Process

Chains, Allweyer, T., Loos, P., in [UML98], pp183-193, OMG, Jun 1998

[alpers] Concepts and Application of Policy Based Management, Alpers, B.,
Plansky, H., in [IM95], pp57-68, Chapman-Hall, 1995

[arkko] Requirements for Internet-Scale Accounting Management, Arkko, J., draft-
arkko-acctreq-oo.txt, IETF, Aug 1998

[arlow] Literate Modelling - Capturing Business Knowledge with the UML, Arlow,
J., Emmerich, W., Quinn, J., in [UML98], pp165-171, OMG, Jun 1998

235

[aurrecoechea] Towards building manageable multimedia network services,
Aurrecoechea, Lazar, A.A., Stadler, R., Proceedings of the International
Conference on Management of Multimedia Networks and Services,

Montreal, Canada, pp18-30, Chapman-Hall, 1997

[barbeau] An Approach to Conformance Testing of MIB Implementations, Barbeau,
M., Sarikaya, B., in [IM95], pp654-666,‘Chapman-Hall, 1995

[barillaud] Network Management using Internet Technologies, Barillaud, F., Deri,

L., Feridun, M., in [IM97], pp61-70, Chapman-Hall, May 1997

[basili] The TAME Project: towards improvement-oriented software environments,
Basili, V.R., Rombach, H.D., IEEE Transactions on Software Engineering,
14(6), pp758-773, 1988

[beaumont] Starting from Scratch, Beaumont, J, Telecommunications, 26-29 March

1995, Conference Publication No. 404, IEE, pp1-3, IEE, 1995

[berndt95a) Service Architecture, Berndt, H., Minerva, R., TINA Baseline
Document TB_MDC.012_2.0_94, TINA, 1995

[berquist] Managing Information Highways: The PRISM Book: Principles, Methods,
and Case Studies for Designing Telecommunications Management Systems,
Berquist, K., Berquist, A. (Eds), Lecture Notes in Computer Science 1164,
Springer-Verlag, 1996

[bjerring94a] Requirements of Inter-Domain Management and their Implications for
TMN Architecture and Implementation, Bjerring, L.H., Tschichholz, M., in
[ISN94], pp193-206, Springer-Verlag, 1994

[bjerring94b] End-to-end Service Management with Multiple Providers, Bjerring,
L.H., Schneider, J.M., in [ISN94], pp306-316, Springer-Verlag, 1994

[bleakley] TMN Specifications to Support Inter-Domain Exchange of Accounting,
Billing and Charging Information, Bleakley, C., Donnelly, W., Lindgen, A.,
Vuorela, H., in [ISN97], pp275-282, Springer-Verlag, May 1997

236

[booch94] Object Oriented Analysis and Design with Applications (2nd edition),
Booch, G., Rumbaugh, J., Jacobsen, 1., 0-8053-5340-2, Benjamin Cummings,
1994

[booch99] The Unified Modelling Language User Guide, Booch, G., Rumbaugh, J.,
Jacobsen, 1., 0-201-57168-4, Addison-Wesley, 1999

[bosco] ACE: An Environment for Specifying, Developing and Generating TINA
Services, Bosco, P.G., Lo Giudice, D., Martini, G., Moiso, C., in [IM97],
ppS515-527, Chapman-Hall, May 1997

[caluwe] The Use of TMN as an Architectural Framework for Value Added Service
Management, de Caluwe, L., Leever, P., Wester, J., in [ISN94], pp295-304,
Springer-Verlag, 1994

[carls] Introducing SDL9Y2 in the Development of TMN Applications, Carls, G.,
Frohnhoff, B., in [ISN98], pp365-378, Springer-Verlag, May 1998

[case] Simple Network Management Protocol (SNMP), Case, J.D., Fedor, M,,
Schoffstall, M.L. Davin, C., RFC 1157, IAB, 1990

[chan-m] Customer Management and Control of Broadband VPN Services, Chan,
M.C., Lazar, A.A., Stadler, R., in [IM97], pp301-314, Chapman-Hall, May
1997

[chapman] Overall Concepts and Principles of TINA, Chapman, M., Montesi, S.,
TINA Baselines document TB_MDC.018_1.0_94, TINA, 1994

[chatt] TMN/C++: An Object-Oriented API for GDMO, CMIS and ASN.1 , Chatt,
T.R., Curry, M., Holberg. U., Seppa, J., in [IM97], pp177-191, Chapman-
Hall, May 1997

[chen96] Distributed Network Management Using CORBA/TMN, Chn, G., Neville,
M., Kong, Q, Proceedings og the 7th IFIP/IEEE International Workshop on
Distributed Systems Operations and Management, L’Aquila, Italy, Oct 1996

[chen97a] Integrated TMN Service Provisioning and Management Environment,

Chen, G., Kong, Q., in [IM97], pp99-112, Chapman-Hall, May 1997
237

[chen97b] The Business Process and Object Modelling for Service Ordering, Chen,
G., Kong, Q., Proceedings of the 8th IFIP/IEEE International Workshop on
Distributed Systems Operations and Management, L’Aquila, Italy, pp196-
209, 1997

[choi] A Generic Service Order Handling Interface for the Cooperative Service
Providers in the Deregulated and Competitive Telecommunications
Environment, Choi, Y.B., Tnag, A., in [ISN97], pp211-218, Springer-Verlag,
May 1997

[christensen] Information Modelling Concepts, Christensen, H., Colban, E., TINA
Baseline document TB_EAC.001_1.2.94, TINA, 1994

[coplien] Pattern Languages of Program Design, Coplien, J., Schmidt, D. (eds), 0-
201-60734-4, Addisson-Wesley, 1995

[corba] The Common Object Request Broker Architecture and Specification, OMG
Document number 92.12.1, Rev. 1.1, OMG, 1992

[corley] The Application of Intelligent and Mobile Agents to Network and Service
Management, Corley, S., Tesslaar, M., Cooley, J., Meinkohn, J.,
Malabocchia, F., Garijo, F., in [ISN98], pp127-138, Springer-Verlag, May
1998

[covaci] Towards Harmonised Pan-European TMN Customer Care Solutions:
Interoperable Trouble Ticketting Management Service, Covaci, S., Dragan,

D., in [ISN97], pp255-262, Springer-Verlag, May 1997

[dahle] Method and Graphical Syntax for Computational Modelling, Dahle, E.,
Giganti, P.L., Proceeding of TINAYS, Melbourne, Australia, pp577-590,
TINA, Feb 1995

[dassow] SNMP and TMN: Aspects of Migration and Integration, Dassow, H., Lehr,
G., in [ISN97], pp339-348, Springer-Verlag, May 1997

[davidson94] Service Provisioning in a Mulit-Provider Environment, Davidson, R.,

O'Brien, P, in [ISN94], pp259-271, Springer-Verlag, 1994

238

[davidson99a] A Practical Perspective on TMN Evolution, Davidson, R., Turner, T.,

in [ISN99], pp3-12, Springer-Verlag, Apr 1999

[davidson99b] A New Architecture for Open and Distributed Network Management,
Davison, R., Hardwicke, J., in [ISN99], pp23-38, Springer-Verlag, Apr 1999

