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ABSTRACT 10 
In the last two decades, probabilistic approaches to flood risk modeling have emerged, often as an extension of 11 
more consolidated methods used in probabilistic seismic risk assessment. Nonetheless, only a few studies deal 12 
with best-practice methodologies for flood physical vulnerability assessment, and existing approaches/models 13 
often lack appropriate guidance for their selection/rating and use. These concerns underline the need for a rational, 14 
integrated and comprehensive compendium of existing flood-related fragility (i.e., the likelihood of various 15 
damage states as a function of hazard intensity measure(s)) and vulnerability (i.e., the likelihood of loss levels as 16 
a function of hazard intensity measure(s)) models to be used in probabilistic flood risk assessment. To this aim, 17 
and following the approach used in the guidelines recently developed by the Global Earthquake Model (GEM) 18 
project, this paper proposes a model taxonomy for flood fragility and vulnerability assessment of buildings. A 19 
review of major state-of-the-art large-scale models for flood vulnerability assessment is first carried out. A 20 
discussion on the main factors affecting the reliability of empirical fragility and vulnerability relationships is 21 
presented, focusing on data sources, building classification, statistical techniques for data collection/fitting, and 22 
damage scales/loss metrics.  As a proof of concept, a compendium of existing studies dealing with empirical 23 
fragility and vulnerability models for buildings is finally developed and discussed based on the proposed model 24 
taxonomy. This type of database can benefit (re)insurance companies interested in flood loss assessment and 25 
various decision-makers (e.g., governmental agencies) committed to mitigate flood risk and communicate its level 26 
to various stakeholders.  27 
 28 
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 30 
1. INTRODUCTION AND MOTIVATIONS 31 
One-third of the economic losses due to natural hazards in Europe are related to flooding, one of the most frequent 32 
hazards with windstorms (e.g., Munich Re, 2017; EEA et al. 2016). Quantifying the potential impact of floods on 33 
portfolios of assets located in flood-prone regions is of primary interest to various stakeholders, such as property 34 
owners, (re)insurance companies, and local government agencies, among others. It is critical that potential loss 35 
estimates, on which risk management and decisions on possible risk-mitigation/resilience-increasing strategies are 36 
based, are as accurate as possible given the available scientific knowledge. Indeed, “understanding disaster risk” 37 
is the first priority for action of the Sendai Framework for Disaster Risk Reduction 2015–2030 (United Nations 38 
Office for Disaster Risk Reduction, 2015), endorsed by the Member States of the United Nations in 2015, with the 39 
aim of “preventing new and reduce existing disaster risk”. Disaster risk management and reduction need to be 40 
based on understanding disaster risk in all its dimensions of vulnerability, capacity, exposure of people and assets, 41 
hazard characteristics, and the environment. 42 
 43 
Probabilistic catastrophe risk models are popular tools for estimating potential human and economic losses due to 44 
natural hazards. Such models incorporate detailed databases and scientific understanding of the highly complex 45 
physical phenomena related to natural hazards and engineering expertise on how those hazards impact 46 
buildings/infrastructure and their contents (e.g., Grossi and Kunreuther, 2005). Until the 1980s, portfolio loss 47 
estimates associated with natural hazards such as earthquakes, windstorms, and floods were usually extrapolated 48 
from historical loss data. Nevertheless, the limited span covered by historical catalogs, the lack of systematically 49 
gathered loss data, and the changes in terms of exposure in hazard-prone regions worldwide have led to a severe 50 
underestimation of such losses. As a result, purely actuarial approaches (e.g., based on claim data as in the case of 51 
automobile or fire insurance policies) for the estimation of losses generated by rare natural hazards have been 52 
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progressively abandoned in favor of simulation-based models integrating all the relevant science, data, and 53 
engineering knowledge. Moreover, as uncertainty lies at the heart of catastrophe risk modeling, it requires an 54 
appreciation at all modeling stages. Thus, a probabilistic approach is nowadays recognized as the most appropriate 55 
to model the complexity of natural hazards and their impact on the built environment.  56 
 57 
Within catastrophe risk modeling, several different approaches have been developed to link hazard intensities to 58 
the expected level of damage (fragility) or, more ambitiously, directly to the level of monetary loss (vulnerability). 59 
In particular, vulnerability relationships/curves (Figure 1b) express the likelihood that assets at risk will sustain 60 
varying degrees of loss (e.g., in terms of direct economic consequences of physical damage) over a range of hazard 61 
intensities. In some cases, developing vulnerability relationships requires the use of (1) fragility 62 
relationships/curves (Figure 1a), expressing the likelihood of different levels of damage (i.e., damage states, DSs) 63 
sustained by a given asset/asset type over a range of hazard intensities; and (2) damage-to-loss models, which 64 
convert damage estimates to loss estimates.  65 
 66 

 67 

Figure 1. Illustration of a) fragility curves corresponding to four damage states (DSs) for a given 68 
asset/asset type (or class); b) a vulnerability curve for the given asset/asset type. A vulnerability curve 69 
correlates a flood intensity measure (IM) to the percentage of an asset’s replacement cost (in the class) 70 
needed to repair the damage. An example of flood IM is the flood depth (in m). The figure also shows a 71 

representative probability distribution of a loss ratio at a given IM level.  72 
 73 
In its generic form, this indirect approach enables the derivation of intensity-to-loss relationships by coupling 74 
damage probabilities for a given asset/asset type at specified intensities to damage-to-loss models by using the 75 
total probability theorem: 76 
 77 
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where Pr( | )L l IM  is the complementary cumulative distribution function (CCDF) of the loss given a hazard 80 

intensity measure IM; Pr( | )iL l ds is the CCDF of loss given a damage state dsi; Pr( | )iDS ds IM= is the damage 81 

probability. In some practical applications, the uncertainty in the damage-to-loss function is neglected, and the 82 
focus is on the estimation of the expected (average) loss at discrete IM levels: 83 
 84 
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where ( )| iE L ds is the mean loss L suffered by an asset/class of assets for a given damage state; ( )|E L IM is the 87 

mean loss for a given intensity IM. 88 
The damage probability term in both equations ( )( ). .,  Pr |ii e DS ds IM=  can be easily linked to fragility 89 

relationships/curves expressing the probability of a level of damage being reached or exceeded given a range of 90 
IM levels: 91 
 92 
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 94 

where ( )Pr |iDS ds IM  is the probability of a level of damage dsi (out of n total DSs) being reached or exceeded 95 

given the intensity IM. It is worth noting that in the (re-)insurance industry, vulnerability relationships are also 96 
known as damage functions, implicitly emphasizing economic damage. Therefore, these two definitions will be 97 
used interchangeably in this paper. 98 
 99 
Fragility and vulnerability relationships are derived from statistical analysis of damage/loss values recorded, 100 
simulated, or assumed over a range of hazard intensities. In practice, damage/loss statistics can be obtained from 101 
observation of past events (empirical approaches), analytical or numerical studies (based on engineering models 102 
of structural loads/demands and resistances/capacities), expert judgment, or a combination of these (hybrid 103 
approaches). Empirical approaches based on post-event surveys of asset classes’ performance are commonly 104 
regarded as the preferred source of damage/loss statistics as they are based on actual post-event observations. Even 105 
though considerable efforts have been spent and progress has been made on post-flood damage data 106 
collection/post-processing and model development in recent years (e.g., Ballio et al., 2018; Menoni et al., 2016, 107 
among many others), the main challenge in using available models for future applications is how to identify, rate, 108 
select, and, if necessary, combine suitable fragility and vulnerability relationships with different characteristics 109 
and, often unknown, reliability (e.g., Rossetto et al., 2014b). 110 
 111 
Following the approach used in the bulk of research developed by the Global Earthquake Model (GEM; e.g., 112 
Rossetto et al., 2013, 2014a) and building on the preliminary results of Pregnolato et al. (2015), this study aims at 113 
addressing the challenges discussed above by proposing a model taxonomy for flood fragility and vulnerability 114 
assessment of buildings. A similar review of flood loss models as a basis for harmonization and benchmarking is 115 
presented in Gerl et al. (2016), who offer a comprehensive review of flood loss models to 2015 containing nearly 116 
a thousand vulnerability relationships. However, the study of Gerl et al. (2016) considers different scales (spatial 117 
resolution/unit of analysis), and the vast majority of the models considered in such a review (about 60%) refers to 118 
aggregated land-use classes and various derivation methods (i.e., empirical and synthetic approaches). The study 119 
presented in this paper focuses on empirical fragility and vulnerability models for buildings, resulting in a more 120 
extensive and more recent (up to 2019) compendium of existing studies dealing with the topic. This type of 121 
assessment/focus is common in smaller investigation areas (local or object-based scale); on this scale, building 122 
types are often differentiated by building age, construction material, or floor space, among many other parameters, 123 
with separate damage functions often available regarding building structure and building content. 124 
 125 
The paper is organized as follows. An overview of the fundamentals of catastrophe risk modeling in the context 126 
of flood risk is first presented (Section 2). This is followed by (i) a description of the existing methods for the 127 
development of fragility and vulnerability relationships for flood, including a review of some state-of-the-art large-128 
scale models for flood vulnerability assessment around the globe; (ii) a discussion on the main factors affecting 129 
the reliability of empirical fragility and vulnerability relationships, with a focus on data sources, building 130 
classification, statistical techniques for data collection/fitting, and damage scales/loss metrics (Section 3). The 131 
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proposed model taxonomy for flood fragility and vulnerability assessment of buildings is then introduced (Section 132 
4). As a proof of concept, a compendium of existing studies dealing with empirical fragility and vulnerability 133 
models for buildings is finally developed and discussed based on the proposed model taxonomy (Section 5). This 134 
type of database can benefit (re)insurance companies interested in flood loss assessment and various decision-135 
makers (e.g., governmental agencies) committed to mitigate flood risk and communicate its level to various 136 
stakeholders. For instance, the resulting collection of comparable flood vulnerability models can serve as a 137 
reference framework against which damage curves from catastrophe risk models for flood can be evaluated for 138 
various regions and construction types. 139 
 140 
2. FLOOD RISK MODELING 141 
2.1. Fundamentals of Catastrophe Risk Modeling 142 
Flood is one of the most challenging hazards to model among all the natural perils because of the complexity at 143 
each stage of the flooding process, from the precipitation modeling to the inundation at each location of interest 144 
and the estimation of damage to properties and resulting consequences in terms of financial losses, 145 
casualties/affected people, and business interruption.  146 
The general framework for modeling the impact of natural hazards on asset inventories can be broken down into 147 
the following four primary components, or modules, consistently with the general catastrophe risk modeling 148 
framework (e.g., Grossi and Kunreuther, 2005; Mitchell-Wallace et al., 2017): (1) exposure, (2) hazard, (3) 149 
vulnerability, and – in the case of (re-)insurance applications, (4) financial – as shown in Figure 2. Each module 150 
requires substantial amounts of data for model development and validation.  151 
 152 