[dede] OSAM Component Model, A key concept for the efficient design of future
telecommunication systems, Dede, A., Arsenis, S., Tosti, A., Lucidi, F.,

Westerga, R., in [ISN97], pp127-136, Springer-Verlag, May 1997

[delafuente94] Management Architecture, v2.0, de la Fuente, L.A. (ed), TINA
Baseline Document, TB_GN.010_2.0_94, TINA-C, Dec 1994

[delafuente95] Application of the TINA-C Management Architecture, de la Fuente,
L.A., Kawanishi, M., Wakano, M., Walles, T., Aurrecoechea, C., in [IM95],
pp424-436, Chapman-Hall, 1995

[deri] Static vs. Dynamic CMIP/SNMP Network Management Using CORBA, Deri,
L., Ban, B., in [ISN97], pp329-337, Springer-Verlag, May 1997

[derrick] Formal Description Techniques for Object Management, Derrick, J.,

Linington, P.F., Thimpson, S.J., in [IM95], pp641-653, Chapman-Hall, 1995

[des403-B1011] WorldCom TMN Requirements Methodology Specification,
WorldCom Engineering Standards, DES 403.1, Issue 1.01, Mar 1998

[dezen97] Proposal for an IN Switching State Model in an Integrated IN/B-ISDN
Scenario, De Zen, G., Faglia, L., Hussmann, H., van der Vekens, A., in

[ISN97], pp179-188, Springer-Verlag, May 1997

[dezen98] Accountable and Guaranteed Services in Internet, De Zen, G, Marsiglia,
M., Ricagni, G., Vezzoli, L., in [ISN98], pp31-42, Springer-Verlag, May
1998

[dobson] The ORDIT Approach to Organisational Requirements, Dobson, J.E.,
Blyth, A.J.C., Chudg, J., Strens, R., Requirements Engineering: Social and

Technical Issues, Academic Press, 1994

239

[EDOC97] Proceedings of the 1st International Workshop on Enterprise Object
Distributed Computing,

[erdmann] Enterprise Modelling with FUNSOFT Nets, Erdmann, S., Wortmann, J.,
in [EDOC97], pp28-35, IEEE, 1997

[eriksson] The UML Toolkit, Eriksson, H., Penker, M., Wiley Computer Publishing,
1998

[etsi-na608] IN Intra Domain Management Requirements for CS-2, Draft TC-TR
NA608-01, version7, 8/7/94, ETSI, Jul 1994

[fenton] Software Metrics, Fenton, E., Pfleeger, S.L., International Thompson
Computer Press, 1997

[festor] MODE: A Development Environment for Managed Objects Based on
Formal Methods, Festor, O., in [IM95], pp616-628, Chapman-Hall, 1995

[fink] Management Application Creation with DML, Fink, B., Dercks, H., Besting,
P., in [IM95], pp629-640, Chapman-Hall, 1995

[fowler] UML Distilled - Applying the Standard Object Modeling Language, Fowler,
M., Scott, K., 0-201-32563-2, Addison-Wesley, 1997

[furley] The BT operational support systems architecture, Furley, N., BT Technical
Journal, vol. 15, No 1, January 1997, pp13-21, BT, 1997

[gagnon] A Security Architecture for TMN Inter-Domain Management, Gagnon, F.,
Maillot, D., Olnes, J., Hofseth, L., Sacks, L., in [ISN97], pp415-427,
Springer-Verlag, May 1997

[galis] Towards Integrated Network Management for ATM and SDH Networks
Supporting a Global Broadband Connectivity Management Service, Galis,
A., Brianza, C., Leone, C., Salvatori, C., Gantenbein, D., Covaci, S.,
Mykoniatis, G., Karayannis, F., in [ISN97], pp303-314, Springer-Verlag,
May 1997

240

[gamma] Design Patterns: Elements of Reusable Object-Oriented Software, Gamma,
E., Helm, R., Johnson, P., Vlissides, J., Addison-Wesley, 1995

[gaspoz] VPN on DCE: From Reference Configuration to Implementation, Gaspoz,
J.P., Gbaguidi, C., Meinkohn, J., in [ISN95], pp249-260, Springer-Verlag,
Oct 1995

[georgatsos] Technology Interoperation in ATM Networks: The REFORM System,
Georgatsos, P., Makris, D., Griffin, D., Pavlou, G., Sartzetakis, S., TJoens,
Y., Ranc, D., IEEE Communications Magazine, vol. 37, no. 5, May 1999

[graham] Object Oriented Methods, Graham, L., 0-201-59371-8, Addison-Wesley,
1994

[graubmann] Engineering Modelling Concepts (DPE Architecture), Graubmann, P.,
Mercouroff, N.,, TINA Baseline Document TB_NA.005_2.0 94, TINA,
1994

[griffin95] A TMN System for VPC and Routing Management in ATM Networks,
Griffin, D.P., Georgatsos, P., in [IM95], pp356-369, Chapman-Hall, 1995

[griffin96] Integrated Communications Management of Broadband Networks,
Griffin, D. (ed), 960-524-006-8, Crete University Press, 1996

[griffin97] Implementing TMN-like Management Services in a TINA Compliant
Architecture: A Case Study of Resource Configuration Management, Griffin,
D., Pavlou, G., Tin, T., in [ISN97}, pp263-274, Springer-Verlag, May 1997

[hall96] Management of Telecommunication Systems and Services: Modelling and
Implementing TMN-based Multi-domain Management, Hall, J. (Ed), Lecture
Notes in Computer Science 1116, Springer-Verlag, 1996

[hall98] Protocol Independent Information Modelling for a Peer-to-peer
Configuration Interface, Hall, J., Best, M., Ferry, R., Fratini, S., Hunt, C., in
[ISN98], pp193-204, Springer-Verlag, May 1998

[hegering] Integrated Network and System Management, Hegering, H.G., Abeck, S.,
0-201-59377-7, Addison-Wesley, 1994

241

[hellemans99] Accounting Management in a TINA-Based Service and Network
Environment, Hellemans, P., Redmond, C., Daenen, K., Lewis, D., in

[ISN99], pp13-24, Springer-Verlag, Apr 1999

[herzog] From IN towards TINA - Potential Migration Steps, Herzog, U., Magedanz,
T., in [ISN97], pp219-228, Springer-Verlag, May 1997

[hruby] Structuring Design Deliverable with UML, Hruby, P., in [UML98], pp251-
260, OMG, Jun 1998

[ieee829] IEEE Standard for Software Test Documentation, IEE Standard 829, 1983

[IM95] Integrated Network Management IV: Proceedings of the 4th International
Conference on Integrated Network Management, Santa Barbara, USA,
Chapman-Hall, 1995

[IM97] Integrated Network Management V: Proceedings of the Sth IFIP/IEEE
International Symposium on Integrated Network Management, San Diego,
USA, San Diego, USA, Chapman-Hall, 1997