 153 
Figure 2. Catastrophe model components. 154 
 155 
The exposure module contains details on the location and characteristics of the “exposure” at risk, i.e., a property 156 
at risk of damage or a business at risk of interruption (in some cases, insurance loss models may also consider 157 
human exposure to death or injury). The property exposure information, which is usually provided to the analyst 158 
by a client, has a level of detail that varies from case to case. In fact, catastrophe models can be used to estimate 159 
aggregate insured or insurable losses for the entire insurance industry, individual company portfolios, or individual 160 
buildings. In the case of critical structures, the information may be very specific, including property address (which 161 
can be easily geocoded), detailed engineering and architectural drawings/design reports, presence of mitigation 162 
measures, and both retrofit and replacement cost estimates. Suppose a large portfolio of structures is considered. 163 
In that case, exposure information may consist only of the total value of all the properties located in a - usually 164 
large - geographical area, e.g., ZIP code/postcode, county, or CRESTA (Catastrophe Risk Evaluation and 165 
Standardizing Target Accumulations; https://www.cresta.org/) Zone. Suppose the location and the basic 166 
characteristics of each property are not available. In that case, the analyst is forced to make simplifying 167 
assumptions, for example locating the properties at the population-weighted centroid of an often vast geographical 168 
area and disaggregating (based on statistical procedures) available census data for buildings. This results in 169 
difficulties in assessing the accuracy of loss estimates. 170 
 171 
The hazard module deals with (1) simulating thousands of representative, or stochastic, catastrophic events in time 172 
and space, i.e., a database of scenarios; and (2) assessing the resulting hazard IM (e.g., level of earthquake-induced 173 
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ground motion, wind speed, flood depth) across a geographical area at risk, i.e., at each location identified in the 174 
exposure module, by propagating a given event across the affected region. Each event is defined by a specific 175 
“magnitude” (i.e., its size/severity), location, and the probability of occurrence (event rate), or time of occurrence, 176 
based on historical data often supplemented by physics-based models for the phenomenon of interest.  177 
 178 
The (physical) vulnerability is the susceptibility to damage, or other forms of loss (e.g., downtime and casualties), 179 
of structures and their contents because of the hazard’s impact. Typically, vulnerability relationships define the 180 
loss in terms of the percentage of a property value (i.e., its replacement value) expected to be lost at a defined 181 
hazard level, specific to the exposure category/property type. Specifically, parameters defining property 182 
susceptibility to damage include construction type (material and structural/lateral load-resisting system), 183 
occupancy type (e.g., residential or commercial, especially for assessing damage to contents), year of construction 184 
(which represent a proxy for the building-code level of the asset), and height/number of stories. Some “secondary 185 
modifiers” can also be considered, such as roof and foundation type, presence of a basement, among others. Given 186 
that there is considerable uncertainty in the vulnerability assessment, besides proving a predictive relationship for 187 
the mean loss, it is also necessary to carry a measure of the error of the estimation, i.e., to consider the probability 188 
distribution of a loss ratio at a given IM level (Figure 1b).  189 
 190 
The financial module – when available (e.g., for insurance applications) – estimates insured losses by applying 191 
policy conditions (e.g., deductibles, limits) to the total loss estimates or ground-up losses (in the insurance industry 192 
jargon). The estimates of insured loss are validated using loss data from actual (historical) events. Output in terms 193 
of loss may be customized to any desired degree of geographical resolution and by “line of business” (e.g., 194 
residential, commercial, industrial), and within line of business, for instance, by construction class. 195 
The main output of a probabilistic catastrophe model is the exceedance probability (EP) curve, which describes 196 
the annual probability of exceeding a certain level of loss. The mean of this distribution is the average annual loss 197 
(AAL), or the expected loss per year, averaged over many years. AAL is a loss statistic widely used and has a 198 
diverse range of applications in catastrophe risk management. 199 
 200 
2.2. Flood Risk Assessment 201 
The catastrophe risk modeling framework described above can be applied to various natural hazards and can be 202 
specialized for flood hazard, as shown in Figure 3.  203 
 204 
The starting point for probabilistic flood loss assessment is the quantification of flood hazard to produce flood 205 
depths or any other relevant IM in the floodplain-of-interest. Although different types of flooding (e.g., mainstream, 206 
flash, and overland) behave differently, flood-related damage fundamentally results from the depth and duration 207 
of inundation as well as the water velocity. Those are the most widely used IMs in any flood model (Kreibich et 208 
al., 2009). A robust flood hazard model has to capture all the complexities inherent in a flood generation process, 209 
such as the space-time patterns of rainfall input, the effects of a highly variable climate, topography, soil type, and 210 
other local factors that determine the amount of rainfall drained to the rivers, as well as the effects of snowmelt 211 
and man-made flood defenses (and their possible failure) on flood hazard estimation. 212 
 213 
In the hazard module, large catalogs comprising tens of thousands of computer-simulated precipitation events are 214 
generated (event generation sub-module), representing the broad spectrum of plausible events. Models usually 215 
employ historical pluviometric data or the downscaling of various climate projection scenarios to obtain rainfall 216 
statistics to be used as an input for stochastic catalog generation. For each stochastic event, the total and effective 217 
runoff per catchment area is calculated, accounting for topographic and antecedent conditions (for instance, the 218 
amount of prior rainfall or snowmelt, which determines the degree to which soils are already saturated), by 219 
implementing a detailed hydrologic model converting precipitation to discharge and calibrated and validated based 220 
on the available historical data (e.g., European Commission, 2016). Next, a detailed hydraulic model is used in 221 
conjunction with the hydrologic model output to define a flow versus depth relationship, i.e., a rating curve, for 222 
each location of interest (local intensity sub-module) (e.g., European Commission, 2016). Rating curves are 223 
typically constructed and periodically calibrated at river gauging stations, but they are not available for any 224 
arbitrary “exposed” point of interest. Therefore, the role of the hydraulic model is to develop a full set of rating 225 
curves for each point of interest. Typically, one-dimensional or two-dimensional hydraulic models are used for 226 
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flood hazard mapping in flood risk assessment, e.g., LISFLOOD-LP (Bates et al. 2010). For example, for both 227 
industry and research applications, there are a wide variety of hydraulic models that account for varying degrees 228 
of physical complexity and offer a range of solutions to a given problem (e.g., Neal et al., 2012).  229 
 230 