[ISN94] Proceedings of the 2nd International Conference on Intelligence in Services

and Networks, Aachen, Germany, Springer-Verlag, 1994

[ISN95] Proceedings of the 3rd International Conference on Intelligence in Services

and Networks, Heraklion, Greece, Springer-Verlag, 1995

[ISN97] Proceedings of the 4th International Conference on Intelligence in Services

and Networks, Cernobbio, Italy, Springer-Verlag, 1997

[ISN98] Proceedings of the Sth International Conference on Intelligence in Services

and Networks, Antwerp, Belgium, Springer-Verlag, 1998

[ISN99] Proceedings of the 6th International Conference on Intelligence in Services

and Networks, Barcelona, Spain, Springer-Verlag, 1999
[itu-odl] ITU - Object Definition Language (ITU-ODL), ITU-T, Jan 1998

[jacobsen92] Object-Oriented Software Engineering, Jacobsen, 1., Chisterson, M.,
Jonsson, P., Overgaard, G., 0-201-54435-0, Addison-Wesley, 1992

242

[jacobsen97] Software Reuse - Architecture, Process and Organisation for Business
Success, Jacobsen, I., Griss, M., Jonsson, P., 0-201-92476-5, Addison-
Wesley, 1997

[kande] Applying UML to Design an Intrer-Domain Service Management
Application, Kande, M.M., Mazahaer, S., Prajat, O., Sacks, L., Wittig, M., in
[UML98], pp173-182, OMG, Jun 1998

[karlsson] Software Reuse: A Holistic Approach, Karlsson, E.A., 0=471-95819-0,
Wiley, 1996

[keil] The Mobilise enterprise model: foundation and application, Keil, K., Niebert,
N., Kugler, HJ., Proceeding of the RACE IS&N Conference, 1992

[kindel] COM: What Makes It Work - Black Box Encapsulation through Multiple,
Immutable Interface, Kindel, C., in [EDOC97], pp68-77, IEEE, 1997

[kitson] CORBA and TINA: The Architectural Relatioship, Kitson, B., Proceeding
of TINAYS, Melbourne, Australia, pp371-386, TINA-C, Feb 1995

[kivisto] Considerations of and Suggestions for a UML-Specific Process Model,
Kivisto, K., in [UML98], pp261-271, OMG, Jun 1998

[korthaus] BOOSTER* Process: A Software Development Process Model
Integrating Business Object Technology and UML, Korthaus, A., Kuhlins, S.,
in [UML98], pp205-214, OMG, Jun 1998

[leakey] Some technical aspects of regulation, Leakey, D., Telecommunications, 26-

29 March 1995, Conference Publication No. 404, pp278-281, IEE, 1995

[lewis94] A Broadband Testbed for the Investigation of Multimedia Services and
Teleservice Management, Lewis, D., Kirstein, P., Proceedings of the 3rd
International Conference on Broadband Islands, Hamburg, Germany, April

1994

[lewis95a] Experiences in Multi-Domain Management System Development, Lewis,
D., OConnell, S., Donnelly, W., Bjerring, L., in [IM95], pp494-505,
Chapman-Hall, 1995

243

[lewis95b] Experiences in Multi-Domain Management Service Development, Lewis,
D., Tiropanis, T., Bjerring, L.H., Hall, J., in [ISN95], pp174-184, Springer-
Verlag, Oct 1995

[lewis97] Inter-Domain Integration of Services and Service Management, Lewis, D.,
Tiropanis, T., Redmond, C., Wade, V., McEwan, A., Bracht, R., in [ISN97],
pp283-292, Springer-Verlag, May 1997

[lewis98a] Integrating TINA into an Internet-Based Service Market, Lewis, D.,
Tiropanis, T., in [ISN98], pp185-192, Springer-Verlag, May 1998

[lewis99a] A Development Framework for Open Management Systems, Lewis, D.,
Journal of Interoprable Communication Networks, vol. 2/1, pp11-30, Mar
1999

[lewis99b] Modelling Management Components for Reuse Using UML, Lewis, D.,
Malbon, C., DaCruz, A., in [ISN99], pp210-222, Springer-Verlag, Apr 1999

[lewis99c] A Review of Approaches to Developing Service Management Systems,

Lewis, D., to appear in Journal of Systems and Network Management, 1999

[lewis99d] The Development of Integrated Inter and Intra Domain Management
Services, Lewis, D., Wade, V., Bracht, R., Integrated Network Management
VI: Proceedings of the Sixth IFIP/IEEE International Symposium on
Integrated Network Management, Boston, USA, pp279-292, Addison-
Wesley, May 1999

[lewis99¢] The Component-based Integration of Customer Subscription
Management with Network Planning and Network Provisioning, Lewis, D.,
Palou, G., Malbon, C., Stathopoulos, C., Villoldo, J.E., to be published in the
proceedings of Proceedings of the 10th IFIP/IEEE International Workshop on
Distrubted Systems Operations and Management , 1999

[lodge] Alignment of the TOSCA and SCREEN Approaches to Service Creation,
Lodge, F., Kimbler, K., Hubert, M., in [ISN99], pp277-290, Springer-Verlag,
Apr 1999

244

[lucidi] Development of TINA-like Systems: The DOLMAN Methodology, Lucidi,
F., Idzenga, H., Batistatos, S., in [ISN98], pp379-392, Springer-Verlag, May
1998

[m3000] Overview of TMN Recommendations, ITU-T Recommendation M.3000,
1995

[m3010] Principles for a Telecommunications Management Network, ITU-T

Recommendation M.3010, 1996

[m301x] Definitions of Principles and Concepts for a Telecommunications

Management Network, [TU-T Draft Recommendation M.301x, Jun 1997

[m301y] Considerations for a Telecommunications Management Network, ITU-T

Draft Recommendation M.301y, Aug 1996

[m3020-95] TMN Interface Specification Methodology, ITU-T Recommendation
M.3020, 1995

[m3020-99] TMN Interface Specification Methodology, ITU-T Draft
Recommendation M.3020 Revision, Jul 1999

[m3100] Generic Network Information Model, ITU-T Recommendation M.3100,
1992

[m3200] TMN Management Services: Overview, ITU-T Recommendation M3200,
1992

[m3400] TMN Management Functions, ITU-T Recommendation M.3400, 1997

[magedanz] Modeling IN-based service control capabilities as part of TMN-based
service management, Magedanz, T., in [IM95], pp387-397, Chapman-Hall,
1995

[marcus] Icaros, Alice and the OSF DME, Marcus, I.S., in [IM95], pp83-92,
Chapman-Hall, 1995

245

[martin] Adopting Object Oriented Analysis for Telecommunications Systems
Development, Martin, D., in [ISN97], pp117-128, Springer-Verlag, May
1997

[maston] Using the World Wide Web and Java for Network Service Management,
Maston, M.C., in [IM97], pp71-84, Chapman-Hall, 1997

[may] The Relationship Between I0s and COs in VPN Charging Management, May,
J., Maia, A,, in [ISN95], pp185-199, Springer-Verlag, Oct 1995

[mccarthy] Exploiting the Power of OSI Management for the Control of SNMP
Capable Resources Using Generic Application Level Gateways, McCarthy,
K., Pavlou, G., Bhatti, S., Neuman do Souza, J., in [IM95], pp440-453,
Chapman-Hall, 1995

[mcleod] Extending UML for Enterprise and Business Process Modelling, McLeod,
G., in [UML98], pp195-204, OMG, Jun 1998