 231 
Figure 3. Flood model sub-components. 232 
 233 
It is worth noting the development of a hydraulic model for a large hydrological basin requires the availability of 234 
high-performance computing and efficient numerical algorithm along with detailed knowledge of topography, land 235 
cover, and canal geometry and properties. This becomes challenging in countries that lack detailed and high-236 
resolution topography data and relevant information on stream and floodplain characteristics, for instance, in 237 
developing countries. Regression-based approaches (e.g., Galasso and Senarath, 2014) can be used as an 238 
acceptable alternative for developing depth versus river discharge relationships in catchments with sparse data, 239 
provided that a suitable data set exists in another data-rich basin for the generation of the necessary regression 240 
relationships. In general, the suitability of a given assessment method depends on the characteristics of the area 241 
under study and the study’s aims/requirements, and the availability of data (e.g., Apel et al., 2004).  242 
 243 
The vulnerability module, which is the focus of this paper, estimates damage and downtime caused by flood to 244 
assets of interest. The extent of damage, repair, and cleaning costs depends on many factors (Jonkman et al., 2008), 245 
including debris load and silt in the water, building location and its orientation to any flow, the spacing of assets 246 
(influencing the flow velocity between buildings), materials used, and construction detailing, and how quickly a 247 
building may be cleaned and completely dried out after a flood (contributing to flooding resilience). Some of these 248 
parameters/information may not be available to the analyst – this is the case in many practical applications. 249 
Occupancy classes also play a crucial role since they can help determine the design level, the contents of a building 250 
and its basement (if present), and which local standards for flood defenses may apply to a given property. 251 
Downtime, namely the time window during which the flooded area cannot be used, also depends on the building’s 252 
occupancy classification.  253 
 254 
Some examples of probabilistic flood risk models can be found in the literature, e.g., CAPRA (Probabilistic Risk 255 
Assessment) Platform/Flood Model or HAZUS-MH Flood Module, among many others (see GFDDR, 2014 for a 256 
detailed review). 257 
 258 
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3. EXISTING METHODS FOR THE DEVELOPMENT OF FRAGILITY AND VULNERABILITY RELATIONSHIPS FOR 259 
FLOOD 260 
As discussed above, fragility and vulnerability relationships express the probability of exceeding prescribed levels 261 
of damage and loss, respectively, given a flood IM. In the case of flood hazard, the development of these 262 
relationships is generally based on two main approaches: (i) empirical approaches, using damage and/or loss data 263 
collected after flood events; and (ii) synthetic approaches, which are based on expert judgment, using damage 264 
and/or loss data collected via what-if questions (Amadio et al., 2019). 265 
 266 
Empirical vulnerability relationships can be constructed directly from post-flood observations of losses collected 267 
over sites affected by different flood intensities. If the IM level has not been recorded at each site, it can be assigned 268 
using a hydraulic model (eventually combined with a hydrological model), as discussed in Section 2. Statistical 269 
models are typically used to estimate a chosen functional form’s parameters to fit data, although nonparametric 270 
models can also be used. The central assumption in the development of empirical fragility and vulnerability 271 
relationships is that past damage suffered by a particular asset class represents the damage that might happen in 272 
the future to a similar asset class subjected to a similar flood event/intensity. This assumption essentially limits 273 
empirical relationships’ applicability to assets in geographical proximity to where empirical data was collected. 274 
This poses a problem for their use in flood assessments in some countries because fragility and vulnerability 275 
relationships are not evenly distributed worldwide, as discussed in Section 5.2.  276 
 277 
What-if analyses estimate the damage expected under a flood scenario, for instance, by asking an expert: “Which 278 
damage would you expect if the water depth is ‘X’ m above the building floor?” (Merz et al., 2004). These analyses 279 
are functional to explore various hazardous scenarios and evaluate their consequences, especially when empirical 280 
data is not readily available or not enough. This means that empirical models can be effectively extended by 281 
employing synthetic models to increase their applicability. 282 
 283 
Recently, analytical/numerical approaches based on structural engineering principles (e.g., load and resistance 284 
approaches) have been proposed for flood-fragility derivation. Such approaches use a computer-based model (e.g., 285 
a finite element model) of the structure or a structural component of interest (e.g., a wall) to increasingly apply 286 
forces due to floodwater while observing the building performance (flood demand). Three main types of forces 287 
due to floodwater are usually considered in analytical approaches to damage estimation: (i) hydrostatic forces 288 
associated with the pressure of still water, which increases with depth; (ii) hydrodynamic forces associated with 289 
the pressure due to the energy of moving water; and (iii) impact forces associated with floating debris dragged by 290 
water. The flood demand at a given IM level is compared to each structural component or structural system’s 291 
capacity. The conditional probability of demand exceeding capacity for the given value of IM (i.e., the structural 292 
fragility) is determined using structural reliability concepts. Examples of such a procedure can be found in Oliveri 293 
and Santoro (2000), Kelman and Spence (2003), van de Lindt and Taggart (2009), De Risi et al. (2013), and Custer 294 
and Nishijima (2015), among others. Analytical models have also been used by, for instance, Dong and Frangopol 295 
(2017) to carry out a probabilistic life-cycle cost-benefit analysis of building portfolios subjected to flood hazard.  296 
As discussed above, numerical fragility models can be combined with damage-to-loss (or consequence) models to 297 
finally derive vulnerability relationships. 298 
 299 
3.1. Overview of large-scale models for flood vulnerability assessment 300 
To develop a data scheme for fragility and vulnerability models/relationships to be practically used in flood risk 301 
assessment, highlighting challenges in compiling a comprehensive compendium of existing studies, various global 302 
and country-wide fragility/vulnerability models have been first selected. They are briefly reviewed in this section 303 
(see Table 1). Comprehensive literature reviews of those models have been carried out by Smith (1994), Merz et 304 
al. (2010), Jongman et al. (2012), and Gerl et al. (2016), among others, but their detailed discussion does not fall 305 
within the scope of this paper. 306 
 307 
 308 
 309 
 310 
 311 
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Table 1. Summary of the considered country-wide models. 312 
Model Type Country Main IM Geographical 

scale 

Unit of 

analysis 

Building 

attributes 

References 

ANUFLOOD Empirical Australia Water depth Regional 

National 

Individual 

buildings 

Floor area 

Occupancy 

NR&M 

(2002) 

FLEMO Empirical Germany Water depth Local  

Regional 

National 

Individual 

buildings 

Land use 

classes 

Height 

Quality 

Occupancy 

Thieken et 

al. (2008) 

Kreibich et 

al. (2010) 

Seifert et al. 

(2010) 

HAZUS Empirical-

synthetic 

USA Water depth 

Flood 

duration 

Flow velocity 

Presence of 

debris 

Rate of rise 

Flood timing 

Local  

Regional 

National 

Individual 

buildings 

Land use 

classes 

Construction 

material 

Age of 

construction 

No. of stories 

Presence of 

split floor 

Presence of 

basement 

FEMA 

(2003, 

2009) 

Scawthorn 

et al. 

(2006a,b) 

JRC Empirical-

synthetic 

EU Member 

States/Globa

l 

Water depth Regional 

National 

European/Global 

Individual 

buildings 

Land use 

classes 

Occupancy Huizinga 

(2007) 

Huizinga et 

al. (2017) 

MCM Synthetic UK Water depth Local  

Regional 

Individual 

buildings 

Susceptibility 

Occupancy 

Presence of 

basement 

FHRC 

(2005) 

Penning-

Rowsell 

(2013) 

USACE Empirical USA Water depth 

Flow velocity 

Duration of 

inundation 

Contaminatio

n 

Frequency of 

inundation 

Local  

Regional 

National 

Land use 

classes 

Construction 

material 

Occupancy 

No. of stories 

Presence of 

basement 

 

USACE 

(1985) 