[mercouroff95] TINA Object Definition Language (TINA-ODL) Manual,
Mercouroff, N., Kitson, B. (eds)) TINA Baseline Document,
TR_NM.002_1.3_95, TINA-C, Jun 1994

[mercouroff97] TINA Computational Modelling Concepts and Object Definition
Language, Mercouroff, N., Parhar, A., in [ISN97], pp15-24, Springer-Verlag,
May 1997

[meszaros] Distributed Objects in Telecommunications, Meszaro, G., in [EDOC97],

pp149-159, IEEE, 1997

[milsted] OMT Object Modelling of Telecommunications Services, Milsted, K., in
[ISNOS5], pp369-379, Springer-Verlag, Oct 1995

[monton] Maintaining Integrity in the Context of Intelligent Networks and Services,
Monton, V., Ward, K., Wilby, M., in [ISN97], pp427-436, Springer-Verlag,
May 1997
[morris] An SDL based Realisation of an IN Service Development Environment,
Morris, C., Nelso, J., in [ISN95], pp292-308, Springer-Verlag, Oct 1995
246

[mowbray] CORBA Design Patterns, Mowbray, T., Malveau, R., 0-471-15882-8,
Wiley Computer Publishing, 1997

[mulder] TINA Business Model and Reference Points, v4.0, Mulder, H. (ed), TINA
baseline document, TINA-C, May 1997

[natarajan] Computational Modelling Concepts, Natarajan, N., Dupuy, F., Singer,
N., Christensen, H., TINA Baseline Document, TB_A2.HC.012_1.2 94,
TINA, 1994

[nesbitt] The EURESCOM P610 Project: Providing a Framework, Architecture and
Methodology for Multimedia Service Management, Nesbitt, F., Counihan,
T., Hickie, J., in [ISN98], pp73-88, Springer-Verlag, May 1998

[nielsen] Development of Telecommunications Management Systems Using OO
Methods and CASE Tool Support, Nielsen, P.S., Lonvig, B., in [ISN94],
pp407-418, Springer-Verlag, Sep 1994

[nmf-025] The "Ensemble" Concept and Format, NMF 025, Issue 1.0, NMF,
Morristown, 1992

[nmf-504] SMART Ordering - SP to SP Interface Business Agreement, NMF 504,
Issue 1.0, TMF, Sep 1997

[nmf-gb901] A Service Management Business Process Model, GB901, NMF,
Morristown, 1995

[nmf-gb908] A Network Management Detailed Operations Map, NMF, Morristown,
1998

[nmf-gb909] SMART TMN Technology Integration Map, GB 909, Issues 1.1, TMF,
Oct 1998

[nmf-gb910] NMF Telecoms Operation Map: A high-level view of end-to-end

service fulfilment, service assurance and billing, NMF, Morristown, 1998

247

[noam] Beyond liberalisation: From the network of networks to the systems of
systems, Noam, E., Telecommunications Policy, v18(4), pp286-294,

Butterworth-Heinemann, 1994

olsen95] Using SDL for Targeting Service to CORBA, Olsen, A., Norbaek, B.B., in
g geung
[ISNO5], pp334-346, Springer-Verlag, Oct 1995

[olsen99] The Pros and Cons of Using SDL for Creation of Distributed Services,
Olsen, A., Demany, D., Cardoso, E., Lodge, F., Kolberg, M., Bjorkander, M.,
Sinnott, R., in [ISN99], pp342-354, Springer-Verlag, Apr 1999

[oma-cos] Common Object Services, vol. 1 and 2, OMG, 1995
[omg/96-01-04] Multiple Interfaces and Composition RFP, OMG, Jan 1996

[oppenheim] Questionnaire Design, Interviewing and Attitude Measurement,

Oppenhiem, A.N., 1-85567-0437, Pinter Publishers, 1992

[orbos/99-02-05] CORBA Components: Joint Revised Submission, OMG TC
Document orbos/99-02-05, Mar 1999

[or1bo0s/99-04-11] CORBA Management: ORB Instrumentation, v1.0, orbos/99-04-
11, OMG, Apr 1999

[orfali] Client/Server Programming with Java and CORBA, 2nd ed, Orfli, R.,
Harkey, D., 0-471-24578-X, Wiley Computer Publishing, 1998

[p414-d2] Project P414, TMN Guidelines,: Deliverable 2, TMN Design Case Study
Report - Overview, EURESCOM, Jul 1996

[p414-d3] Project P414, TMN Guidelines,: Deliverable 3, TMN Guidelines,
EURESCOM, Aug 1996

[p610-d1] Report of state of the art on current activities on management framework,
methodologies and case study service selection criteria for management of

multimedia service, Ferrari, L., EURESCOM, Feb 1997

[p610-d2] Management Framework and Methodology, de la Fuente, L., Gallego, J.,
Llamas, P. (eds), EURESCOM, 1997

248

[pavliou94] High-Level Access APIs in the OSIMIS TMN Platform: Harnessing and
Hiding, Pavlou, G., Tin, T., Carr, A, in [ISN94], pp181-191, Springer-
Verlag, 1994

[pavlou95a] Issues in the integration of IN and TMN, Pavlou, G., Griffin, D.,
Bringing Telecommunication Services to the People, Proceedings of the 3rd
International conference on Intelligence in Broadband Services and

Networks, Springer-Verlag, 1995

[pavlou95b] The OSIMIS Platform: Making OSI Management Simple, Pavlou, G.,
McCarthy, K., Bhatti, S., Knight, G., in [IM95], pp480-493, Chapman-Hall,
1995

[pope] The CORBA Reference Guide, Pope, A., 0-201-63386-8, Addison-Wesley,
1998

[potonniee] Implementing TMN using CORBA Object Distribution, Potoniee, O.,
Hauw, L.H., Ranc, D., Bardout, Y., Canela, Z., Proceedings of the
International Conference on Management of Multimedia Networks and

Services, Montreal, Canada, pp83-94, Chapman-Hall, 1997

[prnjat] Integrity Methodology for Interoperability Environments, Prnjay, O., Sacks,
L., IEEE Communications Magazine, vol. 37, no. 5, pp126-132, 1999

[putter] Towards Policy Driven Systems Management, Putte, P., Bishop, J., Roos, J.,
in [IM95], pp69-80, Chapman-Hall, 1995

[q1200] Q-series Intelligent Network Recommendation Structure, ITU-T
Recommendation Q.1200, 1993

[rahkila] Experiences on Building Distributed Computing Platform Prototype for
Telecom Network and Service Management, Rahkila, S., Stenberg, S., in
[IM97], pp127-138, Chapman-Hall, May 1997

[rasmussen] A CORBA to CMIP Gateway: A Marriage of Management
Technologies, Rasmussen, S., Baumer, C., in [ISN98], pp477-492, Springer-
Verlag, May 1998

249

[rumbaugh] Object-Oriented Modelling and Design, Rumbaugh, J., Blaha, W.,
Premerlani, W., Eddy, F., Lorensen, W., 0-13-630054-5, Prentice-Hall, 1991

[salleros] TINA-C Service Design Guidelines, Salleros, J., TINA Report
TP_JS_001_0.1_95, TINA, 1995

[saydam] Object-Oriented Design of a VPN Bandwidth Management System,
Saydam, T., Gaspoz, J.P., in [IM95], pp344-355, Chapman-Hall, 1995

[schieferdecker] Conformance Testing of TINA Service Components - The
TTCN/CORBA Gateway, Schieferdcker, 1., Li, M., Hoffmann, A., in
[ISN98], pp393-408, Springer-Verlag, May 1998

[schoo] Modularization of TINA Reference Points for Information Networking,
Schoo, P., Egelhaaf, C., Eckardt, T., Agoulmine, N., Tschichholz, M., in
[ISN99], pp443-445, Springer-Verlag, Apr 1999

[shrewsbury] Part II: Technology Direction Statement - Building Block
Requirements, Shrewsbury, K. (ed), TMF, 1998

[sloman] Domains: A Framework for Structuring Management Policy, Sloman, M.,
Twidle, K., Network and Distributed Systems Management, pp433-453,
Addison-Wesley, 1994

[soukouti] Join Inter Domain Management: CORBA, CMIP and SNMP, Soukouti,
N., Hollberg, U., in [IM97], pp153-164, Chapman-Hall, May 1997

[stallings] SNMP, SNMPv2 and CMIP: The Practical Guide to Network
Management Standards, Stallings, W., 0-201-63331-0, Addison-Wesley,
1993

[stathopoulos] Handling the Distribution of Information in the TMN, Stathopoulos,
C., Griffin, D., Sartzetakis, S., in [IM95], pp398-411, Chapman-Hall, 1995

[strens] Responsibility Modelling as a Technique for Organisational Requirements
Definition, Strens, R., Dobson, J., Intelligent Systems Engineering, vol. 3,
no. 1, pp20-26, 1994

250

[strick94] Specifying Pan-European Management Systems, Strick, L., Meinkohm, J.,
in [ISN94], pp467-478, Springer-Verlag, Sep 1994

[strick96] Development of IBC Service Management Services, Strick, L., Wittig, M.,
Paschke, S., Meinkohn, J., Proceedings of the IFIP/IEEE Network Operations
Management Symposium, ppKyoto, Japan, Apr 1996

[stringer] CORBA-based Telecommunication Network Management Systems,

Stringer, D., Rutt, T. (eds), OMG White Paper, May 1996

[sullivan] A Comparison of the PRISM and ONMI-Point Methodologies for the
Specification of Management Systems, Sullivan, D., McLaughlin, P., in
[ISN94], pp553-563, Springer-Verlag, 1994

[tina-nra] TINA Network Resource Architecture, v3.0, TINA Baseline Document
TB_FS.001_3.0_97, TINA-C, 1997

[tiropanis97] A Service Engineering Approach to Inter-Domain TMN System
Developer, Tiropanis, T., Lewis, D., Richter, A., Shi, R., in [IM97], pp165-
177, Chapman-Hall, May 1997

[tiropanis98] Offering Role Mobility in a TINA Environment, Tiropanis, T., in
[ISN98], pp89-100, Springer-Verlag, May 1998

[UML98] Proceedings of UMLY8 Conference, Mulhouse, France, OMG, 1998

[valiant] Review of software tools and methods used in operational support systems
developments, Valiant, S.C., BT Technical Journal, vol. 15, No 1, January
1997, pp147-150, BT, 1997

[varley] User Administration and Accounting, Varley, B., Network and Distributed
Systems Management, pp381-402, Addison-Wesley, 1994

[vincent] Modeling/Design Methodology and Template, Draft 4, Vincent, A, Hall,
C., TMF, Oct 1997

[vlissides] Pattern Languages of Program Design 2, Vlissides, J., Coplien, J., Kerth,
N, 0-201-89527-7, Addisson-Wesley, 1996

251

[wade97] A Methodology for Developing Integrated Multi-domain Service
Management Systems, Wade, V., Lewis, D., Sheppard, M., Tschichholz, M.,
Hall, J., in [ISN97], pp245-244, Springer-Verlag, May 1997

[wade98] A Design Process for the Development of Multi-Domain Service
Management Systems, Wade, W., Lewis, D., Donnelly, W., Ranc, D.,
Karatzas, N., Guidelines for ATM Deployment and Interoperability, pp88-
103, Baltzer Science Publishers, 1998

[wade99] Three Keys to Developing and Integrating Telecommunications Service
Management Systems, Wade, V., Lewis, D., IEEE Communications

Magazine, vol. 37, no. S, pp140-146, 1999

[wies] Using a Classification of Management Policies for Policy Specification and

Policy Transformation, Wies, R., in [IM95], pp44-56, Chapman-Hall, 1995

[x407] Message Handling Systems: Abstract Service Definition Conventions, ITU-T
Recommendation X.407/ ISO/IEC International Standard 10021-3, 1998

[x700] Management framework for Open Systems Interconnection (OSI) for CCITT
applications, CCITT Recommendation X.700, 1992

[x708] Information Technology - Open Systems Interconnection - Open Distributed
Management Architecture, ITU-T Draft Recommendation X.708, June 1996

[x711] Information Technology - Open Systems Interconnection - Common
Management Information Protocol Specification, ITU-T Recommendation

X.711 - ISO/IEC 10165-1, 1993

[x722] Information Technology - Open Systems Interconnection -Structure of
management information: Guidelines for the Definition of Managed Objects,

ITU-T Recommendation X.722, 1992

[x725] Information Technology- Open Systems Interconnection- Structure of
Management Information- Part 7: General Relationship Model, ITU-T
Recommendation X.725/ ISO/IEC Draft International Standard 10165-7,
ITU-T, 1994

252

[x734] Information Technology - Open Systems Interconnection -Systems
management: Event Report Management Function, ITU-T Recommendation
X.734, 1993

[x741] Information Technology - Open Systems Interconnection -Systems
management: Objects and Attributes for Access Control, ITU-T
Recommendation X.741, 1995

[x750] Information Technology - Open Systems Interconnection -Systems
management: Management Knowledge Management Function, ITU-T

Recommendation X.750, 1996

[x901] Open Distributed Processing- Reference Model: Part 1: Overview and Guide
to Use, ITU-T Recommendation X.901/ ISO/IEC International Standard
10746-1, 1995

[x902] Open Distributed Processing - Reference Model: Part 2: Foundations, ITU-T
Recommendation X.902/ ISO/IEC International Standard 10746-2, 1995

[x903] Open Distributed Processing - Reference Model: Part 3: Architecture, ITU-T
Recommendation X.903/ ISO/IEC International Standard 10746-3, 1995

[x904] Open Distributed Processing- Reference Mode: Part 4: Architectural
Semantics, ITU-T Draft Recommendation X.904/ISO Draft International
Standard 10746-4, 1994

[xml] Extensible Markup Language (XML) 1.0, W3C Recommendation: REC-xml-
19980210, World Wide Web Consortium, Feb 1998

[yavatkar] A Framework for Policy-based Admission Control, Yakatkar, R.,
Pendarakis, D., Guerin, R., draft-ietf-rap-framework-01.txt, IETF, May 1998

[z100] Specification and Description Language, ITU-T Recommendation Z.100,
Addendum 1, Oct 1996

[zeisler] A Framework for System and Network Management Ensembles, Zeisler,

E.D., Folts, H.C., in [IM95], pp602-614, Chapman-Hall, 1995

253

[zelkowitz] Experimental Models for Validating Technology, Zelkowitz, M.,
Dolores, W., Computer, pp23-31, IEEE, May 1998

254

9. Appendix 1

This appendix summarises the results of the responses to the questionnaires
conducted on the developers involved in Case Studies 4 and 5. The responses
presented are those relating to the assessment of how useful the various techniques

were found to be measured on a scale of:
Essential =5, Mostly Useful =4, Generally Useful =3, Partially Useful =2, Not

Useful =1.