 313 
Among the country-wide models, ANUFLOOD (NR&M, 2002) is an Australian commercial flood loss estimation 314 
model developed in 1983 on historical data from flood events in the UK and Australia. This empirical model 315 
consists of absolute damage functions (i.e., functions directly providing the economic loss associated with a given 316 
flood IM) related to various classes of buildings according to their occupancy (e.g., residential or commercial) and 317 
size (measured in terms of floor area). Water depth is the only IM used in the model, whereas the building 318 
vulnerability is considered dependent on the object size and “susceptibility”. The latter parameter refers to the 319 
sensitivity of a facility to the physical presence of floodwater. For example, a building cannot be removed from 320 
the flooding zone, whereas moveable objects can be protected elsewhere. In addition, the loss is not separately 321 
evaluated for each asset type (i.e., buildings and contents), only enabling the estimation of the total loss in one 322 
figure. 323 
 324 
As far as flood risk in Europe is concerned, three country-wide models were selected from the literature for their 325 
wide applicability: Flood Loss Estimation MOdel (FLEMO), the Multi-Coloured Manual (MCM) model, and the 326 
Joint Research Centre (JRC) model. 327 
 328 
FLEMO was developed by researchers of the German Research Centre for Geoscience (GFZ) to support flood risk 329 
assessment at local, regional, and national scales. FLEMO is a modeling package consisting of FLEMOps 330 
(Thieken et al., 2008) and FLEMOcs (Kreibich et al., 2010; Seifert et al., 2010), which are multifactorial models 331 
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for private and commercial sectors, respectively. The former allows the estimation of direct monetary losses related 332 
to residential buildings; the latter was built up to estimate direct economic losses related to buildings, equipment, 333 
and goods of companies. Such vulnerability models were developed based on empirical damage/loss data collected 334 
after significant floods in 2002, 2005, and 2006 in Germany. FLEMO models apply either to single buildings at a 335 
local scale or to medium/large areas for rapid damage assessment and scenario analysis at a regional or national 336 
scale. The extension of those models to regional and national scales was based on census, geomarketing, and land 337 
use data. The models were extensively validated at various scales employing repair cost datasets related to both 338 
individual buildings and entire municipalities. In FLEMOps, the inundation depth is the primary IM that mostly 339 
influences damage to residential buildings. Nevertheless, flood damage is computed over surface areas (rather than 340 
for individual assets), accounting for five classes of inundation depth (i.e., 0–0.20 m, 0.21–0.60 m, 0.61–1.00 m, 341 
1.01–1.50 m, > 1.51 m), three types of buildings (single-family homes, semi-detached houses, multi-family 342 
houses), two classes of building quality (low/medium quality, high quality), three classes of water contamination 343 
(none, medium, heavy – the latter being oil or multiple contaminations), and three classes of private protection 344 
(none, good, very good). Given that FLEMOps relies upon relative (rather than absolute) vulnerability functions, 345 
asset values in terms of replacement costs are required, and their estimation may increase the uncertainty level. By 346 
contrast, that type of function makes flood risk assessment independent of changes in the real estate market. It can 347 
be used for several purposes by insurance and reinsurance companies and cost-benefit analysis by building owners 348 
and government agencies. 349 
 350 
The Multi-Coloured Manual (MCM) is the UK reference for flood damage assessment of both residential and non-351 
residential structures. It is based on a consistent data set of buildings and real data from major flood events 352 
(Penning-Rowsell, 2013). The MCM includes many absolute depth–loss functions, so asset values are not required 353 
because the monetary loss due to a given flood scenario is directly provided. This calls for periodic recalibration 354 
of these vulnerability functions to account for investments in properties and contents. Flood depth–loss 355 
relationships were developed for various residential, commercial, and industrial buildings, mainly through 356 
modeling and expert judgment (i.e., synthetic approach). The vulnerability relationships are differentiated in terms 357 
of building vulnerability (low, medium, high) and the presence of a basement. In this respect, input data for 358 
buildings located in the UK can be gathered from the National Property Dataset, where residential properties are 359 
classified according to their age, social class of residents, and types of buildings (detached, semi-detached), leading 360 
to around 100 vulnerability functions for each building class. Information on non-residential buildings is available 361 
in the Focus database. The MCM applies to both local and regional scales and uses individual assets as the analysis 362 
unit. Water depth is the assumed IM, whereas the pre-flood depreciated asset value is the considered loss metric. 363 
It is noted that the empirical validation of the MCM is still limited (Jongman et al., 2012). As the MCM is an asset-364 
based model, the assessment provides the maximum loss per square meter of buildings, reflecting only the expected 365 
repair costs to buildings rather than damage to neighboring land.  366 
 367 
The JRC model was developed to assess flood risk at a pan-European level through depth–loss functions (i.e., 368 
vulnerability functions, although they are termed as depth–damage functions in the model) and maximum loss 369 
values that are differentiated over European Union (EU) Member States (Huizinga, 2007). Five classes of assets 370 
at risk are considered, i.e., residential, commercial, industrial, roads, and agriculture. Flood depth at any location 371 
of interest is multiplied with a weighted average of depth–damage functions and maximum loss values. Whilst 372 
depth–damage functions of ten countries (i.e., Belgium, Czech Republic, Denmark, France, Germany, Hungary, 373 
Netherlands, Norway, Switzerland, UK) were collected from existing studies, those related to other EU countries 374 
were assumed as the average of functions available for each class of asset at risk. It is also noted that maximum 375 
loss values in EU countries with available damage functions were scaled to the gross domestic product (GDP) per 376 
capita. Therefore, depth–damage functions adopted in the JRC model are uniformly distributed within each 377 
country, whereas maximum damage values may vary across different regions of a country.  378 
 379 
In 2017, the JRC released a global flood model developed according to the EU Strategy on Adaptation to Climate 380 
Change (Huizinga et al., 2017). Depth–damage functions were derived at both continental and country scales, 381 
considering all continents and 214 countries, respectively. Continent- and country-specific functions were 382 
provided for the following asset classes: residential buildings, commerce, industry, transport, infrastructure, and 383 
agriculture. Regarding Europe, the depth–damage functions proposed by Huizinga (2007) were considered 384 
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because no publications on significant improvements related to European damage functions were found. Therefore, 385 
flood damage data (i.e., damage functions and maximum loss values) were searched for countries and regions 386 
outside Europe. As expected, the collected data set was quite large for some countries where post-event damage 387 
assessments are systematically carried out (e.g., USA, Australia, Taiwan, Japan, South Africa). By contrast, the 388 
amount of data across Africa was not evenly distributed, highlighting some concentrations in sub-Saharan African 389 
countries according to their higher frequency of flood occurrence. When vulnerability levels of depth–damage 390 
functions did not span from zero (no damage) to unity (maximum damage) for a water depth ranging from 0 to 6 391 
m, the functions were normalized, and the maximum damage value was corrected. Loss values were harmonized 392 
to the 2010 price level and to Euro. The average maximum loss per continent was computed after removing 393 
apparent extreme values. Two sets of maximum loss values were tested: (i) maximum loss values derived from 394 
country-specific models available in the literature; and (ii) construction cost values from international surveys. 395 
Construction cost values were harmonized using regression analysis to use data in countries with unknown 396 
maximum loss values for residential, commercial, and industrial buildings. This allows a non-biased comparison 397 
of loss values between different countries. Thus, the global JRC model provides maximum loss values per 398 
continent and country. Huizinga et al. (2017) recommend using continent-specific functions for all countries 399 
within a continent and (average) maximum loss values from the literature review for risk assessments within a 400 
country. In the case of countries with maximum loss values derived from the continental data, the maximum 401 
continental loss value can be scaled according to the ratio between the GDPs per capita of the continent and the 402 
country under consideration. Residential buildings were grouped in single-family and apartment buildings. 403 
In contrast, commercial buildings were differentiated according to the following occupancy classes: shops/malls, 404 
warehouse/storage, offices, education, hotels/restaurants, hospitals, other (public/sport). It is worth noting that the 405 
global JRC model accounts for the uncertainty in damage functions, maximum loss values, and (observed or 406 
calculated) flood extent and flood depth. Therefore, mean damage curves for each continent are provided together 407 
with mean plus/minus one standard deviation curves. 408 
 409 
In the USA, two country-wide models have been mostly used, namely the US Army Corps of Engineers (USACE) 410 
model and HAZUS-MH (HAZards US Multi-Hazard) Flood Model. The USACE model (USACE, 1985), which 411 
is based on guidelines published by US Water Resources Council (USWRC, 1985) allows the estimation of 412 
damage to residential, commercial, industrial, and institutional property, accounting for the structure, equipment, 413 
inventory (i.e., warehouse stock to be sold), and content (i.e., a combination of equipment and inventory). 414 
Vulnerability functions for several occupancy classes (e.g., residential, department store, school building, office 415 
building, restaurant, lodging, clothing, service station) were derived from post-flood empirical damage data related 416 
to individual districts of the USACE. Flood damage estimation procedures were compared by region and for a 417 
small number of companies, highlighting wide variations between districts. Given a type of construction, the input 418 
parameter (i.e., the IM) of the damage function is the water depth. In the case of residential buildings, depth–419 
damage functions are provided for seven classes of structures determined by the number of stories (i.e., single, 420 
multiple, or split level) and presence/absence of basement, plus mobile homes. The influence of construction 421 
material is also considered, i.e., wood, metal, brick/block masonry, or reinforced concrete. 422 
 423 
Nonetheless, the nation-wide damage functions developed by the Federal Insurance Agency (FIA) were considered 424 
a reference model for residential buildings, so the USACE model primarily aimed at developing business-specific 425 
damage functions as the FIA’s functions combined all businesses. The output of damage functions can be either 426 
relative or total monetary loss, the latter to be adjusted by the time elapsed from the time and place of damage 427 
function computation to application. Appendix C of the USACE model provides charts representing the 428 
combination of depth–damage and overbank velocity that are likely to cause the collapse of buildings. Those 429 
additional functions were developed for the following building classes: steel-framed buildings without loadbearing 430 
walls (class A); reinforced concrete framed buildings without loadbearing walls (class B); masonry or concrete 431 
wall buildings (class C); buildings having wood or steel studs in loadbearing walls with wood or steel frame (class 432 
D). 433 
 434 
The HAZUS-MH model is a software package developed by the Federal Emergency Management Agency 435 
(FEMA; 2003, 2009) to estimate future losses from earthquakes, windstorms, floods, and tsunamis in the United 436 
States of America (Scawthorn et al., 2006a,b). The HAZUS-MH Flood Model was developed since 1997 and 437 
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applies to local (city/county) and regional (state) scales. This model provides fragility and vulnerability functions 438 
derived from modeling, expert opinion, and empirical data. Depth–damage functions for buildings were developed 439 
by (i) FIA based on empirical damage data related to a 20-year period; and (ii) the US Army Corps of Engineers 440 
for some regions of the United States. An extensive validation was carried out against historical data. Such a model 441 
allows both riverine and coastal floods to be considered and is based on more than 900 relative damage functions 442 
(i.e., loss ratio vs. IM) for multiple types of constructions. Risk assessment via the HAZUS-MH Flood Model can 443 
be performed at three levels of detail, namely, “level 1” analysis based on default input data, “level 2” analysis 444 
based on default data and regional-specific information, and “level 3” analysis based on detailed engineering and 445 
economic studies by the user. The unit of analysis is either an individual asset or surface area. Several building 446 
characteristics are considered, such as building type (i.e., wood frame, steel frame, concrete frame, masonry, 447 
manufactured housing), number of stories (i.e., low-rise, mid-rise, high-rise, except for wood apartments and 448 
mobile homes), presence of basement and construction age. The model allows the following hydrological features 449 
to be included by univariate functions: water depth, flood duration, flow velocity, presence of debris in floodwater, 450 
rate of rise, and flood timing. The latter is an important type of damage influencing parameter because a flood 451 
event occurring, for instance, at night or during holidays, is expected to induce higher levels of damage. In addition, 452 
the user can also define the available warning time by the community and the loss metric in terms of replacement 453 
cost or depreciated asset value. It is worth noting that the HAZUS-MH Flood Model includes an additional module 454 
that allows the user to estimate indirect costs and more significant economic effects of a flood event. 455 
 456 
3.2. Factors Affecting the Reliability of Empirical Fragility and Vulnerability Relationships 457 
Post-flood damage and loss databases, widely used to derive empirical fragility and vulnerability relationships 458 
described above, can be very often associated with problems such as incompleteness, misclassification errors, 459 
small sample sizes, and large aggregated building classes. In empirical fragility and vulnerability models, 460 
therefore, large epistemic uncertainties can be introduced by the low quantity and/or quality of typical post-flood 461 
damage/loss databases and the inability to account for the complete characteristics of the flood event in the 462 
selection of a particular IM. Furthermore, it is evident that existing studies/models typically do not appropriately 463 
communicate the overall uncertainty in fragility and vulnerability relationships and often cannot distinguish the 464 
effects of the two components, i.e., aleatory (due to the natural variability of the flooding process and the resulting 465 
flood intensity) and epistemic.  466 
 467 
Table 2 identified the main categories of factors affecting the reliability of empirical vulnerability and fragility 468 
relationships; particularly, the quality of damage/loss data is one of the major determining factors for reliability. 469 
Those factors have been identified based on a detailed analysis of the model described in Section 3.1 and their 470 
application in practical flood risk assessment studies (e.g., Mertz et al., 2010, among many others). 471 
 472 
Table 2. Factors determining the reliability of empirical vulnerability and fragility models. 473 