The responses to introductory, filter or personal information questions are not
presented. The mode response for each technique address in each question is given.
Though this not an ordinal scale the mean is also presented to give a further
indication of the spread of responses. In addition, if two adjacent values contained
the same mode total the mode is presented as the median of those two values. If the
mode was present in two unadjacent categories or in more then two categories then
no mode value is presented. For Case Study 3 questions were also asked in each
category in order to assess the problems encountered at each stage in development
due to concurrent or previous activity output. However, due to poor phrasing of the

question the results were confounded and are not presented here.

9.1 Case Study 4 Response Summary

9.1.1 Responses from Component Developers

Q2.3) Please indicate how useful the following parts of the analysis specification
were to you in the further development of the component. Please indicate the
usefulness to you of each part of the analysis specification during both the design

and implementation phases of your component.

255

Responses for design phase:

1) Identification ofstakeholders - 7

2) Stat t of stakeholders responsibilities - 7

3) Identification ctfactors (both humans ttndsystems) - 6

4) Stat t of actex’ responsibilities - 6

5) Identification of boundary of component - 5

6) kJentificatim cf use cases in UMI, use case diagrams - 5

7) Identification of interactions between use cases and

actors - 6

8) Description of use cases - 6

9) Description cf use case pre and post conditions - 5

10) A generaldescription of the component$ requirements -

6

Q2.3 Usefulness for D es”

256

L

Irrean

Imxfc

Responses for implementation phase:

1) Identification ofstakeholders- 7

2) Statement ofstakeholders responabilities - 7

3) identification of actors (both humans and systems) - 7
4) Statement o f actor k responsibilities - 7

5) Identification ofboundary d component - 5

6) Identification of use cases in UML use case diagrams - 6

7) Identification d interactions bet ween use cases and

actors - 7

8) Description d use cases - 7

9) Description d LBCcase pre and post conditions - 6

10) A *neral description ofthe component’s requirements -
7

Q13 Usefulness for Implemeitation

257

iimean

Q2.7) Please state how useful you found the parts of the design specifications that
you used. Please indicate the usefulness to you of each part of the design
specification during both the implementation and testing/integration phases of your

component.

Responses for implementation phase:

Q2.7 Usefiiness for Implementation

1) Object dass diagrams -3

2) Objed instance diagrams - 2

3) Object collaboration diagrams - 4m mmm
4) Sequence diagrams - 6
5) Object dass behaviour descriptions - 4

o \))) Hmean
6) ni(x:k diagrams of oomputational objects and interlaces - 4

#mode
7) Computational objed behaviour descriptions - 5
8) Information object behaviour descriptions - 4
9) IDL definitions - 6
10) GDMO definitions -1
11) Naming convention definitions - 6

12) Data structure content definitions - 6

13) A g;neral description of the componentk design - 6

258

Responses for testing/integration phases:

Q2.7 Useftilness for Integration and Test

1) Object class diagrams - 3
2) Ogqed instance diagrams - 2
3) Object collaboration diagrams - 3
4) Sequence diagrams - 5
5) Object class behaviour descriptions - 3
6j Block diagrams cf computafional objects and interlaces - 4
7) Computational object behaviour desaipticns - 3
8) Information object behaviour descriptions - 2
9) IDLdefinitims-5
10)GDM Odefinitkns-0
11) Naming convention definitions - 3
12) Data stmcture content definitions - 4

13) A general description ofthe oomponentk design - 4

259

0O mean

9.1.2 Responses from System Developers

Q3.I) Please state how useful you found the different parts of multi-domain
analysis specifications of the trials containing the systems you worked on. Please
indicate the usefulness to you of each part of the multi-domain analysis

specifications during both the design and implementation phases of your system.

Responses for design phase:

Q3.1 Useftilness for Design

1) Identification ofstakeholders - 6
2) Statement of stakeholders responsibilities - 6 *

3) Identification of actors (both humans and systems) - 7

iimean

4) Statement of actor’s responsibilities - 5
Omode

5) Identification of boundary of system - 4

6) Identification of use cases - 7

7) Identification of interactions between use cases and

actors - 5

8) Description of use cases - 6
9) Description of use case pre and post conditions - 4

10) A general description of the systems requiremaits - 6 '

11) Systems level sequence diagrams - 8

260

Responses for implementation phase:

Q3.1 Usefulness for Implementation

1) Identification ofstakeholders - 7

2) Statement of stakeholders responsibilities - 7

3) identification of actors (both humans and systems) - 8

-—

--- liimean
4) Statement of actor’ responsibilities - 6
5) Identification of boundary ofsystem -5 "

6) Identification of use cases - 8

7) Identification of interactions between use cases and

actors - 6
8) Description of use cases - 7
9)

Description of use case pre and post conditions - 5

10) A general description ofthe systems requirements - 7

11) Systems level sequence diagrams - 9

261

Q3.3) Please state how useful you found the design specifications of other systems
with which your system had to inter-operate. Please indicate the usefulness to you of
each part of the design specification during the design, implementation and

testing/integration phases of your system.

Responses for design phase:

Q3.3 Useftilness for Desi”

1) Object dass diagrams -

w

2) Object instance diagrams -3

3) Object collaboration diagrams -

IS

4) Sequence diagrams -5
5) Object class behaviour descriptions -2
O mean
6) Block diagrams of comp, objects and interfaces -3

7) Computational object behavicxir descriptions - 2

8) Information object behaviour descriptions -

[}

9) IDL definitions -7
10) GDMO définitions=I
"

11) Naming convention drfinitions - 6

12) Data structure content definitions -

o

13) A general description ofthe component’s design -7

262

Responses for implementation phase:

Q33 Usefulness for Implementation

X .-, i
1) Object class diagrams - 6
2) Ot”ect instance diagrams - 4
3)Ol”ect collaboration diagrams - 5
4) Sequence diagrams - 6
5) Oiyect class behaviour descriptions - 3
6) Hock diagrams ofcomp, objects and interfaces - 4 .
umean
» Computational object behaviour descriptions - 3 Imtxle
8) Information object behaviour descriptions - 3
9) IDL definitions - 8
10) CiDMO definitions - 2
11) Naming convention definitions - 8
12) Data structure content definm“ og | * M

13) a general description ofthe components design - 8

263

Responses for testing/integration phases:

1) Object dass diagrams -5

2) Object instance diagrams -4

3) Object collaboration diagrams -5

4) Sequence diagrams - 6

5) Object class behaviour desaiptkiis -3

6) Block diagrams d" comp, oljects and interfkces -4

7) QmpJational object behaviour descriptioas -3

8) information object behaviour descriptions -3

9)!DLddlnitions -7

10) GOMO definitions-1

11) Naming convention definitions - 6

12) Data structure content definitions - 6

13) A general description ofthe component’s design -8

Q0.3 Usefulness ft)r Integradm aid Testmg

264

Imean

Imxle

Q3.6) Please indicate how useful the following parts of the components’ analysis
specifications were to you in the development of the system. Please indicate the
usefulness to you of each part of the components’analysis specifications during both

the design and implementation phases of your system.

Responses for design phase:

Q0.6 Useftilness for Des%m

J L

w

1) Identification of stakeholders -

2) Statement ofstakeholders responsibilities - 3

iimean

3) Identification actors (both humans and systems) - 3

4) Statement ofactor’ responsibilities - 2

5) Identification ofboundary of component - 2

6) Identification of use cases - 4

7) ldentification d" interactions between use cases and

actors - 3

8) Description of use cases - 3

9) Description of use case pre and post enditions - 2

10) A general description ofthe amponent’s requirements -
3

265

Responses for implementation phase:

1) Identification ofstakeholders -4

2) Statement of stakeholders responsibilities - 4

3) Identification of actors (both humans and systons) - 4
4) Statement ofaaork responsibilities - 3

5) Identification of boundary of component - 3

6) Identification of iBCcases - 5

7) Identification of interactions between use cases and

actors - 4

8) I3escription cf use cases - 4

9) ITescription of tee case pre and post conditions - 3

10) A gpneral description ofthe component’s requirements -
4

Q3.6 UseftViness for In” cmntation

266

Ormtn

Imxle

Q3.8) Please indicate how useful did you find the parts of the components’ design
specifications you used? Please indicate the usefulness to you of each part of the
components’ design specifications during both the implementation and

testing/integration phases of the system.

Responses for implementation phase:

Q3.8 Usefulness for Implementation

1) Object dass diagrams - 3

2) Object instance diagrams - 3

3) Object cellaboratitm diagrams - 3

4) Sequence diagrams - 4

5) Object dass behaviour descriptions - 3
Oomean

6) Block diagrams of computational objects and interfaces - 3

7) Computational object behaviour descriptions - 3

8) Inf(Tmation object behaviour descriptions - 3

9) IDL definitions - 4

10) GDM O definitions - 2

11) Naming cmvention definitions - 4

12) Data structure content definitions - 3

13) A general description of the componentk design - 4

267

Responses for testing/integration phases:

) Object class diagrams

2) Object instance diagrams

3) Object cellaboratiin diagrams

4) Sequence diagrams

5) Object class behaviour descriptions

6) Olock diagrams of computational objects and interfaces

7) Computational object behaviour descriptions

8) InfiTmation object behaviour descriptions

9) IDL definitions

10) GDMO definitions

1) Naming conwntion definitions

12) Data structure content definitions

13) A general description of the componentk design

Q3.8 Usefulness for Integration and Testing

268

omean

9.1.3 Responses from Sub-System Developers

Q4.1) Please state how useful you found the different parts of the analysis
specifications for components, systems or other sub system that interacted with
your sub-system. Please indicate the usefulness to you of each part of the analysis
specifications of other components and (sub)systems for both the design and

implementation of your sub-system.

Responses for design phase:

Q4.1 Usefulness for Desgn

J i L

1) Identification of stakeholders - 3
2) Statement of stakeholders responsibilities - 3
3) Identification of actors (both humans and systems) - 3
imean
4) Statement ofactor’ responsibilities - 4

5) Identification of boundary ofsystem - 3

6) Identification of use cases - 6

7) Identification of interactions between use cases and

actors - 4

8) Description of use cases - 6
9) Description of use case pre and post conditions - 3
10) A general description of the systems requirements - 5

11) Systems level sequence diagrams - 5

269

Responses for implementation phase:

Q4.1 Usefulness for Implementation

1) Identification of stakeholders - 2

2) Statement of stakeholders responsibilities - 2

3) Identification of actors (both humans and systems) - 2
4) Statement of actory responsibllit ics - 3
5) Identification of boundary of system - 2

6) Identification of use cases - 5

7) ldentification of interactions between use cases and

actors - 3

8) Description of use cases - 5
9) Description of use case pre and post conditions - 2
10) A general description of the systems requirements - 4

11) Systems level sequence diagrams - 4

270

Hmean

Q4.3) Please state how useful you found the design specifications for components,

systems or other sub systems with which your sub-system had to inter-operate.

Please indicate the usefulness to you of each part of the design specifications for the

design, implementation and testing/integration of your sub-system.

Responses for design phase:

1) Object dass diagrams -

2) Object instance diagrams -

3) Object collaboration diagrams -

4) Sequence diagrams -

5) Object class behaviour descriptions -

6) Block diagrams of comp, objects and interfaces -

7) Computational object behaviour descriptions -

8) Information object tiehaviour descriptions -

9) IDI. definitions -

10) GDMO drfinitions -

11) Naming convention definitions -

12) Data structure content definitions -

13) A general description ofthe component’s design -

w

7

o

w

Q4.3 Usefulness for Design

m mum

m mum

271

mi.vi-"m

timean

Responses for implementation phase:

1) Object dass diagrams

2) Object instance diagrams

3) Object collaboration diagrams

4) Sequence diagrams

5) Object class behaviour descriptions

6) BUxrk diagrams of comp, ot“ects and interfaces

7) Computational object behaviour descriptions

S) Information object behaviour descriptions

9) ID1. drfinitions

10) GDMO drfinitions

11) Naming envention drfinitions

12) Data structure content definitions

13) A general description of the component’s design

-2

-2

Q43 Usefulness for Implementation

272

W ssif

mSSm

imean

Omode

Responses for testing/integration phases:

1) Object dass diagrams -3

2) Object instance diagrams - 0

3) Object collaboration diagrams -3

4) Sequence diagrams -6

5) Object class behaviour descriptions -2

6) Block diagrams of comp, objects and interfaces - 2

7 Computational object behaviour descriptions -3

8) Information object behaviour descriptions -3

9) IDL definitions - 6

10) GDMO definitions-0

11) Naming convention definitions -5

12) Data structure content definitions -5

13) A general description of the component’s design -6

273

—

Q4.3 Useftilness for Integration and Testing

—

imean

Responses on Tools Use

Q5.2) If you answered yes to any of the CASE tools in Q5.1, please give your

opinion of how useful the CASE tool you used was for the following activities.

Q5.2 Useftilness of Paradigm Plus

1) Drawing use case

diagrams - 3

2) Defining actors and

system boundaries - 2

3) Drawing class diagrams -
3

4) Drawing object instance

diagrams - 2

5) Drawing object instance
coiiabOTation diagrams - 3

Umean
6) Drawing sequence

tms - 2

7) Drawing component r ... N jEg

diagrams - 2

8) Drawing computational

objects and interfaces -2

9) Defining IDL definitions -
3 e .

10) Defining GDMO

definitions - 0

11) Generating source code - + T -smeeeees r
3

274

1) Drawing use case

diagrams - 4

2) Defining actors and
system boundaries - 2

3) Drawing class diagrams -
3
4) Drawing object instance
diagrams - 3

5) Drawing object instance
collaboration diagrams - 4

6) Drawing sequence

diagrams - 4

7) Drawing component
diagrams - 2
8) Drawing computational

objects and interfaces -3

9) Defining IDL definitions -
1

10) Defining GDMO
definitions - 0

11) Generating source code - ((g

Q5.2 Usetulness of Rational Rose

275

Hmean

9.2 Case Study 5 Response Summary

9.2.1 Responses from Requirements Analysts

Q2.2) How useful did you find the following business process modelling

constructs in analysing the business process requirements?