Factors Description 

Intensity measure (IM) Hazard parameters and their spatial resolution. 

IM estimation method (e.g., hydraulic model or recorded). 

Damage characterization (in 

the case of fragility 

relationships) 

Damage scale; consideration of nonstructural damage/contents. 

Number of damage states (DSs). 

Building classification and 

sample size 

Single or multiple building classes. 

Sample size (size of database and completeness). 

Data quality/quantity Post-flood survey method. 

Coverage, response and measurement errors in surveys. 

Quantity of data (e.g., number of buildings or loss observations). 

Number of flood events, range of IMs and DSs covered by data. 

Derivation method Data manipulation or combination. 

Statistical modeling. 

Treatment of uncertainty (sources of uncertainty, quantification). 

Documentation   Whether complete information is present that makes the study reproducible. 

Cross-validation Whether the derived model/relationship is compared with existing models/relationships 

or observations. 
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 474 
The variation of the selected IM over a geographical unit and uncertainty in the estimation of the IM at a site 475 
arising from the use of hydrological/hydraulic models contribute to the uncertainty associated with the IM 476 
computation at a site of damage evaluation (e.g., Kreibich et al., 2009). To the authors’ knowledge, no existing 477 
study has yet taken this last aspect into account, and all adopt statistical models assuming that the IM is known 478 
with certainty. Moreover, due to the nature of flooding, the empirical data is typically seen to be clustered in 479 
specific ranges of IM and damage/loss values. This means that extrapolating fragility and vulnerability 480 
relationships outside those ranges may be unreliable. As a matter of good practice, empirical fragility and 481 
vulnerability relationships should not be used to estimate damage and loss outside the range of IMs of the data that 482 
has been used in their derivation.  483 
 484 
Even large damage databases may contain errors or may be associated with a low degree of refinement in the 485 
definitions of damage scales and building classes. The damage scale used to collect the damage data from the field 486 
is important in determining the potential for misclassification errors and the usefulness of the developed 487 
relationships. In general terms, a damage scale that describes a number of damage states unambiguously in terms 488 
of structural and non-structural component/content damages will result in a more reliable and useful empirical 489 
fragility model (and eventually vulnerability model). The combination of several datasets from the same or 490 
different flood events are often combined in the construction of empirical fragility curves can often be hampered 491 
by the use of different damage scales by each database. In this case, it is best practice to map the damage states of 492 
each damage scale onto those of the damage scale with the least number of damage states (e.g., Rossetto et al., 493 
2013). 494 
 495 
Post-flood damage data at a building-by-building level is not always available. Instead, the damage data is usually 496 
presented in aggregated form, often over geographical areas of various sizes (e.g., a ZIP-code, village, district, or 497 
town) (Molinari et al., 2014). In the latter case, the geographical area is assumed to have a constant flood intensity 498 
value, which is typically evaluated at its centroid (De Risi et al., 2020). Nonetheless, if the geographical unit is 499 
large, there is likely to be a considerable variation in the IM values across the unit, which is not typically accounted 500 
for (Merz et al., 2007). 501 
 502 
Different statistical modeling approaches have been used by existing studies to fit parametric functions to their 503 
empirical data. The choice of statistical model is seen to have a strong influence on the reliability and validity of 504 
existing empirical fragility functions. In addition, all the necessary inputs, outputs, and derivation steps are 505 
generally not clearly documented to a level that will allow the study to be reproduced by others. Such 506 
documentation should be independently peer-reviewed and readily available to future users. 507 
 508 
Finally, a significant shortcoming of existing models is the lack of model cross-validation to assess whether a 509 
given vulnerability model/relationship at least roughly agrees with some prior accepted model or, the observed 510 
disagreement appear reasonable in light of shortcomings in the past model, or differences between the asset classes 511 
of the past model and the one in question. Most of the existing studies do not fully document the validation process 512 
of a given model and do not clearly demonstrate the validation process’s independence and impartiality. The 513 
uncertainty in the model, limitations, and required future developments are seldomly documented. 514 
 515 
4. PROPOSED MODEL TAXONOMY FOR FLOOD FRAGILITY AND VULNERABILITY ASSESSMENT 516 
Fragility and vulnerability relationships have been developed from post-flood data in recent years, mostly by 517 
individual researchers or small research groups rather than a joint research community. Such relationships show 518 
disparities in terms of applicability and reliability and the level of the information underlying their development, 519 
which is provided to a user and their validation. This section introduces a proposed taxonomy for flood fragility 520 
and vulnerability models/relationships.  521 
 522 
Existing model taxonomies, such as those of Gerl et al. (2016) and Murnare et al. (2019), have been thoroughly 523 
reviewed/considered to derive the proposed model taxonomy. In particular, the proposed taxonomy is entirely 524 
consistent with the GEM exposure taxonomy (e.g., Silva et al., 2020) and the multi-hazard exposure taxonomy 525 
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proposed by Dabbeek and Silva (2020) for the purpose of probabilistic earthquake and flood loss assessment in 526 
the Middle East (e.g., Dabbeek et al., 2020). 527 
 528 
The proposed model taxonomy (Table 3) has been applied to selected studies available in the literature (Table 4), 529 
excluding the large-scale models presented in Section 3.1 for simplicity. For example, both the MCM and HAZUS-530 
MH contain several hundred functions due to the numerous subcategories of individual construction/occupancy 531 
classes and secondary modifiers. This would just complicate the readability of Table 4 without adding much to the 532 
general discussion to support the aim of this study. More in general, the main aim here is to demonstrate the initial 533 
development of a rational, integrated, and comprehensive compendium of existing flood-related fragility and 534 
vulnerability models/relationships to be used in probabilistic flood risk assessment. 535 
 536 
There are 26 fields related to six categories, described in Table 3. Each record provides information regarding an 537 
existing study developing vulnerability or fragility relationships. The proposed structure contains basic 538 
information regarding the type of study that developed a given model/relationship (reference, type of assessment, 539 
source) and the investigated asset (i.e., type of building: material, age, flood design, etc.). It is worth noting that 540 
other important building attributes such as “height between ground level and ground floor” are not generally 541 
included in any exposure taxonomy available in the literature (e.g., that proposed by GEM) and, as such, they have 542 
not been included in the proposed model taxonomy. The proposed model taxonomy also includes information 543 
regarding the damage scale (for fragility), the loss parameter (for vulnerability), the coverage (building structure 544 
and/or building contents) and the flood intensity, reporting the type of flood, adopted IM(s), the range of IM(s), 545 
and the main IM estimation method. Regarding the data quality/quantity, the country(ies) where the database was 546 
developed, data source(s), number of assets, and data points provide useful information regarding the model 547 
reliability. Finally, the functional form and the type of analysis (statistical fitting) are described. 548 
 549 
Once a compendium of fragility and vulnerability relationships is developed based on the proposed model 550 
taxonomy, the main challenge consists in selecting/using relationships in new flood vulnerability/risk assessment 551 
applications, identifying the most suitable models/relationships from the collection. For instance, in the field of 552 
earthquake engineering, Rossetto et al. (2014b) and Rossetto et al. (2015) proposed a procedure for assessing the 553 
robustness and quality of fragility ad vulnerability relationships for seismic risk assessment within the GEM 554 
project, identifying a formal framework for choosing the most appropriate model according to the asset class and 555 
location. Similarly, in the context of flood loss modeling, Figueiredo et al. (2018) proposed the use of multi-model 556 
ensembles to assess existing flood loss models and associated uncertainty. Specifically, the authors proposed a 557 
model rating framework to support ensemble construction, based on a probability tree of model properties, which 558 
establishes relative degrees of belief between candidate models. Using 20 flood loss models in two test cases, they 559 
construct numerous multi-model ensembles based on the rating framework and on a stochastic method, differing 560 
in terms of participating members, ensemble size and model weights. This approach enabled assessing the 561 
performance of ensemble means, as well as their probabilistic skill and reliability, demonstrating that well-562 
designed multi-model ensembles represent a pragmatic approach to consistently obtain more accurate flood loss 563 
estimates and reliable probability distributions of model uncertainty.  564 
 565 
5. APPLICATION OF THE PROPOSED MODEL TAXONOMY TO SELECTED FRAGILITY AND VULNERABILITY 566 
RELATIONSHIPS FOR FLOOD 567 
As a proof of concept, a range of existing models was organized into a pilot-compendium of original relationships 568 
by applying the proposed model taxonomy (Table 3) to selected studies available in the literature, Table 4. The 569 
compilation of such a flood vulnerability model inventory is carried out by collecting references that include 570 
original work on developing flood vulnerability relationships within a literature review. 571 
 572 
It is worth mentioning that this is not intended to be an exhaustive compendium of all available flood loss 573 
models/relationships globally. However, it represents an illustrative application providing interesting insights 574 
regarding current data and its quality. Indeed, the functional forms/plots themselves have not been included in the 575 
paper. Nevertheless, all necessary references are given to lead the reader to the specific formulations, if that were 576 
of interest. In most cases, these references are publicly available and can be easily retrieved from the literature. 577 
 578 
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Table 3. Taxonomy for flood fragility and vulnerability models/relationships for buildings. 579 
General category Field Description 

Existing study Reference  

 Type of assessment Type of assessment followed by the study, e.g., fragility or 

vulnerability. 

 Source The methodology used to obtain the functions, e.g., empirical 

(uses loss data collected after flood events), 

engineering/synthetic (uses loss data collected via what-if-

questions), or a combination of both types. 

Damage and loss 

measures 

Damage scale The main damage scale adopted by the study (if applicable, i.e., 

in the case of fragility relationships). 

 No. of DSs Number of damage states (DSs) used by the main damage scale. 

 Loss parameter Definition of the loss adopted by a vulnerability assessment 

study, i.e., relative (% of total value) or absolute (currency/unit, 

e.g. $/m²) damage. 

 Coverage Building structure and/or building contents. 

Building classification Construction material  

 Structural system  

 Type of foundation   

 Age/Year of 

construction 

 

 Height/No. of stories  

 Floor material  

 Walls/infill material  

 Percentage of openings 

by floor 

 

 Presence of basement  

 Flood design? Does the building class account for any flood design? 

 Occupancy  Sector for which a flood damage function is available, e.g., 

residential, commercial, industrial, public/municipal, etc. 

Flood intensity Flood type Considered flood source: fluvial flood (water overflowing river 

banks when surface water runoff exceeds the flow capacity of 

channels), flash flood (flood peak appearing within a few hours 

originating from torrential rainfall), pluvial flood (caused by 

rainfall or snowmelt), groundwater rise (water table level rises to 

surface level), coastal flood (originating from incursion by the 

ocean), or dam break (originating by failing of dikes). 

 Intensity measure The flood intensity measure (IM) used by each study. 

 Range of IM Range of IM values of the data. 

 Main IM estimation 

method 

Recorded/surveyed or simulated (hydraulic modeling). 

Data quality/quantity Country/ies Name of the country/ies of each dataset used. 

 Source of the data Source/s of data, e.g., flood event. 

 No. of assets  Number of buildings used for the construction of the 

relationship. 

 No. of data points Number of data points used for the construction of the 

regression analysis. 

Method Functional form Type of function, e.g., mean curve or probability distribution. 

 Type of analysis The analysis used by the examined study, i.e., regression, 

univariate distribution fitting.  