Q22 Usefulness of Business Process Modelling

Identification of business stakeholders (i.e. organisational

domains) - 6

Identification of the business rdes played by stakeholders - 6

Identification of the responsibilities between business roles - 6

Business situation level use cases (i.e, use cases for the whole
trial business system) - 6

Decomposition of trial business system use eases by business
stakeholder - 6 u mean

The identification ttf where TINA Reference Points could operate
between business stakeholders - 4

The identification of thcTM Forum TeleOp Map processes
involved in the use cases - 6

The identification of process interactions between the TM Fomm

TclcOps Map processes inwived in the use cases - 6

The use of sequence diagrams to show the interactions between

different functional blocks or business processes - 6

The use of activity diagrams to show the interactions between
different activities within business processes - 6

276

9.2.2 Responses from Component Developers

Q3.2) How useful did you find the following facade use case modelling constructs

when documenting the facade analysis model for your component?

Q22 Usefulness of Business Process Modelling

Identification of business stakeholders (i.e. organisational

domains) - 6

Identification of the business roles played by stakeholders - 6

Identification of the responsibilities between business roles - 6

Business situation level use cases (i.e. use cases for the whole

trial business system) - 6

I)conmposition of trial business system use cases by business
stakeholder - 6

The identification cf where TINA Reference Points could operate

between business stakeholdeis - 4

The identification of the TM Forum TeleOp Map processes

involved in the use cases - 6

'Ibe identification of process interactions between the TM Fomm

I'eleOps Map processes involved in the use cases - 6

The use of sequence diag-ams to show the interactions between

different functional blocks or business processes - 6

The use of activity diagams to show the interactions between

different activities within business processes - 6

‘mll

277

Imean

Imode

Q3.3) How useful did you find the following facade use case modelling constructs

when documenting the facade design model for your component?

(Q3L3 Usefulness of Facade Use Case Modd for Facade Design

Definition ofthe emponait
boundary by the
identification ofexternal

actors - 7

Outline text description of

actors’roles - 7

@mcan
Use Case proand post

conditions -7

Use case descriptions - 7

UML use case diagrams
showing use cases, their
inter-relationships (extends
and uses) and their

interactions with actors - 6

278

Q3.4) How useful did you find the following facade analysis modelling constructs

when documenting the facade design model for your component?

Q3.4 Usefulness of Fagade Analysis Model for Fagade Design

Per use case analysis otgect
diagrams showing boundary,
entity and control objects and

their static relationships - 9

PcT component analysis
oiyea diagrams showing
relationships between entity

oiyects - 9

Per component analysis
abject diagrams showing the Omean
relationship between actors,
boundary, control and entity

objects -9

Sequence diagrams showing
the interactions between
actors, boundary, control and
entity objects -10

Collaboration diagrams
showing the interactions
between actors, boundary,

control and entity objects -9

279

9.2.3 Respons

from Trial Business System Developers

Q4.2) How useful did you find the following business process modelling

constructs when designing the trial business system model?

Q42 Usefulness Business Process IVbdelling for Designing Systems

Idaitificalion of business stakelwldeis (i.e. organisational

dcmains) - 9

Identification of the business roles played by stakeholders 9

Identification of the responsibilities between business roles - 8

Business situation level use cases (i.e. use cases for the whole

trial business system) - 9

ffcarmposition of trial lousiness system use cases by business
stakeholder - 9

The identification d whae ITNA Reference ftrints axild operate

between business stakeholders - 8

The identification of the I'M Fomm TeleOp Map processes

involved in the use cases - 8

The identification of pnacess interactions between the 'M Fomm

TcleOps Map processes involved in the use cases - 7

The use of sequence diag-arrs to show the interactions between

different fundional blocks or business processes -10

The use of activity diagams to show the interactions between

different activities within business processes -8

« 0 # #HH#H#H#H#HH

280

Imean

Imode

Q4.3) How useful did you find the following facade model constructs when

designing the trial business system model?

- by the identification of external actor
9

Use Case pre-and post conditions - 9

s cases, their inter-relationships (extends
teractions with actors - 8

TOshowing relationships between entity
Ls-10

Tinteractions between actors, boundary,
lentity objects - 11 Imean

'interfacesexported by a component -10

ifthe information held by component - 9

the interactions between external actors,
id internal data - 8

nofcomponent interfaces using IDL - 8

281

Q4.6) How useful did you find the following facade model constructs when

modifying components for reuse in the trial business system?

QcEniimifdroa TpTErt tnjniiytylheidtrdtcai TioteAo” A
4

LfcQsepc'andptst anliticre -4

LM*'cazdagarrBsiiWig leecaces, thar irttnU3dereHp;(04mck Il’l#',##
andiBEs) andthér irtoulinrewii atljs -3

ft-anprot aml*asdjeU ciagrans diwingniitbnhipb lilweenulily
cbjeds-5

Sbqimrdagam;shwrgtheirtiiaak Tf;|Pveenaclon>hxrdiy, artai
andalitydials-5

mg :

kirilxiEm cfthedffiiulitlcrBicopitodbyaaTrprat -5

kfertifitaimetfdtflkxLstriilucofth; irianaimhdd tyarrpatrt -4

GZAahiatkindtgarrsslTwii]g (heirtaaUixthlveenc4iimal acto”
irtfffacesandirtiral dka-4

CtfiritiondaTnpcenit irtaikxs iKiiglEL- 5

282

Ircan

Imods

Q4.8) How useful did you find the

designing your Trial business System

Component diagrams
showing which components
use the interfaces of which

other components - 9

Sequence diagrams showing

how components dynamically

use each other’s interfaces -
10

Collaboration diagrams show
how components dynamically

use each other’s interfaces - 8

following system modelling contructs when

283

Q4" Usefulness for System Design

Hmean

~ mode

9.2.4 Responses on Tools

Q5.2) Please give your opinion of how useful the CASE tool you used was for the

following activities.

Drawing use case diagrams -

5
Defining actors and system
boundaries -5
Drawing class diagrams - 5
Drawing object instance
diagrams - 4

Drawing object instance

collaboration diagrams - 4

Drawing sequence diagrams
-5

Drawing component

diagrams - 4

Drawing computational

objects and interfaces - 5

Defining IDL definitions - 4

Defining GDMO definitions
-0

Generating source code - 2

Q5.3 Usefulness of Rational Rose

284

Umean

Drawing use case diagrams -

6
Defining actors and system
boundaries - 6
Drawing class diagrams - 6
Drawing object instance
diagrams - 3

Drawing object instance

collaboration diagrams - 2

Drawing sequence diagrams

-6

Drawing component

diagrams - 4

Drawing computational

objects and interfaces - 3

Defining IDL definitions - 3

Defining GDMO definitions

Generating source code - 1

Q5.2 Usefiilness of using Paradigm Phis

285

#mean

#mode