 580 
5.1. Selected models 581 
Numerous scientific papers were selected to develop the pilot compendium. These papers were identified by only 582 
selecting studies that included original flood models. The selection was limited to functions that: (i) were related 583 
to the building sector; (ii) were developed for computing direct damages (i.e., direct physical damage); (iii) were 584 
developed for floods (specifically fluvial flood). The model taxonomy proposed in Table 3 was used to catalog the 585 
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identified models/relationships. Not surprisingly, most of the research has been mainly conducted in a few flood-586 
prone countries, where funding and research were available to perform existing studies.  587 
 588 
An in-depth screening of scholarly literature was undertaken using both Google Scholar and Scopus because the 589 
databases of the two research engines have different characteristics. Indeed, Google Scholar covers any document 590 
with a seemingly academic structure, including for example, conference proceedings, while Scopus comprises a 591 
database of documents–mainly journal papers—from approximately 5,000 publishers that have been selected by 592 
an independent committee. Similarly to Gerl et al. (2016), the following keywords were searched in the different 593 
web search engines using the option “search in all fields” without imposing any date restriction: “flood catastrophe 594 
risk model”, “flood vulnerability function”, “flood vulnerability curve”, flood vulnerability model”, “flood 595 
fragility function”, “flood fragility curve”, “flood fragility model”, “flood damage function”, flood damage curve”, 596 
flood damage model”. A cross-reference approach between the identified documents was implemented to select 597 
additional publications of interest. A final check of gray documentation, such as policy reports, and open-source 598 
peer-reviewed papers/reports was performed.  599 
 600 
It is worth noting that the description of the selected models/relationships is quite heterogeneous, reflecting that 601 
the required information is often not provided explicitly. 602 
 603 
5.1.1. Europe 604 
In Europe, most flood-prone areas are located in Germany, the Netherlands, and Italy. In Germany, extensive 605 
literature is available.  606 
 607 
Merz et al. (2004) developed depth–damage curves and quantified the uncertainty of direct monetary flood damage 608 
estimates to flooded buildings  in southwest Germany. They analyzed more than 4,000 (direct, tangible) damage 609 
records for nine flood-related events in the period 1978–1994 of six economic sectors (private housing, public 610 
infrastructure, service, industry, manufacturing, and agriculture); for these sectors, a non-parametric regression 611 
(Epanechnikov-kernel, bandwidth equal to 0.6 m) was performed between the total damage (damage to the fabric, 612 
fixed, and movable inventory) and water depth. The study demonstrated that the damage data follow a Lognormal 613 
distribution with considerable variability, which is only partially reduced by dividing the data into subsets based 614 
on flood depth and building use. It was concluded that considering more damage-influencing factors (besides flood 615 
depth and building use, e.g., using building types) could improve the estimation of flood damages. 616 
 617 
Apel et al. (2004) investigated the levee breaches during the Elbe catchment floods in August 2002. Within the 618 
damage estimation, total direct monetary losses of different sectors (private housing, public infrastructure, 619 
industry, traffic and communication engineering, buildings in agriculture, energy and water supply, agricultural 620 
area) were related to the inflow water volume due to the levee failure, by combining sector-specific replacement 621 
value (EUR/m2, from regional authorities) and stage-damage curves (derived per m2 inundated area per economic 622 
sector). Monte Carlo simulations were performed to analyze uncertainty; they found that damage estimation can 623 
be refined by using historical data collected in the aftermath of the event. 624 
 625 
Buchele et al. (2006) discussed a multifactorial approach to damage estimation, considering damage-influencing 626 
factors besides the water depth, i.e., building quality, contamination, and precautionary measures. Damage data 627 
from 1697 household interviews after the 2002 Elbe and Danube flood were gathered and divided into sub-samples 628 
according to various factors (e.g., building type, use, quality). A GIS-tool is developed to estimate damages (both 629 
in absolute monetary units, i.e., EUR, or percentages of damage), divided for building fabric and content; the user 630 
can choose among different functions (Linear Polygon Function, Square-Root Function, or Point-based Power 631 
Function). 632 
 633 
Kreibich et al. (2009) examined the importance of flood velocity as an intensity measure for computing flood 634 
damage since most studies are limited to consider water depth only. The study investigated damages to residential 635 
buildings impacted by Elbe river floods in August 2002, finding that the energy head (i.e., water depth plus the 636 
square of the velocity divided by two times the acceleration of gravity) could be a suitable IM for residential 637 
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buildings (considering a critical depth level > 2 m). By contrast, flow velocity alone was instead not recommended 638 
as an IM for estimating monetary loss.  639 
 640 
The same 2002 dataset was used by Schwarz and Maiwald (2009, 2012) to validate a loss prediction model. They 641 
developed a damage classification based on five damage grades correlated to the water depth. Six vulnerability 642 
classes (from A to F) described the flood vulnerability of both masonry and reinforced concrete structures, from 643 
which fragility functions were derived. Results showed a good agreement between the estimate and the reported 644 
losses. This methodology was also applied for tsunami-generated water flow in Chile (2010). 645 
 646 
For the Netherlands, Jonkman et al. (2008) developed stage-damage functions for computing physical damage to 647 
buildings, land use (e.g., agriculture) as a function of water depth and flow velocity. These functions were derived 648 
from empirical flood damage data collected during the river Meuse floods in 1993.  649 
 650 
Gersonius et al. (2008) constructed flood damage curves to investigate private floodproofing of residential 651 
buildings through a synthetic approach. Water depth was considered as IM and simulated, employing a 652 
probabilistic model. The benefit for each damage reduction measure was computed by estimating the difference 653 
in expected annual loss (EAL) compared to traditional buildings. 654 
 655 
In Italy, Scorzini and Frank (2015) developed depth–damage functions based on damage data for the 2010 flood 656 
event in the Veneto Region. A coupled hydrological-hydraulic model was adopted to simulate inundation features, 657 
whereas loss data were collected from a database of 319 residential reinforced concrete and masonry buildings. 658 
Linear regression was used to develop original local depth–damage functions at meso- (land-use units) and micro-659 
scale (building level). The variability of the outputs was found lower for the micro-scale model. Thus, it was 660 
concluded that models transferability depends on (but it is not limited to) the similarity in terms of IMs and/or 661 
building characteristics. 662 
 663 
Dottori et al. (2016) presented a new synthetic flood damage model named INSYDE (IN-depth Synthetic model 664 
for flood Damage Estimation) to compute physical damages to buildings. The damage functions were developed 665 
using expert-opinion, literature, and loss data for about 60 buildings affected by the November 2012 flood in the 666 
Umbria region (central Italy). Chi-square hypothesis tests showed a high correlation between water depth and 667 
building components, whereas flood duration and water quality seemed less significant. The model was validated 668 
with loss data from 2010 floods in Caldogno (Veneto region, North-East Italy), related to about 300 buildings; 669 
results showed a good fit with the estimations. 670 
 671 
In Spain, Velasco et al. (2016) advanced synthetic absolute depth–damage curves for the Raval district (1.09 km2) 672 
in Barcelona by implementing a hydrological-hydraulic model. The curves were developed for six different 673 
categories (warehouses and parking areas; commercial; residential; hotels and leisure; public and cultural 674 
buildings; sites of interest) and validated through surveys and data from Spanish reinsurance companies; simulated 675 
damages represented an upper bound to the actual costs of the district.  676 
 677 
5.1.3. South America 678 
In Brazil, Nascimento et al. (2006) developed flood damage functions in relation to the water depth for residential 679 
buildings. The functions were obtained through systematic post-event surveys (city of Itajubá, January 2000 flood 680 
event), which provided information for 469 affected buildings. No validation was offered in the study. 681 
 682 
5.1.4. Asia 683 
In Thailand, the research of Tang et al. (1992) estimated the cost of flood damage using flood damage functions 684 
obtained by regression. For the city of Bangkok (flood event in 1983), a survey based on a sample of 3522 buildings 685 
from the residential, commercial, agricultural, and industrial sectors was used. Flood depth and duration seemed 686 
the most relevant factors in relation to residential and industrial assets, whereas flood depth resulted in being 687 
crucial for commercial and agricultural areas only. 688 
 689 
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In Japan, Herath (2003) derived stage-damage functions from data available in relation to past flood events or 690 
analytical descriptions of flood damage. The study considered the flooded area and water depth as IMs. Stage-691 
damage functions were derived for several categories, considering both urban and agricultural damages. Dutta et 692 
al. (2003) presented an integrated model for flood loss estimation based on stage-damage relationships. The model 693 
accounted for tangible damage to urban, rural, and infrastructure sectors (divided into subcategories), in relation 694 
to water depth. The method was applied to the Ichinomiya river basin for the 1996 flood events caused by heavy 695 
rainfall. Results showed that the model performed well in urban damage estimation; however, validation was not 696 
possible for rural and infrastructure damage estimation due to the lack of observed data.  697 
 698 
Zhai et al. (2005) used 3036 household questionnaire-based surveys after the 2000 Tokai flood (Japan) to derive 699 
damage probability functions using multivariate regression. The inundation depth was considered as the most 700 
critical factor in determining the flood damage to residential buildings. In addition, other parameters like 701 
preparedness or income, were considered. 702 
 703 
In Taiwan, Chang et al. (2008) attempted to develop a residential flood damage function from post-event 704 
interviews after the 2001 Nari Tiphoon in the Keelung river basin (302 questionnaires). Flood damages were 705 
related to flooding depths through a traditional regression model (Ordinary Least Squares); that regression was 706 
then modified by a Geographically Weighted Regression, which introduced damage location into the function. 707 
The modified model performed better than its initial version. 708 
 709 
5.1.5. Australia 710 
Smith et al. (1990) developed stage-damage functions using surveys undertaken after the Sydney flood in August 711 
1986 (71 properties). Damages are computed for building (residential, commercial, and industrial), content, and 712 
vehicles considering water (overfloor) depth and low velocity flow. They recorded the characteristics of the 713 
properties using the taxonomy of ANUFLOOD. However, such records were not presented in the paper. 714 
 715 
Gissing and Blong (2014) studied flood damage for commercial properties in the catchment of Kempsey (NSW, 716 
Australia). Three surveys were conducted after a flood in 2001 to collect data on water depths and damages. That 717 
activity supported the evaluation of losses in terms of direct damage. Regression analysis allowed to relate water 718 
(over-floor) depth with direct damage per square meter. Size, type of building, and contents are the factors that 719 
affected businesses’ vulnerability, together with the type of business.  720 
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Table 4. Compendium of existing vulnerability and fragility models/relationships [Note: this table is placed here as a Figure to avoid formatting 721 
issues; the original .xls file is provided with the manuscript]. 722 
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Apel et al. 

(2004)
V E ‒ ‒ L building na na na existing na na na na na

residential

commercial

industrial

fluvial IV
0 - 

120106 HD Germany Cologne (1961-1995) na na MC UDF

Büchele et al. 

(2006)
V E ‒ ‒ DR building na na na existing na na na Yes Yes residential fluvial WD 0 - 1.5 HD Germany

Elbe and Danube river 

basins (2002)
1697 na MC R

Chang et al. 

(2008)
V E ‒ ‒ L building na na na existing na na na na na residential fluvial WD na S Taiwan

Keelung river basin 

(2001)
302 na MC R

Dottori et al.

(2016)
V S ‒ ‒ L

structure

content
na na na existing na na na Yes na residential fluvial

OFD

FD

WD, WV

> 0
HD

S
Italy Umbria Region (2012) 60 na MC na

Dutta et al. 

(2003)
V

E

S
‒ ‒ DR

structure

content

C

W
frame na existing up to six stories na na na na

residential

non-residential
fluvial WD 0 - 6

HD

S
Japan

Ichinomiya river basin 

(1996)
na na MC na

Gersonius et al.

(2008)
V S ‒ ‒ L

structure

content
C frame na existing

detached

semidetached

multistorey

C na No Yes residential fluvial WD
0.3 - 2.4

> 2.4
HD Netherland na na na na na

Gissing & Blong 

(2004)
V E ‒ ‒ L building na na na existing na na na na na commercial fluvial OFD 0 - 2.5 S Australia Kempsey (2001) 94 na MC R

Jonkman et al. 

(2008)
V E ‒ ‒ DR

structure

content
na na na existing

low-rise

mid-rise

high-rise

na na na na
residential

commercial
fluvial WD 0 - 4.5 HD Netherland

Meuse river basin 

(1993)
na na MC na

Herath 

(2003)
V

E

S
‒ ‒ DR building

W

non W
na na existing na na na na na

residential

industrial
fluvial WD na

HD

S
Japan

Ichinomiya river basin 

(1996)
na na MC na

Kreibich et al. 

(2009)

V

F
E

Schwarz and Maiwald 

(2012) 
5 L building na na na existing na na na na na residential fluvial

WD

H

0 - 2

0 - 3
HD Germany

Elbe and Mulde river 

basins (2002)
na na na na

Merz et al. 

(2004)
V E ‒ ‒ L building na na na

existing

historical
na na na Yes na

residential

commercial

industrial

fluvial WD 0.5 - 4 S Germany
 Events during

1978-1994
4000 na PD R

Nascimento et al. 

(2006)
V E ‒ ‒ L building na na na existing na na na na na residential fluvial WD 0 - 3.5 S Brazil Itajuba (2000) 469 na MC R

Schwarz & Maiwald 

(2009; 2012)
F E

Developed by the 

authors 
5 na building

C

M

frame

wall
na

existing

new
na na na Yes na residential fluvial

WD

H
na S

Germany

Chile

Saxony (2002)

Dichato (2010)
na na MC R

Scorzini and Frank

(2015)
V E ‒ ‒ L building na na na existing

detached

semidetached

multistorey

na na Yes na residential fluvial WD 0 - 4 H Italy Caldogno (2010) 319 na na R

Smith 

(1994)
V E ‒ ‒ L building M na na existing one story na na na na residential fluvial WD 0 - 2 S Australia Sydney (1986) 71 na MC na

Velasco et al.

(2016)
V S ‒ ‒ L building na na na

existing

historical
na na na Yes na

residential

commercial 
fluvial WD

0 - 1

> 1
H Spain na na na na na

Tang et al. 

(1992)
V E ‒ ‒ L building

W

non W
na na existing na na na na na

residential

commercial industrial
fluvial

FD

WD
na S Thailand Bangkok (1983) 3522 na MC R

Zhai et al. 

(2005)

V

F 
E

Developed by the 

authors 
1

DR

L

structure

content

W

non W
na na existing up to three stories na na na Yes residential fluvial WD 0 - 2.1 S Japan Tokai area (2000) 3036 na

MC

PD
R

EXISTING STUDY FLOOD INTENSITY METHODDAMAGE AND LOSS MEASURES BUILDING CLASSIFICATION DATA QUALITY
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Explanatory legend. In “Existing study”, Type of assessment: F = fragility or V = vulnerability; Source: E = 725 
empirical or S = synthetic. In “Damage and loss measures”, DR = Damage Ratio, repair cost vs replacement 726 
cost or L = loss, i.e. repair cost. In “Building classification”, Construction material: M = Masonry or C = 727 
Concrete or W = Wood. In “Flood intensity", Intensity measure: WD = Water Depth [m] or WV = Water 728 
Velocity [m/s] or OFD = Over-floor depth [m] or H = specific energy height [m] or FD = flood duration [days] 729 
or IV = inflow volume [m3]; Main IM estimation method: S = surveyed or HD = hydrological/hydraulic model. 730 
In “Method”, Functional form: MC = mean curve or PD = probability distribution; Type of analysis: R = 731 
regression or UDF = univariate distribution fitting. 732 
 733 
5.2. Discussion 734 
Despite considerable progress in the development of loss estimation tools since the 1980s, loss estimates still 735 
reflect high uncertainties and disparities that often lead to questioning their quality. Assessing the validity and 736 
robustness of loss model components is crucial as various model assumptions may affect prioritization and 737 
investment decisions in flood risk management and regulatory requirements and business decisions in the 738 
(re)insurance industry. Hence, more effort is needed to quantify uncertainties and undertake validations, 739 
particularly in physical vulnerability modeling. These concerns emphasize the need for a rational, integrated, and 740 
comprehensive compendium of existing flood-related fragility and vulnerability models to be used in probabilistic 741 
flood risk assessment. This requires, in turn, an ad-hoc model taxonomy for flood fragility and vulnerability 742 
assessment, as proposed in this study for buildings. 743 
 744 
The proposed model taxonomy has been used to analyze a selection of studies from the literature and develop a 745 
pilot-compendium of flood fragility/vulnerability models/relationships. The focus is on fluvial floods and direct 746 
losses due to a flood event's direct physical impact. As expected, all the models were constructed for only a few 747 
flood-prone developed countries, in particular, Australia, Germany, and Japan (Figure 4a). The developed 748 
compendium contains 18 models, of which 15 include vulnerability relationships, one is a fragility model, and two 749 
present a combination of both models (Figure 4b). More than 62% of the models relate to residential buildings, 750 
while approximately 21% and 17% relates to industrial and commercial building, respectively. Most of the studies 751 
(44%) does not report information about the number of assets used to develop the functions (Figure 4c); this 752 
prevents from understanding the scale and the detail/quality of the study, as well as the reliability of the proposed 753 
models, as discussed above. 754 
 755 
Moreover, it is possible to appreciate that almost all models/relationships are based on data from a single flood 756 
event/river basin; thus, those relationships often cover a small range of IM levels and typically contain few 757 
observations for a high level of damage or loss. The water depth is considered by far the most important factor to 758 
explain flood loss (almost 67% of the studies); although the water depth is accepted as the most relevant IM, other 759 
parameters should be considered (e.g., flow velocity) to fully explain the damage. Other variables, such as flood 760 
preparedness, the time of the flood event, flood alerts, could contribute to explain flood losses; however, these 761 
seem to play a minor role (Zhai et al., 2005; Gerl et al., 2016) in loss computation. 762 
 763 
The pilot-compendium highlighted consistency issues with data/information in terms of accuracy and 764 
completeness, undermining both qualitative and quantitative assessment. Firstly, the gathered models do not 765 
present a homogenous quality in terms of data and suffer from incomplete information on the structural 766 
characteristics of buildings (e.g., basement presence, among many others). In particular, important factors affecting 767 
vulnerability and relevant in an exposure model for flood are often not adequately considered, such as type of 768 
foundations or building-specific features (e.g., type of floors, opening percentage). Secondly, details on the 769 
statistical modeling used, the number of data points considered, and the treatment of the uncertainty are frequently 770 
not addressed in the existing studies. As a result, “NA” tag indicates that around 48% of all the compendium 771 
entries and even basic factors (like the construction age, the construction material, and the structural system) show 772 
extensive missing data in the records.  773 
 774 
This exercise results in a compendium of flood vulnerability relationships that are highly heterogeneous and 775 
generally not accompanied by explicit validation at the time of their proposal. This lack of reliable information 776 
particularly undermined the application of various rating systems to judge the validity and transferability of the 777 
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selected models/relationships. This can prevent from the development of robust flood risk models or perform 778 
accurate flood risk assessment exercises, as required by risk modelers or (re)insurance companies. The approach 779 
proposed by Figueiredo et al. (2018), relying on developing multi-model ensembles to assess existing flood loss 780 
models and associated uncertainty, is generally recommended to obtain accurate flood loss estimates and reliable 781 
probability distributions of model uncertainty.  782 
 783 
A robust protocol of data collection and organization, particularly in post-event settings, is a prerogative for the 784 
creation of sound and flexible databases, which should also be able to accommodate future data collection via 785 
digital systems (e.g., improved forms/procedures for post-event damage/loss data collection, perhaps implemented 786 
in mobile applications). 787 
 788 
 789 

 790 
Figure 4. Statistics derived from the compendium (Table 3): (a) country of the data source; (b) type of 791 
assessment used in the study: V – Vulnerability, F – Fragility, V+F – both; (c) number of assets used in the 792 
study/model. 793 
 794 
6. CONCLUDING REMARKS 795 
This paper has presented (i) an overview of catastrophe risk modeling, with emphasis on flood risk assessment 796 
and the methods to develop fragility and vulnerability relationships for flood; and (ii) a model taxonomy and a 797 
pilot compendium of existing fragility and vulnerability models/relationships for flood. Despite the number of 798 
relationships available, it is noted that their quality and geographical applicability may significantly vary. More 799 
specifically, existing empirical fragility and vulnerability relationships are typically based on databases associated 800 
with important quality issues, including a low level of refinement/details on the building class and damage states 801 
(if considered), scarcity of observations, especially at high flood intensities and damage states. Furthermore, there 802 
is no consensus in the literature concerning the functional form of empirical vulnerability and fragility functions 803 
or on best-practice methodologies for modeling and communicating the uncertainty related to those functions.  804 
These observations highlight the need for improved protocols for collecting loss and damage data in post-flood 805 
scenarios to provide a sound basis for the derivation of future empirical vulnerability and fragility relationships. 806 
There is also an urgent need to develop a rational, statistically correct, widely accepted method to construct 807 
empirical fragility and vulnerability, which explicitly quantifies and models the uncertainty in the data and clearly 808 
communicates the uncertainty in the considered models. 809 
This work has the potential for future development in multiple directions. First of all, the compendium could be 810 
reviewed to include additional available models and additional categories (e.g., functions related to crops or 811 
infrastructure damages). On the condition that functional forms are made available by relevant studies, the 812 
compendium could be implemented on the internet, enabling user-friendly consultation and download.  813 
A rating system of existing models is considered a fundamental prerequisite for using functions with confidence, 814 
thus producing meaningful results. This is extremely reliant on the quality and completeness of the compendium. 815 
Currently, the reliability of the available functions is often unknown. 816 
 817 
 818 

 819 
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